
XBee Python Library Documentation
Release 1.4.0

Digi International Inc.

Mar 18, 2021





Getting Started

1 Requirements 3

2 Contents 5
2.1 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 User Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 FAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Changelog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6 API reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.6.1 Get started with XBee Python library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6.1.1 Install your software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6.1.2 Configure your XBee modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6.1.3 Run your first XBee Python application . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6.2 XBee terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.2.1 RF modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.2.2 XBee RF modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.2.3 Radio firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.2.4 Radio communication protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.2.5 Radio module operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6.2.6 API frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6.2.7 AT settings or commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6.3 Work with XBee classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6.3.1 Instantiate an XBee device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6.3.2 Open the XBee device connection . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6.3.3 Close the XBee device connection . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.4 Configure the XBee device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.4.1 Read and set common parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.4.2 Read, set and execute other parameters . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6.4.3 Apply configuration changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6.4.4 Write configuration changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6.4.5 Reset the device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6.4.6 Configure Wi-Fi settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6.4.7 Configure Bluetooth settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.5 Discover the XBee network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6.5.1 Discovery types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6.5.2 Deep discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

i



2.6.5.3 Standard discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6.5.4 Discover the network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6.5.5 Access discovered nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6.5.6 Access connections between nodes . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6.5.7 Add and remove nodes manually . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.6.5.8 Listen to network modification events . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6.6 Communicate with XBee devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.6.6.1 Send and receive data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.6.6.2 Send and receive explicit data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.6.6.3 Send and receive IP data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.6.6.4 Send and receive SMS messages . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.6.6.5 Send and receive Bluetooth data . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.6.6.6 Send and receive MicroPython data . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.6.6.7 Receive modem status events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.6.6.8 Communicate using XBee sockets . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.6.7 Handle analog and digital IO lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.6.7.1 Configure the IO lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.6.7.2 Read IO samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.6.7.3 Change detection sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.6.8 Update the XBee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.6.8.1 Update the XBee firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.6.8.2 Update the XBee file system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2.6.8.3 Apply an XBee profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

2.6.9 Log events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
2.6.9.1 Logging level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

2.6.10 XBee Python samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
2.6.10.1 Configuration samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
2.6.10.2 Network samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
2.6.10.3 Communication samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
2.6.10.4 IO samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
2.6.10.5 Firmware samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
2.6.10.6 File system samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
2.6.10.7 Profile samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

2.6.11 Frequently Asked Questions (FAQs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
2.6.11.1 What is XCTU and how do I download it? . . . . . . . . . . . . . . . . . . . . . . 118
2.6.11.2 How do I find the serial port and baud rate of my module? . . . . . . . . . . . . . . 118
2.6.11.3 Can I use the XBee Python Library with modules in AT operating mode? . . . . . . 119
2.6.11.4 I get the Python error ImportError: No module named 'serial' . . . 119
2.6.11.5 I get the Python error ImportError: No module named 'srp' . . . . . 120

2.6.12 Changelog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
2.6.12.1 v1.4.0 - 03/18/2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
2.6.12.2 v1.3.0 - 11/05/2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
2.6.12.3 v1.2.0 - 04/05/2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
2.6.12.4 v1.1.1 - 04/25/2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
2.6.12.5 v1.1.0 - 01/19/2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
2.6.12.6 v1.0.0 - 10/02/2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

2.6.13 API reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
2.6.13.1 digi package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

3 Indices and tables 1015

4 License 1017

Python Module Index 1019

ii



Index 1021

iii



iv



XBee Python Library Documentation, Release 1.4.0

Release v1.4.0. (Installation)

XBee devices allow you to enable wireless connectivity to your projects creating a network of connected devices.
They provide features to exchange data with other devices in the network, configure them and control their I/O lines.
An application running in an intelligent device can take advantage of these features to monitor and manage the entire
network.

Despite the available documentation and configuration tools for working with XBee devices, it is not always easy to
develop these kinds of applications.

The XBee Python Library is a Python API that dramatically reduces the time to market of XBee projects developed
in Python and facilitates the development of these types of applications, making it an easy and smooth process. The
XBee Python Library includes the following features:

• Support for multiple XBee devices and protocols.

• High abstraction layer provides an easy-to-use workflow.

• Ability to configure local and remote XBee devices of the network.

• Discovery feature finds remote nodes on the same network as the local module.

• Ability to transmit and receive data from any XBee device on the network.

• Ability to manage the General Purpose Input and Output lines of all your XBee devices.

• Ability to send and receive data from other XBee interfaces (Serial, Bluetooth Low Energy and MicroPython).

This portal provides the following documentation to help you with the different development stages of your Python
applications using the XBee Python Library.

Getting Started 1

https://pepy.tech/project/digi-xbee
https://pypi.org/project/digi-xbee/


XBee Python Library Documentation, Release 1.4.0

2 Getting Started



CHAPTER 1

Requirements

The XBee Python library requires the following components in order to work properly:

• Python 3.6. You can get it from https://www.python.org/getit/

• PySerial 3. Install it with pip (pip install pyserial) or refer to the PySerial installation guide for
further information about getting PySerial.

• SRP Install it with pip (pip install srp).

3

https://www.python.org/getit/
http://pythonhosted.org/pyserial/pyserial.html#installation


XBee Python Library Documentation, Release 1.4.0

4 Chapter 1. Requirements



CHAPTER 2

Contents

The XBee Python library documentation is split in different sections:

• Getting Started

• User Documentation

• Examples

• FAQ

• Changelog

• API reference

2.1 Getting Started

Perform your first steps with the XBee Python library. Learn how to setup your environment and communicate with
your XBee devices using the library.

• Get started with XBee Python library

2.2 User Documentation

Access detailed information about the different features and capabilities provided by the library and how to use them.

• XBee terminology

• Work with XBee classes

• Configure the XBee device

• Discover the XBee network

• Communicate with XBee devices

5



XBee Python Library Documentation, Release 1.4.0

• Handle analog and digital IO lines

• Update the XBee

• Log events

2.3 Examples

The library includes a good amount of examples that demonstrate most of the functionality that it provides.

• XBee Python samples

2.4 FAQ

Find the answer to the most common questions or problems related to the XBee Python library in the FAQ section.

• Frequently Asked Questions (FAQs)

2.5 Changelog

• Changelog

2.6 API reference

The API reference contains more detailed documentation about the API for developers who are interested in using and
extending the library functionality.

• API reference

2.6.1 Get started with XBee Python library

This getting started guide describes how to set up your environment and use the XBee Python Library to communicate
with your XBee devices. It explains how to configure your modules and write your first XBee Python application.

The guide is split into 3 main sections:

• Install your software

• Configure your XBee modules

• Run your first XBee Python application

2.6.1.1 Install your software

The following software components are required to write and run your first XBee Python application:

• Python 3

• PySerial 3

• SRP

6 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• XBee Python library software

• XCTU

Python 3

The XBee Python library requires Python 3. If you don’t have Python 3, you can get it from https://www.python.org/
getit/.

Warning: The XBee Python library is currently only compatible with Python 3.

PySerial 3

You must be able to communicate with the radio modules over a serial connection. The XBee Python library uses the
PySerial module for that functionality.

This module is automatically downloaded when you install the XBee Python library.

SRP

The XBee Python library uses the SRP module to authenticate with XBee devices over Bluetooth Low Energy.

This module is automatically downloaded when you install the XBee Python library.

XBee Python library software

The best way to install the XBee Python library is with the pip tool (which is what Python uses to install packages).
The pip tool comes with recent versions of Python.

To install the library, run this command in your terminal application:

$ pip install digi-xbee

The library is automatically downloaded and installed in your Python interpreter.

Get the source code

The XBee Python library is actively developed on GitHub, where the code is always available. You can clone the
repository with:

$ git clone git@github.com:digidotcom/xbee-python.git

XCTU

XCTU is a free multi-platform application that enables developers to interact with Digi RF modules through a simple-
to-use graphical interface. It includes new tools that make it easy to set up, configure, and test XBee RF modules.

For instructions on downloading and using XCTU, go to:

http://www.digi.com/xctu

2.6. API reference 7

https://www.python.org/getit/
https://www.python.org/getit/
https://pip.pypa.io/en/stable
https://github.com/digidotcom/xbee-python
http://www.digi.com/xctu


XBee Python Library Documentation, Release 1.4.0

Once you have downloaded XCTU, run the installer and follow the steps to finish the installation process.

After you load XCTU, a message about software updates appears. We recommend you always update XCTU to the
latest available version.

2.6.1.2 Configure your XBee modules

You need to configure two XBee devices. One module (the sender) sends “Hello XBee World!” using the Python
application. The other device (the receiver) receives the message.

To communicate, both devices must be working in the same protocol (802.15.4, Zigbee, DigiMesh, Point-to-
Multipoint, or Wi-Fi) and must be configured to operate in the same network.

Note: If you are getting started with cellular, you only need to configure one device. Cellular protocol devices are
connected directly to the Internet, so there is no network of remote devices to communicate with them. For the cellular
protocol, the XBee application demonstrated in the getting started guide differs from other protocols. The cellular
protocol sends and reads data from an echo server.

Use XCTU to configure the devices. Plug the devices into the XBee adapters and connect them to your computer’s
USB or serial ports.

Note: For more information about XCTU, see the XCTU User Guide. You can also access the documentation from
the Help menu of the tool.

Once XCTU is running, add your devices to the tool and then select them from the Radio Modules section. When
XCTU is finished reading the device parameters, complete the following steps according to your device type. Repeat
these steps to configure your XBee devices using XCTU.

• 802.15.4 devices

• Zigbee devices

• DigiMesh devices

• DigiPoint devices

• Cellular devices

• Wi-Fi devices

802.15.4 devices

1. Click Load default firmware settings in the Radio Configuration toolbar to load the default values for the
device firmware.

2. Make sure API mode (API1 or API2) is enabled. To do so, set the AP parameter value to 1 (API mode without
escapes) or 2 (API mode with escapes).

3. Configure ID (PAN ID) setting to CAFE.

4. Configure CH (Channel setting) to C.

5. Click Write radio settings in the Radio Configuration toolbar to apply the new values to the module.

6. Once you have configured both modules, check to make sure they can see each other. Click Discover radio
modules in the same network, the second button of the device panel in the Radio Modules view. The other
device must be listed in the Discovering remote devices dialog.

8 Chapter 2. Contents

https://www.digi.com/resources/documentation/digidocs/90001458-13


XBee Python Library Documentation, Release 1.4.0

Note: If the other module is not listed, reboot both devices by pressing the Reset button of the carrier board and try
adding the device again. If the list is still empty, see the product manual for your device.

Zigbee devices

1. For old Zigbee devices (S2 and S2B), make sure the devices are using API firmware. The firmware appears in
the Function label of the device in the Radio Modules view.

• One of the devices must be a coordinator - Function: Zigbee Coordinator API

• Digi recommends the other one is a router - Function: Zigbee Router AP.

Note: If any of the two previous conditions is not satisfied, you must change the firmware of the device. Click
the Update firmware button of the Radio Configuration toolbar.

2. Click Load default firmware settings in the Radio Configuration toolbar to load the default values for the
device firmware.

3. Do the following:

• If the device has the AP parameter, set it to 1 (API mode without escapes) or 2 (API mode with escapes).

• If the device has the CE parameter, set it to Enabled in the coordinator.

4. Configure ID (PAN ID) setting to C001BEE.

5. Configure SC (Scan Channels) setting to FFF.

6. Click Write radio settings in the Radio Configuration toolbar to apply the new values to the module.

7. Once you have configured both modules, check to make sure they can see each other. Click Discover radio
modules in the same network, the second button of the device panel in the Radio Modules view. The other
device must be listed in the Discovering remote devices dialog.

Note: If the other module is not listed, reboot both devices by pressing the Reset button of the carrier board and try
adding the device again. If the list is still empty, go to the corresponding product manual for your devices.

DigiMesh devices

1. Click Load default firmware settings in the Radio Configuration toolbar to load the default values for the
device firmware.

2. Ensure the API mode (API1 or API2) is enabled. To do so, the AP parameter value must be 1 (API mode
without escapes) or 2 (API mode with escapes).

3. Configure ID (PAN ID) setting to CAFE.

4. Configure CH (Operating Channel) to C.

5. Click Write radio settings in the Radio Configuration toolbar to apply the new values to the module.

6. Once you have configured both modules, check to make sure they can see each other. Click Discover radio
modules in the same network, the second button of the device panel in the Radio Modules view. The other
device must be listed in the Discovering remote devices dialog.

2.6. API reference 9



XBee Python Library Documentation, Release 1.4.0

Note: If the other module is not listed, reboot both devices by pressing the Reset button of the carrier board and try
adding the device again. If the list is still empty, go to the corresponding product manual for your devices.

DigiPoint devices

1. Click Load default firmware settings in the Radio Configuration toolbar to load the default values for the
device firmware.

2. Ensure the API mode (API1 or API2) is enabled. To do so, the AP parameter value must be 1 (API mode
without escapes) or 2 (API mode with escapes).

3. Configure ID (PAN ID) setting to CAFE.

4. Configure HP (Hopping Channel) to 5.

5. Click Write radio settings in the Radio Configuration toolbar to apply the new values to the module.

6. Once you have configured both modules, check to make sure they can see each other. Click Discover radio
modules in the same network, the second button of the device panel in the Radio Modules view. The other
device must be listed in the Discovering remote devices dialog.

Note: If the other module is not listed, reboot both devices by pressing the Reset button of the carrier board and try
adding the device again. If the list is still empty, go to the corresponding product manual for your devices.

Cellular devices

1. Click Load default firmware settings in the Radio Configuration toolbar to load the default values for the
device firmware.

2. Ensure the API mode (API1 or API2) is enabled. To do so, the AP parameter value must be 1 (API mode
without escapes) or 2 (API mode with escapes).

3. Click Write radio settings in the Radio Configuration toolbar to apply the new values to the module.

4. Verify the module is correctly registered and connected to the Internet. To do so check that the LED on the
development board blinks. If it is solid or has a double-blink, registration has not occurred properly. Registration
can take several minutes.

Note: In addition to the LED confirmation, you can check the IP address assigned to the module by reading the MY
parameter and verifying it has a value different than 0.0.0.0.

Wi-Fi devices

1. Click Load default firmware settings in the Radio Configuration toolbar to load the default values for the
device firmware.

2. Ensure the API mode (API1 or API2) is enabled. To do so, the AP parameter value must be 1 (API mode
without escapes) or 2 (API mode with escapes).

3. Connect to an access point:

10 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

1. Click the Active Scan button.

2. Select the desired access point from the list of the Active Scan result dialog.

3. If the access point requires a password, type your password.

4. Click the Connect button and wait for the module to connect to the access point.

4. Click Write radio settings in the Radio Configuration toolbar to apply the new values to the module.

5. Verify the module is correctly connected to the access point by checking the IP address assigned to the module
by reading the MY parameter and verifying it has a value different than 0.0.0.0.

2.6.1.3 Run your first XBee Python application

The XBee Python application demonstrated in the guide broadcasts the message Hello XBee World! from one of the
devices connected to your computer (the sender) to all remote devices on the same network as the sender. Once the
message is sent, the receiver XBee module must receive it. You can use XCTU to verify receipt.

The commands to be executed depend on the protocol of the XBee devices. Follow the corresponding steps depending
on the protocol of your XBee devices.

• Zigbee, DigiMesh, DigiPoint or 802.15.4 devices

• Wi-Fi devices

• Cellular devices

Zigbee, DigiMesh, DigiPoint or 802.15.4 devices

Follow these steps to send the broadcast message and verify that it is received successfully:

1. First, prepare the receiver XBee device in XCTU to verify that the broadcast message sent by the sender device
is received successfully. Follow these steps to do so:

1. Launch XCTU.

2. Add the receiver module to XCTU.

3. Click Open the serial connection with the radio module to switch to Consoles working mode and open
the serial connection. This allows you to see the data when it is received.

2. Open the Python interpreter and write the application commands.

1. Import the XBeeDevice class by executing the following command:

> from digi.xbee.devices import XBeeDevice

2. Instantiate a generic XBee device:

> device = XBeeDevice("COM1", 9600)

Note: Remember to replace the COM port with the one your sender XBee device is connected to. In
UNIX-based systems, the port usually starts with /dev/tty.

3. Open the connection with the device:

> device.open()

2.6. API reference 11



XBee Python Library Documentation, Release 1.4.0

4. Send the Hello XBee World! broadcast message.

> device.send_data_broadcast("Hello XBee World!")

5. Close the connection with the device:

> device.close()

3. Verify that the message is received by the receiver XBee in XCTU. An RX (Receive) frame should be displayed
in the Console log with the following information:

Start delimiter 7E
Length Depends on the XBee protocol
Frame type Depends on the XBee protocol
16/64-bit source address XBee sender’s 16/64-bit address
Options 02
RF data/Received data 48 65 6C 6C 6F 20 58 42 65 65 20 57 6F 72 6C 64 21

Wi-Fi devices

Wi-Fi devices send broadcast data using the send_ip_data_broadcast() command instead of the
send_data_broadcast() one. For that reason, you must instantiate a WiFiDevice instead of a generic
XBeeDevice to execute the proper command.

Follow these steps to send the broadcast message and verify that it is received successfully:

1. First, prepare the receiver XBee device in XCTU to verify that the broadcast message sent by the sender device
is received successfully by the receiver device.

1. Launch XCTU.

2. Add the receiver module to XCTU.

3. Click Open the serial connection with the radio module to switch to Consoles working mode and open
the serial connection. This allows you to see the data when it is received.

2. Open the Python interpreter and write the application commands.

1. Import the WiFiDevice class by executing the following command:

> from digi.xbee.devices import WiFiDevice

2. Instantiate a Wi-Fi XBee device:

> device = WiFiDevice("COM1", 9600)

Note: Remember to replace the COM port with the one your sender XBee device is connected to. In
UNIX-based systems, the port usually starts with /dev/tty.

3. Open the connection with the device:

> device.open()

4. Send the Hello XBee World! broadcast message.

12 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

> device.send_ip_data_broadcast(9750, "Hello XBee World!")

5. Close the connection with the device:

> device.close()

3. Verify that the message is received by the receiver XBee in XCTU. An RX IPv4 frame should be displayed in
the Console log with the following information:

Start delimiter 7E
Length 00 1C
Frame type B0
IPv4 source address XBee Wi-Fi sender’s IP address
16-bit dest port 26 16
16-bit source port 26 16
Protocol 00
Status 00
RF data 48 65 6C 6C 6F 20 58 42 65 65 20 57 6F 72 6C 64 21

Cellular devices

Cellular devices are connected directly to the Internet, so there is no network of remote devices to communicate with
them. For cellular protocol, the application demonstrated in this guide differs from other protocols.

The application sends and reads data from an echo server. Follow these steps to execute it:

1. Open the Python interpreter and write the application commands.

1. Import the CellularDevice, IPProtocol and IPv4Address classes:

> from digi.xbee.devices import CellularDevice
> from digi.xbee.models.protocol import IPProtocol
> from ipaddress import IPv4Address

2. Instantiate a cellular XBee device:

> device = CellularDevice("COM1", 9600)

Note: Remember to replace the COM port by the one your Cellular XBee device is connected to. In
UNIX-based systems, the port usually starts with /dev/tty.

3. Open the connection with the device:

> device.open()

4. Send the Hello XBee World! message to the echo server with IP 52.43.121.77 and port 11001 using the
TCP IP protocol.

> device.send_ip_data(IPv4Address("52.43.121.77"), 11001, IPProtocol.TCP,
→˓"Hello XBee World!")

5. Read and print the response from the echo server. If response cannot be received, print ERROR.

2.6. API reference 13



XBee Python Library Documentation, Release 1.4.0

> ip_message = device.read_ip_data()
> print(ip_message.data.decode("utf8") if ip_message is not None else "ERROR")

6. Close the connection with the device:

> device.close()

2.6.2 XBee terminology

This section covers basic XBee concepts and terminology. The XBee Python library manual refers to these concepts
frequently, so it is important to understand these concepts.

2.6.2.1 RF modules

A radio frequency (RF) module is a small electronic circuit used to transmit and receive radio signals on different
frequencies. Digi produces a wide variety of RF modules to meet the requirements of almost any wireless solution,
such as long-range, low-cost, and low power modules.

2.6.2.2 XBee RF modules

XBee is the brand name of a family of RF modules produced by Digi International Inc. XBee RF modules are modular
products that make it easy and cost-effective to deploy wireless technology. Multiple protocols and RF features are
available, giving customers enormous flexibility to choose the best technology for their needs.

The XBee RF modules are available in three form factors: Through-Hole, Surface Mount, and Micro, with different
antenna options. Almost all modules are available in the Through-Hole form factor and share the same footprint.

2.6.2.3 Radio firmware

Radio firmware is the program code stored in the radio module’s persistent memory that provides the control program
for the device. From XCTU or the local web interface of the XBee Gateway, you can update or change the firmware
of the local XBee module or any other module connected to the same network. This is a common task when changing
the role of the device or updating to the latest version of the firmware.

2.6.2.4 Radio communication protocols

A radio communication protocol is a set of rules for data exchange between radio devices. An XBee module supports
a specific radio communication protocol depending on the module and its radio firmware.

Following is the complete list of protocols supported by the XBee radio modules:

14 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• IEEE 802.15.4

• Zigbee

• Zigbee Smart Energy

• DigiMesh (Digi proprietary)

• ZNet

• IEEE 802.11 (Wi-Fi)

• Point-to-multipoint (Digi proprietary)

• XSC (XStream compatibility)

• Cellular

• Thread

Note: Not all XBee devices can run all these communication protocols. The combination of XBee hardware and
radio firmware determines the protocol that an XBee device can execute. Refer to the XBee RF Family Comparison
Matrix for more information about the available XBee RF modules and the protocols they support.

2.6.2.5 Radio module operating modes

The operating mode of an XBee radio module establishes the way a user, or any microcontroller attached to the XBee,
communicates with the module through the Universal Asynchronous Receiver/Transmitter (UART) or serial interface.

Depending on the firmware and its configuration, the radio modules can work in three different operating modes:

• Application Transparent (AT) operating mode

• API operating mode

• API escaped operating mode

In some cases, the operating mode of a radio module is established by the firmware version and the firmware’s AP
setting. The module’s firmware version determines whether the operating mode is AT or API. The firmware’s AP
setting determines if the API mode is escaped (AP = 2) or not (AP = 1). In other cases, the operating mode is only

2.6. API reference 15

https://www.digi.com/pdf/chart_xbee_rf_features.pdf
https://www.digi.com/pdf/chart_xbee_rf_features.pdf


XBee Python Library Documentation, Release 1.4.0

determined by the AP setting, which allows you to configure the mode to be AT (AP = 0), API (AP = 1) or API
escaped (AP = 2).

Application Transparent (AT) operating mode

In Application Transparent (AT) or transparent operating mode, all serial data received by the radio module is queued
up for RF transmission. When the module receives RF data, it sends the data out through the serial interface.

To configure an XBee module operating in AT, put the device in command mode to send the configuration commands.

Command mode

When the radio module is working in AT operating mode, configure settings using the command mode interface.

To enter command mode, send the 3-character command sequence through the serial interface of the radio module,
usually +++, within one second. Once the command mode has been established, the module sends the reply OK, the
command mode timer starts, and the radio module can receive AT commands.

The structure of an AT command follows this format:

AT[ASCII command][Space (optional)][Parameter (optional)][Carriage return]

Example:

ATNI MyDevice\r

If no valid AT commands are received within the command mode timeout, the radio module automatically exits
command mode. You can also exit command mode issuing the CN command (Exit Command mode).

API operating mode

Application Programming Interface (API) operating mode is an alternative to AT operating mode. API operating mode
requires that communication with the module through a structured interface; that is, data communicated in API frames.

The API specifies how commands, command responses, the module sends and receives status messages using the
serial interface. API operation mode enables many operations, such as the following:

• Configure the XBee device itself.

• Configure remote devices in the network.

• Manage data transmission to multiple destinations.

• Receive success/failure status of each transmitted RF packet.

• Identify the source address of each received packet.

Depending on the AP parameter value, the device can operate in one of two modes: API (AP = 1) or API escaped (AP
= 2) operating mode.

API escaped operating mode

API escaped operating mode (AP = 2) works similarly to API mode. The only difference is that when working in API
escaped mode, some bytes of the API frame specific data must be escaped.

Use API escaped operating mode to add reliability to the RF transmission, which prevents conflicts with special
characters such as the start-of-frame byte (0x7E). Since 0x7E can only appear at the start of an API packet, if 0x7E is

16 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

received at any time, you can assume that a new packet has started regardless of length. In API escaped mode, those
special bytes are escaped.

Escape characters

When sending or receiving an API frame in API escaped mode, you must escape (flag) specific data values so they
do not interfere with the data frame sequence. To escape a data byte, insert 0x7D and follow it with the byte being
escaped, XOR’d with 0x20.

The following data bytes must be escaped:

• 0x7E: Frame delimiter

• 0x7D: Escape

• 0x11: XON

• 0x13: XOFF

2.6.2.6 API frames

An API frame is the structured data sent and received through the serial interface of the radio module when it is
configured in API or API escaped operating modes. API frames are used to communicate with the module or with
other modules in the network.

An API frame has the following structure:

Start
delim-
iter

This field is always 0x7E.

Length The length field has a two-byte value that specifies the number of bytes that are contained in the frame
data field. It does not include the checksum field.

Frame
Data

The content of this field is composed by the API identifier and the API identifier specific data. Depend-
ing on the API identifier (also called API frame type), the content of the specific data changes.

Check-
sum

Byte containing the hash sum of the API frame bytes.

In API escaped mode, some bytes in the Length, Frame Data and Checksum fields must be escaped.

2.6. API reference 17



XBee Python Library Documentation, Release 1.4.0

2.6.2.7 AT settings or commands

The firmware running in the XBee RF modules contains a group of settings and commands that you can configure to
change the behavior of the module or to perform any related action. Depending on the protocol, the number of settings
and meanings vary, but all the XBee RF modules can be configured with AT commands.

All the firmware settings or commands are identified with two ASCII characters and some applications and documents
refer to them as AT settings or AT commands.

The configuration process of the AT settings varies depending on the operating mode of the XBee RF module.

• AT operating mode. In this mode, you must put the module in a special mode called command mode, so it
can receive AT commands. For more information about configuring XBee RF modules working in AT operating
mode, see Application Transparent (AT) operating mode.

• API operating mode. To configure or execute AT commands when the XBee RF module operates in API mode,
you must generate an AT command API frame containing the AT setting identifier and the value of that setting,
and send it to the XBee RF module. For more information about API frames, see API frames.

2.6.3 Work with XBee classes

When working with the XBee Python Library, start with an XBee device object that represents a physical module. A
physical XBee device is the combination of hardware and firmware. Depending on that combination, the device runs
a specific wireless communication protocol such as Zigbee, 802.15.4, DigiMesh, Wi-Fi, or cellular. An XBeeDevice
class represents the XBee module in the API.

Most of the protocols share the same features and settings, but there are some differences between them. For that
reason, the XBee Python Library also includes a set of classes that represent XBee devices running different commu-
nication protocols. The XBee Python Library supports one XBee device class per protocol, as follows:

• XBee Zigbee device (ZigBeeDevice)

• XBee 802.15.4 device (Raw802Device)

• XBee DigiMesh device (DigiMeshDevice)

• XBee Point-to-multipoint device (DigiPointDevice)

• XBee IP devices (This is a non-instantiable class)

18 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

– XBee Cellular device (CellularDevice)

– XBee Wi-Fi device (WiFiDevice)

All these XBee device classes allow you to configure the physical XBee device, communicate with the device, send
data to other nodes on the network, receive data from remote devices, and so on. Depending on the class, you may
have additional methods to execute protocol-specific features or similar methods.

To work with the API and perform actions involving the physical device, you must instantiate a generic XBeeDevice
object or one that is protocol-specific. This documentation refers to the XBeeDevice object generically when de-
scribing the different features, but they can be applicable to any XBee device class.

2.6.3.1 Instantiate an XBee device

When you are working with the XBee Python Library, the first step is to instantiate an XBee device object. The API
works well using the generic XBeeDevice class, but you can also instantiate a protocol-specific XBee device object
if you know the protocol your physical XBee device is running.

An XBee device is represented as either local or remote in the XBee Python Library, depending upon how you
communicate with the device.

Local XBee device

A local XBee device is the object in the library representing the device that is physically attached to your PC through
a serial or USB port. The classes you can instantiate to represent a local device are listed in the following table:

Class Description
XBeeDevice Generic object, protocol-independent
ZigBeeDevice Zigbee protocol
Raw802Device 802.15.4 protocol
DigiMeshDevice DigiMesh protocol
DigiPointDevice Point-to-multipoint protocol
CellularDevice Cellular protocol
WiFiDevice Wi-Fi protocol

To instantiate a generic or protocol-specific XBee device, you need to provide the following two parameters:

• Serial port name

• Serial port baud rate

Instantiate a local XBee device

[...]

xbee = XBeeDevice("COM1", 9600)

[...]

Remote XBee device

Remote XBee device objects represent remote nodes of the network. These are XBee devices that are not attached to
your PC but operate in the same network as the attached (local) device.

2.6. API reference 19



XBee Python Library Documentation, Release 1.4.0

Warning: When working with remote XBee devices, it is very important to understand that you cannot com-
municate directly with them. You need to provide a local XBee device operating in the same network that acts as
bridge between your serial port and the remote node.

Managing remote devices is similar to managing local devices, but with limitations. You can configure them, handle
their IO lines, and so on, in the same way you manage local devices. Local XBee devices have several methods for
sending data to remote devices, but the remote devices cannot use these methods because they are already remote.
Therefore, a remote device cannot send data to another remote device.

In the local XBee device instantiation, you can choose between instantiating a generic remote XBee device object or
a protocol-specific remote XBee device. The following table lists the remote XBee device classes:

Class Description
RemoteXBeeDevice Generic object, protocol independent
RemoteZigBeeDevice Zigbee protocol
RemoteRaw802Device 802.15.4 protocol
RemoteDigiMeshDevice DigiMesh protocol
RemoteDigiPointDevice Point-to-multipoint protocol

Note: XBee Cellular and Wi-Fi protocols do not support remote devices.

To instantiate a remote XBee device object, you need to provide the following parameters:

• Local XBee device attached to your PC that serves as the communication interface.

• 64-bit address of the remote device.

RemoteRaw802Device objects can be also instantiated by providing the local XBee device attached to your PC
and the 16-bit address of the remote device.

Instantiate a remote XBee device

[...]

local_xbee = XBeeDevice("COM1", 9600)
remote_xbee = RemoteXBeeDevice(local_xbee, XBee64BitAddress.from_hex_string(
→˓"0013A20012345678"))

[...]

The local device must also be the same protocol for protocol-specific remote XBee devices.

2.6.3.2 Open the XBee device connection

Before trying to communicate with the local XBee device attached to your PC, you need to open its communication
interface, which is typically a serial/USB port. Use the open() method of the instantiated XBee device, and you can
then communicate and configure the device.

Remote XBee devices do not have an open method. They use a local XBee device as the connection interface. If
you want to perform any operation with a remote XBee device you must open the connection of the associated local
device.

20 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)

# Open the device connection.
local_xbee.open()

[...]

The open() method may fail for the following reasons:

• All the possible errors are caught as XBeeException:

– If there is any problem with the communication, throwing a TimeoutException.

– If the operating mode of the device is not API or API_ESCAPE, throwing an
InvalidOperatingModeException.

– There is an error writing to the XBee interface, or device is closed, throwing a generic XBeeException.

The open() action performs some other operations apart from opening the connection interface of the device. It
reads the device information (reads some sensitive data from it) and determines the operating mode of the device.

Use force_settings=True as open() method parameter, to reconfigure the XBee serial settings (baud rate,
data bits, stop bits, etc.) to those specified in the XBee object constructor.

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)

# Open the connection using constructor parameters: 9600 8N1.
# This reconfigures the XBee if its serial settings do not match.
local_xbee.open(force_settings=True)

[...]

Example: Recover XBee serial communication
The XBee Python Library includes a sample application that displays how to recover the serial connection with a
local XBee. It can be located in the following path:
examples/configuration/RecoverSerialConnection/RecoverSerialConnection.py

Read device information

The read device information process reads the following parameters from the local or remote XBee device and stores
them inside. You can then access parameters at any time, calling their corresponding getters.

• 64-bit address

• 16-bit address

• Node identifier

• Firmware version

• Hardware version

• IPv4 address (only for cellular and Wi-Fi modules)

2.6. API reference 21



XBee Python Library Documentation, Release 1.4.0

• IMEI (only for cellular modules)

The read process is performed automatically in local XBee devices when opening them with the open() method. If
remote XBee devices cannot be opened, you must use read_device_info() to read their device information.

Initialize a remote XBee device

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

# Instantiate a remote XBee device object.
remote_xbee = RemoteXBeeDevice(local_xbee, XBee64BitAddress.from_hex_string(
→˓"0013A20040XXXXXX"))

# Read the device information of the remote XBee device.
remote_xbee.read_device_info()

[...]

The read_device_info() method may fail for the following reasons:

• ACK of the command sent is not received in the configured timeout, throwing a TimeoutException.

• Other errors caught as XBeeException:

– If the operating mode of the device is not API or API_ESCAPE, throwing an
InvalidOperatingModeException.

– If the response of the command is not valid, throwing an ATCommandException.

– There is an error writing to the XBee interface, or device is closed, throwing a generic XBeeException.

Note: Although the readDeviceInfo method is executed automatically in local XBee devices when they are
open, you can issue it at any time to refresh the information of the device.

Get device information

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

# Get the 64-bit address of the device.
addr_64 = device.get_64bit_addr()
# Get the node identifier of the device.
node_id = device.get_node_id()
# Get the hardware version of the device.
hardware_version = device.get_hardware_version()
# Get the firmware version of the device.
firmware_version = device.get_firmware_version()

The read device information process also determines the communication protocol of the local or remote XBee device
object. This is typically something you need to know beforehand if you are not using the generic XBeeDevice
object.

22 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

However, the API performs this operation to ensure that the class you instantiated is the correct one. So, if you
instantiated a Zigbee device and the open() process realizes that the physical device is actually a DigiMesh device,
you receive an XBeeDeviceException indicating the device mismatch.

You can retrieve the protocol of the XBee device from the object executing the corresponding getter.

Get the XBee protocol

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

# Get the protocol of the device.
protocol = local_xbee.get_protocol()

Device operating mode

The open() process also reads the operating mode of the physical local device and stores it in the object. As with
previous settings, you can retrieve the operating mode from the object at any time by calling the corresponding getter.

Get the operating mode

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

# Get the operating mode of the device.
operating_mode = local_xbee.get_operating_mode()

Remote devices do not have an open() method, so you receive UNKNOWN when retrieving the operating mode of a
remote XBee device.

The XBee Python Library supports two operating modes for local devices:

• API

• API with escaped characters

This means that AT (transparent) mode is not supported by the API. So, if you try to execute the
open() method in a local device working in AT mode, you get an XBeeException caused by an
InvalidOperatingModeException.

2.6.3.3 Close the XBee device connection

You must call the close() method each time you finish your XBee application. You can use this in the finally block
or something similar.

If you don’t do this, you may have problems with the packet listener being executed in a separate thread.

This method guarantees that the listener thread will be stopped and the serial port will be closed.

Close the connection

2.6. API reference 23



XBee Python Library Documentation, Release 1.4.0

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)

try:
xbee.open()

[...]

finally:
if xbee is not None and xbee.is_open():

xbee.close()

Note: Remote XBee devices cannot be opened, so they cannot be closed either. To close the connection of a remote
device you need to close the connection of the local associated device.

2.6.4 Configure the XBee device

One of the main features of the XBee Python Library is the ability to configure the parameters of local and remote
XBee devices and execute some actions or commands on them.

To apply a complete configuration profile see Apply an XBee profile.

Warning: The values set on the different parameters are not persistent through subsequent resets unless you store
those changes in the device. For more information, see Write configuration changes.

2.6.4.1 Read and set common parameters

Local and remote XBee device objects provide a set of methods to get and set common parameters of the device.
Some of these parameters are saved inside the XBee device object, and a cached value is returned when the parameter
is requested. Other parameters are read directly from the physical XBee device when requested.

Cached parameters

Some parameters in an XBee device are used or requested frequently. To avoid the overhead of those parameters being
read from the physical XBee device every time they are requested, they are saved inside the XBeeDevice object
being returned when the getters are called.

The following table lists cached parameters and their corresponding getters:

Parameter Method
64-bit address get_64bit_addr()
16-bit address get_16bit_addr()
Node identifier get_node_id()
Firmware version get_firmware_version()
Hardware version get_hardware_version()
Role get_role()

24 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Local XBee devices read and save previous parameters automatically when opening the connection of the device. In
remote XBee devices, you must issue the read_device_info() method to initialize the parameters.

You can refresh the value of those parameters (that is, read their values and update them inside the XBee device object)
at any time by calling the read_device_info() method.

Method Description
read_device_info(init=False)Updates cache parameters reading them from the XBee: If init is True it reads all

values, else only those not initialized.

Refresh cached parameters

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

# Refresh the cached values.
local_xbee.refresh_device_info()

[...]

The read_device_info() method may fail for the following reasons:

• There is a timeout getting any of the device parameters, throwing a TimeoutException.

• The operating mode of the device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

• The response of the command is not valid, throwing an ATCommandException.

• There is an error writing to the XBee interface, or device is closed, throwing a generic XBeeException.

All the cached parameters but the Node Identifier do not change; therefore, they cannot be set. For the Node Identifier,
there is a method within all the XBee device classes that allows you to change it:

Method Description
set_node_id(String)Specifies the new Node Identifier of the device. This method configures the physical XBee device

with the provided Node Identifier and updates the cached value with the one provided.

Non-cached parameters

The following non-cached parameters have their own methods to be configured within the XBee device classes:

• Destination Address: This setting specifies the default 64-bit destination address of a module that is used to
report data generated by the XBee device (that is, IO sampling data). This setting can be read and set.

Method Description
get_dest_address() Returns the 64-bit address of the device that data will be reported to.
set_dest_address(XBee64BitAddress) Specifies the 64-bit address of the device where the data will be re-

ported.

• PAN ID: This is the ID of the Personal Area Network the XBee device is operating in. This setting can be read
and set.

2.6. API reference 25



XBee Python Library Documentation, Release 1.4.0

Method Description
get_pan_id() Returns a byte array containing the ID of the Personal Area Network where the XBee

device is operating.
set_pan_id(Bytearray)Specifies the value in byte array format of the PAN ID where the XBee device should

work.

• Power level: This setting specifies the output power level of the XBee device. This setting can be read and set.

Method Description
get_power_level() Returns a PowerLevel enumeration entry indicating the power level of the XBee

device.
set_power_level(PowerLevel)Specifies a PowerLevel enumeration entry containing the desired output level

of the XBee device.

Configure non-cached parameters

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

# Set the destination address of the device.
dest_address = XBee64BitAddress.from_hex_string("0013A20040XXXXXX")
local_xbee.set_dest_address(dest_address)

# Read the operating PAN ID of the device.
dest_addr = local_xbee.get_dst_address()

# Read the operating PAN ID of the device.
pan_id = local_xbee.get_pan_id()

# Read the output power level.
p_level = local_xbee.get_power_level()

[...]

All the previous getters and setters of the different options may fail for the following reasons:

• ACK of the command sent is not received in the configured timeout, throwing a TimeoutException.

• Other errors caught as XBeeException:

– The operating mode of the device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– The response of the command is not valid, throwing an ATCommandException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

Example: Common parameters
The XBee Python Library includes a sample application that displays how to get and set common parameters. It
can be located in the following path:
examples/configuration/ManageCommonParametersSample

26 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

2.6.4.2 Read, set and execute other parameters

If you want to read or set a parameter that does not have a custom getter or setter within the XBee device object, you
can do so. All the XBee device classes (local or remote) include two methods to get and set any AT parameter, and a
third one to run a command in the XBee device.

Get a parameter

You can read the value of any parameter of an XBee device using the get_parameter() method provided by all
the XBee device classes. Use this method to get the value of a parameter that does not have its getter method within
the XBee device object.

Method Description
get_parameter(String)Specifies the AT command (string format) to retrieve its value. The method returns the value

of the parameter in a byte array.

Get a parameter from the XBee device

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

# Get the value of the Sleep Time (SP) parameter.
sp = local_xbee.get_parameter("SP")

[...]

The get_parameter() method may fail for the following reasons:

• ACK of the command sent is not received in the configured timeout, throwing a TimeoutException.

• Other errors caught as XBeeException:

– The operating mode of the device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– The response of the command is not valid, throwing an ATCommandException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

Example: Set and get parameters
The XBee Python Library includes a sample application that displays how to get and set parameters using the
methods explained previously. It can be located in the following path:
examples/configuration/SetAndGetParametersSample

Set a parameter

To set a parameter that does not have its own setter method, you can use the set_parameter() method provided
by all the XBee device classes.

2.6. API reference 27



XBee Python Library Documentation, Release 1.4.0

Method Description
set_parameter(String,
Bytearray)

Specifies the AT command (String format) to be set in the device and a byte array
containing the value of the parameter.

Set a parameter in the XBee device

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

# Configure the Node ID using the set_parameter() method.
local_xbee.set_parameter("NI", bytearray("Yoda", 'utf8'))

[...]

The set_parameter() method may fail for the following reasons:

• ACK of the command sent is not received in the configured timeout, throwing a TimeoutException.

• Other errors caught as XBeeException:

– The operating mode of the device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– The response of the command is not valid, throwing an ATCommandException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

Example: Set and get parameters
The XBee Python Library includes a sample application that displays how to get and set parameters using the
methods explained previously. It can be located in the following path:
examples/configuration/SetAndGetParametersSample

Execute a command

There are other AT parameters that cannot be read or written. They are actions that are executed by the XBee device.
The XBee Python library has several commands that handle most common executable parameters, but to run a pa-
rameter that does not have a custom command, you can use the execute_command() method provided by all the
XBee device classes.

Method Description
execute_command(String) Specifies the AT command (String format) to be run in the device.

Run a command in the XBee device

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

# Run the apply changes command.

(continues on next page)

28 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

(continued from previous page)

local_xbee.execute_command("AC")

[...]

The execute_command() method may fail for the following reasons:

• ACK of the command sent is not received in the configured timeout, throwing a TimeoutException.

• Other errors caught as XBeeException:

– The operating mode of the device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– The response of the command is not valid, throwing an ATCommandException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

2.6.4.3 Apply configuration changes

By default, when you perform any configuration on a local or remote XBee device, the changes are automatically
applied. However, there could be some scenarios when you want to configure different settings or parameters of
a device and apply the changes at the end when everything is configured. For that purpose, the XBeeDevice and
RemoteXBeeDevice objects provide some methods that allow you to manage when to apply configuration changes.

Method Description Notes
en-
able_apply_changes(Boolean)

Specifies whether the changes on settings and
parameters are applied when set.

The apply configuration changes flag is enabled
by default.

is_apply_changes_enabled()Returns whether the XBee device is config-
ured to apply parameter changes when they
are set.

ap-
ply_changes()

Applies the changes on parameters that were
already set but are pending to be applied.

This method is useful when the XBee device is
configured to not apply changes when they are
set.

Apply configuration changes

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

# Check if device is configured to apply changes.
apply_changes_enabled = local_xbee.is_apply_changes_enabled()

# Configure the device not to apply parameter changes automatically.
if apply_changes_enabled:

local_xbee.enable_apply_changes(False)

# Set the PAN ID of the XBee device to BABE.
local_xbee.set_pan_id(utils.hex_string_to_bytes("BABE"))

# Perform other configurations.
[...]

(continues on next page)

2.6. API reference 29



XBee Python Library Documentation, Release 1.4.0

(continued from previous page)

# Apply changes.
local_xbee.apply_changes()

[...]

The apply_changes() method may fail for the following reasons:

• ACK of the command sent is not received in the configured timeout, throwing a TimeoutException.

• Other errors caught as XBeeException:

– The operating mode of the device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– The response of the command is not valid, throwing an ATCommandException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

2.6.4.4 Write configuration changes

If you want configuration changes performed in an XBee device to persist through subsequent resets, you need to write
those changes in the device. Writing changes means that the parameter values configured in the device are written to
the non-volatile memory of the XBee device. The module loads the parameter values from non-volatile memory every
time it is started.

The XBee device classes (local and remote) provide a method to write (save) the parameter modifications in the XBee
device memory so they persist through subsequent resets: write_changes().

Write configuration changes

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

# Set the PAN ID of the XBee device to BABE.
local_xbee.set_pan_id(utils.hex_string_to_bytes("BABE"))

# Perform other configurations.
[...]

# Apply changes.
local_xbee.apply_changes()

# Write changes.
local_xbee.write_changes()

[...]

The write_changes() method may fail for the following reasons:

• ACK of the command sent is not received in the configured timeout, throwing a TimeoutException.

• Other errors caught as XBeeException:

– The operating mode of the device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– The response of the command is not valid, throwing an ATCommandException.

30 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

– There is an error writing to the XBee interface, throwing a generic XBeeException.

2.6.4.5 Reset the device

It may be necessary to reset the XBee device when the system is not operating properly or you are initializing the
system. All the XBee device classes of the XBee API provide the reset() method to perform a software reset on
the local or remote XBee module.

In local modules, the reset() method blocks until a confirmation from the module is received, which usually takes
one or two seconds. Remote modules do not send any kind of confirmation, so the method does not block when
resetting them.

Reset the module

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

# Reset the module.
local_xbee.reset()

[...]

The reset() method may fail for the following reasons:

• ACK of the command sent is not received in the configured timeout, throwing a TimeoutException.

• Other errors caught as XBeeException:

– The operating mode of the device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– The response of the command is not valid, throwing an ATCommandException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

Example: Reset module
The XBee Python Library includes a sample application that shows you how to perform a reset on your XBee
device. The example is located in the following path:
examples/configuration/ResetModuleSample

2.6.4.6 Configure Wi-Fi settings

Unlike other protocols such as Zigbee or DigiMesh where devices are connected to each other, the XBee Wi-Fi protocol
requires that the module is connected to an access point in order to communicate with other TCP/IP devices.

This configuration and connection with access points can be done using applications such as XCTU; however, the
XBee Python Library includes a set of methods to configure the network settings, scan access points, and connect to
an access point.

Example: Configure Wi-Fi settings and connect to an access point
The XBee Python Library includes a sample application that demonstrates how to configure the network settings
of a Wi-Fi device and connect to an access point. You can locate the example in the following path:
examples/configuration/ConnectToAccessPointSample

2.6. API reference 31



XBee Python Library Documentation, Release 1.4.0

Configure IP addressing mode

Before connecting your Wi-Fi module to an access point, you must decide how to configure the network settings
using the IP addressing mode option. The supported IP addressing modes are contained in an enumerator called
IPAddressingMode. It allows you to choose between:

• DHCP

• STATIC

Method Description
set_ip_addressing_mode(IPAddressingMode) Sets the IP addressing mode of the Wi-Fi module. De-

pending on the provided mode, network settings are
configured differently:

• DHCP: Network settings are assigned by a server.
• STATIC: Network settings must be provided

manually one by one.

Configure IP addressing mode

[...]

# Instantiate an XBee device object.
local_xbee = WiFiDevice("COM1", 9600)
local_xbee.open()

# Configure the IP addressing mode to DHCP.
local_xbee.set_ip_addressing_mode(IPAddressingMode.DHCP)

# Save the IP addressing mode.
local_xbee.write_changes()

[...]

The set_ip_addressing_mode() method may fail for the following reasons:

• There is a timeout setting the IP addressing parameter, throwing a TimeoutException.

• Other errors caught as XBeeException:

– The operating mode of the device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– The response of the command is not valid, throwing an ATCommandException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

Configure IP network settings

Like any TCP/IP protocol device, the XBee Wi-Fi modules have the IP address, subnet mask, default gateway and
DNS settings that you can get at any time using the XBee Python Library.

Unlike some general configuration settings, these parameters are not saved inside the WiFiDevice object. Every time
you request the parameters, they are read directly from the Wi-Fi module connected to the computer. The following
parameters are used in the configuration of the TCP/IP protocol:

32 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Parameter Method
IP address get_ip_address()
Subnet mask get_mask_address()
Gateway IP get_gateway_address()
DNS address get_dns_address()

Read IP network settings

[...]

# Instantiate an XBee device object.
local_xbee = WiFiDevice("COM1", 9600)
local_xbee.open()

# Configure the IP addressing mode to DHCP.
local_xbee.set_ip_addressing_mode(IPAddressingMode.DHCP)

# Connect to access point with SSID 'My SSID' and password 'myPassword'
local_xbee.connect_by_ssid("My SSID", "myPassword")

# Display the IP network settings that were assigned by the DHCP server.
print("- IP address: %s" % local_xbee.get_ip_address())
print("- Subnet mask: %s" % local_xbee.get_mask_address())
print("- Gateway IP address: %s" % local_xbee.get_gateway_address())
print("- DNS IP address: %s" % local_xbee.get_dns_address())

[...]

You can also change those settings when the module has static IP configuration with the following methods:

Parameter Method
IP address set_ip_addr()
Subnet mask set_mask_address()
Gateway IP set_gateway_address()
DNS address set_dns_address()

2.6.4.7 Configure Bluetooth settings

Newer XBee3 devices have a Bluetooth® Low Energy (BLE) interface that enables you to connect your XBee device
to another device such as a cellphone. The XBee device classes (local and remote) offer some methods that allow you
to:

• Enable and disable Bluetooth

• Configure the Bluetooth password

• Read the Bluetooth MAC address

Enable and disable Bluetooth

Before connecting to your XBee device over Bluetooth Low Energy, you first have to enable this interface. The XBee
Python Library provides a couple of methods to enable or disable this interface:

2.6. API reference 33



XBee Python Library Documentation, Release 1.4.0

Method Description
enable_bluetooth() Enables the Bluetooth Low Energy interface of your XBee device.
disable_bluetooth() Disables the Bluetooth Low Energy interface of your XBee device.

Enabling and disabling the Bluetooth interface

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

# Enable the Bluetooth interface.
local_xbee.enable_bluetooth()

[...]

# Disable the Bluetooth interface.
local_xbee.disable_bluetooth()

[...]

These methods may fail for the following reasons:

• ACK of the command sent is not received in the configured timeout, throwing a TimeoutException.

• Other errors caught as XBeeException:

– The operating mode of the device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– The response of the command is not valid, throwing an ATCommandException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

Configure the Bluetooth password

Once you have enabled the Bluetooth Low Energy, you must configure the password you will use to connect to the
device over that interface (if not previously done). For this purpose, the API offers the following method:

Method Description
update_bluetooth_password(String) Specifies the new Bluetooth password of the XBee device.

Configuring or changing the Bluetooth password

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

new_password = "myBluetoothPassword" # Do not hard-code it in the app!

# Configure the Bluetooth password.
local_xbee.update_bluetooth_password(new_password)

(continues on next page)

34 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

(continued from previous page)

[...]

The update_bluetooth_password method may fail for the following reasons:

• ACK of the command sent is not received in the configured timeout, throwing a TimeoutException.

• Other errors caught as XBeeException:

– The operating mode of the device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– The response of the command is not valid, throwing an ATCommandException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

Warning: Never hard-code the Bluetooth password in the code, a malicious person could decompile the applica-
tion and find it out.

Read the Bluetooth MAC address

Another method that the XBee Java Library provides is get_bluetooth_mac_addr(), which returns the EUI-48
Bluetooth MAC address of your XBee device in a format such as “00112233AABB”.

Reading the Bluetooth MAC address

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

print("The Bluetooth MAC address is: %s" % local_xbee.get_bluetooth_mac_addr())

[...]

The get_bluetooth_mac_addr method may fail for the following reasons:

• ACK of the command sent is not received in the configured timeout, throwing a TimeoutException.

• Other errors caught as XBeeException:

– The operating mode of the device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– The response of the command is not valid, throwing an ATCommandException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

2.6.5 Discover the XBee network

Several XBee modules working together and communicating with each other form a network. XBee networks have
different topologies and behaviors depending on the protocol of the XBee nodes that form it.

The XBee Python Library includes a class, called XBeeNetwork, that represents the set of nodes forming the actual
XBee network. This class allows you to perform some operations related to the nodes.

2.6. API reference 35



XBee Python Library Documentation, Release 1.4.0

Note: There are XBeeNetwork subclasses for different protocols which correspond to the XBeeDevice sub-
classes:

• XBee Zigbee network (ZigBeeNetwork)

• XBee 802.15.4 network (Raw802Network)

• XBee DigiMesh network (DigiMeshNetwork)

• XBee DigiPoint network (DigiPointNetwork)

Warning: Because XBee Cellular and Wi-Fi module protocols are directly connected to the Internet and do not
share a connection, these protocols do not support XBee networks.

The XBee network object can be retrieved from a local XBee after it has been opened with the method
get_network().

Retrieve the XBee network

[...]

# Instantiate a local XBee object.
xbee = XBeeDevice("COM1", 9600)
xbee.open()

# Get the network.
xnet = xbee.get_network()
[...]

A main feature of the XBeeNetwork class is the ability to discover the XBee nodes that form the network and store
them in a internal list. The XBeeNetwork object provides the following operations related to the XBee discovery
feature:

• Discovery types

• Deep discovery

• Standard discovery

• Discover the network

• Access discovered nodes

• Access connections between nodes

• Add and remove nodes manually

• Listen to network modification events

2.6.5.1 Discovery types

There are two different types of discovery processes available in this API:

• Deep discovery finds network nodes and connections between them (including quality) even if they are sleeping.
It also allows to establish a number of rounds to continually explore the network.

• Standard discovery only identifies network nodes. It may not discover sleeping nodes.

36 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

See Discover the network to know how to launch a deep or standard discovery process.

Note: In 802.15.4, both (deep and standard discovery) are the same and none discover the node connections nor their
quality. The difference is the possibility of running more than one round using a deep discovery.

2.6.5.2 Deep discovery

This discovery process finds network nodes and their connections including the quality. It asks each node for its
neighbors and retrieves information about the signal quality between them.

This mechanism also discovers sleeping nodes.

It is possible to configure the discovery process to run a specific number of times or even endlessly. Each discovery
round is called a scan.

Deep discovery modes

This mode establishes the way the network deep discovery process is performed. Available modes are defined in the
NeighborDiscoveryMode enumeration:

• Cascade (NeighborDiscoveryMode.CASCADE): The discovery of the neighbors of a node is requested
once the previous request finishes. This means that just one discovery process is running at the same time. This
mode is recommended for large networks, it might be a slower method but it generates less traffic than ‘Flood’.

• Flood (NeighborDiscoveryMode.FLOOD): The discovery of the neighbors of a node is requested when
the node is found in the network. This means that several discovery processes might be running at the same
time. This might be a faster method, but it generates a lot of traffic and might saturate the network.

The default discovery mode is Cascade. You can configure the discovery mode with the method
set_deep_discovery_options(NeighborDiscoveryMode, Boolean).

Configure the deep discovery process

Before discovering the nodes of a network, you can configure the settings of the process. The API provides two
methods to configure the discovery timeout and discovery options.

2.6. API reference 37



XBee Python Library Documentation, Release 1.4.0

Method Description
set_deep_discovery_timeouts(Float, Float, Float) Configures the deep discovery timeouts:

• node_timeout (Float, optional): Maximum du-
ration in seconds of the discovery process used to
find neighbors of a node.

• time_bw_requests (Float, optional): Time to
wait between node neighbors requests (in sec-
onds)

– For cascade: Time to wait after completion
of the a node neighbor discovery process
and before next node request.

– For flood: Minimum time to wait between
each neighbor request.

• time_bw_scans (Float, optional): Time to wait
before starting a new network scan (in seconds)

set_deep_discovery_options(NeighborDiscoveryMode,
Boolean)

Configures the deep discovery options:
• deep_mode (NeighborDiscoveryMode, op-

tional): Neighbor discovery mode, the way to
perform the network discovery process. See
:ref:‘deepDiscoveryMode‘

• del_not_discovered_nodes_in_last_scan
(Boolean, optional): True to remove nodes
from the network if they were not discovered in
the last scan.

Configure deep discovery timeout and options

[...]

# Instantiate a local XBee object.
xbee = XBeeDevice(...)

[...]

# Get the network.
xnet = xbee.get_network()

# Configure the discovery options.
xnet.set_deep_discovery_options(deep_mode=NeighborDiscoveryMode.CASCADE,

del_not_discovered_nodes_in_last_scan=False)

# Configure the discovery timeout, in SECONDS.
xnet.set_deep_discovery_timeout(node_timeout=30, time_bw_requests=10,

time_bw_scans=20)

[...]

2.6.5.3 Standard discovery

This type of discovery process only finds network nodes, it does not include information about the quality of the
connections between them.

38 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

XBee nodes sleeping may not respond to this request, this means, it may not be found using this discovery process
type.

The discovery process runs until the configured timeout expires or, in case of 802.15.4, until the ‘end’ packet is
received (see Configure the standard discovery process)

Configure the standard discovery process

Before discovering the nodes of a network, you can configure the settings of the process. The API provides two
methods to configure the discovery timeout and discovery options. These methods set the values in the radio module.

Method Description
set_discovery_timeout(Float) Configures the discovery timeout (NT parameter) with

the given value in seconds.
set_discovery_options(Set<DiscoveryOptions>) Configures the discovery options (NO parameter) with

the set of options. The set of discovery options contains
the different DiscoveryOptions configuration val-
ues that are applied to the local XBee module when per-
forming the discovery process. These options are the
following:

• DiscoveryOptions.APPEND_DD: Appends the
device type identifier (DD) to the information re-
trieved when a node is discovered. This option
is valid for DigiMesh, Point-to-multipoint (Digi
Point) and Zigbee protocols.

• DiscoveryOptions.DISCOVER_MYSELF:
The local XBee is returned as a discovered node.
This option is valid for all protocols.

• DiscoveryOptions.APPEND_RSSI: Appends
the RSSI value of the last hop to the information
retrieved when a node is discovered. This option
is valid for DigiMesh and Point-to-multipoint
(Digi Point) protocols.

Configure discovery timeout and options

[...]

# Instantiate a local XBee object.
xbee = XBeeDevice(...)

[...]

# Get the network.
xnet = xbee.get_network()

# Configure the discovery options.
xnet.set_discovery_options({DiscoveryOptions.DISCOVER_MYSELF,

DiscoveryOptions.APPEND_DD})

# Configure the discovery timeout, in SECONDS.
xnet.set_discovery_timeout(25)

(continues on next page)

2.6. API reference 39



XBee Python Library Documentation, Release 1.4.0

(continued from previous page)

[...]

2.6.5.4 Discover the network

The XBeeNetwork object discovery process allows you to discover and store all the XBee nodes that form the
network. The XBeeNetwork object provides a method for executing a discovery process of the selected type:

Method Description
start_discovery_process(Boolean, Integer) Starts the discovery process, saving the remote XBee

found inside the XBeeNetwork object.
• deep (Boolean, optional): True for a deep net-

work scan, False otherwise. See Discovery
types.

• n_deep_scans (Integer, optional): Number of
discovery scans to perform. Only for deep dis-
covery.

When a discovery process has started, you can monitor and manage it using the following methods provided by the
XBeeNetwork object:

Method Description
is_discovery_running() Returns whether or not the discovery process is running.
stop_discovery_process() Stops the discovery process that is taking place.

Warning: For a standard discovery and depending on your hardware and firmware version, although you
call the stop_discovery_process method, DigiMesh and DigiPoint modules are blocked until the con-
figured discovery time has elapsed. This means, if you try to get or set any parameter during that time, a
TimeoutException may be thrown. This does not occur for:

• XBee 3 modules running DigiMesh firmware 300B or higher.

• XBee SX modules running firmware A008 or higher, 9008 or higher.

Once the process has finished, you can retrieve the list of nodes that form the network using the get_devices()
method provided by the network object. If the discovery process is running, this method returns None.

All discovered XBee nodes are stored in the XBeeNetwork instance.

Discover the network (deep)

[...]

# Instantiate a local XBee object.
xbee = XBeeDevice(...)

# Get the XBee network object from the local XBee.
xnet = xbee.get_network()

# Start the discovery process and wait for it to be over.

(continues on next page)

40 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

(continued from previous page)

xnet.start_discovery_process(deep=True, n_deep_scans=1)
while xnet.is_discovery_running():

time.sleep(0.5)

# Get the list of the nodes in the network.
nodes = xnet.get_devices()

[...]

Discover the network (standard)

[...]

# Instantiate a local XBee object.
xbee = XBeeDevice(...)

# Get the XBee network object from the local XBee.
xnet = xbee.get_network()

# Start the discovery process and wait for it to be over.
xnet.start_discovery_process()
while xnet.is_discovery_running():

time.sleep(0.5)

# Get the list of the nodes in the network.
nodes = xnet.get_devices()

[...]

Discover the network with an event notification

The API also allows you to add a discovery event listener to notify when:

• New nodes are discovered.

• The process finishes.

• An error occurs during the process.

Notify new discovered nodes

To get notifications when nodes are discovered, you must provide a callback before starting the discovery process
using the add_device_discovered_callback() method.

Add a callback to device discovered event

[...]

# Instantiate a local XBee object.
xbee = XBeeDevice(...)

# Define the device discovered callback.
def callback(remote):

[...]

(continues on next page)

2.6. API reference 41



XBee Python Library Documentation, Release 1.4.0

(continued from previous page)

# Get the XBee network object from the local XBee.
xnet = xbee.get_network()

# Add the device discovered callback.
xnet.add_device_discovered_callback(callback)

# Start the discovery process.
xnet.start_discovery_process(deep=True)

[...]

Every time a new remote XBee node is discovered all registered device discovered callbacks are executed, even if
the discovered node is already in the node list of the network. Each callback receives a RemoteXBeeDevice as
argument, with all the available information. Unknown parameters of this remote node are None.

Notify discovery finishes

To get notifications when a discovery process finishes, you must provide a callback before starting the discovery
process using the add_discovery_process_finished_callback() method.

Add a callback to discovery process finished event

[...]

# Instantiate a local XBee object.
xbee = XBeeDevice(...)

# Define the discovery process finished callback.
def callback(status):

if status == NetworkDiscoveryStatus.ERROR_READ_TIMEOUT:
[...]

# Add the discovery process finished callback.
xnet.add_discovery_process_finished_callback(callback)

[...]

When a discovery process finishes (either successfully or with an error), all registered discovery finished callbacks
are executed. This method receives a NetworkDiscoveryStatus object as parameter. This status represents the
result of the network discovery process.

Example: Device discovery
The XBee Python Library includes a sample application that displays how to perform a network discovery using a
callback. It can be located in the following path:
examples/network/DiscoverDevicesSample/DiscoverDevicesSample.py

Discover specific nodes

The XBeeNetwork object also provides methods to discover specific nodes within a network. This may be useful,
for example, if you only need to work with a particular remote node.

42 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Method Description
dis-
cover_device(String)

Specify the node identifier of the XBee to find. Returns the remote XBee whose node identifier
equals the one provided or None if the node was not found. In the case of more than one coinci-
dences, it returns the first one.

dis-
cover_devices([String])

Specify the node identifiers of the XBee nodes to find. Returns a list with the remote XBee nodes
whose node identifiers equal those provided.

Note: These methods are blocking, so the application will block until the nodes are found or the configured timeout
expires.

Note: These methods may not discover sleeping nodes.

Discover specific nodes

[...]

# Instantiate a local XBee object.
xbee = XBeeDevice(...)

[...]

# Get the XBee network object from the local XBee.
xnet = xbee.get_network()

# Discover the remote node whose node ID is ‘SOME NODE ID’.
remote = xnet.discover_device("SOME NODE ID")

# Discover the remote nodes whose node IDs are ‘ID 2’ and ‘ID 3’.
remote_list = xnet.discover_devices(["ID 2", "ID 3"])

[...]

2.6.5.5 Access discovered nodes

Once a discovery process finishes, the discovered nodes are saved inside the XBeeNetwork object. You can get a
list of discovered nodes at any time using the get_devices().

This is the list of methods provided by the XBeeNetwork object that allow you to retrieve already discovered nodes:

Method Description
get_devices() Returns a copy of the list of remote XBee nodes. If any node is added to the network

after calling this method, the returned list is not updated.
get_device_by_64(XBee64BitAddress)Returns the remote node already in the network whose 64-bit address matches the given

one or None if the node is not in the network.
get_device_by_16(XBee16BitAddress)Returns the remote node already in the network whose 16-bit address matches the given

one or None if the node is not in the network.
get_device_by_node_id(String)Returns the remote node already in the network whose node identifier matches the given

one or None if the node is not in the network.

Access discovered nodes

2.6. API reference 43



XBee Python Library Documentation, Release 1.4.0

[...]

# Instantiate a local XBee object.
xbee = XBeeDevice(...)

# Get the XBee network object from the local XBee.
xnet = xbee.get_network()

[...]

x64addr = XBee64BitAddress(...)
node_id = "SOME_XBEE"

# Discover a node based on a 64-bit address.
spec_node = xnet.get_device_by_64(x64addr)
if spec_node is None:

print("Device with 64-bit addr: %s not found" % str(x64addr))

# Discover a node based on a Node ID.
spec_node = xnet.get_device_by_node_id(node_id)
if spec_node is not None:

print("Device with node id: %s not found" % node_id)

[...]

2.6.5.6 Access connections between nodes

A deep discovery process stores the connections between found nodes inside the XBeeNetwork object. You can get
these connections using the get_connections() method.

This is the list of methods provided by the XBeeNetwork object that allow you to retrieve the connections between
nodes:

Method Description
get_connections() Returns a copy of the network connections. If any connection is added after the execu-

tion of this method, returned list is not updated.
get_node_connections(AbstractXBeeDevice)Returns a copy of the connections with the provided node in one of its ends. If any

connection is added after the execution of this method, returned list is not updated.

Warning: A deep discovery process must be performed to have network connections available.

Each Connection object contains:

• The two nodes between this connection is established.

• The link quality of the connection in both directions (LinkQuality):

– From node A to node B

– From node B to node A

• The connection status in both directions (RouteStatus), active, inactive, etc:

– From node A to node B

– From node B to node A

44 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Access network connections

[...]

# Instantiate a local XBee object.
xbee = XBeeDevice(...)

# Get the XBee network object from the local XBee.
xnet = xbee.get_network()

[...]

# Start the discovery process and wait for it to be over.
xnet.start_discovery_process(deep=True, n_deep_scans=1)
while xnet.is_discovery_running():

time.sleep(0.5)

print("%s" % '\n'.join(map(str, xnet.get_connections())))

[...]

2.6.5.7 Add and remove nodes manually

This section provides information on methods for adding, removing, and clearing the list of remote XBee nodes.

Note: These methods modifies the list of nodes inside the XBeeNetwork object, but do not change the real XBee
network. They do not trigger a node join event, a disassociation, or a network reset.

Manually add nodes to the XBee network

There are several methods for adding remote XBee nodes to an XBee network, in addition to the discovery methods
provided by the XBeeNetwork object.

Method Description
add_remote(RemoteXBeeDevice)Specifies the remote XBee to add to the list of remote nodes of the XBeeNetwork object.

Notice that this operation does not join the remote XBee to the network; it just adds that node to the list.
The node is added to the node list, but may not be physically in the same network.
Note that if the given node already exists in the network, it will not be added, but the node in the current
network will be updated with the known parameters of the given node.
This method returns the same node with its information updated. If the node was not in the list yet, this
method returns it without changes.

add_remotes([RemoteXBeeDevice])Specifies the remote XBee nodes to add to the list of remote nodes of the XBeeNetwork object.
Notice that this operation does not join the remote XBee nodes to the network; it just adds those nodes to
the list. Nodes are added to the node list but may not be physically in the same network.

Add a remote node manually to the network

[...]

# Instantiate a local XBee object.
xbee = XBeeDevice(...)

(continues on next page)

2.6. API reference 45



XBee Python Library Documentation, Release 1.4.0

(continued from previous page)

[...]

# Get the XBee network object from the local XBee.
xnet = xbee.get_network()

# Get the remote XBee node.
remote = xnet.get_remote(...)

# Add the remote node to the network.
xnet.add_remote(remote)

[...]

Remove an existing node from the XBee network

It is also possible to remove a remote XBee from the list of remote XBee nodes of the XBeeNetwork object by
calling the following method.

Method Description
re-
move_device(RemoteXBeeDevice)

Specifies the remote XBee to remove from the list of remote nodes of the XBeeNetwork object. If the
node was not contained in the list, the method will raise a ValueError.
Notice that this operation does not disassociates the remote XBee from the actual XBee network; it
just deletes the node from the network object list. However, next time you perform a discovery, it
could be added again automatically.

Remove a remote node from the network

[...]

# Instantiate a local XBee object.
xbee = XBeeDevice(...)

[...]

# Get the XBee network object from the local XBee.
xnet = xbee.get_network()

# Get the remote XBee and add it to the network.
remote = xnet.get_remote(...)
xnet.add_remote(remote)

# Remove the remote node from the network.
xnet.remove_device(remote)

[...]

Clear the list of remote XBee nodes from the XBee network

The XBeeNetwork object also includes a method to clear the list of remote nodes. This can be useful when you want
to perform a clean discovery, cleaning the list before calling the discovery method.

46 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

MethodDescription
clear()Removes all the devices from the list of remote nodes of the network.

Notice that this does not imply dismantling the XBee the actual XBee network; it just clears the list of nodes
in the XBeeNetwork object. Next time you perform a discovery, the list could be filled with the found
remote XBee nodes.

Clear the list of remote nodes

[...]

# Instantiate a local XBee object.
xbee = XBeeDevice(...)

[...]

# Get the XBee network object from the local XBee.
xnet = xbee.get_network()

# Discover XBee devices in the network and add them to the list of nodes.
[...]

# Clear the list of nodes.
xnet.clear()

[...]

2.6.5.8 Listen to network modification events

When a discovery process finds new nodes that were not in the XBee network list (XBeeNetwork or a subclass),
they are stored generating a modification event in the XBee network object. A manual removal or addition of an XBee
to the network also launches modification events.

The XBee library notifies about these network list modification events to registered callbacks. These events inform
about the following network modifications:

• Addition of new nodes

• Removal of existing nodes

• Update of nodes

• Network clear

To receive any of these modification events you must provide a callback using the
add_network_modified_callback() method. This callback must follow the format:

def my_callback(event_type, reason, node):
"""
Callback to notify about a new network modification event.

Args:
event_type (:class:`.NetworkEventType`): The type of modification.
reason (:class:`.NetworkEventReason`): The cause of the modification.
node (:class:`.AbstractXBeeDevice`): The node involved in the

modification (``None`` for ``NetworkEventType.CLEAR`` events)
"""
[...]

2.6. API reference 47



XBee Python Library Documentation, Release 1.4.0

When a modification in the network list occurs, all network modification callbacks are executed. Each callback
receives the following arguments:

• The type of network modification as a NetworkEventType (addition, removal, update or clear)

• The modification cause as a NetworkEventReason (discovered, discovered as neighbor, received message,
hop of a network route, refresh node information, firmware update, manual)

• The XBee node, local or remote, (AbstractXBeeDevice) involved in the modification (None for a clear
event type)

Register a network modifications callback

[...]

# Define the network modified callback.
def cb_network_modified(event_type, reason, node):
print(" >>>> Network event:")
print(" Type: %s (%d)" % (event_type.description, event_type.code))
print(" Reason: %s (%d)" % (reason.description, reason.code))

if not node:
return

print(" Node:")
print(" %s" % node)

xnet = xbee.get_network()

# Add the network modified callback.
xnet.add_network_modified_callback(cb_network_modified)

[...]

Network events

The NetworkEventType class enumerates the possible network cache modification types:

• Addition (NetworkEventType.ADD): A new XBee has just been added to the network cache.

• Deletion (NetworkEventType.DEL): An XBee in the network cache has just been removed.

• Update (NetworkEventType.UPDATE): An existing XBee in the network cache has just been updated. This
means any of its parameters (node id, 16-bit address, role, . . . ) changed.

• Clear (NetworkEventType.CLEAR): The network cached has just been cleared.

As well, NetworkEventReason enumerates the network modification causes:

• NetworkEventReason.DISCOVERED: The node was added/removed/updated during a standard discovery
process.

• NetworkEventReason.NEIGHBOR: The node was added/removed/updated during a deep discovery pro-
cess.

• NetworkEventReason.RECEIVED_MSG: The node was added/updated after receiving a message from it.

• NetworkEventReason.ROUTE: The node was added/updated as a hop of a received network route.

• NetworkEventReason.READ_INFO: The node was updated after refreshing its information.

48 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• NetworkEventReason.FIRMWARE_UPDATE: The node was updated/removed, or the network cleared af-
ter a firmware update.

• NetworkEventReason.MANUAL: The node was manually added/updated/removed, or the network cleared.

For example, if, during a deep discovery process, a new node is found and:

• it is not in the network list yet, the addition triggers a new event with:

– type: NetworkEventType.ADD

– cause: NetworkEventReason.NEIGHBOR

• it is already in the network list but its node identifier is updated, a new event is raised with:

– type: NetworkEventType.UPDATE

– cause: NetworkEventReason.NEIGHBOR

• it is already in the network and nothing has changed, no event is triggered.

Example: Network modifications
The XBee Python Library includes a sample application that displays how to receive network modification events.
It can be located in the following path:
examples/network/NetworkModificationsSample/NetworkModificationsSample.py

2.6.6 Communicate with XBee devices

The XBee Python Library provides the ability to communicate with remote nodes in the network, IoT devices and
other interfaces of the local device. The communication between XBee devices in a network involves the transmission
and reception of data.

Warning: Communication features described in this topic and sub-topics are only applicable for local XBee
devices. Remote XBee device classes do not include methods for transmitting or receiving data.

2.6.6.1 Send and receive data

XBee modules can communicate with other devices that are on the same network and use the same radio frequency.
The XBee Python Library provides several methods to send and receive data between the local XBee device and any
remote on the network.

• Send data

• Receive data

Send data

A data transmission operation sends data from your local (attached) XBee device to a remote device on the network.
The operation sends data in API frames, but the XBee Python library abstracts the process so you only need to specify
the device you want to send data to and the data itself.

You can send data either using a unicast or broadcast transmission. Unicast transmissions route data from one source
device to one destination device, whereas broadcast transmissions are sent to all devices in the network.

2.6. API reference 49



XBee Python Library Documentation, Release 1.4.0

Send data to one device

Unicast transmissions are sent from one source device to another destination device. The destination device could be
an immediate neighbor of the source, or it could be several hops away.

Data transmission can be synchronous or asynchronous, depending on the method used.

Synchronous operation

This type of operation is blocking. This means the method waits until the transmit status response is received or the
default timeout is reached.

The XBeeDevice class of the API provides the following method to perform a synchronous unicast transmission
with a remote node of the network:

Method Description
send_data(RemoteXBeeDevice, String or
Bytearray, Integer)

Specifies the remote XBee destination object, the data to send and
optionally the transmit options.

Protocol-specific classes offer additional synchronous unicast transmission methods apart from the one provided by
the XBeeDevice object:

XBee
class

Method Description

Zig-
BeeDe-
vice

send_data_64_16(XBee64BitAddress,
XBee16BitAddress, String or
Bytearray, Integer)

Specifies the 64-bit and 16-bit destination addresses, the data to send
and optionally the transmit options. If you do not know the 16-bit
address, use the XBee16BitAddress.UNKNOWN_ADDRESS.

Raw802Devicesend_data_16(XBee16BitAddress,
String or Bytearray, Integer)

Specifies the 16-bit destination address, the data to send and optionally
the transmit options.

send_data_64(XBee64BitAddress,
String or Bytearray, Integer)

Specifies the 64-bit destination address, the data to send and optionally
the transmit options.

DigiMeshDe-
vice

send_data_64(XBee64BitAddress,
String or Bytearray, Integer)

Specifies the 64-bit destination address, the data to send and optionally
the transmit options.

Digi-
Point-
De-
vice

send_data_64_16(XBee64BitAddress,
XBee16BitAddress, String or
Bytearray, Integer)

Specifies the 64-bit and 16-bit destination addresses, the data to send
and optionally the transmit options. If you do not know the 16-bit
address, use the XBee16BitAddress.UNKNOWN_ADDRESS.

Send data synchronously

[...]

# Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

# Instantiate a remote XBee device object.
remote_device = RemoteXBeeDevice(device, XBee64BitAddress.from_hex_string(
→˓"0013A20040XXXXXX"))

# Send data using the remote object.
device.send_data(remote_device, "Hello XBee!")

[...]

50 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

The previous methods may fail for the following reasons:

• ACK of the command sent is not received in the configured timeout, throwing a TimeoutException.

• Other errors caught as XBeeException:

– The operating mode of the device is not API or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– The response of the command is not valid, throwing an ATCommandException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

The default timeout to wait for the send status is two seconds. However, you can configure the timeout using the
get_sync_ops_timeout and set_sync_ops_timeout methods of an XBee device class.

Get/set the timeout for synchronous operations

[...]

NEW_TIMEOUT_FOR_SYNC_OPERATIONS = 5 # 5 seconds

device = [...]

# Retrieving the configured timeout for synchronous operations.
print("Current timeout: %d seconds" % device.get_sync_ops_timeout())

[...]

# Configuring the new timeout (in seconds) for synchronous operations.
device.set_sync_ops_timeout(NEW_TIMEOUT_FOR_SYNC_OPERATIONS)

[...]

Example: Synchronous unicast transmission
The XBee Python Library includes a sample application that shows you how to send data to another XBee device
on the network. The example is located in the following path:
examples/communication/SendDataSample

Asynchronous operation

Transmitting data asynchronously means that your application does not block during the transmit process. However,
you cannot ensure that the data was successfully sent to the remote device.

The XBeeDevice class of the API provides the following method to perform an asynchronous unicast transmission
with a remote node on the network:

Method Description
send_data_async(RemoteXBeeDevice,
String or Bytearray, Integer)

Specifies the remote XBee destination object, the data to send
and optionally the transmit options.

Protocol-specific classes offer some other asynchronous unicast transmission methods in addition to the one provided
by the XBeeDevice object:

2.6. API reference 51



XBee Python Library Documentation, Release 1.4.0

XBee
class

Method Description

Zig-
BeeDe-
vice

send_data_async_64_16(XBee64BitAddress,
XBee16BitAddress, String or
Bytearray, Integer)

Specifies the 64-bit and 16-bit destination addresses, the data to send
and optionally the transmit options. If you do not know the 16-bit
address, use the XBee16BitAddress.UNKNOWN_ADDRESS.

Raw802Devicesend_data_async_16(XBee16BitAddress,
String or Bytearray, Integer)

Specifies the 16-bit destination address, the data to send and option-
ally the transmit options.

send_data_async_64(XBee64BitAddress,
String or Bytearray, Integer)

Specifies the 64-bit destination address, the data to send and option-
ally the transmit options.

DigiMeshDe-
vice

send_data_async_64(XBee64BitAddress,
String or Bytearray, Integer)

Specifies the 64-bit destination address, the data to send and option-
ally the transmit options.

Digi-
Point-
De-
vice

send_data_async_64_16(XBee64BitAddress,
XBee16BitAddress, String or
Bytearray, Integer)

Specifies the 64-bit and 16-bit destination addresses, the data to send
and optionally the transmit options. If you do not know the 16-bit
address, use the XBee16BitAddress.UNKNOWN_ADDRESS.

Send data asynchronously

[...]

# Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

# Instantiate a remote XBee device object.
remote_device = RemoteXBeeDevice(device, XBee64BitAddress.from_hex_string(
→˓"0013A20040XXXXXX"))

# Send data using the remote object.
device.send_data_async(remote_device, "Hello XBee!")

[...]

The previous methods may fail for the following reasons:

• All the possible errors are caught as an XBeeException:

– The operating mode of the device is not API or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

Example: Asynchronous unicast transmission
The XBee Python Library includes a sample application that shows you how to send data to another XBee device
asynchronously. The example is located in the following path:
examples/communication/SendDataAsyncSample

Send data to all devices of the network

Broadcast transmissions are sent from one source device to all the other devices on the network.

All the XBee device classes (generic and protocol specific) provide the same method to send broadcast data:

52 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Method Description
send_data_broadcast(String or Bytearray, Inte-
ger)

Specifies the data to send and optionally the transmit op-
tions.

Send broadcast data

[...]

# Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

# Send broadcast data.
device.send_data_broadcast("Hello XBees!")

[...]

The send_data_broadcast method may fail for the following reasons:

• Transmit status is not received in the configured timeout, throwing a TimeoutException exception.

• Error types catch as XBeeException:

– The operating mode of the device is not API or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– The transmit status is not SUCCESS, throwing a TransmitException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

Example: Broadcast transmission
The XBee Python Library includes a sample application that shows you how to send data to all the devices on the
network (broadcast). The example is located in the following path:
examples/communication/SendBroadcastDataSample

Receive data

The data reception operation allows you to receive and handle data sent by other remote nodes of the network.

There are two different ways to read data from the device:

• Polling for data. This mechanism allows you to read (ask) for new data in a polling sequence. The read method
blocks until data is received or until a configurable timeout has expired.

• Data reception callback. In this case, you must register a listener that executes a callback each time new data
is received by the local XBee device (that is, the device attached to your PC) providing data and other related
information.

Polling for data

The simplest way to read for data is by executing the read_data method of the local XBee device. This method
blocks your application until data from any XBee device of the network is received or the timeout provided has expired:

2.6. API reference 53



XBee Python Library Documentation, Release 1.4.0

Method Description
read_data(Integer)Specifies the time to wait for data reception (method blocks during that time and throws a

TimeoutException if no data is received). If you do not specify a timeout, the method returns
immediately the read message or None if the device did not receive new data.

Reading data from any remote XBee device (polling)

[...]

# Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

# Read data.
xbee_message = device.read_data()

[...]

The method returns the read data inside an XBeeMessage object. This object contains the following information:

• RemoteXBeeDevice that sent the message.

• Byte array with the contents of the received data.

• Flag indicating if the data was sent via broadcast.

• Time when the message was received.

You can retrieve the previous information using the corresponding attributes of the XBeeMessage object:

Get the XBeeMessage information

[...]

xbee_message = device.read_data()

remote_device = xbee_message.remote_device
data = xbee_message.data
is_broadcast = xbee_message.is_broadcast
timestamp = xbee_message.timestamp

[...]

You can also read data from a specific remote XBee device of the network. For that purpose, the XBee device object
provides the read_data_from method:

Method Description
read_data_from(RemoteXBeeDevice,
Integer)

Specifies the remote XBee device to read data from and the time to wait for data reception
(method blocks during that time and throws a TimeoutException if no data is received). If
you do not specify a timeout, the method returns immediately the read message or None if the
device did not receive new data.

Read data from a specific remote XBee device (polling)

[...]

# Instantiate an XBee device object.

(continues on next page)

54 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

(continued from previous page)

device = XBeeDevice("COM1", 9600)
device.open()

# Instantiate a remote XBee device object.
remote_device = RemoteXBeeDevice(device, XBee64BitAddress.from_hex_string(
→˓"0013A200XXXXXX"))

# Read data sent by the remote device.
xbee_message = device.read_data(remote_device)

[...]

As in the previous method, this method also returns an XBeeMessage object with all the information inside.

The default timeout to wait for the send status is two seconds. However, you can configure the timeout using the
get_sync_ops_timeout and set_sync_ops_timeout methods of an XBee device class.

Example: Receive data with polling
The XBee Python Library includes a sample application that shows you how to receive data using the polling
mechanism. The example is located in the following path:
examples/communication/ReceiveDataPollingSample

Data reception callback

This mechanism for reading data does not block your application. Instead, you can be notified when
new data has been received if you are subscribed or registered to the data reception service using the
add_data_received_callback method with a data reception callback as parameter.

Register for data reception

[...]

# Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

# Define callback.
def my_data_received_callback(xbee_message):

address = xbee_message.remote_device.get_64bit_addr()
data = xbee_message.data.decode("utf8")
print("Received data from %s: %s" % (address, data))

# Add the callback.
device.add_data_received_callback(my_data_received_callback)

[...]

When new data is received, your callback is executed providing as parameter an XBeeMessage object which contains
the data and other useful information:

• RemoteXBeeDevice that sent the message.

• Byte array with the contents of the received data.

• Flag indicating if the data was sent via broadcast.

• Time when the message was received.

2.6. API reference 55



XBee Python Library Documentation, Release 1.4.0

To stop listening to new received data, use the del_data_received_callback method to unsubscribe the
already-registered callback.

Deregister data reception

[...]

def my_data_received_callback(xbee_message):
[...]

device.add_data_received_callback(my_data_received_callback)

[...]

# Delete the callback
device.del_data_received_callback(my_data_received_callback)

[...]

Example: Register for data reception
The XBee Python Library includes a sample application that shows you how to subscribe to the data reception
service to receive data. The example is located in the following path:
examples/communication/ReceiveDataSample

2.6.6.2 Send and receive explicit data

Some Zigbee applications may require communication with third-party (non-Digi) RF modules. These applications
often send and receive data on different public profiles such as Home Automation or Smart Energy to other modules.

XBee Zigbee modules offer a special type of frame for this purpose. Explicit frames are used to transmit and receive
explicit data. When sending public profile packets, the frames transmit the data itself plus the application layer-specific
fields—the source and destination endpoints, profile ID, and cluster ID.

Warning: Only Zigbee, DigiMesh, and Point-to-Multipoint protocols support the transmission and reception of
data in explicit format. This means you cannot transmit or receive explicit data using a generic XBeeDevice
object. You must use a protocol-specific XBee device object such as a ZigBeeDevice.

• Send explicit data

• Receive explicit data

Send explicit data

You can send explicit data as either unicast or broadcast transmissions. Unicast transmissions route data from one
source device to one destination device, whereas broadcast transmissions are sent to all devices in the network.

Send explicit data to one device

Unicast transmissions are sent from one source device to another destination device. The destination device could be
an immediate neighbor of the source, or it could be several hops away.

Unicast explicit data transmission can be a synchronous or asynchronous operation, depending on the method used.

56 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Synchronous operation

The synchronous data transmission is a blocking operation. That is, the method waits until it either receives the
transmit status response or the default timeout is reached.

All local XBee device classes that support explicit data transmission provide a method to transmit unicast and syn-
chronous explicit data to a remote node of the network:

Method Description
send_expl_data(RemoteXBeeDevice,
Integer, Integer, Integer, Integer,
String or Bytearray, Integer)

Specifies remote XBee destination object, four application layer fields
(source endpoint, destination endpoint, cluster ID, and profile ID), the
data to send and optionally the transmit options.

Send unicast explicit data synchronously

[...]

# Instantiate a Zigbee device object.
device = ZigBeeDevice("COM1", 9600)
device.open()

# Instantiate a remote Zigbee device object.
remote_device = RemoteZigBeeDevice(device, XBee64BitAddress.from_hex_string(
→˓"0013A20040XXXXXX"))

# Send explicit data using the remote object.
device.send_expl_data(remote_device, 0xA0, 0xA1, 0x1554, 0xC105, "Hello XBee!")

[...]

The previous methods may fail for the following reasons:

• The method throws a TimeoutException exception if the response is not received in the configured timeout.

• Other errors register as XBeeException:

– If the operating mode of the device is not API or ESCAPED_API_MODE , the method throws an
InvalidOperatingModeException.

– If the transmit status is not SUCCESS, the method throws a TransmitException.

– If there is an error writing to the XBee interface, the method throws a generic XBeeException.

The default timeout to wait for the send status is two seconds. However, you can configure the timeout using the
get_sync_ops_timeout and set_sync_ops_timeout methods of an XBee device class.

Example: Transmit explicit synchronous unicast data
The XBee Python Library includes a sample application that demonstrates how to send explicit data to a remote
device of the network (unicast). It can be located in the following path:
examples/communication/explicit/SendExplicitDataSample

Asynchronous operation

Transmitting explicit data asynchronously means that your application does not block during the transmit process.
However, you cannot ensure that the data was successfully sent to the remote device.

2.6. API reference 57



XBee Python Library Documentation, Release 1.4.0

All local XBee device classes that support explicit data transmission provide a method to transmit unicast and asyn-
chronous explicit data to a remote node of the network:

Method Description
send_expl_data_async(RemoteXBeeDevice,
Integer, Integer, Integer, Integer, String
or Bytearray, Integer)

Specifies remote XBee destination object, four application layer fields
(source endpoint, destination endpoint, cluster ID, and profile ID), the
data to send and optionally the transmit options.

Send unicast explicit data asynchronously

[...]

# Instantiate a Zigbee device object.
device = ZigBeeDevice("COM1", 9600)
device.open()

# Instantiate a remote Zigbee device object.
remote_device = RemoteZigBeeDevice(device, XBee64BitAddress.from_hex_string(
→˓"0013A20040XXXXXX"))

# Send explicit data asynchronously using the remote object.
device.send_expl_data_async(remote_device, 0xA0, 0xA1, 0x1554, 0xC105, "Hello XBee!")

[...]

The previous methods may fail for the following reasons:

• All the possible errors are caught as an XBeeException:

– The operating mode of the device is not API or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

Example: Transmit explicit asynchronous unicast data
The XBee Python Library includes a sample application that demonstrates how to send explicit data to other XBee
devices asynchronously. It can be located in the following path:
examples/communication/explicit/SendExplicitDataAsyncSample

Send explicit data to all devices in the network

Broadcast transmissions are sent from one source device to all other devices in the network.

All protocol-specific XBee device classes that support the transmission of explicit data provide the same method to
send broadcast explicit data:

Method Description
send_expl_data_broadcast(Integer,
Integer, Integer, Integer, String or
Bytearray, Integer)

Specifies the four application layer fields (source endpoint, destination
endpoint, cluster ID, and profile ID), the data to send and optionally
the transmit options.

Send broadcast data

58 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

[...]

# Instantiate a Zigbee device object.
device = ZigBeeDevice("COM1", 9600)
device.open()

# Send broadcast data.
device.send_expl_data_broadcast(0xA0, 0xA1, 0x1554, 0xC105, "Hello XBees!")

[...]

The send_expl_data_broadcast method may fail for the following reasons:

• Transmit status is not received in the configured timeout, throwing a TimeoutException exception.

• Error types catch as XBeeException:

– The operating mode of the device is not API or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– The transmit status is not SUCCESS, throwing a TransmitException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

Example: Send explicit broadcast data
The XBee Python Library includes a sample application that demonstrates how to send explicit data to all devices
in the network (broadcast). It can be located in the following path:
examples/communication/explicit/SendBroadcastExplicitDataSample

Receive explicit data

Some applications developed with the XBee Python Library may require modules to receive data in application layer,
or explicit, data format.

To receive data in explicit format, you must first configure the data output mode of the receiver XBee device to explicit
format using the set_api_output_mode_value method.

Method Description
get_api_output_mode_value()Returns the API output mode of the data received by the XBee device.
set_api_output_mode_value(Integer)Specifies the API output mode of the data received by the XBee device. Calculate the mode

with the method calculate_api_output_mode_value with a set of APIOutputModeBit.

Set API output mode

[...]

# Instantiate a Zigbee device object.
device = ZigBeeDevice("COM1", 9600)
device.open()

# Set explicit output mode
mode = APIOutputModeBit.calculate_api_output_mode_value(device.get_protocol(),

{APIOutputModeBit.EXPLICIT})
device.set_api_output_mode_value(mode)

(continues on next page)

2.6. API reference 59



XBee Python Library Documentation, Release 1.4.0

(continued from previous page)

# Set native output mode
mode = 0
device.set_api_output_mode_value(mode)

# Set explicit plus unsupported ZDO request pass-through
mode = APIOutputModeBit.calculate_api_output_mode_value(device.get_protocol(),

{APIOutputModeBit.EXPLICIT, APIOutputModeBit.UNSUPPORTED_ZDO_PASSTHRU})
device.set_api_output_mode_value(mode)

[...]

Once you have configured the device to receive data in explicit format, you can read it using one of the following
mechanisms provided by the XBee device object.

Polling for explicit data

The simplest way to read for explicit data is by executing the read_expl_data method of the local XBee device.
This method blocks your application until explicit data from any XBee device of the network is received or the provided
timeout has expired:

Method Description
read_expl_data(Integer)Specifies the time to wait in seconds for explicit data reception (method blocks during that time and

throws a TimeoutException if no data is received). If you do not specify a timeout, the method
returns immediately the read message or None if the device did not receive new data.

Read explicit data from any remote XBee device (polling)

[...]

# Instantiate a Zigbee device object.
device = ZigBeeDevice("COM1", 9600)
device.open()

# Read data.
xbee_message = device.read_expl_data()

[...]

The method returns the read data inside an ExplicitXBeeMessage object. This object contains the following
information:

• RemoteXBeeDevice that sent the message.

• Endpoint of the source that initiated the transmission.

• Endpoint of the destination where the message is addressed.

• Cluster ID where the data was addressed.

• Profile ID where the data was addressed.

• Byte array with the contents of the received data.

• Flag indicating if the data was sent via broadcast.

• Time when the message was received.

60 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

You can retrieve the previous information using the corresponding attributes of the ExplicitXBeeMessage object:

Get the ExplicitXBeeMessage information

[...]

expl_xbee_message = device.read_expl_data()

remote_device = expl_xbee_message.remote_device
source_endpoint = expl_xbee_message.source_endpoint
dest_endpoint = expl_xbee_message.dest_endpoint
cluster_id = expl_xbee_message.cluster_id
profile_id = expl_xbee_message.profile_id
data = xbee_message.data
is_broadcast = expl_xbee_message.is_broadcast
timestamp = expl_xbee_message.timestamp

[...]

You can also read explicit data from a specific remote XBee device of the network. For that purpose, the XBee device
object provides the read_expl_data_from method:

Method Description
read_expl_data_from(RemoteXBeeDevice,
Integer)

Specifies the remote XBee device to read explicit data from and the time to wait for explicit
data reception (method blocks during that time and throws a TimeoutException if no data
is received). If you do not specify a timeout, the method returns immediately the read message
or None if the device did not receive new data.

Read explicit data from a specific remote XBee device (polling)

[...]

# Instantiate a Zigbee device object.
device = ZigBeeDevice("COM1", 9600)
device.open()

# Instantiate a remote Zigbee device object.
remote_device = RemoteZigBeeDevice(device, XBee64BitAddress.from_hex_string(
→˓"0013A200XXXXXX"))

# Read data sent by the remote device.
expl_xbee_message = device.read_expl_data(remote_device)

[...]

As in the previous method, this method also returns an ExplicitXBeeMessage object with all the information
inside.

The default timeout to wait for data is two seconds. However, you can configure the timeout using the
get_sync_ops_timeout and set_sync_ops_timeout methods of an XBee device class.

Example: Receive explicit data with polling
The XBee Python Library includes a sample application that demonstrates how to receive explicit data using the
polling mechanism. It can be located in the following path:
examples/communication/explicit/ReceiveExplicitDataPollingSample

2.6. API reference 61



XBee Python Library Documentation, Release 1.4.0

Explicit data reception callback

This mechanism for reading explicit data does not block your application. Instead, you can be notified when new
explicit data has been received if you are subscribed or registered to the explicit data reception service by using the
add_expl_data_received_callback.

Explicit data reception registration

[...]

# Instantiate a Zigbee device object.
device = ZigBeeDevice("COM1", 9600)
device.open()

# Define callback.
def my_expl_data_received_callback(expl_xbee_message):

address = expl_xbee_message.remote_device.get_64bit_addr()
source_endpoint = expl_xbee_message.source_endpoint
dest_endpoint = expl_xbee_message.dest_endpoint
cluster = expl_xbee_message.cluster_id
profile = expl_xbee_message.profile_id
data = expl_xbee_message.data.decode("utf8")

print("Received explicit data from %s: %s" % (address, data))

# Add the callback.
device.add_expl_data_received_callback(my_expl_data_received_callback)

[...]

When new explicit data is received, your callback is executed providing as parameter an ExplicitXBeeMessage
object which contains the data and other useful information:

• RemoteXBeeDevice that sent the message.

• Endpoint of the source that initiated the transmission.

• Endpoint of the destination where the message is addressed.

• Cluster ID where the data was addressed.

• Profile ID where the data was addressed.

• Byte array with the contents of the received data.

• Flag indicating if the data was sent via broadcast.

• Time when the message was received.

To stop listening to new received explicit data, use the del_expl_data_received_callback method to un-
subscribe the already-registered callback.

Explicit data reception deregistration

[...]

def my_expl_data_received_callback(xbee_message):
[...]

device.add_expl_data_received_callback(my_expl_data_received_callback)

(continues on next page)

62 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

(continued from previous page)

[...]

# Delete the callback
device.del_expl_data_received_callback(my_expl_data_received_callback)

[...]

Example: Receive explicit data via callback
The XBee Python Library includes a sample application that demonstrates how to subscribe to the explicit data
reception service in order to receive explicit data. It can be located in the following path:
examples/communication/explicit/ReceiveExplicitDataSample

Note: If your XBee module is configured to receive explicit data (API output mode greater than 0) and another device
sends non-explicit data or a IO sample, you receive an explicit message whose application layer field values are:

• For remote data:

– Source endpoint: 0xE8

– Destination endpoint: 0xE8

– Cluster ID: 0x0011

– Profile ID: 0xC105

• For remote IO sample:

– Source endpoint: 0xE8

– Destination endpoint: 0xE8

– Cluster ID: 0x0092

– Profile ID: 0xC105

That is, when an XBee receives explicit data with these values, the message notifies the following reception callbacks
in case you have registered them:

• Explicit and non-explicit data callbacks when receiving remote data.

• Explicit data callback and IO sample callback when receiving remote samples.

If you read the received data with the polling mechanism, you also receive the message through both methods.

2.6.6.3 Send and receive IP data

In contrast to XBee protocols like Zigbee, DigiMesh or 802.15.4, where the devices are connected each other, in
cellular and Wi-Fi protocols the modules are part of the Internet.

XBee Cellular and Wi-Fi modules offer a special type of frame for communicating with other Internet-connected
devices. It allows sending and receiving data specifying the destination IP address, port, and protocol (TCP, TCP SSL
or UDP).

Warning: Only Cellular and Wi-Fi protocols support the transmission and reception of IP data. This means you
cannot transmit or receive IP data using a generic XBeeDevice object; you must use the protocol-specific XBee
device objects CellularDevice or WiFiDevice.

2.6. API reference 63



XBee Python Library Documentation, Release 1.4.0

• Send IP data

• Receive IP data

Send IP data

IP data transmission can be a synchronous or asynchronous operation, depending on the method you use.

Synchronous operation

The synchronous data transmission is a blocking operation; that is, the method waits until it either receives the transmit
status response or it reaches the default timeout.

The CellularDevice and WiFiDevice classes include several methods to transmit IP data synchronously:

Method Description
send_ip_data(IPv4Address,
Integer, IPProtocol, String or
Bytearray, Boolean)

Specifies the destination IP address, destination port, IP protocol (UDP, TCP
or TCP SSL), data to send for transmissions and whether the socket should be
closed after the transmission or not (optional).

Send network data synchronously

[...]

# Instantiate a Cellular device object.
xbee = CellularDevice("COM1", 9600)
xbee.open()

# Send IP data using TCP.
dest_addr = IPv4Address("56.23.102.96")
dest_port = 5050
protocol = IPProtocol.TCP
data = "Hello XBee!"

xbee.send_ip_data(dest_addr, dest_port, protocol, data)

[...]

The send_ip_data method may fail for the following reasons:

• There is a timeout setting the IP addressing parameter, throwing a TimeoutException.

• Other errors caught as XBeeException:

– The operating mode of the device is not API or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

Example: Transmit IP data synchronously
The XBee Python Library includes a sample application that demonstrates how to send IP data. You can locate the
example in the following path:
examples/communication/ip/SendIPDataSample

64 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Example: Transmit UDP data
The XBee Python Library includes a sample application that demonstrates how to send UDP data. You can locate
the example in the following path:
examples/communication/ip/SendUDPDataSample

Example: Connect to echo server
The XBee Python Library includes a sample application that demonstrates how to connect to an echo server, send
a message to it and receive its response. You can locate the example in the following path:
examples/communication/ip/ConnectToEchoServerSample

Asynchronous operation

Transmitting IP data asynchronously means that your application does not block during the transmit process. However,
you cannot ensure that the data was successfully sent.

The CellularDevice and WiFiDevice classes include several methods to transmit IP data asynchronously:

Method Description
send_ip_data_async(IPv4Address,
Integer, IPProtocol, String or
Bytearray, Boolean)

Specifies the destination IP address, destination port, IP protocol (UDP, TCP
or TCP SSL), data to send for transmissions and whether the socket should
be closed after the transmission or not (optional).

Send network data asynchronously

[...]

# Instantiate a Cellular device object.
xbee = CellularDevice("COM1", 9600)
xbee.open()

# Send IP data using TCP.
dest_addr = IPv4Address("56.23.102.96")
dest_port = 5050
protocol = IPProtocol.TCP
data = "Hello XBee!"

xbee.send_ip_data_async(dest_addr, dest_port, protocol, data)

[...]

The send_ip_data_async method may fail for the following reasons:

• All possible errors are caught as XBeeException:

– The operating mode of the device is not API or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

Receive IP data

Some applications developed with the XBee Python Library may require modules to receive IP data.

2.6. API reference 65



XBee Python Library Documentation, Release 1.4.0

XBee Cellular and Wi-Fi modules operate the same way as other TCP/IP devices. They can initiate communications
with other devices or listen for TCP or UDP transmissions at a specific port. In either case, you must apply any of the
receive methods explained in this section in order to read IP data from other devices.

Listen for incoming transmissions

If the cellular or Wi-Fi module operates as a server, listening for incoming TCP or UDP transmissions, you must start
listening at a specific port, similar to the bind operation of a socket. The XBee Python Library provides a method to
listen for incoming transmissions:

Method Description
start_listening(Integer) Starts listening for incoming IP transmissions in the provided port.

Listen for incoming transmissions

[...]

# Instantiate a Cellular device object.
device = CellularDevice("COM1", 9600)
device.open()

# Listen for TCP or UDP transmissions at port 1234.
device.start_listening(1234);

[...]

The start_listening method may fail for the following reasons:

• If the listening port provided is lesser than 0 or greater than 65535, the method throws a ValueError error.

• If there is a timeout setting the listening port, the method throws a TimeoutException exception .

• Errors that register as an XBeeException:

– If the operating mode of the device is not API or ESCAPED_API_MODE , the method throws an
InvalidOperatingModeException.

– If the response of the listening port command is not valid, the method throws an
ATCommandException.

– If there is an error writing to the XBee interface, the method throws a generic XBeeException.

You can call the stop_listening method to stop listening for incoming TCP or UDP transmissions:

Method Description
stop_listening() Stops listening for incoming IP transmissions.

Stop listening for incoming transmissions

[...]

# Instantiate a Cellular device object.
device = CellularDevice("COM1", 9600)
device.open()

(continues on next page)

66 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

(continued from previous page)

# Stop listening for TCP or UDP transmissions.
device.stop_listening()

[...]

The stop_listening method may fail for the following reasons:

• There is a timeout setting the listening port, throwing a TimeoutException.

• Other errors caught as XBeeException:

– The operating mode of the device is not API or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– The response of the command is not valid, throwing an ATCommandException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

Polling for IP data

The simplest way to read IP data is by executing the read_ip_data method of the local Cellular or Wi-Fi devices.
This method blocks your application until IP data is received or the provided timeout has expired.

Method Description
read_ip_data(Integer)Specifies the time to wait in seconds for IP data reception (method blocks during that time or until

IP data is received). If you don’t specify a timeout, the method uses the default receive timeout
configured in XBeeDevice.

Read IP data (polling)

[...]

# Instantiate a Cellular device object.
device = CellularDevice("COM1", 9600)
device.open()

# Read IP data.
ip_message = device.read_ip_data()

[...]

The method returns the read data inside an IPMessage object and contains the following information:

• IP address of the device that sent the data

• Transmission protocol

• Source and destination ports

• Byte array with the contents of the received data

You can retrieve the previous information using the corresponding attributes of the IPMessage object:

Get the IPMessage information

[...]

# Instantiate a cellular device object.

(continues on next page)

2.6. API reference 67



XBee Python Library Documentation, Release 1.4.0

(continued from previous page)

device = CellularDevice("COM1", 9600)
device.open()

# Read IP data.
ip_message = device.read_ip_data()

ip_addr = ip_message.ip_addr
source_port = ip_message.source_port
dest_port = ip_message.dest_port
protocol = ip_message.protocol
data = ip_message.data

[...]

You can also read IP data that comes from a specific IP address. For that purpose, the cellular and Wi-Fi device objects
provide the read_ip_data_from method:

Read IP data from a specific IP address (polling)

[...]

# Instantiate a cellular device object.
device = CellularDevice("COM1", 9600)
device.open()

# Read IP data.
ip_message = device.read_ip_data_from(IPv4Address("52.36.102.96"))

[...]

This method also returns an IPMessage object containing the same information described before.

Example: Receive IP data with polling
The XBee Python Library includes a sample application that demonstrates how to receive IP data using the polling
mechanism. You can locate the example in the following path:
examples/communication/ip/ConnectToEchoServerSample

IP data reception callback

This mechanism for reading IP data does not block your application. Instead, you can be notified when new
IP data has been received if you have subscribed or registered with the IP data reception service by using the
add_ip_data_received_callback method.

IP data reception registration

[...]

# Instantiate a Cellular device object.
device = CellularDevice("COM1", 9600)
device.open()

# Define the callback.

(continues on next page)

68 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

(continued from previous page)

def my_ip_data_received_callback(ip_message):
print("Received IP data from %s: %s" % (ip_message.ip_addr, ip_message.data))

# Add the callback.
device.add_ip_data_received_callback(my_ip_data_received_callback)

[...]

When new IP data is received, your callback is executed providing as parameter an IPMessage object which contains
the data and other useful information:

• IP address of the device that sent the data

• Transmission protocol

• Source and destination ports

• Byte array with the contents of the received data

To stop listening to new received IP data, use the del_ip_data_received_callback method to unsubscribe
the already-registered listener.

Data reception deregistration

[...]

device = [...]

def my_ip_data_received_callback(ip_message):
[...]

device.add_ip_data_received_callback(my_ip_data_received_callback)

[...]

# Delete the IP data callback.
device.del_ip_data_received_callback(my_ip_data_received_callback)

[...]

Example: Receive IP data with listener
The XBee Python Library includes a sample application that demonstrates how to receive IP data using the listener.
You can locate the example in the following path:
examples/communication/ip/ReceiveIPDataSample

2.6.6.4 Send and receive SMS messages

Another feature of the XBee Cellular module is the ability to send and receive Short Message Service (SMS) trans-
missions. This allows you to send and receive text messages to and from an SMS capable device such as a mobile
phone.

For that purpose, these modules offer a special type of frame for sending and receiving text messages, specifying the
destination phone number and data.

2.6. API reference 69



XBee Python Library Documentation, Release 1.4.0

Warning: Only Cellular protocol supports the transmission and reception of SMS. This means you cannot send
or receive text messages using a generic XBeeDevice object; you must use the protocol-specific XBee device
object CellularDevice.

• Send SMS messages

• Receive SMS messages

Send SMS messages

SMS transmissions can be a synchronous or asynchronous operation, depending on the method you use.

Synchronous operation

The synchronous SMS transmission is a blocking operation; that is, the method waits until it either receives the transmit
status response or it reaches the default timeout.

The CellularDevice class includes the following method to send SMS messages synchronously:

Method Description
send_sms(String,
String)

Specifies the the phone number to send the SMS to and the data to send as the body of
the SMS message.

Send SMS message synchronously

[...]

# Instantiate a Cellular device object.
xbee = CellularDevice("COM1", 9600)
xbee.open()

phone_number = "+34665963205"
data = "Hello XBee!"

# Send SMS message.
xbee.send_sms(phone_number, data)

[...]

The send_sms method may fail for the following reasons:

• If the response is not received in the configured timeout, the method throws a TimeoutException.

• If the phone number has an invalid format, the method throws a ValueError.

• Errors register as XBeeException:

– If the operating mode of the device is not API or ESCAPED_API_MODE , the method throws an
InvalidOperatingModeException.

– If there is an error writing to the XBee interface, the method throws a generic XBeeException.

70 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Example: Send synchronous SMS
The XBee Python Library includes a sample application that demonstrates how to send SMS messages. You can
locate the example in the following path:
examples/communication/cellular/SendSMSSample

Asynchronous operation

Transmitting SMS messages asynchronously means that your application does not block during the transmit process.
However, you cannot verify the SMS was successfully sent.

The CellularDevice class includes the following method to send SMS asynchronously:

Method Description
send_sms_async(String,
String)

Specifies the the phone number to send the SMS to and the data to send as the body
of the SMS message.

Send SMS message asynchronously

[...]

# Instantiate a Cellular device object.
xbee = CellularDevice("COM1", 9600)
xbee.open()

phone_number = "+34665963205"
data = "Hello XBee!"

# Send SMS message.
xbee.send_sms_async(phone_number, data)

[...]

The send_sms_async method may fail for the following reasons:

• If the phone number has an invalid format, the method throws a ValueError.

• Errors register as XBeeException:

– If the operating mode of the device is not API or ESCAPED_API_MODE , the method throws an
InvalidOperatingModeException.

– If there is an error writing to the XBee interface, the method throws a generic XBeeException.

Receive SMS messages

Some applications developed with the XBee Python Library may require modules to receive SMS messages.

SMS reception callback

You can be notified when a new SMS has been received if you are subscribed or registered to the SMS reception
service by using the add_sms_callback method.

SMS reception registration

2.6. API reference 71



XBee Python Library Documentation, Release 1.4.0

[...]

# Instantiate a cellular device object.
device = CellularDevice("COM1", 9600)
device.open()

# Define the callback.
def my_sms_callback(sms_message):

print("Received SMS from %s: %s" % (sms_message.phone_number, sms_message.data))

# Add the callback.
device.add_sms_callback(my_sms_callback)

[...]

When a new SMS message is received, your callback is executed providing an SMSMessage object as paramater.
This object contains the data and the phone number that sent the message.

To stop listening to new SMS messages, use the del_sms_callback method to unsubscribe the already-registered
listener.

Deregister SMS reception

[...]

device = [...]

def my_sms_callback(sms_message):
[...]

device.add_sms_callback(my_sms_callback)

[...]

# Delete the SMS callback.
device.del_sms_callback(my_sms_callback)

[...]

Example: Receive SMS messages
The XBee Python Library includes a sample application that demonstrates how to subscribe to the SMS reception
service in order to receive text messages. You can locate the example in the following path:
examples/communication/cellular/ReceiveSMSSample

2.6.6.5 Send and receive Bluetooth data

XBee3 modules have the ability to send and receive data from the Bluetooth Low Energy interface of the local XBee
device through User Data Relay frames. This can be useful if your application wants to transmit or receive data from
a cellphone connected to it over BLE.

Warning: Only XBee3 modules support Bluetooth Low Energy. This means that you cannot transmit or receive
Bluetooth data if you don’t have one of these modules.

72 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• Send Bluetooth data

• Receive Bluetooth data

Send Bluetooth data

The XBeeDevice class and its subclasses provide the following method to send data to the Bluetooth Low Energy
interface:

Method Description
send_bluetooth_data(Bytearray) Specifies the data to send to the Bluetooth Low Energy interface.

This method is asynchronous, which means that your application does not block during the transmit process.

Send data to Bluetooth

[...]

# Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

data = "Bluetooth, are you there?"

# Send the data to the Bluetooth interface.
device.send_bluetooth_data(data.encode("utf8"))

[...]

The send_bluetooth_data method may fail for the following reasons:

• Errors register as XBeeException:

– If the operating mode of the device is not API or ESCAPED_API_MODE, the method throws an
InvalidOperatingModeException.

– If there is an error writing to the XBee interface, the method throws a generic XBeeException.

Example: Send Bluetooth data
The XBee Python Library includes a sample application that demonstrates how to send data to the Bluetooth
interface. You can locate the example in the following path:
examples/communication/bluetooth/SendBluetoothDataSample

Receive Bluetooth data

You can be notified when new data from the Bluetooth Low Energy interface has been received if you are subscribed or
registered to the Bluetooth data reception service by using the add_bluetooth_data_received_callback
method.

Bluetooth data reception registration

[...]

# Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)

(continues on next page)

2.6. API reference 73



XBee Python Library Documentation, Release 1.4.0

(continued from previous page)

device.open()

# Define the callback.
def my_bluetooth_data_callback(data):

print("Data received from the Bluetooth interface >> '%s'" % data.decode("utf-8"))

# Add the callback.
device.add_bluetooth_data_received_callback(my_bluetooth_data_callback)

[...]

When a new data from the Bluetooth interface is received, your callback is executed providing the data in byte array
format as parameter.

To stop listening to new data messages from the Bluetooth interface, use the
del_bluetooth_data_received_callback method to unsubscribe the already-registered listener.

Deregister Bluetooth data reception

[...]

device = [...]

def my_bluetooth_data_callback(data):
[...]

device.add_bluetooth_data_received_callback(my_bluetooth_data_callback)

[...]

# Delete the Bluetooth data callback.
device.del_bluetooth_data_received_callback(my_bluetooth_data_callback)

[...]

Example: Receive Bluetooth data
The XBee Python Library includes a sample application that demonstrates how to subscribe to the Bluetooth data
reception service in order to receive data from the Bluetooth Low Energy interface. You can locate the example in
the following path:
examples/communication/bluetooth/ReceiveBluetoothDataSample

2.6.6.6 Send and receive MicroPython data

XBee3 modules have the ability to send and receive data from the MicroPython interface of the local XBee device
through User Data Relay frames. This can be useful if your application wants to transmit or receive data from a
MicroPython program running on the module.

Warning: Only XBee3 and XBee Cellular modules support MicroPython. This means that you cannot transmit
or receive MicroPython data if you don’t have one of these modules.

• Send MicroPython data

• Receive MicroPython data

74 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Send MicroPython data

The XBeeDevice class and its subclasses provide the following method to send data to the MicroPython interface:

Method Description
send_micropython_data(Bytearray) Specifies the data to send to the MicroPython interface.

This method is asynchronous, which means that your application does not block during the transmit process.

Send data to MicroPython

[...]

# Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

data = "MicroPython, are you there?"

# Send the data to the MicroPython interface.
device.send_micropython_data(data.encode("utf8"))

[...]

The send_micropython_data method may fail for the following reasons:

• Errors register as XBeeException:

– If the operating mode of the device is not API or ESCAPED_API_MODE, the method throws an
InvalidOperatingModeException.

– If there is an error writing to the XBee interface, the method throws a generic XBeeException.

Example: Send MicroPython data
The XBee Python Library includes a sample application that demonstrates how to send data to the MicroPython
interface. You can locate the example in the following path:
examples/communication/micropython/SendMicroPythonDataSample

Receive MicroPython data

You can be notified when new data from the MicroPython interface has been received if you are subscribed or regis-
tered to the MicroPython data reception service by using the add_micropython_data_received_callback
method.

MicroPython data reception registration

[...]

# Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

# Define the callback.
def my_micropython_data_callback(data):

print("Data received from the MicroPython interface >> '%s'" % data.decode("utf-8
→˓"))

(continues on next page)

2.6. API reference 75



XBee Python Library Documentation, Release 1.4.0

(continued from previous page)

# Add the callback.
device.add_micropython_data_received_callback(my_micropython_data_callback)

[...]

When a new data from the MicroPython interface is received, your callback is executed providing the data in byte
array format as parameter.

To stop listening to new data messages from the MicroPython interface, use the
del_micropython_data_received_callback method to unsubscribe the already-registered listener.

Deregister MicroPython data reception

[...]

device = [...]

def my_micropython_data_callback(data):
[...]

device.add_micropython_data_received_callback(my_micropython_data_callback)

[...]

# Delete the MicroPython data callback.
device.del_micropython_data_received_callback(my_micropython_data_callback)

[...]

Example: Receive MicroPython data
The XBee Python Library includes a sample application that demonstrates how to subscribe to the MicroPython
data reception service in order to receive data from the MicroPython interface. You can locate the example in the
following path:
examples/communication/micropython/ReceiveMicroPythonDataSample

2.6.6.7 Receive modem status events

A local XBee device is able to determine when it connects to a network, when it is disconnected, and when any kind
of error or other events occur. The local device generates these events, and they can be handled using the XBee Python
library via the modem status frames reception.

When a modem status frame is received, you are notified through the callback of a custom listener so you can take the
proper actions depending on the event received.

For that purpose, you must subscribe or register to the modem status reception service using a modem status listener
as parameter with the method add_modem_status_received_callback.

Subscribe to modem status reception service

[...]

# Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

(continues on next page)

76 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

(continued from previous page)

# Define the callback.
def my_modem_status_callback(status):

print("Modem status: %s" % status.description)

# Add the callback.
device.add_modem_status_received_callback(my_modem_status_callback)

[...]

When a new modem status is received, your callback is executed providing as parameter a ModemStatus object.

To stop listening to new modem statuses, use the del_modem_status_received_callback method to un-
subscribe the already-registered listener.

Deregister modem status

[...]

device = [...]

def my_modem_status_callback(status):
[...]

device.add_modem_status_received_callback(my_modem_status_callback)

[...]

# Delete the modem status callback.
device.del_modem_status_received_callback(my_modem_status_callback)

[...]

Example: Subscribe to modem status reception service
The XBee Python Library includes a sample application that shows you how to subscribe to the modem status
reception service to receive modem status events. The example is located in the following path:
examples/communication/ReceiveModemStatusSample

2.6.6.8 Communicate using XBee sockets

Starting from firmware versions *13, the XBee Cellular product line includes a new set of frames to communicate
with other Internet-connected devices using sockets.

The XBee Python Library provides several methods that allow you to create, connect, bind and close a socket, as well
as send and receive data with it. You can use this API where the existing methods listed in the Send and receive IP
data section limit the possibilities for an application.

Warning: Only the Cellular protocol supports the use of XBee sockets. This means you cannot use this API with
a generic XBeeDevice object; you must use the protocol-specific XBee device object CellularDevice.

The XBee socket API is available through the socket class of the digi.xbee.xsocket module.

2.6. API reference 77



XBee Python Library Documentation, Release 1.4.0

Create an XBee socket

Before working with an XBee socket to communicate with other devices, you have to instantiate a socket object in
order to create it. To do so, you need to provide the following parameters:

• XBee Cellular device object used to work with the socket.

• IP protocol of the socket (optional). It can be IPProtocol.TCP (default), IPProtocol.UDP or
IPProtocol.TCP_SSL.

Create an XBee socket

from digi.xbee import xsocket
from digi.xbee.devices import CellularDevice
from digi.xbee.models.protocol import IPProtocol

# Create and open an XBee Cellular device.
device = CellularDevice("COM1", 9600)
device.open()

# Create a new XBee socket.
sock = xsocket.socket(device, IPProtocol.TCP)

Work with an XBee socket

Once the XBee socket is created, you can work with it to behave as a client or a server. The API offers the following
methods:

78 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Method Description
con-
nect(Tuple)

Connects to a remote socket at the provided address. The address must be a pair (host, port),
where host is the domain name or string representation of an IPv4 and port is the numeric port value.

close() Closes the socket.
bind(Tuple) Binds the socket to the provided address. The address must be a pair (host, port), where host

is the local interface (not used) and port is the numeric port value. The socket must not already be
bound.

lis-
ten(Integer)

Enables a server to accept connections.

accept() Accepts a connection. The socket must be bound to an address and listening for connections. The
return value is a pair (conn, address) where conn is a new socket object usable to send and
receive data on the connection, and address is a pair (host, port) with the address bound to
the socket on the other end of the connection.

send(Bytearray)Sends the provided data to the socket. The socket must be connected to a remote socket.
sendto(Bytearray,
Tuple)

Sends the provided data to the socket. The socket should not be connected to a remote socket, since
the destination socket is specified by address (a pair (host, port)).

recv(Integer) Receives data from the socket, specifying the maximum amount of data to be received at once. The
return value is a bytearray object representing the data received.

recvfrom(Integer)Receives data from the socket, specifying the maximum amount of data to be received at once. The
return value is a pair (bytes, address) where bytes is a bytearray object representing the data
received and address is the address of the socket sending the data(a pair (host, port)).

getsock-
opt(SocketOption)

Returns the value of the provided socket option.

setsock-
opt(SocketOption,
Bytear-
ray)

Sets the value of the provided socket option.

gettime-
out()

Returns the configured socket timeout in seconds.

settime-
out(Integer)

Sets the socket timeout in seconds.

getblock-
ing()

Returns whether the socket is in blocking mode or not.

setblock-
ing(Boolean)

Sets the socket in blocking or non-blocking mode. In blocking mode, operations block until com-
plete or the system returns an error. In non-blocking mode, operations fail if they cannot be com-
pleted within the configured timeout.

get_sock_info()Returns the information of the socket, including the socket ID, state, protocol, local port, remote
port and remote address.

add_socket_state_callback(Function)Adds the provided callback to be notified when a new socket state is received.
del_socket_state_callback(Function)Deletes the provided socket state callback.

Client sockets

When the socket acts as a client, you just have to create and connect the socket before sending or receiving data with
a remote host.

Work with an XBee socket as client

[...]

HOST = "numbersapi.com"
PORT = "80"

(continues on next page)

2.6. API reference 79



XBee Python Library Documentation, Release 1.4.0

(continued from previous page)

REQUEST = "GET /random/trivia HTTP/1.1\r\nHost: numbersapi.com\r\n\r\n"

# Create and open an XBee Cellular device.
device = CellularDevice("COM1", 9600)
device.open()

# Create a new XBee socket.
with xsocket.socket(device, IPProtocol.TCP) as sock:

# Connect the socket.
sock.connect((HOST, PORT))

# Send an HTTP request.
sock.send(REQUEST.encode("utf8"))

# Receive and print the response.
data = sock.recv(1024)
print(data.decode("utf8"))

Example: Create a TCP client socket
The XBee Python Library includes a sample application that shows you how to create a TCP client socket to send
HTTP requests. The example is located in the following path:
examples/communication/socket/SocketTCPClientSample

Server sockets

When the socket acts as a server, you must create the socket and then perform the sequence bind(), listen(),
accept().

Work with an XBee socket as server

[...]

PORT = "1234"

# Create and open an XBee Cellular device.
device = CellularDevice("COM1", 9600)
device.open()

# Create a new XBee socket.
with xsocket.socket(device, IPProtocol.TCP) as sock:

# Bind the socket to the local port.
sock.bind((None, PORT))

# Listen for new connections.
sock.listen()

# Accept new connections.
conn, addr = sock.accept()

with conn:
print("Connected by %s", str(addr))
while True:

# Print the received data (if any).
data = conn.recv(1024)

(continues on next page)

80 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

(continued from previous page)

if data:
print(data.decode("utf8"))

Example: Create a TCP server socket
The XBee Python Library includes a sample application that shows you how to create a TCP server socket to
receive data from incoming sockets. The example is located in the following path:
examples/communication/socket/SocketTCPServerSample

Example: Create a UDP server/client socket
The XBee Python Library includes a sample application that shows how to create a UDP socket to deliver messages
to a server and listen for data coming from multiple peers. The example is located in the following path:
examples/communication/socket/SocketUDPServerClientSample

2.6.7 Handle analog and digital IO lines

All the XBee modules, regardless of the protocol they run, have a set of IO lines (pins). You can use these pins to
connect sensors or actuators and configure them with specific behavior.

You can configure the IO lines of an XBee device to be digital input/output (DIO), analog to digital converter (ADC),
or pulse-width modulation output (PWM). The configuration you provide to a line depends on the device where you
want to connect.

Note: All the IO management features displayed in this topic and sub-topics are applicable for both local and remote
XBee devices.

The XBee Python Library exposes an easy way to configure, read, and write the IO lines of the local and remote XBee
devices through the following corresponding classes:

• XBeeDevice for local devices.

• RemoteXBeeDevice for remotes.

2.6.7.1 Configure the IO lines

All XBee device objects include a configuration method, set_io_configuration(), where you can specify the
IO line being configured and the desired function being set.

For the IO line parameter, the API provides an enumerator called IOLine that helps you specify the desired IO line
easily by functional name. This enumerator is used along all the IO related methods in the API.

The supported functions are also contained in an enumerator called IOMode. You can choose between the following
functions:

• DISABLED

• SPECIAL_FUNCTIONALITY (Shouldn’t be used to configure IOs)

• PWM

• ADC

• DIGITAL_IN

• DIGITAL_OUT_LOW

2.6. API reference 81



XBee Python Library Documentation, Release 1.4.0

• DIGITAL_OUT_HIGH

Configure local or remote IO lines

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

# Instantiate a remote XBee device object.
remote_xbee = RemoteXBeeDevice(local_xbee, XBee64BitAddress.from_hex_string(
→˓"0013A20012345678"))

# Configure the DIO1_AD1 line of the local device to be Digital output (set high by
→˓default).
local_xbee.set_io_configuration(IOLine.DIO1_AD1, IOMode.DIGITAL_OUT_HIGH)

# Configure the DIO2_AD2 line of the local device to be Digital input.
local_xbee.set_io_configuration(IOLine.DIO2_AD2, IOMode.DIGITAL_IN)

# Configure the DIO3_AD3 line of the remote device to be Analog input (ADC).
remote_xbee.set_io_configuration(IOLine.DIO3_AD3, IOMode.ADC)

# Configure the DIO10_PWM0 line of the remote device to be PWM output (PWM).
remote_xbee.set_io_configuration(IOLine.DIO10_PWM0, IOMode.PWM)

[...]

The set_io_configuration() method may fail for the following reasons:

• ACK of the command sent is not received in the configured timeout, throwing a TimeoutException.

• Other errors caught as XBeeException:

– The operating mode of the device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– The response of the command is not valid, throwing an ATCommandException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

You can read the current configuration of any IO line the same way an IO line can be configured with a desired function
using the corresponding getter, get_io_configuration().

Get IO configuration

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

# Get the configuration mode of the DIO1_AD1 line.
io_mode = local_xbee.get_io_configuration(IOLine.DIO1_AD1)

[...]

The get_io_configuration() method may fail for the following reasons:

• ACK of the command sent is not received in the configured timeout, throwing a TimeoutException.

82 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• Other errors caught as XBeeException:

– The operating mode of the device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– The response of the command is not valid, throwing an ATCommandException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

Digital Input/Output

If your IO line is configured as digital output, you can set its state (high/low) easily. All the XBee device classes
provide the method, set_dio_value(), with the desired IOLine as the first parameter and an IOValue as the
second. The IOValue enumerator includes HIGH and LOW as possible values.

Set digital output values

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

# Set the DIO2_AD2 line low.
local_xbee.set_dio_value(IOLine.DIO2_AD2, IOValue.LOW)

# Set the DIO2_AD2 line high.
local_xbee.set_dio_value(IOLine.DIO2_AD2, IOValue.HIGH)

[...]

The set_dio_value() method may fail for the following reasons:

• ACK of the command sent is not received in the configured timeout, throwing a TimeoutException.

• Other errors caught as XBeeException:

– The operating mode of the device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– The response of the command is not valid, throwing an ATCommandException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

You can also read the current status of the pin (high/low) by issuing the method get_dio_value(). The parameter
of the method must be the IO line to be read.

Read digital input values

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

# Get the value of the DIO2_AD2.
value = local_xbee.get_dio_value(IOLine.DIO2_AD2)

[...]

The get_dio_value() method may fail for the following reasons:

2.6. API reference 83



XBee Python Library Documentation, Release 1.4.0

• ACK of the command sent is not received in the configured timeout, throwing a TimeoutException.

• Other errors caught as XBeeException:

– The operating mode of the device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– If the received response does not contain the value for the given IO line, throwing an
OperationNotSupportedException. This can happen (for example) if you try to read the DIO
value of an IO line that is not configured as DIO.

– The response of the command is not valid, throwing an ATCommandException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

Example: Handle DIO IO lines
The XBee Python Library includes two sample applications that demonstrate how to handle DIO lines in your local
and remote XBee Devices. The examples are located in the following path:
examples/io/LocalDIOSample/LocalDIOSample.py
examples/io/RemoteDIOSample/RemoteDIOSample.py

ADC

When you configure an IO line as analog to digital converter (ADC), you can only read its value (counts) with
get_adc_value(). In this case, the method used to read ADCs is different than the digital I/O method, but
the parameter provided is the same: the IO line to read the value from.

Read ADC values

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

# Get the value of the DIO 3 (analog to digital converter).
value = local_xbee.get_adc_value(IOLine.DIO3_AD3)

[...]

The get_adc_value() method may fail for the following reasons:

• ACK of the command sent is not received in the configured timeout, throwing a TimeoutException.

• Other errors caught as XBeeException:

– The operating mode of the device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– If the received response does not contain the value for the given IO line, throwing an
OperationNotSupportedException. This can happen (for example) if you try to read the ADC
value of an IO line that is not configured as ADC.

– The response of the command is not valid, throwing an ATCommandException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

84 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Example: Handle ADC IO lines
The XBee Python Library includes two sample applications that demonstrate how to handle ADC lines in your
local and remote XBee devices. The examples are located in the following path:
examples/io/LocalADCSample/LocalADCSample.py
examples/io/RemoteADCSample/RemoteADCSample.py

PWM

Not all the XBee protocols support pulse-width modulation (PWM) output handling, but the XBee Python Library
provides functionality to manage them. When you configure an IO line as PWM output, you must use specific methods
to set and read the duty cycle of the PWM.

For the set case, use the method set_pwm_duty_cycle() and provide the IO line configured as PWM and the
value of the duty cycle in % of the PWM. The duty cycle is the proportion of ‘ON’ time to the regular interval
or ‘period’ of time. A high duty cycle corresponds to high power, because the power is ON for most of the time.
The percentage parameter of the set duty cycle method is a double, which allows you to be more precise in the
configuration.

Set the duty cycle of an IO line configure as PWM

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

# Set a duty cycle of 75% to the DIO10_PWM0 line (PWM output).
local_xbee.set_pwm_duty_cycle(IOLine.DIO10_PWM0, 75)

[...]

The set_pwm_duty_cycle() method may fail for the following reasons:

• ACK of the command sent is not received in the configured timeout, throwing a TimeoutException.

• Other errors caught as XBeeException:

– The operating mode of the device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– The response of the command is not valid, throwing an ATCommandException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

The get_pwm_duty_cycle(IOLine) method of a PWM line returns a double value with the current duty cycle
percentage of the PWM.

Get the duty cycle of an IO line configured as PWM

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]
(continues on next page)

2.6. API reference 85



XBee Python Library Documentation, Release 1.4.0

(continued from previous page)

# Get the duty cycle of the DIO10_PWM0 line (PWM output).
duty_cycle = local_xbee.get_pwm_duty_cycle(IOLine.DIO10_PWM0);

[...]

Note: In both cases (get and set), the IO line provided must be PWM capable and must be configured as PWM output.

2.6.7.2 Read IO samples

XBee modules can monitor and sample the analog and digital IO lines. You can read IO samples locally or transmitted
to a remote device to provide an indication of the current IO line states.

There are three ways to obtain IO samples on a local or remote device:

• Queried sampling

• Periodic sampling

• Change detection sampling

The XBee Python Library represents an IO sample by the IOSample class, which contains:

• Digital and analog channel masks that indicate which lines have sampling enabled.

• Values of those enabled lines.

You must configure the IO lines you want to receive in the IO samples before enabling sampling.

Queried sampling

The XBee Python Library provides a method to read an IO sample that contains all enabled digital IO and analog input
channels, read_io_sample(). The method returns an IOSample object.

Read an IO sample and getting the DIO value

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

# Read an IO sample from the device.
io_sample = local_xbee.read_io_sample()

# Select the desired IO line.
io_line = IOLine.DIO3_AD3

# Check if the IO sample contains the expected IO line and value.
if io_sample.has_digital_value(io_line):

print("DIO3 value: %s" % io_sample.get_digital_value(ioLine))

[...]

86 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

The read_io_sample() method may fail for the following reasons:

• ACK of the command sent is not received in the configured timeout, throwing a TimeoutException.

• Other errors caught as XBeeException:

– The operating mode of the device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– The response of the command is not valid, throwing an ATCommandException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

Periodic sampling

Periodic sampling allows an XBee module to take an IO sample and transmit it to a remote device at a periodic rate.
That remote device is defined in the destination address through the set_dest_address() method. The XBee
Python Library provides the set_io_sampling_rate() method to configure the periodic sampling.

The XBee module samples and transmits all enabled digital IO and analog inputs to the remote device every X seconds.
A sample rate of 0 s disables this feature.

Set the IO sampling rate

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

# Set the destination address.
local_xbee.set_dest_address(XBee64BitAddress.from_hex_string("0013A20040XXXXXX"))

# Set the IO sampling rate.
local_xbee.set_io_sampling_rate(5) # 5 seconds.

[...]

The set_io_sampling_rate() method may fail for the following reasons:

• ACK of the command sent is not received in the configured timeout, throwing a TimeoutException.

• Other errors caught as XBeeException:

– The operating mode of the device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– The response of the command is not valid, throwing an ATCommandException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

You can also read this value using the get_io_sampling_rate() method. This method returns the IO sampling
rate in milliseconds and ‘0’ when the feature is disabled.

Get the IO sampling rate

[...]

# Instantiate an XBee device object.

(continues on next page)

2.6. API reference 87



XBee Python Library Documentation, Release 1.4.0

(continued from previous page)

local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

# Get the IO sampling rate.
value = local_xbee.get_io_sampling_rate()

[...]

The get_io_sampling_rate() method may fail for the following reasons:

• ACK of the command sent is not received in the configured timeout, throwing a TimeoutException.

• Other errors caught as XBeeException:

– The operating mode of the device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– The response of the command is not valid, throwing an ATCommandException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

2.6.7.3 Change detection sampling

You can configure modules to transmit a data sample immediately whenever a monitored digital IO pin changes state.
The set_dio_change_detection() method establishes the set of digital IO lines that are monitored for change
detection. A None set disables the change detection sampling.

As in the periodic sampling, change detection samples are transmitted to the configured destination address.

Note: This feature only monitors and samples digital IOs, so it is not valid for analog lines.

Set the DIO change detection

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

# Set the destination address.
local_xbee.set_dest_address(XBee64BitAddress.from_hex_string("0013A20040XXXXXX"))

# Create a set of IO lines to be monitored.
lines = [IOLine.DIO3_AD3, IOLine.DIO4_AD4]

# Enable the DIO change detection sampling.
local_xbee.set_dio_change_detection(lines)

[...]

The set_dio_change_detection() method may fail for the following reasons:

• ACK of the command sent is not received in the configured timeout, throwing a TimeoutException.

88 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• Other errors caught as XBeeException:

– The operating mode of the device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– The response of the command is not valid, throwing an ATCommandException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

You can also get the lines that are monitored using the get_dio_change_detection() method. A None value
indicates that this feature is disabled.

Get the DIO change detection

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

# Get the set of lines that are monitored.
lines = local_xbee.get_dio_change_detection()

[...]

The get_dio_change_detection() method may fail for the following reasons:

• ACK of the command sent is not received in the configured timeout, throwing a TimeoutException.

• Other errors caught as XBeeException:

– The operating mode of the device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

– The response of the command is not valid, throwing an ATCommandException.

– There is an error writing to the XBee interface, throwing a generic XBeeException.

Register an IO sample listener

In addition to configuring an XBee device to monitor and sample the analog and digital IO lines, you must register a
callback in the local device where you want to receive the IO samples. You are then notified when the device receives
a new IO sample.

You must subscribe to the IO samples reception service by using the method
add_io_sample_received_callback() with an IO sample reception callback function as parameter.

Add an IO sample callback

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

# Define the IO sample receive callback.

(continues on next page)

2.6. API reference 89



XBee Python Library Documentation, Release 1.4.0

(continued from previous page)

def io_sample_callback(io_sample, remote_xbee, send_time):
print("IO sample received at time %s." % str(send_time))
print("IO sample:")
print(str(io_sample))

# Subscribe to IO samples reception.
local_xbee.add_io_sample_received_callback(io_sample_callback)

[...]

This callback function will receive three parameters when an IO sample receive event is raised:

• The received IO sample as an IOSample object.

• The remote XBee device that sent the IO sample as a RemoteXBeeDevice object.

• The time in which the IO sample was received as an Float (calculated with Python standard time.time()).

To stop receiving notifications of new IO samples, remove the added callback using the
del_io_sample_received_callback() method.

Remove an IO sample callback

[...]

# Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

# Define the IO sample receive callback.
def io_sample_callback(io_sample, remote_xbee, send_time):

print("IO sample received at time %s." % str(send_time))
print("IO sample:")
print(str(io_sample))

# Subscribe to IO samples reception by adding the callback.
local_xbee.add_io_sample_received_callback(io_sample_callback)

[...]

# Unsubscribe from IO samples reception by removing the callback.
local_xbee.del_io_sample_received_callback(io_sample_callback)

[...]

The del_io_sample_received_callback()method will raise a ValueError if you try to delete a callback
that you have not added yet.

Example: Receive IO samples
The XBee Python Library includes a sample application that demonstrates how to configure a remote device to
monitor IO lines and receive the IO samples in the local device. The example is located in the following path:
examples/io/IOSamplingSample/IOSamplingSample.py

90 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

2.6.8 Update the XBee

To keep your XBee devices up to date, the XBee Python Library provides several methods to update the device
software including firmware, file system and XBee profiles:

• Update the XBee firmware

• Update the XBee file system

• Apply an XBee profile

Warning:

At the moment, update features are only supported in:

• XBee 3:

– Local and remote firmware updates

– Local and remote file system updates

– Local and remote profile updates

• XBee SX 868/900 MHz

– Local and remote firmware updates

– Local and remote profile updates

• XBee S2C

– Remote firmware updates

– Remote profile updates

2.6.8.1 Update the XBee firmware

You may need to update the running firmware of your XBee devices to, for example, change their XBee protocol, fix
issues and security risks, or access to new features and functionality.

The XBee Python Library provides methods to perform firmware updates in local and remote devices:

• Update the firmware of a local XBee

• Update the firmware of a remote XBee

Warning:

At the moment, firmware update is only supported in:

• XBee 3: Local and remote firmware updates

• XBee SX 868/900 MHz: Local and remote firmware updates

• XBee S2C: Remote firmware updates

Update the firmware of a local XBee

The firmware update process of a local XBee device is performed over the serial connection. For this operation, you
need the following components:

2.6. API reference 91



XBee Python Library Documentation, Release 1.4.0

• The XBee device object instance or the serial port name where the device is attached to.

• The new firmware XML descriptor file.

• The new firmware binary file (*.gbl)

• Optionally, the new bootloader binary file (*.gbl) required by the new firmware.

Warning: Firmware update will fail if the firmware requires a new bootloader and it is not provided.

Warning: At the moment, local firmware update is only supported in XBee 3 and XBee SX 868/900 MHz
devices.

Example: Local Firmware Update
The XBee Python Library includes a sample application that displays how to perform a local firmware update. It
can be located in the following path:
examples/firmware/LocalFirmwareUpdateSample/LocalFirmwareUpdateSample.py

Update the local firmware using an XBee device object

If you have an object instance of your local XBee device, you have to call the update_firmware method of the
XBeeDevice class providing the required parameters:

Method Description
update_firmware(String, String, String, Integer,
Function)

Performs a firmware update operation of the device.
• xml_firmware_file (String): path of the XML

file that describes the firmware to upload.
• xbee_firmware_file (String, optional): location

of the XBee binary firmware file (*.gbl).
• bootloader_firmware_file (String, optional):

location of the bootloader binary firmware file
(*.gbl).

• timeout (Integer, optional): the maximum
amount of seconds to wait for target read oper-
ations during the update process.

• progress_callback (Function, optional): func-
tion to execute to receive progress information.
Receives two arguments:

– The current update task as a String
– The current update task percentage as an In-

teger

The update_firmware method may fail for the following reasons:

• The device does not support the firmware update operation, throwing a
OperationNotSupportedException.

• There is an error during the firmware update operation, throwing a FirmwareUpdateException.

• Other errors caught as XBeeException:

92 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

– The device is not open, throwing a generic XBeeException.

– The operating mode of the local XBee device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

Update local XBee device firmware using an XBee device object

[...]

XML_FIRMWARE_FILE = "my_path/my_firmware.xml"
XBEE_FIRMWARE_FILE = "my_path/my_firmware.gbl"
BOOTLOADER_FIRMWARE_FILE = "my_path/my_bootloader.gbl"

[...]

# Instantiate an XBee device object.
xbee = XBeeDevice(...)

[...]

# Update the XBee device firmware.
device.update_firmware(XML_FIRMWARE_FILE,

xbee_firmware_file=XBEE_FIRMWARE_FILE,
bootloader_firmware_file=BOOTLOADER_FIRMWARE_FILE,
progress_callback=progress_callback,)

[...]

Update the local firmware using a serial port

If you do not know the XBee serial communication parameters or you cannot instantiate the XBee device object (for
example if the device must be recovered), you can perform the firmware update process by providing the serial port
identifier where the XBee is attached to.

In this scenario, use the update_local_firmware method of the XBee firmware module providing the re-
quired parameters. The library forces the XBee to reboot into bootloader mode, using the recovery mechanism, and
performs the firmware update from that point.

2.6. API reference 93



XBee Python Library Documentation, Release 1.4.0

Method Description
update_local_firmware(String or XBeeDevice,
String, String, String, Integer, Function)

Performs a local firmware update operation in the given
target.

• target (String or :class:‘.XBeeDevice‘): target
of the firmware upload operation. * String: serial
port identifier. * :class:‘.AbstractXBeeDevice‘:
the XBee device to upload its firmware.

• xml_firmware_file (String): path of the XML
file that describes the firmware to upload.

• xbee_firmware_file (String, optional): location
of the XBee binary firmware file (*.gbl).

• bootloader_firmware_file (String, optional):
location of the bootloader binary firmware file.

• timeout (Integer, optional): the maximum
amount of seconds to wait for target read oper-
ations during the update process.

• progress_callback (Function, optional): func-
tion to execute to receive progress information.
Receives two arguments:

– The current update task as a String
– The current update task percentage as an In-

teger

The update_local_firmware method may fail for the following reasons:

• There is an error during the firmware update operation, throwing a FirmwareUpdateException.

Update local XBee device firmware using a serial port

import digi.xbee.firmware

[...]

SERIAL_PORT = "COM1"

XML_FIRMWARE_FILE = "my_path/my_firmware.xml"
XBEE_FIRMWARE_FILE = "my_path/my_firmware.gbl"
BOOTLOADER_FIRMWARE_FILE = "my_path/my_bootloader.gbl"

[...]

# Update the XBee device firmware using the serial port name.
firmware.update_local_firmware(SERIAL_PORT,

XML_FIRMWARE_FILE,
xbee_firmware_file=XBEE_FIRMWARE_FILE,
bootloader_firmware_file=BOOTLOADER_FIRMWARE_FILE,
progress_callback=progress_callback,)

[...]

94 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Update the firmware of a remote XBee

The firmware update process for remote XBee devices is performed over the air using special XBee frames. For this
operation, you need the following components:

• The remote XBee device object instance.

• The new firmware XML descriptor file.

• The new firmware binary file (*.ota)

• Optionally, the new firmware binary file with the bootloader embedded (*.otb)

Warning: Firmware update fails if the firmware requires a new bootloader and the *.otb file is not provided.

Warning: At the moment, remote firmware update is only supported in XBee 3, XBee SX 868/900 MHz, and
XBee S2C devices.

To perform the remote firmware update, call the update_firmware method of the RemoteXBeeDevice class
providing the required parameters:

Method Description
update_firmware(String, String, String, Integer,
Function)

Performs a remote firmware update operation of the de-
vice.

• xml_firmware_file (String): path of the XML
file that describes the firmware to upload.

• xbee_firmware_file (String, optional): location
of the XBee binary firmware file (*.ota).

• bootloader_firmware_file (String, optional):
location of the XBee binary firmware file with
bootloader embedded (*.otb).

• timeout (Integer, optional): the maximum
amount of seconds to wait for target read oper-
ations during the update process.

• progress_callback (Function, optional): func-
tion to execute to receive progress information.
Receives two arguments:

– The current update task as a String
– The current update task percentage as an In-

teger

The update_firmware method may fail for the following reasons:

• The remote device does not support the firmware update operation, throwing a
OperationNotSupportedException.

• There is an error during the firmware update operation, throwing a FirmwareUpdateException.

• Other errors caught as XBeeException:

– The local device is not open, throwing a generic XBeeException.

– The operating mode of the local device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

2.6. API reference 95



XBee Python Library Documentation, Release 1.4.0

Update remote XBee device firmware

[...]

XML_FIRMWARE_FILE = "my_path/my_firmware.xml"
OTA_FIRMWARE_FILE = "my_path/my_firmware.ota"
OTB_FIRMWARE_FILE = "my_path/my_firmware.otb"

REMOTE_DEVICE_NAME = "REMOTE"

[...]

# Instantiate an XBee device object.
xbee = XBeeDevice(...)

# Get the network.
xnet = xbee.get_network()

# Get the remote device.
remote = xnet.discover_device(REMOTE_DEVICE_NAME)

# Update the remote XBee device firmware.
remote.update_firmware(SERIAL_PORT,

XML_FIRMWARE_FILE,
xbee_firmware_file=OTA_FIRMWARE_FILE,
bootloader_firmware_file=OTB_FIRMWARE_FILE,
progress_callback=progress_callback,)

[...]

Example: Remote Firmware Update
The XBee Python Library includes a sample application that displays how to perform a remote firmware update. It
can be located in the following path:
examples/firmware/RemoteFirmwareUpdateSample/RemoteFirmwareUpdateSample.py

2.6.8.2 Update the XBee file system

XBee 3 devices feature file system capabilities, meaning that they are able to persistently store files and folders in
flash. The XBee Python Library provides classes and methods to manage these files.

• Create file system manager

• File system operations

Warning: At the moment file system capabilities are only supported in XBee 3 devices.

Create file system manager

A LocalXBeeFileSystemManager object is required to work with local devices file system. You can instantiate
this class by providing the local XBee device object. Once you have the object instance, you must call the connect
method to open the file system connection and leave it ready to work.

96 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Warning: File system operations take ownership of the serial port, meaning that you will stop receiving mes-
sages from the device until file system connection is closed. For this reason it is highly recommended to call the
disconnect method of the file system manager as soon as you finish working with it.

Method Description
connect() Connects the file system manager.
disconnect() Disconnects the file system manager and restores the device connection.

The connect method may fail for the following reasons:

• The device does not support the file system capabilities, throwing a
FileSystemNotSupportedException.

• There is an error during the connect operation, throwing a FileSystemException.

Create a local file system manager

from digi.xbee.filesystem import LocalXBeeFileSystemManager

[...]

# Instantiate an XBee device object.
xbee = XBeeDevice(...)

[...]

# Create the file system manager and connect it.
filesystem_manager = LocalXBeeFileSystemManager(xbee)
filesystem_manager.connect()

[...]

filesystem_manager.disconnect()

[...]

File system operations

The file system manager provides several methods to navigate through the device file system and operate with the
different files and folders:

2.6. API reference 97



XBee Python Library Documentation, Release 1.4.0

Method Description
get_current_directory() Returns the current device directory.
change_directory(String) Changes the current device working directory to the

given one.
• directory (String): the new directory to change

to.

make_directory(String) Creates the provided directory.
• directory (String): the new directory to create.

list_directory(String) Lists the contents of the given directory.
• directory (String, optional): the directory to list

its contents. Optional. If not provided, the current
directory contents are listed.

remove_element(String) Removes the given file system element path.
• element_path (String): path of the file system

element to remove.

move_element(String, String) Moves the given source element to the given destination
path.

• source_path (String): source path of the element
to move.

• dest_path (String): destination path of the ele-
ment to move.

put_file(String, String, Boolean, Function) Transfers the given file in the specified destination path
of the XBee device.

• source_path (String): the path of the file to
transfer.

• dest_path (String): the destination path to put
the file in.

• secure (Boolean, optional): True if the file
should be stored securely, False otherwise. De-
faults to False.

• progress_callback (Function, optional): func-
tion to execute to receive progress information.
Takes the following arguments:

– The progress percentage as integer.

put_dir(String, String, Function) Uploads the given source directory contents into the
given destination directory in the device.

• source_dir (String): the local directory to upload
its contents.

• dest_dir (String, optional): the remote directory
to upload the contents to. Defaults to current di-
rectory.

• progress_callback (Function, optional): func-
tion to execute to receive progress information.
Takes the following arguments:

– The file being uploaded as string.
– The progress percentage as integer.

get_file(String, String, Function) Downloads the given XBee device file in the specified
destination path.

• source_path (String): the path of the XBee de-
vice file to download.

• dest_path (String): the destination path to store
the file in.

• progress_callback (Function, optional): func-
tion to execute to receive progress information.
Takes the following arguments:

– The progress percentage as integer.

format_filesystem() Formats the device file system.
get_usage_information() Returns the file system usage information.
get_file_hash(String) Returns the SHA256 hash of the given file path.

• file_path (String): path of the file to get its hash.

98 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

The methods above may fail for the following reasons:

• There is an error executing the requested operation, throwing a FileSystemException.

Example: Format file system
The XBee Python Library includes a sample application that displays how to format the device file system. It can
be located in the following path:
examples/filesystem/FormatFilesystemSample/FormatFilesystemSample.py

Example: List directory
The XBee Python Library includes a sample application that displays how to list the contents of a device directory.
It can be located in the following path:
examples/filesystem/ListDirectorySample/ListDirectorySample.py

Example: Upload/download file
The XBee Python Library includes a sample application that displays how to upload/download a file from the
device. It can be located in the following path:
examples/filesystem/UploadDownloadFileSample/UploadDownloadFileSample.py

2.6.8.3 Apply an XBee profile

An XBee profile is a snapshot of a specific XBee configuration, including firmware, settings, and file system contents.
The XBee Python API includes a set of classes and methods to work with XBee profiles and apply them to local and
remote devices.

• Read an XBee profile

• Apply an XBee profile to a local device

• Apply an XBee profile to a remote device

To configure individual settings see Configure the XBee device.

Note: Use XCTU to create configuration profiles.

Warning:

At the moment, firmware update is only supported in:

• XBee 3: Local and remote profile updates

• XBee SX 868/900 MHz: Local and remote profile updates

• XBee S2C: Remote profile updates

Read an XBee profile

The library provides a class called XBeeProfile that is used to read and extract information of an existing XBee
profile file.

To create an XBeeProfile object, provide the location of the profile file in the class constructor.

2.6. API reference 99

http://www.digi.com/xctu


XBee Python Library Documentation, Release 1.4.0

Instantiate a profile

from digi.xbee.profile import XBeeProfile

[...]

PROFILE_PATH = "/home/user/my_profile.xpro"

[...]

# Create the XBee profile object.
xbee_profile = XBeeProfile(PROFILE_PATH)

[...]

The creation of the XBee profile object may fail for the following reasons:

• The provided profile file is not valid, throwing a ValueError.

• There is any error reading the profile file, throwing a ProfileReadException.

Once the XBee profile object is created, you can extract some profile information by accessing each of the exposed
properties:

Property Description
profile_file Returns the profile file.
version Returns the profile version.
flash_firmware_option Returns the profile flash firmware option.
description Returns the profile description.
reset_settings Returns whether the settings of the XBee device are reset before applying the profile

ones.
has_firmware_files Returns whether the profile has firmware binaries (local or remote)
has_local_firmware_files Returns whether the profile has local firmware binaries.
has_remote_firmware_files Returns whether the profile has remote firmware binaries.
has_filesystem Returns whether the profile has filesystem information (local or remote)
has_local_filesystem Returns whether the profile has local filesystem information.
has_remote_filesystem Returns whether the profile has remote filesystem information.
profile_settings Returns all the firmware settings that the profile configures.
firmware_version Returns the compatible firmware version of the profile.
hardware_version Returns the compatible hardware version of the profile.
compatibility_number Returns the compatibility number of the profile.
region_lock Returns the region lock of the profile.

To access to the files inside, use open method. Once done with it, use close method.

Open/close a profile

xbee_profile = XBeeProfile(PROFILE_PATH)

xbee_profile.open()

[...]

xbee_profile.close()

[...]

100 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

An opened profile also offers the following properties:

Property Description
profile_description_file Returns the path of the profile description file.
firmware_description_file Returns the path of the profile firmware description file.
file_system_path Returns the profile file system path.
remote_file_system_image Returns the path of the remote OTA file system image.
bootloader_file Returns the profile bootloader file path.

Read a profile

from digi.xbee.profile import XBeeProfile

[...]

PROFILE_PATH = "/home/user/my_profile.xpro"

[...]

# Create the XBee profile object.
xbee_profile = XBeeProfile(PROFILE_PATH)

# Print profile compatible hardware and software versions
print(" - Firmware version: %s" % xbee_profile.firmware_version)
print(" - Hardware version: %s" % xbee_profile.hardware_version)

[...]

Example: Read an XBee profile
The XBee Python Library includes a sample application that displays how to read an XBee profile. It can be located
in the following path:
examples/profile/ReadXBeeProfileSample/ReadXBeeProfileSample.py

Apply an XBee profile to a local device

Applying a profile to a local XBee device requires the following components:

• The local XBee device object instance.

• The profile file to apply (*.xpro).

Note: Use XCTU to create configuration profiles.

Warning: At the moment, local profile update is only supported in XBee 3 and XBee SX 868/900 MHz devices.

To apply the XBee profile to a local XBee, you have to call the apply_profile method of the XBeeDevice class
providing the required parameters:

2.6. API reference 101

http://www.digi.com/xctu


XBee Python Library Documentation, Release 1.4.0

Method Description
apply_profile(String, timeout, Function) Applies the given XBee profile to the XBee device.

• profile_path (String): path of the XBee profile
file to apply.

• timeout (Integer, optional): maximum time to
wait for read operations during the apply profile.

• progress_callback (Function, optional): func-
tion to execute to receive progress information.
Receives two arguments:

– The current apply profile task as a String
– The current apply profile task percentage as

an Integer

The apply_profile method may fail for the following reasons:

• The local device does not support the apply profile operation, throwing a
OperationNotSupportedException.

• There is an error while applying the XBee profile, throwing a UpdateProfileException.

• Other errors caught as XBeeException:

– The local device is not open, throwing a generic XBeeException.

– The operating mode of the local device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

Apply an XBee profile to a local device

[...]

PROFILE_PATH = "/home/user/my_profile.xpro"

[...]

# Instantiate an XBee device object.
xbee = XBeeDevice(...)

[...]

# Apply the XBee device profile.
device.apply_profile(PROFILE_PATH, progress_callback=progress_callback)

[...]

Example: Apply local XBee profile
The XBee Python Library includes a sample application that displays how to apply an XBee profile to a local
device. It can be located in the following path:
examples/profile/ApplyXBeeProfileSample/ApplyXBeeProfileSample.py

Apply an XBee profile to a remote device

Applying a profile to a remote XBee requires the following components:

• The remote XBee device object instance.

102 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• The profile file to apply (*.xpro).

Note: Use XCTU to create configuration profiles.

Warning: At the moment, remote profile update is only supported in XBee 3, XBee SX 868/900 MHz, and XBee
S2C devices.

To apply the XBee profile to a remote XBee device, you have to call the apply_profile method of the
RemoteXBeeDevice class providing the required parameters:

Method Description
apply_profile(String, timeout, Function) Applies the given XBee profile to the remote XBee de-

vice.
• profile_path (String): path of the XBee profile

file to apply.
• timeout (Integer, optional): maximum time to

wait for read operations during the apply profile.
• progress_callback (Function, optional): func-

tion to execute to receive progress information.
Receives two arguments:

– The current apply profile task as a String
– The current apply profile task percentage as

an Integer

The apply_profile method may fail for the following reasons:

• The remote device does not support the apply profile operation, throwing a
OperationNotSupportedException.

• There is an error while applying the XBee profile, throwing a UpdateProfileException.

• Other errors caught as XBeeException:

– The local device is not open, throwing a generic XBeeException.

– The operating mode of the local device is not API_MODE or ESCAPED_API_MODE, throwing an
InvalidOperatingModeException.

Apply an XBee profile to a remote device

[...]

PROFILE_PATH = "/home/user/my_profile.xpro"
REMOTE_DEVICE_NAME = "REMOTE"

[...]

# Instantiate an XBee device object.
xbee = XBeeDevice(...)

# Get the network.
xnet = xbee.get_network()

(continues on next page)

2.6. API reference 103

http://www.digi.com/xctu


XBee Python Library Documentation, Release 1.4.0

(continued from previous page)

# Get the remote device.
remote = xnet.discover_device(REMOTE_DEVICE_NAME)

[...]

# Apply the XBee device profile.
remote.apply_profile(PROFILE_PATH, progress_callback=progress_callback)

[...]

Example: Apply remote XBee profile
The XBee Python Library includes a sample application that displays how to apply an XBee profile to a remote
device. It can be located in the following path:
examples/profile/ApplyXBeeProfileRemoteSample/ApplyXBeeProfileRemoteSample.py

2.6.9 Log events

Logging is a fundamental part of applications, and every application includes this feature. A well-designed logging
system is a useful utility for system administrators, developers, and the support team and can save valuable time in
sorting through the cause of issues. As users execute programs on the front end, the system invisibly builds a vault of
event information (log entries).

The XBee Python Library uses the Python standard logging module for registering logging events. The logger works
at module level; that is, each module has a logger with a unique name.

The modules that have logging integrated are devices and reader. By default, all loggers are disabled so you will
not see any logging message in the console if you do not activate them.

In the XBee Python Library, you need three things to enable the logger:

1. The logger itself.

2. A handler. This will determine if the messages will be displayed in the console, written in a file, sent through a
socket, etc.

3. A formatter. This will determine the message format. For example, a format could be:

• Timestamp with the current date - logger name - level (debug, info, warning. . . ) - data.

To retrieve the logger, use the get_logger() method of the logging module, providing the name of the logger that
you want to get as parameter. In the XBee Python Library all loggers have the name of the module they belong to. For
example, the name of the logger of the devices module is digi.xbee.devices. You can get a module name
with the special attribute \_\_name\_\_.

Retrieve a module name and its logger

import logging

[...]

# Get the logger of the devices module.
dev_logger = logging.getLogger(digi.xbee.devices.__name__)

# Get the logger of the devices module providing the name.
dev_logger = logging.getLogger("digi.xbee.devices")

[...]

104 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

To retrieve a handler, you can use the default Python handler or create your own one. Depending on which type of
handler you use, the messages created by the logger will be printed in the console, in a file, etc. You can have more
than one handler per logger, this means that you can enable the default XBee Python Library handler and add your
own handlers.

Retrieve a handler and add it to a logger

import logging

[...]

# Get the logger of the devices module.
dev_logger = logging.getLogger(digi.xbee.devices.__name__)

# Get a handler and add it to the logger.
handler = logging.StreamHandler()
dev_logger.addHandler(handler)

[...]

The previous code snippet shows how to add a handler to a logger, but the logical way is to add a formatter to a handler,
and then add the handler to the logger.

When you create a formatter, you must specify which information will be printed and in which format. This guide
shows you how to create a formatter with a simple format. If you want to create more complex formatters or handlers,
see the Python documentation.

Create a formatter and add it to a handler

import logging

[...]

# Get a handler.
handler = (...)

# Instantiate a formatter so the log entries are represented as defined here.
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - '

'%(message)s')

# Configure the formatter in the handler.
handler.setFormatter(formatter)

[...]

Enable a logger for the devices module

import logging

[...]

# Get the logger of the devices module providing the name.
dev_logger = logging.getLogger("digi.xbee.devices")

# Get a handler and configure a formatter for it.
handler = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - '

'%(message)s')

(continues on next page)

2.6. API reference 105



XBee Python Library Documentation, Release 1.4.0

(continued from previous page)

handler.setFormatter(formatter)

# Add the handler to the logger.
dev_logger.addHandler(handler)

[...]

2.6.9.1 Logging level

The XBee Python Library also provides a method in the utils module, enable_logger(), to enable the logger
with the default settings. These settings are:

• Handler: StreamHandler

• Format: timestamp - logger name - level - message

Method Description
enable_logger(name, level=logging.DEBUG) Enables the logger.

• name: the name of the module whose logger you
want to activate.

• level: default DEBUG. The level you want to see.

Enable a logger

import logging

[...]

# Enable the logger in the digi.xbee.devices module with INFO level.
dev_logger = enable_logger(digi.xbee.devices.__name__, logging.INFO)

# This is a valid method to do the same.
dev_logger = enable_logger("digi.xbee.devices", logging.INFO)

[...]

# Enable the logger in the digi.xbee.devices module with the default level
# (DEBUG).
dev_logger = enable_logger("digi.xbee.devices")

# This is a valid method to do the same.
dev_logger = enable_logger("digi.xbee.devices", logging.DEBUG)

[...]

Note: For further information about the Python logging module, see the Python logging module official documenta-
tion or the Python logging cookbook.

2.6.10 XBee Python samples

The XBee Python Library includes several samples to demonstrate how to do the following:

106 Chapter 2. Contents

https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/logging.html
https://docs.python.org/3/howto/logging-cookbook.html


XBee Python Library Documentation, Release 1.4.0

• Communicate with your modules

• Configure your modules

• Read the IO lines

• Update device’s firmware

• Work with device’s file system

• Apply XBee profiles

• Perform other common operations

All of the sample applications are contained in the examples folder, organized by category. Every sample includes the
source code and a readme.txt file to clarify the purpose and the required setup to launch the application.

Examples are split by categories:

• Configuration samples

• Network samples

• Communication samples

• IO samples

• Firmware samples

• File system samples

• Profile samples

2.6.10.1 Configuration samples

Manage common parameters

This sample application shows how to get and set common parameters of the XBee device. Common parameters are
split in cached and non-cached parameters. For that reason, the application refreshes the cached parameters before
reading and displaying them. The application then configures, reads, and displays the value of non-cached parameters.

The application uses the specific setters and getters provided by the XBee device object to configure and read the
different parameters.

You can locate the example in the following path: examples/configuration/ManageCommonParametersSample

Note: For more information about how to manage common parameters, see Read and set common parameters.

Set and get parameters

This sample application shows how to set and get parameters of a local or remote XBee device. Use this method when
you need to set or get the value of a parameter that does not have its own getter and setter within the XBee device
object.

The application sets the value of four parameters with different value types:

• String

• Byte

• Array

2.6. API reference 107



XBee Python Library Documentation, Release 1.4.0

• Integer

The application then reads the parameters from the device to verify that the read values are the same as the values that
were set.

You can locate the example in the following path: examples/configuration/SetAndGetParametersSample

Note: For more information about how to get and set other parameters, see Read, set and execute other parameters.

Reset module

This sample application shows how to perform a software reset on the local XBee module.

You can locate the example in the following path: examples/configuration/ResetModuleSample

Note: For more information about how to reset a module, see Reset the device.

Recover XBee serial connection

This sample application shows how to recover the serial settings of a local XBee.

You can locate the example at the following path: examples/configuration/RecoverSerialConnection

Note: For more information about this, see Open the XBee device connection.

Connect to access point (Wi-Fi)

This sample application shows how to configure a Wi-Fi module to connect to a specific access point and read its
addressing settings.

You can locate the example at the following path: examples/configuration/ConnectToAccessPoint

Note: For more information about connecting to an access point, see Configure Wi-Fi settings.

2.6.10.2 Network samples

Discover devices

This sample application demonstrates how to obtain the XBee network object from a local XBee device and discover
the remote XBee devices that compose the network. The example adds a discovery listener, so the callbacks provided
by the listener object receive the events.

The remote XBee devices are printed out as soon as they are found during discovery.

You can locate the example in the following path: examples/network/DiscoverDevicesSample

108 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Note: For more information about how to perform a network discovery, see Discover the network.

Network modifications sample

This sample application demonstrates how to listen to network modification events. The example adds a modifications
network callback, so modifications events are received and printed out.

A network is modified when:

• a new node is added by discovering, manually, or because data is received from it

• an existing node is removed from the network

• an existing node is updated with new information

• it is fully cleared

You can locate the example in the following path: examples/network/NetworkModificationsSample

Note: For more information about how to listen to network modifications, see Listen to network modification events.

2.6.10.3 Communication samples

Send data

This sample application shows how to send data from the XBee device to another remote device on the same network
using the XBee Python Library. In this example, the application sends data using a reliable transmission method. The
application blocks during the transmission request, but you are notified if there is any error during the process.

The application sends data to a remote XBee device on the network with a specific node identifier (name).

You can locate the example in the following path: examples/communication/SendDataSample

Note: For more information about how to send data, see Send data.

Send data asynchronously

This sample application shows how to send data asynchronously from the XBee device to another remote device on the
same network using the XBee Python Library. Transmitting data asynchronously means the execution is not blocked
during the transmit request, but you cannot determine if the data was successfully sent.

The application sends data asynchronously to a remote XBee device on the network with a specific node identifier
(name).

You can locate the example in the following path: examples/communication/SendDataAsyncSample

Note: For more information about how to send data, see Send data.

2.6. API reference 109



XBee Python Library Documentation, Release 1.4.0

Send broadcast data

This sample application shows how to send data from the local XBee device to all remote devices on the same network
(broadcast) using the XBee Python Library. The application blocks during the transmission request, but you are
notified if there is any error during the process.

You can locate the example in the following path: examples/communication/SendBroadcastDataSample

Note: For more information about how to send broadcast data, see Send data to all devices of the network.

Send explicit data

This sample application shows how to send data in the application layer (explicit) format to a remote Zigbee device
using the XBee Python Library. In this example, the XBee module sends explicit data using a reliable transmission
method. The application blocks during the transmission request, but you are notified if there is any error during the
process.

You can locate the example in the following path: examples/communication/explicit/SendExplicitDataSample

Note: For more information about how to send explicit data, see Send explicit data.

Send explicit data asynchronously

This sample application shows how to send data in the application layer (explicit) format asynchronously to a remote
Zigbee device using the XBee Python Library. Transmitting data asynchronously means the execution is not blocked
during the transmit request, but you cannot determine if the data was successfully sent.

You can locate the example in the following path: examples/communication/explicit/SendExplicitDataAsyncSample

Note: For more information about how to send explicit data, see Send explicit data.

Send broadcast explicit data

This sample application shows how to send data in the application layer (explicit) format to all remote devices on the
network (broadcast) using the XBee Python Library. The application blocks during the transmission request, but you
are notified if there is any error during the process.

You can locate the example in the following path: examples/communication/explicit/SendBroadcastExplicitDataSample

Note: For more information about how to send broadcast explicit data, see Send explicit data to all devices in the
network.

Send IP data (IP devices)

This sample application shows how to send IP data to another device specified by its IP address and port number.

110 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

You can find the example at the following path: examples/communication/ip/SendIPDataSample

Note: For more information about how to send IP data, see Send IP data.

Send SMS (cellular devices)

This sample application shows how to send an SMS to a phone or cellular device.

You can find the example at the following path: examples/communication/cellular/SendSMSSample

Note: For more information about how to send SMS messages, see Send SMS messages.

Send UDP data (IP devices)

This sample application shows how to send UDP data to another device specified by its IP address and port number.

You can find the example at the following path: examples/communication/ip/SendUDPDataSample

Note: For more information about how to send IP data, see Send IP data.

Send Bluetooth Data

This sample application shows how to send data to the XBee Bluetooth Low Energy interface.

You can find the example at the following path: examples/communication/bluetooth/SendBluetoothDataSample

Note: For more information about sending Bluetooth data, see Send Bluetooth data.

Send MicroPython Data

This sample application shows how to send data to the XBee MicroPython interface.

You can find the example at the following path: examples/communication/micropython/SendMicroPythonDataSample

Note: For more information about sending MicroPython data, see Send MicroPython data.

Send User Data Relay

This sample application shows how to send data to other XBee interface.

You can find the example at the following path: examples/communication/relay/SendUserDataRelaySample

2.6. API reference 111



XBee Python Library Documentation, Release 1.4.0

Note: For more information about sending User Data Relay messages, see Send Bluetooth data or Send MicroPython
data.

Receive data

This sample application shows how data packets are received from another XBee device on the same network.

The application prints the received data to the standard output in ASCII and hexadecimal formats after the sender
address.

You can locate the example in the following path: examples/communication/ReceiveDataSample

Note: For more information about how to receive data using a callback, see Data reception callback.

Receive data polling

This sample application shows how data packets are received from another XBee device on the same network using a
polling mechanism.

The application prints the data that was received to the standard output in ASCII and hexadecimal formats after the
sender address.

You can locate the example in the following path: examples/communication/ReceiveDataPollingSample

Note: For more information about how to receive data using a polling mechanism, see Polling for data.

Receive explicit data

This sample application shows how a Zigbee device receives data in the application layer (explicit) format using a
callback executed every time new data is received. Before receiving data in explicit format, the API output mode of
the Zigbee device is configured in explicit mode.

You can locate the example in the following path: examples/communication/explicit/ReceiveExplicitDataSample

Note: For more information about how to receive explicit data using a callback, see Explicit data reception callback.

Receive explicit data polling

This sample application shows how a Zigbee device receives data in the application layer (explicit) format using a
polling mechanism. Before receiving data in explicit format, the API output mode of the Zigbee device is configured
in explicit mode.

You can locate the example in the following path: examples/communication/explicit/ReceiveExplicitDataPollingSample

112 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Note: For more information about how to receive explicit data using a polling mechanism, see Polling for explicit
data.

Receive IP data (IP devices)

This sample application shows how an IP device receives IP data using a callback executed every time it receives new
IP data.

You can find the example at the following path: examples/communication/ip/ReceiveIPDataSample

Note: For more information about how to receive IP data using a polling mechanism, see Receive IP data.

Receive SMS (cellular devices)

This sample application shows how to receive SMS messages configuring a callback executed when new SMS is
received.

You can find the example at the following path: examples/communication/cellular/ReceiveSMSSample

Note: For more information about how to receive SMS messages, see Receive SMS messages.

Receive Bluetooth data

This sample application shows how to receive data from the XBee Bluetooth Low Energy interface.

You can find the example at the following path: examples/communication/bluetooth/ReceiveBluetoothDataSample

Note: For more information about receiving Bluetooth data, see Receive Bluetooth data.

Receive Bluetooth file

This sample application shows how to receive a file from the XBee Bluetooth Low Energy interface.

You can find the example at the following path: examples/communication/bluetooth/ReceiveBluetoothFileSample

Note: For more information about receiving Bluetooth data, see Receive Bluetooth data.

Receive MicroPython data

This sample application shows how to receive data from the XBee MicroPython interface.

You can find the example at the following path: examples/communication/micropython/ReceiveMicroPythonDataSample

2.6. API reference 113



XBee Python Library Documentation, Release 1.4.0

Note: For more information about receiving MicroPython data, see Receive MicroPython data.

Receive User Data Relay

This sample application shows how to receive data from other XBee interface.

You can find the example at the following path: examples/communication/relay/ReceiveUserDataRelaySample

Note: For more information about receiving User Data Relay messages, see Receive Bluetooth data or Receive
MicroPython data.

Receive modem status

This sample application shows how modem status packets (events related to the device and the network) are handled
using the API.

The application prints the modem status events to the standard output when received.

You can locate the example in the following path: examples/communication/ReceiveModemStatusSample

Note: For more information about how to receive modem status events, see Receive modem status events.

Connect to echo server (IP devices)

This sample application shows how IP devices can connect to an echo server, send data to it and reads the echoed data.

You can find the example at the following path: examples/communication/ip/ConnectToEchoServerSample

Note: For more information about how to send and receive IP data, see Send IP data and Receive IP data.

Create a TCP client socket (cellular devices)

This sample application shows how to create a TCP client socket to send HTTP requests.

You can find the example at the following path: examples/communication/socket/SocketTCPClientSample

Note: For more information about how to use the XBee socket API, see Communicate using XBee sockets.

Create a TCP server socket (cellular devices)

This sample application shows how to create a TCP server socket to receive data from incoming sockets.

You can find the example at the following path: examples/communication/socket/SocketTCPServerSample

114 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Note: For more information about how to use the XBee socket API, see Communicate using XBee sockets.

Create a UDP server/client socket (cellular devices)

This sample application shows how to create a UDP socket to deliver messages to a server and listen for data coming
from multiple peers.

You can find the example at the following path: examples/communication/socket/SocketUDPServerClientSample

Note: For more information about how to use the XBee socket API, see Communicate using XBee sockets.

2.6.10.4 IO samples

Local DIO

This sample application shows how to set and read XBee digital lines of the device attached to the serial/USB port of
your PC.

The application configures two IO lines of the XBee device: one as a digital input (button) and the other as a digital
output (LED). The application reads the status of the input line periodically and updates the output to follow the input.

The LED lights up while you press the button.

You can locate the example in the following path: examples/io/LocalDIOSample

Note: For more information about how to set and read digital lines, see Digital Input/Output.

Local ADC

This sample application shows how to read XBee analog inputs of the device attached to the serial/USB port of your
PC.

The application configures an IO line of the XBee device as ADC. It periodically reads its value and prints it in the
output console.

You can locate the example in the following path: examples/io/LocalADCSample

Note: For more information about how to read analog lines, see ADC.

Remote DIO

This sample application shows how to set and read XBee digital lines of remote devices.

The application configures two IO lines of the XBee devices: one in the remote device as a digital input (button) and
the other in the local device as a digital output (LED). The application reads the status of the input line periodically
and updates the output to follow the input.

2.6. API reference 115



XBee Python Library Documentation, Release 1.4.0

The LED lights up while you press the button.

You can locate the example in the following path: examples/io/RemoteDIOSample

Note: For more information about how to set and read digital lines, see Digital Input/Output.

Remote ADC

This sample application shows how to read XBee analog inputs of remote XBee devices.

The application configures an IO line of the remote XBee device as ADC. It periodically reads its value and prints it
in the output console.

You can locate the example in the following path: examples/io/RemoteADCSample

Note: For more information about how to read analog lines, see ADC.

IO sampling

This sample application shows how to configure a remote device to send automatic IO samples and how to read them
from the local module.

The application configures two IO lines of the remote XBee device: one as digital input (button) and the other as
ADC, and enables periodic sampling and change detection. The device sends a sample every five seconds containing
the values of the two monitored lines. The device sends another sample every time the button is pressed or released,
which only contains the value of this digital line.

The application registers a listener in the local device to receive and handle all IO samples sent by the remote XBee
module.

You can locate the example in the following path: examples/io/IOSamplingSample

Note: For more information about how to read IO samples, see Read IO samples.

2.6.10.5 Firmware samples

Update local firmware

This sample Python application shows how to update the firmware of a local XBee device.

The application provides the required hardware files to the update method as well as a callback function to be notified
of progress.

You can locate the example in the following path: examples/firmware/LocalFirmwareUpdateSample

Update remote firmware

This sample Python application shows how to update the firmware of a remote XBee device.

116 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

The application provides the required hardware files to the update method as well as a callback function to be notified
of progress.

You can locate the example in the following path: examples/firmware/RemotelFirmwareUpdateSample

2.6.10.6 File system samples

Format file system

This sample Python application shows how to format the filesystem of a local XBee device and retrieve usage infor-
mation.

The application uses the LocalXBeeFileSystemManager to access the device filesystem and execute the required ac-
tions.

You can locate the example in the following path: examples/filesystem/FormatFilesystemSample

List directory contents

This sample Python application shows how to list the contents of an XBee device filesystem directory.

The application uses the LocalXBeeFileSystemManager to access the device filesystem and executes the required
actions.

You can locate the example in the following path: examples/filesystem/ListDirectorySample

Upload/download file

This sample Python application shows how to upload and download a file from a local XBee device filesystem.

The application uses the LocalXBeeFileSystemManager to access the device filesystem and provides the local file and
the necessary paths to the upload/download methods as well as callback functions to be notified of progress.

You can locate the example in the following path: examples/filesystem/UploadDownloadFileSample

2.6.10.7 Profile samples

Apply local profile

This sample Python application shows how to apply an existing XBee profile to a XBee device.

The application provides the profile file to the update method as well as a callback function to be notified of progress.

You can locate the example in the following path: examples/profile/ApplyXBeeProfileSample

Apply remote profile

This sample Python application shows how to apply an existing XBee profile to a remote XBee device.

The application provides the profile file to the update method as well as a callback function to be notified of progress.

You can locate the example in the following path: examples/profile/ApplyXBeeProfileRemoteSample

2.6. API reference 117



XBee Python Library Documentation, Release 1.4.0

Read profile

This sample Python application shows how to read an existing XBee profile and extract its properties.

The application creates an XBee profile object from an existing XBee profile file and prints all the accessible settings
and properties.

You can locate the example in the following path: examples/profile/ReadXBeeProfileSample

2.6.11 Frequently Asked Questions (FAQs)

The FAQ section contains answers to general questions related to the XBee Python Library.

2.6.11.1 What is XCTU and how do I download it?

XCTU is a free multi-platform application designed to enable developers to interact with Digi RF modules through a
simple-to-use graphical interface. You can download it at www.digi.com/xctu.

2.6.11.2 How do I find the serial port and baud rate of my module?

Open the XCTU application, and click the Discover radio modules connected to your machine button.

Select all ports to be scanned, click Next and then Finish. Once the discovery process has finished, a new window
notifies you how many devices have been found and their details. The serial port and the baud rate are shown in the
Port label.

118 Chapter 2. Contents

http://www.digi.com/xctu


XBee Python Library Documentation, Release 1.4.0

Note: Note In UNIX systems, the complete name of the serial port contains the /dev/ prefix.

2.6.11.3 Can I use the XBee Python Library with modules in AT operating mode?

No, the XBee Python Library only supports API and API Escaped operating modes.

2.6.11.4 I get the Python error ImportError: No module named 'serial'

This error means that Python cannot find the serial module, which is used by the library for the serial communica-
tion with the XBee devices.

2.6. API reference 119



XBee Python Library Documentation, Release 1.4.0

You can install PySerial running this command in your terminal application:

$ pip install pyserial

For further information about the installation of PySerial, refer to the PySerial installation guide.

2.6.11.5 I get the Python error ImportError: No module named 'srp'

This error means that Python cannot find the srp module, which is used by the library to authenticate with XBee
devices over Bluetooth Low Energy.

You can install SRP running this command in your terminal application:

$ pip install srp

2.6.12 Changelog

2.6.12.1 v1.4.0 - 03/18/2021

• Deep node discovery for Zigbee, DigiMesh, and 802.15.4.

• Get route from local XBee to a remote XBee:

– New method to register a callback to listen for new received routes
(add_route_received_callback())

– New blocking method to ask for the route to the remote node (get_route_to_node())

• Allow to recover a local node from a profile not only from firmware.

• Support to be notified when new frames are received from a specific node
(add_packet_received_from_callback()).

• Update network information from sent/received AT Command frames.

• New optional argument for parameter value in execute_command().

• New optional argument to apply pending settings in get_parameter(), set_parameter(), and
execute_command().

• XBee 3:

– Support to update remote file system OTA images.

• XBee SX 900/868:

– Firmware update for local and remote XBee devices.

– Profile update for local and remote XBee devices.

• XBee S2C:

– OTA firmware/profile update support for remote nodes.

• Zigbee:

– Methods to get nodes routing and neighbor tables: get_routes() and get_neighbors().

– Methods to get/set many-to-one broadcasting time: get_many_to_one_broadcasting_time()
and set_many_to_one_broadcasting_time().

– Support for source route creation: create_source_route().

120 Chapter 2. Contents

http://pythonhosted.org/pyserial/pyserial.html#installation


XBee Python Library Documentation, Release 1.4.0

– New frames: * ‘Route Record Indicator’ (0xA1) * ‘Create Source Route Packet’ (0x21)

• DigiMesh:

– Method to get node neighbors: get_neighbors().

– Method to build aggregate route: build_aggregate_routes().

– New frames: * ‘Route Information Packet’ (0x8D)

• Documentation update

• Bug fixing:

– Captured possible exception while determining the XBee role (#103)

– Memory leak: empty list of last discovered nodes using ND (#172)

– Fix Python 3.9 syntax error (#204)

– Use least significant nibble of status field in local/remote AT Command Responses (XCTUNG-376)

– Do not lose already registered socket callbacks when closing a local XBee.

– Reload node information after firmware/profile update (XBPL-348)

– OTA firmware update:

* Fix sequence number in ZCL responses during fw update (XCTUNG-1975)

* Immediate update after transferring the OTA file (XBPL-350)

* Use requested file offset and size instead of fixed chunks (XBPL-344)

* Mechanism to calculate the proper block size based on the maximum size received by the client and
the maximum payload size (XBPL-346)

* For asyncronous sleeping nodes (Zigbee, DigiMesh, 802.15.4) and synchronous sleeping networks
(DigiMesh), configure a minimum sleep time before update and restore settings at the end. For
DigiMesh synchronous sleeping network, the local XBee must be a non-sleeping node but synchro-
nized with the network (SM=7)

– Profile application:

* Do not uncompress profile when reading its information. This change avoids extra processing time
and required space when retrieving profile info.

* Remove profile extracted files. A profile is opened to access to its contents, and must be closed when
done with it.

* Fixed the application of XBee profiles with ‘AP’ setting changes (XBPL-340)

* Fixed bootloader update from profile due to bootloader image path mismatch (XBPL-338)

* Fix bootloader update operation by waiting some time until the new bootloader is running (XBPL-
339)

* Fixed application of profile with filesystem from Windows(XBPL-341)

* Read firmware version as an hexadecimal value (#177)

– Several minor bug fixes.

2.6. API reference 121



XBee Python Library Documentation, Release 1.4.0

2.6.12.2 v1.3.0 - 11/05/2019

• Zigbee: Support to register joining devices to a trust center.

• Cellular: XBee TCP/UDP socket support.

• XBee 3:

– Firmware update for local and remote XBee devices.

– Profile update for local and remote XBee devices.

– File system management for local XBee devices.

• New recover serial connection functionality to force the XBee serial connection settings.

• Support for notification of network cache modifications events (new node added, removed of existing node,
network clear, . . . )

• Deprecate get_api_output_mode and set_api_output_mode methods to use new
get_api_output_mode_value and set_api_output_mode_value with APIOutputModeBit
enumeration.

• Role as one of the cached parameters.

• Report an error on ‘finished discovery’ callback if node discovery fails.

• Several minor bug fixes.

2.6.12.3 v1.2.0 - 04/05/2019

• Add new methods to send and receive data from other XBee interfaces through User Data Relay frames.

• Add new methods to manage the Bluetooth interface.

• Add support to set AT parameters without applying them with the AT Command Queue packet.

• Improve the callbacks mechanism:

– Callbacks are now executed in parallel.

– Internal callbacks are now defined when needed to avoid issues when more than one callback of the same
type is defined.

• Add missing ‘Transmit Status’, ‘Modem Status’ and ‘Cellular Association Indication Status’ values to cover all
XBee Cellular/XBee3 Cellular features.

• Bug Fixing:

– Fix some bugs related to package spec data.

– Log an error when processing a wrong frame instead of stopping the reader.

– Fix an issue parsing Explicit RX Indicator packets.

– Fix a couple of leaks with StreamHandlers.

2.6.12.4 v1.1.1 - 04/25/2018

• Add support for DigiMesh and 802.15.4 protocols on XBee3 modules.

• Return an unknown XBee packet when the received packet is not supported by the library instead of raising an
exception.

122 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• Change logging handler to log messages in the console.

• Bug Fixing:

– Fix a problem when closing the device connection in the reader.

– Fix how is determined whether the module has entered in AT command mode or not.

– Fix the string encoding and decoding in some API packets.

– Fix the message displayed when the XBee device protocol is not correct one.

2.6.12.5 v1.1.0 - 01/19/2018

• Add support for new hardware variants:

– XB8X

• Add missing ‘Modem Status’ values for Remote Manager connect and disconnect events.

• Bug Fixing:

– Fix timeouts on Unix platforms.

– Fix the return source endpoint method from the ‘ExplicitRXIndicatorPacket’ class.

– Perform general bug fixing when working in API escaped mode.

2.6.12.6 v1.0.0 - 10/02/2017

Initial release of XBee Python library. The main features of the library include:

• Support for ZigBee, 802.15.4, DigiMesh, Point-to-Multipoint, Wi-Fi, Cellular and NB-IoT devices.

• Support for API and API escaped operating modes.

• Management of local (attached to the PC) and remote XBee device objects.

• Discovery of remote XBee devices associated with the same network as the local device.

• Configuration of local and remote XBee devices:

– Configure common parameters with specific setters and getters.

– Configure any other parameter with generic methods.

– Execute AT commands.

– Apply configuration changes.

– Write configuration changes.

– Reset the device.

• Transmission of data to all the XBee devices on the network or to a specific device.

• Reception of data from remote XBee devices:

– Data polling.

– Data reception callback.

• Transmission and reception of IP and SMS messages.

• Reception of network status changes related to the local XBee device.

• IO lines management:

2.6. API reference 123



XBee Python Library Documentation, Release 1.4.0

– Configure IO lines.

– Set IO line value.

– Read IO line value.

– Receive IO data samples from any remote XBee device on the network.

• Support for explicit frames and application layer fields (Source endpoint, Destination endpoint, Profile ID, and
Cluster ID).

• Multiple examples that show how to use the available APIs.

2.6.13 API reference

Following is API reference material on major parts of XBee Python library.

2.6.13.1 digi package

Subpackages

digi.xbee package

Subpackages

digi.xbee.models package

Submodules

digi.xbee.models.accesspoint module

class digi.xbee.models.accesspoint.AccessPoint(ssid, encryption_type, channel=0, sig-
nal_quality=0)

Bases: object

This class represents an Access Point for the Wi-Fi protocol. It contains SSID, the encryption type and the link
quality between the Wi-Fi module and the access point.

This class is used within the library to list the access points and connect to a specific one in the Wi-Fi protocol.

See also:

WiFiEncryptionType

Class constructor. Instantiates a new AccessPoint object with the provided parameters.

Parameters

• ssid (String) – the SSID of the access point.

• encryption_type (WiFiEncryptionType) – the encryption type configured in the
access point.

• channel (Integer, optional) – operating channel of the access point.

124 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• signal_quality (Integer, optional) – signal quality with the access point in
%.

Raises

• ValueError – if length of ssid is 0.

• ValueError – if channel is less than 0.

• ValueError – if signal_quality is less than 0 or greater than 100.

See also:

WiFiEncryptionType

ssid
Returns the SSID of the access point.

Returns the SSID of the access point.

Return type String

encryption_type
Returns the encryption type of the access point.

Returns the encryption type of the access point.

Return type WiFiEncryptionType

See also:

WiFiEncryptionType

channel
Returns the channel of the access point.

Returns the channel of the access point.

Return type Integer

See also:

AccessPoint.set_channel()

signal_quality
Returns the signal quality with the access point in %.

Returns the signal quality with the access point in %.

Return type Integer

See also:

AccessPoint.__set_signal_quality()

2.6. API reference 125



XBee Python Library Documentation, Release 1.4.0

class digi.xbee.models.accesspoint.WiFiEncryptionType(code, description)
Bases: enum.Enum

Enumerates the different Wi-Fi encryption types.

Values:
WiFiEncryptionType.NONE = (0, ‘No security’)
WiFiEncryptionType.WPA = (1, ‘WPA (TKIP) security’)
WiFiEncryptionType.WPA2 = (2, ‘WPA2 (AES) security’)
WiFiEncryptionType.WEP = (3, ‘WEP security’)

code
Returns the code of the WiFiEncryptionType element.

Returns the code of the WiFiEncryptionType element.

Return type Integer

description
Returns the description of the WiFiEncryptionType element.

Returns the description of the WiFiEncryptionType element.

Return type String

digi.xbee.models.atcomm module

class digi.xbee.models.atcomm.ATStringCommand(command, description)
Bases: enum.Enum

This class represents basic AT commands.

Inherited properties:
name (String): name (ID) of this ATStringCommand.
value (String): value of this ATStringCommand.

Values:
ATStringCommand.AC = (‘AC’, ‘Apply changes’)
ATStringCommand.AG = (‘AG’, ‘Aggregator support’)
ATStringCommand.AI = (‘AI’, ‘Association indication’)
ATStringCommand.AO = (‘AO’, ‘API options’)
ATStringCommand.AP = (‘AP’, ‘API enable’)
ATStringCommand.AR = (‘AR’, ‘Many-to-one route broadcast time’)
ATStringCommand.AS = (‘AS’, ‘Active scan’)
ATStringCommand.BD = (‘BD’, ‘UART baudrate’)
ATStringCommand.BI = (‘BI’, ‘Bluetooth identifier’)
ATStringCommand.BL = (‘BL’, ‘Bluetooth address’)
ATStringCommand.BP = (‘BP’, ‘Bluetooth advertisement power’)
ATStringCommand.BT = (‘BT’, ‘Bluetooth enable’)

126 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

ATStringCommand.BR = (‘BR’, ‘RF data rate’)
ATStringCommand.C0 = (‘C0’, ‘Source port’)
ATStringCommand.C8 = (‘C8’, ‘Compatibility mode’)
ATStringCommand.CC = (‘CC’, ‘Command sequence character’)
ATStringCommand.CE = (‘CE’, ‘Device role’)
ATStringCommand.CH = (‘CH’, ‘Channel’)
ATStringCommand.CK = (‘CK’, ‘Configuration checksum’)
ATStringCommand.CM = (‘CM’, ‘Channel mask’)
ATStringCommand.CN = (‘CN’, ‘Exit command mode’)
ATStringCommand.DA = (‘DA’, ‘Force Disassociation’)
ATStringCommand.DB = (‘DB’, ‘RSSI’)
ATStringCommand.DD = (‘DD’, ‘Device type’)
ATStringCommand.DH = (‘DH’, ‘Destination address high’)
ATStringCommand.DJ = (‘DJ’, ‘Disable joining’)
ATStringCommand.DL = (‘DL’, ‘Destination address low’)
ATStringCommand.DM = (‘DM’, ‘Disable device functionality’)
ATStringCommand.DO = (‘DO’, ‘Device options’)
ATStringCommand.D0 = (‘D0’, ‘DIO0 configuration’)
ATStringCommand.D1 = (‘D1’, ‘DIO1 configuration’)
ATStringCommand.D2 = (‘D2’, ‘DIO2 configuration’)
ATStringCommand.D3 = (‘D3’, ‘DIO3 configuration’)
ATStringCommand.D4 = (‘D4’, ‘DIO4 configuration’)
ATStringCommand.D5 = (‘D5’, ‘DIO5 configuration’)
ATStringCommand.D6 = (‘D6’, ‘RTS configuration’)
ATStringCommand.D7 = (‘D7’, ‘CTS configuration’)
ATStringCommand.D8 = (‘D8’, ‘DIO8 configuration’)
ATStringCommand.D9 = (‘D9’, ‘DIO9 configuration’)
ATStringCommand.EE = (‘EE’, ‘Encryption enable’)
ATStringCommand.EO = (‘EO’, ‘Encryption options’)
ATStringCommand.FN = (‘FN’, ‘Find neighbors’)
ATStringCommand.FR = (‘FR’, ‘Software reset’)
ATStringCommand.FS = (‘FS’, ‘File system’)
ATStringCommand.GW = (‘GW’, ‘Gateway address’)
ATStringCommand.GT = (‘GT’, ‘Guard times’)
ATStringCommand.HV = (‘HV’, ‘Hardware version’)
ATStringCommand.HP = (‘HP’, ‘Preamble ID’)
ATStringCommand.IC = (‘IC’, ‘Digital change detection’)
ATStringCommand.ID = (‘ID’, ‘Network PAN ID/Network ID/SSID’)
ATStringCommand.IR = (‘IR’, ‘I/O sample rate’)
ATStringCommand.IS = (‘IS’, ‘Force sample’)
ATStringCommand.JN = (‘JN’, ‘Join notification’)
ATStringCommand.JV = (‘JV’, ‘Join verification’)
ATStringCommand.KY = (‘KY’, ‘Link/Encryption key’)
ATStringCommand.MA = (‘MA’, ‘IP addressing mode’)
ATStringCommand.MK = (‘MK’, ‘IP address mask’)
ATStringCommand.MP = (‘MP’, ‘16-bit parent address’)
ATStringCommand.MY = (‘MY’, ‘16-bit address/IP address’)

2.6. API reference 127



XBee Python Library Documentation, Release 1.4.0

ATStringCommand.M0 = (‘M0’, ‘PWM0 configuration’)
ATStringCommand.M1 = (‘M1’, ‘PWM1 configuration’)
ATStringCommand.NB = (‘NB’, ‘Parity’)
ATStringCommand.NI = (‘NI’, ‘Node identifier’)
ATStringCommand.ND = (‘ND’, ‘Node discover’)
ATStringCommand.NJ = (‘NJ’, ‘Join time’)
ATStringCommand.NK = (‘NK’, ‘Trust Center network key’)
ATStringCommand.NO = (‘NO’, ‘Node discover options’)
ATStringCommand.NR = (‘NR’, ‘Network reset’)
ATStringCommand.NS = (‘NS’, ‘DNS address’)
ATStringCommand.NP = (‘NP’, ‘Maximum number of transmission bytes’)
ATStringCommand.NT = (‘NT’, ‘Node discover back-off’)
ATStringCommand.N_QUESTION = (‘N?’, ‘Network discovery timeout’)
ATStringCommand.OP = (‘OP’, ‘Operating extended PAN ID’)
ATStringCommand.OS = (‘OS’, ‘Operating sleep time’)
ATStringCommand.OW = (‘OW’, ‘Operating wake time’)
ATStringCommand.PK = (‘PK’, ‘Passphrase’)
ATStringCommand.PL = (‘PL’, ‘TX power level’)
ATStringCommand.PP = (‘PP’, ‘Output power’)
ATStringCommand.PS = (‘PS’, ‘MicroPython auto start’)
ATStringCommand.P0 = (‘P0’, ‘DIO10 configuration’)
ATStringCommand.P1 = (‘P1’, ‘DIO11 configuration’)
ATStringCommand.P2 = (‘P2’, ‘DIO12 configuration’)
ATStringCommand.P3 = (‘P3’, ‘UART DOUT configuration’)
ATStringCommand.P4 = (‘P4’, ‘UART DIN configuration’)
ATStringCommand.P5 = (‘P5’, ‘DIO15 configuration’)
ATStringCommand.P6 = (‘P6’, ‘DIO16 configuration’)
ATStringCommand.P7 = (‘P7’, ‘DIO17 configuration’)
ATStringCommand.P8 = (‘P8’, ‘DIO18 configuration’)
ATStringCommand.P9 = (‘P9’, ‘DIO19 configuration’)
ATStringCommand.RE = (‘RE’, ‘Restore defaults’)
ATStringCommand.RR = (‘RR’, ‘XBee retries’)
ATStringCommand.R_QUESTION = (‘R?’, ‘Region lock’)
ATStringCommand.SB = (‘SB’, ‘Stop bits’)
ATStringCommand.SC = (‘SC’, ‘Scan channels’)
ATStringCommand.SD = (‘SD’, ‘Scan duration’)
ATStringCommand.SH = (‘SH’, ‘Serial number high’)
ATStringCommand.SI = (‘SI’, ‘Socket info’)
ATStringCommand.SL = (‘SL’, ‘Serial number low’)
ATStringCommand.SM = (‘SM’, ‘Sleep mode’)
ATStringCommand.SN = (‘SN’, ‘Sleep count’)
ATStringCommand.SO = (‘SO’, ‘Sleep options’)
ATStringCommand.SP = (‘SP’, ‘Sleep time’)
ATStringCommand.SS = (‘SS’, ‘Sleep status’)
ATStringCommand.ST = (‘ST’, ‘Wake time’)
ATStringCommand.TP = (‘TP’, ‘Temperature’)
ATStringCommand.VH = (‘VH’, ‘Bootloader version’)

128 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

ATStringCommand.VR = (‘VR’, ‘Firmware version’)
ATStringCommand.WR = (‘WR’, ‘Write’)
ATStringCommand.DOLLAR_S = (‘$S’, ‘SRP salt’)
ATStringCommand.DOLLAR_V = (‘$V’, ‘SRP salt verifier’)
ATStringCommand.DOLLAR_W = (‘$W’, ‘SRP salt verifier’)
ATStringCommand.DOLLAR_X = (‘$X’, ‘SRP salt verifier’)
ATStringCommand.DOLLAR_Y = (‘$Y’, ‘SRP salt verifier’)
ATStringCommand.PERCENT_C = (‘%C’, ‘Hardware/software compatibility’)
ATStringCommand.PERCENT_P = (‘%P’, ‘Invoke bootloader’)
ATStringCommand.PERCENT_U = (‘%U’, ‘Recover’)
ATStringCommand.PERCENT_V = (‘%V’, ‘Supply voltage’)

command
AT command alias

Returns The AT command alias.

Return type String

description
AT command description.

Returns The AT command description.

Return type String

class digi.xbee.models.atcomm.SpecialByte(code)
Bases: enum.Enum

Enumerates all the special bytes of the XBee protocol that must be escaped when working on API 2
mode.

Inherited properties:
name (String): name (ID) of this SpecialByte.
value (String): the value of this SpecialByte.

Values:
SpecialByte.ESCAPE_BYTE = 125
SpecialByte.HEADER_BYTE = 126
SpecialByte.XON_BYTE = 17
SpecialByte.XOFF_BYTE = 19

code
Returns the code of the SpecialByte element.

Returns the code of the SpecialByte element.

Return type Integer

2.6. API reference 129



XBee Python Library Documentation, Release 1.4.0

class digi.xbee.models.atcomm.ATCommand(command, parameter=None)
Bases: object

This class represents an AT command used to read or set different properties of the XBee device.

AT commands can be sent directly to the connected device or to remote devices and may have parameters.

After executing an AT Command, an AT Response is received from the device.

Class constructor. Instantiates a new ATCommand object with the provided parameters.

Parameters

• command (String) – AT Command, must have length 2.

• parameter (String or Bytearray, optional) – The AT parameter value. De-
faults to None. Optional.

Raises ValueError – if command length is not 2.

command
Returns the AT command.

Returns the AT command.

Return type String

get_parameter_string()
Returns this ATCommand parameter as a String.

Returns this ATCommand parameter. None if there is no parameter.

Return type String

parameter
Returns the AT command parameter.

Returns

the AT command parameter. None if there is no parameter.

Return type Bytearray

class digi.xbee.models.atcomm.ATCommandResponse(command, response=None, sta-
tus=<ATCommandStatus.OK: (0,
’Status OK’)>)

Bases: object

This class represents the response of an AT Command sent by the connected XBee device or by a remote device
after executing an AT Command.

Class constructor.

Parameters

• command (ATCommand) – The AT command that generated the response.

• response (bytearray, optional) – The command response. Default to None.

• status (ATCommandStatus, optional) – The AT command status. Default to ATCom-
mandStatus.OK

command
Returns the AT command.

Returns the AT command.

Return type ATCommand

130 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

response
Returns the AT command response.

Returns the AT command response.

Return type Bytearray

status
Returns the AT command response status.

Returns The AT command response status.

Return type ATCommandStatus

digi.xbee.models.filesystem module

class digi.xbee.models.filesystem.FSCmdType(code, description)
Bases: enum.Enum

This enumeration lists all the available file system commands.

Inherited properties:
name (String): Name (id) of this FSCmdType.
value (String): Value of this FSCmdType.

Values:
Open/create file (1) = (1, ‘Open/create file’)
Close file (2) = (2, ‘Close file’)
Read file (3) = (3, ‘Read file’)
Write file (4) = (4, ‘Write file’)
File hash (8) = (8, ‘File hash’)
Create directory (16) = (16, ‘Create directory’)
Open directory (17) = (17, ‘Open directory’)
Close directory (18) = (18, ‘Close directory’)
Read directory (19) = (19, ‘Read directory’)
Get directory path ID (28) = (28, ‘Get directory path ID’)
Rename (33) = (33, ‘Rename’)
Delete (47) = (47, ‘Delete’)
Stat filesystem (64) = (64, ‘Stat filesystem’)
Format filesystem (79) = (79, ‘Format filesystem’)

code
Returns the code of the file system command element.

Returns Code of the file system command element.

Return type Integer

description
Returns the description of the file system command element.

2.6. API reference 131



XBee Python Library Documentation, Release 1.4.0

Returns Description of the file system command element.

Return type Integer

class digi.xbee.models.filesystem.FSCmd(cmd_type, direction=0, status=None)
Bases: object

This class represents a file system command.

Class constructor. Instantiates a new FSCmd object with the provided parameters.

Parameters

• cmd_type (FSCmdType or Integer) – The command type.

• direction (Integer, optional, default=0) – If this command is a request (0)
or a response (1).

• status (FSCommandStatus or Integer) – Status of the file system command execution.
Only for response commands.

Raises

• ValueError – If cmd_type is not an integer or a FSCmdType.

• ValueError – If cmd_type is invalid.

See also:

FSCmdType

type
Returns the command type.

Returns The command type.

Return type FSCmdType

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

132 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type Integer

See also:

FSCmd.status()

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

classmethod create_cmd(raw, direction=0)
Creates a file system command with the given parameters. This method ensures that the FSCmd returned
is valid and is well built (if not exceptions are raised).

Parameters

• raw (Bytearray) – Bytearray to create the command.

• direction (Integer, optional, default=0) – If this command is a request
(0) or a response (1).

Returns The file system command created.

Return type FSCmd

Raises InvalidPacketException – If something is wrong with raw and the command
cannot be built.

class digi.xbee.models.filesystem.UnknownFSCmd(raw, direction=0)
Bases: digi.xbee.models.filesystem.FSCmd

This class represents an unknown file system command.

Class constructor. Instantiates a new UnknownFSCmd object with the provided parameters.

Parameters

• raw (Bytearray) – Data of the unknown command.

• direction (Integer, optional, default=0) – If this command is a request (0)
or a response (1).

Raises ValueError – If data is not a bytearray, its length is less than 3, or the command type is a
known one.

See also:

FSCmd

2.6. API reference 133



XBee Python Library Documentation, Release 1.4.0

type
Returns the command type.

Returns The command type.

Return type Integer

classmethod create_cmd(raw, direction=0)
Override method.

Returns UnknownFSCmd.

Raises

• InvalidPacketException – If raw is not a bytearray.

• InvalidPacketException – If raw length is less than 3, or the command type is a
known one.

See also:

FSCmd.create_cmd()

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

134 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type Integer

See also:

FSCmd.status()

class digi.xbee.models.filesystem.FileIdCmd(cmd_type, fid, direction=0, status=None)
Bases: digi.xbee.models.filesystem.FSCmd

This class represents a file system command request or response that includes a file or path id.

Class constructor. Instantiates a new FileIdCmd object with the provided parameters.

Parameters

• cmd_type (FSCmdType or Integer) – The command type.

• fid (Integer) – Id of the file/path to operate with. A file id expires and becomes invalid
if not referenced for over 2 minutes. Set to 0x0000 for the root directory (/).

• direction (Integer, optional, default=0) – If this command is a request (0)
or a response (1).

• status (FSCommandStatus or Integer) – Status of the file system command execution.
Only for response commands.

Raises ValueError – If fid is invalid.

See also:

FSCmd

FSCommandStatus

fs_id
Returns the file/path identifier.

Returns The file/path id value.

Return type Integer

classmethod create_cmd(raw, direction=0)
Override method.

Returns FileIdCmd.

Raises InvalidPacketException – If the bytearray length is less than the minimum re-
quired.

See also:

FSCmd.create_cmd()

direction
Returns the command direction.

Returns 0 for request, 1 for response.

2.6. API reference 135



XBee Python Library Documentation, Release 1.4.0

Return type Integer

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

Return type Integer

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

Return type FSCmdType

class digi.xbee.models.filesystem.FileIdNameCmd(cmd_type, fid, name, direction=0, sta-
tus=None)

Bases: digi.xbee.models.filesystem.FileIdCmd

This class represents a file system command request or response that includes a file or path id and a name.

The file/path id is the next byte after the command type in the frame, and name are the following bytes until the
end of the frame.

Class constructor. Instantiates a new FileIdNameCmd object with the provided parameters.

Parameters

• cmd_type (FSCmdType or Integer) – The command type.

136 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• fid (Integer) – Id of the file/path to operate with. Set to 0x0000 for the root directory
(/).

• name (String or bytearray) – The path name of the file to operate with. Its maxi-
mum length is 252 characters.

• direction (Integer, optional, default=0) – If this command is a request (0)
or a response (1).

• status (FSCommandStatus or Integer) – Status of the file system command execution.
Only for response commands.

Raises ValueError – If fid or name are invalid.

See also:

FSCmd

name
Returns the path name of the file.

Returns The file path name.

Return type String

classmethod create_cmd(raw, direction=0)
Override method. Direction must be 0.

Returns FileIdNameCmd.

Raises InvalidPacketException – If the bytearray length is less than the minimum re-
quired.

See also:

FSCmd.create_cmd()

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

fs_id
Returns the file/path identifier.

Returns The file/path id value.

Return type Integer

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

2.6. API reference 137



XBee Python Library Documentation, Release 1.4.0

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

Return type Integer

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

Return type FSCmdType

class digi.xbee.models.filesystem.OpenFileCmdRequest(path_id, name, flags)
Bases: digi.xbee.models.filesystem.FileIdNameCmd

This class represents a file open/create file system command request. Open a file for reading and/or writing.
Use FileOpenRequestOption.SECURE bitmask to upload a write-only file (one that cannot be downloaded or
viewed), useful for protecting MicroPython source code on the device.

Command response is received as a OpenFileCmdResponse.

Class constructor. Instantiates a new OpenFileCmdRequest object with the provided parameters.

Parameters

• path_id (Integer) – Directory path id. Set to 0x0000 for the root directory (/).

• name (String or bytearray) – The path name of the file to open/create, relative to
path_id. Its maximum length is 251 chars.

• flags (FileOpenRequestOption) – Bitfield of supported flags. Use
FileOpenRequestOption to compose its value.

Raises ValueError – If any of the parameters is invalid.

See also:

138 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

FileIdNameCmd

FileOpenRequestOption

options
Returns the options to open the file.

Returns The options to open the file.

Return type FileOpenRequestOption

classmethod create_cmd(raw, direction=0)
Override method. Direction must be 0.

Returns OpenFileCmdRequest.

Raises

• InvalidPacketException – If the bytearray length is less than 5. (cmd id + path id
(2 bytes) + flags (1 byte) + name (at least 1 byte) = 5 bytes).

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 0.

See also:

FileIdNameCmd.create_cmd()

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

fs_id
Returns the file/path identifier.

Returns The file/path id value.

Return type Integer

name
Returns the path name of the file.

Returns The file path name.

Return type String

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

2.6. API reference 139



XBee Python Library Documentation, Release 1.4.0

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

Return type Integer

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

Return type FSCmdType

class digi.xbee.models.filesystem.OpenFileCmdResponse(status, fid=None, size=None)
Bases: digi.xbee.models.filesystem.FileIdCmd

This class represents a file open/create file system command response.

This is received in response of an OpenFileCmdRequest.

Class constructor. Instantiates a new OpenFileCmdResponse object with the provided parameters.

Parameters

• status (FSCommandStatus or Integer) – Status of the file system command execution.

• fid (Integer, optional, default=`None`) – Id of the file that has been
opened. It expires and becomes invalid if not referenced for over 2 minutes.

• size (Integer, optional, default=`None`) – Size in bytes of the file.
0xFFFFFFFF if unknown.

Raises ValueError – If any of the parameters is invalid.

See also:

FileIdCmd

size
Returns the size of the opened file. 0xFFFFFFFF if unknown.

140 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns Size in bytes of the opened file.

Return type Integer

classmethod create_cmd(raw, direction=1)
Override method. Direction must be 1.

Returns OpenFileCmdResponse.

Raises

• InvalidPacketException – If the bytearray length is less than 8. (cmd id + status
+ file id (2 bytes) + size (4 bytes) = 8).

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 1.

See also:

FileIdCmd.create_cmd()

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

fs_id
Returns the file/path identifier.

Returns The file/path id value.

Return type Integer

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

Return type Integer

2.6. API reference 141



XBee Python Library Documentation, Release 1.4.0

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

Return type FSCmdType

class digi.xbee.models.filesystem.CloseFileCmdRequest(fid)
Bases: digi.xbee.models.filesystem.FileIdCmd

This class represents a file close file system command request. Close an open file and release its File Handle.

Command response is received as a CloseFileCmdResponse.

Class constructor. Instantiates a new CloseFileCmdRequest object with the provided parameters.

Parameters fid (Integer) – Id of the file to close returned in Open File Response. It expires
and becomes invalid if not referenced for over 2 minutes.

Raises ValueError – If any of the parameters is invalid.

See also:

FileIdCmd

classmethod create_cmd(raw, direction=0)
Override method. Direction must be 0.

Returns CloseFileCmdRequest.

Raises

• InvalidPacketException – If the bytearray length is less than 3. (cmd id + file_id
(2 bytes) = 3 bytes).

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 0.

See also:

FileIdCmd.create_cmd()

direction
Returns the command direction.

Returns 0 for request, 1 for response.

142 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type Integer

fs_id
Returns the file/path identifier.

Returns The file/path id value.

Return type Integer

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

Return type Integer

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

Return type FSCmdType

class digi.xbee.models.filesystem.CloseFileCmdResponse(status)
Bases: digi.xbee.models.filesystem.FSCmd

This class represents a file close file system command response.

Command response is received as a CloseFileCmdRequest.

Class constructor. Instantiates a new CloseFileCmdResponse object with the provided parameters.

2.6. API reference 143



XBee Python Library Documentation, Release 1.4.0

Parameters status (FSCommandStatus or Integer) – Status of the file system command exe-
cution.

See also:

FSCmd

classmethod create_cmd(raw, direction=1)
Override method. Direction must be 1.

Returns OpenFileCmdResponse.

Raises

• InvalidPacketException – If the bytearray length is less than 1. (cmd id = 1 byte).

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 1.

See also:

FSCmd.create_cmd()

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

Return type Integer

See also:

144 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

Return type FSCmdType

class digi.xbee.models.filesystem.ReadFileCmdRequest(fid, offset, size)
Bases: digi.xbee.models.filesystem.FileIdCmd

This class represents a read file system command request.

Command response is received as a ReadFileCmdResponse.

Class constructor. Instantiates a new ReadFileCmdRequest object with the provided parameters.

Parameters

• fid (Integer) – Id of the file to read returned in Open File Response. It expires and
becomes invalid if not referenced for over 2 minutes.

• offset (Integer) – The file offset to start reading. 0xFFFFFFFF to use current position
(ReadFileCmdRequest.USE_CURRENT_OFFSET)

• size (Integer) – The number of bytes to read. 0xFFFF (ReadFileCm-
dRequest.READ_AS_MANY) to read as many as possible (limited by file size or maximum
response frame size)

Raises ValueError – If any of the parameters is invalid.

See also:

FileIdCmd

USE_CURRENT_OFFSET = 4294967295
Use current file position to start reading.

READ_AS_MANY = 65535
Read as many bytes as possible (limited by file size or maximum response frame size)

offset
Returns the file offset to start reading. 0xFFFFFFFF to use current position (ReadFileCm-
dRequest.0xFFFFFFFF)

Returns The file offset.

Return type Integer

size
Returns the number of bytes to read. 0xFFFF (ReadFileCmdRequest.READ_AS_MANY) to read as many
as possible (limited by file size or maximum response frame size)

2.6. API reference 145



XBee Python Library Documentation, Release 1.4.0

Returns The number of bytes to read.

Return type Integer

classmethod create_cmd(raw, direction=0)
Override method. Direction must be 0.

Returns ReadFileCmdRequest.

Raises

• InvalidPacketException – If the bytearray length is less than 9. (cmd id + file_id
(2 bytes) + offset (4 bytes) + size (2 bytes) = 9 bytes).

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 0.

See also:

FileIdCmd.create_cmd()

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

fs_id
Returns the file/path identifier.

Returns The file/path id value.

Return type Integer

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

Return type Integer

146 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

Return type FSCmdType

class digi.xbee.models.filesystem.ReadFileCmdResponse(status, fid=None, off-
set=None, data=None)

Bases: digi.xbee.models.filesystem.FileIdCmd

This class represents a read file system command response.

Command response is received as a ReadFileCmdRequest.

Class constructor. Instantiates a new ReadFileCmdResponse object with the provided parameters.

Parameters

• status (FSCommandStatus or Integer) – Status of the file system command execution.

• fid (Integer, optional, default=`None`) – Id of the read file.

• offset (Integer, optional, default=`None`) – The offset of the read data.

• data (Bytearray, optional, default=`None`) – The file read data.

Raises ValueError – If any of the parameters is invalid.

See also:

FileIdCmd

offset
Returns the offset of the read data.

Returns The data offset.

Return type Integer

data
Returns the read data from the file.

Returns Read data.

Return type Bytearray

classmethod create_cmd(raw, direction=1)
Override method. Direction must be 1.

Returns ReadFileCmdResponse.

2.6. API reference 147



XBee Python Library Documentation, Release 1.4.0

Raises

• InvalidPacketException – If the bytearray length is less than 8. (cmd id + status
+ file_id (2 bytes) + offset (4 bytes) + data = 8)

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 1.

See also:

FileIdCmd.create_cmd()

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

fs_id
Returns the file/path identifier.

Returns The file/path id value.

Return type Integer

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

Return type Integer

See also:

FSCmd.status()

148 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

Return type FSCmdType

class digi.xbee.models.filesystem.WriteFileCmdRequest(fid, offset, data=None)
Bases: digi.xbee.models.filesystem.FileIdCmd

This class represents a write file system command request.

Command response is received as a WriteFileCmdResponse.

Class constructor. Instantiates a new WriteFileCmdRequest object with the provided parameters.

Parameters

• fid (Integer) – Id of the file to write returned in Open File Response. It expires and
becomes invalid if not referenced for over 2 minutes.

• offset (Integer) – The file offset to start writing. 0xFFFFFFFF to use current position
(ReadFileCmdRequest.USE_CURRENT_OFFSET)

• data (Bytearray, optional, default=`None`) – The data to write. If empty,
frame just refreshes the File Handle timeout to keep the file open.

Raises ValueError – If any of the parameters is invalid.

See also:

FileIdCmd

USE_CURRENT_OFFSET = 4294967295
Use current file position to start writing.

offset
Returns the file offset to start writing.

Returns The file offset.

Return type Integer

data
Returns the data to write. If empty, frame just refreshes the File Handle timeout to keep the file open.

Returns The data to write.

Return type Bytearray

classmethod create_cmd(raw, direction=0)
Override method. Direction must be 0.

Returns WriteFileCmdRequest.

Raises

2.6. API reference 149



XBee Python Library Documentation, Release 1.4.0

• InvalidPacketException – If the bytearray length is less than 7. (cmd id + file_id
(2 bytes) + offset (4 bytes) = 7 bytes).

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 0.

See also:

FileIdCmd.create_cmd()

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

fs_id
Returns the file/path identifier.

Returns The file/path id value.

Return type Integer

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

Return type Integer

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

150 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

Return type FSCmdType

class digi.xbee.models.filesystem.WriteFileCmdResponse(status, fid=None, ac-
tual_offset=None)

Bases: digi.xbee.models.filesystem.FileIdCmd

This class represents a write file system command response.

Command response is received as a WriteFileCmdRequest.

Class constructor. Instantiates a new WriteFileCmdResponse object with the provided parameters.

Parameters

• status (FSCommandStatus or Integer) – Status of the file system command execution.

• fid (Integer, optional, default=`None`) – Id of the written file.

• actual_offset (Integer, optional, default=`None`) – The current file
offset after writing.

Raises ValueError – If any of the parameters is invalid.

See also:

FileIdCmd

actual_offset
Returns the file offset after writing.

Returns The file offset.

Return type Integer

classmethod create_cmd(raw, direction=1)
Override method. Direction must be 1.

Returns WriteFileCmdResponse.

Raises

• InvalidPacketException – If the bytearray length is less than 8. (cmd id + status
+ file_id (2 bytes) + offset (4 bytes) = 8)

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 1.

See also:

FileIdCmd.create_cmd()

2.6. API reference 151



XBee Python Library Documentation, Release 1.4.0

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

fs_id
Returns the file/path identifier.

Returns The file/path id value.

Return type Integer

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

Return type Integer

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

Return type FSCmdType

152 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

class digi.xbee.models.filesystem.HashFileCmdRequest(path_id, name)
Bases: digi.xbee.models.filesystem.FileIdNameCmd

This class represents a file hash command request. Use this command to get a sha256 hash to verify a file’s
contents without downloading the entire file (something not even possible for secure files). On XBee Cellular
modules, there is a response delay in order to calculate the hash of a non-secure file. Secure files on XBee
Cellular and all files on XBee 3 802.15.4, DigiMesh, and Zigbee have a cached hash.

Command response is received as a HashFileCmdResponse.

Class constructor. Instantiates a new HashFileCmdRequest object with the provided parameters.

Parameters

• path_id (Integer) – Directory path id. Set to 0x0000 for the root directory (/).

• name (String or bytearray) – The path name of the file to hash, relative to path_id.
Its maximum length is 252 chars.

Raises ValueError – If any of the parameters is invalid.

See also:

FileIdNameCmd

classmethod create_cmd(raw, direction=0)
Override method. Direction must be 0.

Returns HashFileCmdRequest.

Raises

• InvalidPacketException – If the bytearray length is less than 4. (cmd id + path id
(2 bytes) + name (at least 1 byte) = 4 bytes).

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 0.

See also:

FileIdNameCmd.create_cmd()

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

fs_id
Returns the file/path identifier.

Returns The file/path id value.

Return type Integer

name
Returns the path name of the file.

Returns The file path name.

2.6. API reference 153



XBee Python Library Documentation, Release 1.4.0

Return type String

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

Return type Integer

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

Return type FSCmdType

class digi.xbee.models.filesystem.HashFileCmdResponse(status, file_hash=None)
Bases: digi.xbee.models.filesystem.FSCmd

This class represents a file hash command response.

This is received in response of an HashFileCmdRequest.

Class constructor. Instantiates a new HashFileCmdResponse object with the provided parameters.

Parameters

• status (FSCommandStatus or Integer) – Status of the file system command execution.

• file_hash (Bytearray, optional, default=`None`) – The hash value.

154 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Raises ValueError – If any of the parameters is invalid.

See also:

FSCmd

file_hash
Returns the hash of the file.

Returns The hash of the file.

Return type Bytearray

classmethod create_cmd(raw, direction=1)
Override method. Direction must be 1.

Returns HashFileCmdResponse.

Raises

• InvalidPacketException – If the bytearray length is less than 34. (cmd id + status
+ hash (32 bytes) = 34).

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 1.

See also:

FSCmd.create_cmd()

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

2.6. API reference 155



XBee Python Library Documentation, Release 1.4.0

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

Return type Integer

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

Return type FSCmdType

class digi.xbee.models.filesystem.CreateDirCmdRequest(path_id, name)
Bases: digi.xbee.models.filesystem.FileIdNameCmd

This class represents a create directory file system command request. Parent directories of the one to be created
must exist. Separate request must be dane to make intermediate directories.

Command response is received as a CreateDirCmdResponse.

Class constructor. Instantiates a new CreateDirCmdRequest object with the provided parameters.

Parameters

• path_id (Integer) – Directory path id. Set to 0x0000 for the root directory (/).

• name (String or bytearray) – The path name of the directory to create, relative to
path_id. Its maximum length is 252 chars.

Raises ValueError – If any of the parameters is invalid.

See also:

FileIdNameCmd

classmethod create_cmd(raw, direction=0)
Override method. Direction must be 0.

Returns CreateDirCmdRequest.

Raises

• InvalidPacketException – If the bytearray length is less than 4. (cmd id + path id
(2 bytes) + name (at least 1 byte) = 4 bytes).

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 0.

156 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

See also:

FileIdNameCmd.create_cmd()

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

fs_id
Returns the file/path identifier.

Returns The file/path id value.

Return type Integer

name
Returns the path name of the file.

Returns The file path name.

Return type String

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

Return type Integer

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

2.6. API reference 157



XBee Python Library Documentation, Release 1.4.0

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

Return type FSCmdType

class digi.xbee.models.filesystem.CreateDirCmdResponse(status)
Bases: digi.xbee.models.filesystem.FSCmd

This class represents a create directory file system command response.

Command response is received as a CreateDirCmdRequest.

Class constructor. Instantiates a new CreateDirCmdResponse object with the provided parameters.

Parameters status (FSCommandStatus or Integer) – Status of the file system command exe-
cution.

See also:

FSCmd

classmethod create_cmd(raw, direction=1)
Override method. Direction must be 1.

Returns CreateDirCmdResponse.

Raises

• InvalidPacketException – If the bytearray length is less than 2. (cmd id + status
= 2).

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 1.

See also:

FSCmd.create_cmd()

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

158 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

Return type Integer

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

Return type FSCmdType

class digi.xbee.models.filesystem.OpenDirCmdRequest(path_id, name)
Bases: digi.xbee.models.filesystem.FileIdNameCmd

This class represents an open directory file system command request.

Command response is received as a OpenDirCmdResponse.

Class constructor. Instantiates a new OpenDirCmdRequest object with the provided parameters.

Parameters

• path_id (Integer) – Directory path id. Set to 0x0000 for the root directory (/).

• name (String or bytearray) – Path name of the directory to open, relative to
path_id. An empty name is equivalent to ‘.’, both refer to the current directory path id.
Its maximum length is 252 chars.

Raises ValueError – If any of the parameters is invalid.

See also:

FileIdNameCmd

2.6. API reference 159



XBee Python Library Documentation, Release 1.4.0

classmethod create_cmd(raw, direction=0)
Override method. Direction must be 0.

Returns OpenDirCmdRequest.

Raises

• InvalidPacketException – If the bytearray length is less than 4. (cmd id + path id
(2 bytes) + name (at least 1 byte) = 4 bytes).

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 0.

See also:

FileIdNameCmd.create_cmd()

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

fs_id
Returns the file/path identifier.

Returns The file/path id value.

Return type Integer

name
Returns the path name of the file.

Returns The file path name.

Return type String

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

160 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns File system command response status.

Return type Integer

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

Return type FSCmdType

class digi.xbee.models.filesystem.OpenDirCmdResponse(status, did=None,
fs_entries=None)

Bases: digi.xbee.models.filesystem.FileIdCmd

This class represents an open directory file system command response. If the final file system element does
not have DirResponseFlag.ENTRY_IS_LAST set, send a Directory Read Request to get additional entries. A
response ending with an DirResponseFlag.ENTRY_IS_LAST flag automatically closes the Directory Handle.
An empty directory returns a single entry with just the DirResponseFlag.ENTRY_IS_LAST flag set, and a 0-byte
name.

This is received in response of an OpenDirCmdRequest.

Class constructor. Instantiates a new OpenFileCmdResponse object with the provided parameters.

Parameters

• status (FSCommandStatus or Integer) – Status of the file system command execution.

• did (Integer, optional, default=`None`) – Id of the directory that has been
opened. It expires and becomes invalid if not referenced for over 2 minutes.

• fs_entries (List, optional, default=`None`) – List of bytearrays with the
info and name of the entries inside the opened directory.

Raises ValueError – If any of the parameters is invalid.

See also:

FileIdCmd

is_last
Returns whether there are more elements not included in this response.

Returns

True if there are no more elements to list, False otherwise.

Return type Boolean

2.6. API reference 161



XBee Python Library Documentation, Release 1.4.0

fs_entries
Returns the list of entries inside the opened directory.

Returns List of :class: .‘FileSystemElement‘ inside the directory.

Return type List

classmethod create_cmd(raw, direction=1)
Override method. Direction must be 1.

Returns OpenDirCmdResponse.

Raises

• InvalidPacketException – If the bytearray length is less than 8. (cmd id + status
+ dir id (2 bytes) + filesize_and_flags (4 bytes) = 8).

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 1.

See also:

FileIdCmd.create_cmd()

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

fs_id
Returns the file/path identifier.

Returns The file/path id value.

Return type Integer

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

162 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns File system command response status.

Return type Integer

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

Return type FSCmdType

class digi.xbee.models.filesystem.CloseDirCmdRequest(did)
Bases: digi.xbee.models.filesystem.FileIdCmd

This class represents a directory close file system command request.

Command response is received as a CloseDirCmdResponse.

Class constructor. Instantiates a new CloseDirCmdRequest object with the provided parameters.

Parameters did (Integer) – Id of the directory to close. It expires and becomes invalid if not
referenced for over 2 minutes.

Raises ValueError – If any of the parameters is invalid.

See also:

FileIdCmd

classmethod create_cmd(raw, direction=0)
Override method. Direction must be 0.

Returns CloseDirCmdRequest.

Raises

• InvalidPacketException – If the bytearray length is less than 3. (cmd id + dir_id
(2 bytes) = 3 bytes).

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 0.

See also:

FileIdCmd.create_cmd()

2.6. API reference 163



XBee Python Library Documentation, Release 1.4.0

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

fs_id
Returns the file/path identifier.

Returns The file/path id value.

Return type Integer

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

Return type Integer

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

Return type FSCmdType

164 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

class digi.xbee.models.filesystem.CloseDirCmdResponse(status)
Bases: digi.xbee.models.filesystem.FSCmd

This class represents a directory close file system command response. Send this command to indicate that it
is done reading the directory and no longer needs the Directory Handle. Typical usage scenario is to use a
Directory Open Request and additional Directory Read Requests until the Response includes an entry with the
DirResponseFlag.ENTRY_IS_LAST flag set.

Command response is received as a CloseDirCmdRequest.

Class constructor. Instantiates a new CloseDirCmdResponse object with the provided parameters.

Parameters status (FSCommandStatus or Integer) – Status of the file system command exe-
cution.

See also:

FSCmd

classmethod create_cmd(raw, direction=1)
Override method. Direction must be 1.

Returns CloseDirCmdResponse.

Raises

• InvalidPacketException – If the bytearray length is less than 2. (cmd id + status
= 2).

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 1.

See also:

FSCmd.create_cmd()

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

2.6. API reference 165



XBee Python Library Documentation, Release 1.4.0

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

Return type Integer

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

Return type FSCmdType

class digi.xbee.models.filesystem.ReadDirCmdRequest(did)
Bases: digi.xbee.models.filesystem.FileIdCmd

This class represents a directory read file system command request.

Command response is received as a ReadDirCmdResponse.

Class constructor. Instantiates a new ReadDirCmdRequest object with the provided parameters.

Parameters did (Integer) – Id of the directory to close. It expires and becomes invalid if not
referenced for over 2 minutes.

Raises ValueError – If any of the parameters is invalid.

See also:

FileIdCmd

classmethod create_cmd(raw, direction=0)
Override method. Direction must be 0.

Returns ReadDirCmdRequest.

Raises

• InvalidPacketException – If the bytearray length is less than 3. (cmd id + dir_id
(2 bytes) = 3 bytes).

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 0.

166 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

See also:

FileIdCmd.create_cmd()

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

fs_id
Returns the file/path identifier.

Returns The file/path id value.

Return type Integer

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

Return type Integer

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

2.6. API reference 167



XBee Python Library Documentation, Release 1.4.0

Returns The command type.

Return type FSCmdType

class digi.xbee.models.filesystem.ReadDirCmdResponse(status, did=None,
fs_entries=None)

Bases: digi.xbee.models.filesystem.OpenDirCmdResponse

This class represents a read directory file system command response. If the final file system element does not
have DirResponseFlag.ENTRY_IS_LAST set, send another Directory Read Request to get additional entries. A
response ending with an DirResponseFlag.ENTRY_IS_LAST flag automatically closes the Directory Handle.

This is received in response of an ReadDirCmdRequest.

Class constructor. Instantiates a new ReadDirCmdResponse object with the provided parameters.

Parameters

• status (FSCommandStatus or Integer) – Status of the file system command execution.

• did (Integer, optional, default=`None`) – Id of the directory that has been
read.

• fs_entries (List, optional, default=`None`) – List of bytearrays with the
info and name of the entries inside the directory.

Raises ValueError – If any of the parameters is invalid.

See also:

FileIdCmd

DirResponseFlag

classmethod create_cmd(raw, direction=1)
Override method. Direction must be 1.

Returns ReadDirCmdResponse.

Raises

• InvalidPacketException – If the bytearray length is less than 4. (cmd id + status
+ dir id (2 bytes) = 4).

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 1.

See also:

FileIdCmd.create_cmd()

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

fs_entries
Returns the list of entries inside the opened directory.

168 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns List of :class: .‘FileSystemElement‘ inside the directory.

Return type List

fs_id
Returns the file/path identifier.

Returns The file/path id value.

Return type Integer

is_last
Returns whether there are more elements not included in this response.

Returns

True if there are no more elements to list, False otherwise.

Return type Boolean

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

Return type Integer

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

2.6. API reference 169



XBee Python Library Documentation, Release 1.4.0

Return type FSCmdType

class digi.xbee.models.filesystem.GetPathIdCmdRequest(path_id, name)
Bases: digi.xbee.models.filesystem.FileIdNameCmd

This class represents a get path id file system command request. A directory path id (path_id) of 0x0000 in any
command, means path names are relative to the root directory of the filesystem (/).

• ‘/’ as path separator

• ‘..’ to refer to the parent directory

• ‘.’ to refer to the current path directory

Use this command to get a shortcut to a subdirectory of the file system to allow the use of shorter path names in
the frame:

• If the PATH ID field of this command is 0x0000, the XBee allocates a new PATH ID for use in later
requests.

• If the PATH ID field of this command is non-zero, the XBee updates the directory path of that ID.

To release a PATH ID when no longer needed:

• Send a request with that ID and a single slash (“/”) as the pathname. Any Change Directory Request
that resolves to the root directory releases the PATH ID and return a 0x0000 ID.

• Wait for a timeout (2 minutes)

Any file system id expires after 2 minutes if not referenced. Refresh this timeout by sending a Change Directory
request with an empty or a single period (‘.’) as the pathname.

Command response is received as a GetPathIdCmdResponse.

Class constructor. Instantiates a new GetPathIdCmdRequest object with the provided parameters.

Parameters

• path_id (Integer) – Directory path id. Set to 0x0000 for the root directory (/).

• name (String or bytearray) – The path name of the directory to change, relative
to path_id. An empty name is equivalent to ‘.’, both refer to the current directory path id.
Its maximum length is 252 chars.

Raises ValueError – If any of the parameters is invalid.

See also:

FileIdNameCmd

classmethod create_cmd(raw, direction=0)
Override method. Direction must be 0.

Returns GetPathIdCmdRequest.

Raises

• InvalidPacketException – If the bytearray length is less than 4. (cmd id + path id
(2 bytes) + name (at least 1 byte) = 4 bytes).

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 0.

170 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

See also:

FileIdNameCmd.create_cmd()

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

fs_id
Returns the file/path identifier.

Returns The file/path id value.

Return type Integer

name
Returns the path name of the file.

Returns The file path name.

Return type String

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

Return type Integer

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

2.6. API reference 171



XBee Python Library Documentation, Release 1.4.0

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

Return type FSCmdType

class digi.xbee.models.filesystem.GetPathIdCmdResponse(status, path_id=None,
full_path=None)

Bases: digi.xbee.models.filesystem.FileIdCmd

This class represents a get path id file system command response. The full path of the new current directory is
included if can fit.

This is received in response of an GetPathIdCmdRequest.

Class constructor. Instantiates a new GetPathIdCmdResponse object with the provided parameters.

Parameters

• status (FSCommandStatus or Integer) – Status of the file system command execution.

• path_id (Integer, optional, default=`None`) – New directory path id.

• full_path (String or bytearray, optional, default=`None`) – If
short enough, the full path of the current directory , relative to path_id. Deep subdirec-
tories may return an empty field instead of their full path name. The maximum full path
length is 255 characters.

Raises ValueError – If any of the parameters is invalid.

See also:

FileIdCmd

full_path
Returns the full path of the current directory.

Returns The directory full path.

Return type String

classmethod create_cmd(raw, direction=1)
Override method. Direction must be 1.

Returns GetPathIdCmdResponse.

Raises

• InvalidPacketException – If the bytearray length is less than 4. (cmd id + status
+ path id (2 bytes) = 4).

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 1.

See also:

FileIdNameCmd.create_cmd()

172 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

fs_id
Returns the file/path identifier.

Returns The file/path id value.

Return type Integer

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

Return type Integer

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

Return type FSCmdType

2.6. API reference 173



XBee Python Library Documentation, Release 1.4.0

class digi.xbee.models.filesystem.RenameCmdRequest(path_id, name, new_name)
Bases: digi.xbee.models.filesystem.FileIdNameCmd

This class represents a file/directory rename file system command request. Current firmware for XBee 3
802.15.4, DigiMesh, and Zigbee do not support renaming files. Contact Digi International to request it as a
feature in a future release.

Command response is received as a RenameCmdResponse.

Class constructor. Instantiates a new RenameCmdRequest object with the provided parameters.

Parameters

• path_id (Integer) – Directory path id. Set to 0x0000 for the root directory (/).

• name (String or bytearray) – The current path name of the file/directory to rename
relative to path_id. Its maximum length is 255 chars.

• new_name (String or bytearray) – The new name of the file/directory relative to
path_id. Its maximum length is 255 chars.

Raises ValueError – If any of the parameters is invalid.

See also:

FileIdNameCmd

new_name
Returns the new name of the file or directory.

Returns The new name.

Return type String

classmethod create_cmd(raw, direction=0)
Override method. Direction must be 0.

Returns RenameCmdRequest.

Raises

• InvalidPacketException – If the bytearray length is less than 6. (cmd id + path id
(2 bytes) + name (1 byte at least) + ‘,’ + new name (at least 1 byte) = 6 bytes).

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 0.

See also:

FileIdNameCmd.create_cmd()

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

fs_id
Returns the file/path identifier.

174 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns The file/path id value.

Return type Integer

name
Returns the path name of the file.

Returns The file path name.

Return type String

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

Return type Integer

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

Return type FSCmdType

class digi.xbee.models.filesystem.RenameCmdResponse(status)
Bases: digi.xbee.models.filesystem.FSCmd

This class represents a rename file system command response.

Command response is received as a RenameCmdRequest.

2.6. API reference 175



XBee Python Library Documentation, Release 1.4.0

Class constructor. Instantiates a new RenameCmdResponse object with the provided parameters.

Parameters status (FSCommandStatus or Integer) – Status of the file system command exe-
cution.

See also:

FSCmd

classmethod create_cmd(raw, direction=1)
Override method. Direction must be 1.

Returns RenameCmdResponse.

Raises

• InvalidPacketException – If the bytearray length is less than 2. (cmd id + status
= 2).

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 1.

See also:

FSCmd.create_cmd()

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

176 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type Integer

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

Return type FSCmdType

class digi.xbee.models.filesystem.DeleteCmdRequest(path_id, name)
Bases: digi.xbee.models.filesystem.FileIdNameCmd

This class represents a delete file system command request. All files in a directory must be deleted before
removing the directory. On XBee 3 802.15.4, DigiMesh, and Zigbee, deleted files are marked as as unusable
space unless they are at the “end” of the file system (most-recently created). On these products, deleting a file
triggers recovery of any deleted file space at the end of the file system, and can lead to a delayed response.

Command response is received as a DeleteCmdResponse.

Class constructor. Instantiates a new DeleteCmdRequest object with the provided parameters.

Parameters

• path_id (Integer) – Directory path id. Set to 0x0000 for the root directory (/).

• name (String or bytearray) – The name of the file/directory to delete relative to
path_id. Its maximum length is 252 chars.

Raises ValueError – If any of the parameters is invalid.

See also:

FileIdNameCmd

classmethod create_cmd(raw, direction=0)
Override method. Direction must be 0.

Returns DeleteCmdRequest.

Raises

• InvalidPacketException – If the bytearray length is less than 4. (cmd id + path id
(2 bytes) + name (at least 1 byte) = 4 bytes).

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 0.

See also:

2.6. API reference 177



XBee Python Library Documentation, Release 1.4.0

FileIdNameCmd.create_cmd()

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

fs_id
Returns the file/path identifier.

Returns The file/path id value.

Return type Integer

name
Returns the path name of the file.

Returns The file path name.

Return type String

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

Return type Integer

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

178 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

type
Returns the command type.

Returns The command type.

Return type FSCmdType

class digi.xbee.models.filesystem.DeleteCmdResponse(status)
Bases: digi.xbee.models.filesystem.FSCmd

This class represents a delete file system command response.

Command response is received as a DeleteCmdRequest.

Class constructor. Instantiates a new DeleteCmdResponse object with the provided parameters.

Parameters status (FSCommandStatus or Integer) – Status of the file system command exe-
cution.

See also:

FSCmd

classmethod create_cmd(raw, direction=1)
Override method. Direction must be 1.

Returns DeleteCmdResponse.

Raises

• InvalidPacketException – If the bytearray length is less than 2. (cmd id + status
= 2).

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 1.

See also:

FSCmd.create_cmd()

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

2.6. API reference 179



XBee Python Library Documentation, Release 1.4.0

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

Return type Integer

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

Return type FSCmdType

class digi.xbee.models.filesystem.VolStatCmdRequest(name)
Bases: digi.xbee.models.filesystem.FSCmd

This class represents a volume stat file system command request. Formatting the file system takes time, and any
other requests fails until it completes and sends a response.

Command response is received as a VolStatCmdResponse.

Class constructor. Instantiates a new VolStatCmdRequest object with the provided parameters.

Parameters name (String or bytearray) – The name of the volume. Its maximum length
is 254 characters.

Raises ValueError – If name is invalid.

See also:

FSCmd

name
Returns the name of the volume.

Returns The volume name.

Return type String

180 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

classmethod create_cmd(raw, direction=0)
Override method. Direction must be 0.

Returns VolStatCmdRequest.

Raises

• InvalidPacketException – If the bytearray length is less than 2. (cmd id + name
(at least 1 byte) = 2 bytes).

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 0.

See also:

FSCmd.create_cmd()

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

Return type Integer

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

2.6. API reference 181



XBee Python Library Documentation, Release 1.4.0

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

Return type FSCmdType

class digi.xbee.models.filesystem.VolStatCmdResponse(status, bytes_used=None,
bytes_free=None,
bytes_bad=None)

Bases: digi.xbee.models.filesystem.FSCmd

This class represents a stat file system command response.

Command response is received as a VolStatCmdRequest.

Class constructor. Instantiates a new VolStatCmdResponse object with the provided parameters.

Parameters

• status (FSCommandStatus or Integer) – Status of the file system command execution.

• bytes_used (Integer, optional, default=`None`) – Number of used bytes.

• bytes_free (Integer, optional, default=`None`) – Number of free bytes.

• bytes_bad (Integer, optional, default=`None`) – Number of bad bytes.
For XBee 3 802.15.4, DigiMesh, and Zigbee, this represents space used by deleted files.

Raises ValueError – If any of the parameters is invalid.

See also:

FSCmd

bytes_used
Returns the used space on volume.

Returns Number of used bytes.

Return type Integer

bytes_free
Returns the available space on volume.

Returns Number of free bytes.

Return type Integer

bytes_bad
Returns “bad” bytes on volume. For XBee 3 802.15.4, DigiMesh, and Zigbee, this represents space used
by deleted files.

Returns Number of bad bytes.

Return type Integer

classmethod create_cmd(raw, direction=1)
Override method. Direction must be 1.

Returns VolStatCmdResponse.

182 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Raises

• InvalidPacketException – If the bytearray length is less than 14. (cmd id + status
+ used (4 bytes) + free (4 bytes) + bad (4 bytes) = 14)

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 1.

See also:

FileIdCmd.create_cmd()

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

Return type Integer

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

2.6. API reference 183



XBee Python Library Documentation, Release 1.4.0

type
Returns the command type.

Returns The command type.

Return type FSCmdType

class digi.xbee.models.filesystem.VolFormatCmdRequest(name)
Bases: digi.xbee.models.filesystem.VolStatCmdRequest

This class represents a volume format file system command request.

Command response is received as a VolFormatCmdResponse.

Class constructor. Instantiates a new VolFormatCmdRequest object with the provided parameters.

Parameters name (String or bytearray) – The name of the volume. Its maximum length
is 254 chars.

Raises ValueError – If name is invalid.

See also:

FSCmd

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

name
Returns the name of the volume.

Returns The volume name.

Return type String

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

184 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns File system command response status.

Return type Integer

See also:

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

Return type FSCmdType

classmethod create_cmd(raw, direction=0)
Override method. Direction must be 0.

Returns VolFormatCmdRequest.

Raises

• InvalidPacketException – If the bytearray length is less than 2. (cmd id + name
(at least 1 byte) = 2 bytes).

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 0.

See also:

FSCmd.create_cmd()

class digi.xbee.models.filesystem.VolFormatCmdResponse(status, bytes_used=None,
bytes_free=None,
bytes_bad=None)

Bases: digi.xbee.models.filesystem.VolStatCmdResponse

This class represents a format file system command response.

Command response is received as a VolStatCmdRequest.

Class constructor. Instantiates a new VolFormatCmdResponse object with the provided parameters.

Parameters

• status (FSCommandStatus or Integer) – Status of the file system command execution.

• bytes_used (Integer, optional, default=`None`) – Number of used bytes.

• bytes_free (Integer, optional, default=`None`) – Number of free bytes.

• bytes_bad (Integer, optional, default=`None`) – Number of bad bytes.

Raises ValueError – If any of the parameters is invalid.

2.6. API reference 185



XBee Python Library Documentation, Release 1.4.0

See also:

FSCmd

bytes_bad
Returns “bad” bytes on volume. For XBee 3 802.15.4, DigiMesh, and Zigbee, this represents space used
by deleted files.

Returns Number of bad bytes.

Return type Integer

bytes_free
Returns the available space on volume.

Returns Number of free bytes.

Return type Integer

bytes_used
Returns the used space on volume.

Returns Number of used bytes.

Return type Integer

direction
Returns the command direction.

Returns 0 for request, 1 for response.

Return type Integer

output()
Returns the raw bytearray of this command.

Returns Raw bytearray of the command.

Return type Bytearray

status
Returns the file system command response status.

Returns File system command response status.

Return type FSCommandStatus

See also:

FSCommandStatus

FSCmd.status_value()

status_value
Returns the file system command response status of the packet.

Returns File system command response status.

Return type Integer

See also:

186 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

FSCmd.status()

to_dict()
Returns a dictionary with all information of the command fields.

Returns Dictionary with all info of the command fields.

Return type Dictionary

type
Returns the command type.

Returns The command type.

Return type FSCmdType

classmethod create_cmd(raw, direction=1)
Override method. Direction must be 1.

Returns VolFormatCmdResponse.

Raises

• InvalidPacketException – If the bytearray length is less than 14. (cmd id + status
+ used (4 bytes) + free (4 bytes) + bad (4 bytes) = 14)

• InvalidPacketException – If the command type is not FSCmdType or direction
is not 1.

See also:

FileIdCmd.create_cmd()

digi.xbee.models.hw module

class digi.xbee.models.hw.HardwareVersion(code, description)
Bases: enum.Enum

This class lists all hardware versions.

Inherited properties:
name (String): The name of this HardwareVersion.
value (Integer): The ID of this HardwareVersion.

Values:
HardwareVersion.X09_009 = (1, ‘X09-009’)
HardwareVersion.X09_019 = (2, ‘X09-019’)
HardwareVersion.XH9_009 = (3, ‘XH9-009’)
HardwareVersion.XH9_019 = (4, ‘XH9-019’)
HardwareVersion.X24_009 = (5, ‘X24-009’)
HardwareVersion.X24_019 = (6, ‘X24-019’)
HardwareVersion.X09_001 = (7, ‘X09-001’)
HardwareVersion.XH9_001 = (8, ‘XH9-001’)

2.6. API reference 187



XBee Python Library Documentation, Release 1.4.0

HardwareVersion.X08_004 = (9, ‘X08-004’)
HardwareVersion.XC09_009 = (10, ‘XC09-009’)
HardwareVersion.XC09_038 = (11, ‘XC09-038’)
HardwareVersion.X24_038 = (12, ‘X24-038’)
HardwareVersion.X09_009_TX = (13, ‘X09-009-TX’)
HardwareVersion.X09_019_TX = (14, ‘X09-019-TX’)
HardwareVersion.XH9_009_TX = (15, ‘XH9-009-TX’)
HardwareVersion.XH9_019_TX = (16, ‘XH9-019-TX’)
HardwareVersion.X09_001_TX = (17, ‘X09-001-TX’)
HardwareVersion.XH9_001_TX = (18, ‘XH9-001-TX’)
HardwareVersion.XT09B_XXX = (19, ‘XT09B-xxx (Attenuator version)’)
HardwareVersion.XT09_XXX = (20, ‘XT09-xxx’)
HardwareVersion.XC08_009 = (21, ‘XC08-009’)
HardwareVersion.XC08_038 = (22, ‘XC08-038’)
HardwareVersion.XB24_AXX_XX = (23, ‘XB24-Axx-xx’)
HardwareVersion.XBP24_AXX_XX = (24, ‘XBP24-Axx-xx’)
HardwareVersion.XB24_BXIX_XXX = (25, ‘XB24-BxIx-xxx and XB24-Z7xx-xxx’)
HardwareVersion.XBP24_BXIX_XXX = (26, ‘XBP24-BxIx-xxx and XBP24-Z7xx-xxx’)
HardwareVersion.XBP09_DXIX_XXX = (27, ‘XBP09-DxIx-xxx Digi Mesh’)
HardwareVersion.XBP09_XCXX_XXX = (28, ‘XBP09-XCxx-xxx: S3 XSC Compatibility’)
HardwareVersion.XBP08_DXXX_XXX = (29, ‘XBP08-Dxx-xxx 868MHz’)
HardwareVersion.XBP24B = (30, ‘XBP24B: Low cost ZB PRO and PLUS S2B’)
HardwareVersion.XB24_WF = (31, ‘XB24-WF: XBee 802.11 (Redpine module)’)
HardwareVersion.AMBER_MBUS = (32, ‘??????: M-Bus module made by Amber’)
HardwareVersion.XBP24C = (33, ‘XBP24C: XBee PRO SMT Ember 357 S2C PRO’)
HardwareVersion.XB24C = (34, ‘XB24C: XBee SMT Ember 357 S2C’)
HardwareVersion.XSC_GEN3 = (35, ‘XSC_GEN3: XBP9 XSC 24 dBm’)
HardwareVersion.SRD_868_GEN3 = (36, ‘SDR_868_GEN3: XB8 12 dBm’)
HardwareVersion.ABANDONATED = (37, ‘Abandonated’)
HardwareVersion.SMT_900LP = (38, “900LP (SMT): 900LP on ‘S8 HW’”)
HardwareVersion.WIFI_ATHEROS = (39, ‘WiFi Atheros (TH-DIP) XB2S-WF’)
HardwareVersion.SMT_WIFI_ATHEROS = (40, ‘WiFi Atheros (SMT) XB2B-WF’)
HardwareVersion.SMT_475LP = (41, ‘475LP (SMT): Beta 475MHz’)
HardwareVersion.XBEE_CELL_TH = (42, ‘XBee-Cell (TH): XBee Cellular’)
HardwareVersion.XLR_MODULE = (43, ‘XLR Module’)
HardwareVersion.XB900HP_NZ = (44, ‘XB900HP (New Zealand): XB9 NZ HW/SW’)
HardwareVersion.XBP24C_TH_DIP = (45, ‘XBP24C (TH-DIP): XBee PRO DIP’)
HardwareVersion.XB24C_TH_DIP = (46, ‘XB24C (TH-DIP): XBee DIP’)
HardwareVersion.XLR_BASEBOARD = (47, ‘XLR Baseboard’)
HardwareVersion.XBP24C_S2C_SMT = (48, ‘XBee PRO SMT’)
HardwareVersion.SX_PRO = (49, ‘SX Pro’)
HardwareVersion.S2D_SMT_PRO = (50, ‘XBP24D: S2D SMT PRO’)
HardwareVersion.S2D_SMT_REG = (51, ‘XB24D: S2D SMT Reg’)
HardwareVersion.S2D_TH_PRO = (52, ‘XBP24D: S2D TH PRO’)
HardwareVersion.S2D_TH_REG = (53, ‘XB24D: S2D TH Reg’)
HardwareVersion.SX = (62, ‘SX’)
HardwareVersion.XTR = (63, ‘XTR’)

188 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

HardwareVersion.CELLULAR_CAT1_LTE_VERIZON = (64, ‘XBee Cellular Cat 1 LTE Verizon’)
HardwareVersion.XBEE3_SMT = (65, ‘XBee 3 Micro and SMT’)
HardwareVersion.XBEE3_TH = (66, ‘XBee 3 TH’)
HardwareVersion.XBEE3 = (67, ‘XBee 3 Reserved’)
HardwareVersion.CELLULAR_3G = (68, ‘XBee Cellular 3G’)
HardwareVersion.XB8X = (69, ‘XB8X’)
HardwareVersion.CELLULAR_LTE_VERIZON = (70, ‘XBee Cellular LTE-M Verizon’)
HardwareVersion.CELLULAR_LTE_ATT = (71, ‘XBee Cellular LTE-M AT&T’)
HardwareVersion.CELLULAR_NBIOT_EUROPE = (72, ‘XBee Cellular NBIoT Europe’)
HardwareVersion.CELLULAR_3_CAT1_LTE_ATT = (73, ‘XBee Cellular 3 Cat 1 LTE AT&T’)
HardwareVersion.CELLULAR_3_LTE_M_VERIZON = (74, ‘XBee Cellular 3 LTE-M Verizon’)
HardwareVersion.CELLULAR_3_LTE_M_ATT = (75, ‘XBee Cellular 3 LTE-M AT&T’)
HardwareVersion.CELLULAR_3_CAT1_LTE_VERIZON = (77, ‘XBee Cellular 3 Cat 1 LTE
Verizon’)

code
Returns the code of the HardwareVersion element.

Returns the code of the HardwareVersion element.

Return type Integer

description
Returns the description of the HardwareVersion element.

Returns the description of the HardwareVersion element.

Return type String

class digi.xbee.models.hw.LegacyHardwareVersion(code, letter)
Bases: enum.Enum

This class lists all legacy hardware versions.

Inherited properties:
name (String): The name of this LegacyHardwareVersion.
value (Integer): The ID of this LegacyHardwareVersion.

Values:
LegacyHardwareVersion.A = (1, ‘A’)
LegacyHardwareVersion.B = (2, ‘B’)
LegacyHardwareVersion.C = (3, ‘C’)
LegacyHardwareVersion.D = (4, ‘D’)
LegacyHardwareVersion.E = (5, ‘E’)
LegacyHardwareVersion.F = (6, ‘F’)
LegacyHardwareVersion.G = (7, ‘G’)
LegacyHardwareVersion.H = (8, ‘H’)
LegacyHardwareVersion.I = (9, ‘I’)
LegacyHardwareVersion.J = (10, ‘J’)

2.6. API reference 189



XBee Python Library Documentation, Release 1.4.0

LegacyHardwareVersion.K = (11, ‘K’)
LegacyHardwareVersion.L = (12, ‘L’)
LegacyHardwareVersion.M = (13, ‘M’)
LegacyHardwareVersion.N = (14, ‘N’)
LegacyHardwareVersion.O = (15, ‘O’)
LegacyHardwareVersion.P = (16, ‘P’)
LegacyHardwareVersion.Q = (17, ‘Q’)
LegacyHardwareVersion.R = (18, ‘R’)
LegacyHardwareVersion.S = (19, ‘S’)
LegacyHardwareVersion.T = (20, ‘T’)
LegacyHardwareVersion.U = (21, ‘U’)
LegacyHardwareVersion.V = (22, ‘V’)
LegacyHardwareVersion.W = (23, ‘W’)
LegacyHardwareVersion.X = (24, ‘X’)
LegacyHardwareVersion.Y = (25, ‘Y’)
LegacyHardwareVersion.Z = (26, ‘Z’)

code
Returns the code of the LegacyHardwareVersion element.

Returns the code of the LegacyHardwareVersion element.

Return type Integer

letter
Returns the letter of the LegacyHardwareVersion element.

Returns the letter of the LegacyHardwareVersion element.

Return type String

digi.xbee.models.info module

class digi.xbee.models.info.SocketInfo(socket_id, state, protocol, local_port, remote_port,
remote_address)

Bases: object

This class represents the information of an XBee socket:

• Socket ID.

• State.

• Protocol.

• Local port.

• Remote port.

• Remote address.

Class constructor. Instantiates a SocketInfo object with the given parameters.

Parameters

• socket_id (Integer) – The ID of the socket.

190 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• state (SocketInfoState) – The state of the socket.

• protocol (IPProtocol) – The protocol of the socket.

• local_port (Integer) – The local port of the socket.

• remote_port (Integer) – The remote port of the socket.

• remote_address (String) – The remote IPv4 address of the socket.

static create_socket_info(raw)
Parses the given bytearray data and returns a SocketInfo object.

Parameters raw (Bytearray) – received data from the SI command with a socket ID as
argument.

Returns

The socket information, or None if the provided data is invalid.

Return type SocketInfo

static parse_socket_list(raw)
Parses the given bytearray data and returns a list with the active socket IDs.

Parameters raw (Bytearray) – received data from the SI command.

Returns

list with the IDs of all active (open) sockets, or empty list if there is not any active socket.

Return type List

socket_id
Returns the ID of the socket.

Returns the ID of the socket.

Return type Integer

state
Returns the state of the socket.

Returns the state of the socket.

Return type SocketInfoState

protocol
Returns the protocol of the socket.

Returns the protocol of the socket.

Return type IPProtocol

local_port
Returns the local port of the socket. This is 0 unless the socket is explicitly bound to a port.

Returns the local port of the socket.

Return type Integer

remote_port
Returns the remote port of the socket.

Returns the remote port of the socket.

Return type Integer

2.6. API reference 191



XBee Python Library Documentation, Release 1.4.0

remote_address
Returns the remote IPv4 address of the socket. This is 0.0.0.0 for an unconnected socket.

Returns the remote IPv4 address of the socket.

Return type String

digi.xbee.models.mode module

class digi.xbee.models.mode.OperatingMode(code, description)
Bases: enum.Enum

This class represents all operating modes available.

Inherited properties:
name (String): the name (id) of this OperatingMode.
value (String): the value of this OperatingMode.

Values:
OperatingMode.AT_MODE = (0, ‘AT mode’)
OperatingMode.API_MODE = (1, ‘API mode’)
OperatingMode.ESCAPED_API_MODE = (2, ‘API mode with escaped characters’)
OperatingMode.MICROPYTHON_MODE = (4, ‘MicroPython REPL’)
OperatingMode.BYPASS_MODE = (5, ‘Bypass mode’)
OperatingMode.UNKNOWN = (99, ‘Unknown’)

code
Returns the code of the OperatingMode element.

Returns the code of the OperatingMode element.

Return type String

description
Returns the description of the OperatingMode element.

Returns the description of the OperatingMode element.

Return type String

class digi.xbee.models.mode.APIOutputMode(code, description)
Bases: enum.Enum

Enumerates the different API output modes. The API output mode establishes the way data will be
output through the serial interface of an XBee device.

Inherited properties:
name (String): the name (id) of this OperatingMode.
value (String): the value of this OperatingMode.

192 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Values:
APIOutputMode.NATIVE = (0, ‘Native’)
APIOutputMode.EXPLICIT = (1, ‘Explicit’)
APIOutputMode.EXPLICIT_ZDO_PASSTHRU = (3, ‘Explicit with ZDO Passthru’)

code
Returns the code of the APIOutputMode element.

Returns the code of the APIOutputMode element.

Return type String

description
Returns the description of the APIOutputMode element.

Returns the description of the APIOutputMode element.

Return type String

class digi.xbee.models.mode.APIOutputModeBit(code, description)
Bases: enum.Enum

Enumerates the different API output mode bit options. The API output mode establishes the way
data will be output through the serial interface of an XBee.

Inherited properties:
name (String): the name (id) of this APIOutputModeBit.
value (String): the value of this APIOutputModeBit.

Values:
APIOutputModeBit.EXPLICIT = (1, ‘Output in Native/Explicit API format’)
APIOutputModeBit.SUPPORTED_ZDO_PASSTHRU = (2, ‘Zigbee: Supported ZDO request
pass-throughn802.15.4/DigiMesh: Legacy API Indicator’)
APIOutputModeBit.UNSUPPORTED_ZDO_PASSTHRU = (4, ‘Unsupported ZDO request
pass-through. Only Zigbee’)
APIOutputModeBit.BINDING_PASSTHRU = (8, ‘Binding request pass-through. Only Zigbee’)
APIOutputModeBit.ECHO_RCV_SUPPORTED_ZDO = (16, ‘Echo received supported ZDO
requests out the serial port. Only Zigbee’)
APIOutputModeBit.SUPPRESS_ALL_ZDO_MSG = (32, ‘Suppress all ZDO messages from being
sent out the serial port and disable pass-through. Only Zigbee’)

code
Returns the code of the APIOutputModeBit element.

Returns the code of the APIOutputModeBit element.

Return type Integer

description
Returns the description of the APIOutputModeBit element.

2.6. API reference 193



XBee Python Library Documentation, Release 1.4.0

Returns the description of the APIOutputModeBit element.

Return type String

class digi.xbee.models.mode.IPAddressingMode(code, description)
Bases: enum.Enum

Enumerates the different IP addressing modes.

Values:
IPAddressingMode.DHCP = (0, ‘DHCP’)
IPAddressingMode.STATIC = (1, ‘Static’)

code
Returns the code of the IPAddressingMode element.

Returns the code of the IPAddressingMode element.

Return type String

description
Returns the description of the IPAddressingMode element.

Returns the description of the IPAddressingMode element.

Return type String

class digi.xbee.models.mode.NeighborDiscoveryMode(code, description)
Bases: enum.Enum

Enumerates the different neighbor discovery modes. This mode establishes the way the network
discovery process is performed.

Inherited properties:
name (String): the name (id) of this OperatingMode.
value (String): the value of this OperatingMode.

Values:
NeighborDiscoveryMode.CASCADE = (0, ‘Cascade’)
NeighborDiscoveryMode.FLOOD = (1, ‘Flood’)

CASCADE = (0, 'Cascade')
The discovery of a node neighbors is requested once the previous request finishes. This means that just
one discovery process is running at the same time.

This mode is recommended for large networks, it might be a slower method but it generates less traffic
than ‘Flood’.

FLOOD = (1, 'Flood')
The discovery of a node neighbors is requested when the node is found in the network. This means that
several discovery processes might be running at the same time.

194 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

code
Returns the code of the NeighborDiscoveryMode element.

Returns the code of the NeighborDiscoveryMode element.

Return type String

description
Returns the description of the NeighborDiscoveryMode element.

Returns the description of the NeighborDiscoveryMode element.

Return type String

digi.xbee.models.address module

class digi.xbee.models.address.XBee16BitAddress(address)
Bases: object

This class represent a 16-bit network address.

This address is only applicable for:

1. 802.15.4

2. Zigbee

3. ZNet 2.5

4. XTend (Legacy)

DigiMesh and Point-to-multipoint does not support 16-bit addressing.

Each device has its own 16-bit address which is unique in the network. It is automatically assigned when the
radio joins the network for Zigbee and Znet 2.5, and manually configured in 802.15.4 radios.

Attributes:
COORDINATOR_ADDRESS (XBee16BitAddress): 16-bit address reserved for the coordinator.
BROADCAST_ADDRESS (XBee16BitAddress): 16-bit broadcast address.
UNKNOWN_ADDRESS (XBee16BitAddress): 16-bit unknown address.
PATTERN (String): Pattern for the 16-bit address string: (0[xX])?[0-9a-fA-F]{1,4}

Class constructor. Instantiates a new XBee16BitAddress object with the provided parameters.

Parameters address (Bytearray) – address as byte array. Must be 1-2 digits.

Raises

• TypeError – if address is None.

• ValueError – if address is None or has less than 1 byte or more than 2.

PATTERN = '^(0[xX])?[0-9a-fA-F]{1,4}$'
16-bit address string pattern.

COORDINATOR_ADDRESS = <digi.xbee.models.address.XBee16BitAddress object>
0000).

Type 16-bit address reserved for the coordinator (value

2.6. API reference 195



XBee Python Library Documentation, Release 1.4.0

BROADCAST_ADDRESS = <digi.xbee.models.address.XBee16BitAddress object>
FFFF).

Type 16-bit broadcast address (value

UNKNOWN_ADDRESS = <digi.xbee.models.address.XBee16BitAddress object>
FFFE).

Type 16-bit unknown address (value

classmethod from_hex_string(address)
Class constructor. Instantiates a new :.XBee16BitAddress object from the provided hex string.

Parameters address (String) – String containing the address. Must be made by hex. digits
without blanks. Minimum 1 character, maximum 4 (16-bit).

Raises

• ValueError – if address has less than 1 character.

• ValueError – if address contains non-hexadecimal characters.

classmethod from_bytes(hsb, lsb)
Class constructor. Instantiates a new :.XBee16BitAddress object from the provided high significant byte
and low significant byte.

Parameters

• hsb (Integer) – high significant byte of the address.

• lsb (Integer) – low significant byte of the address.

Raises

• ValueError – if lsb is less than 0 or greater than 255.

• ValueError – if hsb is less than 0 or greater than 255.

classmethod is_valid(address)
Checks if the provided hex string is a valid 16-bit address.

Parameters address (String or Bytearray, or XBee16BitAddress) – String: String with
the address only with hex digits without blanks. Minimum 1 character, maximum 4 (16-bit).
Bytearray: Address as byte array. Must be 1-2 digits.

Returns True for a valid 16-bit address, False otherwise.

Return type Boolean

classmethod is_known_node_addr(address)
Checks if a provided address is a known value. That is, if it is a valid 16-bit address and it is not the
unknown or the broadcast address.

Parameters address (String, Bytearray, or XBee16BitAddress) – The 16-bit address to
check as a string, bytearray or XBee16BitAddress.

Returns True for a known node 16-bit address, False otherwise.

Return type Boolean

get_hsb()
Returns the high part of the bytearray (component 0).

Returns high part of the bytearray.

Return type Integer

196 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_lsb()
Returns the low part of the bytearray (component 1).

Returns low part of the bytearray.

Return type Integer

address
Returns a bytearray representation of this XBee16BitAddress.

Returns bytearray representation of this XBee16BitAddress.

Return type Bytearray

class digi.xbee.models.address.XBee64BitAddress(address)
Bases: object

This class represents a 64-bit address (also known as MAC address).

The 64-bit address is a unique device address assigned during manufacturing. This address is unique to each
physical device.

Class constructor. Instantiates a new XBee64BitAddress object with the provided parameters.

Parameters address (Bytearray) – the XBee 64-bit address as byte array.

Raise: ValueError: if address is None or its length less than 1 or greater than 8.

PATTERN = '^(0[xX])?[0-9a-fA-F]{1,16}$'
64-bit address string pattern.

COORDINATOR_ADDRESS = <digi.xbee.models.address.XBee64BitAddress object>
0000000000000000).

Type 64-bit address reserved for the coordinator (value

BROADCAST_ADDRESS = <digi.xbee.models.address.XBee64BitAddress object>
000000000000FFFF).

Type 64-bit broadcast address (value

UNKNOWN_ADDRESS = <digi.xbee.models.address.XBee64BitAddress object>
FFFFFFFFFFFFFFFF).

Type 64-bit unknown address (value

classmethod from_hex_string(address)
Class constructor. Instantiates a new XBee64BitAddress object from the provided hex string.

Parameters address (String) – The XBee 64-bit address as a string.

Raises ValueError – if the address’ length is less than 1 or does not match with the pattern:
(0[xX])?[0-9a-fA-F]{1,16}.

classmethod from_bytes(*args)
Class constructor. Instantiates a new XBee64BitAddress object from the provided bytes.

Parameters args (8 Integers) – 8 integers that represent the bytes 1 to 8 of this
XBee64BitAddress.

Raises ValueError – if the amount of arguments is not 8 or if any of the arguments is not
between 0 and 255.

classmethod is_valid(address)
Checks if the provided hex string is a valid 64-bit address.

2.6. API reference 197



XBee Python Library Documentation, Release 1.4.0

Parameters address (String, Bytearray, or XBee64BitAddress) – String: String with the
address only with hex digits without blanks. Minimum 1 character, maximum 16 (64-bit).
Bytearray: Address as byte array. Must be 1-8 digits.

Returns Boolean: True for a valid 64-bit address, False otherwise.

classmethod is_known_node_addr(address)
Checks if a provided address is a known value. That is, if it is a valid 64-bit address and it is not the
unknown or the broadcast address.

Parameters address (String, Bytearray, or XBee64BitAddress) – The 64-bit address to
check as a string, bytearray or XBee64BitAddress.

Returns True for a known node 64-bit address, False otherwise.

Return type Boolean

address
Returns a bytearray representation of this XBee64BitAddress.

Returns bytearray representation of this XBee64BitAddress.

Return type Bytearray

class digi.xbee.models.address.XBeeIMEIAddress(address)
Bases: object

This class represents an IMEI address used by cellular devices.

This address is only applicable for Cellular protocol.

Class constructor. Instantiates a new :.XBeeIMEIAddress object with the provided parameters.

Parameters address (Bytearray) – The XBee IMEI address as byte array.

Raises

• ValueError – if address is None.

• ValueError – if length of address greater than 8.

PATTERN = '^\\d{0,15}$'
IMEI address string pattern.

classmethod from_string(address)
Class constructor. Instantiates a new :.XBeeIMEIAddress object from the provided string.

Parameters address (String) – The XBee IMEI address as a string.

Raises

• ValueError – if address is None.

• ValueError – if address does not match the pattern: ^d{0,15}$.

classmethod is_valid(address)
Checks if the provided hex string is a valid IMEI.

Parameters address (String or Bytearray) – The XBee IMEI address as a string or
bytearray.

Returns True for a valid IMEI, False otherwise.

Return type Boolean

198 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

address
Returns a string representation of this XBeeIMEIAddress.

Returns the IMEI address in string format.

Return type String

digi.xbee.models.message module

class digi.xbee.models.message.XBeeMessage(data, remote_node, timestamp, broad-
cast=False)

Bases: object

This class represents a XBee message, which is formed by a RemoteXBeeDevice (the sender) and some data
(the data sent) as a bytearray.

Class constructor.

Parameters

• data (Bytearray) – the data sent.

• remote_node (RemoteXBeeDevice) – the sender.

• broadcast (Boolean, optional, default=`False`) – flag indicating
whether the message is broadcast (True) or not (False). Optional.

• timestamp – instant of time when the message was received.

data
Returns a bytearray containing the data of the message.

Returns the data of the message.

Return type Bytearray

remote_device
Returns the device which has sent the message.

Returns the device which has sent the message.

Return type RemoteXBeeDevice

is_broadcast
Returns whether the message is broadcast or not.

Returns True if the message is broadcast, False otherwise.

Return type Boolean

timestamp
Returns the moment when the message was received as a time.time() function returned value.

Returns

the returned value of using time.time() function when the message was received.

Return type Float

to_dict()
Returns the message information as a dictionary.

2.6. API reference 199



XBee Python Library Documentation, Release 1.4.0

class digi.xbee.models.message.ExplicitXBeeMessage(data, remote_node, timestamp,
src_endpoint, dest_endpoint,
cluster_id, profile_id, broad-
cast=False)

Bases: digi.xbee.models.message.XBeeMessage

This class represents an Explicit XBee message, which is formed by all parameters of a common XBee message
and: Source endpoint, destination endpoint, cluster ID, profile ID.

Class constructor.

Parameters

• data (Bytearray) – the data sent.

• remote_node (RemoteXBeeDevice) – the sender device.

• timestamp – instant of time when the message was received.

• src_endpoint (Integer) – source endpoint of the message. 1 byte.

• dest_endpoint (Integer) – destination endpoint of the message. 1 byte.

• cluster_id (Integer) – cluster id of the message. 2 bytes.

• profile_id (Integer) – profile id of the message. 2 bytes.

• broadcast (Boolean, optional, default=`False`) – flag indicating
whether the message is broadcast (True) or not (False). Optional.

source_endpoint
Returns the source endpoint of the message.

Returns the source endpoint of the message. 1 byte.

Return type Integer

dest_endpoint
Returns the destination endpoint of the message.

Returns the destination endpoint of the message. 1 byte.

Return type Integer

cluster_id
Returns the cluster ID of the message.

Returns the cluster ID of the message. 2 bytes.

Return type Integer

profile_id
Returns the profile ID of the message.

Returns the profile ID of the message. 2 bytes.

Return type Integer

to_dict()
Returns the message information as a dictionary.

data
Returns a bytearray containing the data of the message.

Returns the data of the message.

Return type Bytearray

200 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

is_broadcast
Returns whether the message is broadcast or not.

Returns True if the message is broadcast, False otherwise.

Return type Boolean

remote_device
Returns the device which has sent the message.

Returns the device which has sent the message.

Return type RemoteXBeeDevice

timestamp
Returns the moment when the message was received as a time.time() function returned value.

Returns

the returned value of using time.time() function when the message was received.

Return type Float

class digi.xbee.models.message.IPMessage(ip_addr, src_port, dest_port, protocol, data)
Bases: object

This class represents an IP message containing the IP address the message belongs to, the source and destination
ports, the IP protocol, and the content (data) of the message.

Class constructor.

Parameters

• ip_addr (ipaddress.IPv4Address) – The IP address the message comes from.

• src_port (Integer) – TCP or UDP source port of the transmission.

• dest_port (Integer) – TCP or UDP destination port of the transmission.

• protocol (IPProtocol) – IP protocol used in the transmission.

• data (Bytearray) – the data sent.

Raises

• ValueError – if ip_addr is None.

• ValueError – if protocol is None.

• ValueError – if data is None.

• ValueError – if source_port is less than 0 or greater than 65535.

• ValueError – if dest_port is less than 0 or greater than 65535.

ip_addr
Returns the IPv4 address this message is associated to.

Returns The IPv4 address this message is associated to.

Return type ipaddress.IPv4Address

source_port
Returns the source port of the transmission.

Returns The source port of the transmission.

Return type Integer

2.6. API reference 201



XBee Python Library Documentation, Release 1.4.0

dest_port
Returns the destination port of the transmission.

Returns The destination port of the transmission.

Return type Integer

protocol
Returns the protocol used in the transmission.

Returns The protocol used in the transmission.

Return type IPProtocol

data
Returns a bytearray containing the data of the message.

Returns the data of the message.

Return type Bytearray

to_dict()
Returns the message information as a dictionary.

class digi.xbee.models.message.SMSMessage(phone_number, data)
Bases: object

This class represents an SMS message containing the phone number that sent the message and the content (data)
of the message.

This class is used within the library to read SMS sent to Cellular devices.

Class constructor. Instantiates a new SMSMessage object with the provided parameters.

Parameters

• phone_number (String) – The phone number that sent the message.

• data (String) – The message text.

Raises

• ValueError – if phone_number is None.

• ValueError – if data is None.

• ValueError – if phone_number is not a valid phone number.

phone_number
Returns the phone number that sent the message.

Returns The phone number that sent the message.

Return type String

data
Returns the data of the message.

Returns The data of the message.

Return type String

to_dict()
Returns the message information as a dictionary.

class digi.xbee.models.message.UserDataRelayMessage(local_iface, data)
Bases: object

202 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

This class represents a user data relay message containing the source interface and the content (data) of the
message.

See also:

XBeeLocalInterface

Class constructor. Instantiates a new UserDataRelayMessage object with the provided parameters.

Parameters

• local_iface (XBeeLocalInterface) – The source XBee local interface.

• data (Bytearray) – Byte array containing the data of the message.

Raises ValueError – if relay_interface is None.

See also:

XBeeLocalInterface

local_interface
Returns the source interface that sent the message.

Returns The source interface that sent the message.

Return type XBeeLocalInterface

data
Returns the data of the message.

Returns The data of the message.

Return type Bytearray

to_dict()
Returns the message information as a dictionary.

digi.xbee.models.options module

class digi.xbee.models.options.ReceiveOptions
Bases: enum.Enum

This class lists all the possible options that have been set while receiving an XBee packet.

The receive options are usually set as a bitfield meaning that the options can be combined using the
‘|’ operand.

Values:
ReceiveOptions.NONE = 0
ReceiveOptions.PACKET_ACKNOWLEDGED = 1
ReceiveOptions.BROADCAST_PACKET = 2
ReceiveOptions.BROADCAST_PANS_PACKET = 4
ReceiveOptions.SECURE_SESSION_ENC = 16

2.6. API reference 203



XBee Python Library Documentation, Release 1.4.0

ReceiveOptions.APS_ENCRYPTED = 32
ReceiveOptions.SENT_FROM_END_DEVICE = 64
ReceiveOptions.REPEATER_MODE = 128
ReceiveOptions.DIGIMESH_MODE = 192

NONE = 0
No special receive options.

PACKET_ACKNOWLEDGED = 1
Packet was acknowledged.

Not valid for WiFi protocol.

BROADCAST_PACKET = 2
Packet was sent as a broadcast.

Not valid for WiFi protocol.

BROADCAST_PANS_PACKET = 4
Packet was broadcast accros all PANs.

Only for 802.15.4 protocol.

SECURE_SESSION_ENC = 16
Packet sent across a Secure Session.

Only for XBee 3.

APS_ENCRYPTED = 32
Packet encrypted with APS encryption.

Only valid for Zigbee protocol.

SENT_FROM_END_DEVICE = 64
Packet was sent from an end device (if known).

Only valid for Zigbee protocol.

POINT_MULTIPOINT_MODE = 64
Transmission is performed using point-to-Multipoint mode.

Only valid for DigiMesh 868/900 and Point-to-Multipoint 868/900 protocols.

REPEATER_MODE = 128
Transmission is performed using repeater mode.

Only valid for DigiMesh 868/900 and Point-to-Multipoint 868/900 protocols.

DIGIMESH_MODE = 192
Transmission is performed using DigiMesh mode.

Only valid for DigiMesh 868/900 and Point-to-Multipoint 868/900 protocols.

class digi.xbee.models.options.TransmitOptions
Bases: enum.Enum

This class lists all the possible options that can be set while transmitting an XBee packet.

The transmit options are usually set as a bitfield meaning that the options can be combined using the
‘|’ operand.

204 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Not all options are available for all cases, that’s why there are different names with same values. In
each moment, you must be sure that the option your are going to use, is a valid option in your context.

Values:
TransmitOptions.NONE = 0
TransmitOptions.DISABLE_ACK = 1
TransmitOptions.DONT_ATTEMPT_RD = 2
TransmitOptions.USE_BROADCAST_PAN_ID = 4
TransmitOptions.ENABLE_MULTICAST = 8
TransmitOptions.SECURE_SESSION_ENC = 16
TransmitOptions.ENABLE_APS_ENCRYPTION = 32
TransmitOptions.USE_EXTENDED_TIMEOUT = 64
TransmitOptions.REPEATER_MODE = 128
TransmitOptions.DIGIMESH_MODE = 192

NONE = 0
No special transmit options.

DISABLE_ACK = 1
Disables acknowledgments on all unicasts.

Only valid for Zigbee, DigiMesh, 802.15.4, and Point-to-multipoint protocols.

DISABLE_RETRIES_AND_REPAIR = 1
Disables the retries and router repair in the frame.

Only valid for Zigbee protocol.

DONT_ATTEMPT_RD = 2
Doesn’t attempt Route Discovery.

Disables Route Discovery on all DigiMesh unicasts.

Only valid for DigiMesh protocol.

BROADCAST_PAN = 2
Sends packet with broadcast {@code PAN ID}. Packet will be sent to all PANs.

Only valid for 802.15.4 XBee 3 protocol.

USE_BROADCAST_PAN_ID = 4
Sends packet with broadcast {@code PAN ID}. Packet will be sent to all devices in the same channel
ignoring the {@code PAN ID}.

It cannot be combined with other options.

Only valid for 802.15.4 XBee protocol.

ENABLE_UNICAST_NACK = 4
Enables unicast NACK messages.

NACK message is enabled on the packet.

Only valid for DigiMesh 868/900 protocol, and XBee 3 DigiMesh.

ENABLE_UNICAST_TRACE_ROUTE = 4
Enables unicast trace route messages.

2.6. API reference 205

mailto:\protect \T1\textbraceleft @code
mailto:\protect \T1\textbraceleft @code
mailto:\protect \T1\textbraceleft @code


XBee Python Library Documentation, Release 1.4.0

Trace route is enabled on the packets.

Only valid for DigiMesh 868/900 protocol.

INDIRECT_TRANSMISSION = 4
Used for binding transmissions.

Only valid for Zigbee protocol.

ENABLE_MULTICAST = 8
Enables multicast transmission request.

Only valid for Zigbee XBee protocol.

ENABLE_TRACE_ROUTE = 8
Enable a unicast Trace Route on DigiMesh transmissions When set, the transmission will generate a Route
Information - 0x8D frame.

Only valid for DigiMesh XBee protocol.

SECURE_SESSION_ENC = 16
Encrypt payload for transmission across a Secure Session. Reduces maximum payload size by 4 bytes.

Only for XBee 3.

ENABLE_APS_ENCRYPTION = 32
Enables APS encryption, only if {@code EE=1}.

Enabling APS encryption decreases the maximum number of RF payload bytes by 4 (below the value
reported by {@code NP}).

Only valid for Zigbee XBee protocol.

USE_EXTENDED_TIMEOUT = 64
Uses the extended transmission timeout.

Setting the extended timeout bit causes the stack to set the extended transmission timeout for the destina-
tion address.

Only valid for Zigbee XBee protocol.

POINT_MULTIPOINT_MODE = 64
Transmission is performed using point-to-Multipoint mode.

Only valid for DigiMesh 868/900 and Point-to-Multipoint 868/900 protocols.

REPEATER_MODE = 128
Transmission is performed using repeater mode.

Only valid for DigiMesh 868/900 and Point-to-Multipoint 868/900 protocols.

DIGIMESH_MODE = 192
Transmission is performed using DigiMesh mode.

Only valid for DigiMesh 868/900 and Point-to-Multipoint 868/900 protocols.

class digi.xbee.models.options.RemoteATCmdOptions
Bases: enum.Enum

This class lists all the possible options that can be set while transmitting a remote AT Command.

These options are usually set as a bitfield meaning that the options can be combined using the ‘|’
operand.

Values:

206 Chapter 2. Contents

mailto:\protect \T1\textbraceleft @code
mailto:\protect \T1\textbraceleft @code


XBee Python Library Documentation, Release 1.4.0

RemoteATCmdOptions.NONE = 0
RemoteATCmdOptions.DISABLE_ACK = 1
RemoteATCmdOptions.APPLY_CHANGES = 2
RemoteATCmdOptions.SECURE_SESSION_ENC = 16
RemoteATCmdOptions.EXTENDED_TIMEOUT = 64

NONE = 0
No special transmit options

DISABLE_ACK = 1
Disables ACK

APPLY_CHANGES = 2
Applies changes in the remote device.

If this option is not set, AC command must be sent before changes will take effect.

SECURE_SESSION_ENC = 16
Send the remote command securely. Requires a Secure Session be established with the destination.

Only for XBee 3.

EXTENDED_TIMEOUT = 64
Uses the extended transmission timeout.

Setting the extended timeout bit causes the stack to set the extended transmission timeout for the destina-
tion address.

Only valid for ZigBee XBee protocol.

class digi.xbee.models.options.SendDataRequestOptions(code, description)
Bases: enum.Enum

Enumerates the different options for the SendDataRequestPacket.

Values:
SendDataRequestOptions.OVERWRITE = (0, ‘Overwrite’)
SendDataRequestOptions.ARCHIVE = (1, ‘Archive’)
SendDataRequestOptions.APPEND = (2, ‘Append’)
SendDataRequestOptions.TRANSIENT = (3, ‘Transient data (do not store)’)

code
Returns the code of the SendDataRequestOptions element.

Returns the code of the SendDataRequestOptions element.

Return type Integer

description
Returns the description of the SendDataRequestOptions element.

Returns the description of the SendDataRequestOptions element.

Return type String

2.6. API reference 207



XBee Python Library Documentation, Release 1.4.0

class digi.xbee.models.options.DiscoveryOptions(code, description)
Bases: enum.Enum

Enumerates the different options used in the discovery process.

Values:
DiscoveryOptions.APPEND_DD = (1, ‘Append device type identifier (DD)’)
DiscoveryOptions.DISCOVER_MYSELF = (2, ‘Local device sends response frame’)
DiscoveryOptions.APPEND_RSSI = (4, ‘Append RSSI (of the last hop)’)

APPEND_DD = (1, 'Append device type identifier (DD)')
Append device type identifier (DD) to the discovery response.

Valid for the following protocols:

• DigiMesh

• Point-to-multipoint (Digi Point)

• Zigbee

DISCOVER_MYSELF = (2, 'Local device sends response frame')
Local device sends response frame when discovery is issued.

Valid for the following protocols:

• DigiMesh

• Point-to-multipoint (Digi Point)

• Zigbee

• 802.15.4

APPEND_RSSI = (4, 'Append RSSI (of the last hop)')
Append RSSI of the last hop to the discovery response.

Valid for the following protocols:

• DigiMesh

• Point-to-multipoint (Digi Point)

code
Returns the code of the DiscoveryOptions element.

Returns the code of the DiscoveryOptions element.

Return type Integer

description
Returns the description of the DiscoveryOptions element.

Returns the description of the DiscoveryOptions element.

Return type String

class digi.xbee.models.options.XBeeLocalInterface(code, description)
Bases: enum.Enum

Enumerates the different interfaces for the UserDataRelayPacket and
UserDataRelayOutputPacket.

208 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Inherited properties:
name (String): the name (id) of the XBee local interface.
value (String): the value of the XBee local interface.

Values:
XBeeLocalInterface.SERIAL = (0, ‘Serial port (UART when in API mode, or SPI interface)’)
XBeeLocalInterface.BLUETOOTH = (1, ‘BLE API interface (on XBee devices which support BLE)’)
XBeeLocalInterface.MICROPYTHON = (2, ‘MicroPython’)
XBeeLocalInterface.UNKNOWN = (255, ‘Unknown interface’)

code
Returns the code of the XBeeLocalInterface element.

Returns the code of the XBeeLocalInterface element.

Return type Integer

description
Returns the description of the XBeeLocalInterface element.

Returns the description of the XBeeLocalInterface element.

Return type String

class digi.xbee.models.options.RegisterKeyOptions(code, description)
Bases: enum.Enum

This class lists all the possible options that have been set while receiving an XBee packet.

The receive options are usually set as a bitfield meaning that the options can be combined using the
‘|’ operand.

Values:
RegisterKeyOptions.LINK_KEY = (0, ‘Key is a Link Key (KY on joining node)’)
RegisterKeyOptions.INSTALL_CODE = (1, ‘Key is an Install Code (I? on joining node,DC must be
set to 1 on joiner)’)
RegisterKeyOptions.UNKNOWN = (255, ‘Unknown key option’)

code
Returns the code of the RegisterKeyOptions element.

Returns the code of the RegisterKeyOptions element.

Return type Integer

description
Returns the description of the RegisterKeyOptions element.

Returns the description of the RegisterKeyOptions element.

Return type String

2.6. API reference 209



XBee Python Library Documentation, Release 1.4.0

class digi.xbee.models.options.SocketOption(code, description)
Bases: enum.Enum

Enumerates the different Socket Options.

Values:
SocketOption.TLS_PROFILE = (0, ‘TLS Profile’)
SocketOption.UNKNOWN = (255, ‘Unknown’)

code
Returns the code of the SocketOption element.

Returns the code of the SocketOption element.

Return type Integer

description
Returns the description of the SocketOption element.

Returns the description of the SocketOption element.

Return type String

class digi.xbee.models.options.FileOpenRequestOption
Bases: enum.IntFlag

This enumeration lists all the available options for FSCmdType.FILE_OPEN command requests.

Inherited properties:
name (String): Name (id) of this FileOpenRequestOption.
value (String): Value of this FileOpenRequestOption.

Values:
FileOpenRequestOption.CREATE = 1
FileOpenRequestOption.EXCLUSIVE = 2
FileOpenRequestOption.READ = 4
FileOpenRequestOption.WRITE = 8
FileOpenRequestOption.TRUNCATE = 16
FileOpenRequestOption.APPEND = 32
FileOpenRequestOption.SECURE = 128

CREATE = 1
Create if file does not exist.

EXCLUSIVE = 2
Error out if file exists.

READ = 4
Open file for reading.

210 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

WRITE = 8
Open file for writing.

TRUNCATE = 16
Truncate file to 0 bytes.

APPEND = 32
Append to end of file.

SECURE = 128
Create a secure write-only file.

class digi.xbee.models.options.DirResponseFlag
Bases: enum.IntFlag

This enumeration lists all the available flags for FSCmdType.DIR_OPEN and FSCmd-
Type.DIR_READ command responses.

Inherited properties:
name (String): Name (id) of this DirResponseFlag.
value (String): Value of this DirResponseFlag.

Values:
DirResponseFlag.IS_DIR = 128
DirResponseFlag.IS_SECURE = 64
DirResponseFlag.IS_LAST = 1

IS_DIR = 128
Entry is a directory.

IS_SECURE = 64
Entry is stored securely.

IS_LAST = 1
Entry is the last.

digi.xbee.models.protocol module

class digi.xbee.models.protocol.XBeeProtocol(code, description)
Bases: enum.Enum

Enumerates the available XBee protocols. The XBee protocol is determined by the combination of
hardware and firmware of an XBee device.

Inherited properties:
name (String): the name (id) of this XBeeProtocol.
value (String): the value of this XBeeProtocol.

Values:
XBeeProtocol.ZIGBEE = (0, ‘Zigbee’)

2.6. API reference 211



XBee Python Library Documentation, Release 1.4.0

XBeeProtocol.RAW_802_15_4 = (1, ‘802.15.4’)
XBeeProtocol.XBEE_WIFI = (2, ‘Wi-Fi’)
XBeeProtocol.DIGI_MESH = (3, ‘DigiMesh’)
XBeeProtocol.XCITE = (4, ‘XCite’)
XBeeProtocol.XTEND = (5, ‘XTend (Legacy)’)
XBeeProtocol.XTEND_DM = (6, ‘XTend (DigiMesh)’)
XBeeProtocol.SMART_ENERGY = (7, ‘Smart Energy’)
XBeeProtocol.DIGI_POINT = (8, ‘Point-to-multipoint’)
XBeeProtocol.ZNET = (9, ‘ZNet 2.5’)
XBeeProtocol.XC = (10, ‘XSC’)
XBeeProtocol.XLR = (11, ‘XLR’)
XBeeProtocol.XLR_DM = (12, ‘XLR’)
XBeeProtocol.SX = (13, ‘XBee SX’)
XBeeProtocol.XLR_MODULE = (14, ‘XLR Module’)
XBeeProtocol.CELLULAR = (15, ‘Cellular’)
XBeeProtocol.CELLULAR_NBIOT = (16, ‘Cellular NB-IoT’)
XBeeProtocol.UNKNOWN = (99, ‘Unknown’)

code
Returns the code of the XBeeProtocol element.

Returns the code of the XBeeProtocol element.

Return type Integer

description
Returns the description of the XBeeProtocol element.

Returns the description of the XBeeProtocol element.

Return type String

class digi.xbee.models.protocol.IPProtocol(code, description)
Bases: enum.Enum

Enumerates the available network protocols.

Inherited properties:
name (String): the name (id) of this IPProtocol.
value (String): the value of this IPProtocol.

Values:
IPProtocol.UDP = (0, ‘UDP’)
IPProtocol.TCP = (1, ‘TCP’)
IPProtocol.TCP_SSL = (4, ‘TLS’)

code
Returns the code of the IP protocol.

212 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns code of the IP protocol.

Return type Integer

description
Returns the description of the IP protocol.

Returns description of the IP protocol.

Return type String

class digi.xbee.models.protocol.Role(identifier, description)
Bases: enum.Enum

Enumerates the available roles for an XBee.

Inherited properties:
name (String): the name (id) of this Role.
value (String): the value of this Role.

Values:
Role.COORDINATOR = (0, ‘Coordinator’)
Role.ROUTER = (1, ‘Router’)
Role.END_DEVICE = (2, ‘End device’)
Role.UNKNOWN = (3, ‘Unknown’)

id
Gets the identifier of the role.

Returns the role identifier.

Return type Integer

description
Gets the description of the role.

Returns the role description.

Return type String

digi.xbee.models.status module

class digi.xbee.models.status.ATCommandStatus(code, description)
Bases: enum.Enum

This class lists all the possible states of an AT command after execution.

Inherited properties:
name (String): the name (id) of the ATCommandStatus.
value (String): the value of the ATCommandStatus.

Values:

2.6. API reference 213



XBee Python Library Documentation, Release 1.4.0

ATCommandStatus.OK = (0, ‘Status OK’)
ATCommandStatus.ERROR = (1, ‘Status Error’)
ATCommandStatus.INVALID_COMMAND = (2, ‘Invalid command’)
ATCommandStatus.INVALID_PARAMETER = (3, ‘Invalid parameter’)
ATCommandStatus.TX_FAILURE = (4, ‘TX failure’)
ATCommandStatus.NO_SECURE_SESSION = (11, ‘No secure session: Remote command access
requires a secure session be established first’)
ATCommandStatus.ENC_ERROR = (12, ‘Encryption error’)
ATCommandStatus.CMD_SENT_INSECURELY = (13, ‘Command sent insecurely: A secure session
exists, but the request needs to have the appropriate command option set (bit 4)’)
ATCommandStatus.UNKNOWN = (255, ‘Unknown status’)

code
Returns the code of the ATCommandStatus element.

Returns the code of the ATCommandStatus element.

Return type Integer

description
Returns the description of the ATCommandStatus element.

Returns the description of the ATCommandStatus element.

Return type String

class digi.xbee.models.status.DiscoveryStatus(code, description)
Bases: enum.Enum

This class lists all the possible states of the discovery process.

Inherited properties:
name (String): The name of the DiscoveryStatus.
value (Integer): The ID of the DiscoveryStatus.

Values:
DiscoveryStatus.NO_DISCOVERY_OVERHEAD = (0, ‘No discovery overhead’)
DiscoveryStatus.ADDRESS_DISCOVERY = (1, ‘Address discovery’)
DiscoveryStatus.ROUTE_DISCOVERY = (2, ‘Route discovery’)
DiscoveryStatus.ADDRESS_AND_ROUTE = (3, ‘Address and route’)
DiscoveryStatus.EXTENDED_TIMEOUT_DISCOVERY = (64, ‘Extended timeout discovery’)
DiscoveryStatus.UNKNOWN = (255, ‘Unknown’)

code
Returns the code of the DiscoveryStatus element.

Returns the code of the DiscoveryStatus element.

Return type Integer

214 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

description
Returns the description of the DiscoveryStatus element.

Returns The description of the DiscoveryStatus element.

Return type String

class digi.xbee.models.status.TransmitStatus(code, description)
Bases: enum.Enum

This class represents all available transmit status.

Inherited properties:
name (String): the name (id) of ths TransmitStatus.
value (String): the value of ths TransmitStatus.

Values:
TransmitStatus.SUCCESS = (0, ‘Success’)
TransmitStatus.NO_ACK = (1, ‘No acknowledgement received’)
TransmitStatus.CCA_FAILURE = (2, ‘CCA failure’)
TransmitStatus.PURGED = (3, ‘Transmission purged, it was attempted before stack was up’)
TransmitStatus.WIFI_PHYSICAL_ERROR = (4, ‘Transceiver was unable to complete the
transmission’)
TransmitStatus.INVALID_DESTINATION = (21, ‘Invalid destination endpoint’)
TransmitStatus.NO_BUFFERS = (24, ‘No buffers’)
TransmitStatus.NETWORK_ACK_FAILURE = (33, ‘Network ACK Failure’)
TransmitStatus.NOT_JOINED_NETWORK = (34, ‘Not joined to network’)
TransmitStatus.SELF_ADDRESSED = (35, ‘Self-addressed’)
TransmitStatus.ADDRESS_NOT_FOUND = (36, ‘Address not found’)
TransmitStatus.ROUTE_NOT_FOUND = (37, ‘Route not found’)
TransmitStatus.BROADCAST_FAILED = (38, ‘Broadcast source failed to hear a neighbor relay the
message’)
TransmitStatus.INVALID_BINDING_TABLE_INDEX = (43, ‘Invalid binding table index’)
TransmitStatus.INVALID_ENDPOINT = (44, ‘Invalid endpoint’)
TransmitStatus.BROADCAST_ERROR_APS = (45, ‘Attempted broadcast with APS transmission’)
TransmitStatus.BROADCAST_ERROR_APS_EE0 = (46, ‘Attempted broadcast with APS
transmission, but EE=0’)
TransmitStatus.SOFTWARE_ERROR = (49, ‘A software error occurred’)
TransmitStatus.RESOURCE_ERROR = (50, ‘Resource error lack of free buffers, timers, etc’)
TransmitStatus.NO_SECURE_SESSION = (52, ‘No Secure session connection’)
TransmitStatus.ENC_FAILURE = (53, ‘Encryption failure’)
TransmitStatus.PAYLOAD_TOO_LARGE = (116, ‘Data payload too large’)
TransmitStatus.INDIRECT_MESSAGE_UNREQUESTED = (117, ‘Indirect message unrequested’)
TransmitStatus.SOCKET_CREATION_FAILED = (118, ‘Attempt to create a client socket failed’)
TransmitStatus.IP_PORT_NOT_EXIST = (119, ‘TCP connection to given IP address and port does
not exist. Source port is non-zero, so a new connection is not attempted’)
TransmitStatus.UDP_SRC_PORT_NOT_MATCH_LISTENING_PORT = (120, ‘Source port on a
UDP transmission does not match a listening port on the transmitting module’)
TransmitStatus.TCP_SRC_PORT_NOT_MATCH_LISTENING_PORT = (121, ‘Source port on a
TCP transmission does not match a listening port on the transmitting module’)

2.6. API reference 215



XBee Python Library Documentation, Release 1.4.0

TransmitStatus.INVALID_IP_ADDRESS = (122, ‘Destination IPv4 address is invalid’)
TransmitStatus.INVALID_IP_PROTOCOL = (123, ‘Protocol on an IPv4 transmission is invalid’)
TransmitStatus.RELAY_INTERFACE_INVALID = (124, ‘Destination interface on a User Data Relay
Frame does not exist’)
TransmitStatus.RELAY_INTERFACE_REJECTED = (125, ‘Destination interface on a User Data
Relay Frame exists, but the interface is not accepting data’)
TransmitStatus.MODEM_UPDATE_IN_PROGRESS = (126, ‘Modem update in progress. Try again
after update completion.’)
TransmitStatus.SOCKET_CONNECTION_REFUSED = (128, ‘Destination server refused the
connection’)
TransmitStatus.SOCKET_CONNECTION_LOST = (129, ‘The existing connection was lost before
the data was sent’)
TransmitStatus.SOCKET_ERROR_NO_SERVER = (130, ‘No server’)
TransmitStatus.SOCKET_ERROR_CLOSED = (131, ‘The existing connection was closed’)
TransmitStatus.SOCKET_ERROR_UNKNOWN_SERVER = (132, ‘The server could not be found’)
TransmitStatus.SOCKET_ERROR_UNKNOWN_ERROR = (133, ‘An unknown error occurred’)
TransmitStatus.INVALID_TLS_CONFIGURATION = (134, ‘TLS Profile on a 0x23 API request
does not exist, or one or more certificates is invalid’)
TransmitStatus.SOCKET_NOT_CONNECTED = (135, ‘Socket not connected’)
TransmitStatus.SOCKET_NOT_BOUND = (136, ‘Socket not bound’)
TransmitStatus.KEY_NOT_AUTHORIZED = (187, ‘Key not authorized’)
TransmitStatus.UNKNOWN = (255, ‘Unknown’)

code
Returns the code of the TransmitStatus element.

Returns the code of the TransmitStatus element.

Return type Integer

description
Returns the description of the TransmitStatus element.

Returns the description of the TransmitStatus element.

Return type String

class digi.xbee.models.status.ModemStatus(code, description)
Bases: enum.Enum

Enumerates the different modem status events. This enumeration list is intended to be used within
the ModemStatusPacket packet.

Values:
ModemStatus.HARDWARE_RESET = (0, ‘Device was reset’)
ModemStatus.WATCHDOG_TIMER_RESET = (1, ‘Watchdog timer was reset’)
ModemStatus.JOINED_NETWORK = (2, ‘Device joined to network’)
ModemStatus.DISASSOCIATED = (3, ‘Device disassociated’)
ModemStatus.ERROR_SYNCHRONIZATION_LOST = (4, ‘Configuration error/synchronization
lost’)
ModemStatus.COORDINATOR_REALIGNMENT = (5, ‘Coordinator realignment’)

216 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

ModemStatus.COORDINATOR_STARTED = (6, ‘The coordinator started’)
ModemStatus.NETWORK_SECURITY_KEY_UPDATED = (7, ‘Network security key was
updated’)
ModemStatus.NETWORK_WOKE_UP = (11, ‘Network woke up’)
ModemStatus.NETWORK_WENT_TO_SLEEP = (12, ‘Network went to sleep’)
ModemStatus.VOLTAGE_SUPPLY_LIMIT_EXCEEDED = (13, ‘Voltage supply limit exceeded’)
ModemStatus.REMOTE_MANAGER_CONNECTED = (14, ‘Remote Manager connected’)
ModemStatus.REMOTE_MANAGER_DISCONNECTED = (15, ‘Remote Manager disconnected’)
ModemStatus.MODEM_CONFIG_CHANGED_WHILE_JOINING = (17, ‘Modem configuration
changed while joining’)
ModemStatus.ACCESS_FAULT = (18, ‘Access fault’)
ModemStatus.FATAL_ERROR = (19, ‘Fatal error’)
ModemStatus.BLUETOOTH_CONNECTED = (50, ‘A Bluetooth connection has been made and API
mode has been unlocked’)
ModemStatus.BLUETOOTH_DISCONNECTED = (51, ‘An unlocked Bluetooth connection has been
disconnected’)
ModemStatus.BANDMASK_CONFIGURATION_ERROR = (52, ‘LTE-M/NB-IoT bandmask
configuration has failed’)
ModemStatus.CELLULAR_UPDATE_START = (53, ‘Cellular component update started’)
ModemStatus.CELLULAR_UPDATE_FAILED = (54, ‘Cellular component update failed’)
ModemStatus.CELLULAR_UPDATE_SUCCESS = (55, ‘Cellular component update completed’)
ModemStatus.FIRMWARE_UPDATE_START = (56, ‘XBee firmware update started’)
ModemStatus.FIRMWARE_UPDATE_FAILED = (57, ‘XBee firmware update failed’)
ModemStatus.FIRMWARE_UPDATE_APPLYING = (58, ‘XBee firmware update applying’)
ModemStatus.SEC_SESSION_ESTABLISHED = (59, ‘Secure session successfully established’)
ModemStatus.SEC_SESSION_END = (60, ‘Secure session ended’)
ModemStatus.SEC_SESSION_AUTH_FAILED = (61, ‘Secure session authentication failed’)
ModemStatus.COORD_PAN_ID_CONFLICT = (62, ‘Coordinator detected a PAN ID conflict but
took no action because CR=0’)
ModemStatus.COORD_CHANGE_PAN_ID = (63, ‘Coordinator changed PAN ID due to a conflict’)
ModemStatus.ROUTER_PAN_ID_CHANGED = (64, ‘Router PAN ID was changed by coordinator
due to a conflict’)
ModemStatus.NET_WATCHDOG_EXPIRED = (66, ‘Network watchdog timeout expired’)
ModemStatus.ERROR_STACK = (128, ‘Stack error’)
ModemStatus.ERROR_AP_NOT_CONNECTED = (130, ‘Send/join command issued without
connecting from AP’)
ModemStatus.ERROR_AP_NOT_FOUND = (131, ‘Access point not found’)
ModemStatus.ERROR_PSK_NOT_CONFIGURED = (132, ‘PSK not configured’)
ModemStatus.ERROR_SSID_NOT_FOUND = (135, ‘SSID not found’)
ModemStatus.ERROR_FAILED_JOIN_SECURITY = (136, ‘Failed to join with security enabled’)
ModemStatus.ERROR_INVALID_CHANNEL = (138, ‘Invalid channel’)
ModemStatus.ERROR_FAILED_JOIN_AP = (142, ‘Failed to join access point’)
ModemStatus.UNKNOWN = (255, ‘UNKNOWN’)

code
Returns the code of the ModemStatus element.

2.6. API reference 217



XBee Python Library Documentation, Release 1.4.0

Returns the code of the ModemStatus element.

Return type Integer

description
Returns the description of the ModemStatus element.

Returns the description of the ModemStatus element.

Return type String

class digi.xbee.models.status.PowerLevel(code, description)
Bases: enum.Enum

Enumerates the different power levels. The power level indicates the output power value of a radio
when transmitting data.

Values:
PowerLevel.LEVEL_LOWEST = (0, ‘Lowest’)
PowerLevel.LEVEL_LOW = (1, ‘Low’)
PowerLevel.LEVEL_MEDIUM = (2, ‘Medium’)
PowerLevel.LEVEL_HIGH = (3, ‘High’)
PowerLevel.LEVEL_HIGHEST = (4, ‘Highest’)
PowerLevel.LEVEL_UNKNOWN = (255, ‘Unknown’)

code
Returns the code of the PowerLevel element.

Returns the code of the PowerLevel element.

Return type Integer

description
Returns the description of the PowerLevel element.

Returns the description of the PowerLevel element.

Return type String

class digi.xbee.models.status.AssociationIndicationStatus(code, description)
Bases: enum.Enum

Enumerates the different association indication statuses.

Values:
AssociationIndicationStatus.SUCCESSFULLY_JOINED = (0, ‘Successfully formed or joined a
network’)
AssociationIndicationStatus.AS_TIMEOUT = (1, ‘Active Scan Timeout’)
AssociationIndicationStatus.AS_NO_PANS_FOUND = (2, ‘Active Scan found no PANs’)
AssociationIndicationStatus.AS_ASSOCIATION_NOT_ALLOWED = (3, ‘Active Scan found PAN,
but the CoordinatorAllowAssociation bit is not set’)
AssociationIndicationStatus.AS_BEACONS_NOT_SUPPORTED = (4, ‘Active Scan found PAN, but
Coordinator and End Device are not onfigured to support beacons’)

218 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

AssociationIndicationStatus.AS_ID_DOESNT_MATCH = (5, ‘Active Scan found PAN, but the
Coordinator ID parameter does not match the ID parameter of the End Device’)
AssociationIndicationStatus.AS_CHANNEL_DOESNT_MATCH = (6, ‘Active Scan found PAN, but
the Coordinator CH parameter does not match the CH parameter of the End Device’)
AssociationIndicationStatus.ENERGY_SCAN_TIMEOUT = (7, ‘Energy Scan Timeout’)
AssociationIndicationStatus.COORDINATOR_START_REQUEST_FAILED = (8, ‘Coordinator
start request failed’)
AssociationIndicationStatus.COORDINATOR_INVALID_PARAMETER = (9, ‘Coordinator could
not start due to invalid parameter’)
AssociationIndicationStatus.COORDINATOR_REALIGNMENT = (10, ‘Coordinator Realignment
is in progress’)
AssociationIndicationStatus.AR_NOT_SENT = (11, ‘Association Request not sent’)
AssociationIndicationStatus.AR_TIMED_OUT = (12, ‘Association Request timed out - no reply was
received’)
AssociationIndicationStatus.AR_INVALID_PARAMETER = (13, ‘Association Request had an
Invalid Parameter’)
AssociationIndicationStatus.AR_CHANNEL_ACCESS_FAILURE = (14, ‘Association Request
Channel Access Failure. Request was not transmitted - CCA failure’)
AssociationIndicationStatus.AR_COORDINATOR_ACK_WASNT_RECEIVED = (15, ‘Remote
Coordinator did not send an ACK after Association Request was sent’)
AssociationIndicationStatus.AR_COORDINATOR_DIDNT_REPLY = (16, ‘Remote Coordinator
did not reply to the Association Request, but an ACK was received after sending the request’)
AssociationIndicationStatus.SYNCHRONIZATION_LOST = (18, ‘Sync-Loss - Lost synchronization
with a Beaconing Coordinator’)
AssociationIndicationStatus.DISASSOCIATED = (19, ‘ Disassociated - No longer associated to
Coordinator’)
AssociationIndicationStatus.NO_PANS_FOUND = (33, ‘Scan found no PANs.’)
AssociationIndicationStatus.NO_PANS_WITH_ID_FOUND = (34, ‘Scan found no valid PANs based
on current SC and ID settings’)
AssociationIndicationStatus.NJ_EXPIRED = (35, ‘Valid Coordinator or Routers found, but they are
not allowing joining (NJ expired)’)
AssociationIndicationStatus.NO_JOINABLE_BEACONS_FOUND = (36, ‘No joinable beacons
were found’)
AssociationIndicationStatus.UNEXPECTED_STATE = (37, ‘Unexpected state, node should not be
attempting to join at this time’)
AssociationIndicationStatus.JOIN_FAILED = (39, ‘Node Joining attempt failed (typically due to
incompatible security settings)’)
AssociationIndicationStatus.COORDINATOR_START_FAILED = (42, ‘Coordinator Start attempt
failed’)
AssociationIndicationStatus.CHECKING_FOR_COORDINATOR = (43, ‘Checking for an existing
coordinator’)
AssociationIndicationStatus.NETWORK_LEAVE_FAILED = (44, ‘Attempt to leave the network
failed’)
AssociationIndicationStatus.DEVICE_DIDNT_RESPOND = (171, ‘Attempted to join a device that
did not respond’)
AssociationIndicationStatus.UNSECURED_KEY_RECEIVED = (172, ‘Secure join error - network
security key received unsecured’)
AssociationIndicationStatus.KEY_NOT_RECEIVED = (173, ‘Secure join error - network security
key not received’)
AssociationIndicationStatus.INVALID_SECURITY_KEY = (175, ‘Secure join error - joining device

2.6. API reference 219



XBee Python Library Documentation, Release 1.4.0

does not have the right preconfigured link key’)
AssociationIndicationStatus.SCANNING_NETWORK = (255, ‘Scanning for a network/Attempting
to associate’)

code
Returns the code of the AssociationIndicationStatus element.

Returns the code of the AssociationIndicationStatus element.

Return type Integer

description
Returns the description of the AssociationIndicationStatus element.

Returns

the description of the AssociationIndicationStatus element.

Return type String

class digi.xbee.models.status.CellularAssociationIndicationStatus(code, de-
scription)

Bases: enum.Enum

Enumerates the different association indication statuses for the Cellular protocol.

Values:
CellularAssociationIndicationStatus.SUCCESSFULLY_CONNECTED = (0, ‘Connected to the
Internet’)
CellularAssociationIndicationStatus.REGISTERING_CELLULAR_NETWORK = (34,
‘Registering to cellular network’)
CellularAssociationIndicationStatus.CONNECTING_INTERNET = (35, ‘Connecting to the
Internet’)
CellularAssociationIndicationStatus.MODEM_FIRMWARE_CORRUPT = (36, ‘The cellular
component requires a new firmware image’)
CellularAssociationIndicationStatus.REGISTRATION_DENIED = (37, ‘Cellular network
registration was denied’)
CellularAssociationIndicationStatus.AIRPLANE_MODE = (42, ‘Airplane mode is active’)
CellularAssociationIndicationStatus.USB_DIRECT = (43, ‘USB Direct mode is active’)
CellularAssociationIndicationStatus.PSM_LOW_POWER = (44, ‘The cellular component is in the
PSM low-power state’)
CellularAssociationIndicationStatus.BYPASS_MODE = (47, ‘Bypass mode active’)
CellularAssociationIndicationStatus.INITIALIZING = (255, ‘Initializing’)

code
Returns the code of the CellularAssociationIndicationStatus element.

Returns

the code of the CellularAssociationIndicationStatus element.

Return type Integer

220 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

description

Returns the description of the CellularAssociationIndicationStatus element.

Returns

the description of the CellularAssociationIndicationStatus element.

Return type String

class digi.xbee.models.status.DeviceCloudStatus(code, description)
Bases: enum.Enum

Enumerates the different Device Cloud statuses.

Values:
DeviceCloudStatus.SUCCESS = (0, ‘Success’)
DeviceCloudStatus.BAD_REQUEST = (1, ‘Bad request’)
DeviceCloudStatus.RESPONSE_UNAVAILABLE = (2, ‘Response unavailable’)
DeviceCloudStatus.DEVICE_CLOUD_ERROR = (3, ‘Device Cloud error’)
DeviceCloudStatus.CANCELED = (32, ‘Device Request canceled by user’)
DeviceCloudStatus.TIME_OUT = (33, ‘Session timed out’)
DeviceCloudStatus.UNKNOWN_ERROR = (64, ‘Unknown error’)

code
Returns the code of the DeviceCloudStatus element.

Returns the code of the DeviceCloudStatus element.

Return type Integer

description
Returns the description of the DeviceCloudStatus element.

Returns the description of the DeviceCloudStatus element.

Return type String

class digi.xbee.models.status.FrameError(code, description)
Bases: enum.Enum

Enumerates the different frame errors.

Values:
FrameError.INVALID_TYPE = (2, ‘Invalid frame type’)
FrameError.INVALID_LENGTH = (3, ‘Invalid frame length’)
FrameError.INVALID_CHECKSUM = (4, ‘Erroneous checksum on last frame’)
FrameError.PAYLOAD_TOO_BIG = (5, ‘Payload of last API frame was too big to fit into a buffer’)
FrameError.STRING_ENTRY_TOO_BIG = (6, ‘String entry was too big on last API frame sent’)
FrameError.WRONG_STATE = (7, ‘Wrong state to receive frame’)
FrameError.WRONG_REQUEST_ID = (8, ‘Device request ID of device response do not match the
number in the request’)

2.6. API reference 221



XBee Python Library Documentation, Release 1.4.0

code
Returns the code of the FrameError element.

Returns the code of the FrameError element.

Return type Integer

description
Returns the description of the FrameError element.

Returns the description of the FrameError element.

Return type String

class digi.xbee.models.status.WiFiAssociationIndicationStatus(code, descrip-
tion)

Bases: enum.Enum

Enumerates the different Wi-Fi association indication statuses.

Values:
WiFiAssociationIndicationStatus.SUCCESSFULLY_JOINED = (0, ‘Successfully joined to access
point’)
WiFiAssociationIndicationStatus.INITIALIZING = (1, ‘Initialization in progress’)
WiFiAssociationIndicationStatus.INITIALIZED = (2, ‘Initialized, but not yet scanning’)
WiFiAssociationIndicationStatus.DISCONNECTING = (19, ‘Disconnecting from access point’)
WiFiAssociationIndicationStatus.SSID_NOT_CONFIGURED = (35, ‘SSID not configured’)
WiFiAssociationIndicationStatus.INVALID_KEY = (36, ‘Encryption key invalid (NULL or invalid
length)’)
WiFiAssociationIndicationStatus.JOIN_FAILED = (39, ‘SSID found, but join failed’)
WiFiAssociationIndicationStatus.WAITING_FOR_AUTH = (64, ‘Waiting for WPA or WPA2
authentication’)
WiFiAssociationIndicationStatus.WAITING_FOR_IP = (65, ‘Joined to a network and waiting for IP
address’)
WiFiAssociationIndicationStatus.SETTING_UP_SOCKETS = (66, ‘Joined to a network and IP
configured. Setting up listening sockets’)
WiFiAssociationIndicationStatus.SCANNING_FOR_SSID = (255, ‘Scanning for the configured
SSID’)

code
Returns the code of the WiFiAssociationIndicationStatus element.

Returns the code of the WiFiAssociationIndicationStatus element.

Return type Integer

description
Returns the description of the WiFiAssociationIndicationStatus element.

Returns the description of the WiFiAssociationIndicationStatus element.

Return type String

class digi.xbee.models.status.NetworkDiscoveryStatus(code, description)
Bases: enum.Enum

222 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Enumerates the different statuses of the network discovery process.

Values:
NetworkDiscoveryStatus.SUCCESS = (0, ‘Success’)
NetworkDiscoveryStatus.ERROR_READ_TIMEOUT = (1, ‘Read timeout error’)
NetworkDiscoveryStatus.ERROR_NET_DISCOVER = (2, ‘Error executing node discovery’)
NetworkDiscoveryStatus.ERROR_GENERAL = (3, ‘Error while discovering network’)
NetworkDiscoveryStatus.CANCEL = (4, ‘Discovery process cancelled’)

code
Returns the code of the NetworkDiscoveryStatus element.

Returns the code of the NetworkDiscoveryStatus element.

Return type Integer

description
Returns the description of the NetworkDiscoveryStatus element.

Returns the description of the NetworkDiscoveryStatus element.

Return type String

class digi.xbee.models.status.ZigbeeRegisterStatus(code, description)
Bases: enum.Enum

Enumerates the different statuses of the Zigbee Device Register process.

Values:
ZigbeeRegisterStatus.SUCCESS = (0, ‘Success’)
ZigbeeRegisterStatus.KEY_TOO_LONG = (1, ‘Key too long’)
ZigbeeRegisterStatus.ADDRESS_NOT_FOUND = (177, ‘Address not found in the key table’)
ZigbeeRegisterStatus.INVALID_KEY = (178, ‘Key is invalid (00 and FF are reserved)’)
ZigbeeRegisterStatus.INVALID_ADDRESS = (179, ‘Invalid address’)
ZigbeeRegisterStatus.KEY_TABLE_FULL = (180, ‘Key table is full’)
ZigbeeRegisterStatus.KEY_NOT_FOUND = (255, ‘Key not found’)
ZigbeeRegisterStatus.UNKNOWN = (238, ‘Unknown’)

code
Returns the code of the ZigbeeRegisterStatus element.

Returns the code of the ZigbeeRegisterStatus element.

Return type Integer

description
Returns the description of the ZigbeeRegisterStatus element.

Returns the description of the ZigbeeRegisterStatus element.

Return type String

2.6. API reference 223



XBee Python Library Documentation, Release 1.4.0

class digi.xbee.models.status.EmberBootloaderMessageType(code, description)
Bases: enum.Enum

Enumerates the different types of the Ember bootloader messages.

Values:
EmberBootloaderMessageType.ACK = (6, ‘ACK message’)
EmberBootloaderMessageType.NACK = (21, ‘NACK message’)
EmberBootloaderMessageType.NO_MAC_ACK = (64, ‘No MAC ACK message’)
EmberBootloaderMessageType.QUERY = (81, ‘Query message’)
EmberBootloaderMessageType.QUERY_RESPONSE = (82, ‘Query response message’)
EmberBootloaderMessageType.UNKNOWN = (255, ‘Unknown’)

code
Returns the code of the EmberBootloaderMessageType element.

Returns the code of the EmberBootloaderMessageType element.

Return type Integer

description
Returns the description of the EmberBootloaderMessageType element.

Returns the description of the EmberBootloaderMessageType element.

Return type String

class digi.xbee.models.status.SocketStatus(code, description)
Bases: enum.Enum

Enumerates the different Socket statuses.

Values:
SocketStatus.SUCCESS = (0, ‘Operation successful’)
SocketStatus.INVALID_PARAM = (1, ‘Invalid parameters’)
SocketStatus.FAILED_TO_READ = (2, ‘Failed to retrieve option value’)
SocketStatus.CONNECTION_IN_PROGRESS = (3, ‘Connection already in progress’)
SocketStatus.ALREADY_CONNECTED = (4, ‘Already connected/bound/listening’)
SocketStatus.UNKNOWN_ERROR = (5, ‘Unknown error’)
SocketStatus.BAD_SOCKET = (32, ‘Bad socket ID’)
SocketStatus.NOT_REGISTERED = (34, ‘Not registered to cell network’)
SocketStatus.INTERNAL_ERROR = (49, ‘Internal error’)
SocketStatus.RESOURCE_ERROR = (50, ‘Resource error: retry the operation later’)
SocketStatus.INVALID_PROTOCOL = (123, ‘Invalid protocol’)
SocketStatus.UNKNOWN = (255, ‘Unknown’)

code
Returns the code of the SocketStatus element.

224 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns the code of the SocketStatus element.

Return type Integer

description
Returns the description of the SocketStatus element.

Returns the description of the SocketStatus element.

Return type String

class digi.xbee.models.status.SocketState(code, description)
Bases: enum.Enum

Enumerates the different Socket states.

Values:
SocketState.CONNECTED = (0, ‘Connected’)
SocketState.FAILED_DNS = (1, ‘Failed DNS lookup’)
SocketState.CONNECTION_REFUSED = (2, ‘Connection refused’)
SocketState.TRANSPORT_CLOSED = (3, ‘Transport closed’)
SocketState.TIMED_OUT = (4, ‘Timed out’)
SocketState.INTERNAL_ERROR = (5, ‘Internal error’)
SocketState.HOST_UNREACHABLE = (6, ‘Host unreachable’)
SocketState.CONNECTION_LOST = (7, ‘Connection lost’)
SocketState.UNKNOWN_ERROR = (8, ‘Unknown error’)
SocketState.UNKNOWN_SERVER = (9, ‘Unknown server’)
SocketState.RESOURCE_ERROR = (10, ‘Resource error’)
SocketState.LISTENER_CLOSED = (11, ‘Listener closed’)
SocketState.UNKNOWN = (255, ‘Unknown’)

code
Returns the code of the SocketState element.

Returns the code of the SocketState element.

Return type Integer

description
Returns the description of the SocketState element.

Returns the description of the SocketState element.

Return type String

class digi.xbee.models.status.SocketInfoState(code, description)
Bases: enum.Enum

Enumerates the different Socket info states.

Values:
SocketInfoState.ALLOCATED = (0, ‘Allocated’)
SocketInfoState.CONNECTING = (1, ‘Connecting’)
SocketInfoState.CONNECTED = (2, ‘Connected’)

2.6. API reference 225



XBee Python Library Documentation, Release 1.4.0

SocketInfoState.LISTENING = (3, ‘Listening’)
SocketInfoState.BOUND = (4, ‘Bound’)
SocketInfoState.CLOSING = (5, ‘Closing’)
SocketInfoState.UNKNOWN = (255, ‘Unknown’)

code
Returns the code of the SocketInfoState element.

Returns the code of the SocketInfoState element.

Return type Integer

description
Returns the description of the SocketInfoState element.

Returns the description of the SocketInfoState element.

Return type String

class digi.xbee.models.status.FSCommandStatus(code, description)
Bases: enum.Enum

This class lists all the possible states of an file system command after execution.

Inherited properties:
name (String): Name (id) of the FSCommandStatus.
value (String): Value of the FSCommandStatus.

Values:
Success (0x00) = (0, ‘Success’)
Error (0x01) = (1, ‘Error’)
Invalid file system command (0x02) = (2, ‘Invalid file system command’)
Invalid command parameter (0x03) = (3, ‘Invalid command parameter’)
Access denied (0x50) = (80, ‘Access denied’)
File or directory already exists (0x51) = (81, ‘File or directory already exists’)
File or directory does not exist (0x52) = (82, ‘File or directory does not exist’)
Invalid file or directory name (0x53) = (83, ‘Invalid file or directory name’)
File operation on directory (0x54) = (84, ‘File operation on directory’)
Directory is not empty (0x55) = (85, ‘Directory is not empty’)
Attempt to read past EOF (end of file) (0x56) = (86, ‘Attempt to read past EOF (end of file)’)
Hardware failure (0x57) = (87, ‘Hardware failure’)
Volume offline / format required (0x58) = (88, ‘Volume offline / format required’)
Volume full (0x59) = (89, ‘Volume full’)
Operation timed out (0x5A) = (90, ‘Operation timed out’)
Busy with prior operation (0x5B) = (91, ‘Busy with prior operation’)
Resource failure (memory allocation failed, try again) (0x5C) = (92, ‘Resource failure (memory
allocation failed, try again)’)

226 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

code
Returns the code of the FSCommandStatus element.

Returns Code of the FSCommandStatus element.

Return type Integer

description
Returns the description of the FSCommandStatus element.

Returns Description of the FSCommandStatus element.

Return type String

digi.xbee.models.zdo package

class digi.xbee.models.zdo.NodeDescriptorReader(xbee, configure_ao=True, time-
out=20)

Bases: digi.xbee.models.zdo._ZDOCommand

This class performs a node descriptor read of the given XBee using a ZDO command.

The node descriptor read works only with Zigbee devices in API mode.

Class constructor. Instantiates a new NodeDescriptorReader object with the provided parameters.

Parameters

• (class (xbee) – .XBeeDevice or class:.RemoteXBeeDevice): XBee to send the command.

• configure_ao (Boolean, optional, default=`True`) – True to set AO
value before and after executing, False otherwise.

• timeout (Float, optional, default=`.__DEFAULT_TIMEOUT`) – The
ZDO command timeout in seconds.

Raises

• ValueError – If xbee is None.

• ValueError – If cluster_id, receive_cluster_id, or timeout are less than 0.

• TypeError – If the xbee is not a .XBeeDevice or a RemoteXBeeDevice.

get_node_descriptor()
Returns the descriptor of the node.

Returns The node descriptor.

Return type NodeDescriptor

error
Returns the error string if any.

Returns The error string.

Return type String

running
Returns if this ZDO command is running.

Returns True if it is running, False otherwise.

Return type Boolean

2.6. API reference 227



XBee Python Library Documentation, Release 1.4.0

stop()
Stops the ZDO command process if it is running.

class digi.xbee.models.zdo.NodeDescriptor(role, complex_desc_supported,
user_desc_supported, freq_band,
mac_capabilities, manufacturer_code,
max_buffer_size, max_in_transfer_size,
max_out_transfer_size, desc_capabilities)

Bases: object

This class represents a node descriptor of an XBee.

Class constructor. Instantiates a new NodeDescriptor object with the provided parameters.

Parameters

• role (Role) – The device role.

• complex_desc_supported (Boolean) – True if the complex descriptor is supported.

• user_desc_supported (Boolean) – True if the user descriptor is supported.

• freq_band (List) – Byte array with the frequency bands.

• mac_capabilities (List) – Byte array with MAC capabilities.

• manufacturer_code (Integer) – The manufacturer’s code assigned by the Zigbee
Alliance.

• max_buffer_size (Integer) – Maximum size in bytes of a data transmission.

• max_in_transfer_size (Integer) – Maximum number of bytes that can be re-
ceived by the node.

• max_out_transfer_size (Integer) – Maximum number of bytes that can be trans-
mitted by the node.

• desc_capabilities (List) – Byte array with descriptor capabilities.

role
Gets the role in this node descriptor.

Returns The role of the node descriptor.

Return type Role

See also:

Role

complex_desc_supported
Gets if the complex descriptor is supported.

Returns True if supported, False otherwise.

Return type Boolean

user_desc_supported
Gets if the user descriptor is supported.

Returns True if supported, False otherwise.

Return type Boolean

228 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

freq_band
868 MHz * Bit1: Reserved * Bit2: 900 MHz * Bit3: 2.4 GHz * Bit4: Reserved

Returns List of integers with the frequency bands bits.

Return type List

Type Gets the frequency bands (LSB - bit0- index 0, MSB - bit4 - index 4)

Type

• Bit0

mac_capabilities
Alternate PAN coordinator * Bit1: Device Type * Bit2: Power source * Bit3: Receiver on when idle *
Bit4-5: Reserved * Bit6: Security capability * Bit7: Allocate address

Returns List of integers with MAC capabilities bits.

Return type List

Type Gets the MAC capabilities (LSB - bit0- index 0, MSB - bit7 - index 7)

Type

• Bit0

manufacturer_code
Gets the manufacturer’s code assigned by the Zigbee Alliance.

Returns The manufacturer’s code.

Return type Integer

max_buffer_size
Gets the maximum size in bytes of a data transmission (including APS bytes).

Returns Maximum size in bytes.

Return type Integer

max_in_transfer_size
Gets the maximum number of bytes that can be received by the node.

Returns Maximum number of bytes that can be received by the node.

Return type Integer

max_out_transfer_size
Gets the maximum number of bytes that can be transmitted by the node, including fragmentation.

Returns Maximum number of bytes that can be transmitted by the node.

Return type Integer

desc_capabilities
Extended active endpoint list available * Bit1: Extended simple descriptor list available

Returns List of integers with descriptor capabilities bits.

Return type List

Type Gets the descriptor capabilities (LSB - bit0- index 0, MSB - bit1 - index 1)

Type

• Bit0

2.6. API reference 229



XBee Python Library Documentation, Release 1.4.0

class digi.xbee.models.zdo.RouteTableReader(xbee, configure_ao=True, timeout=20)
Bases: digi.xbee.models.zdo._ZDOCommand

This class performs a route table read of the given XBee using a ZDO command.

The node descriptor read works only with Zigbee devices in API mode.

Class constructor. Instantiates a new RouteTableReader object with the provided parameters.

Parameters

• (class (xbee) – .XBeeDevice or class:.RemoteXBeeDevice): XBee to send the command.

• configure_ao (Boolean, optional, default=`True`) – True to set AO
value before and after executing, False otherwise.

• timeout (Float, optional, default=`.DEFAULT_TIMEOUT`) – The ZDO
command timeout in seconds.

Raises

• ValueError – If xbee is None.

• ValueError – If cluster_id, receive_cluster_id, or timeout are less than 0.

• TypeError – If the xbee is not a .XBeeDevice or a .RemoteXBeeDevice.

get_route_table(route_cb=None, finished_cb=None)
Returns the routes of the XBee. If route_cb is not defined, the process blocks until the complete routing
table is read.

Parameters

• route_cb (Function, optional, default=`None`) – Method called when a
new route is received. Receives two arguments:

– The XBee that owns this new route.

– The new route.

• finished_cb (Function, optional, default=`None`) – Method to exe-
cute when the process finishes. Receives three arguments:

– The XBee that executed the ZDO command.

– A list with the discovered routes.

– An error message if something went wrong.

Returns

List of Route when route_cb is not defined, None otherwise (in this case routes are re-
ceived in the callback).

Return type List

See also:

Route

error
Returns the error string if any.

Returns The error string.

230 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type String

running
Returns if this ZDO command is running.

Returns True if it is running, False otherwise.

Return type Boolean

stop()
Stops the ZDO command process if it is running.

class digi.xbee.models.zdo.RouteStatus(identifier, name)
Bases: enum.Enum

Enumerates the available route status.

id
Returns the identifier of the RouteStatus.

Returns RouteStatus identifier.

Return type Integer

class digi.xbee.models.zdo.Route(destination, next_hop, status, is_low_memory,
is_many_to_one, is_route_record_required)

Bases: object

This class represents a Zigbee route read from the route table of an XBee.

Class constructor. Instantiates a new Route object with the provided parameters.

Parameters

• destination (XBee16BitAddress) – 16-bit destination address of the route.

• next_hop (XBee16BitAddress) – 16-bit address of the next hop.

• status (RouteStatus) – Status of the route.

• is_low_memory (Boolean) – True to indicate if the device is a low-memory concen-
trator.

• is_many_to_one (Boolean) – True to indicate the destination is a concentrator.

• is_route_record_required (Boolean) – True to indicate a route record message
should be sent prior to the next data transmission.

See also:

RouteStatus

XBee16BitAddress

destination
Gets the 16-bit address of this route destination.

Returns 16-bit address of the destination.

Return type XBee16BitAddress

See also:

2.6. API reference 231



XBee Python Library Documentation, Release 1.4.0

XBee16BitAddress

next_hop
Gets the 16-bit address of this route next hop.

Returns 16-bit address of the next hop.

Return type XBee16BitAddress

See also:

XBee16BitAddress

status
Gets this route status.

Returns The route status.

Return type RouteStatus

See also:

RouteStatus

is_low_memory
Gets whether the device is a low-memory concentrator.

Returns True if the device is a low-memory concentrator, False otherwise.

Return type Boolean

is_many_to_one
Gets whether the destination is a concentrator.

Returns True if destination is a concentrator, False otherwise.

Return type Boolean

is_route_record_required
Gets whether a route record message should be sent prior the next data transmission.

Returns True if a route record message should be sent, False otherwise.

Return type Boolean

class digi.xbee.models.zdo.NeighborTableReader(xbee, configure_ao=True, timeout=20)
Bases: digi.xbee.models.zdo._ZDOCommand

This class performs a neighbor table read of the given XBee using a ZDO command.

The node descriptor read works only with Zigbee devices in API mode.

Class constructor. Instantiates a new NeighborTableReader object with the provided parameters.

Parameters

• (class (xbee) – .XBeeDevice or class:.RemoteXBeeDevice): XBee to send the command.

232 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• configure_ao (Boolean, optional, default=`True`) – True to set AO
value before and after executing, False otherwise.

• timeout (Float, optional, default=`.DEFAULT_TIMEOUT`) – The ZDO
command timeout in seconds.

Raises

• ValueError – If xbee is None.

• ValueError – If cluster_id, receive_cluster_id, or timeout are less than 0.

• TypeError – If the xbee is not a .XBeeDevice or a .RemoteXBeeDevice.

get_neighbor_table(neighbor_cb=None, finished_cb=None)
Returns the neighbors of the XBee. If neighbor_cb is not defined, the process blocks until the complete
neighbor table is read.

Parameters

• neighbor_cb (Function, optional, default=`None`) – Method called
when a new neighbor is received. Receives two arguments:

– The XBee that owns this new neighbor.

– The new neighbor.

• finished_cb (Function, optional, default=`None`) – Method to exe-
cute when the process finishes. Receives three arguments:

– The XBee that executed the ZDO command.

– A list with the discovered neighbors.

– An error message if something went wrong.

Returns

List of Neighbor when neighbor_cb is not defined, None otherwise (in this case neigh-
bors are received in the callback)

Return type List

See also:

Neighbor

error
Returns the error string if any.

Returns The error string.

Return type String

running
Returns if this ZDO command is running.

Returns True if it is running, False otherwise.

Return type Boolean

stop()
Stops the ZDO command process if it is running.

2.6. API reference 233



XBee Python Library Documentation, Release 1.4.0

class digi.xbee.models.zdo.NeighborRelationship(identifier, name)
Bases: enum.Enum

Enumerates the available relationships between two nodes of the same network.

id
Returns the identifier of the NeighborRelationship.

Returns NeighborRelationship identifier.

Return type Integer

class digi.xbee.models.zdo.Neighbor(node, relationship, depth, lq)
Bases: object

This class represents a Zigbee or DigiMesh neighbor.

This information is read from the neighbor table of a Zigbee XBee, or provided by the ‘FN’ command in a
Digimesh XBee.

Class constructor. Instantiates a new Neighbor object with the provided parameters.

Parameters

• node (RemoteXBeeDevice) – The neighbor node.

• relationship (NeighborRelationship) – The relationship of this neighbor with
the node.

• depth (Integer) – The tree depth of the neighbor. A value of 0 indicates the device is a
Zigbee coordinator for the network. -1 means this is unknown.

• lq (Integer) – The estimated link quality (LQI or RSSI) of data transmission from this
neighbor.

See also:

NeighborRelationship

RemoteXBeeDevice

node
Gets the neighbor node.

Returns The node itself.

Return type RemoteXBeeDevice

See also:

RemoteXBeeDevice

relationship
Gets the neighbor node.

Returns The neighbor relationship.

Return type NeighborRelationship

See also:

234 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

NeighborRelationship

depth
Gets the tree depth of the neighbor.

Returns The tree depth of the neighbor.

Return type Integer

lq
Gets the estimated link quality (LQI or RSSI) of data transmission from this neighbor.

Returns The estimated link quality of data transmission from this neighbor.

Return type Integer

class digi.xbee.models.zdo.NeighborFinder(xbee, timeout=20)
Bases: object

This class performs a find neighbors (FN) of an XBee. This action requires an XBee and optionally a find
timeout.

The process works only in DigiMesh.

Class constructor. Instantiates a new NeighborFinder object with the provided parameters.

Parameters

• (class (xbee) – .XBeeDevice or class:.RemoteXBeeDevice): The XBee to get neighbors
from.

• timeout (Float) – The timeout for the process in seconds.

Raises

• OperationNotSupportedException – If the process is not supported in the XBee.

• TypeError – If the xbee is not a .AbstractXBeeDevice.

• ValueError – If xbee is None.

• ValueError – If timeout is less than 0.

running
Returns whether this find neighbors process is running.

Returns True if it is running, False otherwise.

Return type Boolean

error
Returns the error string if any.

Returns The error string.

Return type String

stop()
Stops the find neighbors process if it is running.

get_neighbors(neighbor_cb=None, finished_cb=None)
Returns the neighbors of the XBee. If neighbor_cb is not defined, the process blocks until the complete
neighbor table is read.

Parameters

2.6. API reference 235



XBee Python Library Documentation, Release 1.4.0

• neighbor_cb (Function, optional, default=`None`) – Method called
when a new neighbor is received. Receives two arguments:

– The XBee that owns this new neighbor.

– The new neighbor.

• finished_cb (Function, optional, default=`None`) – Method to exe-
cute when the process finishes. Receives three arguments:

– The XBee that executed the FN command.

– A list with the discovered neighbors.

– An error message if something went wrong.

Returns

List of Neighbor when neighbor_cb is not defined, None otherwise (in this case neigh-
bors are received in the callback)

Return type List

See also:

Neighbor

digi.xbee.packets package

Submodules

digi.xbee.packets.aft module

class digi.xbee.packets.aft.ApiFrameType(code, description)
Bases: enum.Enum

This enumeration lists all the available frame types used in any XBee protocol.

Inherited properties:
name (String): the name (id) of this ApiFrameType.
value (String): the value of this ApiFrameType.

Values:
ApiFrameType.TX_64 = (0, ‘TX (Transmit) Request 64-bit address’)
ApiFrameType.TX_16 = (1, ‘TX (Transmit) Request 16-bit address’)
ApiFrameType.REMOTE_AT_COMMAND_REQUEST_WIFI = (7, ‘Remote AT Command
Request (Wi-Fi)’)
ApiFrameType.AT_COMMAND = (8, ‘AT Command’)
ApiFrameType.AT_COMMAND_QUEUE = (9, ‘AT Command Queue’)
ApiFrameType.TRANSMIT_REQUEST = (16, ‘Transmit Request’)
ApiFrameType.EXPLICIT_ADDRESSING = (17, ‘Explicit Addressing Command Frame’)
ApiFrameType.REMOTE_AT_COMMAND_REQUEST = (23, ‘Remote AT Command Request’)
ApiFrameType.TX_SMS = (31, ‘TX SMS’)

236 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

ApiFrameType.TX_IPV4 = (32, ‘TX IPv4’)
ApiFrameType.CREATE_SOURCE_ROUTE = (33, ‘Create Source Route’)
ApiFrameType.REGISTER_JOINING_DEVICE = (36, ‘Register Joining Device’)
ApiFrameType.SEND_DATA_REQUEST = (40, ‘Send Data Request’)
ApiFrameType.DEVICE_RESPONSE = (42, ‘Device Response’)
ApiFrameType.USER_DATA_RELAY_REQUEST = (45, ‘User Data Relay Request’)
ApiFrameType.FILE_SYSTEM_REQUEST = (59, ‘File System Request’)
ApiFrameType.REMOTE_FILE_SYSTEM_REQUEST = (60, ‘Remote File System Request’)
ApiFrameType.SOCKET_CREATE = (64, ‘Socket Create’)
ApiFrameType.SOCKET_OPTION_REQUEST = (65, ‘Socket Option Request’)
ApiFrameType.SOCKET_CONNECT = (66, ‘Socket Connect’)
ApiFrameType.SOCKET_CLOSE = (67, ‘Socket Close’)
ApiFrameType.SOCKET_SEND = (68, ‘Socket Send (Transmit)’)
ApiFrameType.SOCKET_SENDTO = (69, ‘Socket SendTo (Transmit Explicit Data): IPv4’)
ApiFrameType.SOCKET_BIND = (70, ‘Socket Bind/Listen’)
ApiFrameType.RX_64 = (128, ‘RX (Receive) Packet 64-bit Address’)
ApiFrameType.RX_16 = (129, ‘RX (Receive) Packet 16-bit Address’)
ApiFrameType.RX_IO_64 = (130, ‘IO Data Sample RX 64-bit Address Indicator’)
ApiFrameType.RX_IO_16 = (131, ‘IO Data Sample RX 16-bit Address Indicator’)
ApiFrameType.REMOTE_AT_COMMAND_RESPONSE_WIFI = (135, ‘Remote AT Command
Response (Wi-Fi)’)
ApiFrameType.AT_COMMAND_RESPONSE = (136, ‘AT Command Response’)
ApiFrameType.TX_STATUS = (137, ‘TX (Transmit) Status’)
ApiFrameType.MODEM_STATUS = (138, ‘Modem Status’)
ApiFrameType.TRANSMIT_STATUS = (139, ‘Transmit Status’)
ApiFrameType.DIGIMESH_ROUTE_INFORMATION = (141, ‘Route Information’)
ApiFrameType.IO_DATA_SAMPLE_RX_INDICATOR_WIFI = (143, ‘IO Data Sample RX
Indicator (Wi-Fi)’)
ApiFrameType.RECEIVE_PACKET = (144, ‘Receive Packet’)
ApiFrameType.EXPLICIT_RX_INDICATOR = (145, ‘Explicit RX Indicator’)
ApiFrameType.IO_DATA_SAMPLE_RX_INDICATOR = (146, ‘IO Data Sample RX Indicator’)
ApiFrameType.REMOTE_AT_COMMAND_RESPONSE = (151, ‘Remote Command Response’)
ApiFrameType.RX_SMS = (159, ‘RX SMS’)
ApiFrameType.OTA_FIRMWARE_UPDATE_STATUS = (160, ‘OTA Firmware Update Status’)
ApiFrameType.ROUTE_RECORD_INDICATOR = (161, ‘Route Record Indicator’)
ApiFrameType.REGISTER_JOINING_DEVICE_STATUS = (164, ‘Register Joining Device Status’)
ApiFrameType.USER_DATA_RELAY_OUTPUT = (173, ‘User Data Relay Output’)
ApiFrameType.RX_IPV4 = (176, ‘RX IPv4’)
ApiFrameType.SEND_DATA_RESPONSE = (184, ‘Send Data Response’)
ApiFrameType.DEVICE_REQUEST = (185, ‘Device Request’)
ApiFrameType.DEVICE_RESPONSE_STATUS = (186, ‘Device Response Status’)
ApiFrameType.FILE_SYSTEM_RESPONSE = (187, ‘File System Response’)
ApiFrameType.REMOTE_FILE_SYSTEM_RESPONSE = (188, ‘Remote File System Response’)
ApiFrameType.SOCKET_CREATE_RESPONSE = (192, ‘Socket Create Response’)
ApiFrameType.SOCKET_OPTION_RESPONSE = (193, ‘Socket Option Response’)
ApiFrameType.SOCKET_CONNECT_RESPONSE = (194, ‘Socket Connect Response’)
ApiFrameType.SOCKET_CLOSE_RESPONSE = (195, ‘Socket Close Response’)

2.6. API reference 237



XBee Python Library Documentation, Release 1.4.0

ApiFrameType.SOCKET_LISTEN_RESPONSE = (198, ‘Socket Listen Response’)
ApiFrameType.SOCKET_NEW_IPV4_CLIENT = (204, ‘Socket New IPv4 Client’)
ApiFrameType.SOCKET_RECEIVE = (205, ‘Socket Receive’)
ApiFrameType.SOCKET_RECEIVE_FROM = (206, ‘Socket Receive From’)
ApiFrameType.SOCKET_STATE = (207, ‘Socket State’)
ApiFrameType.FRAME_ERROR = (254, ‘Frame Error’)
ApiFrameType.GENERIC = (255, ‘Generic’)
ApiFrameType.UNKNOWN = (-1, ‘Unknown Packet’)

code
Returns the code of the ApiFrameType element.

Returns the code of the ApiFrameType element.

Return type Integer

description
Returns the description of the ApiFrameType element.

Returns the description of the ApiFrameType element.

Return type Integer

digi.xbee.packets.base module

class digi.xbee.packets.base.DictKeys
Bases: enum.Enum

This enumeration contains all keys used in dictionaries returned by to_dict() method of XBeePacket.

class digi.xbee.packets.base.XBeePacket(op_mode=<OperatingMode.API_MODE: (1, ’API
mode’)>)

Bases: object

This abstract class represents the basic structure of an XBee packet. Derived classes should implement their
own payload generation depending on their type.

Generic actions like checksum compute or packet length calculation is performed here.

Class constructor. Instantiates a new XBeePacket object.

Parameters op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) –
The mode in which the frame was captured.

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

238 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

See also:

factory

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static create_packet(raw, operating_mode)
Abstract method. Creates a full XBeePacket with the given parameters. This function ensures that the
XBeePacket returned is valid and is well built (if not exceptions are raised).

If _OPERATING_MODE is API2 (API escaped) this method des-escape ‘raw’ and build the XBeePacket.
Then, you can use XBeePacket.output() to get the escaped bytearray or not escaped.

Parameters

• raw (Bytearray) – bytearray with which the frame will be built. Must be a full frame
represented by a bytearray.

• operating_mode (OperatingMode) – The mode in which the frame (‘byteArray’)
was captured.

Returns the XBee packet created.

Return type XBeePacket

Raises InvalidPacketException – if something is wrong with raw and the packet cannot
be built well.

get_frame_spec_data()
Returns the data between the length field and the checksum field as bytearray. This data is never escaped.

Returns

the data between the length field and the checksum field as bytearray.

Return type Bytearray

See also:

factory

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

2.6. API reference 239



XBee Python Library Documentation, Release 1.4.0

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.base.XBeeAPIPacket(api_frame_type,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeePacket

This abstract class provides the basic structure of a API frame. Derived classes should implement their own
methods to generate the API data and frame ID in case they support it.

Basic operations such as frame type retrieval are performed in this class.

See also:

XBeePacket

Class constructor. Instantiates a new XBeeAPIPacket object with the provided parameters.

Parameters

• api_frame_type (ApiFrameType or Integer) – The API frame type.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

See also:

ApiFrameType

XBeePacket

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

240 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

needs_id()
Returns whether the packet requires frame ID or not.

Returns True if the packet needs frame ID, False otherwise.

Return type Boolean

static create_packet(raw, operating_mode)
Abstract method. Creates a full XBeePacket with the given parameters. This function ensures that the
XBeePacket returned is valid and is well built (if not exceptions are raised).

If _OPERATING_MODE is API2 (API escaped) this method des-escape ‘raw’ and build the XBeePacket.
Then, you can use XBeePacket.output() to get the escaped bytearray or not escaped.

Parameters

• raw (Bytearray) – bytearray with which the frame will be built. Must be a full frame
represented by a bytearray.

• operating_mode (OperatingMode) – The mode in which the frame (‘byteArray’)
was captured.

Returns the XBee packet created.

Return type XBeePacket

Raises InvalidPacketException – if something is wrong with raw and the packet cannot
be built well.

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

2.6. API reference 241



XBee Python Library Documentation, Release 1.4.0

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.base.GenericXBeePacket(data, op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a basic and Generic XBee packet.

See also:

XBeeAPIPacket

Class constructor. Instantiates a GenericXBeePacket object with the provided parameters.

Parameters

• data (bytearray) – the frame specific data without frame type and frame ID.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

See also:

factory

XBeeAPIPacket

static create_packet(raw, operating_mode=<OperatingMode.API_MODE: (1, ’API mode’)>)
Override method.

Returns the GenericXBeePacket generated.

242 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type GenericXBeePacket

Raises

• InvalidPacketException – if the bytearray length is less than 5. (start delim. +
length (2 bytes) + frame type + checksum = 5 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is different from ApiFrameType.
GENERIC.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

2.6. API reference 243



XBee Python Library Documentation, Release 1.4.0

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

244 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.base.UnknownXBeePacket(api_frame, data,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an unknown XBee packet.

See also:

XBeeAPIPacket

Class constructor. Instantiates a UnknownXBeePacket object with the provided parameters.

Parameters

• api_frame (Integer) – the API frame integer value of this packet.

• data (bytearray) – the frame specific data without frame type and frame ID.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

See also:

factory

XBeeAPIPacket

static create_packet(raw, operating_mode=<OperatingMode.API_MODE: (1, ’API mode’)>)
Override method.

Returns the UnknownXBeePacket generated.

Return type UnknownXBeePacket

Raises

• InvalidPacketException – if the bytearray length is less than 5. (start delim. +
length (2 bytes) + frame type + checksum = 5 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different its real length.
(length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

2.6. API reference 245



XBee Python Library Documentation, Release 1.4.0

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

246 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

digi.xbee.packets.cellular module

digi.xbee.packets.cellular.PATTERN_PHONE_NUMBER = '^\\+?\\d+$'
Pattern used to validate the phone number parameter of SMS packets.

class digi.xbee.packets.cellular.RXSMSPacket(phone_number, data,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an RX (Receive) SMS packet. Packet is built using the parameters of the constructor or
providing a valid byte array.

See also:

TXSMSPacket

XBeeAPIPacket

2.6. API reference 247



XBee Python Library Documentation, Release 1.4.0

Class constructor. Instantiates a new RXSMSPacket object with the provided parameters.

Parameters

• phone_number (String) – Phone number of the device that sent the SMS.

• data (String or bytearray) – Packet data (text of the SMS).

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises

• ValueError – if length of phone_number is greater than 20.

• ValueError – if phone_number is not a valid phone number.

static create_packet(raw, operating_mode)
Override method.

Returns RXSMSPacket

Raises

• InvalidPacketException – if the bytearray length is less than 25. (start delim +
length (2 bytes) + frame type + phone number (20 bytes) + checksum = 25 bytes)

• InvalidPacketException – if the length field of raw is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of raw is not the header byte. See
SPECIAL_BYTE.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is different than ApiFrameType.
RX_SMS.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

get_phone_number_byte_array()
Returns the phone number byte array.

Returns phone number of the device that sent the SMS.

Return type Bytearray

248 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

phone_number
Returns the phone number of the device that sent the SMS.

Returns phone number of the device that sent the SMS.

Return type String

data
Returns the data of the packet (SMS text).

Returns the data of the packet.

Return type String

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

2.6. API reference 249



XBee Python Library Documentation, Release 1.4.0

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.cellular.TXSMSPacket(frame_id, phone_number, data,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a TX (Transmit) SMS packet. Packet is built using the parameters of the constructor or
providing a valid byte array.

See also:

RXSMSPacket

XBeeAPIPacket

Class constructor. Instantiates a new TXSMSPacket object with the provided parameters.

Parameters

250 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• frame_id (Integer) – the frame ID. Must be between 0 and 255.

• phone_number (String) – the phone number.

• data (String or bytearray) – this packet’s data.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises

• ValueError – if frame_id is not between 0 and 255.

• ValueError – if length of phone_number is greater than 20.

• ValueError – if phone_number is not a valid phone number.

See also:

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns TXSMSPacket

Raises

• InvalidPacketException – if the bytearray length is less than 27. (start delim,
length (2 bytes), frame type, frame id, transmit options, phone number (20 bytes), check-
sum)

• InvalidPacketException – if the length field of raw is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of raw is not the header byte. See
SPECIAL_BYTE.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is different than ApiFrameType.
TX_SMS.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

2.6. API reference 251



XBee Python Library Documentation, Release 1.4.0

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

get_phone_number_byte_array()
Returns the phone number byte array.

Returns phone number of the device that sent the SMS.

252 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type Bytearray

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

phone_number
Returns the phone number of the transmitter device.

Returns the phone number of the transmitter device.

Return type String

data
Returns the data of the packet (SMS text).

Returns packet’s data.

Return type Bytearray

digi.xbee.packets.common module

class digi.xbee.packets.common.ATCommPacket(frame_id, command, parameter=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an AT command packet.

Used to query or set module parameters on the local device. This API command applies changes after executing
the command. (Changes made to module parameters take effect once changes are applied.).

2.6. API reference 253



XBee Python Library Documentation, Release 1.4.0

Command response is received as an ATCommResponsePacket.

See also:

ATCommResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new ATCommPacket object with the provided parameters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• command (String or bytearray) – AT command of the packet.

• parameter (Bytearray, optional) – the AT command parameter.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises

• ValueError – if frame_id is less than 0 or greater than 255.

• ValueError – if length of command is different from 2.

See also:

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns ATCommPacket

Raises

• InvalidPacketException – if the bytearray length is less than 8. (start delim. +
length (2 bytes) + frame type + frame id + command (2 bytes) + checksum = 8 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is different from ApiFrameType.
AT_COMMAND.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

254 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

command
Returns the AT command of the packet.

Returns the AT command of the packet.

Return type String

parameter
Returns the parameter of the packet.

Returns the parameter of the packet.

Return type Bytearray

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

2.6. API reference 255



XBee Python Library Documentation, Release 1.4.0

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.common.ATCommQueuePacket(frame_id, command,
parameter=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an AT command Queue packet.

Used to query or set module parameters on the local device.

256 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

In contrast to the ATCommPacket API packet, new parameter values are queued and not applied until either
an ATCommPacket is sent or the applyChanges() method of the XBeeDevice class is issued.

Command response is received as an ATCommResponsePacket.

See also:

ATCommResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new ATCommQueuePacket object with the provided parameters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• command (String or bytearray) – the AT command of the packet.

• parameter (Bytearray, optional) – the AT command parameter. Optional.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises

• ValueError – if frame_id is less than 0 or greater than 255.

• ValueError – if length of command is different from 2.

See also:

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns ATCommQueuePacket

Raises

• InvalidPacketException – if the bytearray length is less than 8. (start delim. +
length (2 bytes) + frame type + frame id + command + checksum = 8 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is different from ApiFrameType.
AT_COMMAND_QUEUE.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

2.6. API reference 257



XBee Python Library Documentation, Release 1.4.0

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

command
Returns the AT command of the packet.

Returns the AT command of the packet.

Return type String

parameter
Returns the parameter of the packet.

Returns the parameter of the packet.

Return type Bytearray

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

258 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

2.6. API reference 259



XBee Python Library Documentation, Release 1.4.0

class digi.xbee.packets.common.ATCommResponsePacket(frame_id, command, re-
sponse_status=<ATCommandStatus.OK:
(0, ’Status OK’)>,
comm_value=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an AT command response packet.

In response to an AT command message, the module will send an AT command response message. Some
commands will send back multiple frames (for example, the ND - Node Discover command).

This packet is received in response of an ATCommPacket.

Response also includes an ATCommandStatus object with the status of the AT command.

See also:

ATCommPacket

ATCommandStatus

XBeeAPIPacket

Class constructor. Instantiates a new ATCommResponsePacket object with the provided parameters.

Parameters

• frame_id (Integer) – the frame ID of the packet. Must be between 0 and 255.

• command (String or bytearray) – the AT command of the packet.

• response_status (ATCommandStatus or Integer) – the status of the AT command.

• comm_value (Bytearray, optional) – the AT command response value.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises

• ValueError – if frame_id is less than 0 or greater than 255.

• ValueError – if length of command is different from 2.

See also:

ATCommandStatus

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns ATCommResponsePacket

Raises

• InvalidPacketException – if the bytearray length is less than 9. (start delim. +
length (2 bytes) + frame type + frame id + at command (2 bytes) + command status +
checksum = 9 bytes).

260 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is different from ApiFrameType.
AT_COMMAND_RESPONSE.

• InvalidPacketException – if the command status field is not a valid value. See
ATCommandStatus.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

command
Returns the AT command of the packet.

Returns the AT command of the packet.

Return type String

command_value
Returns the AT command response value.

Returns the AT command response value.

Return type Bytearray

real_status
Returns the AT command response status of the packet.

Returns the AT command response status of the packet.

Return type Integer

status
Returns the AT command response status of the packet.

Returns the AT command response status of the packet.

Return type ATCommandStatus

See also:

2.6. API reference 261



XBee Python Library Documentation, Release 1.4.0

ATCommandStatus

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

262 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.common.ReceivePacket(x64bit_addr, x16bit_addr,
rx_options, rf_data=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a receive packet. Packet is built using the parameters of the constructor or providing a valid
byte array.

When the module receives an RF packet, it is sent out the UART using this message type.

This packet is received when external devices send transmit request packets to this module.

Among received data, some options can also be received indicating transmission parameters.

See also:

TransmitPacket

ReceiveOptions

XBeeAPIPacket

Class constructor. Instantiates a new ReceivePacket object with the provided parameters.

Parameters

2.6. API reference 263



XBee Python Library Documentation, Release 1.4.0

• x64bit_addr (XBee64BitAddress) – the 64-bit source address.

• x16bit_addr (XBee16BitAddress) – the 16-bit source address.

• rx_options (Integer) – bitfield indicating the receive options.

• rf_data (Bytearray, optional) – received RF data.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

See also:

ReceiveOptions

XBee16BitAddress

XBee64BitAddress

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns ATCommResponsePacket

Raises

• InvalidPacketException – if the bytearray length is less than 16. (start delim. +
length (2 bytes) + frame type + 64bit addr. + 16bit addr. + Receive options + checksum =
16 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
RECEIVE_PACKET.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

264 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

is_broadcast()
Override method.

See also:

XBeeAPIPacket.is_broadcast()

x64bit_source_addr
Returns the 64-bit source address.

Returns the 64-bit source address.

Return type XBee64BitAddress

See also:

XBee64BitAddress

x16bit_source_addr
Returns the 16-bit source address.

Returns the 16-bit source address.

Return type XBee16BitAddress

See also:

XBee16BitAddress

receive_options
Returns the receive options bitfield.

Returns the receive options bitfield.

Return type Integer

See also:

ReceiveOptions

rf_data
Returns the received RF data.

Returns the received RF data.

Return type Bytearray

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

2.6. API reference 265



XBee Python Library Documentation, Release 1.4.0

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

266 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.common.RemoteATCommandPacket(frame_id, x64bit_addr,
x16bit_addr, tx_options,
command, parameter=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Remote AT command Request packet. Packet is built using the parameters of the con-
structor or providing a valid byte array.

Used to query or set module parameters on a remote device. For parameter changes on the remote device to take
effect, changes must be applied, either by setting the apply changes options bit, or by sending an AC command
to the remote node.

Remote command options are set as a bitfield.

If configured, command response is received as a RemoteATCommandResponsePacket.

See also:

RemoteATCommandResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new RemoteATCommandPacket object with the provided parameters.

Parameters

• frame_id (integer) – the frame ID of the packet.

• x64bit_addr (XBee64BitAddress) – the 64-bit destination address.

• x16bit_addr (XBee16BitAddress) – the 16-bit destination address.

• tx_options (Integer) – bitfield of supported transmission options.

• command (String or bytearray) – AT command to send.

• parameter (Bytearray, optional) – AT command parameter.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises

2.6. API reference 267



XBee Python Library Documentation, Release 1.4.0

• ValueError – if frame_id is less than 0 or greater than 255.

• ValueError – if length of command is different from 2.

See also:

RemoteATCmdOptions

XBee16BitAddress

XBee64BitAddress

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns RemoteATCommandPacket

Raises

• InvalidPacketException – if the Bytearray length is less than 19. (start delim. +
length (2 bytes) + frame type + frame id + 64bit addr. + 16bit addr. + transmit options +
command (2 bytes) + checksum = 19 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
REMOTE_AT_COMMAND_REQUEST.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

x64bit_dest_addr
Returns the 64-bit destination address.

Returns the 64-bit destination address.

Return type XBee64BitAddress

268 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

See also:

XBee64BitAddress

x16bit_dest_addr
Returns the 16-bit destination address.

Returns the 16-bit destination address.

Return type XBee16BitAddress

See also:

XBee16BitAddress

transmit_options
Returns the transmit options bitfield.

Returns the transmit options bitfield.

Return type Integer

See also:

RemoteATCmdOptions

parameter
Returns the AT command parameter.

Returns the AT command parameter.

Return type Bytearray

command
Returns the AT command.

Returns the AT command.

Return type String

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

2.6. API reference 269



XBee Python Library Documentation, Release 1.4.0

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

270 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.common.RemoteATCommandResponsePacket(frame_id,
x64bit_addr,
x16bit_addr, com-
mand, resp_status,
comm_value=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a remote AT command response packet. Packet is built using the parameters of the con-
structor or providing a valid byte array.

If a module receives a remote command response RF data frame in response to a remote AT command request,
the module will send a remote AT command response message out the UART. Some commands may send back
multiple frames, for example, Node Discover (ND) command.

This packet is received in response of a RemoteATCommandPacket.

Response also includes an object with the status of the AT command.

See also:

RemoteATCommandPacket

ATCommandStatus

XBeeAPIPacket

Class constructor. Instantiates a new RemoteATCommandResponsePacket object with the provided pa-
rameters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• x64bit_addr (XBee64BitAddress) – the 64-bit source address

• x16bit_addr (XBee16BitAddress) – the 16-bit source address.

• command (String or bytearray) – the AT command of the packet.

• resp_status (ATCommandStatus or Integer) – the status of the AT command.

• comm_value (Bytearray, optional) – the AT command response value. Optional.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

2.6. API reference 271



XBee Python Library Documentation, Release 1.4.0

Raises

• ValueError – if frame_id is less than 0 or greater than 255.

• ValueError – if length of command is different from 2.

See also:

ATCommandStatus

XBee16BitAddress

XBee64BitAddress

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns RemoteATCommandResponsePacket.

Raises

• InvalidPacketException – if the bytearray length is less than 19. (start delim. +
length (2 bytes) + frame type + frame id + 64bit addr. + 16bit addr. + receive options +
command (2 bytes) + checksum = 19 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
REMOTE_AT_COMMAND_RESPONSE.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

command
Returns the AT command of the packet.

Returns the AT command of the packet.

272 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type String

command_value
Returns the AT command response value.

Returns the AT command response value.

Return type Bytearray

real_status
Returns the AT command response status of the packet.

Returns the AT command response status of the packet.

Return type Integer

status
Returns the AT command response status of the packet.

Returns the AT command response status of the packet.

Return type ATCommandStatus

See also:

ATCommandStatus

x64bit_source_addr
Returns the 64-bit source address.

Returns the 64-bit source address.

Return type XBee64BitAddress

See also:

XBee64BitAddress

x16bit_source_addr
Returns the 16-bit source address.

Returns the 16-bit source address.

Return type XBee16BitAddress

See also:

XBee16BitAddress

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

2.6. API reference 273



XBee Python Library Documentation, Release 1.4.0

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

274 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.common.TransmitPacket(frame_id, x64bit_addr,
x16bit_addr, broadcast_radius,
tx_options, rf_data=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a transmit request packet. Packet is built using the parameters of the constructor or provid-
ing a valid API byte array.

A transmit request API frame causes the module to send data as an RF packet to the specified destination.

The 64-bit destination address should be set to 0x000000000000FFFF for a broadcast transmission (to all de-
vices).

The coordinator can be addressed by either setting the 64-bit address to 0x0000000000000000 and the 16-bit
address to 0xFFFE, OR by setting the 64-bit address to the coordinator’s 64-bit address and the 16-bit address
to 0x0000.

For all other transmissions, setting the 16-bit address to the correct 16-bit address can help improve performance
when transmitting to multiple destinations.

If a 16-bit address is not known, this field should be set to 0xFFFE (unknown).

The transmit status frame ( ApiFrameType.TRANSMIT_STATUS) will indicate the discovered 16-bit ad-
dress, if successful (see TransmitStatusPacket).

The broadcast radius can be set from 0 up to NH. If set to 0, the value of NH specifies the broadcast radius
(recommended). This parameter is only used for broadcast transmissions.

The maximum number of payload bytes can be read with the NP command.

Several transmit options can be set using the transmit options bitfield.

See also:

TransmitOptions

2.6. API reference 275



XBee Python Library Documentation, Release 1.4.0

XBee16BitAddress.COORDINATOR_ADDRESS

XBee16BitAddress.UNKNOWN_ADDRESS

XBee64BitAddress.BROADCAST_ADDRESS

XBee64BitAddress.COORDINATOR_ADDRESS

XBeeAPIPacket

Class constructor. Instantiates a new TransmitPacket object with the provided parameters.

Parameters

• frame_id (integer) – the frame ID of the packet.

• x64bit_addr (XBee64BitAddress) – the 64-bit destination address.

• x16bit_addr (XBee16BitAddress) – the 16-bit destination address.

• broadcast_radius (Integer) – maximum number of hops a broadcast transmission
can occur.

• tx_options (Integer) – bitfield of supported transmission options.

• rf_data (Bytearray, optional) – RF data that is sent to the destination device.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

See also:

TransmitOptions

XBee16BitAddress

XBee64BitAddress

XBeeAPIPacket

Raises ValueError – if frame_id is less than 0 or greater than 255.

static create_packet(raw, operating_mode)
Override method.

Returns TransmitPacket.

Raises

• InvalidPacketException – if the bytearray length is less than 18. (start delim. +
length (2 bytes) + frame type + frame id + 64bit addr. + 16bit addr. + broadcast radius +
Transmit options + checksum = 18 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
TRANSMIT_REQUEST.

• InvalidOperatingModeException – if operating_mode is not supported.

276 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

rf_data
Returns the RF data to send.

Returns the RF data to send.

Return type Bytearray

transmit_options
Returns the transmit options bitfield.

Returns the transmit options bitfield.

Return type Integer

See also:

TransmitOptions

broadcast_radius
Returns the broadcast radius. Broadcast radius is the maximum number of hops a broadcast transmission.

Returns the broadcast radius.

Return type Integer

x64bit_dest_addr
Returns the 64-bit destination address.

Returns the 64-bit destination address.

Return type XBee64BitAddress

See also:

XBee64BitAddress

x16bit_dest_addr
Returns the 16-bit destination address.

Returns the 16-bit destination address.

2.6. API reference 277



XBee Python Library Documentation, Release 1.4.0

Return type XBee16BitAddress

See also:

XBee16BitAddress

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

278 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.common.TransmitStatusPacket(frame_id, x16bit_addr,
tx_retry_count, trans-
mit_status=<TransmitStatus.SUCCESS:
(0, ’Success’)>, discov-
ery_status=<DiscoveryStatus.NO_DISCOVERY_OVERHEAD:
(0, ’No discovery overhead’)>,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a transmit status packet. Packet is built using the parameters of the constructor or providing
a valid raw byte array.

When a Transmit Request is completed, the module sends a transmit status message. This message will indicate
if the packet was transmitted successfully or if there was a failure.

This packet is the response to standard and explicit transmit requests.

See also:

TransmitPacket

2.6. API reference 279



XBee Python Library Documentation, Release 1.4.0

Class constructor. Instantiates a new TransmitStatusPacket object with the provided parameters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• x16bit_addr (XBee16BitAddress) – 16-bit network address the packet was deliv-
ered to.

• tx_retry_count (Integer) – the number of application transmission retries that took
place.

• transmit_status (TransmitStatus, optional) – transmit status. Default: SUC-
CESS.

• discovery_status (DiscoveryStatus, optional) – discovery status. Default:
NO_DISCOVERY_OVERHEAD.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises ValueError – if frame_id is less than 0 or greater than 255.

See also:

DiscoveryStatus

TransmitStatus

XBee16BitAddress

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns TransmitStatusPacket

Raises

• InvalidPacketException – if the bytearray length is less than 11. (start delim. +
length (2 bytes) + frame type + frame id + 16bit addr. + transmit retry count + delivery
status + discovery status + checksum = 11 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
TRANSMIT_STATUS.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

280 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

x16bit_dest_addr
Returns the 16-bit destination address.

Returns the 16-bit destination address.

Return type XBee16BitAddress

See also:

XBee16BitAddress

transmit_status
Returns the transmit status.

Returns the transmit status.

Return type TransmitStatus

See also:

TransmitStatus

transmit_retry_count
Returns the transmit retry count.

Returns the transmit retry count.

Return type Integer

discovery_status
Returns the discovery status.

Returns the discovery status.

Return type DiscoveryStatus

See also:

DiscoveryStatus

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

2.6. API reference 281



XBee Python Library Documentation, Release 1.4.0

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

282 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.common.ModemStatusPacket(modem_status,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a modem status packet. Packet is built using the parameters of the constructor or providing
a valid API raw byte array.

RF module status messages are sent from the module in response to specific conditions and indicates the state
of the modem in that moment.

See also:

XBeeAPIPacket

Class constructor. Instantiates a new ModemStatusPacket object with the provided parameters.

Parameters

• modem_status (ModemStatus) – the modem status event.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

See also:

ModemStatus

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns ModemStatusPacket.

2.6. API reference 283



XBee Python Library Documentation, Release 1.4.0

Raises

• InvalidPacketException – if the bytearray length is less than 6. (start delim. +
length (2 bytes) + frame type + modem status + checksum = 6 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
MODEM_STATUS.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

modem_status
Returns the modem status event.

Returns The modem status event.

Return type ModemStatus

See also:

ModemStatus

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

284 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

2.6. API reference 285



XBee Python Library Documentation, Release 1.4.0

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.common.IODataSampleRxIndicatorPacket(x64bit_addr,
x16bit_addr,
rx_options,
rf_data=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an IO data sample RX indicator packet. Packet is built using the parameters of the con-
structor or providing a valid API byte array.

When the module receives an IO sample frame from a remote device, it sends the sample out the UART using
this frame type (when AO=0). Only modules running API firmware will send IO samples out the UART.

Among received data, some options can also be received indicating transmission parameters.

See also:

XBeeAPIPacket

ReceiveOptions

Class constructor. Instantiates a new IODataSampleRxIndicatorPacket object with the provided pa-
rameters.

Parameters

• x64bit_addr (XBee64BitAddress) – the 64-bit source address.

• x16bit_addr (XBee16BitAddress) – the 16-bit source address.

• rx_options (Integer) – bitfield indicating the receive options.

• rf_data (Bytearray, optional) – received RF data.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises ValueError – if rf_data is not None and it’s not valid for create an IOSample.

See also:

IOSample

ReceiveOptions

286 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

XBee16BitAddress

XBee64BitAddress

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns IODataSampleRxIndicatorPacket.

Raises

• InvalidPacketException – if the bytearray length is less than 20. (start delim. +
length (2 bytes) + frame type + 64bit addr. + 16bit addr. + rf data (5 bytes) + checksum =
20 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
IO_DATA_SAMPLE_RX_INDICATOR.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

is_broadcast()
Override method.

See also:

XBeeAPIPacket.is_broadcast()

x64bit_source_addr
Returns the 64-bit source address.

Returns the 64-bit source address.

2.6. API reference 287



XBee Python Library Documentation, Release 1.4.0

Return type XBee64BitAddress

See also:

XBee64BitAddress

x16bit_source_addr
Returns the 16-bit source address.

Returns the 16-bit source address.

Return type XBee16BitAddress

See also:

XBee16BitAddress

receive_options
Returns the receive options bitfield.

Returns the receive options bitfield.

Return type Integer

See also:

ReceiveOptions

rf_data
Returns the received RF data.

Returns the received RF data.

Return type Bytearray

io_sample
Returns the IO sample corresponding to the data contained in the packet.

Returns

the IO sample of the packet, None if the packet has not any data or if the sample could not
be generated correctly.

Return type IOSample

See also:

IOSample

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

288 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

2.6. API reference 289



XBee Python Library Documentation, Release 1.4.0

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.common.ExplicitAddressingPacket(frame_id, x64bit_addr,
x16bit_addr, src_endpoint,
dest_endpoint, clus-
ter_id, profile_id,
broadcast_radius=0,
transmit_options=0,
rf_data=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an explicit addressing command packet. Packet is built using the parameters of the con-
structor or providing a valid API payload.

Allows application layer fields (endpoint and cluster ID) to be specified for a data transmission. Similar to
the transmit request, but also requires application layer addressing fields to be specified (endpoints, cluster ID,
profile ID). An explicit addressing request API frame causes the module to send data as an RF packet to the
specified destination, using the specified source and destination endpoints, cluster ID, and profile ID.

The 64-bit destination address should be set to 0x000000000000FFF for a broadcast transmission (to all de-
vices).

The coordinator can be addressed by either setting the 64-bit address to 0x000000000000000 and the 16-bit
address to 0xFFFE, OR by setting the 64-bit address to the coordinator’s 64-bit address and the 16-bit address
to 0x0000.

For all other transmissions, setting the 16-bit address to the right 16-bit address can help improve performance
when transmitting to multiple destinations.

If a 16-bit address is not known, this field should be set to 0xFFFE (unknown).

The transmit status frame (ApiFrameType.TRANSMIT_STATUS) will indicate the discovered 16-bit ad-
dress, if successful (see TransmitStatusPacket)).

The broadcast radius can be set from 0 up to NH. If set to 0, the value of NH specifies the broadcast radius
(recommended). This parameter is only used for broadcast transmissions.

The maximum number of payload bytes can be read with the NP command. Note: if source routing is used, the
RF payload will be reduced by two bytes per intermediate hop in the source route.

Several transmit options can be set using the transmit options bitfield.

See also:

290 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

TransmitOptions

XBee16BitAddress.COORDINATOR_ADDRESS

XBee16BitAddress.UNKNOWN_ADDRESS

XBee64BitAddress.BROADCAST_ADDRESS

XBee64BitAddress.COORDINATOR_ADDRESS

ExplicitRXIndicatorPacket

XBeeAPIPacket

Class constructor. . Instantiates a new ExplicitAddressingPacket object with the provided parameters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• x64bit_addr (XBee64BitAddress) – the 64-bit address.

• x16bit_addr (XBee16BitAddress) – the 16-bit address.

• src_endpoint (Integer) – source endpoint. 1 byte.

• dest_endpoint (Integer) – destination endpoint. 1 byte.

• cluster_id (Integer) – cluster id. Must be between 0 and 0xFFFF.

• profile_id (Integer) – profile id. Must be between 0 and 0xFFFF.

• broadcast_radius (Integer) – maximum number of hops a broadcast transmission
can occur.

• transmit_options (Integer) – bitfield of supported transmission options.

• rf_data (Bytearray, optional) – RF data that is sent to the destination device.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises

• ValueError – if frame_id, src_endpoint or dst_endpoint are less than 0 or greater than
255.

• ValueError – if lengths of cluster_id or profile_id (respectively) are less than 0 or greater
than 0xFFFF.

See also:

XBee16BitAddress

XBee64BitAddress

TransmitOptions

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns ExplicitAddressingPacket.

Raises

2.6. API reference 291



XBee Python Library Documentation, Release 1.4.0

• InvalidPacketException – if the bytearray length is less than 24. (start delim. +
length (2 bytes) + frame type + frame ID + 64bit addr. + 16bit addr. + source endpoint +
dest. endpoint + cluster ID (2 bytes) + profile ID (2 bytes) + broadcast radius + transmit
options + checksum = 24 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is different from ApiFrameType.
EXPLICIT_ADDRESSING.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

292 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

2.6. API reference 293



XBee Python Library Documentation, Release 1.4.0

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

source_endpoint
Returns the source endpoint of the transmission.

Returns the source endpoint of the transmission.

Return type Integer

dest_endpoint
Returns the destination endpoint of the transmission.

Returns the destination endpoint of the transmission.

Return type Integer

cluster_id
Returns the cluster ID of the transmission.

Returns the cluster ID of the transmission.

Return type Integer

profile_id
Returns the profile ID of the transmission.

Returns Integer: the profile ID of the transmission.

rf_data
Returns the RF data to send.

Returns the RF data to send.

Return type Bytearray

transmit_options
Returns the transmit options bitfield.

Returns the transmit options bitfield.

Return type Integer

See also:

TransmitOptions

broadcast_radius
Returns the broadcast radius. Broadcast radius is the maximum number of hops a broadcast transmission.

Returns the broadcast radius.

Return type Integer

x64bit_dest_addr
Returns the 64-bit destination address.

Returns the 64-bit destination address.

Return type XBee64BitAddress

See also:

294 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

XBee64BitAddress

x16bit_dest_addr
Returns the 16-bit destination address.

Returns the 16-bit destination address.

Return type XBee16BitAddress

See also:

XBee16BitAddress

class digi.xbee.packets.common.ExplicitRXIndicatorPacket(x64bit_addr,
x16bit_addr,
src_endpoint,
dest_endpoint,
cluster_id, pro-
file_id, rx_options,
rf_data=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an explicit RX indicator packet. Packet is built using the parameters of the constructor or
providing a valid API payload.

When the modem receives an RF packet it is sent out the UART using this message type (when AO=1).

This packet is received when external devices send explicit addressing packets to this module.

Among received data, some options can also be received indicating transmission parameters.

See also:

ReceiveOptions

ExplicitAddressingPacket

XBeeAPIPacket

Class constructor. Instantiates a new ExplicitRXIndicatorPacket object with the provided parameters.

Parameters

• x64bit_addr (XBee64BitAddress) – the 64-bit source address.

• x16bit_addr (XBee16BitAddress) – the 16-bit source address.

• src_endpoint (Integer) – source endpoint. 1 byte.

• dest_endpoint (Integer) – destination endpoint. 1 byte.

• cluster_id (Integer) – cluster ID. Must be between 0 and 0xFFFF.

• profile_id (Integer) – profile ID. Must be between 0 and 0xFFFF.

• rx_options (Integer) – bitfield indicating the receive options.

2.6. API reference 295



XBee Python Library Documentation, Release 1.4.0

• rf_data (Bytearray, optional) – received RF data.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises

• ValueError – if src_endpoint or dst_endpoint are less than 0 or greater than 255.

• ValueError – if lengths of cluster_id or profile_id (respectively) are different from 2.

See also:

XBee16BitAddress

XBee64BitAddress

ReceiveOptions

XBeeAPIPacket

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

296 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

static create_packet(raw, operating_mode)
Override method.

Returns ExplicitRXIndicatorPacket.

Raises

• InvalidPacketException – if the bytearray length is less than 22. (start delim.
+ length (2 bytes) + frame type + 64bit addr. + 16bit addr. + source endpoint + dest.
endpoint + cluster ID (2 bytes) + profile ID (2 bytes) + receive options + checksum = 22
bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

2.6. API reference 297



XBee Python Library Documentation, Release 1.4.0

• InvalidPacketException – if the frame type is different from ApiFrameType.
EXPLICIT_RX_INDICATOR.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

is_broadcast()
Override method.

See also:

XBeeAPIPacket.is_broadcast()

x64bit_source_addr
Returns the 64-bit source address.

Returns the 64-bit source address.

Return type XBee64BitAddress

See also:

XBee64BitAddress

x16bit_source_addr
Returns the 16-bit source address.

Returns the 16-bit source address.

Return type XBee16BitAddress

See also:

XBee16BitAddress

source_endpoint
Returns the source endpoint of the transmission.

298 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns the source endpoint of the transmission.

Return type Integer

dest_endpoint
Returns the destination endpoint of the transmission.

Returns the destination endpoint of the transmission.

Return type Integer

cluster_id
Returns the cluster ID of the transmission.

Returns the cluster ID of the transmission.

Return type Integer

profile_id
Returns the profile ID of the transmission.

Returns Integer: the profile ID of the transmission.

receive_options
Returns the receive options bitfield.

Returns the receive options bitfield.

Return type Integer

See also:

ReceiveOptions

rf_data
Returns the received RF data.

Returns the received RF data.

Return type Bytearray

digi.xbee.packets.devicecloud module

class digi.xbee.packets.devicecloud.DeviceRequestPacket(request_id, target=None,
request_data=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a device request packet. Packet is built using the parameters of the constructor or providing
a valid API payload.

This frame type is sent out the serial port when the XBee module receives a valid device request from Device
Cloud.

See also:

DeviceResponsePacket

XBeeAPIPacket

2.6. API reference 299



XBee Python Library Documentation, Release 1.4.0

Class constructor. Instantiates a new DeviceRequestPacket object with the provided parameters.

Parameters

• request_id (Integer) – number that identifies the device request. (0 has no special
meaning)

• target (String) – device request target.

• request_data (Bytearray, optional) – data of the request.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises

• ValueError – if request_id is less than 0 or greater than 255.

• ValueError – if length of target is greater than 255.

See also:

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns DeviceRequestPacket

Raises

• InvalidPacketException – if the bytearray length is less than 9. (start delim. +
length (2 bytes) + frame type + request id + transport + flags + target length + checksum
= 9 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is different from ApiFrameType.
DEVICE_REQUEST.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

300 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

XBeeAPIPacket.needs_id()

request_id
Returns the request ID of the packet.

Returns the request ID of the packet.

Return type Integer

transport
Returns the transport of the packet.

Returns the transport of the packet.

Return type Integer

flags
Returns the flags of the packet.

Returns the flags of the packet.

Return type Integer

target
Returns the device request target of the packet.

Returns the device request target of the packet.

Return type String

request_data
Returns the data of the device request.

Returns the data of the device request.

Return type Bytearray

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

2.6. API reference 301



XBee Python Library Documentation, Release 1.4.0

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

302 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.devicecloud.DeviceResponsePacket(frame_id, request_id,
response_data=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a device response packet. Packet is built using the parameters of the constructor or provid-
ing a valid API payload.

This frame type is sent to the serial port by the host in response to the DeviceRequestPacket. It should be
sent within five seconds to avoid a timeout error.

See also:

DeviceRequestPacket

XBeeAPIPacket

Class constructor. Instantiates a new DeviceResponsePacket object with the provided parameters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• request_id (Integer) – device Request ID. This number should match the device
request ID in the device request. Otherwise, an error will occur. (0 has no special meaning)

• response_data (Bytearray, optional) – data of the response.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises

• ValueError – if frame_id is less than 0 or greater than 255.

• ValueError – if request_id is less than 0 or greater than 255.

See also:

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns DeviceResponsePacket

Raises

• InvalidPacketException – if the bytearray length is less than 8. (start delim. +
length (2 bytes) + frame type + frame id + request id + reserved + checksum = 8 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

2.6. API reference 303



XBee Python Library Documentation, Release 1.4.0

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is different from ApiFrameType.
DEVICE_RESPONSE.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

request_id
Returns the request ID of the packet.

Returns the request ID of the packet.

Return type Integer

request_data
Returns the data of the device response.

Returns the data of the device response.

Return type Bytearray

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

304 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

2.6. API reference 305



XBee Python Library Documentation, Release 1.4.0

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.devicecloud.DeviceResponseStatusPacket(frame_id, status,
op_mode=<OperatingMode.API_MODE:
(1, ’API
mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a device response status packet. Packet is built using the parameters of the constructor or
providing a valid API payload.

This frame type is sent to the serial port after the serial port sends a DeviceResponsePacket.

See also:

DeviceResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new DeviceResponseStatusPacket object with the provided parame-
ters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• status (DeviceCloudStatus) – device response status.

Raises ValueError – if frame_id is less than 0 or greater than 255.

See also:

DeviceCloudStatus

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns DeviceResponseStatusPacket

Raises

• InvalidPacketException – if the bytearray length is less than 7. (start delim. +
length (2 bytes) + frame type + frame id + device response status + checksum = 7 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

306 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is different from ApiFrameType.
DEVICE_RESPONSE_STATUS.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

status
Returns the status of the device response packet.

Returns the status of the device response packet.

Return type DeviceCloudStatus

See also:

DeviceCloudStatus

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

2.6. API reference 307



XBee Python Library Documentation, Release 1.4.0

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

308 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.devicecloud.FrameErrorPacket(frame_error,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a frame error packet. Packet is built using the parameters of the constructor or providing a
valid API payload.

This frame type is sent to the serial port for any type of frame error.

See also:

FrameError

XBeeAPIPacket

Class constructor. Instantiates a new FrameErrorPacket object with the provided parameters.

Parameters

• frame_error (FrameError) – the frame error.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

See also:

FrameError

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns FrameErrorPacket

Raises

• InvalidPacketException – if the bytearray length is less than 6. (start delim. +
length (2 bytes) + frame type + frame error + checksum = 6 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

2.6. API reference 309



XBee Python Library Documentation, Release 1.4.0

• InvalidPacketException – if the frame type is different from ApiFrameType.
FRAME_ERROR.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

error
Returns the frame error of the packet.

Returns the frame error of the packet.

Return type FrameError

See also:

FrameError

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

310 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

2.6. API reference 311



XBee Python Library Documentation, Release 1.4.0

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.devicecloud.SendDataRequestPacket(frame_id, path, con-
tent_type, options,
file_data=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a send data request packet. Packet is built using the parameters of the constructor or
providing a valid API payload.

This frame type is used to send a file of the given name and type to Device Cloud.

If the frame ID is non-zero, a SendDataResponsePacket will be received.

See also:

SendDataResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new SendDataRequestPacket object with the provided parameters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• path (String) – path of the file to upload to Device Cloud.

• content_type (String) – content type of the file to upload.

• options (SendDataRequestOptions) – the action when uploading a file.

• file_data (Bytearray, optional) – data of the file to upload.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises ValueError – if frame_id is less than 0 or greater than 255.

See also:

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns SendDataRequestPacket

Raises

• InvalidPacketException – if the bytearray length is less than 10. (start delim. +
length (2 bytes) + frame type + frame id + path length + content type length + transport +
options + checksum = 10 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

312 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is different from ApiFrameType.
SEND_DATA_REQUEST.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

path
Returns the path of the file to upload to Device Cloud.

Returns the path of the file to upload to Device Cloud.

Return type String

content_type
Returns the content type of the file to upload.

Returns the content type of the file to upload.

Return type String

options
Returns the file upload operation options.

Returns the file upload operation options.

Return type SendDataRequestOptions

See also:

SendDataRequestOptions

file_data
Returns the data of the file to upload.

Returns the data of the file to upload.

Return type Bytearray

2.6. API reference 313



XBee Python Library Documentation, Release 1.4.0

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

314 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.devicecloud.SendDataResponsePacket(frame_id, status,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a send data response packet. Packet is built using the parameters of the constructor or
providing a valid API payload.

This frame type is sent out the serial port in response to the SendDataRequestPacket, providing its frame
ID is non-zero.

See also:

SendDataRequestPacket

XBeeAPIPacket

Class constructor. Instantiates a new SendDataResponsePacket object with the provided parameters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• status (DeviceCloudStatus) – the file upload status.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises ValueError – if frame_id is less than 0 or greater than 255.

See also:

2.6. API reference 315



XBee Python Library Documentation, Release 1.4.0

DeviceCloudStatus

XBeeAPIPacket

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

316 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

static create_packet(raw, operating_mode)
Override method.

Returns SendDataResponsePacket

Raises

• InvalidPacketException – if the bytearray length is less than 10. (start delim. +
length (2 bytes) + frame type + frame id + status + checksum = 7 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is different from ApiFrameType.
SEND_DATA_RESPONSE.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

2.6. API reference 317



XBee Python Library Documentation, Release 1.4.0

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

status
Returns the file upload status.

Returns the file upload status.

Return type DeviceCloudStatus

See also:

DeviceCloudStatus

digi.xbee.packets.digimesh module

class digi.xbee.packets.digimesh.RouteInformationPacket(src_event, timestamp,
ack_timeout_count,
tx_block_count, dst_addr,
src_addr, responder_addr,
successor_addr, ad-
ditional_data=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a DigiMesh Route Information packet. Packet is built using the parameters of the construc-
tor or providing a valid API payload.

A Route Information Packet can be output for DigiMesh unicast transmissions on which the NACK enable or
the Trace Route enable TX option is enabled.

See also:

XBeeAPIPacket

Class constructor. Instantiates a new RouteInformationPacket object with the provided parameters.

Parameters

• src_event (Integer) – Source event identifier. 0x11=NACK, 0x12=Trace route

• timestamp (Integer) – System timer value on the node generating the this packet. The
timestamp is in microseconds.

• ack_timeout_count (Integer) – The number of MAC ACK timeouts.

318 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• tx_block_count (Integer) – The number of times the transmission was blocked due
to reception in progress.

• dst_addr (XBee64BitAddress) – The 64-bit address of the final destination node of
this network-level transmission.

• src_addr (XBee64BitAddress) – The 64-bit address of the source node of this
network-level transmission.

• responder_addr (XBee64BitAddress) – The 64-bit address of the node that gen-
erates this packet after it sends (or attempts to send) the packet to the next hop (successor
node).

• successor_addr (XBee64BitAddress) – The 64-bit address of the next node after
the responder in the route towards the destination, whether or not the packet arrived suc-
cessfully at the successor node.

• additional_data (Bytearray, optional, default=`None`) – Additional
data of the packet.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises

• ValueError – if src_event is not 0x11 or 0x12.

• ValueError – if timestamp is not between 0 and 0xFFFFFFFF.

• ValueError – if ack_timeout_count or tx_block_count are not between 0 and 255.

See also:

XBee64BitAddress

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns RouteInformationPacket.

Raises

• InvalidPacketException – If the bytearray length is less than 46. (start delim. +
length (2 bytes) + frame type + src_event + length + timestamp (4 bytes) + ack timeout
count + tx blocked count + reserved + dest addr (8 bytes) + src addr (8 bytes) + responder
addr (8 bytes) + successor addr (8 bytes) + checksum = 46 bytes).

• InvalidPacketException – If the length field of raw is different from its real
length. (length field: bytes 1 and 3)

• InvalidPacketException – If the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – If the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – If the frame type is not ApiFrameType.
DIGIMESH_ROUTE_INFORMATION.

2.6. API reference 319



XBee Python Library Documentation, Release 1.4.0

• InvalidPacketException – If the internal length byte of the rest of the frame (with-
out the checksum) is different from its real length.

• InvalidOperatingModeException – If operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

src_event
Returns the source event.

Returns The source event.

Return type Integer

length
Returns the number of bytes that follow, excluding the checksum.

Returns Data length.

Return type Integer

timestamp
Returns the system timer value on the node generating this package. The timestamp is in microseconds.

Returns The system timer value in microseconds.

Return type Integer

ack_timeout_count
Returns the number of MAC ACK timeouts that occur.

Returns The number of MAC ACK timeouts that occur.

Return type Integer

tx_block_count
Returns the number of times the transmission was blocked due to reception in progress.

Returns

The number of times the transmission was blocked due to reception in progress.

Return type Integer

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

320 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

2.6. API reference 321



XBee Python Library Documentation, Release 1.4.0

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

dst_addr
Returns the 64-bit source address.

Returns

The 64-bit address of the final destination node.

Return type XBee64BitAddress

See also:

XBee64BitAddress

src_addr
Returns the 64-bit address of the source node of this network-level transmission.

Returns The 64-bit address of the source node.

Return type XBee64BitAddress

See also:

XBee64BitAddress

responder_addr
Returns the 64-bit address of the node that generates this packet after it sends (or attempts to send) the
packet to the next hop (successor node).

Returns The 64-bit address of the responder node.

Return type XBee64BitAddress

See also:

322 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

XBee64BitAddress

successor_addr
Returns the 64-bit address of the next node after the responder in the route towards the destination, whether
or not the packet arrived successfully at the successor node.

Returns The 64-bit address of the successor node.

Return type XBee64BitAddress

See also:

XBee64BitAddress

digi.xbee.packets.filesystem module

class digi.xbee.packets.filesystem.FSRequestPacket(frame_id, command,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a File System Request. Packet is built using the parameters of the constructor or providing
a valid API payload.

A File System Request allows to access the filesystem and perform different operations.

Command response is received as an FSResponsePacket.

See also:

XBeeAPIPacket

Class constructor. Instantiates a new FSRequestPacket object with the provided parameters.

Parameters

• frame_id (Integer) – Frame ID of the packet.

• command (FSCmd or bytearray) – File system command to execute.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises

• ValueError – If frame_id is less than 0 or greater than 255.

• TypeError – If command is not a FSCmd or a bytearray.

See also:

FSCmd

XBeeAPIPacket

2.6. API reference 323



XBee Python Library Documentation, Release 1.4.0

static create_packet(raw, operating_mode)
Override method.

Returns FSRequestPacket

Raises

• InvalidPacketException – If the bytearray length is less than 7 + the minimum
length of the command. (start delim. + length (2 bytes) + frame type + frame id + fs cmd
id + checksum + cmd data = 7 bytes + cmd data).

• InvalidPacketException – If the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – If the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – If the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – If the frame type is different from ApiFrameType.
FILE_SYSTEM_REQUEST.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

command
Returns the file system command of the packet.

Returns File system command of the packet.

Return type String

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

324 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

2.6. API reference 325



XBee Python Library Documentation, Release 1.4.0

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.filesystem.FSResponsePacket(frame_id, command,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a File System Response. Packet is built using the parameters of the constructor or providing
a valid API payload.

This packet is received in response of an FSRequestPacket.

See also:

XBeeAPIPacket

Class constructor. Instantiates a new FSResponsePacket object with the provided parameters.

Parameters

• frame_id (Integer) – The frame ID of the packet.

• command (FSCmd or bytearray) – File system command to execute.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises

• ValueError – If frame_id is less than 0 or greater than 255.

• TypeError – If command is not a FSCmd or a bytearray.

See also:

FSCmd

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns FSResponsePacket

Raises

326 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidPacketException – If the bytearray length is less than 8 + the minimum
length of the command. (start delim. + length (2 bytes) + frame type + frame id + fs cmd
id + status + checksum + cmd data = 8 bytes + cmd data).

• InvalidPacketException – If the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – If the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – If the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – If the frame type is different from ApiFrameType.
FILE_SYSTEM_RESPONSE.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

command
Returns the file system command of the packet.

Returns File system command of the packet.

Return type String

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

2.6. API reference 327



XBee Python Library Documentation, Release 1.4.0

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

328 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.filesystem.RemoteFSRequestPacket(frame_id, x64bit_addr,
command, trans-
mit_options=0,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a remote File System Request. Packet is built using the parameters of the constructor or
providing a valid API payload.

Used to access the filesystem on a remote device and perform different operations.

Remote command options are set as a bitfield.

If configured, command response is received as a RemoteFSResponsePacket.

See also:

RemoteFSResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new RemoteFSRequestPacket object with the provided parameters.

Parameters

• frame_id (Integer) – Frame ID of the packet.

• x64bit_addr (XBee64BitAddress) – 64-bit destination address.

• command (FSCmd or bytearray) – File system command to execute.

• transmit_options (Integer, optional, default=`TransmitOptions.
NONE.value`) – Bitfield of supported transmission options.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises

• ValueError – If frame_id is less than 0 or greater than 255.

• TypeError – If command is not a FSCmd or a bytearray.

See also:

FSCmd

TransmitOptions

XBee64BitAddress

XBeeAPIPacket

2.6. API reference 329



XBee Python Library Documentation, Release 1.4.0

static create_packet(raw, operating_mode)
Override method.

Returns RemoteFSRequestPacket

Raises

• InvalidPacketException – If the bytearray length is less than 7 + the minimum
length of the command. (start delim. + length (2 bytes) + frame type + frame id + 64bit
addr. + transmit options + fs cmd id + checksum + cmd data = 16 bytes + cmd data).

• InvalidPacketException – If the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – If the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – If the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – If the frame type is different from ApiFrameType.
REMOTE_FILE_SYSTEM_REQUEST.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

x64bit_dest_addr
Returns the 64-bit destination address.

Returns 64-bit destination address.

Return type XBee64BitAddress

See also:

XBee64BitAddress

command
Returns the file system command of the packet.

Returns File system command of the packet.

Return type String

330 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

transmit_options
Returns the transmit options bitfield.

Returns Transmit options bitfield.

Return type Integer

See also:

TransmitOptions

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

2.6. API reference 331



XBee Python Library Documentation, Release 1.4.0

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.filesystem.RemoteFSResponsePacket(frame_id, x64bit_addr,
command, rx_options,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Remote File System Response. Packet is built using the parameters of the constructor or
providing a valid API payload.

This packet is received in response of an RemoteFSRequestPacket.

See also:

RemoteFSRequestPacket

XBeeAPIPacket

332 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Class constructor. Instantiates a new RemoteFSResponsePacket object with the provided parameters.

Parameters

• frame_id (Integer) – The frame ID of the packet.

• x64bit_addr (XBee64BitAddress) – 64-bit source address.

• command (FSCmd or bytearray) – File system command to execute.

• rx_options (Integer) – Bitfield indicating the receive options.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises

• ValueError – If frame_id is less than 0 or greater than 255.

• TypeError – If command is not a FSCmd or a bytearray.

See also:

FSCmd

ReceiveOptions

XBeeAPIPacket

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

2.6. API reference 333



XBee Python Library Documentation, Release 1.4.0

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

static create_packet(raw, operating_mode)
Override method.

Returns RemoteFSResponsePacket

334 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Raises

• InvalidPacketException – If the bytearray length is less than 8 + the minimum
length of the command. (start delim. + length (2 bytes) + frame type + frame id + 64bit
addr. + receive options + fs cmd id + status + checksum + cmd data = 17 bytes + cmd
data).

• InvalidPacketException – If the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – If the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – If the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – If the frame type is different from ApiFrameType.
REMOTE_FILE_SYSTEM_RESPONSE.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

x64bit_source_addr
Returns the 64-bit source address.

Returns 64-bit source address.

Return type XBee64BitAddress

See also:

XBee64BitAddress

command
Returns the file system command of the packet.

Returns File system command of the packet.

Return type String

receive_options
Returns the receive options bitfield.

Returns Receive options bitfield.

2.6. API reference 335



XBee Python Library Documentation, Release 1.4.0

Return type Integer

See also:

ReceiveOptions

digi.xbee.packets.filesystem.build_fs_command(cmd_bytearray, direction=0)
Creates a file system command from raw data.

Parameters

• cmd_bytearray (Bytearray) – Raw data of the packet to build.

• direction (Integer, optional, default=0) – If this command is a request (0)
or a response (1).

Raises InvalidPacketException – If cmd_bytearray is not a bytearray or its length is less
than 1 for requests 2 for responses.

See also:

FSCmd

digi.xbee.packets.network module

class digi.xbee.packets.network.RXIPv4Packet(src_address, dest_port, src_port,
ip_protocol, data=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an RX (Receive) IPv4 packet. Packet is built using the parameters of the constructor or
providing a valid byte array.

See also:

TXIPv4Packet

XBeeAPIPacket

Class constructor. Instantiates a new RXIPv4Packet object with the provided parameters.

Parameters

• src_address (IPv4Address) – IPv4 address of the source device.

• dest_port (Integer) – destination port number.

• src_port (Integer) – source port number.

• ip_protocol (IPProtocol) – IP protocol used for transmitted data.

• data (Bytearray, optional) – data that is sent to the destination device.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

336 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Raises

• ValueError – if dest_port is less than 0 or greater than 65535 or

• ValueError – if source_port is less than 0 or greater than 65535.

See also:

IPProtocol

static create_packet(raw, operating_mode)
Override method.

Returns class: .RXIPv4Packet.

Raises

• InvalidPacketException – if the bytearray length is less than 15. (start delim +
length (2 bytes) + frame type + source address(4 bytes) + dest port (2 bytes) + source port
(2 bytes) + network protocol + status + checksum = 15 bytes)

• InvalidPacketException – if the length field of raw is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of raw is not the header byte. See
SPECIAL_BYTE.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.RX_IPV4.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

source_address
Returns the IPv4 address of the source device.

Returns the IPv4 address of the source device.

Return type ipaddress.IPv4Address

dest_port
Returns the destination port.

2.6. API reference 337



XBee Python Library Documentation, Release 1.4.0

Returns the destination port.

Return type Integer

source_port
Returns the source port.

Returns the source port.

Return type Integer

ip_protocol
Returns the IP protocol used for transmitted data.

Returns the IP protocol used for transmitted data.

Return type IPProtocol

data
Returns the data of the packet.

Returns the data of the packet.

Return type Bytearray

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

338 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.network.TXIPv4Packet(frame_id, dest_address, dest_port,
src_port, ip_protocol, tx_opts, data=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an TX (Transmit) IPv4 packet. Packet is built using the parameters of the constructor or
providing a valid byte array.

See also:

2.6. API reference 339



XBee Python Library Documentation, Release 1.4.0

RXIPv4Packet

XBeeAPIPacket

Class constructor. Instantiates a new TXIPv4Packet object with the provided parameters.

Parameters

• frame_id (Integer) – the frame ID. Must be between 0 and 255.

• dest_address (IPv4Address) – IPv4 address of the destination device.

• dest_port (Integer) – destination port number.

• src_port (Integer) – source port number.

• ip_protocol (IPProtocol) – IP protocol used for transmitted data.

• tx_opts (Integer) – the transmit options of the packet.

• data (Bytearray, optional) – data that is sent to the destination device.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises

• ValueError – if frame_id is less than 0 or greater than 255.

• ValueError – if dest_port is less than 0 or greater than 65535.

• ValueError – if source_port is less than 0 or greater than 65535.

See also:

IPProtocol

OPTIONS_CLOSE_SOCKET = 2
This option will close the socket after the transmission.

OPTIONS_LEAVE_SOCKET_OPEN = 0
This option will leave socket open after the transmission.

static create_packet(raw, operating_mode)
Override method.

Returns TXIPv4Packet.

Raises

• InvalidPacketException – if the bytearray length is less than 16. (start delim +
length (2 bytes) + frame type + frame id + dest address (4 bytes) + dest port (2 bytes) +
source port (2 bytes) + network protocol + transmit options + checksum = 16 bytes)

• InvalidPacketException – if the length field of raw is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of raw is not the header byte. See
SPECIAL_BYTE.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

340 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidPacketException – if the frame type is not ApiFrameType.TX_IPV4.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

dest_address
Returns the IPv4 address of the destination device.

Returns the IPv4 address of the destination device.

Return type ipaddress.IPv4Address

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

2.6. API reference 341



XBee Python Library Documentation, Release 1.4.0

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

dest_port
Returns the destination port.

Returns the destination port.

342 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type Integer

source_port
Returns the source port.

Returns the source port.

Return type Integer

ip_protocol
Returns the IP protocol used for transmitted data.

Returns the IP protocol used for transmitted data.

Return type IPProtocol

transmit_options
Returns the transmit options of the packet.

Returns the transmit options of the packet.

Return type Integer

data
Returns the data of the packet.

Returns the data of the packet.

Return type Bytearray

digi.xbee.packets.raw module

class digi.xbee.packets.raw.TX64Packet(frame_id, x64bit_addr, tx_opts, rf_data=None,
op_mode=<OperatingMode.API_MODE: (1, ’API
mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a TX (Transmit) 64 Request packet. Packet is built using the parameters of the constructor
or providing a valid byte array.

A TX Request message will cause the module to transmit data as an RF Packet.

See also:

XBeeAPIPacket

Class constructor. Instantiates a new TX64Packet object with the provided parameters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• x64bit_addr (XBee64BitAddress) – the 64-bit destination address.

• tx_opts (Integer) – bitfield of supported transmission options.

• rf_data (Bytearray, optional) – RF data that is sent to the destination device.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

See also:

2.6. API reference 343



XBee Python Library Documentation, Release 1.4.0

TransmitOptions

XBee64BitAddress

XBeeAPIPacket

Raises ValueError – if frame_id is less than 0 or greater than 255.

static create_packet(raw, operating_mode)
Override method.

Returns TX64Packet.

Raises

• InvalidPacketException – if the bytearray length is less than 15. (start delim. +
length (2 bytes) + frame type + frame id + 64bit addr. + transmit options + checksum = 15
bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is different from ApiFrameType.
TX_64.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

x64bit_dest_addr
Returns the 64-bit destination address.

Returns the 64-bit destination address.

Return type XBee64BitAddress

See also:

XBee64BitAddress

344 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

transmit_options
Returns the transmit options bitfield.

Returns the transmit options bitfield.

Return type Integer

See also:

TransmitOptions

rf_data
Returns the RF data to send.

Returns the RF data to send.

Return type Bytearray

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

2.6. API reference 345



XBee Python Library Documentation, Release 1.4.0

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.raw.TX16Packet(frame_id, x16bit_addr, tx_opts, rf_data=None,
op_mode=<OperatingMode.API_MODE: (1, ’API
mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a TX (Transmit) 16 Request packet. Packet is built using the parameters of the constructor
or providing a valid byte array.

A TX request message will cause the module to transmit data as an RF packet.

See also:

XBeeAPIPacket

346 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Class constructor. Instantiates a new TX16Packet object with the provided parameters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• x16bit_addr (XBee16BitAddress) – the 16-bit destination address.

• tx_opts (Integer) – bitfield of supported transmission options.

• rf_data (Bytearray, optional) – RF data that is sent to the destination device.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

See also:

TransmitOptions

XBee16BitAddress

XBeeAPIPacket

Raises ValueError – if frame_id is less than 0 or greater than 255.

static create_packet(raw, operating_mode)
Override method.

Returns TX16Packet.

Raises

• InvalidPacketException – if the bytearray length is less than 9. (start delim. +
length (2 bytes) + frame type + frame id + 16bit addr. + transmit options + checksum = 9
bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is different from ApiFrameType.
TX_16.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

2.6. API reference 347



XBee Python Library Documentation, Release 1.4.0

XBeeAPIPacket.needs_id()

x16bit_dest_addr
Returns the 16-bit destination address.

Returns the 16-bit destination address.

Return type XBee16BitAddress

See also:

XBee16BitAddress

transmit_options
Returns the transmit options bitfield.

Returns the transmit options bitfield.

Return type Integer

See also:

TransmitOptions

rf_data
Returns the RF data to send.

Returns the RF data to send.

Return type Bytearray

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

348 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

2.6. API reference 349



XBee Python Library Documentation, Release 1.4.0

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.raw.TXStatusPacket(frame_id, tx_status,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a TX (Transmit) status packet. Packet is built using the parameters of the constructor or
providing a valid API payload.

When a TX request is completed, the module sends a TX status message. This message will indicate if the
packet was transmitted successfully or if there was a failure.

See also:

TX16Packet

TX64Packet

XBeeAPIPacket

Class constructor. Instantiates a new TXStatusPacket object with the provided parameters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• tx_status (TransmitStatus) – transmit status.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises ValueError – if frame_id is less than 0 or greater than 255.

See also:

TransmitStatus

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns TXStatusPacket.

Raises

• InvalidPacketException – if the bytearray length is less than 7. (start delim. +
length (2 bytes) + frame type + frame id + transmit status + checksum = 7 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

350 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidPacketException – if the frame type is different from ApiFrameType.
TX_16.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

transmit_status
Returns the transmit status.

Returns the transmit status.

Return type TransmitStatus

See also:

TransmitStatus

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

2.6. API reference 351



XBee Python Library Documentation, Release 1.4.0

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

352 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.raw.RX64Packet(x64bit_addr, rssi, rx_opts, rf_data=None,
op_mode=<OperatingMode.API_MODE: (1,
’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an RX (Receive) 64 request packet. Packet is built using the parameters of the constructor
or providing a valid API byte array.

When the module receives an RF packet, it is sent out the UART using this message type.

This packet is the response to TX (transmit) 64 request packets.

See also:

ReceiveOptions

TX64Packet

XBeeAPIPacket

Class constructor. Instantiates a RX64Packet object with the provided parameters.

Parameters

• x64bit_addr (XBee64BitAddress) – the 64-bit source address.

• rssi (Integer) – received signal strength indicator.

• rx_opts (Integer) – bitfield indicating the receive options.

• rf_data (Bytearray, optional) – received RF data.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

See also:

ReceiveOptions

XBee64BitAddress

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns RX64Packet

Raises

• InvalidPacketException – if the bytearray length is less than 15. (start delim. +
length (2 bytes) + frame type + 64bit addr. + rssi + receive options + checksum = 15
bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

2.6. API reference 353



XBee Python Library Documentation, Release 1.4.0

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is different from ApiFrameType.
RX_64.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

is_broadcast()
Override method.

See also:

XBeeAPIPacket.is_broadcast()

x64bit_source_addr
Returns the 64-bit source address.

Returns the 64-bit source address.

Return type XBee64BitAddress

See also:

XBee64BitAddress

rssi
Returns the received Signal Strength Indicator (RSSI).

Returns the received Signal Strength Indicator (RSSI).

Return type Integer

receive_options
Returns the receive options bitfield.

Returns the receive options bitfield.

354 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type Integer

See also:

ReceiveOptions

rf_data
Returns the received RF data.

Returns the received RF data.

Return type Bytearray

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

2.6. API reference 355



XBee Python Library Documentation, Release 1.4.0

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.raw.RX16Packet(x16bit_addr, rssi, rx_opts, rf_data=None,
op_mode=<OperatingMode.API_MODE: (1,
’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an RX (Receive) 16 Request packet. Packet is built using the parameters of the constructor
or providing a valid API byte array.

When the module receives an RF packet, it is sent out the UART using this message type

This packet is the response to TX (Transmit) 16 Request packets.

See also:

ReceiveOptions

TX16Packet

XBeeAPIPacket

Class constructor. Instantiates a RX16Packet object with the provided parameters.

356 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Parameters

• x16bit_addr (XBee16BitAddress) – the 16-bit source address.

• rssi (Integer) – received signal strength indicator.

• rx_opts (Integer) – bitfield indicating the receive options.

• rf_data (Bytearray, optional) – received RF data.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

See also:

ReceiveOptions

XBee16BitAddress

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns RX16Packet.

Raises

• InvalidPacketException – if the bytearray length is less than 9.

• (start delim. + length (2 bytes) + frame type + 16bit addr. + rssi – + receive options +
checksum = 9 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is different from ApiFrameType.
RX_16.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

2.6. API reference 357



XBee Python Library Documentation, Release 1.4.0

is_broadcast()
Override method.

See also:

XBeeAPIPacket.is_broadcast()

x16bit_source_addr
Returns the 16-bit source address.

Returns the 16-bit source address.

Return type XBee16BitAddress

See also:

XBee16BitAddress

rssi
Returns the received Signal Strength Indicator (RSSI).

Returns the received Signal Strength Indicator (RSSI).

Return type Integer

receive_options
Returns the receive options bitfield.

Returns the receive options bitfield.

Return type Integer

See also:

ReceiveOptions

rf_data
Returns the received RF data.

Returns the received RF data.

Return type Bytearray

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

358 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

2.6. API reference 359



XBee Python Library Documentation, Release 1.4.0

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.raw.RX64IOPacket(x64bit_addr, rssi, rx_opts, data,
op_mode=<OperatingMode.API_MODE: (1,
’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an RX64 address IO packet. Packet is built using the parameters of the constructor or
providing a valid API payload.

I/O data is sent out the UART using an API frame.

See also:

XBeeAPIPacket

Class constructor. Instantiates an RX64IOPacket object with the provided parameters.

Parameters

• x64bit_addr (XBee64BitAddress) – the 64-bit source address.

• rssi (Integer) – received signal strength indicator.

• rx_opts (Integer) – bitfield indicating the receive options.

• data (Bytearray) – received RF data.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

See also:

ReceiveOptions

XBee64BitAddress

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns RX64IOPacket.

Raises

• InvalidPacketException – if the bytearray length is less than 20. (start delim. +
length (2 bytes) + frame type + 64bit addr. + rssi + receive options + rf data (5 bytes) +
checksum = 20 bytes)

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

360 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is different from ApiFrameType.
RX_IO_64.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

is_broadcast()
Override method.

See also:

XBeeAPIPacket.is_broadcast()

x64bit_source_addr
Returns the 64-bit source address.

Returns the 64-bit source address.

Return type XBee64BitAddress

See also:

XBee64BitAddress

rssi
Returns the received Signal Strength Indicator (RSSI).

Returns the received Signal Strength Indicator (RSSI).

Return type Integer

receive_options
Returns the receive options bitfield.

Returns the receive options bitfield.

2.6. API reference 361



XBee Python Library Documentation, Release 1.4.0

Return type Integer

See also:

ReceiveOptions

rf_data
Returns the received RF data.

Returns the received RF data.

Return type Bytearray

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

362 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

io_sample
Returns the IO sample corresponding to the data contained in the packet.

Returns

the IO sample of the packet, None if the packet has not any data or if the sample could not
be generated correctly.

Return type IOSample

See also:

IOSample

class digi.xbee.packets.raw.RX16IOPacket(x16bit_addr, rssi, rx_opts, data,
op_mode=<OperatingMode.API_MODE: (1,
’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an RX16 address IO packet. Packet is built using the parameters of the constructor or
providing a valid byte array.

2.6. API reference 363



XBee Python Library Documentation, Release 1.4.0

I/O data is sent out the UART using an API frame.

See also:

XBeeAPIPacket

Class constructor. Instantiates an RX16IOPacket object with the provided parameters.

Parameters

• x16bit_addr (XBee16BitAddress) – the 16-bit source address.

• rssi (Integer) – received signal strength indicator.

• rx_opts (Integer) – bitfield indicating the receive options.

• data (Bytearray) – received RF data.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

See also:

ReceiveOptions

XBee16BitAddress

XBeeAPIPacket

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

364 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

static create_packet(raw, operating_mode)
Override method.

Returns RX16IOPacket.

Raises

2.6. API reference 365



XBee Python Library Documentation, Release 1.4.0

• InvalidPacketException – if the bytearray length is less than 14. (start delim. +
length (2 bytes) + frame type + 16bit addr. + rssi + receive options + rf data (5 bytes) +
checksum = 14 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is different from ApiFrameType.
RX_IO_16.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

is_broadcast()
Override method.

See also:

XBeeAPIPacket.is_broadcast()

x16bit_source_addr
Returns the 16-bit source address.

Returns the 16-bit source address.

Return type XBee16BitAddress

See also:

XBee16BitAddress

rssi
Returns the received Signal Strength Indicator (RSSI).

Returns the received Signal Strength Indicator (RSSI).

366 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type Integer

receive_options
Returns the receive options bitfield.

Returns the receive options bitfield.

Return type Integer

See also:

ReceiveOptions

rf_data
Returns the received RF data.

Returns the received RF data.

Return type Bytearray

io_sample
Returns the IO sample corresponding to the data contained in the packet.

Returns

the IO sample of the packet, None if the packet has not any data or if the sample could not
be generated correctly.

Return type IOSample

See also:

IOSample

digi.xbee.packets.relay module

class digi.xbee.packets.relay.UserDataRelayPacket(frame_id, local_iface, data=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a User Data Relay packet. Packet is built using the parameters of the constructor.

The User Data Relay packet allows for data to come in on an interface with a designation of the target interface
for the data to be output on.

The destination interface must be one of the interfaces found in the corresponding enumerator (see
XBeeLocalInterface).

See also:

UserDataRelayOutputPacket

XBeeAPIPacket

XBeeLocalInterface

2.6. API reference 367



XBee Python Library Documentation, Release 1.4.0

Class constructor. Instantiates a new UserDataRelayPacket object with the provided parameters.

Parameters

• frame_id (integer) – the frame ID of the packet.

• local_iface (XBeeLocalInterface) – the destination interface.

• data (Bytearray, optional) – Data to send to the destination interface.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

See also:

XBeeAPIPacket

XBeeLocalInterface

Raises

• ValueError – if local_interface is None.

• ValueError – if frame_id is less than 0 or greater than 255.

static create_packet(raw, operating_mode)
Override method.

Returns UserDataRelayPacket.

Raises

• InvalidPacketException – if the bytearray length is less than 7. (start delim. +
length (2 bytes) + frame type + frame id + relay interface + checksum = 7 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
USER_DATA_RELAY_REQUEST.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

368 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

XBeeAPIPacket.needs_id()

data
Returns the data to send.

Returns the data to send.

Return type Bytearray

dest_interface
Returns the the destination interface.

Returns the destination interface.

Return type XBeeLocalInterface

See also:

XBeeLocalInterface

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

2.6. API reference 369



XBee Python Library Documentation, Release 1.4.0

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.relay.UserDataRelayOutputPacket(local_iface, data=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a User Data Relay Output packet. Packet is built using the parameters of the constructor.

The User Data Relay Output packet can be received from any relay interface.

The source interface must be one of the interfaces found in the corresponding enumerator (see
XBeeLocalInterface).

370 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

See also:

UserDataRelayPacket

XBeeAPIPacket

XBeeLocalInterface

Class constructor. Instantiates a new UserDataRelayOutputPacket object with the provided parameters.

Parameters

• local_iface (XBeeLocalInterface) – the source interface.

• data (Bytearray, optional) – Data received from the source interface.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises ValueError – if local_interface is None.

See also:

XBeeAPIPacket

XBeeLocalInterface

static create_packet(raw, operating_mode)
Override method.

Returns UserDataRelayOutputPacket.

Raises

• InvalidPacketException – if the bytearray length is less than 6. (start delim. +
length (2 bytes) + frame type + relay interface + checksum = 6 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
USER_DATA_RELAY_OUTPUT.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

2.6. API reference 371



XBee Python Library Documentation, Release 1.4.0

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

372 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

data
Returns the received data.

Returns the received data.

Return type Bytearray

src_interface
Returns the the source interface.

Returns the source interface.

Return type XBeeLocalInterface

See also:

XBeeLocalInterface

2.6. API reference 373



XBee Python Library Documentation, Release 1.4.0

digi.xbee.packets.socket module

class digi.xbee.packets.socket.SocketCreatePacket(frame_id, protocol,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Create packet. Packet is built using the parameters of the constructor.

Use this frame to create a new socket with the following protocols: TCP, UDP, or TLS.

See also:

SocketCreateResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketCreatePacket object with the provided parameters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• protocol (IPProtocol) – the protocol used to create the socket.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

See also:

XBeeAPIPacket

IPProtocol

Raises ValueError – if frame_id is less than 0 or greater than 255.

static create_packet(raw, operating_mode)
Override method.

Returns SocketCreatePacket.

Raises

• InvalidPacketException – if the bytearray length is less than 7. (start delim. +
length (2 bytes) + frame type + frame id + protocol + checksum = 7 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
SOCKET_CREATE.

• InvalidOperatingModeException – if operating_mode is not supported.

374 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

protocol
Returns the communication protocol.

Returns the communication protocol.

Return type IPProtocol

See also:

IPProtocol

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

2.6. API reference 375



XBee Python Library Documentation, Release 1.4.0

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

376 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

class digi.xbee.packets.socket.SocketCreateResponsePacket(frame_id,
socket_id, status,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Create Response packet. Packet is built using the parameters of the constructor.

The device sends this frame in response to a Socket Create (0x40) frame. It contains a socket ID that should be
used for future transactions with the socket and a status field.

If the status field is non-zero, which indicates an error, the socket ID will be set to 0xFF and the socket will not
be opened.

See also:

SocketCreatePacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketCreateResponsePacket object with the provided parame-
ters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• socket_id (Integer) – the unique socket ID to address the socket.

• status (SocketStatus) – the socket create status.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

See also:

XBeeAPIPacket

SocketStatus

Raises

• ValueError – if frame_id is less than 0 or greater than 255.

• ValueError – if socket_id is less than 0 or greater than 255.

static create_packet(raw, operating_mode)
Override method.

Returns SocketCreateResponsePacket.

Raises

• InvalidPacketException – if the bytearray length is less than 8. (start delim. +
length (2 bytes) + frame type + frame id + socket id + status + checksum = 8 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

2.6. API reference 377



XBee Python Library Documentation, Release 1.4.0

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
SOCKET_CREATE_RESPONSE.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

socket_id
Returns the the socket ID.

Returns the socket ID.

Return type Integer

status
Returns the socket create status.

Returns the status.

Return type SocketStatus

See also:

SocketStatus

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

378 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

2.6. API reference 379



XBee Python Library Documentation, Release 1.4.0

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.socket.SocketOptionRequestPacket(frame_id, socket_id, op-
tion, option_data=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Option Request packet. Packet is built using the parameters of the constructor.

Use this frame to modify the behavior of sockets to be different from the normal default behavior.

If the Option Data field is zero-length, the Socket Option Response Packet (0xC1) reports the current effective
value.

See also:

SocketOptionResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketOptionRequestPacket object with the provided parameters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• socket_id (Integer) – the socket ID to modify.

• option (SocketOption) – the socket option of the parameter to change.

• option_data (Bytearray, optional) – the option data.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

See also:

XBeeAPIPacket

SocketOption

Raises

• ValueError – if frame_id is less than 0 or greater than 255.

• ValueError – if socket_id is less than 0 or greater than 255.

380 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

static create_packet(raw, operating_mode)
Override method.

Returns SocketOptionRequestPacket.

Raises

• InvalidPacketException – if the bytearray length is less than 8. (start delim. +
length (2 bytes) + frame type + frame id + socket id + option + checksum = 8 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: byte 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
SOCKET_OPTION_REQUEST.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

socket_id
Returns the the socket ID.

Returns the socket ID.

Return type Integer

option
Returns the socket option.

Returns the socket option.

Return type SocketOption

See also:

SocketOption

option_data
Returns the socket option data.

2.6. API reference 381



XBee Python Library Documentation, Release 1.4.0

Returns the socket option data.

Return type Bytearray

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

382 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.socket.SocketOptionResponsePacket(frame_id, socket_id,
option, status, op-
tion_data=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Option Response packet. Packet is built using the parameters of the constructor.

Reports the status of requests made with the Socket Option Request (0x41) packet.

See also:

SocketOptionRequestPacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketOptionResponsePacket object with the provided parame-
ters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• socket_id (Integer) – the socket ID for which modification was requested.

2.6. API reference 383



XBee Python Library Documentation, Release 1.4.0

• option (SocketOption) – the socket option of the parameter requested.

• status (SocketStatus) – the socket option status of the parameter requested.

• option_data (Bytearray, optional) – the option data.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

See also:

XBeeAPIPacket

SocketOption

SocketStatus

Raises

• ValueError – if frame_id is less than 0 or greater than 255.

• ValueError – if socket_id is less than 0 or greater than 255.

static create_packet(raw, operating_mode)
Override method.

Returns SocketOptionResponsePacket.

Raises

• InvalidPacketException – if the bytearray length is less than 9. (start delim. +
length (2 bytes) + frame type + frame id + socket id + option + status + checksum = 9
bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
SOCKET_OPTION_RESPONSE.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

384 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

socket_id
Returns the the socket ID.

Returns the socket ID.

Return type Integer

option
Returns the socket option.

Returns the socket option.

Return type SocketOption

See also:

SocketOption

status
Returns the socket option status.

Returns the socket option status.

Return type SocketStatus

See also:

SocketStatus

option_data
Returns the socket option data.

Returns the socket option data.

Return type Bytearray

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

2.6. API reference 385



XBee Python Library Documentation, Release 1.4.0

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

386 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.socket.SocketConnectPacket(frame_id, socket_id, dest_port,
dest_address_type, dest_address,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Connect packet. Packet is built using the parameters of the constructor.

Use this frame to create a socket connect message that causes the device to connect a socket to the given address
and port.

For a UDP socket, this filters out any received responses that are not from the specified remote address and port.

Two frames occur in response:

• Socket Connect Response frame (SocketConnectResponsePacket): Arrives immediately and con-
firms the request.

• Socket Status frame (SocketStatePacket): Indicates if the connection was successful.

See also:

SocketConnectResponsePacket

SocketStatePacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketConnectPacket object with the provided parameters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• socket_id (Integer) – the ID of the socket to connect.

• dest_port (Integer) – the destination port number.

• dest_address_type (Integer) – the destination address type.
One of SocketConnectPacket.DEST_ADDRESS_BINARY or
SocketConnectPacket.DEST_ADDRESS_STRING.

• dest_address (Bytearray or String) – the destination address.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

See also:

SocketConnectPacket.DEST_ADDRESS_BINARY

SocketConnectPacket.DEST_ADDRESS_STRING

2.6. API reference 387



XBee Python Library Documentation, Release 1.4.0

XBeeAPIPacket

Raises

• ValueError – if frame_id is less than 0 or greater than 255.

• ValueError – if socket_id is less than 0 or greater than 255.

• ValueError – if dest_port is less than 0 or greater than 65535.

• ValueError – if dest_address_type is different than SocketConnectPacket.
DEST_ADDRESS_BINARY and SocketConnectPacket.
DEST_ADDRESS_STRING.

• ValueError – if dest_address is None or does not follow the format specified in the
configured type.

DEST_ADDRESS_BINARY = 0
Indicates the destination address field is a binary IPv4 address in network byte order.

DEST_ADDRESS_STRING = 1
Indicates the destination address field is a string containing either a dotted quad value or a domain name
to be resolved.

static create_packet(raw, operating_mode)
Override method.

Returns SocketConnectPacket.

Raises

• InvalidPacketException – if the bytearray length is less than 11. (start delim. +
length (2 bytes) + frame type + frame id + socket id + dest port (2 bytes) + dest address
type + dest_address + checksum = 11 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
SOCKET_CONNECT.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

388 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

XBeeAPIPacket.needs_id()

socket_id
Returns the the socket ID.

Returns the socket ID.

Return type Integer

dest_port
Returns the destination port.

Returns the destination port.

Return type Integer

dest_address_type
Returns the destination address type.

Returns the destination address type.

Return type Integer

dest_address
Returns the destination address.

Returns the destination address.

Return type Bytearray or String

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

2.6. API reference 389



XBee Python Library Documentation, Release 1.4.0

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

390 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

class digi.xbee.packets.socket.SocketConnectResponsePacket(frame_id,
socket_id, status,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Connect Response packet. Packet is built using the parameters of the constructor.

The device sends this frame in response to a Socket Connect (0x42) frame. The frame contains a status regarding
the initiation of the connect.

See also:

SocketConnectPacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketConnectPacket object with the provided parameters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• socket_id (Integer) – the ID of the socket to connect.

• status (SocketStatus) – the socket connect status.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

See also:

XBeeAPIPacket

SocketStatus

Raises

• ValueError – if frame_id is less than 0 or greater than 255.

• ValueError – if socket_id is less than 0 or greater than 255.

static create_packet(raw, operating_mode)
Override method.

Returns SocketConnectResponsePacket.

Raises

• InvalidPacketException – if the bytearray length is less than 8. (start delim. +
length (2 bytes) + frame type + frame id + socket id + status + checksum = 8 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

2.6. API reference 391



XBee Python Library Documentation, Release 1.4.0

• InvalidPacketException – if the frame type is not ApiFrameType.
SOCKET_CONNECT_RESPONSE.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

socket_id
Returns the the socket ID.

Returns the socket ID.

Return type Integer

status
Returns the socket connect status.

Returns the socket connect status.

Return type SocketStatus

See also:

SocketStatus

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

392 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

2.6. API reference 393



XBee Python Library Documentation, Release 1.4.0

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.socket.SocketClosePacket(frame_id, socket_id,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Close packet. Packet is built using the parameters of the constructor.

Use this frame to close a socket when given an identifier.

See also:

SocketCloseResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketClosePacket object with the provided parameters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• socket_id (Integer) – the ID of the socket to close.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

See also:

XBeeAPIPacket

Raises

• ValueError – if frame_id is less than 0 or greater than 255.

• ValueError – if socket_id is less than 0 or greater than 255.

static create_packet(raw, operating_mode)
Override method.

Returns SocketClosePacket.

Raises

• InvalidPacketException – if the bytearray length is less than 7. (start delim. +
length (2 bytes) + frame type + frame id + socket id + checksum = 7 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

394 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
SOCKET_CLOSE.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

socket_id
Returns the socket ID.

Returns the socket ID.

Return type Integer

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

2.6. API reference 395



XBee Python Library Documentation, Release 1.4.0

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

396 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.socket.SocketCloseResponsePacket(frame_id,
socket_id, status,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Close Response packet. Packet is built using the parameters of the constructor.

The device sends this frame in response to a Socket Close (0x43) frame. Since a close will always succeed for
a socket that exists, the status can be only one of two values:

• Success.

• Bad socket ID.

See also:

SocketClosePacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketCloseResponsePacket object with the provided parameters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• socket_id (Integer) – the ID of the socket to close.

• status (SocketStatus) – the socket close status.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

See also:

XBeeAPIPacket

SocketStatus

Raises

• ValueError – if frame_id is less than 0 or greater than 255.

• ValueError – if socket_id is less than 0 or greater than 255.

static create_packet(raw, operating_mode)
Override method.

Returns SocketCloseResponsePacket.

Raises

• InvalidPacketException – if the bytearray length is less than 8. (start delim. +
length (2 bytes) + frame type + frame id + socket id + status + checksum = 8 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

2.6. API reference 397



XBee Python Library Documentation, Release 1.4.0

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
SOCKET_CLOSE_RESPONSE.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

socket_id
Returns the the socket ID.

Returns the socket ID.

Return type Integer

status
Returns the socket close status.

Returns the socket close status.

Return type SocketStatus

See also:

SocketStatus

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

398 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

2.6. API reference 399



XBee Python Library Documentation, Release 1.4.0

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.socket.SocketSendPacket(frame_id, socket_id, payload=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Send packet. Packet is built using the parameters of the constructor.

A Socket Send message causes the device to transmit data using the current connection. For a nonzero frame
ID, this will elicit a Transmit (TX) Status - 0x89 frame (TransmitStatusPacket).

This frame requires a successful Socket Connect - 0x42 frame first (SocketConnectPacket). For a socket
that is not connected, the device responds with a Transmit (TX) Status - 0x89 frame with an error.

See also:

TransmitStatusPacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketSendPacket object with the provided parameters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• socket_id (Integer) – the socket identifier.

• payload (Bytearray, optional) – data that is sent.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises

• ValueError – if frame_id is less than 0 or greater than 255.

• ValueError – if socket_id is less than 0 or greater than 255.

See also:

XBeeAPIPacket

400 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

static create_packet(raw, operating_mode)
Override method.

Returns SocketSendPacket.

Raises

• InvalidPacketException – if the bytearray length is less than 7. (start delim. +
length (2 bytes) + frame type + frame id + socket ID + checksum = 7 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
SOCKET_SEND.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

socket_id
Returns the socket ID.

Returns the socket ID.

Return type Integer

payload
Returns the payload to send.

Returns the payload to send.

Return type Bytearray

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

2.6. API reference 401



XBee Python Library Documentation, Release 1.4.0

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

402 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.socket.SocketSendToPacket(frame_id, socket_id, dest_address,
dest_port, payload=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Send packet. Packet is built using the parameters of the constructor.

A Socket SendTo (Transmit Explicit Data) message causes the device to transmit data using an IPv4
address and port. For a non-zero frame ID, this will elicit a Transmit (TX) Status - 0x89 frame
(TransmitStatusPacket).

If this frame is used with a TCP, SSL, or a connected UDP socket, the address and port fields are ignored.

See also:

TransmitStatusPacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketSendToPacket object with the provided parameters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• socket_id (Integer) – the socket identifier.

• dest_address (IPv4Address) – IPv4 address of the destination device.

• dest_port (Integer) – destination port number.

• payload (Bytearray, optional) – data that is sent.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises

2.6. API reference 403



XBee Python Library Documentation, Release 1.4.0

• ValueError – if frame_id is less than 0 or greater than 255.

• ValueError – if socket_id is less than 0 or greater than 255.

• ValueError – if dest_port is less than 0 or greater than 65535.

See also:

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns SocketSendToPacket.

Raises

• InvalidPacketException – if the bytearray length is less than 14. (start delim. +
length (2 bytes) + frame type + frame id + socket ID + dest address (4 bytes) + dest port
(2 bytes) + transmit options + checksum = 14 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
SOCKET_SENDTO.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

socket_id
Returns the socket ID.

Returns the socket ID.

Return type Integer

dest_address
Returns the IPv4 address of the destination device.

404 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns the IPv4 address of the destination device.

Return type ipaddress.IPv4Address

dest_port
Returns the destination port.

Returns the destination port.

Return type Integer

payload
Returns the payload to send.

Returns the payload to send.

Return type Bytearray

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

2.6. API reference 405



XBee Python Library Documentation, Release 1.4.0

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.socket.SocketBindListenPacket(frame_id, socket_id, src_port,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Bind/Listen packet. Packet is built using the parameters of the constructor.

Opens a listener socket that listens for incoming connections.

When there is an incoming connection on the listener socket, a Socket New IPv4 Client - 0xCC frame
(SocketNewIPv4ClientPacket) is sent, indicating the socket ID for the new connection along with the
remote address information.

For a UDP socket, this frame binds the socket to a given port. A bound UDP socket can receive data with a
Socket Receive From: IPv4 - 0xCE frame (SocketReceiveFromIPv4Packet).

See also:

406 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

SocketNewIPv4ClientPacket

SocketReceiveFromIPv4Packet

XBeeAPIPacket

Class constructor. Instantiates a new SocketBindListenPacket object with the provided parameters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• socket_id (Integer) – socket ID to listen on.

• src_port (Integer) – the port to listen on.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises

• ValueError – if frame_id is less than 0 or greater than 255.

• ValueError – if socket_id is less than 0 or greater than 255.

• ValueError – if source_port is less than 0 or greater than 65535.

See also:

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns SocketBindListenPacket.

Raises

• InvalidPacketException – if the bytearray length is less than 9. (start delim. +
length (2 bytes) + frame type + frame id + socket ID + source port (2 bytes) + checksum
= 9 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
SOCKET_BIND.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

2.6. API reference 407



XBee Python Library Documentation, Release 1.4.0

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

socket_id
Returns the socket ID.

Returns the socket ID.

Return type Integer

source_port
Returns the source port.

Returns the source port.

Return type Integer

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

408 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.socket.SocketListenResponsePacket(frame_id,
socket_id, status,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Listen Response packet. Packet is built using the parameters of the constructor.

The device sends this frame in response to a Socket Bind/Listen (0x46) frame
(SocketBindListenPacket).

2.6. API reference 409



XBee Python Library Documentation, Release 1.4.0

See also:

SocketBindListenPacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketListenResponsePacket object with the provided parame-
ters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• socket_id (Integer) – socket ID.

• status (SocketStatus) – socket listen status.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises

• ValueError – if frame_id is less than 0 or greater than 255.

• ValueError – if socket_id is less than 0 or greater than 255.

See also:

XBeeAPIPacket

SocketStatus

static create_packet(raw, operating_mode)
Override method.

Returns SocketListenResponsePacket.

Raises

• InvalidPacketException – if the bytearray length is less than 8. (start delim. +
length (2 bytes) + frame type + frame id + socket ID + status + checksum = 8 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
SOCKET_LISTEN_RESPONSE.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

410 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

socket_id
Returns the socket ID.

Returns the socket ID.

Return type Integer

status
Returns the socket listen status.

Returns The socket listen status.

Return type SocketStatus

See also:

SocketStatus

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

2.6. API reference 411



XBee Python Library Documentation, Release 1.4.0

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

412 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

class digi.xbee.packets.socket.SocketNewIPv4ClientPacket(socket_id,
client_socket_id,
remote_address,
remote_port,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket New IPv4 Client packet. Packet is built using the parameters of the constructor.

XBee Cellular modem uses this frame when an incoming connection is accepted on a listener socket.

This frame contains the original listener’s socket ID and a new socket ID of the incoming connection, along
with the connection’s remote address information.

See also:

XBeeAPIPacket

Class constructor. Instantiates a new SocketNewIPv4ClientPacket object with the provided parameters.

Parameters

• socket_id (Integer) – the socket ID of the listener socket.

• client_socket_id (Integer) – the socket ID of the new connection.

• remote_address (IPv4Address) – the remote IPv4 address.

• remote_port (Integer) – the remote port number.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises

• ValueError – if socket_id is less than 0 or greater than 255.

• ValueError – if client_socket_id is less than 0 or greater than 255.

• ValueError – if remote_port is less than 0 or greater than 65535.

See also:

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns SocketNewIPv4ClientPacket.

Raises

• InvalidPacketException – if the bytearray length is less than 13. (start delim. +
length (2 bytes) + frame type + socket ID + client socket ID + remote address (4 bytes) +
remote port (2 bytes) + checksum = 13 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

2.6. API reference 413



XBee Python Library Documentation, Release 1.4.0

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
SOCKET_NEW_IPV4_CLIENT.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

socket_id
Returns the socket ID.

Returns the socket ID.

Return type Integer

client_socket_id
Returns the client socket ID.

Returns the client socket ID.

Return type Integer

remote_address
Returns the remote IPv4 address.

Returns the remote IPv4 address.

Return type ipaddress.IPv4Address

remote_port
Returns the remote port.

Returns the remote port.

Return type Integer

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

414 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

2.6. API reference 415



XBee Python Library Documentation, Release 1.4.0

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.socket.SocketReceivePacket(frame_id, socket_id,
payload=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Receive packet. Packet is built using the parameters of the constructor.

XBee Cellular modem uses this frame when it receives RF data on the specified socket.

See also:

XBeeAPIPacket

Class constructor. Instantiates a new SocketReceivePacket object with the provided parameters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• socket_id (Integer) – the ID of the socket the data has been received on.

• payload (Bytearray, optional) – data that is received.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises

• ValueError – if frame_id is less than 0 or greater than 255.

• ValueError – if socket_id is less than 0 or greater than 255.

See also:

XBeeAPIPacket

416 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

2.6. API reference 417



XBee Python Library Documentation, Release 1.4.0

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

static create_packet(raw, operating_mode)
Override method.

Returns SocketReceivePacket.

Raises

• InvalidPacketException – if the bytearray length is less than 7. (start delim. +
length (2 bytes) + frame type + frame id + socket ID + checksum = 7 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
SOCKET_RECEIVE.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

418 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

socket_id
Returns the socket ID.

Returns the socket ID.

Return type Integer

payload
Returns the payload that was received.

Returns the payload that was received.

Return type Bytearray

class digi.xbee.packets.socket.SocketReceiveFromPacket(frame_id, socket_id,
src_address, src_port,
payload=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Receive From packet. Packet is built using the parameters of the constructor.

XBee Cellular modem uses this frame when it receives RF data on the specified socket. The frame also contains
addressing information about the source.

See also:

XBeeAPIPacket

Class constructor. Instantiates a new SocketReceiveFromPacket object with the provided parameters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• socket_id (Integer) – the ID of the socket the data has been received on.

• src_address (IPv4Address) – IPv4 address of the source device.

• src_port (Integer) – source port number.

• payload (Bytearray, optional) – data that is received.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises

• ValueError – if frame_id is less than 0 or greater than 255.

• ValueError – if socket_id is less than 0 or greater than 255.

• ValueError – if source_port is less than 0 or greater than 65535.

2.6. API reference 419



XBee Python Library Documentation, Release 1.4.0

See also:

XBeeAPIPacket

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

420 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

static create_packet(raw, operating_mode)
Override method.

Returns SocketReceiveFromPacket.

Raises

• InvalidPacketException – if the bytearray length is less than 13. (start delim. +
length (2 bytes) + frame type + frame id + socket ID + source address (4 bytes) + source
port (2 bytes) + status + Checksum = 14 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
SOCKET_RECEIVE_FROM.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

2.6. API reference 421



XBee Python Library Documentation, Release 1.4.0

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

socket_id
Returns the socket ID.

Returns the socket ID.

Return type Integer

source_address
Returns the IPv4 address of the source device.

Returns the IPv4 address of the source device.

Return type ipaddress.IPv4Address

source_port
Returns the source port.

Returns the source port.

Return type Integer

payload
Returns the payload to send.

Returns the payload that has been received.

Return type Bytearray

class digi.xbee.packets.socket.SocketStatePacket(socket_id, state,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket State packet. Packet is built using the parameters of the constructor.

This frame is sent out the device’s serial port to indicate the state related to the socket.

See also:

XBeeAPIPacket

Class constructor. Instantiates a new SocketStatePacket object with the provided parameters.

Parameters

• socket_id (Integer) – the socket identifier.

• state (SocketState) – socket status.

422 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises ValueError – if socket_id is less than 0 or greater than 255.

See also:

SockeState

XBeeAPIPacket

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

2.6. API reference 423



XBee Python Library Documentation, Release 1.4.0

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

static create_packet(raw, operating_mode)
Override method.

Returns SocketStatePacket.

Raises

• InvalidPacketException – if the bytearray length is less than 7. (start delim. +
length (2 bytes) + frame type + socket ID + state + checksum = 7 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
SOCKET_STATUS.

424 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

socket_id
Returns the socket ID.

Returns the socket ID.

Return type Integer

state
Returns the socket state.

Returns The socket state.

Return type SocketState

See also:

SocketState

digi.xbee.packets.wifi module

class digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket(src_address,
rssi, rx_options,
rf_data=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API
mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a IO data sample RX indicator (Wi-Fi) packet. Packet is built using the parameters of the
constructor or providing a valid API payload.

When the module receives an IO sample frame from a remote device, it sends the sample out the UART or SPI
using this frame type. Only modules running API mode will be able to receive IO samples.

Among received data, some options can also be received indicating transmission parameters.

See also:

XBeeAPIPacket

2.6. API reference 425



XBee Python Library Documentation, Release 1.4.0

Class constructor. Instantiates a new IODataSampleRxIndicatorWifiPacket object with the provided
parameters.

Parameters

• src_address (ipaddress.IPv4Address) – the 64-bit source address.

• rssi (Integer) – received signal strength indicator.

• rx_options (Integer) – bitfield indicating the receive options.

• rf_data (Bytearray, optional) – received RF data.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises ValueError – if rf_data is not None and it’s not valid for create an IOSample.

See also:

IOSample

ipaddress.IPv4Address

ReceiveOptions

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns IODataSampleRxIndicatorWifiPacket.

Raises

• InvalidPacketException – if the bytearray length is less than 16. (start delim. +
length (2 bytes) + frame type + source addr. (4 bytes) + rssi + receive options + rf data (5
bytes) + checksum = 16 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
IO_DATA_SAMPLE_RX_INDICATOR_WIFI.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

426 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

See also:

XBeeAPIPacket.needs_id()

source_address
Returns the IPv4 address of the source device.

Returns the IPv4 address of the source device.

Return type ipaddress.IPv4Address

See also:

ipaddress.IPv4Address

rssi
Returns the received Signal Strength Indicator (RSSI).

Returns the received Signal Strength Indicator (RSSI).

Return type Integer

receive_options
Returns the receive options bitfield.

Returns the receive options bitfield.

Return type Integer

See also:

ReceiveOptions

rf_data
Returns the received RF data.

Returns the received RF data.

Return type Bytearray

io_sample
Returns the IO sample corresponding to the data contained in the packet.

Returns

the IO sample of the packet, None if the packet has not any data or if the sample could not
be generated correctly.

Return type IOSample

See also:

IOSample

2.6. API reference 427



XBee Python Library Documentation, Release 1.4.0

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

428 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.wifi.RemoteATCommandWifiPacket(frame_id, dest_address,
tx_options, command,
parameter=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a remote AT command request (Wi-Fi) packet. Packet is built using the parameters of the
constructor or providing a valid API payload.

Used to query or set module parameters on a remote device. For parameter changes on the remote device to take
effect, changes must be applied, either by setting the apply changes options bit, or by sending an AC command
to the remote node.

Remote command options are set as a bitfield.

If configured, command response is received as a RemoteATCommandResponseWifiPacket.

See also:

RemoteATCommandResponseWifiPacket

XBeeAPIPacket

Class constructor. Instantiates a new RemoteATCommandWifiPacket object with the provided parameters.

Parameters

• frame_id (integer) – the frame ID of the packet.

2.6. API reference 429



XBee Python Library Documentation, Release 1.4.0

• dest_address (ipaddress.IPv4Address) – the IPv4 address of the destination
device.

• tx_options (Integer) – bitfield of supported transmission options.

• command (String) – AT command to send.

• parameter (Bytearray, optional) – AT command parameter.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises

• ValueError – if frame_id is less than 0 or greater than 255.

• ValueError – if length of command is different than 2.

See also:

ipaddress.IPv4Address

RemoteATCmdOptions

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns RemoteATCommandWifiPacket

Raises

• InvalidPacketException – if the Bytearray length is less than 17. (start delim.
+ length (2 bytes) + frame type + frame id + dest. addr. (8 bytes) + transmit options +
command (2 bytes) + checksum = 17 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
REMOTE_AT_COMMAND_REQUEST_WIFI.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

430 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

XBeeAPIPacket.needs_id()

dest_address
Returns the IPv4 address of the destination device.

Returns the IPv4 address of the destination device.

Return type ipaddress.IPv4Address

See also:

ipaddress.IPv4Address

transmit_options
Returns the transmit options bitfield.

Returns the transmit options bitfield.

Return type Integer

See also:

RemoteATCmdOptions

command
Returns the AT command.

Returns the AT command.

Return type String

parameter
Returns the AT command parameter.

Returns the AT command parameter.

Return type Bytearray

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

2.6. API reference 431



XBee Python Library Documentation, Release 1.4.0

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

432 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket(frame_id,
src_address,
command,
resp_status,
comm_value=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API
mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a remote AT command response (Wi-Fi) packet. Packet is built using the parameters of the
constructor or providing a valid API payload.

If a module receives a remote command response RF data frame in response to a Remote AT Command Request,
the module will send a Remote AT Command Response message out the UART. Some commands may send back
multiple frames for example, Node Discover (ND) command.

This packet is received in response of a RemoteATCommandPacket.

Response also includes an ATCommandStatus object with the status of the AT command.

See also:

RemoteATCommandWifiPacket

ATCommandStatus

XBeeAPIPacket

Class constructor. Instantiates a new RemoteATCommandResponseWifiPacket object with the provided
parameters.

Parameters

• frame_id (Integer) – the frame ID of the packet.

• src_address (ipaddress.IPv4Address) – the IPv4 address of the source device.

• command (String) – the AT command of the packet. Must be a string.

• resp_status (ATCommandStatus) – the status of the AT command.

• comm_value (Bytearray, optional) – the AT command response value.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises

• ValueError – if frame_id is less than 0 or greater than 255.

• ValueError – if length of command is different than 2.

2.6. API reference 433



XBee Python Library Documentation, Release 1.4.0

See also:

ATCommandStatus

ipaddress.IPv4Address

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

434 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

static create_packet(raw, operating_mode)
Override method.

Returns RemoteATCommandResponseWifiPacket.

Raises

• InvalidPacketException – if the bytearray length is less than 17. (start delim. +
length (2 bytes) + frame type + frame id + source addr. (8 bytes) + command (2 bytes) +
receive options + checksum = 17 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
REMOTE_AT_COMMAND_RESPONSE_WIFI.

• InvalidOperatingModeException – if operating_mode is not supported.

2.6. API reference 435



XBee Python Library Documentation, Release 1.4.0

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

source_address
Returns the IPv4 address of the source device.

Returns the IPv4 address of the source device.

Return type ipaddress.IPv4Address

See also:

ipaddress.IPv4Address

command
Returns the AT command of the packet.

Returns the AT command of the packet.

Return type String

status
Returns the AT command response status of the packet.

Returns the AT command response status of the packet.

Return type ATCommandStatus

See also:

ATCommandStatus

command_value
Returns the AT command response value.

Returns the AT command response value.

Return type Bytearray

436 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

digi.xbee.packets.zigbee module

class digi.xbee.packets.zigbee.RegisterJoiningDevicePacket(frame_id, regis-
trant_address,
options, key,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Register Joining Device packet. Packet is built using the parameters of the constructor or
providing a valid API payload.

Use this frame to securely register a joining device to a trust center. Registration is the process by which a node
is authorized to join the network using a preconfigured link key or installation code that is conveyed to the trust
center out-of-band (using a physical interface and not over-the-air).

If registering a device with a centralized trust center (EO = 2), then the key entry will only persist for KT seconds
before expiring.

Registering devices in a distributed trust center (EO = 0) is persistent and the key entry will never expire unless
explicitly removed.

To remove a key entry on a distributed trust center, this frame should be issued with a null (None) key. In a
centralized trust center you cannot use this method to explicitly remove the key entries.

See also:

XBeeAPIPacket

Class constructor. Instantiates a new RegisterJoiningDevicePacket object with the provided parame-
ters.

Parameters

• frame_id (integer) – the frame ID of the packet.

• registrant_address (XBee64BitAddress) – the 64-bit address of the destination
device.

• options (RegisterKeyOptions) – the register options indicating the key source.

• key (Bytearray) – key of the device to register. Up to 16 bytes if entering a Link Key
or up to 18 bytes (16-byte code + 2 byte CRC) if entering an Install Code.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises ValueError – if frame_id is less than 0 or greater than 255.

See also:

XBee64BitAddress

XBeeAPIPacket

RegisterKeyOptions

2.6. API reference 437



XBee Python Library Documentation, Release 1.4.0

static create_packet(raw, operating_mode)
Override method.

Returns RegisterJoiningDevicePacket.

Raises

• InvalidPacketException – if the bytearray length is less than 17. (start delim.
+ length (2 bytes) + frame type + frame id + 64-bit registrant addr. (8 bytes) + 16-bit
registrant addr. (2 bytes) + options + checksum = 17 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 2 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
REGISTER_JOINING_DEVICE.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

registrant_address
Returns the 64-bit registrant address.

Returns the 64-bit registrant address.

Return type XBee64BitAddress

See also:

XBee64BitAddress

options
Returns the register options value.

Returns the register options indicating the key source.

Return type RegisterKeyOptions

See also:

438 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

RegisterKeyOptions

key
Returns the register key.

Returns the register key.

Return type Bytearray

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

2.6. API reference 439



XBee Python Library Documentation, Release 1.4.0

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.zigbee.RegisterDeviceStatusPacket(frame_id, status,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Register Device Status packet. Packet is built using the parameters of the constructor or
providing a valid API payload.

This frame is sent out of the UART of the trust center as a response to a 0x24 Register Device frame, indicating
whether the registration was successful or not.

See also:

RegisterJoiningDevicePacket

XBeeAPIPacket

Class constructor. Instantiates a new RegisterDeviceStatusPacket object with the provided parame-
ters.

Parameters

440 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• frame_id (integer) – the frame ID of the packet.

• status (ZigbeeRegisterStatus) – status of the register device operation.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

Raises ValueError – if frame_id is less than 0 or greater than 255.

See also:

XBeeAPIPacket

ZigbeeRegisterStatus

static create_packet(raw, operating_mode)
Override method.

Returns RegisterDeviceStatusPacket.

Raises

• InvalidPacketException – if the bytearray length is less than 17. (start delim. +
length (2 bytes) + frame type + frame id + status + checksum = 7 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 1 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
REGISTER_JOINING_DEVICE_STATUS.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

status
Returns the register device status.

Returns the register device status.

Return type ZigbeeRegisterStatus

2.6. API reference 441



XBee Python Library Documentation, Release 1.4.0

See also:

ZigbeeRegisterStatus

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

442 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.zigbee.RouteRecordIndicatorPacket(x64bit_addr,
x16bit_addr,
rx_opts, hops=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Zigbee Route Record Indicator packet. Packet is built using the parameters of the con-
structor or providing a valid API payload.

The route record indicator is received whenever a device sends a Zigbee route record command. This is used
with many-to-one routing to create source routes for devices in a network.

Among received data, some options can also be received indicating transmission parameters.

See also:

ReceiveOptions

XBeeAPIPacket

Class constructor. Instantiates a new RouteRecordIndicatorPacket object with the provided parame-
ters.

Parameters

2.6. API reference 443



XBee Python Library Documentation, Release 1.4.0

• x64bit_addr (XBee64BitAddress) – The 64-bit source address.

• x16bit_addr (XBee16BitAddress) – The 16-bit source address.

• rx_opts (Integer) – Bitfield indicating the receive options.

• hops (List, optional, default=`None`) – List of 16-bit address of intermedi-
ate hops in the source route (excluding source and destination).

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

See also:

ReceiveOptions

XBee16BitAddress

XBee64BitAddress

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns RouteRecordIndicatorPacket.

Raises

• InvalidPacketException – If the bytearray length is less than 17. (start delim. +
length (2 bytes) + frame type + 64bit addr. + 16bit addr. + Receive options + num of addrs
+ checksum = 17 bytes).

• InvalidPacketException – If the length field of raw is different from its real
length. (length field: bytes 1 and 3)

• InvalidPacketException – If the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – If the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – If the frame type is not ApiFrameType.
ROUTE_RECORD_INDICATOR.

• InvalidPacketException – If the number of hops does not match with the number
of 16-bit addresses.

• InvalidOperatingModeException – If operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

444 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

XBeeAPIPacket.needs_id()

is_broadcast()
Override method.

See also:

XBeeAPIPacket.is_broadcast()

x64bit_source_addr
Returns the 64-bit source address.

Returns The 64-bit source address.

Return type XBee64BitAddress

See also:

XBee64BitAddress

x16bit_source_addr
Returns the 16-bit source address.

Returns The 16-bit source address.

Return type XBee16BitAddress

See also:

XBee16BitAddress

receive_options
Returns the receive options bitfield.

Returns The receive options bitfield.

Return type Integer

See also:

ReceiveOptions

number_of_hops
Returns the number of intermediate hops in the source route (excluding source and destination).

Returns The number of addresses.

Return type Integer

2.6. API reference 445



XBee Python Library Documentation, Release 1.4.0

hops
Returns the list of intermediate hops starting from the closest to destination hop and finishing with the
closest to the source (excluding source and destination).

Returns The list of 16-bit addresses of intermediate hops.

Return type List

See also:

XBee16BitAddress

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

446 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type Integer

See also:

ApiFrameType

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.zigbee.CreateSourceRoutePacket(frame_id, x64bit_addr,
x16bit_addr,
route_options=0,
hops=None,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Zigbee Create Source Route packet. This packet is built using the parameters of the
constructor or providing a valid API payload.

This frame creates a source route in the node. A source route specifies the complete route a packet should travese
to get from source to destination. Source routing should be used with many-to-one routing for best results.

Note: Both, 64-bit and 16-bit destination addresses are required when creating a source route. These are obtained
when a Route Record Indicator (0xA1) frame is received.

See also:

RouteRecordIndicatorPacket

XBeeAPIPacket

2.6. API reference 447



XBee Python Library Documentation, Release 1.4.0

Class constructor. Instantiates a new CreateSourceRoutePacket object with the provided parameters.

Parameters

• frame_id (integer) – the frame ID of the packet.

• x64bit_addr (XBee64BitAddress) – The 64-bit destination address.

• x16bit_addr (XBee16BitAddress) – The 16-bit destination address.

• route_options (Integer) – Route command options.

• hops (List, optional, default=`None`) – List of 16-bit addresses of interme-
diate hops in the source route (excluding source and destination).

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

See also:

XBee16BitAddress

XBee64BitAddress

XBeeAPIPacket

static create_packet(raw, operating_mode)
Override method.

Returns CreateSourceRoutePacket.

Raises

• InvalidPacketException – If the bytearray length is less than 18. (start delim. +
length (2 bytes) + frame type + frame id + 64-bit addr. + 16-bit addr. + Route command
options + num of addrs + hops 16-bit addrs + checksum = 18 bytes).

• InvalidPacketException – If the length field of raw is different from its real
length. (length field: bytes 1 and 3)

• InvalidPacketException – If the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – If the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – If the frame type is not ApiFrameType.
CREATE_SOURCE_ROUTE.

• InvalidPacketException – If the number of hops does not match with the number
of 16-bit addresses.

• InvalidOperatingModeException – If operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

448 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

x64bit_dest_addr
Returns the 64-bit destination address.

Returns The 64-bit destination address.

Return type XBee64BitAddress

See also:

XBee64BitAddress

x16bit_dest_addr
Returns the 16-bit destination address.

Returns The 16-bit destination address.

Return type XBee16BitAddress

See also:

XBee16BitAddress

route_cmd_options
Returns the route command options bitfield.

Returns The route command options bitfield.

Return type Integer

number_of_hops
Returns the number of intermediate hops in the source route (excluding source and destination).

Returns The number of intermediate hops.

Return type Integer

hops
Returns the list of intermediate hops starting from the closest to destination hop and finishing with the
closest to the source (excluding source and destination).

Returns The list of 16-bit addresses of intermediate hops.

Return type List

See also:

XBee16BitAddress

2.6. API reference 449



XBee Python Library Documentation, Release 1.4.0

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

450 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

class digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket(src_address_64,
up-
dater_address_16,
rx_options,
msg_type,
block_number,
target_address_64,
op_mode=<OperatingMode.API_MODE:
(1, ’API mode’)>)

Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a an Over The Air Firmware Update Status packet. Packet is built using the parameters of
the constructor or providing a valid API payload.

This frame provides a status indication of a firmware update transmission.

If a query request returns a 0x15 (NACK) status, the target is likely waiting for a firmware update image. If no
messages are sent to it for about 75 seconds, the target will timeout and accept new query messages.

If a query status returns a 0x51 (QUERY) status, then the target’s bootloader is not active and will not respond
to query messages.

See also:

EmberBootloaderMessageType

XBeeAPIPacket

2.6. API reference 451



XBee Python Library Documentation, Release 1.4.0

Class constructor. Instantiates a new OTAFirmwareUpdateStatusPacket object with the provided pa-
rameters.

Parameters

• src_address_64 (XBee64BitAddress) – the 64-bit address of the device returning
this answer.

• updater_address_16 (XBee16BitAddress) – the 16-bit address of the updater de-
vice.

• rx_options (Integer) – bitfield indicating the receive options.

• msg_type (EmberBootloaderMessageType) – Ember bootloader message type

• block_number (Integer) – block number used in the update request.

• target_address_64 (XBee64BitAddress) – the 64-bit address of the device that
is being updated.

• op_mode (OperatingMode, optional, default=‘OperatingMode.API_MODE‘) – The
mode in which the frame was captured.

See also:

XBeeAPIPacket

XBee16BitAddress

XBee64BitAddress

ReceiveOptions

EmberBootloaderMessageType

frame_id
Returns the frame ID of the packet.

Returns the frame ID of the packet.

Return type Integer

get_checksum()
Returns the checksum value of this XBeePacket. The checksum is the last 8 bits of the sum of the bytes
between the length field and the checksum field.

Returns checksum value of this XBeePacket.

Return type Integer

See also:

factory

get_frame_spec_data()
Override method.

See also:

XBeePacket.get_frame_spec_data()

452 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_frame_type()
Returns the frame type of this packet.

Returns the frame type of this packet.

Return type ApiFrameType

See also:

ApiFrameType

get_frame_type_value()
Returns the frame type integer value of this packet.

Returns the frame type integer value of this packet.

Return type Integer

See also:

ApiFrameType

is_broadcast()
Returns whether this packet is broadcast or not.

Returns True if this packet is broadcast, False otherwise.

Return type Boolean

op_mode
Retrieves the operating mode in which this packet was read.

Returns The operating mode.

Return type OperatingMode

output(escaped=False)
Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

Parameters escaped (Boolean) – indicates if the raw bytearray must be escaped.

Returns raw bytearray of the XBeePacket.

Return type Bytearray

to_dict()
Returns a dictionary with all information of the XBeePacket fields.

Returns dictionary with all info of the XBeePacket fields.

Return type Dictionary

static unescape_data(data)
Un-escapes the provided bytearray data.

Parameters data (Bytearray) – the bytearray to unescape.

Returns data unescaped.

Return type Bytearray

2.6. API reference 453



XBee Python Library Documentation, Release 1.4.0

static create_packet(raw, operating_mode)
Override method.

Returns OTAFirmwareUpdateStatusPacket.

Raises

• InvalidPacketException – if the bytearray length is less than 17. (start delim. +
length (2 bytes) + frame type + source 64bit addr. (8 bytes) + updater 16bit addr. (2 bytes)
+ receive options + bootloader message type + block number + source 64bit addr. (8 bytes)
+ checksum = 27 bytes).

• InvalidPacketException – if the length field of ‘raw’ is different from its real
length. (length field: bytes 1 and 3)

• InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See
SpecialByte.

• InvalidPacketException – if the calculated checksum is different from the check-
sum field value (last byte).

• InvalidPacketException – if the frame type is not ApiFrameType.
OTA_FIRMWARE_UPDATE_STATUS.

• InvalidOperatingModeException – if operating_mode is not supported.

See also:

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

needs_id()
Override method.

See also:

XBeeAPIPacket.needs_id()

x64bit_source_addr
Returns the 64-bit source address.

Returns the 64-bit source address.

Return type XBee64BitAddress

See also:

XBee64BitAddress

x16bit_updater_addr
Returns the 16-bit updater address.

Returns the 16-bit updater address.

Return type XBee16BitAddress

454 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

See also:

XBee16BitAddress

receive_options
Returns the receive options bitfield.

Returns the receive options bitfield.

Return type Integer

See also:

ReceiveOptions

bootloader_msg_type
Returns the bootloader message type.

Returns the bootloader message type.

Return type EmberBootloaderMessageType

See also:

EmberBootloaderMessageType

block_number
Returns the block number of the request.

Returns the block number of the request.

Return type Integer

x64bit_target_addr
Returns the 64-bit target address.

Returns the 64-bit target address.

Return type XBee64BitAddress

See also:

XBee64BitAddress

digi.xbee.packets.factory module

This module provides functionality to build XBee packets from bytearray returning the appropriate XBeePacket sub-
class.

All the API and API2 logic is already included so all packet reads are independent of the XBee operating mode.

Two API modes are supported and both can be enabled using the AP (API Enable) command:

2.6. API reference 455



XBee Python Library Documentation, Release 1.4.0

API1 - API Without Escapes The data frame structure is defined as follows:

Start Delimiter Length Frame Data
→˓Checksum

(Byte 1) (Bytes 2-3) (Bytes 4-n) (Byte
→˓n + 1)
+----------------+ +-------------------+ +--------------------------- + +----------
→˓------+
| 0x7E | | MSB | LSB | | API-specific Structure | | 1
→˓Byte |
+----------------+ +-------------------+ +----------------------------+ +----------
→˓------+

MSB = Most Significant Byte, LSB = Least Significant Byte

API2 - API With Escapes The data frame structure is defined as follows:

Start Delimiter Length Frame Data
→˓Checksum

(Byte 1) (Bytes 2-3) (Bytes 4-n) (Byte
→˓n + 1)
+----------------+ +-------------------+ +--------------------------- + +----------
→˓------+
| 0x7E | | MSB | LSB | | API-specific Structure | | 1
→˓Byte |
+----------------+ +-------------------+ +----------------------------+ +----------
→˓------+

\___________________________________ ____________________________
→˓_____/

\/
Characters Escaped If Needed

MSB = Most Significant Byte, LSB = Least Significant Byte

When sending or receiving an API2 frame, specific data values must be escaped (flagged) so they do not interfere with
the data frame sequencing. To escape an interfering data byte, the byte 0x7D is inserted before the byte to be escaped
XOR’d with 0x20.

The data bytes that need to be escaped:

• 0x7E - Frame Delimiter - SpecialByte.

• 0x7D - Escape

• 0x11 - XON

• 0x13 - XOFF

The length field has a two-byte value that specifies the number of bytes that will be contained in the frame data field.
It does not include the checksum field.

The frame data forms an API-specific structure as follows:

Start Delimiter Length Frame Data
→˓Checksum

(Byte 1) (Bytes 2-3) (Bytes 4-n) (Byte
→˓n + 1)
+----------------+ +-------------------+ +--------------------------- + +----------
→˓------+
| 0x7E | | MSB | LSB | | API-specific Structure | | 1
→˓Byte |

(continues on next page)

456 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

(continued from previous page)

+----------------+ +-------------------+ +----------------------------+ +----------
→˓------+

/
→˓ \

/ API Identifier Identifier
→˓specific data \

+------------------+ +---------------------
→˓---------+

| cmdID | | cmdData
→˓ |

+------------------+ +---------------------
→˓---------+

The cmdID frame (API-identifier) indicates which API messages will be contained in the cmdData frame (Identifier-
specific data).

To unit_test data integrity, a checksum is calculated and verified on non-escaped data.

See also:

XBeePacket

OperatingMode

digi.xbee.packets.factory.build_frame(packet_bytearray, operat-
ing_mode=<OperatingMode.API_MODE: (1, ’API
mode’)>)

Creates a packet from raw data.

Parameters

• packet_bytearray (Bytearray) – the raw data of the packet to build.

• operating_mode (OperatingMode) – the operating mode in which the raw data has
been captured.

See also:

OperatingMode

digi.xbee.util package

Submodules

digi.xbee.util.utils module

digi.xbee.util.utils.is_bit_enabled(number, position)
Returns whether the bit located at position within number is enabled.

Parameters

• number (Integer) – the number to check if a bit is enabled.

• position (Integer) – the position of the bit to check if is enabled in number.

2.6. API reference 457



XBee Python Library Documentation, Release 1.4.0

Returns

True if the bit located at position within number is enabled, False otherwise.

Return type Boolean

digi.xbee.util.utils.get_int_from_byte(number, offset, length)
Reads an integer value from the given byte using the provived bit offset and length.

Parameters

• number (Integer) – Byte to read the integer from.

• offset (Integer) – Bit offset inside the byte to start reading (LSB = 0, MSB = 7).

• length (Integer) – Number of bits to read.

Returns The integer value read.

Return type Integer

Raises ValueError – If number is lower than 0 or higher than 255. If ‘offset is lower than 0 or
higher than 7. If length is lower than 0 or higher than 8. If offset + length is higher than 8.

digi.xbee.util.utils.hex_string_to_bytes(hex_string)
Converts a String (composed by hex. digits) into a bytearray with same digits.

Parameters hex_string (String) – String (made by hex. digits) with “0x” header or not.

Returns bytearray containing the numeric value of the hexadecimal digits.

Return type Bytearray

Raises ValueError – if invalid literal for int() with base 16 is provided.

Example

>>> a = "0xFFFE"
>>> for i in hex_string_to_bytes(a): print(i)
255
254
>>> print(type(hex_string_to_bytes(a)))
<type 'bytearray'>

>>> b = "FFFE"
>>> for i in hex_string_to_bytes(b): print(i)
255
254
>>> print(type(hex_string_to_bytes(b)))
<type 'bytearray'>

digi.xbee.util.utils.int_to_bytes(number, num_bytes=None)
Converts the provided integer into a bytearray.

If number has less bytes than num_bytes, the resultant bytearray is filled with zeros (0x00) starting at the begin-
ning.

If number has more bytes than num_bytes, the resultant bytearray is returned without changes.

Parameters

• number (Integer) – the number to convert to a bytearray.

• num_bytes (Integer) – the number of bytes that the resultant bytearray will have.

458 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns the bytearray corresponding to the provided number.

Return type Bytearray

Example

>>> a=0xFFFE
>>> print([i for i in int_to_bytes(a)])
[255,254]
>>> print(type(int_to_bytes(a)))
<type 'bytearray'>

digi.xbee.util.utils.length_to_int(byte_array)
Calculates the length value for the given length field of a packet. Length field are bytes 1 and 2 of any packet.

Parameters byte_array (Bytearray) – length field of a packet.

Returns the length value.

Return type Integer

Raises ValueError – if byte_array is not a valid length field (it has length distinct than 0).

Example

>>> b = bytearray([13,14])
>>> c = length_to_int(b)
>>> print("0x%02X" % c)
0x1314
>>> print(c)
4884

digi.xbee.util.utils.bytes_to_int(byte_array)
Converts the provided bytearray in an Integer. This integer is result of concatenate all components of byte_array
and convert that hex number to a decimal number.

Parameters byte_array (Bytearray) – bytearray to convert in integer.

Returns the integer corresponding to the provided bytearray.

Return type Integer

Example

>>> x = bytearray([0xA,0x0A,0x0A]) #this is 0xA0A0A
>>> print(bytes_to_int(x))
657930
>>> b = bytearray([0x0A,0xAA]) #this is 0xAAA
>>> print(bytes_to_int(b))
2730

digi.xbee.util.utils.ascii_to_int(array)
Converts a bytearray containing the ASCII code of each number digit in an Integer. This integer is result of the
number formed by all ASCII codes of the bytearray.

Parameters array (Bytearray) – bytearray to convert in integer.

2.6. API reference 459



XBee Python Library Documentation, Release 1.4.0

Example

>>> x = bytearray( [0x31,0x30,0x30] ) #0x31 => ASCII code for number 1.
#0x31,0x30,0x30 <==> 1,0,0

>>> print(ascii_to_int(x))
100

digi.xbee.util.utils.int_to_ascii(number)
Converts an integer number to a bytearray. Each element of the bytearray is the ASCII code that corresponds to
the digit of its position.

Parameters number (Integer) – the number to convert to an ASCII bytearray.

Returns the bytearray containing the ASCII value of each digit of the number.

Return type Bytearray

Example

>>> x = int_to_ascii(100)
>>> print(x)
100
>>> print([i for i in x])
[49, 48, 48]

digi.xbee.util.utils.int_to_length(number)
Converts an integer into a bytearray of 2 bytes corresponding to the length field of a packet. If this bytearray has
length 1, a byte with value 0 is added at the beginning.

Parameters number (Integer) – the number to convert to a length field.

Returns The bytearray.

Return type Bytearray

Raises ValueError – if number is less than 0 or greater than 0xFFFF.

Example

>>> a = 0
>>> print(hex_to_string(int_to_length(a)))
00 00

>>> a = 8
>>> print(hex_to_string(int_to_length(a)))
00 08

>>> a = 200
>>> print(hex_to_string(int_to_length(a)))
00 C8

>>> a = 0xFF00
>>> print(hex_to_string(int_to_length(a)))
FF 00

460 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

>>> a = 0xFF
>>> print(hex_to_string(int_to_length(a)))
00 FF

digi.xbee.util.utils.hex_to_string(byte_array, pretty=True)
Returns the provided bytearray in a pretty string format. All bytes are separated by blank spaces and printed in
hex format.

Parameters

• byte_array (Bytearray) – the bytearray to print in pretty string.

• pretty (Boolean, optional) – True for pretty string format, False for plain string
format. Default to True.

Returns the bytearray formatted in a string format.

Return type String

digi.xbee.util.utils.doc_enum(enum_class, descriptions=None)
Returns a string with the description of each value of an enumeration.

Parameters

• enum_class (Enumeration) – the Enumeration to get its values documentation.

• descriptions (dictionary) – each enumeration’s item description. The key is the
enumeration element name and the value is the description.

Returns the string listing all the enumeration values and their descriptions.

Return type String

digi.xbee.util.utils.enable_logger(name, level=10)
Enables a logger with the given name and level.

Parameters

• name (String) – name of the logger to enable.

• level (Integer) – logging level value.

Assigns a default formatter and a default handler (for console).

digi.xbee.util.utils.disable_logger(name)
Disables the logger with the give name.

Parameters name (String) – the name of the logger to disable.

digi.xbee.util.utils.deprecated(version, details=’None’)
Decorates a method to mark as deprecated. This adds a deprecation note to the method docstring and also raises
a warning.DeprecationWarning.

Parameters

• version (String) – Version that deprecates this feature.

• details (String, optional, default=`None`) – Extra details to be added to
the method docstring and warning.

digi.xbee.util.xmodem module

exception digi.xbee.util.xmodem.XModemException
Bases: Exception

2.6. API reference 461



XBee Python Library Documentation, Release 1.4.0

This exception will be thrown when any problem related with the XModem/YModem transfer occurs.

All functionality of this class is the inherited from Exception.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception digi.xbee.util.xmodem.XModemCancelException
Bases: digi.xbee.util.xmodem.XModemException

This exception will be thrown when the XModem/YModem transfer is cancelled by the remote end.

All functionality of this class is the inherited from Exception.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

digi.xbee.util.xmodem.send_file_xmodem(src_path, write_cb, read_cb, progress_cb=None,
log=None)

Sends a file using the XModem protocol to a remote end.

Parameters

• src_path (String) – absolute path of the file to transfer.

• write_cb (Function) – function to execute in order to write data to the remote end.
Takes the following arguments:

– The data to write as byte array.

The function returns the following:

Boolean: True if the write succeeded, False otherwise.

• read_cb (Function) – function to execute in order to read data from the remote end.
Takes the following arguments:

– The size of the data to read.

– The timeout to wait for data. (seconds)

The function returns the following:

Bytearray: the read data, None if data could not be read

• progress_cb (Function, optional) – function to execute in order to receive
progress information. Takes the following arguments:

– The progress percentage as integer.

• log (Logger, optional) – logger used to log transfer debug messages

Raises

• ValueError – if any input value is not valid.

• XModemCancelException – if the transfer is cancelled by the remote end.

• XModemException – if there is any error during the file transfer.

digi.xbee.util.xmodem.send_file_ymodem(src_path, write_cb, read_cb, progress_cb=None,
log=None)

Sends a file using the YModem protocol to a remote end.

Parameters

• src_path (String) – absolute path of the file to transfer.

462 Chapter 2. Contents

https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception
https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception


XBee Python Library Documentation, Release 1.4.0

• write_cb (Function) – function to execute in order to write data to the remote end.
Takes the following arguments:

– The data to write as byte array.

The function returns the following:

Boolean: True if the write succeeded, False otherwise

• read_cb (Function) – function to execute in order to read data from the remote end.
Takes the following arguments:

– The size of the data to read.

– The timeout to wait for data. (seconds)

The function returns the following:

Bytearray: the read data, None if data could not be read

• progress_cb (Function, optional) – function to execute in order to receive
progress information. Takes the following arguments:

– The progress percentage as integer.

• log (Logger, optional) – logger used to log transfer debug messages

Raises

• ValueError – if any input value is not valid.

• XModemCancelException – if the transfer is cancelled by the remote end.

• XModemException – if there is any error during the file transfer.

digi.xbee.util.xmodem.get_file_ymodem(dest_path, write_cb, read_cb, crc=True,
progress_cb=None, log=None)

Retrieves a file using the YModem protocol from a remote end.

Parameters

• dest_path (String) – absolute path to store downloaded file in.

• write_cb (Function) – function to execute in order to write data to the remote end.
Takes the following arguments:

– The data to write as byte array.

The function returns the following:

Boolean: True if the write succeeded, False otherwise

• read_cb (Function) – function to execute in order to read data from the remote end.
Takes the following arguments:

– The size of the data to read.

– The timeout to wait for data. (seconds)

The function returns the following:

Bytearray: the read data, None if data could not be read

• crc (Boolean, optional) – True to use 16-bit CRC verification, False for standard 1
byte checksum. Defaults to True.

• progress_cb (Function, optional) – function to execute in order to receive
progress information. Takes the following arguments:

2.6. API reference 463



XBee Python Library Documentation, Release 1.4.0

– The progress percentage as integer.

• log (Logger, optional) – logger used to log download debug messages

Raises

• ValueError – if any input value is not valid.

• XModemCancelException – if the file download is cancelled by the remote end.

• XModemException – if there is any error during the file download process.

Submodules

digi.xbee.comm_interface module

class digi.xbee.comm_interface.XBeeCommunicationInterface
Bases: object

This class represents the way the communication with the local XBee is established.

open()
Establishes the underlying hardware communication interface.

Subclasses may throw specific exceptions to signal implementation specific errors.

close()
Terminates the underlying hardware communication interface.

Subclasses may throw specific exceptions to signal implementation specific hardware errors.

is_interface_open
Returns whether the underlying hardware communication interface is active or not.

Returns True if the interface is active, False otherwise.

Return type Boolean

wait_for_frame(operating_mode)
Reads the next API frame packet.

This method blocks until:

• A complete frame is read, in which case returns it.

• The configured timeout goes by, in which case returns None.

• Another thread calls quit_reading, in which case returns None.

This method is not thread-safe, so no more than one thread should invoke it at the same time.

Subclasses may throw specific exceptions to signal implementation specific hardware errors.

Parameters operating_mode (OperatingMode) – The operating mode of the XBee con-
nected to this hardware interface. Note: If this parameter does not match the connected XBee
configuration, the behavior is undefined.

Returns

The read packet as bytearray if a packet is read, None otherwise.

Return type Bytearray

464 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

quit_reading()
Makes the thread (if any) blocking on wait_for_frame return.

If a thread was blocked on wait_for_frame, this method blocks (for a maximum of ‘timeout’ seconds) until
the blocked thread is resumed.

write_frame(frame)
Writes an XBee frame to the underlying hardware interface.

Subclasses may throw specific exceptions to signal implementation specific hardware errors.

Parameters frame (Bytearray) – The XBee API frame packet to write. If the bytearray
does not correctly represent an XBee frame, the behaviour is undefined.

get_network(local_xbee)
Returns the XBeeNetwork object associated to the XBeeDevice associated to this XBeeCommunicationIn-
terface.

Some XBeeCommunicationInterface implementations may need to handle the ‘XBeeNetwork associated
to the XBeeDevice themselves. If that is the case, a implementation-specific XBeeNetwork object that
complains to the generic XBeeNetwork class will be returned. Otherwise, this method returns None and
the associated XBeeNetwork is handled as for a serial-connected XBeeDevice.

Parameters local_xbee (XBeeDevice) – The local XBee device.

Returns

class: .XBeeNetwork: None if the XBeeNetwork should handled as usual, otherwise a
XBeeNetwork object.

get_local_xbee_info()
Returns a tuple with the local XBee information.

This is used when opening the local XBee. If this information is provided, it is used as internal XBee data,
if not provided, the data is requested to the XBee.

Returns

Tuple with local XBee information: operation mode (int), hardware version (int),
firmware version (int), 64-bit address (string), 16-bit address (string), node identifier
(string), and role (int).

Return type Tuple

supports_update_firmware()
Returns if the interface supports the firmware update feature.

Returns True if it is supported, False otherwise.

Return type Boolean

update_firmware(xbee, xml_fw_file, xbee_fw_file=None, bootloader_fw_file=None, timeout=None,
progress_callback=None)

Performs a firmware update operation of the provided XBee.

Parameters

• xbee (AbstractXBeeDevice) – Local or remote XBee node to be updated.

• xml_fw_file (String) – Path of the XML file that describes the firmware to upload.

• xbee_fw_file (String, optional) – Location of the XBee binary firmware file.

• bootloader_fw_file (String, optional) – Location of the bootloader binary
firmware file.

2.6. API reference 465



XBee Python Library Documentation, Release 1.4.0

• timeout (Integer, optional) – Maximum time to wait for target read operations
during the update process.

• progress_callback (Function, optional) – Function to execute to receive
progress information. Receives two arguments:

– The current update task as a String

– The current update task percentage as an Integer

Raises

• XBeeException – If the local XBee is not open.

• InvalidOperatingModeException – If the local XBee operating mode is invalid.

• OperationNotSupportedException – If the firmware update is not supported in
the XBee.

• FirmwareUpdateException – If there is any error performing the firmware update.

supports_apply_profile()
Returns if the interface supports the apply profile feature.

Returns True if it is supported, False otherwise.

Return type Boolean

apply_profile(xbee, profile_path, timeout=None, progress_callback=None)
Applies the given XBee profile to the XBee device.

Parameters

• xbee (AbstractXBeeDevice) – Local or remote XBee node to be updated.

• profile_path (String) – Path of the XBee profile file to apply.

• timeout (Integer, optional) – Maximum time to wait for target read operations
during the apply profile.

• progress_callback (Function, optional) – Function to execute to receive
progress information. Receives two arguments:

– The current apply profile task as a String

– The current apply profile task percentage as an Integer

Raises

• XBeeException – If the local XBee is not open.

• InvalidOperatingModeException – If the local XBee operating mode is invalid.

• UpdateProfileException – If there is any error applying the XBee profile.

• OperationNotSupportedException – If XBee profiles are not supported in the
XBee.

timeout
Returns the read timeout.

Returns Read timeout in seconds.

Return type Integer

466 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

digi.xbee.devices module

class digi.xbee.devices.AbstractXBeeDevice(local_xbee_device=None, serial_port=None,
sync_ops_timeout=4, comm_iface=None)

Bases: object

This class provides common functionality for all XBee devices.

Class constructor. Instantiates a new AbstractXBeeDevice object with the provided parameters.

Parameters

• local_xbee_device (XBeeDevice, optional, default=‘None‘) – Only necessary if
XBee is remote. The local XBee to be the connection interface to communicate with the
remote XBee one.

• serial_port (XBeeSerialPort, optional, default=‘None‘) – Only necessary if the
XBee device is local. The serial port to communicate with this XBee.

• (Integer, optional, default (sync_ops_timeout) –
AbstractXBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS): Timeout
(in seconds) for all synchronous operations.

• comm_iface (XBeeCommunicationInterface, optional, default=‘None‘) – Only
necessary if the XBee is local. The hardware interface to communicate with this XBee.

See also:

XBeeDevice

XBeeSerialPort

update_device_data_from(device)
Updates the current node information with provided data. This is only for internal use.

Parameters device (AbstractXBeeDevice) – XBee to get the data from.

Returns True if the node data has been updated, False otherwise.

Return type Boolean

get_parameter(parameter, parameter_value=None, apply=None)
Returns the value of the provided parameter via an AT Command.

Parameters

• (String or (parameter) – class: .ATStringCommand): Parameter to get.

• parameter_value (Bytearray, optional, default=`None`) – Value of
the parameter to execute (if any).

• apply (Boolean, optional, default=`None`) – True to apply changes in
XBee configuration, False not to apply them, None to use is_apply_changes_enabled()
returned value.

Returns Parameter value.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout expires.

2.6. API reference 467



XBee Python Library Documentation, Release 1.4.0

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.execute_command()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

set_parameter(parameter, value, apply=None)
Sets the value of a parameter via an AT Command.

Any parameter changes are applied automatically, if apply is True or if it is None and apply flag is enabled
(is_apply_changes_enabled())

You can set this flag via the method AbstractXBeeDevice.enable_apply_changes().

This only applies modified values in the XBee configuration, to save changed parameters permanently
(between resets), use AbstractXBeeDevice.write_changes().

Parameters

• (String or (parameter) – class: .ATStringCommand): Parameter to set.

• value (Bytearray) – Value of the parameter.

• apply (Boolean, optional, default=`None`) – True to apply changes, False
otherwise, None to use is_apply_changes_enabled() returned value.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If parameter is None or value is None.

See also:

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.execute_command()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

468 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

execute_command(parameter, value=None, apply=None)
Executes the provided command.

Parameters

• (String or (parameter) – class: .ATStringCommand): AT command to execute.

• value (bytearray, optional, default=`None`) – Command value (if any).

• apply (Boolean, optional, default=`None`) – True to apply changes in
XBee configuration, False not to apply them, None to use is_apply_changes_enabled()
returned value.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

apply_changes()
Applies changes via ‘AC’ command.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

write_changes()
Writes configurable parameter values to the non-volatile memory of the XBee so that parameter modifica-
tions persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by subsequent use of this method.

If changes are made without writing them, the XBee reverts back to previously saved parameters the next
time the module is powered-on.

Writing the parameter modifications does not mean those values are immediately applied, this depends on
the status of the ‘apply configuration changes’ option. Use method is_apply_changes_enabled()
to get its status and enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

2.6. API reference 469



XBee Python Library Documentation, Release 1.4.0

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

reset()
Performs a software reset on this XBee and blocks until the process is completed.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

read_device_info(init=True, fire_event=True)
Updates all instance parameters reading them from the XBee.

Parameters

• init (Boolean, optional, default=`True`) – If False only not initialized
parameters are read, all if True.

• fire_event (Boolean, optional, default=`True`) – True to throw and
update event if any parameter changed, False otherwise.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.is_device_info_complete()

determine_protocol(hardware_version, firmware_version)
Determines the XBee protocol based on the given hardware and firmware versions.

Parameters

• hardware_version (Integer) – Hardware version to get its protocol.

• firmware_version (Bytearray) – Firmware version to get its protocol.

Returns

XBee protocol corresponding to the given hardware and firmware versions.

Return type XBeeProtocol

470 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

is_device_info_complete()
Returns whether XBee node information is complete.

Returns True if node information is complete, False otherwise.

Return type Boolean

See also:

AbstractXBeeDevice.read_device_info()

get_node_id()
Returns the node identifier (‘NI’) value of the XBee.

Returns Node identifier (‘NI’) of the XBee.

Return type String

set_node_id(node_id)
Sets the node identifier (‘NI‘) value of the XBee.

Parameters node_id (String) – New node identifier (‘NI’) of the XBee.

Raises

• ValueError – If node_id is None or its length is greater than 20.

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

get_hardware_version()
Returns the hardware version of the XBee.

Returns Hardware version of the XBee.

Return type HardwareVersion

See also:

HardwareVersion

get_firmware_version()
Returns the firmware version of the XBee.

Returns Firmware version of the XBee.

Return type Bytearray

get_protocol()
Returns the current protocol of the XBee.

Returns Current protocol of the XBee.

Return type XBeeProtocol

2.6. API reference 471



XBee Python Library Documentation, Release 1.4.0

See also:

XBeeProtocol

get_16bit_addr()
Returns the 16-bit address of the XBee.

Returns 16-bit address of the XBee.

Return type XBee16BitAddress

See also:

XBee16BitAddress

set_16bit_addr(value)
Sets the 16-bit address of the XBee.

Parameters value (XBee16BitAddress) – New 16-bit address of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If the protocol is not 802.15.4.

get_64bit_addr()
Returns the 64-bit address of the XBee.

Returns 64-bit address of the XBee.

Return type XBee64BitAddress

See also:

XBee64BitAddress

get_role()
Gets the XBee role.

Returns the role of the XBee.

Return type Role

See also:

Role

472 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_current_frame_id()
Returns the last used frame ID.

Returns Last used frame ID.

Return type Integer

enable_apply_changes(value)
Sets apply changes flag.

Parameters value (Boolean) – True to enable apply changes flag, False to disable it.

is_apply_changes_enabled()
Returns whether apply changes flag is enabled.

Returns True if apply changes flag is enabled, False otherwise.

Return type Boolean

is_remote()
Determines whether XBee is remote.

Returns True if the XBee is remote, False otherwise.

Return type Boolean

set_sync_ops_timeout(sync_ops_timeout)
Sets the serial port read timeout.

Parameters sync_ops_timeout (Integer) – Read timeout in seconds.

get_sync_ops_timeout()
Returns the serial port read timeout.

Returns Serial port read timeout in seconds.

Return type Integer

get_dest_address()
Returns the 64-bit address of the XBee that is data destination.

Returns 64-bit address of destination XBee.

Return type XBee64BitAddress

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

XBee64BitAddress

set_dest_address()

set_dest_address(addr)
Sets the 64-bit address of the XBee that is data destination.

2.6. API reference 473



XBee Python Library Documentation, Release 1.4.0

Parameters addr (XBee64BitAddress or RemoteXBeeDevice) – Address itself or re-
mote XBee to be data destination.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If addr is None.

See also:

XBee64BitAddress

get_dest_address()

get_pan_id()
Returns the operating PAN ID of the XBee.

Returns Operating PAN ID of the XBee.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

set_pan_id()

set_pan_id(value)
Sets the operating PAN ID of the XBee.

Parameters value (Bytearray) – New operating PAN ID of the XBee. Must have only 1
or 2 bytes.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

474 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_pan_id()

get_power_level()
Returns the power level of the XBee.

Returns Power level of the XBee.

Return type PowerLevel

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

PowerLevel

set_power_level()

set_power_level(power_level)
Sets the power level of the XBee.

Parameters power_level (PowerLevel) – New power level of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

PowerLevel

get_power_level()

set_io_configuration(io_line, io_mode)
Sets the configuration of the provided IO line.

Parameters

• io_line (IOLine) – IO line to configure.

• io_mode (IOMode) – IO mode to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

2.6. API reference 475



XBee Python Library Documentation, Release 1.4.0

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

get_io_configuration()

get_io_configuration(io_line)
Returns the configuration of the provided IO line.

Parameters io_line (IOLine) – IO line to get its configuration.

Returns IO mode of the IO line provided.

Return type IOMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

set_io_configuration()

get_io_sampling_rate()
Returns the IO sampling rate of the XBee.

Returns IO sampling rate of XBee.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

476 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

set_io_sampling_rate()

set_io_sampling_rate(rate)
Sets the IO sampling rate of the XBee in seconds. A sample rate of 0 means the IO sampling feature is
disabled.

Parameters rate (Integer) – New IO sampling rate of the XBee in seconds.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

get_io_sampling_rate()

read_io_sample()
Returns an IO sample from the XBee containing the value of all enabled digital IO and analog input
channels.

Returns IO sample read from the XBee.

Return type IOSample

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOSample

get_adc_value(io_line)
Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so, use AbstractXBeeDevice.
set_io_configuration() and IOMode.ADC.

Parameters io_line (IOLine) – IO line to get its ADC value.

Returns Analog value corresponding to the provided IO line.

Return type Integer

Raises

2.6. API reference 477



XBee Python Library Documentation, Release 1.4.0

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value for
the given IO line.

See also:

IOLine

set_io_configuration()

set_pwm_duty_cycle(io_line, cycle)
Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

Parameters

• io_line (IOLine) – IO Line to be assigned.

• cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If the given IO line does not have PWM capability or cycle is not between
0 and 100.

See also:

IOLine

IOMode.PWM

get_pwm_duty_cycle(io_line)
Returns the PWM duty cycle in % corresponding to the provided IO line.

Parameters io_line (IOLine) – IO line to get its PWM duty cycle.

Returns PWM duty cycle of the given IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

478 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If io_line has no PWM capability.

See also:

IOLine

get_dio_value(io_line)
Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O. To do so, use
AbstractXBeeDevice.set_io_configuration().

Parameters io_line (IOLine) – the DIO line to gets its digital value.

Returns current value of the provided IO line.

Return type IOValue

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value for
the given IO line.

See also:

IOLine

IOValue

set_io_configuration()

set_dio_value(io_line, io_value)
Sets the digital value (high or low) to the provided IO line.

Parameters

• io_line (IOLine) – Digital IO line to sets its value.

• io_value (IOValue) – IO value to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

2.6. API reference 479



XBee Python Library Documentation, Release 1.4.0

• ATCommandException – If response is not as expected.

See also:

IOLine

IOValue

set_dio_change_detection(io_lines_set)
Sets the digital IO lines to be monitored and sampled whenever their status changes. A None set of lines
disables this feature.

Parameters io_lines_set – Set of IOLine.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

get_api_output_mode()
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the serial interface of the XBee.

Returns API output mode of the XBee.

Return type APIOutputMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

APIOutputMode

480 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_api_output_mode_value()
Returns the API output mode of the XBee.

The API output mode determines the format that the received data is output through the serial interface of
the XBee.

Returns the parameter value.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current proto-
col.

See also:

digi.xbee.models.mode.APIOutputModeBit

set_api_output_mode(api_output_mode)
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

Parameters api_output_mode (APIOutputMode) – New API output mode.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current proto-
col.

See also:

APIOutputMode

set_api_output_mode_value(api_output_mode)
Sets the API output mode of the XBee.

Parameters api_output_mode (Integer) – New API output mode op-
tions. Calculate this value using the method APIOutputModeBit.
calculate_api_output_mode_value() with a set of APIOutputModeBit.

2.6. API reference 481



XBee Python Library Documentation, Release 1.4.0

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current proto-
col.

See also:

APIOutputModeBit

enable_bluetooth()
Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth password if not done previously. Use
method AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

disable_bluetooth()
Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

get_bluetooth_mac_addr()
Reads and returns the EUI-48 Bluetooth MAC address of this XBee following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

Returns The Bluetooth MAC address.

Return type String

Raises

• TimeoutException – If response is not received before the read timeout expires.

482 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

update_bluetooth_password(new_password)
Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

Parameters new_password (String) – New Bluetooth password.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None,
timeout=None, progress_callback=None)

Performs a firmware update operation of the XBee.

Parameters

• xml_firmware_file (String) – Path of the XML file that describes the firmware
to upload.

• xbee_firmware_file (String, optional, default=`None`) – Location
of the XBee binary firmware file.

• bootloader_firmware_file (String, optional, default=`None`) –
Location of the bootloader binary firmware file.

• timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the update process (seconds).

• progress_callback (Function, optional, default=`None`) – Func-
tion to to receive progress information. Receives two arguments:

– The current update task as a String

– The current update task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• OperationNotSupportedException – If XBee does not support firmware update.

• FirmwareUpdateException – If there is any error during the firmware update.

apply_profile(profile_path, timeout=None, progress_callback=None)
Applies the given XBee profile to the XBee.

Parameters

• profile_path (String) – Path of the XBee profile file to apply.

2.6. API reference 483



XBee Python Library Documentation, Release 1.4.0

• timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the apply profile (seconds).

• progress_callback (Function, optional, default=`None`) – Func-
tion to receive progress information. Receives two arguments:

– The current apply profile task as a String

– The current apply profile task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• UpdateProfileException – If there is any error applying the XBee profile.

get_file_manager()
Returns the file system manager for the XBee.

Returns The file system manager.

Return type FileSystemManager

Raises FileSystemNotSupportedException – If the XBee does not support filesystem.

reachable
Returns whether the XBee is reachable.

Returns True if the device is reachable, False otherwise.

Return type Boolean

scan_counter
Returns the scan counter for this node.

Returns The scan counter for this node.

Return type Integer

log
Returns the XBee logger.

Returns The XBee device logger.

Return type Logger

class digi.xbee.devices.XBeeDevice(port=None, baud_rate=None,
data_bits=<sphinx.ext.autodoc.importer._MockObject ob-
ject>, stop_bits=<sphinx.ext.autodoc.importer._MockObject
object>, parity=<sphinx.ext.autodoc.importer._MockObject
object>, flow_control=<FlowControl.NONE: None>,
_sync_ops_timeout=4, comm_iface=None)

Bases: digi.xbee.devices.AbstractXBeeDevice

This class represents a non-remote generic XBee.

This class has fields that are events. Its recommended to use only the append() and remove() method on them,
or -= and += operators. If you do something more with them, it’s for your own risk.

Class constructor. Instantiates a new XBeeDevice with the provided parameters.

Parameters

484 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• port (String) – Serial port identifier. Depends on operating system. e.g. ‘/dev/ttyUSB0’
on ‘GNU/Linux’ or ‘COM3’ on Windows.

• baud_rate (Integer, optional, default=`None`) – Serial port baud rate.

• (Integer, default (_sync_ops_timeout) – serial.EIGHTBITS): Port bit-
size.

• (Integer, default – serial.STOPBITS_ONE): Port stop bits.

• (Character, default (parity) – serial.PARITY_NONE): Port parity.

• (Integer, default – FlowControl.NONE): Port flow control.

• (Integer, default – 4): Read timeout (in seconds).

• comm_iface (XBeeCommunicationInterface) – Communication interface.

Raises All exceptions raised by PySerial’s Serial class constructor.

See also:

PySerial documentation: http://pyserial.sourceforge.net

TIMEOUT_READ_PACKET = 3
Timeout to read packets.

classmethod create_xbee_device(comm_port_data)
Creates and returns an XBeeDevice from data of the port to which is connected.

Parameters

• comm_port_data (Dictionary) – Dictionary with all comm port data needed.

• dictionary keys are (The) –

“baudRate” –> Baud rate.
”port” –> Port number.
”bitSize” –> Bit size.
”stopBits” –> Stop bits.
”parity” –> Parity.
”flowControl” –> Flow control.
”timeout” for –> Timeout for synchronous operations (in seconds).

Returns XBee object created.

Return type XBeeDevice

Raises SerialException – If the port to open does not exist or is already opened.

See also:

XBeeDevice

open(force_settings=False)
Opens the communication with the XBee and loads information about it.

2.6. API reference 485

http://pyserial.sourceforge.net


XBee Python Library Documentation, Release 1.4.0

Parameters force_settings (Boolean, optional, default=`False`) – True
to open the device ensuring/forcing that the specified serial settings are applied even if the
current configuration is different, False to open the device with the current configuration.

Raises

• TimeoutException – If there is any problem with the communication.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee is already opened.

close()
Closes the communication with the XBee.

This method guarantees that all threads running are stopped and the serial port is closed.

serial_port
Returns the serial port associated to the XBee, if any.

Returns

Serial port of the XBee. None if the local XBee does not use serial communication.

Return type XBeeSerialPort

See also:

XBeeSerialPort

comm_iface
Returns the hardware interface associated to the XBee.

Returns Hardware interface of the XBee.

Return type XBeeCommunicationInterface

See also:

XBeeCommunicationInterface

operating_mode
Returns the operating mode of this XBee.

Returns OperatingMode. This XBee operating mode.

get_parameter(parameter, parameter_value=None, apply=None)
Override.

See also:

AbstractXBeeDevice.get_parameter()

set_parameter(parameter, value, apply=None)
Override.

486 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

See: AbstractXBeeDevice.set_parameter()

send_data(remote_xbee, data, transmit_options=0)
Blocking method. This method sends data to a remote XBee synchronously.

This method will wait for the packet response. The default timeout is XBeeDevice.
_DEFAULT_TIMEOUT_SYNC_OPERATIONS.

Parameters

• remote_xbee (RemoteXBeeDevice) – Remote XBee to send data to.

• data (String or Bytearray) – Raw data to send.

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Returns The response.

Return type XBeePacket

Raises

• ValueError – If remote_xbee is None.

• TimeoutException – If response is not received before the read timeout expires.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• TransmitException – If the status of the response received is not OK.

• XBeeException – If the XBee’s communication interface is closed.

See also:

RemoteXBeeDevice

XBeePacket

send_data_async(remote_xbee, data, transmit_options=0)
Non-blocking method. This method sends data to a remote XBee.

This method does not wait for a response.

Parameters

• remote_xbee (RemoteXBeeDevice) – the remote XBee to send data to.

• data (String or Bytearray) – Raw data to send.

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Raises

• ValueError – If remote_xbee is None.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

2.6. API reference 487



XBee Python Library Documentation, Release 1.4.0

RemoteXBeeDevice

send_data_broadcast(data, transmit_options=0)
Sends the provided data to all the XBee nodes of the network (broadcast).

This method blocks until a success or error transmit status arrives or the configured receive timeout expires.

The received timeout is configured using method AbstractXBeeDevice.
set_sync_ops_timeout() and can be consulted with AbstractXBeeDevice.
get_sync_ops_timeout() method.

Parameters

• data (String or Bytearray) – Data to send.

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• TransmitException – If the status of the response received is not OK.

• XBeeException – If the XBee’s communication interface is closed.

send_user_data_relay(local_interface, data)
Sends the given data to the given XBee local interface.

Parameters

• local_interface (XBeeLocalInterface) – Destination XBee local interface.

• data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• ValueError – If local_interface is None.

• XBeeException – If there is any problem sending the User Data Relay.

See also:

XBeeLocalInterface

send_bluetooth_data(data)
Sends the given data to the Bluetooth interface using a User Data Relay frame.

Parameters data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If there is any problem sending the data.

488 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

See also:

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

send_micropython_data(data)
Sends the given data to the MicroPython interface using a User Data Relay frame.

Parameters data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If there is any problem sending the data.

See also:

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

read_data(timeout=None)
Reads new data received by this XBee.

If timeout is specified, this method blocks until new data is received or the timeout expires, throwing a
TimeoutException in this case.

Parameters timeout (Integer, optional) – Read timeout in seconds. If None, this
method is non-blocking and returns None if no data is available.

Returns

Read message or None if this XBee did not receive new data.

Return type XBeeMessage

Raises

• ValueError – If a timeout is specified and is less than 0.

• TimeoutException – If a timeout is specified and no data was received during that
time.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBeeMessage

2.6. API reference 489



XBee Python Library Documentation, Release 1.4.0

read_data_from(remote_xbee, timeout=None)
Reads new data received from the given remote XBee.

If timeout is specified, this method blocks until new data is received or the timeout expires, throwing a
TimeoutException in this case.

Parameters

• remote_xbee (RemoteXBeeDevice) – Remote XBee that sent the data.

• timeout (Integer, optional) – Read timeout in seconds. If None, this method is
non-blocking and returns None if no data is available.

Returns

Read message sent by remote_xbee or None if this XBee did not receive new data.

Return type XBeeMessage

Raises

• ValueError – If a timeout is specified and is less than 0.

• TimeoutException – If a timeout is specified and no data was received during that
time.

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBeeMessage

RemoteXBeeDevice

has_packets()
Returns if there are pending packets to read. This does not include explicit packets.

Returns True if there are pending packets, False otherwise.

Return type Boolean

See also:

XBeeDevice.has_explicit_packets()

has_explicit_packets()
Returns if there are pending explicit packets to read. This does not include non-explicit packets.

Returns True if there are pending packets, False otherwise.

Return type Boolean

See also:

XBeeDevice.has_packets()

490 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

flush_queues()
Flushes the packets queue.

reset()
Override method.

See also:

AbstractXBeeDevice.reset()

add_packet_received_callback(callback)
Adds a callback for the event PacketReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The received packet as a XBeeAPIPacket.

add_data_received_callback(callback)
Adds a callback for the event DataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The data received as an XBeeMessage.

add_modem_status_received_callback(callback)
Adds a callback for the event ModemStatusReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The modem status as a ModemStatus.

add_io_sample_received_callback(callback)
Adds a callback for the event IOSampleReceived.

Parameters callback (Function) – The callback. Receives three arguments.

• The received IO sample as an IOSample.

• The remote XBee which sent the packet as a RemoteXBeeDevice.

• The time in which the packet was received as an Integer.

add_expl_data_received_callback(callback)
Adds a callback for the event ExplicitDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The explicit data received as a ExplicitXBeeMessage.

add_user_data_relay_received_callback(callback)
Adds a callback for the event RelayDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The relay data as a UserDataRelayMessage.

add_bluetooth_data_received_callback(callback)
Adds a callback for the event BluetoothDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The Bluetooth data as a Bytearray.

2.6. API reference 491



XBee Python Library Documentation, Release 1.4.0

add_micropython_data_received_callback(callback)
Adds a callback for the event MicroPythonDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The MicroPython data as a Bytearray.

add_socket_state_received_callback(callback)
Adds a callback for the event SocketStateReceived.

Parameters callback (Function) – The callback. Receives two arguments.

• The socket ID as an Integer.

• The state received as a SocketState.

add_socket_data_received_callback(callback)
Adds a callback for the event SocketDataReceived.

Parameters callback (Function) – The callback. Receives two arguments.

• The socket ID as an Integer.

• The data received as Bytearray.

add_socket_data_received_from_callback(callback)
Adds a callback for the event SocketDataReceivedFrom.

Parameters callback (Function) – The callback. Receives three arguments.

• The socket ID as an Integer.

• Source address pair (host, port) where host is a string representing an IPv4 address
like ‘100.50.200.5’, and port is an integer.

• The data received as Bytearray.

add_fs_frame_received_callback(callback)
Adds a callback for the event FileSystemFrameReceived.

Parameters callback (Function) – The callback. Receives four arguments.

• Source (AbstractXBeeDevice): The node that sent the file system frame.

• Frame id (Integer): The received frame id.

• Command (FSCmd): The file system command.

• Receive options (Integer): Bitfield indicating receive options.

See also:

AbstractXBeeDevice

FSCmd

ReceiveOptions

del_packet_received_callback(callback)
Deletes a callback for the callback list of PacketReceived event.

Parameters callback (Function) – The callback to delete.

del_data_received_callback(callback)
Deletes a callback for the callback list of DataReceived event.

492 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Parameters callback (Function) – The callback to delete.

del_modem_status_received_callback(callback)
Deletes a callback for the callback list of ModemStatusReceived event.

Parameters callback (Function) – The callback to delete.

del_io_sample_received_callback(callback)
Deletes a callback for the callback list of IOSampleReceived event.

Parameters callback (Function) – The callback to delete.

del_expl_data_received_callback(callback)
Deletes a callback for the callback list of ExplicitDataReceived event.

Parameters callback (Function) – The callback to delete.

del_user_data_relay_received_callback(callback)
Deletes a callback for the callback list of RelayDataReceived event.

Parameters callback (Function) – The callback to delete.

del_bluetooth_data_received_callback(callback)
Deletes a callback for the callback list of BluetoothDataReceived event.

Parameters callback (Function) – The callback to delete.

del_micropython_data_received_callback(callback)
Deletes a callback for the callback list of MicroPythonDataReceived event.

Parameters callback (Function) – The callback to delete.

del_socket_state_received_callback(callback)
Deletes a callback for the callback list of SocketStateReceived event.

Parameters callback (Function) – The callback to delete.

del_socket_data_received_callback(callback)
Deletes a callback for the callback list of SocketDataReceived event.

Parameters callback (Function) – The callback to delete.

del_socket_data_received_from_callback(callback)
Deletes a callback for the callback list of SocketDataReceivedFrom event.

Parameters callback (Function) – The callback to delete.

del_fs_frame_received_callback(callback)
Deletes a callback for the callback list of FileSystemFrameReceived event.

Parameters callback (Function) – The callback to delete.

get_xbee_device_callbacks()
Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee to get its callbacks. These callbacks
are executed before user callbacks.

Returns PacketReceived

is_open()
Returns whether this XBee is open.

Returns Boolean. True if this XBee is open, False otherwise.

2.6. API reference 493



XBee Python Library Documentation, Release 1.4.0

is_remote()
Override method.

See also:

AbstractXBeeDevice.is_remote()

get_network()
Returns the network of this XBee.

Returns The XBee network.

Return type XBeeNetwork

send_packet_sync_and_get_response(packet_to_send, timeout=None)
Sends the packet and waits for its corresponding response.

Parameters

• packet_to_send (XBeePacket) – The packet to transmit.

• timeout (Integer, optional, default=`None`) – Number of seconds to
wait. -1 to wait indefinitely.

Returns Received response packet.

Return type XBeePacket

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• TimeoutException – If response is not received in the configured timeout.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBeePacket

send_packet(packet, sync=False)
Sends the packet and waits for the response. The packet to send is escaped depending on the current
operating mode.

This method can be synchronous or asynchronous.

If synchronous, this method discards all response packets until it finds the one that has the appropriate
frame ID, that is, the sent packet’s frame ID.

If asynchronous, this method does not wait for any response and returns None.

Parameters

• packet (XBeePacket) – The packet to send.

• sync (Boolean) – True to wait for the response of the sent packet and return it, False
otherwise.

Returns

494 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Response packet if sync is True, None otherwise.

Return type XBeePacket

Raises

• TimeoutException – If sync is True and the response packet for the sent one cannot
be read.

• InvalidOperatingModeException – If the XBee operating mode is not API or
ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the packet listener is not running or the XBee’s communication
interface is closed.

See also:

XBeePacket

get_next_frame_id()
Returns the next frame ID of the XBee.

Returns The next frame ID of the XBee.

Return type Integer

add_route_received_callback(callback)
Adds a callback for the event RouteReceived. This works for Zigbee and Digimesh devices.

Parameters callback (Function) – The callback. Receives three arguments.

• source (XBeeDevice): The source node.

• destination (RemoteXBeeDevice): The destination node.

• hops (List): List of intermediate hops from closest to source to closest to destination
(RemoteXBeeDevice).

See also:

XBeeDevice.del_route_received_callback()

del_route_received_callback(callback)
Deletes a callback for the callback list of RouteReceived event.

Parameters callback (Function) – The callback to delete.

See also:

XBeeDevice.add_route_received_callback()

get_route_to_node(remote, timeout=10, force=True)
Gets the route from this XBee to the given remote node.

For Zigbee:

• ‘AR’ parameter of the local node must be configured with a value different from ‘FF’.

2.6. API reference 495



XBee Python Library Documentation, Release 1.4.0

• Set force to True to force the Zigbee remote node to return its route independently of the local
node configuration as high or low RAM concentrator (‘DO’ of the local value)

Parameters

• remote (RemoteXBeeDevice) – The remote node.

• timeout (Float, optional, default=10) – Maximum number of seconds to
wait for the route.

• force (Boolean) – True to force asking for the route, False otherwise. Only for Zigbee.

Returns

Tuple containing route data:

• status (TransmitStatus): The transmit status.

• Tuple with route data (None if the route was not read in the provided timeout):

– source (RemoteXBeeDevice): The source node of the route.

– destination (RemoteXBeeDevice): The destination node of the route.

– hops (List): List of intermediate nodes (RemoteXBeeDevice) ordered from clos-
est to source to closest to destination node (source and destination not included).

Return type Tuple

apply_changes()
Applies changes via ‘AC’ command.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

apply_profile(profile_path, timeout=None, progress_callback=None)
Applies the given XBee profile to the XBee.

Parameters

• profile_path (String) – Path of the XBee profile file to apply.

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the apply profile (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to receive progress information. Receives two arguments:

– The current apply profile task as a String

– The current apply profile task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

496 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• UpdateProfileException – If there is any error applying the XBee profile.

determine_protocol(hardware_version, firmware_version)
Determines the XBee protocol based on the given hardware and firmware versions.

Parameters

• hardware_version (Integer) – Hardware version to get its protocol.

• firmware_version (Bytearray) – Firmware version to get its protocol.

Returns

XBee protocol corresponding to the given hardware and firmware versions.

Return type XBeeProtocol

disable_bluetooth()
Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

enable_apply_changes(value)
Sets apply changes flag.

Parameters value (Boolean) – True to enable apply changes flag, False to disable it.

enable_bluetooth()
Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth password if not done previously. Use
method AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

execute_command(parameter, value=None, apply=None)
Executes the provided command.

Parameters

• (String or (parameter) – class: .ATStringCommand): AT command to exe-
cute.

• value (bytearray, optional, default=`None`) – Command value (if
any).

2.6. API reference 497



XBee Python Library Documentation, Release 1.4.0

• apply (Boolean, optional, default=`None`) – True to ap-
ply changes in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

get_16bit_addr()
Returns the 16-bit address of the XBee.

Returns 16-bit address of the XBee.

Return type XBee16BitAddress

See also:

XBee16BitAddress

get_64bit_addr()
Returns the 64-bit address of the XBee.

Returns 64-bit address of the XBee.

Return type XBee64BitAddress

See also:

XBee64BitAddress

get_adc_value(io_line)
Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so, use AbstractXBeeDevice.
set_io_configuration() and IOMode.ADC.

Parameters io_line (IOLine) – IO line to get its ADC value.

Returns Analog value corresponding to the provided IO line.

498 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

set_io_configuration()

get_api_output_mode()
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the serial interface of the XBee.

Returns API output mode of the XBee.

Return type APIOutputMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

APIOutputMode

get_api_output_mode_value()
Returns the API output mode of the XBee.

The API output mode determines the format that the received data is output through the serial interface of
the XBee.

Returns the parameter value.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout expires.

2.6. API reference 499



XBee Python Library Documentation, Release 1.4.0

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

digi.xbee.models.mode.APIOutputModeBit

get_bluetooth_mac_addr()
Reads and returns the EUI-48 Bluetooth MAC address of this XBee following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

Returns The Bluetooth MAC address.

Return type String

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

get_current_frame_id()
Returns the last used frame ID.

Returns Last used frame ID.

Return type Integer

get_dest_address()
Returns the 64-bit address of the XBee that is data destination.

Returns 64-bit address of destination XBee.

Return type XBee64BitAddress

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

XBee64BitAddress

set_dest_address()

500 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_dio_value(io_line)
Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O. To do so, use
AbstractXBeeDevice.set_io_configuration().

Parameters io_line (IOLine) – the DIO line to gets its digital value.

Returns current value of the provided IO line.

Return type IOValue

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

IOValue

set_io_configuration()

get_file_manager()
Returns the file system manager for the XBee.

Returns The file system manager.

Return type FileSystemManager

Raises FileSystemNotSupportedException – If the XBee does not support filesys-
tem.

get_firmware_version()
Returns the firmware version of the XBee.

Returns Firmware version of the XBee.

Return type Bytearray

get_hardware_version()
Returns the hardware version of the XBee.

Returns Hardware version of the XBee.

Return type HardwareVersion

See also:

HardwareVersion

2.6. API reference 501



XBee Python Library Documentation, Release 1.4.0

get_io_configuration(io_line)
Returns the configuration of the provided IO line.

Parameters io_line (IOLine) – IO line to get its configuration.

Returns IO mode of the IO line provided.

Return type IOMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

set_io_configuration()

get_io_sampling_rate()
Returns the IO sampling rate of the XBee.

Returns IO sampling rate of XBee.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

set_io_sampling_rate()

get_node_id()
Returns the node identifier (‘NI’) value of the XBee.

Returns Node identifier (‘NI’) of the XBee.

Return type String

get_pan_id()
Returns the operating PAN ID of the XBee.

Returns Operating PAN ID of the XBee.

Return type Bytearray

502 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

set_pan_id()

get_power_level()
Returns the power level of the XBee.

Returns Power level of the XBee.

Return type PowerLevel

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

PowerLevel

set_power_level()

get_protocol()
Returns the current protocol of the XBee.

Returns Current protocol of the XBee.

Return type XBeeProtocol

See also:

XBeeProtocol

get_pwm_duty_cycle(io_line)
Returns the PWM duty cycle in % corresponding to the provided IO line.

Parameters io_line (IOLine) – IO line to get its PWM duty cycle.

Returns PWM duty cycle of the given IO line.

Return type Integer

2.6. API reference 503



XBee Python Library Documentation, Release 1.4.0

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If io_line has no PWM capability.

See also:

IOLine

get_role()
Gets the XBee role.

Returns the role of the XBee.

Return type Role

See also:

Role

get_sync_ops_timeout()
Returns the serial port read timeout.

Returns Serial port read timeout in seconds.

Return type Integer

is_apply_changes_enabled()
Returns whether apply changes flag is enabled.

Returns True if apply changes flag is enabled, False otherwise.

Return type Boolean

is_device_info_complete()
Returns whether XBee node information is complete.

Returns True if node information is complete, False otherwise.

Return type Boolean

See also:

AbstractXBeeDevice.read_device_info()

log
Returns the XBee logger.

Returns The XBee device logger.

504 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type Logger

reachable
Returns whether the XBee is reachable.

Returns True if the device is reachable, False otherwise.

Return type Boolean

read_device_info(init=True, fire_event=True)
Updates all instance parameters reading them from the XBee.

Parameters

• init (Boolean, optional, default=`True`) – If False only not initial-
ized parameters are read, all if True.

• fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.is_device_info_complete()

read_io_sample()
Returns an IO sample from the XBee containing the value of all enabled digital IO and analog input
channels.

Returns IO sample read from the XBee.

Return type IOSample

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOSample

scan_counter
Returns the scan counter for this node.

2.6. API reference 505



XBee Python Library Documentation, Release 1.4.0

Returns The scan counter for this node.

Return type Integer

set_16bit_addr(value)
Sets the 16-bit address of the XBee.

Parameters value (XBee16BitAddress) – New 16-bit address of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If the protocol is not 802.15.4.

set_api_output_mode(api_output_mode)
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

Parameters api_output_mode (APIOutputMode) – New API output mode.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputMode

set_api_output_mode_value(api_output_mode)
Sets the API output mode of the XBee.

Parameters api_output_mode (Integer) – New API output mode op-
tions. Calculate this value using the method APIOutputModeBit.
calculate_api_output_mode_value() with a set of APIOutputModeBit.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

506 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputModeBit

set_dest_address(addr)
Sets the 64-bit address of the XBee that is data destination.

Parameters addr (XBee64BitAddress or RemoteXBeeDevice) – Address itself or
remote XBee to be data destination.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If addr is None.

See also:

XBee64BitAddress

get_dest_address()

set_dio_change_detection(io_lines_set)
Sets the digital IO lines to be monitored and sampled whenever their status changes. A None set of lines
disables this feature.

Parameters io_lines_set – Set of IOLine.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

set_dio_value(io_line, io_value)
Sets the digital value (high or low) to the provided IO line.

Parameters

2.6. API reference 507



XBee Python Library Documentation, Release 1.4.0

• io_line (IOLine) – Digital IO line to sets its value.

• io_value (IOValue) – IO value to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOValue

set_io_configuration(io_line, io_mode)
Sets the configuration of the provided IO line.

Parameters

• io_line (IOLine) – IO line to configure.

• io_mode (IOMode) – IO mode to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

get_io_configuration()

set_io_sampling_rate(rate)
Sets the IO sampling rate of the XBee in seconds. A sample rate of 0 means the IO sampling feature is
disabled.

Parameters rate (Integer) – New IO sampling rate of the XBee in seconds.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

508 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• ATCommandException – If response is not as expected.

See also:

get_io_sampling_rate()

set_node_id(node_id)
Sets the node identifier (‘NI‘) value of the XBee.

Parameters node_id (String) – New node identifier (‘NI’) of the XBee.

Raises

• ValueError – If node_id is None or its length is greater than 20.

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

set_pan_id(value)
Sets the operating PAN ID of the XBee.

Parameters value (Bytearray) – New operating PAN ID of the XBee. Must have only 1
or 2 bytes.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

get_pan_id()

set_power_level(power_level)
Sets the power level of the XBee.

Parameters power_level (PowerLevel) – New power level of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

2.6. API reference 509



XBee Python Library Documentation, Release 1.4.0

See also:

PowerLevel

get_power_level()

set_pwm_duty_cycle(io_line, cycle)
Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

Parameters

• io_line (IOLine) – IO Line to be assigned.

• cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If the given IO line does not have PWM capability or cycle is not
between 0 and 100.

See also:

IOLine

IOMode.PWM

set_sync_ops_timeout(sync_ops_timeout)
Sets the serial port read timeout.

Parameters sync_ops_timeout (Integer) – Read timeout in seconds.

update_bluetooth_password(new_password)
Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

Parameters new_password (String) – New Bluetooth password.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

update_device_data_from(device)
Updates the current node information with provided data. This is only for internal use.

510 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Parameters device (AbstractXBeeDevice) – XBee to get the data from.

Returns True if the node data has been updated, False otherwise.

Return type Boolean

update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None,
timeout=None, progress_callback=None)

Performs a firmware update operation of the XBee.

Parameters

• xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

• xbee_firmware_file (String, optional, default=`None`) – Lo-
cation of the XBee binary firmware file.

• bootloader_firmware_file (String, optional,
default=`None`) – Location of the bootloader binary firmware file.

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the update process (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to to receive progress information. Receives two arguments:

– The current update task as a String

– The current update task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• OperationNotSupportedException – If XBee does not support firmware
update.

• FirmwareUpdateException – If there is any error during the firmware update.

write_changes()
Writes configurable parameter values to the non-volatile memory of the XBee so that parameter modifi-
cations persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by subsequent use of this method.

If changes are made without writing them, the XBee reverts back to previously saved parameters the next
time the module is powered-on.

Writing the parameter modifications does not mean those values are immediately applied, this depends on
the status of the ‘apply configuration changes’ option. Use method is_apply_changes_enabled()
to get its status and enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

2.6. API reference 511



XBee Python Library Documentation, Release 1.4.0

class digi.xbee.devices.Raw802Device(port=None, baud_rate=None,
data_bits=<sphinx.ext.autodoc.importer._MockObject
object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject
object>, parity=<sphinx.ext.autodoc.importer._MockObject
object>, flow_control=<FlowControl.NONE: None>,
_sync_ops_timeout=4, comm_iface=None)

Bases: digi.xbee.devices.XBeeDevice

This class represents a local 802.15.4 XBee.

Class constructor. Instantiates a new Raw802Device with the provided parameters.

Parameters

• port (String) – Serial port identifier. Depends on operating system. e.g.
‘/dev/ttyUSB0’ on ‘GNU/Linux’ or ‘COM3’ on Windows.

• baud_rate (Integer) – Serial port baud rate.

• (Integer, default (flow_control) – serial.EIGHTBITS): Port bitsize.

• (Integer, default – serial.STOPBITS_ONE): Port stop bits.

• (Character, default (parity) – serial.PARITY_NONE): Port parity.

• (Integer, default – FlowControl.NONE): Port flow control.

_sync_ops_timeout (Integer, default: 3): Read timeout (in seconds). comm_iface
(XBeeCommunicationInterface): Communication interface.

Raises All exceptions raised by XBeeDevice.__init__() constructor.

See also:

XBeeDevice

XBeeDevice.__init__()

open(force_settings=False)
Override.

See also:

XBeeDevice.open()

get_protocol()
Override.

See also:

XBeeDevice.get_protocol()

get_ai_status()
Returns the current association status of this XBee. It indicates occurrences of errors during the modem
initialization and connection.

512 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns

The XBee association indication status.

Return type AssociationIndicationStatus

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

send_data_64(x64addr, data, transmit_options=0)
Blocking method. This method sends data to a remote XBee with the given 64-bit address.

This method waits for the packet response. The default timeout is XBeeDevice.
_DEFAULT_TIMEOUT_SYNC_OPERATIONS.

Parameters

• x64addr (XBee64BitAddress) – 64-bit address of the destination XBee.

• data (String or Bytearray) – Raw data to send.

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Returns The response.

Return type XBeePacket

Raises

• ValueError – If x64addr or data is None.

• TimeoutException – If response is not received before the read timeout expires.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TransmitException – If the status of the response received is not OK.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBee64BitAddress

XBeePacket

send_data_async_64(x64addr, data, transmit_options=0)
Non-blocking method. This method sends data to a remote XBee with the given 64-bit address.

This method does not wait for a response.

Parameters

• x64addr (XBee64BitAddress) – 64-bit address of the destination XBee.

• data (String or Bytearray) – Raw data to send.

2.6. API reference 513



XBee Python Library Documentation, Release 1.4.0

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Raises

• ValueError – If x64addr or data is None.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBee64BitAddress

XBeePacket

send_data_16(x16addr, data, transmit_options=0)
Blocking method. This method sends data to a remote XBee with the given 16-bit address.

This method will wait for the packet response. The default timeout is XBeeDevice.
_DEFAULT_TIMEOUT_SYNC_OPERATIONS.

Parameters

• x16addr (XBee16BitAddress) – 16-bit address of the destination XBee.

• data (String or Bytearray) – Raw data to send.

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Returns The response.

Return type XBeePacket

Raises

• ValueError – If x16addr or data is None.

• TimeoutException – If response is not received before the read timeout expires.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TransmitException – If the status of the response received is not OK.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBee16BitAddress

XBeePacket

send_data_async_16(x16addr, data, transmit_options=0)
Non-blocking method. This method sends data to a remote XBee with the given 16-bit address.

This method does not wait for a response.

Parameters

514 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• x16addr (XBee16BitAddress) – 16-bit address of the destination XBee.

• data (String or Bytearray) – Raw data to send.

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Raises

• ValueError – If x16addr or data is None.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBee16BitAddress

XBeePacket

add_bluetooth_data_received_callback(callback)
Adds a callback for the event BluetoothDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The Bluetooth data as a Bytearray.

add_data_received_callback(callback)
Adds a callback for the event DataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The data received as an XBeeMessage.

add_expl_data_received_callback(callback)
Adds a callback for the event ExplicitDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The explicit data received as a ExplicitXBeeMessage.

add_fs_frame_received_callback(callback)
Adds a callback for the event FileSystemFrameReceived.

Parameters callback (Function) – The callback. Receives four arguments.

• Source (AbstractXBeeDevice): The node that sent the file system frame.

• Frame id (Integer): The received frame id.

• Command (FSCmd): The file system command.

• Receive options (Integer): Bitfield indicating receive options.

See also:

AbstractXBeeDevice

FSCmd

ReceiveOptions

2.6. API reference 515



XBee Python Library Documentation, Release 1.4.0

add_io_sample_received_callback(callback)
Adds a callback for the event IOSampleReceived.

Parameters callback (Function) – The callback. Receives three arguments.

• The received IO sample as an IOSample.

• The remote XBee which sent the packet as a RemoteXBeeDevice.

• The time in which the packet was received as an Integer.

add_micropython_data_received_callback(callback)
Adds a callback for the event MicroPythonDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The MicroPython data as a Bytearray.

add_modem_status_received_callback(callback)
Adds a callback for the event ModemStatusReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The modem status as a ModemStatus.

add_packet_received_callback(callback)
Adds a callback for the event PacketReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The received packet as a XBeeAPIPacket.

add_route_received_callback(callback)
Adds a callback for the event RouteReceived. This works for Zigbee and Digimesh devices.

Parameters callback (Function) – The callback. Receives three arguments.

• source (XBeeDevice): The source node.

• destination (RemoteXBeeDevice): The destination node.

• hops (List): List of intermediate hops from closest to source to closest to destina-
tion (RemoteXBeeDevice).

See also:

XBeeDevice.del_route_received_callback()

add_socket_data_received_callback(callback)
Adds a callback for the event SocketDataReceived.

Parameters callback (Function) – The callback. Receives two arguments.

• The socket ID as an Integer.

• The data received as Bytearray.

add_socket_data_received_from_callback(callback)
Adds a callback for the event SocketDataReceivedFrom.

Parameters callback (Function) – The callback. Receives three arguments.

• The socket ID as an Integer.

516 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• Source address pair (host, port) where host is a string representing an IPv4 ad-
dress like ‘100.50.200.5’, and port is an integer.

• The data received as Bytearray.

add_socket_state_received_callback(callback)
Adds a callback for the event SocketStateReceived.

Parameters callback (Function) – The callback. Receives two arguments.

• The socket ID as an Integer.

• The state received as a SocketState.

add_user_data_relay_received_callback(callback)
Adds a callback for the event RelayDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The relay data as a UserDataRelayMessage.

apply_changes()
Applies changes via ‘AC’ command.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

apply_profile(profile_path, timeout=None, progress_callback=None)
Applies the given XBee profile to the XBee.

Parameters

• profile_path (String) – Path of the XBee profile file to apply.

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the apply profile (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to receive progress information. Receives two arguments:

– The current apply profile task as a String

– The current apply profile task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• UpdateProfileException – If there is any error applying the XBee profile.

close()
Closes the communication with the XBee.

This method guarantees that all threads running are stopped and the serial port is closed.

comm_iface
Returns the hardware interface associated to the XBee.

2.6. API reference 517



XBee Python Library Documentation, Release 1.4.0

Returns Hardware interface of the XBee.

Return type XBeeCommunicationInterface

See also:

XBeeCommunicationInterface

classmethod create_xbee_device(comm_port_data)
Creates and returns an XBeeDevice from data of the port to which is connected.

Parameters

• comm_port_data (Dictionary) – Dictionary with all comm port data needed.

• dictionary keys are (The) –

“baudRate” –> Baud rate.
”port” –> Port number.
”bitSize” –> Bit size.
”stopBits” –> Stop bits.
”parity” –> Parity.
”flowControl” –> Flow control.
”timeout” for –> Timeout for synchronous operations (in seconds).

Returns XBee object created.

Return type XBeeDevice

Raises SerialException – If the port to open does not exist or is already opened.

See also:

XBeeDevice

del_bluetooth_data_received_callback(callback)
Deletes a callback for the callback list of BluetoothDataReceived event.

Parameters callback (Function) – The callback to delete.

del_data_received_callback(callback)
Deletes a callback for the callback list of DataReceived event.

Parameters callback (Function) – The callback to delete.

del_expl_data_received_callback(callback)
Deletes a callback for the callback list of ExplicitDataReceived event.

Parameters callback (Function) – The callback to delete.

del_fs_frame_received_callback(callback)
Deletes a callback for the callback list of FileSystemFrameReceived event.

Parameters callback (Function) – The callback to delete.

del_io_sample_received_callback(callback)
Deletes a callback for the callback list of IOSampleReceived event.

518 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Parameters callback (Function) – The callback to delete.

del_micropython_data_received_callback(callback)
Deletes a callback for the callback list of MicroPythonDataReceived event.

Parameters callback (Function) – The callback to delete.

del_modem_status_received_callback(callback)
Deletes a callback for the callback list of ModemStatusReceived event.

Parameters callback (Function) – The callback to delete.

del_packet_received_callback(callback)
Deletes a callback for the callback list of PacketReceived event.

Parameters callback (Function) – The callback to delete.

del_route_received_callback(callback)
Deletes a callback for the callback list of RouteReceived event.

Parameters callback (Function) – The callback to delete.

See also:

XBeeDevice.add_route_received_callback()

del_socket_data_received_callback(callback)
Deletes a callback for the callback list of SocketDataReceived event.

Parameters callback (Function) – The callback to delete.

del_socket_data_received_from_callback(callback)
Deletes a callback for the callback list of SocketDataReceivedFrom event.

Parameters callback (Function) – The callback to delete.

del_socket_state_received_callback(callback)
Deletes a callback for the callback list of SocketStateReceived event.

Parameters callback (Function) – The callback to delete.

del_user_data_relay_received_callback(callback)
Deletes a callback for the callback list of RelayDataReceived event.

Parameters callback (Function) – The callback to delete.

determine_protocol(hardware_version, firmware_version)
Determines the XBee protocol based on the given hardware and firmware versions.

Parameters

• hardware_version (Integer) – Hardware version to get its protocol.

• firmware_version (Bytearray) – Firmware version to get its protocol.

Returns

XBee protocol corresponding to the given hardware and firmware versions.

Return type XBeeProtocol

disable_bluetooth()
Disables the Bluetooth interface of this XBee.

2.6. API reference 519



XBee Python Library Documentation, Release 1.4.0

Note that your device must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

enable_apply_changes(value)
Sets apply changes flag.

Parameters value (Boolean) – True to enable apply changes flag, False to disable it.

enable_bluetooth()
Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth password if not done previously. Use
method AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

execute_command(parameter, value=None, apply=None)
Executes the provided command.

Parameters

• (String or (parameter) – class: .ATStringCommand): AT command to exe-
cute.

• value (bytearray, optional, default=`None`) – Command value (if
any).

• apply (Boolean, optional, default=`None`) – True to ap-
ply changes in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.get_parameter()

520 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

flush_queues()
Flushes the packets queue.

get_16bit_addr()
Returns the 16-bit address of the XBee.

Returns 16-bit address of the XBee.

Return type XBee16BitAddress

See also:

XBee16BitAddress

get_64bit_addr()
Returns the 64-bit address of the XBee.

Returns 64-bit address of the XBee.

Return type XBee64BitAddress

See also:

XBee64BitAddress

get_adc_value(io_line)
Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so, use AbstractXBeeDevice.
set_io_configuration() and IOMode.ADC.

Parameters io_line (IOLine) – IO line to get its ADC value.

Returns Analog value corresponding to the provided IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

2.6. API reference 521



XBee Python Library Documentation, Release 1.4.0

See also:

IOLine

set_io_configuration()

get_api_output_mode()
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the serial interface of the XBee.

Returns API output mode of the XBee.

Return type APIOutputMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

APIOutputMode

get_api_output_mode_value()
Returns the API output mode of the XBee.

The API output mode determines the format that the received data is output through the serial interface of
the XBee.

Returns the parameter value.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

digi.xbee.models.mode.APIOutputModeBit

522 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_bluetooth_mac_addr()
Reads and returns the EUI-48 Bluetooth MAC address of this XBee following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

Returns The Bluetooth MAC address.

Return type String

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

get_current_frame_id()
Returns the last used frame ID.

Returns Last used frame ID.

Return type Integer

get_dest_address()
Returns the 64-bit address of the XBee that is data destination.

Returns 64-bit address of destination XBee.

Return type XBee64BitAddress

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

XBee64BitAddress

set_dest_address()

get_dio_value(io_line)
Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O. To do so, use
AbstractXBeeDevice.set_io_configuration().

Parameters io_line (IOLine) – the DIO line to gets its digital value.

Returns current value of the provided IO line.

Return type IOValue

Raises

• TimeoutException – If response is not received before the read timeout expires.

2.6. API reference 523



XBee Python Library Documentation, Release 1.4.0

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

IOValue

set_io_configuration()

get_file_manager()
Returns the file system manager for the XBee.

Returns The file system manager.

Return type FileSystemManager

Raises FileSystemNotSupportedException – If the XBee does not support filesys-
tem.

get_firmware_version()
Returns the firmware version of the XBee.

Returns Firmware version of the XBee.

Return type Bytearray

get_hardware_version()
Returns the hardware version of the XBee.

Returns Hardware version of the XBee.

Return type HardwareVersion

See also:

HardwareVersion

get_io_configuration(io_line)
Returns the configuration of the provided IO line.

Parameters io_line (IOLine) – IO line to get its configuration.

Returns IO mode of the IO line provided.

Return type IOMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

524 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

set_io_configuration()

get_io_sampling_rate()
Returns the IO sampling rate of the XBee.

Returns IO sampling rate of XBee.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

set_io_sampling_rate()

get_network()
Returns the network of this XBee.

Returns The XBee network.

Return type XBeeNetwork

get_next_frame_id()
Returns the next frame ID of the XBee.

Returns The next frame ID of the XBee.

Return type Integer

get_node_id()
Returns the node identifier (‘NI’) value of the XBee.

Returns Node identifier (‘NI’) of the XBee.

Return type String

get_pan_id()
Returns the operating PAN ID of the XBee.

Returns Operating PAN ID of the XBee.

Return type Bytearray

2.6. API reference 525



XBee Python Library Documentation, Release 1.4.0

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

set_pan_id()

get_parameter(parameter, parameter_value=None, apply=None)
Override.

See also:

AbstractXBeeDevice.get_parameter()

get_power_level()
Returns the power level of the XBee.

Returns Power level of the XBee.

Return type PowerLevel

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

PowerLevel

set_power_level()

get_pwm_duty_cycle(io_line)
Returns the PWM duty cycle in % corresponding to the provided IO line.

Parameters io_line (IOLine) – IO line to get its PWM duty cycle.

Returns PWM duty cycle of the given IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

526 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If io_line has no PWM capability.

See also:

IOLine

get_role()
Gets the XBee role.

Returns the role of the XBee.

Return type Role

See also:

Role

get_route_to_node(remote, timeout=10, force=True)
Gets the route from this XBee to the given remote node.

For Zigbee:

• ‘AR’ parameter of the local node must be configured with a value different from ‘FF’.

• Set force to True to force the Zigbee remote node to return its route independently of the local
node configuration as high or low RAM concentrator (‘DO’ of the local value)

Parameters

• remote (RemoteXBeeDevice) – The remote node.

• timeout (Float, optional, default=10) – Maximum number of seconds
to wait for the route.

• force (Boolean) – True to force asking for the route, False otherwise. Only for
Zigbee.

Returns

Tuple containing route data:

• status (TransmitStatus): The transmit status.

• Tuple with route data (None if the route was not read in the provided timeout):

– source (RemoteXBeeDevice): The source node of the route.

– destination (RemoteXBeeDevice): The destination node of the route.

– hops (List): List of intermediate nodes (RemoteXBeeDevice) ordered from
closest to source to closest to destination node (source and destination not in-
cluded).

2.6. API reference 527



XBee Python Library Documentation, Release 1.4.0

Return type Tuple

get_sync_ops_timeout()
Returns the serial port read timeout.

Returns Serial port read timeout in seconds.

Return type Integer

get_xbee_device_callbacks()
Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee to get its callbacks. These callbacks
are executed before user callbacks.

Returns PacketReceived

has_explicit_packets()
Returns if there are pending explicit packets to read. This does not include non-explicit packets.

Returns True if there are pending packets, False otherwise.

Return type Boolean

See also:

XBeeDevice.has_packets()

has_packets()
Returns if there are pending packets to read. This does not include explicit packets.

Returns True if there are pending packets, False otherwise.

Return type Boolean

See also:

XBeeDevice.has_explicit_packets()

is_apply_changes_enabled()
Returns whether apply changes flag is enabled.

Returns True if apply changes flag is enabled, False otherwise.

Return type Boolean

is_device_info_complete()
Returns whether XBee node information is complete.

Returns True if node information is complete, False otherwise.

Return type Boolean

See also:

AbstractXBeeDevice.read_device_info()

528 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

is_open()
Returns whether this XBee is open.

Returns Boolean. True if this XBee is open, False otherwise.

is_remote()
Override method.

See also:

AbstractXBeeDevice.is_remote()

log
Returns the XBee logger.

Returns The XBee device logger.

Return type Logger

operating_mode
Returns the operating mode of this XBee.

Returns OperatingMode. This XBee operating mode.

reachable
Returns whether the XBee is reachable.

Returns True if the device is reachable, False otherwise.

Return type Boolean

read_data(timeout=None)
Reads new data received by this XBee.

If timeout is specified, this method blocks until new data is received or the timeout expires, throwing a
TimeoutException in this case.

Parameters timeout (Integer, optional) – Read timeout in seconds. If None, this
method is non-blocking and returns None if no data is available.

Returns

Read message or None if this XBee did not receive new data.

Return type XBeeMessage

Raises

• ValueError – If a timeout is specified and is less than 0.

• TimeoutException – If a timeout is specified and no data was received during
that time.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBeeMessage

2.6. API reference 529



XBee Python Library Documentation, Release 1.4.0

read_data_from(remote_xbee, timeout=None)
Reads new data received from the given remote XBee.

If timeout is specified, this method blocks until new data is received or the timeout expires, throwing a
TimeoutException in this case.

Parameters

• remote_xbee (RemoteXBeeDevice) – Remote XBee that sent the data.

• timeout (Integer, optional) – Read timeout in seconds. If None, this
method is non-blocking and returns None if no data is available.

Returns

Read message sent by remote_xbee or None if this XBee did not receive new data.

Return type XBeeMessage

Raises

• ValueError – If a timeout is specified and is less than 0.

• TimeoutException – If a timeout is specified and no data was received during
that time.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBeeMessage

RemoteXBeeDevice

read_device_info(init=True, fire_event=True)
Updates all instance parameters reading them from the XBee.

Parameters

• init (Boolean, optional, default=`True`) – If False only not initial-
ized parameters are read, all if True.

• fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.is_device_info_complete()

530 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

read_io_sample()
Returns an IO sample from the XBee containing the value of all enabled digital IO and analog input
channels.

Returns IO sample read from the XBee.

Return type IOSample

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOSample

reset()
Override method.

See also:

AbstractXBeeDevice.reset()

scan_counter
Returns the scan counter for this node.

Returns The scan counter for this node.

Return type Integer

send_bluetooth_data(data)
Sends the given data to the Bluetooth interface using a User Data Relay frame.

Parameters data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If there is any problem sending the data.

See also:

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

2.6. API reference 531



XBee Python Library Documentation, Release 1.4.0

send_data(remote_xbee, data, transmit_options=0)
Blocking method. This method sends data to a remote XBee synchronously.

This method will wait for the packet response. The default timeout is XBeeDevice.
_DEFAULT_TIMEOUT_SYNC_OPERATIONS.

Parameters

• remote_xbee (RemoteXBeeDevice) – Remote XBee to send data to.

• data (String or Bytearray) – Raw data to send.

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Returns The response.

Return type XBeePacket

Raises

• ValueError – If remote_xbee is None.

• TimeoutException – If response is not received before the read timeout expires.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TransmitException – If the status of the response received is not OK.

• XBeeException – If the XBee’s communication interface is closed.

See also:

RemoteXBeeDevice

XBeePacket

send_data_async(remote_xbee, data, transmit_options=0)
Non-blocking method. This method sends data to a remote XBee.

This method does not wait for a response.

Parameters

• remote_xbee (RemoteXBeeDevice) – the remote XBee to send data to.

• data (String or Bytearray) – Raw data to send.

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Raises

• ValueError – If remote_xbee is None.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

RemoteXBeeDevice

532 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

send_data_broadcast(data, transmit_options=0)
Sends the provided data to all the XBee nodes of the network (broadcast).

This method blocks until a success or error transmit status arrives or the configured receive timeout ex-
pires.

The received timeout is configured using method AbstractXBeeDevice.
set_sync_ops_timeout() and can be consulted with AbstractXBeeDevice.
get_sync_ops_timeout() method.

Parameters

• data (String or Bytearray) – Data to send.

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TransmitException – If the status of the response received is not OK.

• XBeeException – If the XBee’s communication interface is closed.

send_micropython_data(data)
Sends the given data to the MicroPython interface using a User Data Relay frame.

Parameters data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If there is any problem sending the data.

See also:

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

send_packet(packet, sync=False)
Sends the packet and waits for the response. The packet to send is escaped depending on the current
operating mode.

This method can be synchronous or asynchronous.

If synchronous, this method discards all response packets until it finds the one that has the appropriate
frame ID, that is, the sent packet’s frame ID.

If asynchronous, this method does not wait for any response and returns None.

Parameters

• packet (XBeePacket) – The packet to send.

• sync (Boolean) – True to wait for the response of the sent packet and return it,
False otherwise.

2.6. API reference 533



XBee Python Library Documentation, Release 1.4.0

Returns

Response packet if sync is True, None otherwise.

Return type XBeePacket

Raises

• TimeoutException – If sync is True and the response packet for the sent one
cannot be read.

• InvalidOperatingModeException – If the XBee operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the packet listener is not running or the XBee’s communica-
tion interface is closed.

See also:

XBeePacket

send_packet_sync_and_get_response(packet_to_send, timeout=None)
Sends the packet and waits for its corresponding response.

Parameters

• packet_to_send (XBeePacket) – The packet to transmit.

• timeout (Integer, optional, default=`None`) – Number of seconds
to wait. -1 to wait indefinitely.

Returns Received response packet.

Return type XBeePacket

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TimeoutException – If response is not received in the configured timeout.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBeePacket

send_user_data_relay(local_interface, data)
Sends the given data to the given XBee local interface.

Parameters

• local_interface (XBeeLocalInterface) – Destination XBee local inter-
face.

• data (Bytearray) – Data to send.

Raises

534 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ValueError – If local_interface is None.

• XBeeException – If there is any problem sending the User Data Relay.

See also:

XBeeLocalInterface

serial_port
Returns the serial port associated to the XBee, if any.

Returns

Serial port of the XBee. None if the local XBee does not use serial communication.

Return type XBeeSerialPort

See also:

XBeeSerialPort

set_16bit_addr(value)
Sets the 16-bit address of the XBee.

Parameters value (XBee16BitAddress) – New 16-bit address of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If the protocol is not 802.15.4.

set_api_output_mode(api_output_mode)
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

Parameters api_output_mode (APIOutputMode) – New API output mode.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

2.6. API reference 535



XBee Python Library Documentation, Release 1.4.0

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputMode

set_api_output_mode_value(api_output_mode)
Sets the API output mode of the XBee.

Parameters api_output_mode (Integer) – New API output mode op-
tions. Calculate this value using the method APIOutputModeBit.
calculate_api_output_mode_value() with a set of APIOutputModeBit.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputModeBit

set_dest_address(addr)
Sets the 64-bit address of the XBee that is data destination.

Parameters addr (XBee64BitAddress or RemoteXBeeDevice) – Address itself or
remote XBee to be data destination.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If addr is None.

See also:

XBee64BitAddress

get_dest_address()

536 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

set_dio_change_detection(io_lines_set)
Sets the digital IO lines to be monitored and sampled whenever their status changes. A None set of lines
disables this feature.

Parameters io_lines_set – Set of IOLine.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

set_dio_value(io_line, io_value)
Sets the digital value (high or low) to the provided IO line.

Parameters

• io_line (IOLine) – Digital IO line to sets its value.

• io_value (IOValue) – IO value to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOValue

set_io_configuration(io_line, io_mode)
Sets the configuration of the provided IO line.

Parameters

• io_line (IOLine) – IO line to configure.

• io_mode (IOMode) – IO mode to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

2.6. API reference 537



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

get_io_configuration()

set_io_sampling_rate(rate)
Sets the IO sampling rate of the XBee in seconds. A sample rate of 0 means the IO sampling feature is
disabled.

Parameters rate (Integer) – New IO sampling rate of the XBee in seconds.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

get_io_sampling_rate()

set_node_id(node_id)
Sets the node identifier (‘NI‘) value of the XBee.

Parameters node_id (String) – New node identifier (‘NI’) of the XBee.

Raises

• ValueError – If node_id is None or its length is greater than 20.

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

set_pan_id(value)
Sets the operating PAN ID of the XBee.

Parameters value (Bytearray) – New operating PAN ID of the XBee. Must have only 1
or 2 bytes.

Raises

• TimeoutException – If response is not received before the read timeout expires.

538 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

get_pan_id()

set_parameter(parameter, value, apply=None)
Override.

See: AbstractXBeeDevice.set_parameter()

set_power_level(power_level)
Sets the power level of the XBee.

Parameters power_level (PowerLevel) – New power level of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

PowerLevel

get_power_level()

set_pwm_duty_cycle(io_line, cycle)
Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

Parameters

• io_line (IOLine) – IO Line to be assigned.

• cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If the given IO line does not have PWM capability or cycle is not
between 0 and 100.

2.6. API reference 539



XBee Python Library Documentation, Release 1.4.0

See also:

IOLine

IOMode.PWM

set_sync_ops_timeout(sync_ops_timeout)
Sets the serial port read timeout.

Parameters sync_ops_timeout (Integer) – Read timeout in seconds.

update_bluetooth_password(new_password)
Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

Parameters new_password (String) – New Bluetooth password.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

update_device_data_from(device)
Updates the current node information with provided data. This is only for internal use.

Parameters device (AbstractXBeeDevice) – XBee to get the data from.

Returns True if the node data has been updated, False otherwise.

Return type Boolean

update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None,
timeout=None, progress_callback=None)

Performs a firmware update operation of the XBee.

Parameters

• xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

• xbee_firmware_file (String, optional, default=`None`) – Lo-
cation of the XBee binary firmware file.

• bootloader_firmware_file (String, optional,
default=`None`) – Location of the bootloader binary firmware file.

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the update process (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to to receive progress information. Receives two arguments:

– The current update task as a String

– The current update task percentage as an Integer

Raises

540 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• OperationNotSupportedException – If XBee does not support firmware
update.

• FirmwareUpdateException – If there is any error during the firmware update.

write_changes()
Writes configurable parameter values to the non-volatile memory of the XBee so that parameter modifi-
cations persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by subsequent use of this method.

If changes are made without writing them, the XBee reverts back to previously saved parameters the next
time the module is powered-on.

Writing the parameter modifications does not mean those values are immediately applied, this depends on
the status of the ‘apply configuration changes’ option. Use method is_apply_changes_enabled()
to get its status and enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

class digi.xbee.devices.DigiMeshDevice(port=None, baud_rate=None,
data_bits=<sphinx.ext.autodoc.importer._MockObject
object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject
object>, parity=<sphinx.ext.autodoc.importer._MockObject
object>, flow_control=<FlowControl.NONE:
None>, _sync_ops_timeout=4, comm_iface=None)

Bases: digi.xbee.devices.XBeeDevice

This class represents a local DigiMesh XBee.

Class constructor. Instantiates a new DigiMeshDevice with the provided parameters.

Parameters

• port (String) – serial port identifier. Depends on operating system. e.g.
‘/dev/ttyUSB0’ on ‘GNU/Linux’ or ‘COM3’ on Windows.

• baud_rate (Integer) – Serial port baud rate.

• (Integer, default (flow_control) – serial.EIGHTBITS): Port bitsize.

• (Integer, default – serial.STOPBITS_ONE): Port stop bits.

• (Character, default (parity) – serial.PARITY_NONE): Port parity.

• (Integer, default – FlowControl.NONE): port flow control.

_sync_ops_timeout (Integer, default: 3): Read timeout (in seconds). comm_iface
(XBeeCommunicationInterface): Communication interface.

Raises All exceptions raised by XBeeDevice.__init__() constructor.

2.6. API reference 541



XBee Python Library Documentation, Release 1.4.0

See also:

XBeeDevice

XBeeDevice.__init__()

open(force_settings=False)
Override.

See also:

XBeeDevice.open()

get_protocol()
Override.

See also:

XBeeDevice.get_protocol()

build_aggregate_routes()
Forces all nodes in the network to automatically build routes to this node. The receiving node establishes
a route back to this node.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

send_data_64(x64addr, data, transmit_options=0)
Blocking method. This method sends data to a remote XBee with the given 64-bit address.

This method waits for the packet response. The default timeout is XBeeDevice.
_DEFAULT_TIMEOUT_SYNC_OPERATIONS.

Parameters

• x64addr (XBee64BitAddress) – 64-bit address of the destination XBee.

• data (String or Bytearray) – Raw data to send.

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Returns The response.

Return type XBeePacket

Raises

• ValueError – If x64addr or data is None.

542 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• TimeoutException – If response is not received before the read timeout expires.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TransmitException – If the status of the response received is not OK.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBee64BitAddress

XBeePacket

send_data_async_64(x64addr, data, transmit_options=0)
Non-blocking method. This method sends data to a remote XBee with the given 64-bit address.

This method does not wait for a response.

Parameters

• x64addr (XBee64BitAddress) – 64-bit address of the destination XBee.

• data (String or Bytearray) – Raw data to send.

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Raises

• ValueError – If x64addr or data is None.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBee64BitAddress

XBeePacket

read_expl_data(timeout=None)
Reads new explicit data received by this XBee.

If timeout is specified, this method blocks until new data is received or the timeout expires, throwing a
TimeoutException in this case.

Parameters timeout (Integer, optional) – Read timeout in seconds. If None, this
method is non-blocking and returns None if there is no explicit data available.

Returns

Read message or None if this XBee did not receive new explicit data.

Return type ExplicitXBeeMessage

Raises

• ValueError – If a timeout is specified and is less than 0.

2.6. API reference 543



XBee Python Library Documentation, Release 1.4.0

• TimeoutException – If a timeout is specified and no explicit data was received
during that time.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

ExplicitXBeeMessage

read_expl_data_from(remote_xbee, timeout=None)
Reads new explicit data received from the given remote XBee.

If timeout is specified, this method blocks until new data is received or the timeout expires, throwing a
TimeoutException in this case.

Parameters

• remote_xbee (RemoteXBeeDevice) – Remote XBee that sent the explicit data.

• timeout (Integer, optional) – Read timeout in seconds. If None, this
method is non-blocking and returns None if there is no data available.

Returns

Read message sent by remote_xbee or None if this XBee did not receive new data from
that node.

Return type ExplicitXBeeMessage

Raises

• ValueError – If a timeout is specified and is less than 0.

• TimeoutException – If a timeout is specified and no explicit data was received
during that time.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

ExplicitXBeeMessage

RemoteXBeeDevice

send_expl_data(remote_xbee, data, src_endpoint, dest_endpoint, cluster_id, profile_id, trans-
mit_options=0)

Blocking method. Sends the provided explicit data to the given XBee, source and destination end points,
cluster and profile ids.

This method blocks until a success or error response arrives or the configured receive timeout expires.
The default timeout is XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS.

Parameters

544 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• remote_xbee (RemoteXBeeDevice) – Remote XBee to send data to.

• data (String or Bytearray) – Raw data to send.

• src_endpoint (Integer) – Source endpoint of the transmission. 1 byte.

• dest_endpoint (Integer) – Destination endpoint of the transmission. 1 byte.

• cluster_id (Integer) – Cluster ID of the transmission (between 0x0 and
0xFFFF)

• profile_id (Integer) – Profile ID of the transmission (between 0x0 and
0xFFFF)

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Returns Response packet obtained after sending data.

Return type XBeePacket

Raises

• TimeoutException – If response is not received before the read timeout expires.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TransmitException – If the status of the response received is not OK.

• XBeeException – If the XBee’s communication interface is closed.

• ValueError – if cluster_id or profile_id is less than 0x0 or greater than 0xFFFF.

See also:

RemoteXBeeDevice

XBeePacket

send_expl_data_broadcast(data, src_endpoint, dest_endpoint, cluster_id, profile_id, trans-
mit_options=0)

Sends the provided explicit data to all the XBee nodes of the network (broadcast) using provided source
and destination end points, cluster and profile ids.

This method blocks until a success or error transmit status arrives or the configured re-
ceive timeout expires. The received timeout is configured using the AbstractXBeeDevice.
set_sync_ops_timeout() method and can be consulted with method AbstractXBeeDevice.
get_sync_ops_timeout().

Parameters

• data (String or Bytearray) – Raw data to send.

• src_endpoint (Integer) – Source endpoint of the transmission. 1 byte.

• dest_endpoint (Integer) – Destination endpoint of the transmission. 1 byte.

• cluster_id (Integer) – Cluster ID of the transmission (between 0x0 and
0xFFFF)

• profile_id (Integer) – Profile ID of the transmission (between 0x0 and
0xFFFF)

2.6. API reference 545



XBee Python Library Documentation, Release 1.4.0

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TransmitException – If the status of the response received is not OK.

• XBeeException – If the XBee’s communication interface is closed.

• ValueError – if cluster_id or profile_id is less than 0x0 or greater than 0xFFFF.

See also:

XBeeDevice._send_expl_data()

send_expl_data_async(remote_xbee, data, src_endpoint, dest_endpoint, cluster_id, profile_id,
transmit_options=0)

Non-blocking method. Sends the provided explicit data to the given XBee, source and destination end
points, cluster and profile ids.

Parameters

• remote_xbee (RemoteXBeeDevice) – Remote XBee to send data to.

• data (String or Bytearray) – Raw data to send.

• src_endpoint (Integer) – Source endpoint of the transmission. 1 byte.

• dest_endpoint (Integer) – Destination endpoint of the transmission. 1 byte.

• cluster_id (Integer) – Cluster ID of the transmission (between 0x0 and
0xFFFF)

• profile_id (Integer) – Profile ID of the transmission (between 0x0 and
0xFFFF)

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

• ValueError – if cluster_id or profile_id is less than 0x0 or greater than 0xFFFF.

See also:

RemoteXBeeDevice

get_neighbors(neighbor_cb=None, finished_cb=None, timeout=None)
Returns the neighbors of this XBee. If neighbor_cb is not defined, the process blocks during the specified
timeout.

546 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Parameters

• neighbor_cb (Function, optional, default=`None`) – Method
called when a new neighbor is received. Receives two arguments:

– The XBee that owns this new neighbor.

– The new neighbor.

• finished_cb (Function, optional, default=`None`) – Method to
execute when the process finishes. Receives two arguments:

– The XBee that is searching for its neighbors.

– A list with the discovered neighbors.

– An error message if something went wrong.

• timeout (Float, optional, default=`NeighborFinder.
DEFAULT_TIMEOUT`) – The timeout in seconds.

Returns

List of Neighbor when neighbor_cb is not defined, None otherwise (in this case
neighbors are received in the callback).

Return type List

Raises OperationNotSupportedException – If XBee protocol is not DigiMesh.

See also:

com.digi.models.zdo.Neighbor

add_bluetooth_data_received_callback(callback)
Adds a callback for the event BluetoothDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The Bluetooth data as a Bytearray.

add_data_received_callback(callback)
Adds a callback for the event DataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The data received as an XBeeMessage.

add_expl_data_received_callback(callback)
Adds a callback for the event ExplicitDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The explicit data received as a ExplicitXBeeMessage.

add_fs_frame_received_callback(callback)
Adds a callback for the event FileSystemFrameReceived.

Parameters callback (Function) – The callback. Receives four arguments.

• Source (AbstractXBeeDevice): The node that sent the file system frame.

• Frame id (Integer): The received frame id.

• Command (FSCmd): The file system command.

2.6. API reference 547



XBee Python Library Documentation, Release 1.4.0

• Receive options (Integer): Bitfield indicating receive options.

See also:

AbstractXBeeDevice

FSCmd

ReceiveOptions

add_io_sample_received_callback(callback)
Adds a callback for the event IOSampleReceived.

Parameters callback (Function) – The callback. Receives three arguments.

• The received IO sample as an IOSample.

• The remote XBee which sent the packet as a RemoteXBeeDevice.

• The time in which the packet was received as an Integer.

add_micropython_data_received_callback(callback)
Adds a callback for the event MicroPythonDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The MicroPython data as a Bytearray.

add_modem_status_received_callback(callback)
Adds a callback for the event ModemStatusReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The modem status as a ModemStatus.

add_packet_received_callback(callback)
Adds a callback for the event PacketReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The received packet as a XBeeAPIPacket.

add_route_received_callback(callback)
Adds a callback for the event RouteReceived. This works for Zigbee and Digimesh devices.

Parameters callback (Function) – The callback. Receives three arguments.

• source (XBeeDevice): The source node.

• destination (RemoteXBeeDevice): The destination node.

• hops (List): List of intermediate hops from closest to source to closest to destina-
tion (RemoteXBeeDevice).

See also:

XBeeDevice.del_route_received_callback()

add_socket_data_received_callback(callback)
Adds a callback for the event SocketDataReceived.

Parameters callback (Function) – The callback. Receives two arguments.

548 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• The socket ID as an Integer.

• The data received as Bytearray.

add_socket_data_received_from_callback(callback)
Adds a callback for the event SocketDataReceivedFrom.

Parameters callback (Function) – The callback. Receives three arguments.

• The socket ID as an Integer.

• Source address pair (host, port) where host is a string representing an IPv4 ad-
dress like ‘100.50.200.5’, and port is an integer.

• The data received as Bytearray.

add_socket_state_received_callback(callback)
Adds a callback for the event SocketStateReceived.

Parameters callback (Function) – The callback. Receives two arguments.

• The socket ID as an Integer.

• The state received as a SocketState.

add_user_data_relay_received_callback(callback)
Adds a callback for the event RelayDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The relay data as a UserDataRelayMessage.

apply_changes()
Applies changes via ‘AC’ command.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

apply_profile(profile_path, timeout=None, progress_callback=None)
Applies the given XBee profile to the XBee.

Parameters

• profile_path (String) – Path of the XBee profile file to apply.

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the apply profile (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to receive progress information. Receives two arguments:

– The current apply profile task as a String

– The current apply profile task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

2.6. API reference 549



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• UpdateProfileException – If there is any error applying the XBee profile.

close()
Closes the communication with the XBee.

This method guarantees that all threads running are stopped and the serial port is closed.

comm_iface
Returns the hardware interface associated to the XBee.

Returns Hardware interface of the XBee.

Return type XBeeCommunicationInterface

See also:

XBeeCommunicationInterface

classmethod create_xbee_device(comm_port_data)
Creates and returns an XBeeDevice from data of the port to which is connected.

Parameters

• comm_port_data (Dictionary) – Dictionary with all comm port data needed.

• dictionary keys are (The) –

“baudRate” –> Baud rate.
”port” –> Port number.
”bitSize” –> Bit size.
”stopBits” –> Stop bits.
”parity” –> Parity.
”flowControl” –> Flow control.
”timeout” for –> Timeout for synchronous operations (in seconds).

Returns XBee object created.

Return type XBeeDevice

Raises SerialException – If the port to open does not exist or is already opened.

See also:

XBeeDevice

del_bluetooth_data_received_callback(callback)
Deletes a callback for the callback list of BluetoothDataReceived event.

Parameters callback (Function) – The callback to delete.

del_data_received_callback(callback)
Deletes a callback for the callback list of DataReceived event.

Parameters callback (Function) – The callback to delete.

550 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

del_expl_data_received_callback(callback)
Deletes a callback for the callback list of ExplicitDataReceived event.

Parameters callback (Function) – The callback to delete.

del_fs_frame_received_callback(callback)
Deletes a callback for the callback list of FileSystemFrameReceived event.

Parameters callback (Function) – The callback to delete.

del_io_sample_received_callback(callback)
Deletes a callback for the callback list of IOSampleReceived event.

Parameters callback (Function) – The callback to delete.

del_micropython_data_received_callback(callback)
Deletes a callback for the callback list of MicroPythonDataReceived event.

Parameters callback (Function) – The callback to delete.

del_modem_status_received_callback(callback)
Deletes a callback for the callback list of ModemStatusReceived event.

Parameters callback (Function) – The callback to delete.

del_packet_received_callback(callback)
Deletes a callback for the callback list of PacketReceived event.

Parameters callback (Function) – The callback to delete.

del_route_received_callback(callback)
Deletes a callback for the callback list of RouteReceived event.

Parameters callback (Function) – The callback to delete.

See also:

XBeeDevice.add_route_received_callback()

del_socket_data_received_callback(callback)
Deletes a callback for the callback list of SocketDataReceived event.

Parameters callback (Function) – The callback to delete.

del_socket_data_received_from_callback(callback)
Deletes a callback for the callback list of SocketDataReceivedFrom event.

Parameters callback (Function) – The callback to delete.

del_socket_state_received_callback(callback)
Deletes a callback for the callback list of SocketStateReceived event.

Parameters callback (Function) – The callback to delete.

del_user_data_relay_received_callback(callback)
Deletes a callback for the callback list of RelayDataReceived event.

Parameters callback (Function) – The callback to delete.

determine_protocol(hardware_version, firmware_version)
Determines the XBee protocol based on the given hardware and firmware versions.

Parameters

2.6. API reference 551



XBee Python Library Documentation, Release 1.4.0

• hardware_version (Integer) – Hardware version to get its protocol.

• firmware_version (Bytearray) – Firmware version to get its protocol.

Returns

XBee protocol corresponding to the given hardware and firmware versions.

Return type XBeeProtocol

disable_bluetooth()
Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

enable_apply_changes(value)
Sets apply changes flag.

Parameters value (Boolean) – True to enable apply changes flag, False to disable it.

enable_bluetooth()
Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth password if not done previously. Use
method AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

execute_command(parameter, value=None, apply=None)
Executes the provided command.

Parameters

• (String or (parameter) – class: .ATStringCommand): AT command to exe-
cute.

• value (bytearray, optional, default=`None`) – Command value (if
any).

• apply (Boolean, optional, default=`None`) – True to ap-
ply changes in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

Raises

• TimeoutException – If response is not received before the read timeout expires.

552 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

flush_queues()
Flushes the packets queue.

get_16bit_addr()
Returns the 16-bit address of the XBee.

Returns 16-bit address of the XBee.

Return type XBee16BitAddress

See also:

XBee16BitAddress

get_64bit_addr()
Returns the 64-bit address of the XBee.

Returns 64-bit address of the XBee.

Return type XBee64BitAddress

See also:

XBee64BitAddress

get_adc_value(io_line)
Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so, use AbstractXBeeDevice.
set_io_configuration() and IOMode.ADC.

Parameters io_line (IOLine) – IO line to get its ADC value.

Returns Analog value corresponding to the provided IO line.

Return type Integer

Raises

2.6. API reference 553



XBee Python Library Documentation, Release 1.4.0

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

set_io_configuration()

get_api_output_mode()
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the serial interface of the XBee.

Returns API output mode of the XBee.

Return type APIOutputMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

APIOutputMode

get_api_output_mode_value()
Returns the API output mode of the XBee.

The API output mode determines the format that the received data is output through the serial interface of
the XBee.

Returns the parameter value.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

554 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

digi.xbee.models.mode.APIOutputModeBit

get_bluetooth_mac_addr()
Reads and returns the EUI-48 Bluetooth MAC address of this XBee following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

Returns The Bluetooth MAC address.

Return type String

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

get_current_frame_id()
Returns the last used frame ID.

Returns Last used frame ID.

Return type Integer

get_dest_address()
Returns the 64-bit address of the XBee that is data destination.

Returns 64-bit address of destination XBee.

Return type XBee64BitAddress

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

XBee64BitAddress

set_dest_address()

2.6. API reference 555



XBee Python Library Documentation, Release 1.4.0

get_dio_value(io_line)
Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O. To do so, use
AbstractXBeeDevice.set_io_configuration().

Parameters io_line (IOLine) – the DIO line to gets its digital value.

Returns current value of the provided IO line.

Return type IOValue

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

IOValue

set_io_configuration()

get_file_manager()
Returns the file system manager for the XBee.

Returns The file system manager.

Return type FileSystemManager

Raises FileSystemNotSupportedException – If the XBee does not support filesys-
tem.

get_firmware_version()
Returns the firmware version of the XBee.

Returns Firmware version of the XBee.

Return type Bytearray

get_hardware_version()
Returns the hardware version of the XBee.

Returns Hardware version of the XBee.

Return type HardwareVersion

See also:

HardwareVersion

556 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_io_configuration(io_line)
Returns the configuration of the provided IO line.

Parameters io_line (IOLine) – IO line to get its configuration.

Returns IO mode of the IO line provided.

Return type IOMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

set_io_configuration()

get_io_sampling_rate()
Returns the IO sampling rate of the XBee.

Returns IO sampling rate of XBee.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

set_io_sampling_rate()

get_network()
Returns the network of this XBee.

Returns The XBee network.

Return type XBeeNetwork

get_next_frame_id()
Returns the next frame ID of the XBee.

Returns The next frame ID of the XBee.

Return type Integer

2.6. API reference 557



XBee Python Library Documentation, Release 1.4.0

get_node_id()
Returns the node identifier (‘NI’) value of the XBee.

Returns Node identifier (‘NI’) of the XBee.

Return type String

get_pan_id()
Returns the operating PAN ID of the XBee.

Returns Operating PAN ID of the XBee.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

set_pan_id()

get_parameter(parameter, parameter_value=None, apply=None)
Override.

See also:

AbstractXBeeDevice.get_parameter()

get_power_level()
Returns the power level of the XBee.

Returns Power level of the XBee.

Return type PowerLevel

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

PowerLevel

set_power_level()

558 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_pwm_duty_cycle(io_line)
Returns the PWM duty cycle in % corresponding to the provided IO line.

Parameters io_line (IOLine) – IO line to get its PWM duty cycle.

Returns PWM duty cycle of the given IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If io_line has no PWM capability.

See also:

IOLine

get_role()
Gets the XBee role.

Returns the role of the XBee.

Return type Role

See also:

Role

get_route_to_node(remote, timeout=10, force=True)
Gets the route from this XBee to the given remote node.

For Zigbee:

• ‘AR’ parameter of the local node must be configured with a value different from ‘FF’.

• Set force to True to force the Zigbee remote node to return its route independently of the local
node configuration as high or low RAM concentrator (‘DO’ of the local value)

Parameters

• remote (RemoteXBeeDevice) – The remote node.

• timeout (Float, optional, default=10) – Maximum number of seconds
to wait for the route.

• force (Boolean) – True to force asking for the route, False otherwise. Only for
Zigbee.

Returns

Tuple containing route data:

2.6. API reference 559



XBee Python Library Documentation, Release 1.4.0

• status (TransmitStatus): The transmit status.

• Tuple with route data (None if the route was not read in the provided timeout):

– source (RemoteXBeeDevice): The source node of the route.

– destination (RemoteXBeeDevice): The destination node of the route.

– hops (List): List of intermediate nodes (RemoteXBeeDevice) ordered from
closest to source to closest to destination node (source and destination not in-
cluded).

Return type Tuple

get_sync_ops_timeout()
Returns the serial port read timeout.

Returns Serial port read timeout in seconds.

Return type Integer

get_xbee_device_callbacks()
Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee to get its callbacks. These callbacks
are executed before user callbacks.

Returns PacketReceived

has_explicit_packets()
Returns if there are pending explicit packets to read. This does not include non-explicit packets.

Returns True if there are pending packets, False otherwise.

Return type Boolean

See also:

XBeeDevice.has_packets()

has_packets()
Returns if there are pending packets to read. This does not include explicit packets.

Returns True if there are pending packets, False otherwise.

Return type Boolean

See also:

XBeeDevice.has_explicit_packets()

is_apply_changes_enabled()
Returns whether apply changes flag is enabled.

Returns True if apply changes flag is enabled, False otherwise.

Return type Boolean

is_device_info_complete()
Returns whether XBee node information is complete.

560 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns True if node information is complete, False otherwise.

Return type Boolean

See also:

AbstractXBeeDevice.read_device_info()

is_open()
Returns whether this XBee is open.

Returns Boolean. True if this XBee is open, False otherwise.

is_remote()
Override method.

See also:

AbstractXBeeDevice.is_remote()

log
Returns the XBee logger.

Returns The XBee device logger.

Return type Logger

operating_mode
Returns the operating mode of this XBee.

Returns OperatingMode. This XBee operating mode.

reachable
Returns whether the XBee is reachable.

Returns True if the device is reachable, False otherwise.

Return type Boolean

read_data(timeout=None)
Reads new data received by this XBee.

If timeout is specified, this method blocks until new data is received or the timeout expires, throwing a
TimeoutException in this case.

Parameters timeout (Integer, optional) – Read timeout in seconds. If None, this
method is non-blocking and returns None if no data is available.

Returns

Read message or None if this XBee did not receive new data.

Return type XBeeMessage

Raises

• ValueError – If a timeout is specified and is less than 0.

• TimeoutException – If a timeout is specified and no data was received during
that time.

2.6. API reference 561



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBeeMessage

read_data_from(remote_xbee, timeout=None)
Reads new data received from the given remote XBee.

If timeout is specified, this method blocks until new data is received or the timeout expires, throwing a
TimeoutException in this case.

Parameters

• remote_xbee (RemoteXBeeDevice) – Remote XBee that sent the data.

• timeout (Integer, optional) – Read timeout in seconds. If None, this
method is non-blocking and returns None if no data is available.

Returns

Read message sent by remote_xbee or None if this XBee did not receive new data.

Return type XBeeMessage

Raises

• ValueError – If a timeout is specified and is less than 0.

• TimeoutException – If a timeout is specified and no data was received during
that time.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBeeMessage

RemoteXBeeDevice

read_device_info(init=True, fire_event=True)
Updates all instance parameters reading them from the XBee.

Parameters

• init (Boolean, optional, default=`True`) – If False only not initial-
ized parameters are read, all if True.

• fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

Raises

• TimeoutException – If response is not received before the read timeout expires.

562 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.is_device_info_complete()

read_io_sample()
Returns an IO sample from the XBee containing the value of all enabled digital IO and analog input
channels.

Returns IO sample read from the XBee.

Return type IOSample

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOSample

reset()
Override method.

See also:

AbstractXBeeDevice.reset()

scan_counter
Returns the scan counter for this node.

Returns The scan counter for this node.

Return type Integer

send_bluetooth_data(data)
Sends the given data to the Bluetooth interface using a User Data Relay frame.

Parameters data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

2.6. API reference 563



XBee Python Library Documentation, Release 1.4.0

• XBeeException – If there is any problem sending the data.

See also:

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

send_data(remote_xbee, data, transmit_options=0)
Blocking method. This method sends data to a remote XBee synchronously.

This method will wait for the packet response. The default timeout is XBeeDevice.
_DEFAULT_TIMEOUT_SYNC_OPERATIONS.

Parameters

• remote_xbee (RemoteXBeeDevice) – Remote XBee to send data to.

• data (String or Bytearray) – Raw data to send.

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Returns The response.

Return type XBeePacket

Raises

• ValueError – If remote_xbee is None.

• TimeoutException – If response is not received before the read timeout expires.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TransmitException – If the status of the response received is not OK.

• XBeeException – If the XBee’s communication interface is closed.

See also:

RemoteXBeeDevice

XBeePacket

send_data_async(remote_xbee, data, transmit_options=0)
Non-blocking method. This method sends data to a remote XBee.

This method does not wait for a response.

Parameters

• remote_xbee (RemoteXBeeDevice) – the remote XBee to send data to.

• data (String or Bytearray) – Raw data to send.

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Raises

• ValueError – If remote_xbee is None.

564 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

RemoteXBeeDevice

send_data_broadcast(data, transmit_options=0)
Sends the provided data to all the XBee nodes of the network (broadcast).

This method blocks until a success or error transmit status arrives or the configured receive timeout ex-
pires.

The received timeout is configured using method AbstractXBeeDevice.
set_sync_ops_timeout() and can be consulted with AbstractXBeeDevice.
get_sync_ops_timeout() method.

Parameters

• data (String or Bytearray) – Data to send.

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TransmitException – If the status of the response received is not OK.

• XBeeException – If the XBee’s communication interface is closed.

send_micropython_data(data)
Sends the given data to the MicroPython interface using a User Data Relay frame.

Parameters data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If there is any problem sending the data.

See also:

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

send_packet(packet, sync=False)
Sends the packet and waits for the response. The packet to send is escaped depending on the current
operating mode.

This method can be synchronous or asynchronous.

2.6. API reference 565



XBee Python Library Documentation, Release 1.4.0

If synchronous, this method discards all response packets until it finds the one that has the appropriate
frame ID, that is, the sent packet’s frame ID.

If asynchronous, this method does not wait for any response and returns None.

Parameters

• packet (XBeePacket) – The packet to send.

• sync (Boolean) – True to wait for the response of the sent packet and return it,
False otherwise.

Returns

Response packet if sync is True, None otherwise.

Return type XBeePacket

Raises

• TimeoutException – If sync is True and the response packet for the sent one
cannot be read.

• InvalidOperatingModeException – If the XBee operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the packet listener is not running or the XBee’s communica-
tion interface is closed.

See also:

XBeePacket

send_packet_sync_and_get_response(packet_to_send, timeout=None)
Sends the packet and waits for its corresponding response.

Parameters

• packet_to_send (XBeePacket) – The packet to transmit.

• timeout (Integer, optional, default=`None`) – Number of seconds
to wait. -1 to wait indefinitely.

Returns Received response packet.

Return type XBeePacket

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TimeoutException – If response is not received in the configured timeout.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBeePacket

566 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

send_user_data_relay(local_interface, data)
Sends the given data to the given XBee local interface.

Parameters

• local_interface (XBeeLocalInterface) – Destination XBee local inter-
face.

• data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ValueError – If local_interface is None.

• XBeeException – If there is any problem sending the User Data Relay.

See also:

XBeeLocalInterface

serial_port
Returns the serial port associated to the XBee, if any.

Returns

Serial port of the XBee. None if the local XBee does not use serial communication.

Return type XBeeSerialPort

See also:

XBeeSerialPort

set_16bit_addr(value)
Sets the 16-bit address of the XBee.

Parameters value (XBee16BitAddress) – New 16-bit address of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If the protocol is not 802.15.4.

set_api_output_mode(api_output_mode)
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

Parameters api_output_mode (APIOutputMode) – New API output mode.

2.6. API reference 567



XBee Python Library Documentation, Release 1.4.0

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputMode

set_api_output_mode_value(api_output_mode)
Sets the API output mode of the XBee.

Parameters api_output_mode (Integer) – New API output mode op-
tions. Calculate this value using the method APIOutputModeBit.
calculate_api_output_mode_value() with a set of APIOutputModeBit.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputModeBit

set_dest_address(addr)
Sets the 64-bit address of the XBee that is data destination.

Parameters addr (XBee64BitAddress or RemoteXBeeDevice) – Address itself or
remote XBee to be data destination.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

568 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• ValueError – If addr is None.

See also:

XBee64BitAddress

get_dest_address()

set_dio_change_detection(io_lines_set)
Sets the digital IO lines to be monitored and sampled whenever their status changes. A None set of lines
disables this feature.

Parameters io_lines_set – Set of IOLine.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

set_dio_value(io_line, io_value)
Sets the digital value (high or low) to the provided IO line.

Parameters

• io_line (IOLine) – Digital IO line to sets its value.

• io_value (IOValue) – IO value to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOValue

set_io_configuration(io_line, io_mode)
Sets the configuration of the provided IO line.

Parameters

2.6. API reference 569



XBee Python Library Documentation, Release 1.4.0

• io_line (IOLine) – IO line to configure.

• io_mode (IOMode) – IO mode to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

get_io_configuration()

set_io_sampling_rate(rate)
Sets the IO sampling rate of the XBee in seconds. A sample rate of 0 means the IO sampling feature is
disabled.

Parameters rate (Integer) – New IO sampling rate of the XBee in seconds.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

get_io_sampling_rate()

set_node_id(node_id)
Sets the node identifier (‘NI‘) value of the XBee.

Parameters node_id (String) – New node identifier (‘NI’) of the XBee.

Raises

• ValueError – If node_id is None or its length is greater than 20.

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

570 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

set_pan_id(value)
Sets the operating PAN ID of the XBee.

Parameters value (Bytearray) – New operating PAN ID of the XBee. Must have only 1
or 2 bytes.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

get_pan_id()

set_parameter(parameter, value, apply=None)
Override.

See: AbstractXBeeDevice.set_parameter()

set_power_level(power_level)
Sets the power level of the XBee.

Parameters power_level (PowerLevel) – New power level of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

PowerLevel

get_power_level()

set_pwm_duty_cycle(io_line, cycle)
Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

Parameters

• io_line (IOLine) – IO Line to be assigned.

• cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

Raises

• TimeoutException – If response is not received before the read timeout expires.

2.6. API reference 571



XBee Python Library Documentation, Release 1.4.0

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If the given IO line does not have PWM capability or cycle is not
between 0 and 100.

See also:

IOLine

IOMode.PWM

set_sync_ops_timeout(sync_ops_timeout)
Sets the serial port read timeout.

Parameters sync_ops_timeout (Integer) – Read timeout in seconds.

update_bluetooth_password(new_password)
Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

Parameters new_password (String) – New Bluetooth password.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

update_device_data_from(device)
Updates the current node information with provided data. This is only for internal use.

Parameters device (AbstractXBeeDevice) – XBee to get the data from.

Returns True if the node data has been updated, False otherwise.

Return type Boolean

update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None,
timeout=None, progress_callback=None)

Performs a firmware update operation of the XBee.

Parameters

• xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

• xbee_firmware_file (String, optional, default=`None`) – Lo-
cation of the XBee binary firmware file.

• bootloader_firmware_file (String, optional,
default=`None`) – Location of the bootloader binary firmware file.

572 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the update process (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to to receive progress information. Receives two arguments:

– The current update task as a String

– The current update task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• OperationNotSupportedException – If XBee does not support firmware
update.

• FirmwareUpdateException – If there is any error during the firmware update.

write_changes()
Writes configurable parameter values to the non-volatile memory of the XBee so that parameter modifi-
cations persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by subsequent use of this method.

If changes are made without writing them, the XBee reverts back to previously saved parameters the next
time the module is powered-on.

Writing the parameter modifications does not mean those values are immediately applied, this depends on
the status of the ‘apply configuration changes’ option. Use method is_apply_changes_enabled()
to get its status and enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

class digi.xbee.devices.DigiPointDevice(port=None, baud_rate=None,
data_bits=<sphinx.ext.autodoc.importer._MockObject
object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject
object>, parity=<sphinx.ext.autodoc.importer._MockObject
object>, flow_control=<FlowControl.NONE:
None>, _sync_ops_timeout=4,
comm_iface=None)

Bases: digi.xbee.devices.XBeeDevice

This class represents a local DigiPoint XBee.

Class constructor. Instantiates a new DigiPointDevice with the provided parameters.

Parameters

• port (String) – Serial port identifier. Depends on operating system. e.g.
‘/dev/ttyUSB0’ on ‘GNU/Linux’ or ‘COM3’ on Windows.

• baud_rate (Integer) – Serial port baud rate.

2.6. API reference 573



XBee Python Library Documentation, Release 1.4.0

• (Integer, default (_sync_ops_timeout) – serial.EIGHTBITS): Port
bitsize.

• (Integer, default – serial.STOPBITS_ONE): Port stop bits.

• (Character, default (parity) – serial.PARITY_NONE): Port parity.

• (Integer, default – FlowControl.NONE): Port flow control.

• (Integer, default – 3): Read timeout (in seconds).

• comm_iface (XBeeCommunicationInterface) – Communication interface.

Raises All exceptions raised by XBeeDevice.__init__() constructor.

See also:

XBeeDevice

XBeeDevice.__init__()

open(force_settings=False)
Override.

See also:

XBeeDevice.open()

get_protocol()
Override.

See also:

XBeeDevice.get_protocol()

send_data_64_16(x64addr, x16addr, data, transmit_options=0)
Blocking method. This method sends data to the remote XBee with the given 64-bit/16-bit address.

This method waits for the packet response. The default timeout is XBeeDevice.
_DEFAULT_TIMEOUT_SYNC_OPERATIONS.

Parameters

• x64addr (XBee64BitAddress) – 64-bit address of the destination XBee.

• x16addr (XBee16BitAddress) – 16-bit address of the destination XBee,
XBee16BitAddress.UNKNOWN_ADDRESS if unknown.

• data (String or Bytearray) – Raw data to send.

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Returns The response.

Return type XBeePacket

Raises

574 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• ValueError – If x64addr, x16addr or data is None.

• TimeoutException – If response is not received before the read timeout expires.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TransmitException – If the status of the response received is not OK.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBee64BitAddress

XBee16BitAddress

XBeePacket

send_data_async_64_16(x64addr, x16addr, data, transmit_options=0)
Non-blocking method. This method sends data to a remote XBee with the given 64-bit/16-bit address.

This method does not wait for a response.

Parameters

• x64addr (XBee64BitAddress) – 64-bit address of the destination XBee.

• x16addr (XBee16BitAddress) – 16-bit address of the destination XBee,
XBee16BitAddress.UNKNOWN_ADDRESS if unknown.

• data (String or Bytearray) – Raw data to send.

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Raises

• ValueError – If x64addr, x16addr or data is None.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBee64BitAddress

XBee16BitAddress

XBeePacket

read_expl_data(timeout=None)
Reads new explicit data received by this XBee.

If timeout is specified, this method blocks until new data is received or the timeout expires, throwing a
TimeoutException in this case.

Parameters timeout (Integer, optional) – Read timeout in seconds. If None, this
method is non-blocking and returns None if there is no explicit data available.

Returns

2.6. API reference 575



XBee Python Library Documentation, Release 1.4.0

Read message or None if this XBee did not receive new explicit data.

Return type ExplicitXBeeMessage

Raises

• ValueError – If a timeout is specified and is less than 0.

• TimeoutException – If a timeout is specified and no explicit data was received
during that time.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

ExplicitXBeeMessage

read_expl_data_from(remote_xbee, timeout=None)
Reads new explicit data received from the given remote XBee.

If timeout is specified, this method blocks until new data is received or the timeout expires, throwing a
TimeoutException in this case.

Parameters

• remote_xbee (RemoteXBeeDevice) – Remote XBee that sent the explicit data.

• timeout (Integer, optional) – Read timeout in seconds. If None, this
method is non-blocking and returns None if there is no data available.

Returns

Read message sent by remote_xbee or None if this XBee did not receive new data from
that node.

Return type ExplicitXBeeMessage

Raises

• ValueError – If a timeout is specified and is less than 0.

• TimeoutException – If a timeout is specified and no explicit data was received
during that time.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

ExplicitXBeeMessage

RemoteXBeeDevice

576 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

send_expl_data(remote_xbee, data, src_endpoint, dest_endpoint, cluster_id, profile_id, trans-
mit_options=0)

Blocking method. Sends the provided explicit data to the given XBee, source and destination end points,
cluster and profile ids.

This method blocks until a success or error response arrives or the configured receive timeout expires.
The default timeout is XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS.

Parameters

• remote_xbee (RemoteXBeeDevice) – Remote XBee to send data to.

• data (String or Bytearray) – Raw data to send.

• src_endpoint (Integer) – Source endpoint of the transmission. 1 byte.

• dest_endpoint (Integer) – Destination endpoint of the transmission. 1 byte.

• cluster_id (Integer) – Cluster ID of the transmission (between 0x0 and
0xFFFF)

• profile_id (Integer) – Profile ID of the transmission (between 0x0 and
0xFFFF)

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Returns Response packet obtained after sending data.

Return type XBeePacket

Raises

• TimeoutException – If response is not received before the read timeout expires.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TransmitException – If the status of the response received is not OK.

• XBeeException – If the XBee’s communication interface is closed.

• ValueError – if cluster_id or profile_id is less than 0x0 or greater than 0xFFFF.

See also:

RemoteXBeeDevice

XBeePacket

send_expl_data_broadcast(data, src_endpoint, dest_endpoint, cluster_id, profile_id, trans-
mit_options=0)

Sends the provided explicit data to all the XBee nodes of the network (broadcast) using provided source
and destination end points, cluster and profile ids.

This method blocks until a success or error transmit status arrives or the configured re-
ceive timeout expires. The received timeout is configured using the AbstractXBeeDevice.
set_sync_ops_timeout() method and can be consulted with method AbstractXBeeDevice.
get_sync_ops_timeout().

Parameters

• data (String or Bytearray) – Raw data to send.

2.6. API reference 577



XBee Python Library Documentation, Release 1.4.0

• src_endpoint (Integer) – Source endpoint of the transmission. 1 byte.

• dest_endpoint (Integer) – Destination endpoint of the transmission. 1 byte.

• cluster_id (Integer) – Cluster ID of the transmission (between 0x0 and
0xFFFF)

• profile_id (Integer) – Profile ID of the transmission (between 0x0 and
0xFFFF)

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TransmitException – If the status of the response received is not OK.

• XBeeException – If the XBee’s communication interface is closed.

• ValueError – if cluster_id or profile_id is less than 0x0 or greater than 0xFFFF.

See also:

XBeeDevice._send_expl_data()

send_expl_data_async(remote_xbee, data, src_endpoint, dest_endpoint, cluster_id, profile_id,
transmit_options=0)

Non-blocking method. Sends the provided explicit data to the given XBee, source and destination end
points, cluster and profile ids.

Parameters

• remote_xbee (RemoteXBeeDevice) – Remote XBee to send data to.

• data (String or Bytearray) – Raw data to send.

• src_endpoint (Integer) – Source endpoint of the transmission. 1 byte.

• dest_endpoint (Integer) – Destination endpoint of the transmission. 1 byte.

• cluster_id (Integer) – Cluster ID of the transmission (between 0x0 and
0xFFFF)

• profile_id (Integer) – Profile ID of the transmission (between 0x0 and
0xFFFF)

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

• ValueError – if cluster_id or profile_id is less than 0x0 or greater than 0xFFFF.

See also:

578 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

RemoteXBeeDevice

add_bluetooth_data_received_callback(callback)
Adds a callback for the event BluetoothDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The Bluetooth data as a Bytearray.

add_data_received_callback(callback)
Adds a callback for the event DataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The data received as an XBeeMessage.

add_expl_data_received_callback(callback)
Adds a callback for the event ExplicitDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The explicit data received as a ExplicitXBeeMessage.

add_fs_frame_received_callback(callback)
Adds a callback for the event FileSystemFrameReceived.

Parameters callback (Function) – The callback. Receives four arguments.

• Source (AbstractXBeeDevice): The node that sent the file system frame.

• Frame id (Integer): The received frame id.

• Command (FSCmd): The file system command.

• Receive options (Integer): Bitfield indicating receive options.

See also:

AbstractXBeeDevice

FSCmd

ReceiveOptions

add_io_sample_received_callback(callback)
Adds a callback for the event IOSampleReceived.

Parameters callback (Function) – The callback. Receives three arguments.

• The received IO sample as an IOSample.

• The remote XBee which sent the packet as a RemoteXBeeDevice.

• The time in which the packet was received as an Integer.

add_micropython_data_received_callback(callback)
Adds a callback for the event MicroPythonDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The MicroPython data as a Bytearray.

add_modem_status_received_callback(callback)
Adds a callback for the event ModemStatusReceived.

2.6. API reference 579



XBee Python Library Documentation, Release 1.4.0

Parameters callback (Function) – The callback. Receives one argument.

• The modem status as a ModemStatus.

add_packet_received_callback(callback)
Adds a callback for the event PacketReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The received packet as a XBeeAPIPacket.

add_route_received_callback(callback)
Adds a callback for the event RouteReceived. This works for Zigbee and Digimesh devices.

Parameters callback (Function) – The callback. Receives three arguments.

• source (XBeeDevice): The source node.

• destination (RemoteXBeeDevice): The destination node.

• hops (List): List of intermediate hops from closest to source to closest to destina-
tion (RemoteXBeeDevice).

See also:

XBeeDevice.del_route_received_callback()

add_socket_data_received_callback(callback)
Adds a callback for the event SocketDataReceived.

Parameters callback (Function) – The callback. Receives two arguments.

• The socket ID as an Integer.

• The data received as Bytearray.

add_socket_data_received_from_callback(callback)
Adds a callback for the event SocketDataReceivedFrom.

Parameters callback (Function) – The callback. Receives three arguments.

• The socket ID as an Integer.

• Source address pair (host, port) where host is a string representing an IPv4 ad-
dress like ‘100.50.200.5’, and port is an integer.

• The data received as Bytearray.

add_socket_state_received_callback(callback)
Adds a callback for the event SocketStateReceived.

Parameters callback (Function) – The callback. Receives two arguments.

• The socket ID as an Integer.

• The state received as a SocketState.

add_user_data_relay_received_callback(callback)
Adds a callback for the event RelayDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The relay data as a UserDataRelayMessage.

580 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

apply_changes()
Applies changes via ‘AC’ command.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

apply_profile(profile_path, timeout=None, progress_callback=None)
Applies the given XBee profile to the XBee.

Parameters

• profile_path (String) – Path of the XBee profile file to apply.

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the apply profile (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to receive progress information. Receives two arguments:

– The current apply profile task as a String

– The current apply profile task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• UpdateProfileException – If there is any error applying the XBee profile.

close()
Closes the communication with the XBee.

This method guarantees that all threads running are stopped and the serial port is closed.

comm_iface
Returns the hardware interface associated to the XBee.

Returns Hardware interface of the XBee.

Return type XBeeCommunicationInterface

See also:

XBeeCommunicationInterface

classmethod create_xbee_device(comm_port_data)
Creates and returns an XBeeDevice from data of the port to which is connected.

Parameters

• comm_port_data (Dictionary) – Dictionary with all comm port data needed.

• dictionary keys are (The) –

2.6. API reference 581



XBee Python Library Documentation, Release 1.4.0

“baudRate” –> Baud rate.
”port” –> Port number.
”bitSize” –> Bit size.
”stopBits” –> Stop bits.
”parity” –> Parity.
”flowControl” –> Flow control.
”timeout” for –> Timeout for synchronous operations (in seconds).

Returns XBee object created.

Return type XBeeDevice

Raises SerialException – If the port to open does not exist or is already opened.

See also:

XBeeDevice

del_bluetooth_data_received_callback(callback)
Deletes a callback for the callback list of BluetoothDataReceived event.

Parameters callback (Function) – The callback to delete.

del_data_received_callback(callback)
Deletes a callback for the callback list of DataReceived event.

Parameters callback (Function) – The callback to delete.

del_expl_data_received_callback(callback)
Deletes a callback for the callback list of ExplicitDataReceived event.

Parameters callback (Function) – The callback to delete.

del_fs_frame_received_callback(callback)
Deletes a callback for the callback list of FileSystemFrameReceived event.

Parameters callback (Function) – The callback to delete.

del_io_sample_received_callback(callback)
Deletes a callback for the callback list of IOSampleReceived event.

Parameters callback (Function) – The callback to delete.

del_micropython_data_received_callback(callback)
Deletes a callback for the callback list of MicroPythonDataReceived event.

Parameters callback (Function) – The callback to delete.

del_modem_status_received_callback(callback)
Deletes a callback for the callback list of ModemStatusReceived event.

Parameters callback (Function) – The callback to delete.

del_packet_received_callback(callback)
Deletes a callback for the callback list of PacketReceived event.

Parameters callback (Function) – The callback to delete.

del_route_received_callback(callback)
Deletes a callback for the callback list of RouteReceived event.

582 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Parameters callback (Function) – The callback to delete.

See also:

XBeeDevice.add_route_received_callback()

del_socket_data_received_callback(callback)
Deletes a callback for the callback list of SocketDataReceived event.

Parameters callback (Function) – The callback to delete.

del_socket_data_received_from_callback(callback)
Deletes a callback for the callback list of SocketDataReceivedFrom event.

Parameters callback (Function) – The callback to delete.

del_socket_state_received_callback(callback)
Deletes a callback for the callback list of SocketStateReceived event.

Parameters callback (Function) – The callback to delete.

del_user_data_relay_received_callback(callback)
Deletes a callback for the callback list of RelayDataReceived event.

Parameters callback (Function) – The callback to delete.

determine_protocol(hardware_version, firmware_version)
Determines the XBee protocol based on the given hardware and firmware versions.

Parameters

• hardware_version (Integer) – Hardware version to get its protocol.

• firmware_version (Bytearray) – Firmware version to get its protocol.

Returns

XBee protocol corresponding to the given hardware and firmware versions.

Return type XBeeProtocol

disable_bluetooth()
Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

enable_apply_changes(value)
Sets apply changes flag.

Parameters value (Boolean) – True to enable apply changes flag, False to disable it.

2.6. API reference 583



XBee Python Library Documentation, Release 1.4.0

enable_bluetooth()
Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth password if not done previously. Use
method AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

execute_command(parameter, value=None, apply=None)
Executes the provided command.

Parameters

• (String or (parameter) – class: .ATStringCommand): AT command to exe-
cute.

• value (bytearray, optional, default=`None`) – Command value (if
any).

• apply (Boolean, optional, default=`None`) – True to ap-
ply changes in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

flush_queues()
Flushes the packets queue.

get_16bit_addr()
Returns the 16-bit address of the XBee.

Returns 16-bit address of the XBee.

584 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type XBee16BitAddress

See also:

XBee16BitAddress

get_64bit_addr()
Returns the 64-bit address of the XBee.

Returns 64-bit address of the XBee.

Return type XBee64BitAddress

See also:

XBee64BitAddress

get_adc_value(io_line)
Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so, use AbstractXBeeDevice.
set_io_configuration() and IOMode.ADC.

Parameters io_line (IOLine) – IO line to get its ADC value.

Returns Analog value corresponding to the provided IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

set_io_configuration()

get_api_output_mode()
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the serial interface of the XBee.

Returns API output mode of the XBee.

2.6. API reference 585



XBee Python Library Documentation, Release 1.4.0

Return type APIOutputMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

APIOutputMode

get_api_output_mode_value()
Returns the API output mode of the XBee.

The API output mode determines the format that the received data is output through the serial interface of
the XBee.

Returns the parameter value.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

digi.xbee.models.mode.APIOutputModeBit

get_bluetooth_mac_addr()
Reads and returns the EUI-48 Bluetooth MAC address of this XBee following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

Returns The Bluetooth MAC address.

Return type String

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

586 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

get_current_frame_id()
Returns the last used frame ID.

Returns Last used frame ID.

Return type Integer

get_dest_address()
Returns the 64-bit address of the XBee that is data destination.

Returns 64-bit address of destination XBee.

Return type XBee64BitAddress

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

XBee64BitAddress

set_dest_address()

get_dio_value(io_line)
Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O. To do so, use
AbstractXBeeDevice.set_io_configuration().

Parameters io_line (IOLine) – the DIO line to gets its digital value.

Returns current value of the provided IO line.

Return type IOValue

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

2.6. API reference 587



XBee Python Library Documentation, Release 1.4.0

IOLine

IOValue

set_io_configuration()

get_file_manager()
Returns the file system manager for the XBee.

Returns The file system manager.

Return type FileSystemManager

Raises FileSystemNotSupportedException – If the XBee does not support filesys-
tem.

get_firmware_version()
Returns the firmware version of the XBee.

Returns Firmware version of the XBee.

Return type Bytearray

get_hardware_version()
Returns the hardware version of the XBee.

Returns Hardware version of the XBee.

Return type HardwareVersion

See also:

HardwareVersion

get_io_configuration(io_line)
Returns the configuration of the provided IO line.

Parameters io_line (IOLine) – IO line to get its configuration.

Returns IO mode of the IO line provided.

Return type IOMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

set_io_configuration()

588 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_io_sampling_rate()
Returns the IO sampling rate of the XBee.

Returns IO sampling rate of XBee.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

set_io_sampling_rate()

get_network()
Returns the network of this XBee.

Returns The XBee network.

Return type XBeeNetwork

get_next_frame_id()
Returns the next frame ID of the XBee.

Returns The next frame ID of the XBee.

Return type Integer

get_node_id()
Returns the node identifier (‘NI’) value of the XBee.

Returns Node identifier (‘NI’) of the XBee.

Return type String

get_pan_id()
Returns the operating PAN ID of the XBee.

Returns Operating PAN ID of the XBee.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

2.6. API reference 589



XBee Python Library Documentation, Release 1.4.0

set_pan_id()

get_parameter(parameter, parameter_value=None, apply=None)
Override.

See also:

AbstractXBeeDevice.get_parameter()

get_power_level()
Returns the power level of the XBee.

Returns Power level of the XBee.

Return type PowerLevel

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

PowerLevel

set_power_level()

get_pwm_duty_cycle(io_line)
Returns the PWM duty cycle in % corresponding to the provided IO line.

Parameters io_line (IOLine) – IO line to get its PWM duty cycle.

Returns PWM duty cycle of the given IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If io_line has no PWM capability.

See also:

IOLine

590 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_role()
Gets the XBee role.

Returns the role of the XBee.

Return type Role

See also:

Role

get_route_to_node(remote, timeout=10, force=True)
Gets the route from this XBee to the given remote node.

For Zigbee:

• ‘AR’ parameter of the local node must be configured with a value different from ‘FF’.

• Set force to True to force the Zigbee remote node to return its route independently of the local
node configuration as high or low RAM concentrator (‘DO’ of the local value)

Parameters

• remote (RemoteXBeeDevice) – The remote node.

• timeout (Float, optional, default=10) – Maximum number of seconds
to wait for the route.

• force (Boolean) – True to force asking for the route, False otherwise. Only for
Zigbee.

Returns

Tuple containing route data:

• status (TransmitStatus): The transmit status.

• Tuple with route data (None if the route was not read in the provided timeout):

– source (RemoteXBeeDevice): The source node of the route.

– destination (RemoteXBeeDevice): The destination node of the route.

– hops (List): List of intermediate nodes (RemoteXBeeDevice) ordered from
closest to source to closest to destination node (source and destination not in-
cluded).

Return type Tuple

get_sync_ops_timeout()
Returns the serial port read timeout.

Returns Serial port read timeout in seconds.

Return type Integer

get_xbee_device_callbacks()
Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee to get its callbacks. These callbacks
are executed before user callbacks.

Returns PacketReceived

2.6. API reference 591



XBee Python Library Documentation, Release 1.4.0

has_explicit_packets()
Returns if there are pending explicit packets to read. This does not include non-explicit packets.

Returns True if there are pending packets, False otherwise.

Return type Boolean

See also:

XBeeDevice.has_packets()

has_packets()
Returns if there are pending packets to read. This does not include explicit packets.

Returns True if there are pending packets, False otherwise.

Return type Boolean

See also:

XBeeDevice.has_explicit_packets()

is_apply_changes_enabled()
Returns whether apply changes flag is enabled.

Returns True if apply changes flag is enabled, False otherwise.

Return type Boolean

is_device_info_complete()
Returns whether XBee node information is complete.

Returns True if node information is complete, False otherwise.

Return type Boolean

See also:

AbstractXBeeDevice.read_device_info()

is_open()
Returns whether this XBee is open.

Returns Boolean. True if this XBee is open, False otherwise.

is_remote()
Override method.

See also:

AbstractXBeeDevice.is_remote()

592 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

log
Returns the XBee logger.

Returns The XBee device logger.

Return type Logger

operating_mode
Returns the operating mode of this XBee.

Returns OperatingMode. This XBee operating mode.

reachable
Returns whether the XBee is reachable.

Returns True if the device is reachable, False otherwise.

Return type Boolean

read_data(timeout=None)
Reads new data received by this XBee.

If timeout is specified, this method blocks until new data is received or the timeout expires, throwing a
TimeoutException in this case.

Parameters timeout (Integer, optional) – Read timeout in seconds. If None, this
method is non-blocking and returns None if no data is available.

Returns

Read message or None if this XBee did not receive new data.

Return type XBeeMessage

Raises

• ValueError – If a timeout is specified and is less than 0.

• TimeoutException – If a timeout is specified and no data was received during
that time.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBeeMessage

read_data_from(remote_xbee, timeout=None)
Reads new data received from the given remote XBee.

If timeout is specified, this method blocks until new data is received or the timeout expires, throwing a
TimeoutException in this case.

Parameters

• remote_xbee (RemoteXBeeDevice) – Remote XBee that sent the data.

• timeout (Integer, optional) – Read timeout in seconds. If None, this
method is non-blocking and returns None if no data is available.

Returns

2.6. API reference 593



XBee Python Library Documentation, Release 1.4.0

Read message sent by remote_xbee or None if this XBee did not receive new data.

Return type XBeeMessage

Raises

• ValueError – If a timeout is specified and is less than 0.

• TimeoutException – If a timeout is specified and no data was received during
that time.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBeeMessage

RemoteXBeeDevice

read_device_info(init=True, fire_event=True)
Updates all instance parameters reading them from the XBee.

Parameters

• init (Boolean, optional, default=`True`) – If False only not initial-
ized parameters are read, all if True.

• fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.is_device_info_complete()

read_io_sample()
Returns an IO sample from the XBee containing the value of all enabled digital IO and analog input
channels.

Returns IO sample read from the XBee.

Return type IOSample

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

594 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOSample

reset()
Override method.

See also:

AbstractXBeeDevice.reset()

scan_counter
Returns the scan counter for this node.

Returns The scan counter for this node.

Return type Integer

send_bluetooth_data(data)
Sends the given data to the Bluetooth interface using a User Data Relay frame.

Parameters data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If there is any problem sending the data.

See also:

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

send_data(remote_xbee, data, transmit_options=0)
Blocking method. This method sends data to a remote XBee synchronously.

This method will wait for the packet response. The default timeout is XBeeDevice.
_DEFAULT_TIMEOUT_SYNC_OPERATIONS.

Parameters

• remote_xbee (RemoteXBeeDevice) – Remote XBee to send data to.

• data (String or Bytearray) – Raw data to send.

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Returns The response.

2.6. API reference 595



XBee Python Library Documentation, Release 1.4.0

Return type XBeePacket

Raises

• ValueError – If remote_xbee is None.

• TimeoutException – If response is not received before the read timeout expires.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TransmitException – If the status of the response received is not OK.

• XBeeException – If the XBee’s communication interface is closed.

See also:

RemoteXBeeDevice

XBeePacket

send_data_async(remote_xbee, data, transmit_options=0)
Non-blocking method. This method sends data to a remote XBee.

This method does not wait for a response.

Parameters

• remote_xbee (RemoteXBeeDevice) – the remote XBee to send data to.

• data (String or Bytearray) – Raw data to send.

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Raises

• ValueError – If remote_xbee is None.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

RemoteXBeeDevice

send_data_broadcast(data, transmit_options=0)
Sends the provided data to all the XBee nodes of the network (broadcast).

This method blocks until a success or error transmit status arrives or the configured receive timeout ex-
pires.

The received timeout is configured using method AbstractXBeeDevice.
set_sync_ops_timeout() and can be consulted with AbstractXBeeDevice.
get_sync_ops_timeout() method.

Parameters

• data (String or Bytearray) – Data to send.

596 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TransmitException – If the status of the response received is not OK.

• XBeeException – If the XBee’s communication interface is closed.

send_micropython_data(data)
Sends the given data to the MicroPython interface using a User Data Relay frame.

Parameters data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If there is any problem sending the data.

See also:

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

send_packet(packet, sync=False)
Sends the packet and waits for the response. The packet to send is escaped depending on the current
operating mode.

This method can be synchronous or asynchronous.

If synchronous, this method discards all response packets until it finds the one that has the appropriate
frame ID, that is, the sent packet’s frame ID.

If asynchronous, this method does not wait for any response and returns None.

Parameters

• packet (XBeePacket) – The packet to send.

• sync (Boolean) – True to wait for the response of the sent packet and return it,
False otherwise.

Returns

Response packet if sync is True, None otherwise.

Return type XBeePacket

Raises

• TimeoutException – If sync is True and the response packet for the sent one
cannot be read.

• InvalidOperatingModeException – If the XBee operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

2.6. API reference 597



XBee Python Library Documentation, Release 1.4.0

• XBeeException – If the packet listener is not running or the XBee’s communica-
tion interface is closed.

See also:

XBeePacket

send_packet_sync_and_get_response(packet_to_send, timeout=None)
Sends the packet and waits for its corresponding response.

Parameters

• packet_to_send (XBeePacket) – The packet to transmit.

• timeout (Integer, optional, default=`None`) – Number of seconds
to wait. -1 to wait indefinitely.

Returns Received response packet.

Return type XBeePacket

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TimeoutException – If response is not received in the configured timeout.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBeePacket

send_user_data_relay(local_interface, data)
Sends the given data to the given XBee local interface.

Parameters

• local_interface (XBeeLocalInterface) – Destination XBee local inter-
face.

• data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ValueError – If local_interface is None.

• XBeeException – If there is any problem sending the User Data Relay.

See also:

XBeeLocalInterface

598 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

serial_port
Returns the serial port associated to the XBee, if any.

Returns

Serial port of the XBee. None if the local XBee does not use serial communication.

Return type XBeeSerialPort

See also:

XBeeSerialPort

set_16bit_addr(value)
Sets the 16-bit address of the XBee.

Parameters value (XBee16BitAddress) – New 16-bit address of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If the protocol is not 802.15.4.

set_api_output_mode(api_output_mode)
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

Parameters api_output_mode (APIOutputMode) – New API output mode.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputMode

set_api_output_mode_value(api_output_mode)
Sets the API output mode of the XBee.

2.6. API reference 599



XBee Python Library Documentation, Release 1.4.0

Parameters api_output_mode (Integer) – New API output mode op-
tions. Calculate this value using the method APIOutputModeBit.
calculate_api_output_mode_value() with a set of APIOutputModeBit.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputModeBit

set_dest_address(addr)
Sets the 64-bit address of the XBee that is data destination.

Parameters addr (XBee64BitAddress or RemoteXBeeDevice) – Address itself or
remote XBee to be data destination.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If addr is None.

See also:

XBee64BitAddress

get_dest_address()

set_dio_change_detection(io_lines_set)
Sets the digital IO lines to be monitored and sampled whenever their status changes. A None set of lines
disables this feature.

Parameters io_lines_set – Set of IOLine.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

600 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• ATCommandException – If response is not as expected.

See also:

IOLine

set_dio_value(io_line, io_value)
Sets the digital value (high or low) to the provided IO line.

Parameters

• io_line (IOLine) – Digital IO line to sets its value.

• io_value (IOValue) – IO value to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOValue

set_io_configuration(io_line, io_mode)
Sets the configuration of the provided IO line.

Parameters

• io_line (IOLine) – IO line to configure.

• io_mode (IOMode) – IO mode to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

get_io_configuration()

2.6. API reference 601



XBee Python Library Documentation, Release 1.4.0

set_io_sampling_rate(rate)
Sets the IO sampling rate of the XBee in seconds. A sample rate of 0 means the IO sampling feature is
disabled.

Parameters rate (Integer) – New IO sampling rate of the XBee in seconds.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

get_io_sampling_rate()

set_node_id(node_id)
Sets the node identifier (‘NI‘) value of the XBee.

Parameters node_id (String) – New node identifier (‘NI’) of the XBee.

Raises

• ValueError – If node_id is None or its length is greater than 20.

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

set_pan_id(value)
Sets the operating PAN ID of the XBee.

Parameters value (Bytearray) – New operating PAN ID of the XBee. Must have only 1
or 2 bytes.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

get_pan_id()

602 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

set_parameter(parameter, value, apply=None)
Override.

See: AbstractXBeeDevice.set_parameter()

set_power_level(power_level)
Sets the power level of the XBee.

Parameters power_level (PowerLevel) – New power level of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

PowerLevel

get_power_level()

set_pwm_duty_cycle(io_line, cycle)
Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

Parameters

• io_line (IOLine) – IO Line to be assigned.

• cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If the given IO line does not have PWM capability or cycle is not
between 0 and 100.

See also:

IOLine

IOMode.PWM

set_sync_ops_timeout(sync_ops_timeout)
Sets the serial port read timeout.

Parameters sync_ops_timeout (Integer) – Read timeout in seconds.

2.6. API reference 603



XBee Python Library Documentation, Release 1.4.0

update_bluetooth_password(new_password)
Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

Parameters new_password (String) – New Bluetooth password.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

update_device_data_from(device)
Updates the current node information with provided data. This is only for internal use.

Parameters device (AbstractXBeeDevice) – XBee to get the data from.

Returns True if the node data has been updated, False otherwise.

Return type Boolean

update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None,
timeout=None, progress_callback=None)

Performs a firmware update operation of the XBee.

Parameters

• xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

• xbee_firmware_file (String, optional, default=`None`) – Lo-
cation of the XBee binary firmware file.

• bootloader_firmware_file (String, optional,
default=`None`) – Location of the bootloader binary firmware file.

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the update process (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to to receive progress information. Receives two arguments:

– The current update task as a String

– The current update task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• OperationNotSupportedException – If XBee does not support firmware
update.

• FirmwareUpdateException – If there is any error during the firmware update.

write_changes()
Writes configurable parameter values to the non-volatile memory of the XBee so that parameter modifi-
cations persist through subsequent resets.

604 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Parameters values remain in the device’s memory until overwritten by subsequent use of this method.

If changes are made without writing them, the XBee reverts back to previously saved parameters the next
time the module is powered-on.

Writing the parameter modifications does not mean those values are immediately applied, this depends on
the status of the ‘apply configuration changes’ option. Use method is_apply_changes_enabled()
to get its status and enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

class digi.xbee.devices.ZigBeeDevice(port=None, baud_rate=None,
data_bits=<sphinx.ext.autodoc.importer._MockObject
object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject
object>, parity=<sphinx.ext.autodoc.importer._MockObject
object>, flow_control=<FlowControl.NONE: None>,
_sync_ops_timeout=4, comm_iface=None)

Bases: digi.xbee.devices.XBeeDevice

This class represents a local Zigbee XBee.

Class constructor. Instantiates a new ZigBeeDevice with the provided parameters.

Parameters

• port (String) – Serial port identifier. Depends on operating system. e.g.
‘/dev/ttyUSB0’ on ‘GNU/Linux’ or ‘COM3’ on Windows.

• baud_rate (Integer) – Serial port baud rate.

• (Integer, default (flow_control) – serial.EIGHTBITS): Port bitsize.

• (Integer, default – serial.STOPBITS_ONE): Port stop bits.

• (Character, default (parity) – serial.PARITY_NONE): Port parity.

• (Integer, default – FlowControl.NONE): Port flow control.

_sync_ops_timeout (Integer, default: 3): Read timeout (in seconds). comm_iface
(XBeeCommunicationInterface): Communication interface.

Raises All exceptions raised by XBeeDevice.__init__() constructor.

See also:

XBeeDevice

XBeeDevice.__init__()

open(force_settings=False)
Override.

See also:

2.6. API reference 605



XBee Python Library Documentation, Release 1.4.0

XBeeDevice.open()

get_protocol()
Override.

See also:

XBeeDevice.get_protocol()

get_ai_status()
Returns the current association status of this XBee. It indicates occurrences of errors during the modem
initialization and connection.

Returns

The XBee association indication status.

Return type AssociationIndicationStatus

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

force_disassociate()
Forces this XBee to immediately disassociate from the network and re-attempt to associate.

Only valid for End Devices.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

get_many_to_one_broadcasting_time()
Returns the time between aggregation route broadcast in tenths of a second.

Returns

The number of tenths of a second between aggregation route broadcasts. -1 if it is
disabled.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

606 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

set_many_to_one_broadcasting_time(tenths_second)
Configures the time between aggregation route broadcast in tenths of a second.

Parameters tenths_second (Integer) – The number of tenths of a second between
aggregation route broadcasts. -1 to disable. 0 to only send one broadcast.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If tenths_second is None or is lower than -1, or bigger than 254.

send_data_64_16(x64addr, x16addr, data, transmit_options=0)
Blocking method. This method sends data to the remote XBee with the given 64-bit/16-bit address.

This method waits for the packet response. The default timeout is XBeeDevice.
_DEFAULT_TIMEOUT_SYNC_OPERATIONS.

Parameters

• x64addr (XBee64BitAddress) – 64-bit address of the destination XBee.

• x16addr (XBee16BitAddress) – 16-bit address of the destination XBee,
XBee16BitAddress.UNKNOWN_ADDRESS if unknown.

• data (String or Bytearray) – Raw data to send.

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Returns The response.

Return type XBeePacket

Raises

• ValueError – If x64addr, x16addr or data is None.

• TimeoutException – If response is not received before the read timeout expires.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TransmitException – If the status of the response received is not OK.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBee64BitAddress

XBee16BitAddress

XBeePacket

2.6. API reference 607



XBee Python Library Documentation, Release 1.4.0

send_data_async_64_16(x64addr, x16addr, data, transmit_options=0)
Non-blocking method. This method sends data to a remote XBee with the given 64-bit/16-bit address.

This method does not wait for a response.

Parameters

• x64addr (XBee64BitAddress) – 64-bit address of the destination XBee.

• x16addr (XBee16BitAddress) – 16-bit address of the destination XBee,
XBee16BitAddress.UNKNOWN_ADDRESS if unknown.

• data (String or Bytearray) – Raw data to send.

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Raises

• ValueError – If x64addr, x16addr or data is None.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBee64BitAddress

XBee16BitAddress

XBeePacket

read_expl_data(timeout=None)
Reads new explicit data received by this XBee.

If timeout is specified, this method blocks until new data is received or the timeout expires, throwing a
TimeoutException in this case.

Parameters timeout (Integer, optional) – Read timeout in seconds. If None, this
method is non-blocking and returns None if there is no explicit data available.

Returns

Read message or None if this XBee did not receive new explicit data.

Return type ExplicitXBeeMessage

Raises

• ValueError – If a timeout is specified and is less than 0.

• TimeoutException – If a timeout is specified and no explicit data was received
during that time.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

ExplicitXBeeMessage

608 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

read_expl_data_from(remote_xbee, timeout=None)
Reads new explicit data received from the given remote XBee.

If timeout is specified, this method blocks until new data is received or the timeout expires, throwing a
TimeoutException in this case.

Parameters

• remote_xbee (RemoteXBeeDevice) – Remote XBee that sent the explicit data.

• timeout (Integer, optional) – Read timeout in seconds. If None, this
method is non-blocking and returns None if there is no data available.

Returns

Read message sent by remote_xbee or None if this XBee did not receive new data from
that node.

Return type ExplicitXBeeMessage

Raises

• ValueError – If a timeout is specified and is less than 0.

• TimeoutException – If a timeout is specified and no explicit data was received
during that time.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

ExplicitXBeeMessage

RemoteXBeeDevice

send_expl_data(remote_xbee, data, src_endpoint, dest_endpoint, cluster_id, profile_id, trans-
mit_options=0)

Blocking method. Sends the provided explicit data to the given XBee, source and destination end points,
cluster and profile ids.

This method blocks until a success or error response arrives or the configured receive timeout expires.
The default timeout is XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS.

Parameters

• remote_xbee (RemoteXBeeDevice) – Remote XBee to send data to.

• data (String or Bytearray) – Raw data to send.

• src_endpoint (Integer) – Source endpoint of the transmission. 1 byte.

• dest_endpoint (Integer) – Destination endpoint of the transmission. 1 byte.

• cluster_id (Integer) – Cluster ID of the transmission (between 0x0 and
0xFFFF)

• profile_id (Integer) – Profile ID of the transmission (between 0x0 and
0xFFFF)

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

2.6. API reference 609



XBee Python Library Documentation, Release 1.4.0

Returns Response packet obtained after sending data.

Return type XBeePacket

Raises

• TimeoutException – If response is not received before the read timeout expires.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TransmitException – If the status of the response received is not OK.

• XBeeException – If the XBee’s communication interface is closed.

• ValueError – if cluster_id or profile_id is less than 0x0 or greater than 0xFFFF.

See also:

RemoteXBeeDevice

XBeePacket

send_expl_data_broadcast(data, src_endpoint, dest_endpoint, cluster_id, profile_id, trans-
mit_options=0)

Sends the provided explicit data to all the XBee nodes of the network (broadcast) using provided source
and destination end points, cluster and profile ids.

This method blocks until a success or error transmit status arrives or the configured re-
ceive timeout expires. The received timeout is configured using the AbstractXBeeDevice.
set_sync_ops_timeout() method and can be consulted with method AbstractXBeeDevice.
get_sync_ops_timeout().

Parameters

• data (String or Bytearray) – Raw data to send.

• src_endpoint (Integer) – Source endpoint of the transmission. 1 byte.

• dest_endpoint (Integer) – Destination endpoint of the transmission. 1 byte.

• cluster_id (Integer) – Cluster ID of the transmission (between 0x0 and
0xFFFF)

• profile_id (Integer) – Profile ID of the transmission (between 0x0 and
0xFFFF)

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TransmitException – If the status of the response received is not OK.

• XBeeException – If the XBee’s communication interface is closed.

• ValueError – if cluster_id or profile_id is less than 0x0 or greater than 0xFFFF.

See also:

610 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

XBeeDevice._send_expl_data()

send_expl_data_async(remote_xbee, data, src_endpoint, dest_endpoint, cluster_id, profile_id,
transmit_options=0)

Non-blocking method. Sends the provided explicit data to the given XBee, source and destination end
points, cluster and profile ids.

Parameters

• remote_xbee (RemoteXBeeDevice) – Remote XBee to send data to.

• data (String or Bytearray) – Raw data to send.

• src_endpoint (Integer) – Source endpoint of the transmission. 1 byte.

• dest_endpoint (Integer) – Destination endpoint of the transmission. 1 byte.

• cluster_id (Integer) – Cluster ID of the transmission (between 0x0 and
0xFFFF)

• profile_id (Integer) – Profile ID of the transmission (between 0x0 and
0xFFFF)

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

• ValueError – if cluster_id or profile_id is less than 0x0 or greater than 0xFFFF.

See also:

RemoteXBeeDevice

send_multicast_data(group_id, data, src_endpoint, dest_endpoint, cluster_id, profile_id)
Blocking method. This method sends multicast data to the provided group ID synchronously.

This method will wait for the packet response. The default timeout for this method is XBeeDevice.
_DEFAULT_TIMEOUT_SYNC_OPERATIONS.

Parameters

• group_id (XBee16BitAddress) – 16-bit address of the multicast group.

• data (Bytearray) – Raw data to send.

• src_endpoint (Integer) – Source endpoint of the transmission. 1 byte.

• dest_endpoint (Integer) – Destination endpoint of the transmission. 1 byte.

• cluster_id (Integer) – Cluster ID of the transmission (between 0x0 and
0xFFFF)

• profile_id (Integer) – Profile ID of the transmission (between 0x0 and
0xFFFF)

Returns the response packet.

2.6. API reference 611



XBee Python Library Documentation, Release 1.4.0

Return type XBeePacket

Raises

• TimeoutException – If response is not received before the read timeout expires.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBee16BitAddress

XBeePacket

send_multicast_data_async(group_id, data, src_endpoint, dest_endpoint, cluster_id, pro-
file_id)

Non-blocking method. This method sends multicast data to the provided group ID.

This method does not wait for a response.

Parameters

• group_id (XBee16BitAddress) – 16-bit address of the multicast group.

• data (Bytearray) – Raw data to send.

• src_endpoint (Integer) – Source endpoint of the transmission. 1 byte.

• dest_endpoint (Integer) – Destination endpoint of the transmission. 1 byte.

• cluster_id (Integer) – Cluster ID of the transmission (between 0x0 and
0xFFFF)

• profile_id (Integer) – Profile ID of the transmission (between 0x0 and
0xFFFF)

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBee16BitAddress

register_joining_device(registrant_address, options, key)
Securely registers a joining device to a trust center. Registration is the process by which a node is autho-
rized to join the network using a preconfigured link key or installation code that is conveyed to the trust
center out-of-band (using a physical interface and not over-the-air).

This method is synchronous, it sends the register joining device request and waits for the answer of the
operation. Then, returns the corresponding status.

Parameters

612 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• registrant_address (XBee64BitAddress) – 64-bit address of the device
to register.

• options (RegisterKeyOptions) – Register options indicating the key source.

• key (Bytearray) – Key of the device to register.

Returns

Register device operation status or None if the answer is not a RegisterDeviceStatus-
Packet.

Return type ZigbeeRegisterStatus

Raises

• TimeoutException – If the answer is not received in the configured timeout.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

• ValueError – If registrant_address or options is None.

See also:

RegisterKeyOptions

XBee64BitAddress

ZigbeeRegisterStatus

register_joining_device_async(registrant_address, options, key)
Securely registers a joining device to a trust center. Registration is the process by which a node is autho-
rized to join the network using a preconfigured link key or installation code that is conveyed to the trust
center out-of-band (using a physical interface and not over-the-air).

This method is asynchronous, which means that it does not wait for an answer after sending the request.

Parameters

• registrant_address (XBee64BitAddress) – 64-bit address of the device
to register.

• options (RegisterKeyOptions) – Register options indicating the key source.

• key (Bytearray) – Key of the device to register.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

• ValueError – if registrant_address or options is None.

See also:

RegisterKeyOptions

XBee64BitAddress

2.6. API reference 613



XBee Python Library Documentation, Release 1.4.0

unregister_joining_device(unregistrant_address)
Unregisters a joining device from a trust center.

This method is synchronous, it sends the unregister joining device request and waits for the answer of the
operation. Then, returns the corresponding status.

Parameters unregistrant_address (XBee64BitAddress) – 64-bit address of the
device to unregister.

Returns

Unregister device operation status or None if the answer is not a RegisterDeviceStatus-
Packet.

Return type ZigbeeRegisterStatus

Raises

• TimeoutException – If the answer is not received in the configured timeout.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

• ValueError – If registrant_address is None.

See also:

XBee64BitAddress

ZigbeeRegisterStatus

unregister_joining_device_async(unregistrant_address)
Unregisters a joining device from a trust center.

This method is asynchronous, which means that it will not wait for an answer after sending the unregister
request.

Parameters unregistrant_address (XBee64BitAddress) – 64-bit address of the
device to unregister.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

• ValueError – If registrant_address is None.

See also:

XBee64BitAddress

get_routes(route_cb=None, finished_cb=None, timeout=None)
Returns the routes of this XBee. If route_cb is not defined, the process blocks until the complete routing
table is read.

Parameters

614 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• route_cb (Function, optional, default=`None`) – Method called
when a new route is received. Receives two arguments:

– The XBee that owns this new route.

– The new route.

• finished_cb (Function, optional, default=`None`) – Method to
execute when the process finishes. Receives three arguments:

– The XBee that executed the ZDO command.

– A list with the discovered routes.

– An error message if something went wrong.

• timeout (Float, optional, default=`RouteTableReader.
DEFAULT_TIMEOUT`) – The ZDO command timeout in seconds.

Returns

List of Route when route_cb is not defined, None otherwise (in this case routes are re-
ceived in the callback).

Return type List

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• OperationNotSupportedException – If XBee is not Zigbee or Smart En-
ergy.

• XBeeException – If the XBee’s communication interface is closed.

See also:

com.digi.models.zdo.Route

get_neighbors(neighbor_cb=None, finished_cb=None, timeout=None)
Returns the neighbors of this XBee. If neighbor_cb is not defined, the process blocks until the complete
neighbor table is read.

Parameters

• neighbor_cb (Function, optional, default=`None`) – Method
called when a new neighbor is received. Receives two arguments:

– The XBee that owns this new neighbor.

– The new neighbor.

• finished_cb (Function, optional, default=`None`) – Method to
execute when the process finishes. Receives three arguments:

– The XBee that executed the ZDO command.

– A list with the discovered neighbors.

– An error message if something went wrong.

• timeout (Float, optional, default=`NeighborTableReader.
DEFAULT_TIMEOUT`) – The ZDO command timeout in seconds.

2.6. API reference 615



XBee Python Library Documentation, Release 1.4.0

Returns

List of Neighbor when neighbor_cb is not defined, None otherwise (in this case
neighbors are received in the callback).

Return type List

Raises OperationNotSupportedException – If XBee is not Zigbee or Smart Energy.

See also:

com.digi.models.zdo.Neighbor

create_source_route(dest_node, hops)
Creates a source route for the provided destination node. A source route specifies the complete route a
packet traverses to get from source to destination.

For best results, use source routing with many-to-one routing.

Parameters

• dest_node (RemoteXBeeDevice) – The destination node.

• hops (List) – List of intermediate nodes (RemoteXBeeDevice) ordered from
closest to source to closest to destination node (source and destination excluded).

Raises

• ValueError – If dest_node is None, or if it is a local node, or if its protocol is not
Zigbee based, or if its 64-bit address or 16-bit address is None, unknown, or invalid.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the packet listener is not running or the XBee’s communica-
tion interface is closed.

add_bluetooth_data_received_callback(callback)
Adds a callback for the event BluetoothDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The Bluetooth data as a Bytearray.

add_data_received_callback(callback)
Adds a callback for the event DataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The data received as an XBeeMessage.

add_expl_data_received_callback(callback)
Adds a callback for the event ExplicitDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The explicit data received as a ExplicitXBeeMessage.

add_fs_frame_received_callback(callback)
Adds a callback for the event FileSystemFrameReceived.

Parameters callback (Function) – The callback. Receives four arguments.

• Source (AbstractXBeeDevice): The node that sent the file system frame.

616 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• Frame id (Integer): The received frame id.

• Command (FSCmd): The file system command.

• Receive options (Integer): Bitfield indicating receive options.

See also:

AbstractXBeeDevice

FSCmd

ReceiveOptions

add_io_sample_received_callback(callback)
Adds a callback for the event IOSampleReceived.

Parameters callback (Function) – The callback. Receives three arguments.

• The received IO sample as an IOSample.

• The remote XBee which sent the packet as a RemoteXBeeDevice.

• The time in which the packet was received as an Integer.

add_micropython_data_received_callback(callback)
Adds a callback for the event MicroPythonDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The MicroPython data as a Bytearray.

add_modem_status_received_callback(callback)
Adds a callback for the event ModemStatusReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The modem status as a ModemStatus.

add_packet_received_callback(callback)
Adds a callback for the event PacketReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The received packet as a XBeeAPIPacket.

add_route_received_callback(callback)
Adds a callback for the event RouteReceived. This works for Zigbee and Digimesh devices.

Parameters callback (Function) – The callback. Receives three arguments.

• source (XBeeDevice): The source node.

• destination (RemoteXBeeDevice): The destination node.

• hops (List): List of intermediate hops from closest to source to closest to destina-
tion (RemoteXBeeDevice).

See also:

XBeeDevice.del_route_received_callback()

2.6. API reference 617



XBee Python Library Documentation, Release 1.4.0

add_socket_data_received_callback(callback)
Adds a callback for the event SocketDataReceived.

Parameters callback (Function) – The callback. Receives two arguments.

• The socket ID as an Integer.

• The data received as Bytearray.

add_socket_data_received_from_callback(callback)
Adds a callback for the event SocketDataReceivedFrom.

Parameters callback (Function) – The callback. Receives three arguments.

• The socket ID as an Integer.

• Source address pair (host, port) where host is a string representing an IPv4 ad-
dress like ‘100.50.200.5’, and port is an integer.

• The data received as Bytearray.

add_socket_state_received_callback(callback)
Adds a callback for the event SocketStateReceived.

Parameters callback (Function) – The callback. Receives two arguments.

• The socket ID as an Integer.

• The state received as a SocketState.

add_user_data_relay_received_callback(callback)
Adds a callback for the event RelayDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The relay data as a UserDataRelayMessage.

apply_changes()
Applies changes via ‘AC’ command.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

apply_profile(profile_path, timeout=None, progress_callback=None)
Applies the given XBee profile to the XBee.

Parameters

• profile_path (String) – Path of the XBee profile file to apply.

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the apply profile (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to receive progress information. Receives two arguments:

– The current apply profile task as a String

– The current apply profile task percentage as an Integer

618 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• UpdateProfileException – If there is any error applying the XBee profile.

close()
Closes the communication with the XBee.

This method guarantees that all threads running are stopped and the serial port is closed.

comm_iface
Returns the hardware interface associated to the XBee.

Returns Hardware interface of the XBee.

Return type XBeeCommunicationInterface

See also:

XBeeCommunicationInterface

classmethod create_xbee_device(comm_port_data)
Creates and returns an XBeeDevice from data of the port to which is connected.

Parameters

• comm_port_data (Dictionary) – Dictionary with all comm port data needed.

• dictionary keys are (The) –

“baudRate” –> Baud rate.
”port” –> Port number.
”bitSize” –> Bit size.
”stopBits” –> Stop bits.
”parity” –> Parity.
”flowControl” –> Flow control.
”timeout” for –> Timeout for synchronous operations (in seconds).

Returns XBee object created.

Return type XBeeDevice

Raises SerialException – If the port to open does not exist or is already opened.

See also:

XBeeDevice

del_bluetooth_data_received_callback(callback)
Deletes a callback for the callback list of BluetoothDataReceived event.

Parameters callback (Function) – The callback to delete.

2.6. API reference 619



XBee Python Library Documentation, Release 1.4.0

del_data_received_callback(callback)
Deletes a callback for the callback list of DataReceived event.

Parameters callback (Function) – The callback to delete.

del_expl_data_received_callback(callback)
Deletes a callback for the callback list of ExplicitDataReceived event.

Parameters callback (Function) – The callback to delete.

del_fs_frame_received_callback(callback)
Deletes a callback for the callback list of FileSystemFrameReceived event.

Parameters callback (Function) – The callback to delete.

del_io_sample_received_callback(callback)
Deletes a callback for the callback list of IOSampleReceived event.

Parameters callback (Function) – The callback to delete.

del_micropython_data_received_callback(callback)
Deletes a callback for the callback list of MicroPythonDataReceived event.

Parameters callback (Function) – The callback to delete.

del_modem_status_received_callback(callback)
Deletes a callback for the callback list of ModemStatusReceived event.

Parameters callback (Function) – The callback to delete.

del_packet_received_callback(callback)
Deletes a callback for the callback list of PacketReceived event.

Parameters callback (Function) – The callback to delete.

del_route_received_callback(callback)
Deletes a callback for the callback list of RouteReceived event.

Parameters callback (Function) – The callback to delete.

See also:

XBeeDevice.add_route_received_callback()

del_socket_data_received_callback(callback)
Deletes a callback for the callback list of SocketDataReceived event.

Parameters callback (Function) – The callback to delete.

del_socket_data_received_from_callback(callback)
Deletes a callback for the callback list of SocketDataReceivedFrom event.

Parameters callback (Function) – The callback to delete.

del_socket_state_received_callback(callback)
Deletes a callback for the callback list of SocketStateReceived event.

Parameters callback (Function) – The callback to delete.

del_user_data_relay_received_callback(callback)
Deletes a callback for the callback list of RelayDataReceived event.

Parameters callback (Function) – The callback to delete.

620 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

determine_protocol(hardware_version, firmware_version)
Determines the XBee protocol based on the given hardware and firmware versions.

Parameters

• hardware_version (Integer) – Hardware version to get its protocol.

• firmware_version (Bytearray) – Firmware version to get its protocol.

Returns

XBee protocol corresponding to the given hardware and firmware versions.

Return type XBeeProtocol

disable_bluetooth()
Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

enable_apply_changes(value)
Sets apply changes flag.

Parameters value (Boolean) – True to enable apply changes flag, False to disable it.

enable_bluetooth()
Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth password if not done previously. Use
method AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

execute_command(parameter, value=None, apply=None)
Executes the provided command.

Parameters

• (String or (parameter) – class: .ATStringCommand): AT command to exe-
cute.

• value (bytearray, optional, default=`None`) – Command value (if
any).

2.6. API reference 621



XBee Python Library Documentation, Release 1.4.0

• apply (Boolean, optional, default=`None`) – True to ap-
ply changes in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

flush_queues()
Flushes the packets queue.

get_16bit_addr()
Returns the 16-bit address of the XBee.

Returns 16-bit address of the XBee.

Return type XBee16BitAddress

See also:

XBee16BitAddress

get_64bit_addr()
Returns the 64-bit address of the XBee.

Returns 64-bit address of the XBee.

Return type XBee64BitAddress

See also:

XBee64BitAddress

get_adc_value(io_line)
Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so, use AbstractXBeeDevice.
set_io_configuration() and IOMode.ADC.

622 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Parameters io_line (IOLine) – IO line to get its ADC value.

Returns Analog value corresponding to the provided IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

set_io_configuration()

get_api_output_mode()
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the serial interface of the XBee.

Returns API output mode of the XBee.

Return type APIOutputMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

APIOutputMode

get_api_output_mode_value()
Returns the API output mode of the XBee.

The API output mode determines the format that the received data is output through the serial interface of
the XBee.

Returns the parameter value.

Return type Bytearray

2.6. API reference 623



XBee Python Library Documentation, Release 1.4.0

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

digi.xbee.models.mode.APIOutputModeBit

get_bluetooth_mac_addr()
Reads and returns the EUI-48 Bluetooth MAC address of this XBee following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

Returns The Bluetooth MAC address.

Return type String

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

get_current_frame_id()
Returns the last used frame ID.

Returns Last used frame ID.

Return type Integer

get_dest_address()
Returns the 64-bit address of the XBee that is data destination.

Returns 64-bit address of destination XBee.

Return type XBee64BitAddress

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

624 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

XBee64BitAddress

set_dest_address()

get_dio_value(io_line)
Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O. To do so, use
AbstractXBeeDevice.set_io_configuration().

Parameters io_line (IOLine) – the DIO line to gets its digital value.

Returns current value of the provided IO line.

Return type IOValue

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

IOValue

set_io_configuration()

get_file_manager()
Returns the file system manager for the XBee.

Returns The file system manager.

Return type FileSystemManager

Raises FileSystemNotSupportedException – If the XBee does not support filesys-
tem.

get_firmware_version()
Returns the firmware version of the XBee.

Returns Firmware version of the XBee.

Return type Bytearray

get_hardware_version()
Returns the hardware version of the XBee.

Returns Hardware version of the XBee.

Return type HardwareVersion

See also:

2.6. API reference 625



XBee Python Library Documentation, Release 1.4.0

HardwareVersion

get_io_configuration(io_line)
Returns the configuration of the provided IO line.

Parameters io_line (IOLine) – IO line to get its configuration.

Returns IO mode of the IO line provided.

Return type IOMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

set_io_configuration()

get_io_sampling_rate()
Returns the IO sampling rate of the XBee.

Returns IO sampling rate of XBee.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

set_io_sampling_rate()

get_network()
Returns the network of this XBee.

Returns The XBee network.

Return type XBeeNetwork

get_next_frame_id()
Returns the next frame ID of the XBee.

626 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns The next frame ID of the XBee.

Return type Integer

get_node_id()
Returns the node identifier (‘NI’) value of the XBee.

Returns Node identifier (‘NI’) of the XBee.

Return type String

get_pan_id()
Returns the operating PAN ID of the XBee.

Returns Operating PAN ID of the XBee.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

set_pan_id()

get_parameter(parameter, parameter_value=None, apply=None)
Override.

See also:

AbstractXBeeDevice.get_parameter()

get_power_level()
Returns the power level of the XBee.

Returns Power level of the XBee.

Return type PowerLevel

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

2.6. API reference 627



XBee Python Library Documentation, Release 1.4.0

PowerLevel

set_power_level()

get_pwm_duty_cycle(io_line)
Returns the PWM duty cycle in % corresponding to the provided IO line.

Parameters io_line (IOLine) – IO line to get its PWM duty cycle.

Returns PWM duty cycle of the given IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If io_line has no PWM capability.

See also:

IOLine

get_role()
Gets the XBee role.

Returns the role of the XBee.

Return type Role

See also:

Role

get_route_to_node(remote, timeout=10, force=True)
Gets the route from this XBee to the given remote node.

For Zigbee:

• ‘AR’ parameter of the local node must be configured with a value different from ‘FF’.

• Set force to True to force the Zigbee remote node to return its route independently of the local
node configuration as high or low RAM concentrator (‘DO’ of the local value)

Parameters

• remote (RemoteXBeeDevice) – The remote node.

• timeout (Float, optional, default=10) – Maximum number of seconds
to wait for the route.

628 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• force (Boolean) – True to force asking for the route, False otherwise. Only for
Zigbee.

Returns

Tuple containing route data:

• status (TransmitStatus): The transmit status.

• Tuple with route data (None if the route was not read in the provided timeout):

– source (RemoteXBeeDevice): The source node of the route.

– destination (RemoteXBeeDevice): The destination node of the route.

– hops (List): List of intermediate nodes (RemoteXBeeDevice) ordered from
closest to source to closest to destination node (source and destination not in-
cluded).

Return type Tuple

get_sync_ops_timeout()
Returns the serial port read timeout.

Returns Serial port read timeout in seconds.

Return type Integer

get_xbee_device_callbacks()
Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee to get its callbacks. These callbacks
are executed before user callbacks.

Returns PacketReceived

has_explicit_packets()
Returns if there are pending explicit packets to read. This does not include non-explicit packets.

Returns True if there are pending packets, False otherwise.

Return type Boolean

See also:

XBeeDevice.has_packets()

has_packets()
Returns if there are pending packets to read. This does not include explicit packets.

Returns True if there are pending packets, False otherwise.

Return type Boolean

See also:

XBeeDevice.has_explicit_packets()

is_apply_changes_enabled()
Returns whether apply changes flag is enabled.

2.6. API reference 629



XBee Python Library Documentation, Release 1.4.0

Returns True if apply changes flag is enabled, False otherwise.

Return type Boolean

is_device_info_complete()
Returns whether XBee node information is complete.

Returns True if node information is complete, False otherwise.

Return type Boolean

See also:

AbstractXBeeDevice.read_device_info()

is_open()
Returns whether this XBee is open.

Returns Boolean. True if this XBee is open, False otherwise.

is_remote()
Override method.

See also:

AbstractXBeeDevice.is_remote()

log
Returns the XBee logger.

Returns The XBee device logger.

Return type Logger

operating_mode
Returns the operating mode of this XBee.

Returns OperatingMode. This XBee operating mode.

reachable
Returns whether the XBee is reachable.

Returns True if the device is reachable, False otherwise.

Return type Boolean

read_data(timeout=None)
Reads new data received by this XBee.

If timeout is specified, this method blocks until new data is received or the timeout expires, throwing a
TimeoutException in this case.

Parameters timeout (Integer, optional) – Read timeout in seconds. If None, this
method is non-blocking and returns None if no data is available.

Returns

Read message or None if this XBee did not receive new data.

Return type XBeeMessage

630 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Raises

• ValueError – If a timeout is specified and is less than 0.

• TimeoutException – If a timeout is specified and no data was received during
that time.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBeeMessage

read_data_from(remote_xbee, timeout=None)
Reads new data received from the given remote XBee.

If timeout is specified, this method blocks until new data is received or the timeout expires, throwing a
TimeoutException in this case.

Parameters

• remote_xbee (RemoteXBeeDevice) – Remote XBee that sent the data.

• timeout (Integer, optional) – Read timeout in seconds. If None, this
method is non-blocking and returns None if no data is available.

Returns

Read message sent by remote_xbee or None if this XBee did not receive new data.

Return type XBeeMessage

Raises

• ValueError – If a timeout is specified and is less than 0.

• TimeoutException – If a timeout is specified and no data was received during
that time.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBeeMessage

RemoteXBeeDevice

read_device_info(init=True, fire_event=True)
Updates all instance parameters reading them from the XBee.

Parameters

• init (Boolean, optional, default=`True`) – If False only not initial-
ized parameters are read, all if True.

2.6. API reference 631



XBee Python Library Documentation, Release 1.4.0

• fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.is_device_info_complete()

read_io_sample()
Returns an IO sample from the XBee containing the value of all enabled digital IO and analog input
channels.

Returns IO sample read from the XBee.

Return type IOSample

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOSample

reset()
Override method.

See also:

AbstractXBeeDevice.reset()

scan_counter
Returns the scan counter for this node.

Returns The scan counter for this node.

Return type Integer

send_bluetooth_data(data)
Sends the given data to the Bluetooth interface using a User Data Relay frame.

632 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Parameters data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If there is any problem sending the data.

See also:

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

send_data(remote_xbee, data, transmit_options=0)
Blocking method. This method sends data to a remote XBee synchronously.

This method will wait for the packet response. The default timeout is XBeeDevice.
_DEFAULT_TIMEOUT_SYNC_OPERATIONS.

Parameters

• remote_xbee (RemoteXBeeDevice) – Remote XBee to send data to.

• data (String or Bytearray) – Raw data to send.

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Returns The response.

Return type XBeePacket

Raises

• ValueError – If remote_xbee is None.

• TimeoutException – If response is not received before the read timeout expires.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TransmitException – If the status of the response received is not OK.

• XBeeException – If the XBee’s communication interface is closed.

See also:

RemoteXBeeDevice

XBeePacket

send_data_async(remote_xbee, data, transmit_options=0)
Non-blocking method. This method sends data to a remote XBee.

This method does not wait for a response.

Parameters

• remote_xbee (RemoteXBeeDevice) – the remote XBee to send data to.

• data (String or Bytearray) – Raw data to send.

2.6. API reference 633



XBee Python Library Documentation, Release 1.4.0

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Raises

• ValueError – If remote_xbee is None.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee’s communication interface is closed.

See also:

RemoteXBeeDevice

send_data_broadcast(data, transmit_options=0)
Sends the provided data to all the XBee nodes of the network (broadcast).

This method blocks until a success or error transmit status arrives or the configured receive timeout ex-
pires.

The received timeout is configured using method AbstractXBeeDevice.
set_sync_ops_timeout() and can be consulted with AbstractXBeeDevice.
get_sync_ops_timeout() method.

Parameters

• data (String or Bytearray) – Data to send.

• transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TransmitException – If the status of the response received is not OK.

• XBeeException – If the XBee’s communication interface is closed.

send_micropython_data(data)
Sends the given data to the MicroPython interface using a User Data Relay frame.

Parameters data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If there is any problem sending the data.

See also:

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

634 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

send_packet(packet, sync=False)
Sends the packet and waits for the response. The packet to send is escaped depending on the current
operating mode.

This method can be synchronous or asynchronous.

If synchronous, this method discards all response packets until it finds the one that has the appropriate
frame ID, that is, the sent packet’s frame ID.

If asynchronous, this method does not wait for any response and returns None.

Parameters

• packet (XBeePacket) – The packet to send.

• sync (Boolean) – True to wait for the response of the sent packet and return it,
False otherwise.

Returns

Response packet if sync is True, None otherwise.

Return type XBeePacket

Raises

• TimeoutException – If sync is True and the response packet for the sent one
cannot be read.

• InvalidOperatingModeException – If the XBee operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the packet listener is not running or the XBee’s communica-
tion interface is closed.

See also:

XBeePacket

send_packet_sync_and_get_response(packet_to_send, timeout=None)
Sends the packet and waits for its corresponding response.

Parameters

• packet_to_send (XBeePacket) – The packet to transmit.

• timeout (Integer, optional, default=`None`) – Number of seconds
to wait. -1 to wait indefinitely.

Returns Received response packet.

Return type XBeePacket

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TimeoutException – If response is not received in the configured timeout.

• XBeeException – If the XBee’s communication interface is closed.

See also:

2.6. API reference 635



XBee Python Library Documentation, Release 1.4.0

XBeePacket

send_user_data_relay(local_interface, data)
Sends the given data to the given XBee local interface.

Parameters

• local_interface (XBeeLocalInterface) – Destination XBee local inter-
face.

• data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ValueError – If local_interface is None.

• XBeeException – If there is any problem sending the User Data Relay.

See also:

XBeeLocalInterface

serial_port
Returns the serial port associated to the XBee, if any.

Returns

Serial port of the XBee. None if the local XBee does not use serial communication.

Return type XBeeSerialPort

See also:

XBeeSerialPort

set_16bit_addr(value)
Sets the 16-bit address of the XBee.

Parameters value (XBee16BitAddress) – New 16-bit address of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If the protocol is not 802.15.4.

636 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

set_api_output_mode(api_output_mode)
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

Parameters api_output_mode (APIOutputMode) – New API output mode.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputMode

set_api_output_mode_value(api_output_mode)
Sets the API output mode of the XBee.

Parameters api_output_mode (Integer) – New API output mode op-
tions. Calculate this value using the method APIOutputModeBit.
calculate_api_output_mode_value() with a set of APIOutputModeBit.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputModeBit

set_dest_address(addr)
Sets the 64-bit address of the XBee that is data destination.

Parameters addr (XBee64BitAddress or RemoteXBeeDevice) – Address itself or
remote XBee to be data destination.

Raises

• TimeoutException – If response is not received before the read timeout expires.

2.6. API reference 637



XBee Python Library Documentation, Release 1.4.0

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If addr is None.

See also:

XBee64BitAddress

get_dest_address()

set_dio_change_detection(io_lines_set)
Sets the digital IO lines to be monitored and sampled whenever their status changes. A None set of lines
disables this feature.

Parameters io_lines_set – Set of IOLine.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

set_dio_value(io_line, io_value)
Sets the digital value (high or low) to the provided IO line.

Parameters

• io_line (IOLine) – Digital IO line to sets its value.

• io_value (IOValue) – IO value to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOValue

638 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

set_io_configuration(io_line, io_mode)
Sets the configuration of the provided IO line.

Parameters

• io_line (IOLine) – IO line to configure.

• io_mode (IOMode) – IO mode to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

get_io_configuration()

set_io_sampling_rate(rate)
Sets the IO sampling rate of the XBee in seconds. A sample rate of 0 means the IO sampling feature is
disabled.

Parameters rate (Integer) – New IO sampling rate of the XBee in seconds.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

get_io_sampling_rate()

set_node_id(node_id)
Sets the node identifier (‘NI‘) value of the XBee.

Parameters node_id (String) – New node identifier (‘NI’) of the XBee.

Raises

• ValueError – If node_id is None or its length is greater than 20.

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

2.6. API reference 639



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

set_pan_id(value)
Sets the operating PAN ID of the XBee.

Parameters value (Bytearray) – New operating PAN ID of the XBee. Must have only 1
or 2 bytes.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

get_pan_id()

set_parameter(parameter, value, apply=None)
Override.

See: AbstractXBeeDevice.set_parameter()

set_power_level(power_level)
Sets the power level of the XBee.

Parameters power_level (PowerLevel) – New power level of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

PowerLevel

get_power_level()

set_pwm_duty_cycle(io_line, cycle)
Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

Parameters

• io_line (IOLine) – IO Line to be assigned.

640 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If the given IO line does not have PWM capability or cycle is not
between 0 and 100.

See also:

IOLine

IOMode.PWM

set_sync_ops_timeout(sync_ops_timeout)
Sets the serial port read timeout.

Parameters sync_ops_timeout (Integer) – Read timeout in seconds.

update_bluetooth_password(new_password)
Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

Parameters new_password (String) – New Bluetooth password.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

update_device_data_from(device)
Updates the current node information with provided data. This is only for internal use.

Parameters device (AbstractXBeeDevice) – XBee to get the data from.

Returns True if the node data has been updated, False otherwise.

Return type Boolean

update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None,
timeout=None, progress_callback=None)

Performs a firmware update operation of the XBee.

Parameters

• xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

• xbee_firmware_file (String, optional, default=`None`) – Lo-
cation of the XBee binary firmware file.

2.6. API reference 641



XBee Python Library Documentation, Release 1.4.0

• bootloader_firmware_file (String, optional,
default=`None`) – Location of the bootloader binary firmware file.

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the update process (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to to receive progress information. Receives two arguments:

– The current update task as a String

– The current update task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• OperationNotSupportedException – If XBee does not support firmware
update.

• FirmwareUpdateException – If there is any error during the firmware update.

write_changes()
Writes configurable parameter values to the non-volatile memory of the XBee so that parameter modifi-
cations persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by subsequent use of this method.

If changes are made without writing them, the XBee reverts back to previously saved parameters the next
time the module is powered-on.

Writing the parameter modifications does not mean those values are immediately applied, this depends on
the status of the ‘apply configuration changes’ option. Use method is_apply_changes_enabled()
to get its status and enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

class digi.xbee.devices.IPDevice(port=None, baud_rate=None,
data_bits=<sphinx.ext.autodoc.importer._MockObject ob-
ject>, stop_bits=<sphinx.ext.autodoc.importer._MockObject
object>, parity=<sphinx.ext.autodoc.importer._MockObject
object>, flow_control=<FlowControl.NONE: None>,
_sync_ops_timeout=4, comm_iface=None)

Bases: digi.xbee.devices.XBeeDevice

This class provides common functionality for XBee IP devices.

Class constructor. Instantiates a new IPDevice with the provided parameters.

Parameters

• port (String) – Serial port identifier. Depends on operating system. e.g.
‘/dev/ttyUSB0’ on ‘GNU/Linux’ or ‘COM3’ on Windows.

642 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• baud_rate (Integer) – Serial port baud rate.

• (Integer, default (_sync_ops_timeout) – serial.EIGHTBITS): Port
bitsize.

• (Integer, default – serial.STOPBITS_ONE): Port stop bits.

• (Character, default (parity) – serial.PARITY_NONE): Port parity.

• (Integer, default – FlowControl.NONE): Port flow control.

• (Integer, default – 3): Read timeout (in seconds).

• comm_iface (XBeeCommunicationInterface) – Communication interface.

Raises All exceptions raised by XBeeDevice.__init__() constructor.

See also:

XBeeDevice

XBeeDevice.__init__()

is_device_info_complete()
Override.

See also:

AbstractXBeeDevice.is_device_info_complete()

get_ip_addr()
Returns the IP address of this IP XBee.

To refresh this value use the method IPDevice.read_device_info().

Returns The IP address of this IP device.

Return type ipaddress.IPv4Address

See also:

ipaddress.IPv4Address

set_dest_ip_addr(address)
Sets the destination IP address.

Parameters address (ipaddress.IPv4Address) – Destination IP address.

Raises

• ValueError – If address is None.

• TimeoutException – If there is a timeout setting the destination IP address.

• XBeeException – If there is any other XBee related exception.

See also:

2.6. API reference 643



XBee Python Library Documentation, Release 1.4.0

ipaddress.IPv4Address

get_dest_ip_addr()
Returns the destination IP address.

Returns Configured destination IP address.

Return type ipaddress.IPv4Address

Raises

• TimeoutException – If there is a timeout getting the destination IP address.

• XBeeException – If there is any other XBee related exception.

See also:

ipaddress.IPv4Address

add_ip_data_received_callback(callback)
Adds a callback for the event IPDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The data received as an IPMessage

del_ip_data_received_callback(callback)
Deletes a callback for the callback list of IPDataReceived event.

Parameters callback (Function) – The callback to delete.

start_listening(src_port)
Starts listening for incoming IP transmissions in the provided port.

Parameters src_port (Integer) – Port to listen for incoming transmissions.

Raises

• ValueError – If source_port is less than 0 or greater than 65535.

• TimeoutException – If there is a timeout setting the source port.

• XBeeException – If there is any other XBee related exception.

stop_listening()
Stops listening for incoming IP transmissions.

Raises

• TimeoutException – If there is a timeout processing the operation.

• XBeeException – If there is any other XBee related exception.

send_ip_data(ip_addr, dest_port, protocol, data, close_socket=False)
Sends the provided IP data to the given IP address and port using the specified IP protocol. For TCP and
TCP SSL protocols, you can also indicate if the socket should be closed when data is sent.

This method blocks until a success or error response arrives or the configured receive timeout expires.

Parameters

• ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

644 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• dest_port (Integer) – The destination port of the transmission.

• protocol (IPProtocol) – The IP protocol used for the transmission.

• data (String or Bytearray) – The IP data to be sent.

• close_socket (Boolean, optional, default=`False`) – True to
close the socket just after the transmission. False to keep it open.

Raises

• ValueError – If ip_addr or protocol or data is None or dest_port is less than 0 or
greater than 65535.

• OperationNotSupportedException – If the XBee is remote.

• TimeoutException – If there is a timeout sending the data.

• XBeeException – If there is any other XBee related exception.

send_ip_data_async(ip_addr, dest_port, protocol, data, close_socket=False)
Sends the provided IP data to the given IP address and port asynchronously using the specified IP protocol.
For TCP and TCP SSL protocols, you can also indicate if the socket should be closed when data is sent.

Asynchronous transmissions do not wait for answer from the remote device or for transmit status packet.

Parameters

• ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

• dest_port (Integer) – The destination port of the transmission.

• protocol (IPProtocol) – The IP protocol used for the transmission.

• data (String or Bytearray) – The IP data to be sent.

• close_socket (Boolean, optional, default=`False`) – True to
close the socket just after the transmission. False to keep it open.

Raises

• ValueError – If ip_addr or protocol or data is None or dest_port is less than 0 or
greater than 65535.

• OperationNotSupportedException – If the XBee is remote.

• XBeeException – If there is any other XBee related exception.

send_ip_data_broadcast(dest_port, data)
Sends the provided IP data to all clients.

This method blocks until a success or error transmit status arrives or the configured receive timeout ex-
pires.

Parameters

• dest_port (Integer) – The destination port of the transmission.

• data (String or Bytearray) – The IP data to be sent.

Raises

• ValueError – If data is None or dest_port is less than 0 or greater than 65535.

• TimeoutException – If there is a timeout sending the data.

• XBeeException – If there is any other XBee related exception.

2.6. API reference 645



XBee Python Library Documentation, Release 1.4.0

read_ip_data(timeout=3)
Reads new IP data received by this XBee during the provided timeout.

This method blocks until new IP data is received or the provided timeout expires.

For non-blocking operations, register a callback and use the method IPDevice.
add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming IP data at a specific port. Use the
method IPDevice.start_listening() for that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

Parameters timeout (Integer, optional) – The time to wait for new IP data in sec-
onds.

Returns IP message, None if this device did not receive new data.

Return type IPMessage

Raises ValueError – If timeout is less than 0.

read_ip_data_from(ip_addr, timeout=3)
Reads new IP data received from the given IP address during the provided timeout.

This method blocks until new IP data from the provided IP address is received or the given timeout expires.

For non-blocking operations, register a callback and use the method IPDevice.
add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming IP data at a specific port. Use the
method IPDevice.start_listening() for that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

Parameters

• ip_addr (ipaddress.IPv4Address) – The IP address to read data from.

• timeout (Integer, optional) – The time to wait for new IP data in seconds.

Returns

IP message, None if this device did not receive new data from the provided IP address.

Return type IPMessage

Raises ValueError – If timeout is less than 0.

get_network()
Deprecated.

This protocol does not support the network functionality.

get_16bit_addr()
Deprecated.

This protocol does not have an associated 16-bit address.

get_dest_address()
Deprecated.

Operation not supported in this protocol. Use IPDevice.get_dest_ip_addr() instead. This
method raises an AttributeError.

set_dest_address(addr)
Deprecated.

646 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Operation not supported in this protocol. Use IPDevice.set_dest_ip_addr() instead. This
method raises an AttributeError.

get_pan_id()
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

set_pan_id(value)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

add_data_received_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

del_data_received_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

add_expl_data_received_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

del_expl_data_received_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

read_data(timeout=None)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

read_data_from(remote_xbee, timeout=None)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

send_data_broadcast(data, transmit_options=0)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

send_data(remote_xbee, data, transmit_options=0)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

send_data_async(remote_xbee, data, transmit_options=0)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

add_bluetooth_data_received_callback(callback)
Adds a callback for the event BluetoothDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The Bluetooth data as a Bytearray.

add_fs_frame_received_callback(callback)
Adds a callback for the event FileSystemFrameReceived.

2.6. API reference 647



XBee Python Library Documentation, Release 1.4.0

Parameters callback (Function) – The callback. Receives four arguments.

• Source (AbstractXBeeDevice): The node that sent the file system frame.

• Frame id (Integer): The received frame id.

• Command (FSCmd): The file system command.

• Receive options (Integer): Bitfield indicating receive options.

See also:

AbstractXBeeDevice

FSCmd

ReceiveOptions

add_io_sample_received_callback(callback)
Adds a callback for the event IOSampleReceived.

Parameters callback (Function) – The callback. Receives three arguments.

• The received IO sample as an IOSample.

• The remote XBee which sent the packet as a RemoteXBeeDevice.

• The time in which the packet was received as an Integer.

add_micropython_data_received_callback(callback)
Adds a callback for the event MicroPythonDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The MicroPython data as a Bytearray.

add_modem_status_received_callback(callback)
Adds a callback for the event ModemStatusReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The modem status as a ModemStatus.

add_packet_received_callback(callback)
Adds a callback for the event PacketReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The received packet as a XBeeAPIPacket.

add_route_received_callback(callback)
Adds a callback for the event RouteReceived. This works for Zigbee and Digimesh devices.

Parameters callback (Function) – The callback. Receives three arguments.

• source (XBeeDevice): The source node.

• destination (RemoteXBeeDevice): The destination node.

• hops (List): List of intermediate hops from closest to source to closest to destina-
tion (RemoteXBeeDevice).

See also:

XBeeDevice.del_route_received_callback()

648 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

add_socket_data_received_callback(callback)
Adds a callback for the event SocketDataReceived.

Parameters callback (Function) – The callback. Receives two arguments.

• The socket ID as an Integer.

• The data received as Bytearray.

add_socket_data_received_from_callback(callback)
Adds a callback for the event SocketDataReceivedFrom.

Parameters callback (Function) – The callback. Receives three arguments.

• The socket ID as an Integer.

• Source address pair (host, port) where host is a string representing an IPv4 ad-
dress like ‘100.50.200.5’, and port is an integer.

• The data received as Bytearray.

add_socket_state_received_callback(callback)
Adds a callback for the event SocketStateReceived.

Parameters callback (Function) – The callback. Receives two arguments.

• The socket ID as an Integer.

• The state received as a SocketState.

add_user_data_relay_received_callback(callback)
Adds a callback for the event RelayDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The relay data as a UserDataRelayMessage.

apply_changes()
Applies changes via ‘AC’ command.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

apply_profile(profile_path, timeout=None, progress_callback=None)
Applies the given XBee profile to the XBee.

Parameters

• profile_path (String) – Path of the XBee profile file to apply.

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the apply profile (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to receive progress information. Receives two arguments:

– The current apply profile task as a String

– The current apply profile task percentage as an Integer

2.6. API reference 649



XBee Python Library Documentation, Release 1.4.0

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• UpdateProfileException – If there is any error applying the XBee profile.

close()
Closes the communication with the XBee.

This method guarantees that all threads running are stopped and the serial port is closed.

comm_iface
Returns the hardware interface associated to the XBee.

Returns Hardware interface of the XBee.

Return type XBeeCommunicationInterface

See also:

XBeeCommunicationInterface

classmethod create_xbee_device(comm_port_data)
Creates and returns an XBeeDevice from data of the port to which is connected.

Parameters

• comm_port_data (Dictionary) – Dictionary with all comm port data needed.

• dictionary keys are (The) –

“baudRate” –> Baud rate.
”port” –> Port number.
”bitSize” –> Bit size.
”stopBits” –> Stop bits.
”parity” –> Parity.
”flowControl” –> Flow control.
”timeout” for –> Timeout for synchronous operations (in seconds).

Returns XBee object created.

Return type XBeeDevice

Raises SerialException – If the port to open does not exist or is already opened.

See also:

XBeeDevice

del_bluetooth_data_received_callback(callback)
Deletes a callback for the callback list of BluetoothDataReceived event.

Parameters callback (Function) – The callback to delete.

650 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

del_fs_frame_received_callback(callback)
Deletes a callback for the callback list of FileSystemFrameReceived event.

Parameters callback (Function) – The callback to delete.

del_io_sample_received_callback(callback)
Deletes a callback for the callback list of IOSampleReceived event.

Parameters callback (Function) – The callback to delete.

del_micropython_data_received_callback(callback)
Deletes a callback for the callback list of MicroPythonDataReceived event.

Parameters callback (Function) – The callback to delete.

del_modem_status_received_callback(callback)
Deletes a callback for the callback list of ModemStatusReceived event.

Parameters callback (Function) – The callback to delete.

del_packet_received_callback(callback)
Deletes a callback for the callback list of PacketReceived event.

Parameters callback (Function) – The callback to delete.

del_route_received_callback(callback)
Deletes a callback for the callback list of RouteReceived event.

Parameters callback (Function) – The callback to delete.

See also:

XBeeDevice.add_route_received_callback()

del_socket_data_received_callback(callback)
Deletes a callback for the callback list of SocketDataReceived event.

Parameters callback (Function) – The callback to delete.

del_socket_data_received_from_callback(callback)
Deletes a callback for the callback list of SocketDataReceivedFrom event.

Parameters callback (Function) – The callback to delete.

del_socket_state_received_callback(callback)
Deletes a callback for the callback list of SocketStateReceived event.

Parameters callback (Function) – The callback to delete.

del_user_data_relay_received_callback(callback)
Deletes a callback for the callback list of RelayDataReceived event.

Parameters callback (Function) – The callback to delete.

determine_protocol(hardware_version, firmware_version)
Determines the XBee protocol based on the given hardware and firmware versions.

Parameters

• hardware_version (Integer) – Hardware version to get its protocol.

• firmware_version (Bytearray) – Firmware version to get its protocol.

Returns

2.6. API reference 651



XBee Python Library Documentation, Release 1.4.0

XBee protocol corresponding to the given hardware and firmware versions.

Return type XBeeProtocol

disable_bluetooth()
Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

enable_apply_changes(value)
Sets apply changes flag.

Parameters value (Boolean) – True to enable apply changes flag, False to disable it.

enable_bluetooth()
Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth password if not done previously. Use
method AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

execute_command(parameter, value=None, apply=None)
Executes the provided command.

Parameters

• (String or (parameter) – class: .ATStringCommand): AT command to exe-
cute.

• value (bytearray, optional, default=`None`) – Command value (if
any).

• apply (Boolean, optional, default=`None`) – True to ap-
ply changes in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

652 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

flush_queues()
Flushes the packets queue.

get_64bit_addr()
Returns the 64-bit address of the XBee.

Returns 64-bit address of the XBee.

Return type XBee64BitAddress

See also:

XBee64BitAddress

get_adc_value(io_line)
Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so, use AbstractXBeeDevice.
set_io_configuration() and IOMode.ADC.

Parameters io_line (IOLine) – IO line to get its ADC value.

Returns Analog value corresponding to the provided IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

set_io_configuration()

2.6. API reference 653



XBee Python Library Documentation, Release 1.4.0

get_api_output_mode()
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the serial interface of the XBee.

Returns API output mode of the XBee.

Return type APIOutputMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

APIOutputMode

get_api_output_mode_value()
Returns the API output mode of the XBee.

The API output mode determines the format that the received data is output through the serial interface of
the XBee.

Returns the parameter value.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

digi.xbee.models.mode.APIOutputModeBit

get_bluetooth_mac_addr()
Reads and returns the EUI-48 Bluetooth MAC address of this XBee following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

Returns The Bluetooth MAC address.

654 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type String

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

get_current_frame_id()
Returns the last used frame ID.

Returns Last used frame ID.

Return type Integer

get_dio_value(io_line)
Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O. To do so, use
AbstractXBeeDevice.set_io_configuration().

Parameters io_line (IOLine) – the DIO line to gets its digital value.

Returns current value of the provided IO line.

Return type IOValue

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

IOValue

set_io_configuration()

get_file_manager()
Returns the file system manager for the XBee.

Returns The file system manager.

Return type FileSystemManager

Raises FileSystemNotSupportedException – If the XBee does not support filesys-
tem.

get_firmware_version()
Returns the firmware version of the XBee.

2.6. API reference 655



XBee Python Library Documentation, Release 1.4.0

Returns Firmware version of the XBee.

Return type Bytearray

get_hardware_version()
Returns the hardware version of the XBee.

Returns Hardware version of the XBee.

Return type HardwareVersion

See also:

HardwareVersion

get_io_configuration(io_line)
Returns the configuration of the provided IO line.

Parameters io_line (IOLine) – IO line to get its configuration.

Returns IO mode of the IO line provided.

Return type IOMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

set_io_configuration()

get_io_sampling_rate()
Returns the IO sampling rate of the XBee.

Returns IO sampling rate of XBee.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

656 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

set_io_sampling_rate()

get_next_frame_id()
Returns the next frame ID of the XBee.

Returns The next frame ID of the XBee.

Return type Integer

get_node_id()
Returns the node identifier (‘NI’) value of the XBee.

Returns Node identifier (‘NI’) of the XBee.

Return type String

get_parameter(parameter, parameter_value=None, apply=None)
Override.

See also:

AbstractXBeeDevice.get_parameter()

get_power_level()
Returns the power level of the XBee.

Returns Power level of the XBee.

Return type PowerLevel

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

PowerLevel

set_power_level()

get_protocol()
Returns the current protocol of the XBee.

Returns Current protocol of the XBee.

Return type XBeeProtocol

See also:

XBeeProtocol

2.6. API reference 657



XBee Python Library Documentation, Release 1.4.0

get_pwm_duty_cycle(io_line)
Returns the PWM duty cycle in % corresponding to the provided IO line.

Parameters io_line (IOLine) – IO line to get its PWM duty cycle.

Returns PWM duty cycle of the given IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If io_line has no PWM capability.

See also:

IOLine

get_role()
Gets the XBee role.

Returns the role of the XBee.

Return type Role

See also:

Role

get_route_to_node(remote, timeout=10, force=True)
Gets the route from this XBee to the given remote node.

For Zigbee:

• ‘AR’ parameter of the local node must be configured with a value different from ‘FF’.

• Set force to True to force the Zigbee remote node to return its route independently of the local
node configuration as high or low RAM concentrator (‘DO’ of the local value)

Parameters

• remote (RemoteXBeeDevice) – The remote node.

• timeout (Float, optional, default=10) – Maximum number of seconds
to wait for the route.

• force (Boolean) – True to force asking for the route, False otherwise. Only for
Zigbee.

Returns

Tuple containing route data:

658 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• status (TransmitStatus): The transmit status.

• Tuple with route data (None if the route was not read in the provided timeout):

– source (RemoteXBeeDevice): The source node of the route.

– destination (RemoteXBeeDevice): The destination node of the route.

– hops (List): List of intermediate nodes (RemoteXBeeDevice) ordered from
closest to source to closest to destination node (source and destination not in-
cluded).

Return type Tuple

get_sync_ops_timeout()
Returns the serial port read timeout.

Returns Serial port read timeout in seconds.

Return type Integer

get_xbee_device_callbacks()
Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee to get its callbacks. These callbacks
are executed before user callbacks.

Returns PacketReceived

has_explicit_packets()
Returns if there are pending explicit packets to read. This does not include non-explicit packets.

Returns True if there are pending packets, False otherwise.

Return type Boolean

See also:

XBeeDevice.has_packets()

has_packets()
Returns if there are pending packets to read. This does not include explicit packets.

Returns True if there are pending packets, False otherwise.

Return type Boolean

See also:

XBeeDevice.has_explicit_packets()

is_apply_changes_enabled()
Returns whether apply changes flag is enabled.

Returns True if apply changes flag is enabled, False otherwise.

Return type Boolean

is_open()
Returns whether this XBee is open.

2.6. API reference 659



XBee Python Library Documentation, Release 1.4.0

Returns Boolean. True if this XBee is open, False otherwise.

is_remote()
Override method.

See also:

AbstractXBeeDevice.is_remote()

log
Returns the XBee logger.

Returns The XBee device logger.

Return type Logger

open(force_settings=False)
Opens the communication with the XBee and loads information about it.

Parameters force_settings (Boolean, optional, default=`False`) –
True to open the device ensuring/forcing that the specified serial settings are applied
even if the current configuration is different, False to open the device with the current
configuration.

Raises

• TimeoutException – If there is any problem with the communication.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the XBee is already opened.

operating_mode
Returns the operating mode of this XBee.

Returns OperatingMode. This XBee operating mode.

reachable
Returns whether the XBee is reachable.

Returns True if the device is reachable, False otherwise.

Return type Boolean

read_device_info(init=True, fire_event=True)
Updates all instance parameters reading them from the XBee.

Parameters

• init (Boolean, optional, default=`True`) – If False only not initial-
ized parameters are read, all if True.

• fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

660 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.is_device_info_complete()

read_io_sample()
Returns an IO sample from the XBee containing the value of all enabled digital IO and analog input
channels.

Returns IO sample read from the XBee.

Return type IOSample

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOSample

reset()
Override method.

See also:

AbstractXBeeDevice.reset()

scan_counter
Returns the scan counter for this node.

Returns The scan counter for this node.

Return type Integer

send_bluetooth_data(data)
Sends the given data to the Bluetooth interface using a User Data Relay frame.

Parameters data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If there is any problem sending the data.

2.6. API reference 661



XBee Python Library Documentation, Release 1.4.0

See also:

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

send_micropython_data(data)
Sends the given data to the MicroPython interface using a User Data Relay frame.

Parameters data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If there is any problem sending the data.

See also:

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

send_packet(packet, sync=False)
Sends the packet and waits for the response. The packet to send is escaped depending on the current
operating mode.

This method can be synchronous or asynchronous.

If synchronous, this method discards all response packets until it finds the one that has the appropriate
frame ID, that is, the sent packet’s frame ID.

If asynchronous, this method does not wait for any response and returns None.

Parameters

• packet (XBeePacket) – The packet to send.

• sync (Boolean) – True to wait for the response of the sent packet and return it,
False otherwise.

Returns

Response packet if sync is True, None otherwise.

Return type XBeePacket

Raises

• TimeoutException – If sync is True and the response packet for the sent one
cannot be read.

• InvalidOperatingModeException – If the XBee operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the packet listener is not running or the XBee’s communica-
tion interface is closed.

See also:

662 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

XBeePacket

send_packet_sync_and_get_response(packet_to_send, timeout=None)
Sends the packet and waits for its corresponding response.

Parameters

• packet_to_send (XBeePacket) – The packet to transmit.

• timeout (Integer, optional, default=`None`) – Number of seconds
to wait. -1 to wait indefinitely.

Returns Received response packet.

Return type XBeePacket

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TimeoutException – If response is not received in the configured timeout.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBeePacket

send_user_data_relay(local_interface, data)
Sends the given data to the given XBee local interface.

Parameters

• local_interface (XBeeLocalInterface) – Destination XBee local inter-
face.

• data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ValueError – If local_interface is None.

• XBeeException – If there is any problem sending the User Data Relay.

See also:

XBeeLocalInterface

serial_port
Returns the serial port associated to the XBee, if any.

Returns

Serial port of the XBee. None if the local XBee does not use serial communication.

2.6. API reference 663



XBee Python Library Documentation, Release 1.4.0

Return type XBeeSerialPort

See also:

XBeeSerialPort

set_16bit_addr(value)
Sets the 16-bit address of the XBee.

Parameters value (XBee16BitAddress) – New 16-bit address of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If the protocol is not 802.15.4.

set_api_output_mode(api_output_mode)
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

Parameters api_output_mode (APIOutputMode) – New API output mode.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputMode

set_api_output_mode_value(api_output_mode)
Sets the API output mode of the XBee.

Parameters api_output_mode (Integer) – New API output mode op-
tions. Calculate this value using the method APIOutputModeBit.
calculate_api_output_mode_value() with a set of APIOutputModeBit.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

664 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputModeBit

set_dio_change_detection(io_lines_set)
Sets the digital IO lines to be monitored and sampled whenever their status changes. A None set of lines
disables this feature.

Parameters io_lines_set – Set of IOLine.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

set_dio_value(io_line, io_value)
Sets the digital value (high or low) to the provided IO line.

Parameters

• io_line (IOLine) – Digital IO line to sets its value.

• io_value (IOValue) – IO value to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOValue

2.6. API reference 665



XBee Python Library Documentation, Release 1.4.0

set_io_configuration(io_line, io_mode)
Sets the configuration of the provided IO line.

Parameters

• io_line (IOLine) – IO line to configure.

• io_mode (IOMode) – IO mode to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

get_io_configuration()

set_io_sampling_rate(rate)
Sets the IO sampling rate of the XBee in seconds. A sample rate of 0 means the IO sampling feature is
disabled.

Parameters rate (Integer) – New IO sampling rate of the XBee in seconds.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

get_io_sampling_rate()

set_node_id(node_id)
Sets the node identifier (‘NI‘) value of the XBee.

Parameters node_id (String) – New node identifier (‘NI’) of the XBee.

Raises

• ValueError – If node_id is None or its length is greater than 20.

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

666 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

set_parameter(parameter, value, apply=None)
Override.

See: AbstractXBeeDevice.set_parameter()

set_power_level(power_level)
Sets the power level of the XBee.

Parameters power_level (PowerLevel) – New power level of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

PowerLevel

get_power_level()

set_pwm_duty_cycle(io_line, cycle)
Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

Parameters

• io_line (IOLine) – IO Line to be assigned.

• cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If the given IO line does not have PWM capability or cycle is not
between 0 and 100.

See also:

IOLine

IOMode.PWM

2.6. API reference 667



XBee Python Library Documentation, Release 1.4.0

set_sync_ops_timeout(sync_ops_timeout)
Sets the serial port read timeout.

Parameters sync_ops_timeout (Integer) – Read timeout in seconds.

update_bluetooth_password(new_password)
Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

Parameters new_password (String) – New Bluetooth password.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

update_device_data_from(device)
Updates the current node information with provided data. This is only for internal use.

Parameters device (AbstractXBeeDevice) – XBee to get the data from.

Returns True if the node data has been updated, False otherwise.

Return type Boolean

update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None,
timeout=None, progress_callback=None)

Performs a firmware update operation of the XBee.

Parameters

• xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

• xbee_firmware_file (String, optional, default=`None`) – Lo-
cation of the XBee binary firmware file.

• bootloader_firmware_file (String, optional,
default=`None`) – Location of the bootloader binary firmware file.

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the update process (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to to receive progress information. Receives two arguments:

– The current update task as a String

– The current update task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• OperationNotSupportedException – If XBee does not support firmware
update.

• FirmwareUpdateException – If there is any error during the firmware update.

668 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

write_changes()
Writes configurable parameter values to the non-volatile memory of the XBee so that parameter modifi-
cations persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by subsequent use of this method.

If changes are made without writing them, the XBee reverts back to previously saved parameters the next
time the module is powered-on.

Writing the parameter modifications does not mean those values are immediately applied, this depends on
the status of the ‘apply configuration changes’ option. Use method is_apply_changes_enabled()
to get its status and enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

class digi.xbee.devices.CellularDevice(port=None, baud_rate=None,
data_bits=<sphinx.ext.autodoc.importer._MockObject
object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject
object>, parity=<sphinx.ext.autodoc.importer._MockObject
object>, flow_control=<FlowControl.NONE:
None>, _sync_ops_timeout=4, comm_iface=None)

Bases: digi.xbee.devices.IPDevice

This class represents a local Cellular device.

Class constructor. Instantiates a new CellularDevice with the provided parameters.

Parameters

• port (String) – Serial port identifier. Depends on operating system. e.g.
‘/dev/ttyUSB0’ on ‘GNU/Linux’ or ‘COM3’ on Windows.

• baud_rate (Integer) – Serial port baud rate.

• (Integer, default (_sync_ops_timeout) – serial.EIGHTBITS): Port
bitsize.

• (Integer, default – serial.STOPBITS_ONE): Port stop bits.

• (Character, default (parity) – serial.PARITY_NONE): Port parity.

• (Integer, default – FlowControl.NONE): Port flow control.

• (Integer, default – 3): Read timeout (in seconds).

• comm_iface (XBeeCommunicationInterface) – Communication interface.

Raises All exceptions raised by XBeeDevice.__init__() constructor.

See also:

XBeeDevice

XBeeDevice.__init__()

2.6. API reference 669



XBee Python Library Documentation, Release 1.4.0

open(force_settings=False)
Override.

See also:

XBeeDevice.open()

get_protocol()
Override.

See also:

XBeeDevice.get_protocol()

is_device_info_complete()
Override.

See also:

AbstractXBeeDevice.is_device_info_complete()

is_connected()
Returns whether the device is connected to the Internet.

Returns True if connected to the Internet, False otherwise.

Return type Boolean

Raises

• TimeoutException – If there is a timeout getting the association indication status.

• XBeeException – If there is any other XBee related exception.

get_cellular_ai_status()
Returns the current association status of this Cellular device.

It indicates occurrences of errors during the modem initialization and connection.

Returns

The association indication status of the Cellular device.

Return type CellularAssociationIndicationStatus

Raises

• TimeoutException – If there is a timeout getting the association indication status.

• XBeeException – If there is any other XBee related exception.

add_sms_callback(callback)
Adds a callback for the event SMSReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The data received as an SMSMessage

670 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

del_sms_callback(callback)
Deletes a callback for the callback list of SMSReceived event.

Parameters callback (Function) – The callback to delete.

get_imei_addr()
Returns the IMEI address of this Cellular device.

To refresh this value use the method CellularDevice.read_device_info().

Returns The IMEI address of this Cellular device.

Return type XBeeIMEIAddress

send_sms(phone_number, data)
Sends the provided SMS message to the given phone number.

This method blocks until a success or error response arrives or the configured receive timeout expires.

For non-blocking operations use the method CellularDevice.send_sms_async().

Parameters

• phone_number (String) – The phone number to send the SMS to.

• data (String) – Text of the SMS.

Raises

• ValueError – If phone_number or data is None.

• OperationNotSupportedException – If the device is remote.

• TimeoutException – If there is a timeout sending the SMS.

• XBeeException – If there is any other XBee related exception.

send_sms_async(phone_number, data)
Sends asynchronously the provided SMS to the given phone number.

Asynchronous transmissions do not wait for answer or for transmit status packet.

Parameters

• phone_number (String) – The phone number to send the SMS to.

• data (String) – Text of the SMS.

Raises

• ValueError – If phone_number or data is None.

• OperationNotSupportedException – If the device is remote.

• XBeeException – If there is any other XBee related exception.

get_sockets_list()
Returns a list with the IDs of all active (open) sockets.

Returns

list with the IDs of all active (open) sockets, or empty list if there is not any active
socket.

Return type List

Raises

2.6. API reference 671



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TimeoutException – If the response is not received before the read timeout ex-
pires.

• XBeeException – If the XBee’s communication interface is closed.

get_socket_info(socket_id)
Returns the information of the socket with the given socket ID.

Parameters socket_id (Integer) – ID of the socket.

Returns

The socket information, or None if the socket with that ID does not exist.

Return type SocketInfo

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TimeoutException – If the response is not received before the read timeout ex-
pires.

• XBeeException – If the XBee’s communication interface is closed.

See also:

SocketInfo

get_64bit_addr()
Deprecated.

Cellular protocol does not have an associated 64-bit address.

add_io_sample_received_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

del_io_sample_received_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

set_dio_change_detection(io_lines_set)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

get_io_sampling_rate()
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

set_io_sampling_rate(rate)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

672 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_node_id()
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

set_node_id(node_id)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

get_power_level()
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

set_power_level(power_level)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

add_bluetooth_data_received_callback(callback)
Adds a callback for the event BluetoothDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The Bluetooth data as a Bytearray.

add_data_received_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

add_expl_data_received_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

add_fs_frame_received_callback(callback)
Adds a callback for the event FileSystemFrameReceived.

Parameters callback (Function) – The callback. Receives four arguments.

• Source (AbstractXBeeDevice): The node that sent the file system frame.

• Frame id (Integer): The received frame id.

• Command (FSCmd): The file system command.

• Receive options (Integer): Bitfield indicating receive options.

See also:

AbstractXBeeDevice

FSCmd

ReceiveOptions

add_ip_data_received_callback(callback)
Adds a callback for the event IPDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The data received as an IPMessage

2.6. API reference 673



XBee Python Library Documentation, Release 1.4.0

add_micropython_data_received_callback(callback)
Adds a callback for the event MicroPythonDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The MicroPython data as a Bytearray.

add_modem_status_received_callback(callback)
Adds a callback for the event ModemStatusReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The modem status as a ModemStatus.

add_packet_received_callback(callback)
Adds a callback for the event PacketReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The received packet as a XBeeAPIPacket.

add_route_received_callback(callback)
Adds a callback for the event RouteReceived. This works for Zigbee and Digimesh devices.

Parameters callback (Function) – The callback. Receives three arguments.

• source (XBeeDevice): The source node.

• destination (RemoteXBeeDevice): The destination node.

• hops (List): List of intermediate hops from closest to source to closest to destina-
tion (RemoteXBeeDevice).

See also:

XBeeDevice.del_route_received_callback()

add_socket_data_received_callback(callback)
Adds a callback for the event SocketDataReceived.

Parameters callback (Function) – The callback. Receives two arguments.

• The socket ID as an Integer.

• The data received as Bytearray.

add_socket_data_received_from_callback(callback)
Adds a callback for the event SocketDataReceivedFrom.

Parameters callback (Function) – The callback. Receives three arguments.

• The socket ID as an Integer.

• Source address pair (host, port) where host is a string representing an IPv4 ad-
dress like ‘100.50.200.5’, and port is an integer.

• The data received as Bytearray.

add_socket_state_received_callback(callback)
Adds a callback for the event SocketStateReceived.

Parameters callback (Function) – The callback. Receives two arguments.

• The socket ID as an Integer.

674 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• The state received as a SocketState.

add_user_data_relay_received_callback(callback)
Adds a callback for the event RelayDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The relay data as a UserDataRelayMessage.

apply_changes()
Applies changes via ‘AC’ command.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

apply_profile(profile_path, timeout=None, progress_callback=None)
Applies the given XBee profile to the XBee.

Parameters

• profile_path (String) – Path of the XBee profile file to apply.

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the apply profile (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to receive progress information. Receives two arguments:

– The current apply profile task as a String

– The current apply profile task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• UpdateProfileException – If there is any error applying the XBee profile.

close()
Closes the communication with the XBee.

This method guarantees that all threads running are stopped and the serial port is closed.

comm_iface
Returns the hardware interface associated to the XBee.

Returns Hardware interface of the XBee.

Return type XBeeCommunicationInterface

See also:

XBeeCommunicationInterface

2.6. API reference 675



XBee Python Library Documentation, Release 1.4.0

classmethod create_xbee_device(comm_port_data)
Creates and returns an XBeeDevice from data of the port to which is connected.

Parameters

• comm_port_data (Dictionary) – Dictionary with all comm port data needed.

• dictionary keys are (The) –

“baudRate” –> Baud rate.
”port” –> Port number.
”bitSize” –> Bit size.
”stopBits” –> Stop bits.
”parity” –> Parity.
”flowControl” –> Flow control.
”timeout” for –> Timeout for synchronous operations (in seconds).

Returns XBee object created.

Return type XBeeDevice

Raises SerialException – If the port to open does not exist or is already opened.

See also:

XBeeDevice

del_bluetooth_data_received_callback(callback)
Deletes a callback for the callback list of BluetoothDataReceived event.

Parameters callback (Function) – The callback to delete.

del_data_received_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

del_expl_data_received_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

del_fs_frame_received_callback(callback)
Deletes a callback for the callback list of FileSystemFrameReceived event.

Parameters callback (Function) – The callback to delete.

del_ip_data_received_callback(callback)
Deletes a callback for the callback list of IPDataReceived event.

Parameters callback (Function) – The callback to delete.

del_micropython_data_received_callback(callback)
Deletes a callback for the callback list of MicroPythonDataReceived event.

Parameters callback (Function) – The callback to delete.

del_modem_status_received_callback(callback)
Deletes a callback for the callback list of ModemStatusReceived event.

Parameters callback (Function) – The callback to delete.

676 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

del_packet_received_callback(callback)
Deletes a callback for the callback list of PacketReceived event.

Parameters callback (Function) – The callback to delete.

del_route_received_callback(callback)
Deletes a callback for the callback list of RouteReceived event.

Parameters callback (Function) – The callback to delete.

See also:

XBeeDevice.add_route_received_callback()

del_socket_data_received_callback(callback)
Deletes a callback for the callback list of SocketDataReceived event.

Parameters callback (Function) – The callback to delete.

del_socket_data_received_from_callback(callback)
Deletes a callback for the callback list of SocketDataReceivedFrom event.

Parameters callback (Function) – The callback to delete.

del_socket_state_received_callback(callback)
Deletes a callback for the callback list of SocketStateReceived event.

Parameters callback (Function) – The callback to delete.

del_user_data_relay_received_callback(callback)
Deletes a callback for the callback list of RelayDataReceived event.

Parameters callback (Function) – The callback to delete.

determine_protocol(hardware_version, firmware_version)
Determines the XBee protocol based on the given hardware and firmware versions.

Parameters

• hardware_version (Integer) – Hardware version to get its protocol.

• firmware_version (Bytearray) – Firmware version to get its protocol.

Returns

XBee protocol corresponding to the given hardware and firmware versions.

Return type XBeeProtocol

disable_bluetooth()
Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

2.6. API reference 677



XBee Python Library Documentation, Release 1.4.0

enable_apply_changes(value)
Sets apply changes flag.

Parameters value (Boolean) – True to enable apply changes flag, False to disable it.

enable_bluetooth()
Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth password if not done previously. Use
method AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

execute_command(parameter, value=None, apply=None)
Executes the provided command.

Parameters

• (String or (parameter) – class: .ATStringCommand): AT command to exe-
cute.

• value (bytearray, optional, default=`None`) – Command value (if
any).

• apply (Boolean, optional, default=`None`) – True to ap-
ply changes in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

flush_queues()
Flushes the packets queue.

678 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_16bit_addr()
Deprecated.

This protocol does not have an associated 16-bit address.

get_adc_value(io_line)
Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so, use AbstractXBeeDevice.
set_io_configuration() and IOMode.ADC.

Parameters io_line (IOLine) – IO line to get its ADC value.

Returns Analog value corresponding to the provided IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

set_io_configuration()

get_api_output_mode()
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the serial interface of the XBee.

Returns API output mode of the XBee.

Return type APIOutputMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

APIOutputMode

2.6. API reference 679



XBee Python Library Documentation, Release 1.4.0

get_api_output_mode_value()
Returns the API output mode of the XBee.

The API output mode determines the format that the received data is output through the serial interface of
the XBee.

Returns the parameter value.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

digi.xbee.models.mode.APIOutputModeBit

get_bluetooth_mac_addr()
Reads and returns the EUI-48 Bluetooth MAC address of this XBee following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

Returns The Bluetooth MAC address.

Return type String

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

get_current_frame_id()
Returns the last used frame ID.

Returns Last used frame ID.

Return type Integer

get_dest_address()
Deprecated.

Operation not supported in this protocol. Use IPDevice.get_dest_ip_addr() instead. This
method raises an AttributeError.

get_dest_ip_addr()
Returns the destination IP address.

680 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns Configured destination IP address.

Return type ipaddress.IPv4Address

Raises

• TimeoutException – If there is a timeout getting the destination IP address.

• XBeeException – If there is any other XBee related exception.

See also:

ipaddress.IPv4Address

get_dio_value(io_line)
Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O. To do so, use
AbstractXBeeDevice.set_io_configuration().

Parameters io_line (IOLine) – the DIO line to gets its digital value.

Returns current value of the provided IO line.

Return type IOValue

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

IOValue

set_io_configuration()

get_file_manager()
Returns the file system manager for the XBee.

Returns The file system manager.

Return type FileSystemManager

Raises FileSystemNotSupportedException – If the XBee does not support filesys-
tem.

get_firmware_version()
Returns the firmware version of the XBee.

Returns Firmware version of the XBee.

2.6. API reference 681



XBee Python Library Documentation, Release 1.4.0

Return type Bytearray

get_hardware_version()
Returns the hardware version of the XBee.

Returns Hardware version of the XBee.

Return type HardwareVersion

See also:

HardwareVersion

get_io_configuration(io_line)
Returns the configuration of the provided IO line.

Parameters io_line (IOLine) – IO line to get its configuration.

Returns IO mode of the IO line provided.

Return type IOMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

set_io_configuration()

get_ip_addr()
Returns the IP address of this IP XBee.

To refresh this value use the method IPDevice.read_device_info().

Returns The IP address of this IP device.

Return type ipaddress.IPv4Address

See also:

ipaddress.IPv4Address

get_network()
Deprecated.

This protocol does not support the network functionality.

682 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_next_frame_id()
Returns the next frame ID of the XBee.

Returns The next frame ID of the XBee.

Return type Integer

get_pan_id()
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

get_parameter(parameter, parameter_value=None, apply=None)
Override.

See also:

AbstractXBeeDevice.get_parameter()

get_pwm_duty_cycle(io_line)
Returns the PWM duty cycle in % corresponding to the provided IO line.

Parameters io_line (IOLine) – IO line to get its PWM duty cycle.

Returns PWM duty cycle of the given IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If io_line has no PWM capability.

See also:

IOLine

get_role()
Gets the XBee role.

Returns the role of the XBee.

Return type Role

See also:

Role

2.6. API reference 683



XBee Python Library Documentation, Release 1.4.0

get_route_to_node(remote, timeout=10, force=True)
Gets the route from this XBee to the given remote node.

For Zigbee:

• ‘AR’ parameter of the local node must be configured with a value different from ‘FF’.

• Set force to True to force the Zigbee remote node to return its route independently of the local
node configuration as high or low RAM concentrator (‘DO’ of the local value)

Parameters

• remote (RemoteXBeeDevice) – The remote node.

• timeout (Float, optional, default=10) – Maximum number of seconds
to wait for the route.

• force (Boolean) – True to force asking for the route, False otherwise. Only for
Zigbee.

Returns

Tuple containing route data:

• status (TransmitStatus): The transmit status.

• Tuple with route data (None if the route was not read in the provided timeout):

– source (RemoteXBeeDevice): The source node of the route.

– destination (RemoteXBeeDevice): The destination node of the route.

– hops (List): List of intermediate nodes (RemoteXBeeDevice) ordered from
closest to source to closest to destination node (source and destination not in-
cluded).

Return type Tuple

get_sync_ops_timeout()
Returns the serial port read timeout.

Returns Serial port read timeout in seconds.

Return type Integer

get_xbee_device_callbacks()
Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee to get its callbacks. These callbacks
are executed before user callbacks.

Returns PacketReceived

has_explicit_packets()
Returns if there are pending explicit packets to read. This does not include non-explicit packets.

Returns True if there are pending packets, False otherwise.

Return type Boolean

See also:

XBeeDevice.has_packets()

684 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

has_packets()
Returns if there are pending packets to read. This does not include explicit packets.

Returns True if there are pending packets, False otherwise.

Return type Boolean

See also:

XBeeDevice.has_explicit_packets()

is_apply_changes_enabled()
Returns whether apply changes flag is enabled.

Returns True if apply changes flag is enabled, False otherwise.

Return type Boolean

is_open()
Returns whether this XBee is open.

Returns Boolean. True if this XBee is open, False otherwise.

is_remote()
Override method.

See also:

AbstractXBeeDevice.is_remote()

log
Returns the XBee logger.

Returns The XBee device logger.

Return type Logger

operating_mode
Returns the operating mode of this XBee.

Returns OperatingMode. This XBee operating mode.

reachable
Returns whether the XBee is reachable.

Returns True if the device is reachable, False otherwise.

Return type Boolean

read_data(timeout=None)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

read_data_from(remote_xbee, timeout=None)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

2.6. API reference 685



XBee Python Library Documentation, Release 1.4.0

read_device_info(init=True, fire_event=True)
Updates all instance parameters reading them from the XBee.

Parameters

• init (Boolean, optional, default=`True`) – If False only not initial-
ized parameters are read, all if True.

• fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.is_device_info_complete()

read_io_sample()
Returns an IO sample from the XBee containing the value of all enabled digital IO and analog input
channels.

Returns IO sample read from the XBee.

Return type IOSample

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOSample

read_ip_data(timeout=3)
Reads new IP data received by this XBee during the provided timeout.

This method blocks until new IP data is received or the provided timeout expires.

For non-blocking operations, register a callback and use the method IPDevice.
add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming IP data at a specific port. Use the
method IPDevice.start_listening() for that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

686 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Parameters timeout (Integer, optional) – The time to wait for new IP data in sec-
onds.

Returns IP message, None if this device did not receive new data.

Return type IPMessage

Raises ValueError – If timeout is less than 0.

read_ip_data_from(ip_addr, timeout=3)
Reads new IP data received from the given IP address during the provided timeout.

This method blocks until new IP data from the provided IP address is received or the given timeout expires.

For non-blocking operations, register a callback and use the method IPDevice.
add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming IP data at a specific port. Use the
method IPDevice.start_listening() for that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

Parameters

• ip_addr (ipaddress.IPv4Address) – The IP address to read data from.

• timeout (Integer, optional) – The time to wait for new IP data in seconds.

Returns

IP message, None if this device did not receive new data from the provided IP address.

Return type IPMessage

Raises ValueError – If timeout is less than 0.

reset()
Override method.

See also:

AbstractXBeeDevice.reset()

scan_counter
Returns the scan counter for this node.

Returns The scan counter for this node.

Return type Integer

send_bluetooth_data(data)
Sends the given data to the Bluetooth interface using a User Data Relay frame.

Parameters data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If there is any problem sending the data.

See also:

2.6. API reference 687



XBee Python Library Documentation, Release 1.4.0

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

send_data(remote_xbee, data, transmit_options=0)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

send_data_async(remote_xbee, data, transmit_options=0)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

send_data_broadcast(data, transmit_options=0)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

send_ip_data(ip_addr, dest_port, protocol, data, close_socket=False)
Sends the provided IP data to the given IP address and port using the specified IP protocol. For TCP and
TCP SSL protocols, you can also indicate if the socket should be closed when data is sent.

This method blocks until a success or error response arrives or the configured receive timeout expires.

Parameters

• ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

• dest_port (Integer) – The destination port of the transmission.

• protocol (IPProtocol) – The IP protocol used for the transmission.

• data (String or Bytearray) – The IP data to be sent.

• close_socket (Boolean, optional, default=`False`) – True to
close the socket just after the transmission. False to keep it open.

Raises

• ValueError – If ip_addr or protocol or data is None or dest_port is less than 0 or
greater than 65535.

• OperationNotSupportedException – If the XBee is remote.

• TimeoutException – If there is a timeout sending the data.

• XBeeException – If there is any other XBee related exception.

send_ip_data_async(ip_addr, dest_port, protocol, data, close_socket=False)
Sends the provided IP data to the given IP address and port asynchronously using the specified IP protocol.
For TCP and TCP SSL protocols, you can also indicate if the socket should be closed when data is sent.

Asynchronous transmissions do not wait for answer from the remote device or for transmit status packet.

Parameters

• ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

• dest_port (Integer) – The destination port of the transmission.

• protocol (IPProtocol) – The IP protocol used for the transmission.

• data (String or Bytearray) – The IP data to be sent.

• close_socket (Boolean, optional, default=`False`) – True to
close the socket just after the transmission. False to keep it open.

688 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Raises

• ValueError – If ip_addr or protocol or data is None or dest_port is less than 0 or
greater than 65535.

• OperationNotSupportedException – If the XBee is remote.

• XBeeException – If there is any other XBee related exception.

send_ip_data_broadcast(dest_port, data)
Sends the provided IP data to all clients.

This method blocks until a success or error transmit status arrives or the configured receive timeout ex-
pires.

Parameters

• dest_port (Integer) – The destination port of the transmission.

• data (String or Bytearray) – The IP data to be sent.

Raises

• ValueError – If data is None or dest_port is less than 0 or greater than 65535.

• TimeoutException – If there is a timeout sending the data.

• XBeeException – If there is any other XBee related exception.

send_micropython_data(data)
Sends the given data to the MicroPython interface using a User Data Relay frame.

Parameters data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If there is any problem sending the data.

See also:

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

send_packet(packet, sync=False)
Sends the packet and waits for the response. The packet to send is escaped depending on the current
operating mode.

This method can be synchronous or asynchronous.

If synchronous, this method discards all response packets until it finds the one that has the appropriate
frame ID, that is, the sent packet’s frame ID.

If asynchronous, this method does not wait for any response and returns None.

Parameters

• packet (XBeePacket) – The packet to send.

• sync (Boolean) – True to wait for the response of the sent packet and return it,
False otherwise.

2.6. API reference 689



XBee Python Library Documentation, Release 1.4.0

Returns

Response packet if sync is True, None otherwise.

Return type XBeePacket

Raises

• TimeoutException – If sync is True and the response packet for the sent one
cannot be read.

• InvalidOperatingModeException – If the XBee operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the packet listener is not running or the XBee’s communica-
tion interface is closed.

See also:

XBeePacket

send_packet_sync_and_get_response(packet_to_send, timeout=None)
Sends the packet and waits for its corresponding response.

Parameters

• packet_to_send (XBeePacket) – The packet to transmit.

• timeout (Integer, optional, default=`None`) – Number of seconds
to wait. -1 to wait indefinitely.

Returns Received response packet.

Return type XBeePacket

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TimeoutException – If response is not received in the configured timeout.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBeePacket

send_user_data_relay(local_interface, data)
Sends the given data to the given XBee local interface.

Parameters

• local_interface (XBeeLocalInterface) – Destination XBee local inter-
face.

• data (Bytearray) – Data to send.

Raises

690 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ValueError – If local_interface is None.

• XBeeException – If there is any problem sending the User Data Relay.

See also:

XBeeLocalInterface

serial_port
Returns the serial port associated to the XBee, if any.

Returns

Serial port of the XBee. None if the local XBee does not use serial communication.

Return type XBeeSerialPort

See also:

XBeeSerialPort

set_16bit_addr(value)
Sets the 16-bit address of the XBee.

Parameters value (XBee16BitAddress) – New 16-bit address of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If the protocol is not 802.15.4.

set_api_output_mode(api_output_mode)
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

Parameters api_output_mode (APIOutputMode) – New API output mode.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

2.6. API reference 691



XBee Python Library Documentation, Release 1.4.0

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputMode

set_api_output_mode_value(api_output_mode)
Sets the API output mode of the XBee.

Parameters api_output_mode (Integer) – New API output mode op-
tions. Calculate this value using the method APIOutputModeBit.
calculate_api_output_mode_value() with a set of APIOutputModeBit.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputModeBit

set_dest_address(addr)
Deprecated.

Operation not supported in this protocol. Use IPDevice.set_dest_ip_addr() instead. This
method raises an AttributeError.

set_dest_ip_addr(address)
Sets the destination IP address.

Parameters address (ipaddress.IPv4Address) – Destination IP address.

Raises

• ValueError – If address is None.

• TimeoutException – If there is a timeout setting the destination IP address.

• XBeeException – If there is any other XBee related exception.

See also:

ipaddress.IPv4Address

692 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

set_dio_value(io_line, io_value)
Sets the digital value (high or low) to the provided IO line.

Parameters

• io_line (IOLine) – Digital IO line to sets its value.

• io_value (IOValue) – IO value to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOValue

set_io_configuration(io_line, io_mode)
Sets the configuration of the provided IO line.

Parameters

• io_line (IOLine) – IO line to configure.

• io_mode (IOMode) – IO mode to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

get_io_configuration()

set_pan_id(value)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

set_parameter(parameter, value, apply=None)
Override.

See: AbstractXBeeDevice.set_parameter()

2.6. API reference 693



XBee Python Library Documentation, Release 1.4.0

set_pwm_duty_cycle(io_line, cycle)
Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

Parameters

• io_line (IOLine) – IO Line to be assigned.

• cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If the given IO line does not have PWM capability or cycle is not
between 0 and 100.

See also:

IOLine

IOMode.PWM

set_sync_ops_timeout(sync_ops_timeout)
Sets the serial port read timeout.

Parameters sync_ops_timeout (Integer) – Read timeout in seconds.

start_listening(src_port)
Starts listening for incoming IP transmissions in the provided port.

Parameters src_port (Integer) – Port to listen for incoming transmissions.

Raises

• ValueError – If source_port is less than 0 or greater than 65535.

• TimeoutException – If there is a timeout setting the source port.

• XBeeException – If there is any other XBee related exception.

stop_listening()
Stops listening for incoming IP transmissions.

Raises

• TimeoutException – If there is a timeout processing the operation.

• XBeeException – If there is any other XBee related exception.

update_bluetooth_password(new_password)
Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

Parameters new_password (String) – New Bluetooth password.

Raises

694 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

update_device_data_from(device)
Updates the current node information with provided data. This is only for internal use.

Parameters device (AbstractXBeeDevice) – XBee to get the data from.

Returns True if the node data has been updated, False otherwise.

Return type Boolean

update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None,
timeout=None, progress_callback=None)

Performs a firmware update operation of the XBee.

Parameters

• xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

• xbee_firmware_file (String, optional, default=`None`) – Lo-
cation of the XBee binary firmware file.

• bootloader_firmware_file (String, optional,
default=`None`) – Location of the bootloader binary firmware file.

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the update process (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to to receive progress information. Receives two arguments:

– The current update task as a String

– The current update task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• OperationNotSupportedException – If XBee does not support firmware
update.

• FirmwareUpdateException – If there is any error during the firmware update.

write_changes()
Writes configurable parameter values to the non-volatile memory of the XBee so that parameter modifi-
cations persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by subsequent use of this method.

If changes are made without writing them, the XBee reverts back to previously saved parameters the next
time the module is powered-on.

Writing the parameter modifications does not mean those values are immediately applied, this depends on
the status of the ‘apply configuration changes’ option. Use method is_apply_changes_enabled()

2.6. API reference 695



XBee Python Library Documentation, Release 1.4.0

to get its status and enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

class digi.xbee.devices.LPWANDevice(port=None, baud_rate=None,
data_bits=<sphinx.ext.autodoc.importer._MockObject
object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject
object>, parity=<sphinx.ext.autodoc.importer._MockObject
object>, flow_control=<FlowControl.NONE: None>,
_sync_ops_timeout=4, comm_iface=None)

Bases: digi.xbee.devices.CellularDevice

This class provides common functionality for XBee Low-Power Wide-Area Network devices.

Class constructor. Instantiates a new LPWANDevice with the provided parameters.

Parameters

• port (String) – Serial port identifier. Depends on operating system. e.g.
‘/dev/ttyUSB0’ on ‘GNU/Linux’ or ‘COM3’ on Windows.

• baud_rate (Integer) – Serial port baud rate.

• (Integer, default (_sync_ops_timeout) – serial.EIGHTBITS): Port
bitsize.

• (Integer, default – serial.STOPBITS_ONE): Port stop bits.

• (Character, default (parity) – serial.PARITY_NONE): Port parity.

• (Integer, default – FlowControl.NONE): Port flow control.

• (Integer, default – 3): Read timeout (in seconds).

• comm_iface (XBeeCommunicationInterface) – Communication interface.

Raises All exceptions raised by XBeeDevice.__init__() constructor.

See also:

CellularDevice

CellularDevice.__init__()

send_ip_data(ip_addr, dest_port, protocol, data, close_socket=False)
Sends the provided IP data to the given IP address and port using the specified IP protocol.

This method blocks until a success or error response arrives or the configured receive timeout expires.

Parameters

• ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

• dest_port (Integer) – The destination port of the transmission.

696 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• protocol (IPProtocol) – The IP protocol used for the transmission.

• data (String or Bytearray) – The IP data to be sent.

• close_socket (Boolean, optional) – Must be False.

Raises ValueError – If protocol is not UDP.

send_ip_data_async(ip_addr, dest_port, protocol, data, close_socket=False)
Sends the provided IP data to the given IP address and port asynchronously using the specified IP protocol.

Asynchronous transmissions do not wait for answer from the remote device or for transmit status packet.

Parameters

• ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

• dest_port (Integer) – The destination port of the transmission.

• protocol (IPProtocol) – The IP protocol used for the transmission.

• data (String or Bytearray) – The IP data to be sent.

• close_socket (Boolean, optional) – Must be False.

Raises ValueError – If protocol is not UDP.

add_sms_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

del_sms_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

send_sms(phone_number, data)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

send_sms_async(phone_number, data)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

add_bluetooth_data_received_callback(callback)
Adds a callback for the event BluetoothDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The Bluetooth data as a Bytearray.

add_data_received_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

add_expl_data_received_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

add_fs_frame_received_callback(callback)
Adds a callback for the event FileSystemFrameReceived.

Parameters callback (Function) – The callback. Receives four arguments.

2.6. API reference 697



XBee Python Library Documentation, Release 1.4.0

• Source (AbstractXBeeDevice): The node that sent the file system frame.

• Frame id (Integer): The received frame id.

• Command (FSCmd): The file system command.

• Receive options (Integer): Bitfield indicating receive options.

See also:

AbstractXBeeDevice

FSCmd

ReceiveOptions

add_io_sample_received_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

add_ip_data_received_callback(callback)
Adds a callback for the event IPDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The data received as an IPMessage

add_micropython_data_received_callback(callback)
Adds a callback for the event MicroPythonDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The MicroPython data as a Bytearray.

add_modem_status_received_callback(callback)
Adds a callback for the event ModemStatusReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The modem status as a ModemStatus.

add_packet_received_callback(callback)
Adds a callback for the event PacketReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The received packet as a XBeeAPIPacket.

add_route_received_callback(callback)
Adds a callback for the event RouteReceived. This works for Zigbee and Digimesh devices.

Parameters callback (Function) – The callback. Receives three arguments.

• source (XBeeDevice): The source node.

• destination (RemoteXBeeDevice): The destination node.

• hops (List): List of intermediate hops from closest to source to closest to destina-
tion (RemoteXBeeDevice).

See also:

XBeeDevice.del_route_received_callback()

698 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

add_socket_data_received_callback(callback)
Adds a callback for the event SocketDataReceived.

Parameters callback (Function) – The callback. Receives two arguments.

• The socket ID as an Integer.

• The data received as Bytearray.

add_socket_data_received_from_callback(callback)
Adds a callback for the event SocketDataReceivedFrom.

Parameters callback (Function) – The callback. Receives three arguments.

• The socket ID as an Integer.

• Source address pair (host, port) where host is a string representing an IPv4 ad-
dress like ‘100.50.200.5’, and port is an integer.

• The data received as Bytearray.

add_socket_state_received_callback(callback)
Adds a callback for the event SocketStateReceived.

Parameters callback (Function) – The callback. Receives two arguments.

• The socket ID as an Integer.

• The state received as a SocketState.

add_user_data_relay_received_callback(callback)
Adds a callback for the event RelayDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The relay data as a UserDataRelayMessage.

apply_changes()
Applies changes via ‘AC’ command.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

apply_profile(profile_path, timeout=None, progress_callback=None)
Applies the given XBee profile to the XBee.

Parameters

• profile_path (String) – Path of the XBee profile file to apply.

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the apply profile (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to receive progress information. Receives two arguments:

– The current apply profile task as a String

– The current apply profile task percentage as an Integer

2.6. API reference 699



XBee Python Library Documentation, Release 1.4.0

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• UpdateProfileException – If there is any error applying the XBee profile.

close()
Closes the communication with the XBee.

This method guarantees that all threads running are stopped and the serial port is closed.

comm_iface
Returns the hardware interface associated to the XBee.

Returns Hardware interface of the XBee.

Return type XBeeCommunicationInterface

See also:

XBeeCommunicationInterface

classmethod create_xbee_device(comm_port_data)
Creates and returns an XBeeDevice from data of the port to which is connected.

Parameters

• comm_port_data (Dictionary) – Dictionary with all comm port data needed.

• dictionary keys are (The) –

“baudRate” –> Baud rate.
”port” –> Port number.
”bitSize” –> Bit size.
”stopBits” –> Stop bits.
”parity” –> Parity.
”flowControl” –> Flow control.
”timeout” for –> Timeout for synchronous operations (in seconds).

Returns XBee object created.

Return type XBeeDevice

Raises SerialException – If the port to open does not exist or is already opened.

See also:

XBeeDevice

del_bluetooth_data_received_callback(callback)
Deletes a callback for the callback list of BluetoothDataReceived event.

Parameters callback (Function) – The callback to delete.

700 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

del_data_received_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

del_expl_data_received_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

del_fs_frame_received_callback(callback)
Deletes a callback for the callback list of FileSystemFrameReceived event.

Parameters callback (Function) – The callback to delete.

del_io_sample_received_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

del_ip_data_received_callback(callback)
Deletes a callback for the callback list of IPDataReceived event.

Parameters callback (Function) – The callback to delete.

del_micropython_data_received_callback(callback)
Deletes a callback for the callback list of MicroPythonDataReceived event.

Parameters callback (Function) – The callback to delete.

del_modem_status_received_callback(callback)
Deletes a callback for the callback list of ModemStatusReceived event.

Parameters callback (Function) – The callback to delete.

del_packet_received_callback(callback)
Deletes a callback for the callback list of PacketReceived event.

Parameters callback (Function) – The callback to delete.

del_route_received_callback(callback)
Deletes a callback for the callback list of RouteReceived event.

Parameters callback (Function) – The callback to delete.

See also:

XBeeDevice.add_route_received_callback()

del_socket_data_received_callback(callback)
Deletes a callback for the callback list of SocketDataReceived event.

Parameters callback (Function) – The callback to delete.

del_socket_data_received_from_callback(callback)
Deletes a callback for the callback list of SocketDataReceivedFrom event.

Parameters callback (Function) – The callback to delete.

del_socket_state_received_callback(callback)
Deletes a callback for the callback list of SocketStateReceived event.

Parameters callback (Function) – The callback to delete.

2.6. API reference 701



XBee Python Library Documentation, Release 1.4.0

del_user_data_relay_received_callback(callback)
Deletes a callback for the callback list of RelayDataReceived event.

Parameters callback (Function) – The callback to delete.

determine_protocol(hardware_version, firmware_version)
Determines the XBee protocol based on the given hardware and firmware versions.

Parameters

• hardware_version (Integer) – Hardware version to get its protocol.

• firmware_version (Bytearray) – Firmware version to get its protocol.

Returns

XBee protocol corresponding to the given hardware and firmware versions.

Return type XBeeProtocol

disable_bluetooth()
Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

enable_apply_changes(value)
Sets apply changes flag.

Parameters value (Boolean) – True to enable apply changes flag, False to disable it.

enable_bluetooth()
Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth password if not done previously. Use
method AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

execute_command(parameter, value=None, apply=None)
Executes the provided command.

Parameters

• (String or (parameter) – class: .ATStringCommand): AT command to exe-
cute.

702 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• value (bytearray, optional, default=`None`) – Command value (if
any).

• apply (Boolean, optional, default=`None`) – True to ap-
ply changes in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

flush_queues()
Flushes the packets queue.

get_16bit_addr()
Deprecated.

This protocol does not have an associated 16-bit address.

get_64bit_addr()
Deprecated.

Cellular protocol does not have an associated 64-bit address.

get_adc_value(io_line)
Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so, use AbstractXBeeDevice.
set_io_configuration() and IOMode.ADC.

Parameters io_line (IOLine) – IO line to get its ADC value.

Returns Analog value corresponding to the provided IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

2.6. API reference 703



XBee Python Library Documentation, Release 1.4.0

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

set_io_configuration()

get_api_output_mode()
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the serial interface of the XBee.

Returns API output mode of the XBee.

Return type APIOutputMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

APIOutputMode

get_api_output_mode_value()
Returns the API output mode of the XBee.

The API output mode determines the format that the received data is output through the serial interface of
the XBee.

Returns the parameter value.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

704 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

digi.xbee.models.mode.APIOutputModeBit

get_bluetooth_mac_addr()
Reads and returns the EUI-48 Bluetooth MAC address of this XBee following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

Returns The Bluetooth MAC address.

Return type String

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

get_cellular_ai_status()
Returns the current association status of this Cellular device.

It indicates occurrences of errors during the modem initialization and connection.

Returns

The association indication status of the Cellular device.

Return type CellularAssociationIndicationStatus

Raises

• TimeoutException – If there is a timeout getting the association indication status.

• XBeeException – If there is any other XBee related exception.

get_current_frame_id()
Returns the last used frame ID.

Returns Last used frame ID.

Return type Integer

get_dest_address()
Deprecated.

Operation not supported in this protocol. Use IPDevice.get_dest_ip_addr() instead. This
method raises an AttributeError.

get_dest_ip_addr()
Returns the destination IP address.

Returns Configured destination IP address.

Return type ipaddress.IPv4Address

Raises

• TimeoutException – If there is a timeout getting the destination IP address.

• XBeeException – If there is any other XBee related exception.

See also:

2.6. API reference 705



XBee Python Library Documentation, Release 1.4.0

ipaddress.IPv4Address

get_dio_value(io_line)
Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O. To do so, use
AbstractXBeeDevice.set_io_configuration().

Parameters io_line (IOLine) – the DIO line to gets its digital value.

Returns current value of the provided IO line.

Return type IOValue

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

IOValue

set_io_configuration()

get_file_manager()
Returns the file system manager for the XBee.

Returns The file system manager.

Return type FileSystemManager

Raises FileSystemNotSupportedException – If the XBee does not support filesys-
tem.

get_firmware_version()
Returns the firmware version of the XBee.

Returns Firmware version of the XBee.

Return type Bytearray

get_hardware_version()
Returns the hardware version of the XBee.

Returns Hardware version of the XBee.

Return type HardwareVersion

See also:

706 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

HardwareVersion

get_imei_addr()
Returns the IMEI address of this Cellular device.

To refresh this value use the method CellularDevice.read_device_info().

Returns The IMEI address of this Cellular device.

Return type XBeeIMEIAddress

get_io_configuration(io_line)
Returns the configuration of the provided IO line.

Parameters io_line (IOLine) – IO line to get its configuration.

Returns IO mode of the IO line provided.

Return type IOMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

set_io_configuration()

get_io_sampling_rate()
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

get_ip_addr()
Returns the IP address of this IP XBee.

To refresh this value use the method IPDevice.read_device_info().

Returns The IP address of this IP device.

Return type ipaddress.IPv4Address

See also:

ipaddress.IPv4Address

get_network()
Deprecated.

This protocol does not support the network functionality.

2.6. API reference 707



XBee Python Library Documentation, Release 1.4.0

get_next_frame_id()
Returns the next frame ID of the XBee.

Returns The next frame ID of the XBee.

Return type Integer

get_node_id()
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

get_pan_id()
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

get_parameter(parameter, parameter_value=None, apply=None)
Override.

See also:

AbstractXBeeDevice.get_parameter()

get_power_level()
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

get_protocol()
Override.

See also:

XBeeDevice.get_protocol()

get_pwm_duty_cycle(io_line)
Returns the PWM duty cycle in % corresponding to the provided IO line.

Parameters io_line (IOLine) – IO line to get its PWM duty cycle.

Returns PWM duty cycle of the given IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If io_line has no PWM capability.

See also:

708 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

IOLine

get_role()
Gets the XBee role.

Returns the role of the XBee.

Return type Role

See also:

Role

get_route_to_node(remote, timeout=10, force=True)
Gets the route from this XBee to the given remote node.

For Zigbee:

• ‘AR’ parameter of the local node must be configured with a value different from ‘FF’.

• Set force to True to force the Zigbee remote node to return its route independently of the local
node configuration as high or low RAM concentrator (‘DO’ of the local value)

Parameters

• remote (RemoteXBeeDevice) – The remote node.

• timeout (Float, optional, default=10) – Maximum number of seconds
to wait for the route.

• force (Boolean) – True to force asking for the route, False otherwise. Only for
Zigbee.

Returns

Tuple containing route data:

• status (TransmitStatus): The transmit status.

• Tuple with route data (None if the route was not read in the provided timeout):

– source (RemoteXBeeDevice): The source node of the route.

– destination (RemoteXBeeDevice): The destination node of the route.

– hops (List): List of intermediate nodes (RemoteXBeeDevice) ordered from
closest to source to closest to destination node (source and destination not in-
cluded).

Return type Tuple

get_socket_info(socket_id)
Returns the information of the socket with the given socket ID.

Parameters socket_id (Integer) – ID of the socket.

Returns

The socket information, or None if the socket with that ID does not exist.

Return type SocketInfo

2.6. API reference 709



XBee Python Library Documentation, Release 1.4.0

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TimeoutException – If the response is not received before the read timeout ex-
pires.

• XBeeException – If the XBee’s communication interface is closed.

See also:

SocketInfo

get_sockets_list()
Returns a list with the IDs of all active (open) sockets.

Returns

list with the IDs of all active (open) sockets, or empty list if there is not any active
socket.

Return type List

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TimeoutException – If the response is not received before the read timeout ex-
pires.

• XBeeException – If the XBee’s communication interface is closed.

get_sync_ops_timeout()
Returns the serial port read timeout.

Returns Serial port read timeout in seconds.

Return type Integer

get_xbee_device_callbacks()
Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee to get its callbacks. These callbacks
are executed before user callbacks.

Returns PacketReceived

has_explicit_packets()
Returns if there are pending explicit packets to read. This does not include non-explicit packets.

Returns True if there are pending packets, False otherwise.

Return type Boolean

See also:

XBeeDevice.has_packets()

710 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

has_packets()
Returns if there are pending packets to read. This does not include explicit packets.

Returns True if there are pending packets, False otherwise.

Return type Boolean

See also:

XBeeDevice.has_explicit_packets()

is_apply_changes_enabled()
Returns whether apply changes flag is enabled.

Returns True if apply changes flag is enabled, False otherwise.

Return type Boolean

is_connected()
Returns whether the device is connected to the Internet.

Returns True if connected to the Internet, False otherwise.

Return type Boolean

Raises

• TimeoutException – If there is a timeout getting the association indication status.

• XBeeException – If there is any other XBee related exception.

is_device_info_complete()
Override.

See also:

AbstractXBeeDevice.is_device_info_complete()

is_open()
Returns whether this XBee is open.

Returns Boolean. True if this XBee is open, False otherwise.

is_remote()
Override method.

See also:

AbstractXBeeDevice.is_remote()

log
Returns the XBee logger.

Returns The XBee device logger.

Return type Logger

2.6. API reference 711



XBee Python Library Documentation, Release 1.4.0

open(force_settings=False)
Override.

See also:

XBeeDevice.open()

operating_mode
Returns the operating mode of this XBee.

Returns OperatingMode. This XBee operating mode.

reachable
Returns whether the XBee is reachable.

Returns True if the device is reachable, False otherwise.

Return type Boolean

read_data(timeout=None)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

read_data_from(remote_xbee, timeout=None)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

read_device_info(init=True, fire_event=True)
Updates all instance parameters reading them from the XBee.

Parameters

• init (Boolean, optional, default=`True`) – If False only not initial-
ized parameters are read, all if True.

• fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.is_device_info_complete()

read_io_sample()
Returns an IO sample from the XBee containing the value of all enabled digital IO and analog input
channels.

Returns IO sample read from the XBee.

712 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type IOSample

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOSample

read_ip_data(timeout=3)
Reads new IP data received by this XBee during the provided timeout.

This method blocks until new IP data is received or the provided timeout expires.

For non-blocking operations, register a callback and use the method IPDevice.
add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming IP data at a specific port. Use the
method IPDevice.start_listening() for that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

Parameters timeout (Integer, optional) – The time to wait for new IP data in sec-
onds.

Returns IP message, None if this device did not receive new data.

Return type IPMessage

Raises ValueError – If timeout is less than 0.

read_ip_data_from(ip_addr, timeout=3)
Reads new IP data received from the given IP address during the provided timeout.

This method blocks until new IP data from the provided IP address is received or the given timeout expires.

For non-blocking operations, register a callback and use the method IPDevice.
add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming IP data at a specific port. Use the
method IPDevice.start_listening() for that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

Parameters

• ip_addr (ipaddress.IPv4Address) – The IP address to read data from.

• timeout (Integer, optional) – The time to wait for new IP data in seconds.

Returns

IP message, None if this device did not receive new data from the provided IP address.

Return type IPMessage

Raises ValueError – If timeout is less than 0.

2.6. API reference 713



XBee Python Library Documentation, Release 1.4.0

reset()
Override method.

See also:

AbstractXBeeDevice.reset()

scan_counter
Returns the scan counter for this node.

Returns The scan counter for this node.

Return type Integer

send_bluetooth_data(data)
Sends the given data to the Bluetooth interface using a User Data Relay frame.

Parameters data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If there is any problem sending the data.

See also:

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

send_data(remote_xbee, data, transmit_options=0)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

send_data_async(remote_xbee, data, transmit_options=0)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

send_data_broadcast(data, transmit_options=0)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

send_ip_data_broadcast(dest_port, data)
Sends the provided IP data to all clients.

This method blocks until a success or error transmit status arrives or the configured receive timeout ex-
pires.

Parameters

• dest_port (Integer) – The destination port of the transmission.

• data (String or Bytearray) – The IP data to be sent.

Raises

714 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• ValueError – If data is None or dest_port is less than 0 or greater than 65535.

• TimeoutException – If there is a timeout sending the data.

• XBeeException – If there is any other XBee related exception.

send_micropython_data(data)
Sends the given data to the MicroPython interface using a User Data Relay frame.

Parameters data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If there is any problem sending the data.

See also:

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

send_packet(packet, sync=False)
Sends the packet and waits for the response. The packet to send is escaped depending on the current
operating mode.

This method can be synchronous or asynchronous.

If synchronous, this method discards all response packets until it finds the one that has the appropriate
frame ID, that is, the sent packet’s frame ID.

If asynchronous, this method does not wait for any response and returns None.

Parameters

• packet (XBeePacket) – The packet to send.

• sync (Boolean) – True to wait for the response of the sent packet and return it,
False otherwise.

Returns

Response packet if sync is True, None otherwise.

Return type XBeePacket

Raises

• TimeoutException – If sync is True and the response packet for the sent one
cannot be read.

• InvalidOperatingModeException – If the XBee operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the packet listener is not running or the XBee’s communica-
tion interface is closed.

See also:

XBeePacket

2.6. API reference 715



XBee Python Library Documentation, Release 1.4.0

send_packet_sync_and_get_response(packet_to_send, timeout=None)
Sends the packet and waits for its corresponding response.

Parameters

• packet_to_send (XBeePacket) – The packet to transmit.

• timeout (Integer, optional, default=`None`) – Number of seconds
to wait. -1 to wait indefinitely.

Returns Received response packet.

Return type XBeePacket

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TimeoutException – If response is not received in the configured timeout.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBeePacket

send_user_data_relay(local_interface, data)
Sends the given data to the given XBee local interface.

Parameters

• local_interface (XBeeLocalInterface) – Destination XBee local inter-
face.

• data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ValueError – If local_interface is None.

• XBeeException – If there is any problem sending the User Data Relay.

See also:

XBeeLocalInterface

serial_port
Returns the serial port associated to the XBee, if any.

Returns

Serial port of the XBee. None if the local XBee does not use serial communication.

Return type XBeeSerialPort

See also:

716 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

XBeeSerialPort

set_16bit_addr(value)
Sets the 16-bit address of the XBee.

Parameters value (XBee16BitAddress) – New 16-bit address of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If the protocol is not 802.15.4.

set_api_output_mode(api_output_mode)
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

Parameters api_output_mode (APIOutputMode) – New API output mode.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputMode

set_api_output_mode_value(api_output_mode)
Sets the API output mode of the XBee.

Parameters api_output_mode (Integer) – New API output mode op-
tions. Calculate this value using the method APIOutputModeBit.
calculate_api_output_mode_value() with a set of APIOutputModeBit.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

2.6. API reference 717



XBee Python Library Documentation, Release 1.4.0

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputModeBit

set_dest_address(addr)
Deprecated.

Operation not supported in this protocol. Use IPDevice.set_dest_ip_addr() instead. This
method raises an AttributeError.

set_dest_ip_addr(address)
Sets the destination IP address.

Parameters address (ipaddress.IPv4Address) – Destination IP address.

Raises

• ValueError – If address is None.

• TimeoutException – If there is a timeout setting the destination IP address.

• XBeeException – If there is any other XBee related exception.

See also:

ipaddress.IPv4Address

set_dio_change_detection(io_lines_set)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

set_dio_value(io_line, io_value)
Sets the digital value (high or low) to the provided IO line.

Parameters

• io_line (IOLine) – Digital IO line to sets its value.

• io_value (IOValue) – IO value to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOValue

718 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

set_io_configuration(io_line, io_mode)
Sets the configuration of the provided IO line.

Parameters

• io_line (IOLine) – IO line to configure.

• io_mode (IOMode) – IO mode to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

get_io_configuration()

set_io_sampling_rate(rate)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

set_node_id(node_id)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

set_pan_id(value)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

set_parameter(parameter, value, apply=None)
Override.

See: AbstractXBeeDevice.set_parameter()

set_power_level(power_level)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

set_pwm_duty_cycle(io_line, cycle)
Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

Parameters

• io_line (IOLine) – IO Line to be assigned.

• cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

Raises

2.6. API reference 719



XBee Python Library Documentation, Release 1.4.0

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If the given IO line does not have PWM capability or cycle is not
between 0 and 100.

See also:

IOLine

IOMode.PWM

set_sync_ops_timeout(sync_ops_timeout)
Sets the serial port read timeout.

Parameters sync_ops_timeout (Integer) – Read timeout in seconds.

start_listening(src_port)
Starts listening for incoming IP transmissions in the provided port.

Parameters src_port (Integer) – Port to listen for incoming transmissions.

Raises

• ValueError – If source_port is less than 0 or greater than 65535.

• TimeoutException – If there is a timeout setting the source port.

• XBeeException – If there is any other XBee related exception.

stop_listening()
Stops listening for incoming IP transmissions.

Raises

• TimeoutException – If there is a timeout processing the operation.

• XBeeException – If there is any other XBee related exception.

update_bluetooth_password(new_password)
Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

Parameters new_password (String) – New Bluetooth password.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

update_device_data_from(device)
Updates the current node information with provided data. This is only for internal use.

720 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Parameters device (AbstractXBeeDevice) – XBee to get the data from.

Returns True if the node data has been updated, False otherwise.

Return type Boolean

update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None,
timeout=None, progress_callback=None)

Performs a firmware update operation of the XBee.

Parameters

• xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

• xbee_firmware_file (String, optional, default=`None`) – Lo-
cation of the XBee binary firmware file.

• bootloader_firmware_file (String, optional,
default=`None`) – Location of the bootloader binary firmware file.

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the update process (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to to receive progress information. Receives two arguments:

– The current update task as a String

– The current update task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• OperationNotSupportedException – If XBee does not support firmware
update.

• FirmwareUpdateException – If there is any error during the firmware update.

write_changes()
Writes configurable parameter values to the non-volatile memory of the XBee so that parameter modifi-
cations persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by subsequent use of this method.

If changes are made without writing them, the XBee reverts back to previously saved parameters the next
time the module is powered-on.

Writing the parameter modifications does not mean those values are immediately applied, this depends on
the status of the ‘apply configuration changes’ option. Use method is_apply_changes_enabled()
to get its status and enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

2.6. API reference 721



XBee Python Library Documentation, Release 1.4.0

class digi.xbee.devices.NBIoTDevice(port=None, baud_rate=None,
data_bits=<sphinx.ext.autodoc.importer._MockObject
object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject
object>, parity=<sphinx.ext.autodoc.importer._MockObject
object>, flow_control=<FlowControl.NONE: None>,
_sync_ops_timeout=4, comm_iface=None)

Bases: digi.xbee.devices.LPWANDevice

This class represents a local NB-IoT device.

Class constructor. Instantiates a new NBIoTDevice with the provided parameters.

Parameters

• port (String) – Serial port identifier. Depends on operating system. e.g.
‘/dev/ttyUSB0’ on ‘GNU/Linux’ or ‘COM3’ on Windows.

• baud_rate (Integer) – Serial port baud rate.

• (Integer, default (_sync_ops_timeout) – serial.EIGHTBITS): Port
bitsize.

• (Integer, default – serial.STOPBITS_ONE): Port stop bits.

• (Character, default (parity) – serial.PARITY_NONE): Port parity.

• (Integer, default – FlowControl.NONE): Port flow control.

• (Integer, default – 3): Read timeout (in seconds).

• comm_iface (XBeeCommunicationInterface) – Communication interface.

Raises All exceptions raised by XBeeDevice.__init__() constructor.

See also:

LPWANDevice

LPWANDevice.__init__()

open(force_settings=False)
Override.

See also:

XBeeDevice.open()

get_protocol()
Override.

See also:

XBeeDevice.get_protocol()

add_bluetooth_data_received_callback(callback)
Adds a callback for the event BluetoothDataReceived.

722 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Parameters callback (Function) – The callback. Receives one argument.

• The Bluetooth data as a Bytearray.

add_data_received_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

add_expl_data_received_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

add_fs_frame_received_callback(callback)
Adds a callback for the event FileSystemFrameReceived.

Parameters callback (Function) – The callback. Receives four arguments.

• Source (AbstractXBeeDevice): The node that sent the file system frame.

• Frame id (Integer): The received frame id.

• Command (FSCmd): The file system command.

• Receive options (Integer): Bitfield indicating receive options.

See also:

AbstractXBeeDevice

FSCmd

ReceiveOptions

add_io_sample_received_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

add_ip_data_received_callback(callback)
Adds a callback for the event IPDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The data received as an IPMessage

add_micropython_data_received_callback(callback)
Adds a callback for the event MicroPythonDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The MicroPython data as a Bytearray.

add_modem_status_received_callback(callback)
Adds a callback for the event ModemStatusReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The modem status as a ModemStatus.

add_packet_received_callback(callback)
Adds a callback for the event PacketReceived.

Parameters callback (Function) – The callback. Receives one argument.

2.6. API reference 723



XBee Python Library Documentation, Release 1.4.0

• The received packet as a XBeeAPIPacket.

add_route_received_callback(callback)
Adds a callback for the event RouteReceived. This works for Zigbee and Digimesh devices.

Parameters callback (Function) – The callback. Receives three arguments.

• source (XBeeDevice): The source node.

• destination (RemoteXBeeDevice): The destination node.

• hops (List): List of intermediate hops from closest to source to closest to destina-
tion (RemoteXBeeDevice).

See also:

XBeeDevice.del_route_received_callback()

add_sms_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

add_socket_data_received_callback(callback)
Adds a callback for the event SocketDataReceived.

Parameters callback (Function) – The callback. Receives two arguments.

• The socket ID as an Integer.

• The data received as Bytearray.

add_socket_data_received_from_callback(callback)
Adds a callback for the event SocketDataReceivedFrom.

Parameters callback (Function) – The callback. Receives three arguments.

• The socket ID as an Integer.

• Source address pair (host, port) where host is a string representing an IPv4 ad-
dress like ‘100.50.200.5’, and port is an integer.

• The data received as Bytearray.

add_socket_state_received_callback(callback)
Adds a callback for the event SocketStateReceived.

Parameters callback (Function) – The callback. Receives two arguments.

• The socket ID as an Integer.

• The state received as a SocketState.

add_user_data_relay_received_callback(callback)
Adds a callback for the event RelayDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The relay data as a UserDataRelayMessage.

apply_changes()
Applies changes via ‘AC’ command.

Raises

724 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

apply_profile(profile_path, timeout=None, progress_callback=None)
Applies the given XBee profile to the XBee.

Parameters

• profile_path (String) – Path of the XBee profile file to apply.

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the apply profile (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to receive progress information. Receives two arguments:

– The current apply profile task as a String

– The current apply profile task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• UpdateProfileException – If there is any error applying the XBee profile.

close()
Closes the communication with the XBee.

This method guarantees that all threads running are stopped and the serial port is closed.

comm_iface
Returns the hardware interface associated to the XBee.

Returns Hardware interface of the XBee.

Return type XBeeCommunicationInterface

See also:

XBeeCommunicationInterface

classmethod create_xbee_device(comm_port_data)
Creates and returns an XBeeDevice from data of the port to which is connected.

Parameters

• comm_port_data (Dictionary) – Dictionary with all comm port data needed.

• dictionary keys are (The) –

“baudRate” –> Baud rate.
”port” –> Port number.
”bitSize” –> Bit size.

2.6. API reference 725



XBee Python Library Documentation, Release 1.4.0

”stopBits” –> Stop bits.
”parity” –> Parity.
”flowControl” –> Flow control.
”timeout” for –> Timeout for synchronous operations (in seconds).

Returns XBee object created.

Return type XBeeDevice

Raises SerialException – If the port to open does not exist or is already opened.

See also:

XBeeDevice

del_bluetooth_data_received_callback(callback)
Deletes a callback for the callback list of BluetoothDataReceived event.

Parameters callback (Function) – The callback to delete.

del_data_received_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

del_expl_data_received_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

del_fs_frame_received_callback(callback)
Deletes a callback for the callback list of FileSystemFrameReceived event.

Parameters callback (Function) – The callback to delete.

del_io_sample_received_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

del_ip_data_received_callback(callback)
Deletes a callback for the callback list of IPDataReceived event.

Parameters callback (Function) – The callback to delete.

del_micropython_data_received_callback(callback)
Deletes a callback for the callback list of MicroPythonDataReceived event.

Parameters callback (Function) – The callback to delete.

del_modem_status_received_callback(callback)
Deletes a callback for the callback list of ModemStatusReceived event.

Parameters callback (Function) – The callback to delete.

del_packet_received_callback(callback)
Deletes a callback for the callback list of PacketReceived event.

Parameters callback (Function) – The callback to delete.

del_route_received_callback(callback)
Deletes a callback for the callback list of RouteReceived event.

726 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Parameters callback (Function) – The callback to delete.

See also:

XBeeDevice.add_route_received_callback()

del_sms_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

del_socket_data_received_callback(callback)
Deletes a callback for the callback list of SocketDataReceived event.

Parameters callback (Function) – The callback to delete.

del_socket_data_received_from_callback(callback)
Deletes a callback for the callback list of SocketDataReceivedFrom event.

Parameters callback (Function) – The callback to delete.

del_socket_state_received_callback(callback)
Deletes a callback for the callback list of SocketStateReceived event.

Parameters callback (Function) – The callback to delete.

del_user_data_relay_received_callback(callback)
Deletes a callback for the callback list of RelayDataReceived event.

Parameters callback (Function) – The callback to delete.

determine_protocol(hardware_version, firmware_version)
Determines the XBee protocol based on the given hardware and firmware versions.

Parameters

• hardware_version (Integer) – Hardware version to get its protocol.

• firmware_version (Bytearray) – Firmware version to get its protocol.

Returns

XBee protocol corresponding to the given hardware and firmware versions.

Return type XBeeProtocol

disable_bluetooth()
Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

enable_apply_changes(value)
Sets apply changes flag.

2.6. API reference 727



XBee Python Library Documentation, Release 1.4.0

Parameters value (Boolean) – True to enable apply changes flag, False to disable it.

enable_bluetooth()
Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth password if not done previously. Use
method AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

execute_command(parameter, value=None, apply=None)
Executes the provided command.

Parameters

• (String or (parameter) – class: .ATStringCommand): AT command to exe-
cute.

• value (bytearray, optional, default=`None`) – Command value (if
any).

• apply (Boolean, optional, default=`None`) – True to ap-
ply changes in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

flush_queues()
Flushes the packets queue.

728 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_16bit_addr()
Deprecated.

This protocol does not have an associated 16-bit address.

get_64bit_addr()
Deprecated.

Cellular protocol does not have an associated 64-bit address.

get_adc_value(io_line)
Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so, use AbstractXBeeDevice.
set_io_configuration() and IOMode.ADC.

Parameters io_line (IOLine) – IO line to get its ADC value.

Returns Analog value corresponding to the provided IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

set_io_configuration()

get_api_output_mode()
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the serial interface of the XBee.

Returns API output mode of the XBee.

Return type APIOutputMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

2.6. API reference 729



XBee Python Library Documentation, Release 1.4.0

APIOutputMode

get_api_output_mode_value()
Returns the API output mode of the XBee.

The API output mode determines the format that the received data is output through the serial interface of
the XBee.

Returns the parameter value.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

digi.xbee.models.mode.APIOutputModeBit

get_bluetooth_mac_addr()
Reads and returns the EUI-48 Bluetooth MAC address of this XBee following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

Returns The Bluetooth MAC address.

Return type String

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

get_cellular_ai_status()
Returns the current association status of this Cellular device.

It indicates occurrences of errors during the modem initialization and connection.

Returns

The association indication status of the Cellular device.

Return type CellularAssociationIndicationStatus

Raises

730 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• TimeoutException – If there is a timeout getting the association indication status.

• XBeeException – If there is any other XBee related exception.

get_current_frame_id()
Returns the last used frame ID.

Returns Last used frame ID.

Return type Integer

get_dest_address()
Deprecated.

Operation not supported in this protocol. Use IPDevice.get_dest_ip_addr() instead. This
method raises an AttributeError.

get_dest_ip_addr()
Returns the destination IP address.

Returns Configured destination IP address.

Return type ipaddress.IPv4Address

Raises

• TimeoutException – If there is a timeout getting the destination IP address.

• XBeeException – If there is any other XBee related exception.

See also:

ipaddress.IPv4Address

get_dio_value(io_line)
Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O. To do so, use
AbstractXBeeDevice.set_io_configuration().

Parameters io_line (IOLine) – the DIO line to gets its digital value.

Returns current value of the provided IO line.

Return type IOValue

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

2.6. API reference 731



XBee Python Library Documentation, Release 1.4.0

IOValue

set_io_configuration()

get_file_manager()
Returns the file system manager for the XBee.

Returns The file system manager.

Return type FileSystemManager

Raises FileSystemNotSupportedException – If the XBee does not support filesys-
tem.

get_firmware_version()
Returns the firmware version of the XBee.

Returns Firmware version of the XBee.

Return type Bytearray

get_hardware_version()
Returns the hardware version of the XBee.

Returns Hardware version of the XBee.

Return type HardwareVersion

See also:

HardwareVersion

get_imei_addr()
Returns the IMEI address of this Cellular device.

To refresh this value use the method CellularDevice.read_device_info().

Returns The IMEI address of this Cellular device.

Return type XBeeIMEIAddress

get_io_configuration(io_line)
Returns the configuration of the provided IO line.

Parameters io_line (IOLine) – IO line to get its configuration.

Returns IO mode of the IO line provided.

Return type IOMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

732 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

IOLine

IOMode

set_io_configuration()

get_io_sampling_rate()
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

get_ip_addr()
Returns the IP address of this IP XBee.

To refresh this value use the method IPDevice.read_device_info().

Returns The IP address of this IP device.

Return type ipaddress.IPv4Address

See also:

ipaddress.IPv4Address

get_network()
Deprecated.

This protocol does not support the network functionality.

get_next_frame_id()
Returns the next frame ID of the XBee.

Returns The next frame ID of the XBee.

Return type Integer

get_node_id()
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

get_pan_id()
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

get_parameter(parameter, parameter_value=None, apply=None)
Override.

See also:

AbstractXBeeDevice.get_parameter()

get_power_level()
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

get_pwm_duty_cycle(io_line)
Returns the PWM duty cycle in % corresponding to the provided IO line.

2.6. API reference 733



XBee Python Library Documentation, Release 1.4.0

Parameters io_line (IOLine) – IO line to get its PWM duty cycle.

Returns PWM duty cycle of the given IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If io_line has no PWM capability.

See also:

IOLine

get_role()
Gets the XBee role.

Returns the role of the XBee.

Return type Role

See also:

Role

get_route_to_node(remote, timeout=10, force=True)
Gets the route from this XBee to the given remote node.

For Zigbee:

• ‘AR’ parameter of the local node must be configured with a value different from ‘FF’.

• Set force to True to force the Zigbee remote node to return its route independently of the local
node configuration as high or low RAM concentrator (‘DO’ of the local value)

Parameters

• remote (RemoteXBeeDevice) – The remote node.

• timeout (Float, optional, default=10) – Maximum number of seconds
to wait for the route.

• force (Boolean) – True to force asking for the route, False otherwise. Only for
Zigbee.

Returns

Tuple containing route data:

• status (TransmitStatus): The transmit status.

• Tuple with route data (None if the route was not read in the provided timeout):

734 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

– source (RemoteXBeeDevice): The source node of the route.

– destination (RemoteXBeeDevice): The destination node of the route.

– hops (List): List of intermediate nodes (RemoteXBeeDevice) ordered from
closest to source to closest to destination node (source and destination not in-
cluded).

Return type Tuple

get_socket_info(socket_id)
Returns the information of the socket with the given socket ID.

Parameters socket_id (Integer) – ID of the socket.

Returns

The socket information, or None if the socket with that ID does not exist.

Return type SocketInfo

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TimeoutException – If the response is not received before the read timeout ex-
pires.

• XBeeException – If the XBee’s communication interface is closed.

See also:

SocketInfo

get_sockets_list()
Returns a list with the IDs of all active (open) sockets.

Returns

list with the IDs of all active (open) sockets, or empty list if there is not any active
socket.

Return type List

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TimeoutException – If the response is not received before the read timeout ex-
pires.

• XBeeException – If the XBee’s communication interface is closed.

get_sync_ops_timeout()
Returns the serial port read timeout.

Returns Serial port read timeout in seconds.

Return type Integer

2.6. API reference 735



XBee Python Library Documentation, Release 1.4.0

get_xbee_device_callbacks()
Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee to get its callbacks. These callbacks
are executed before user callbacks.

Returns PacketReceived

has_explicit_packets()
Returns if there are pending explicit packets to read. This does not include non-explicit packets.

Returns True if there are pending packets, False otherwise.

Return type Boolean

See also:

XBeeDevice.has_packets()

has_packets()
Returns if there are pending packets to read. This does not include explicit packets.

Returns True if there are pending packets, False otherwise.

Return type Boolean

See also:

XBeeDevice.has_explicit_packets()

is_apply_changes_enabled()
Returns whether apply changes flag is enabled.

Returns True if apply changes flag is enabled, False otherwise.

Return type Boolean

is_connected()
Returns whether the device is connected to the Internet.

Returns True if connected to the Internet, False otherwise.

Return type Boolean

Raises

• TimeoutException – If there is a timeout getting the association indication status.

• XBeeException – If there is any other XBee related exception.

is_device_info_complete()
Override.

See also:

AbstractXBeeDevice.is_device_info_complete()

736 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

is_open()
Returns whether this XBee is open.

Returns Boolean. True if this XBee is open, False otherwise.

is_remote()
Override method.

See also:

AbstractXBeeDevice.is_remote()

log
Returns the XBee logger.

Returns The XBee device logger.

Return type Logger

operating_mode
Returns the operating mode of this XBee.

Returns OperatingMode. This XBee operating mode.

reachable
Returns whether the XBee is reachable.

Returns True if the device is reachable, False otherwise.

Return type Boolean

read_data(timeout=None)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

read_data_from(remote_xbee, timeout=None)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

read_device_info(init=True, fire_event=True)
Updates all instance parameters reading them from the XBee.

Parameters

• init (Boolean, optional, default=`True`) – If False only not initial-
ized parameters are read, all if True.

• fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

2.6. API reference 737



XBee Python Library Documentation, Release 1.4.0

AbstractXBeeDevice.is_device_info_complete()

read_io_sample()
Returns an IO sample from the XBee containing the value of all enabled digital IO and analog input
channels.

Returns IO sample read from the XBee.

Return type IOSample

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOSample

read_ip_data(timeout=3)
Reads new IP data received by this XBee during the provided timeout.

This method blocks until new IP data is received or the provided timeout expires.

For non-blocking operations, register a callback and use the method IPDevice.
add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming IP data at a specific port. Use the
method IPDevice.start_listening() for that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

Parameters timeout (Integer, optional) – The time to wait for new IP data in sec-
onds.

Returns IP message, None if this device did not receive new data.

Return type IPMessage

Raises ValueError – If timeout is less than 0.

read_ip_data_from(ip_addr, timeout=3)
Reads new IP data received from the given IP address during the provided timeout.

This method blocks until new IP data from the provided IP address is received or the given timeout expires.

For non-blocking operations, register a callback and use the method IPDevice.
add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming IP data at a specific port. Use the
method IPDevice.start_listening() for that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

Parameters

• ip_addr (ipaddress.IPv4Address) – The IP address to read data from.

738 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• timeout (Integer, optional) – The time to wait for new IP data in seconds.

Returns

IP message, None if this device did not receive new data from the provided IP address.

Return type IPMessage

Raises ValueError – If timeout is less than 0.

reset()
Override method.

See also:

AbstractXBeeDevice.reset()

scan_counter
Returns the scan counter for this node.

Returns The scan counter for this node.

Return type Integer

send_bluetooth_data(data)
Sends the given data to the Bluetooth interface using a User Data Relay frame.

Parameters data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If there is any problem sending the data.

See also:

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

send_data(remote_xbee, data, transmit_options=0)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

send_data_async(remote_xbee, data, transmit_options=0)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

send_data_broadcast(data, transmit_options=0)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

send_ip_data(ip_addr, dest_port, protocol, data, close_socket=False)
Sends the provided IP data to the given IP address and port using the specified IP protocol.

This method blocks until a success or error response arrives or the configured receive timeout expires.

2.6. API reference 739



XBee Python Library Documentation, Release 1.4.0

Parameters

• ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

• dest_port (Integer) – The destination port of the transmission.

• protocol (IPProtocol) – The IP protocol used for the transmission.

• data (String or Bytearray) – The IP data to be sent.

• close_socket (Boolean, optional) – Must be False.

Raises ValueError – If protocol is not UDP.

send_ip_data_async(ip_addr, dest_port, protocol, data, close_socket=False)
Sends the provided IP data to the given IP address and port asynchronously using the specified IP protocol.

Asynchronous transmissions do not wait for answer from the remote device or for transmit status packet.

Parameters

• ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

• dest_port (Integer) – The destination port of the transmission.

• protocol (IPProtocol) – The IP protocol used for the transmission.

• data (String or Bytearray) – The IP data to be sent.

• close_socket (Boolean, optional) – Must be False.

Raises ValueError – If protocol is not UDP.

send_ip_data_broadcast(dest_port, data)
Sends the provided IP data to all clients.

This method blocks until a success or error transmit status arrives or the configured receive timeout ex-
pires.

Parameters

• dest_port (Integer) – The destination port of the transmission.

• data (String or Bytearray) – The IP data to be sent.

Raises

• ValueError – If data is None or dest_port is less than 0 or greater than 65535.

• TimeoutException – If there is a timeout sending the data.

• XBeeException – If there is any other XBee related exception.

send_micropython_data(data)
Sends the given data to the MicroPython interface using a User Data Relay frame.

Parameters data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If there is any problem sending the data.

See also:

XBeeDevice.send_bluetooth_data()

740 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

XBeeDevice.send_user_data_relay()

send_packet(packet, sync=False)
Sends the packet and waits for the response. The packet to send is escaped depending on the current
operating mode.

This method can be synchronous or asynchronous.

If synchronous, this method discards all response packets until it finds the one that has the appropriate
frame ID, that is, the sent packet’s frame ID.

If asynchronous, this method does not wait for any response and returns None.

Parameters

• packet (XBeePacket) – The packet to send.

• sync (Boolean) – True to wait for the response of the sent packet and return it,
False otherwise.

Returns

Response packet if sync is True, None otherwise.

Return type XBeePacket

Raises

• TimeoutException – If sync is True and the response packet for the sent one
cannot be read.

• InvalidOperatingModeException – If the XBee operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the packet listener is not running or the XBee’s communica-
tion interface is closed.

See also:

XBeePacket

send_packet_sync_and_get_response(packet_to_send, timeout=None)
Sends the packet and waits for its corresponding response.

Parameters

• packet_to_send (XBeePacket) – The packet to transmit.

• timeout (Integer, optional, default=`None`) – Number of seconds
to wait. -1 to wait indefinitely.

Returns Received response packet.

Return type XBeePacket

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TimeoutException – If response is not received in the configured timeout.

2.6. API reference 741



XBee Python Library Documentation, Release 1.4.0

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBeePacket

send_sms(phone_number, data)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

send_sms_async(phone_number, data)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

send_user_data_relay(local_interface, data)
Sends the given data to the given XBee local interface.

Parameters

• local_interface (XBeeLocalInterface) – Destination XBee local inter-
face.

• data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ValueError – If local_interface is None.

• XBeeException – If there is any problem sending the User Data Relay.

See also:

XBeeLocalInterface

serial_port
Returns the serial port associated to the XBee, if any.

Returns

Serial port of the XBee. None if the local XBee does not use serial communication.

Return type XBeeSerialPort

See also:

XBeeSerialPort

set_16bit_addr(value)
Sets the 16-bit address of the XBee.

Parameters value (XBee16BitAddress) – New 16-bit address of the XBee.

742 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If the protocol is not 802.15.4.

set_api_output_mode(api_output_mode)
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

Parameters api_output_mode (APIOutputMode) – New API output mode.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputMode

set_api_output_mode_value(api_output_mode)
Sets the API output mode of the XBee.

Parameters api_output_mode (Integer) – New API output mode op-
tions. Calculate this value using the method APIOutputModeBit.
calculate_api_output_mode_value() with a set of APIOutputModeBit.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputModeBit

2.6. API reference 743



XBee Python Library Documentation, Release 1.4.0

set_dest_address(addr)
Deprecated.

Operation not supported in this protocol. Use IPDevice.set_dest_ip_addr() instead. This
method raises an AttributeError.

set_dest_ip_addr(address)
Sets the destination IP address.

Parameters address (ipaddress.IPv4Address) – Destination IP address.

Raises

• ValueError – If address is None.

• TimeoutException – If there is a timeout setting the destination IP address.

• XBeeException – If there is any other XBee related exception.

See also:

ipaddress.IPv4Address

set_dio_change_detection(io_lines_set)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

set_dio_value(io_line, io_value)
Sets the digital value (high or low) to the provided IO line.

Parameters

• io_line (IOLine) – Digital IO line to sets its value.

• io_value (IOValue) – IO value to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOValue

set_io_configuration(io_line, io_mode)
Sets the configuration of the provided IO line.

Parameters

• io_line (IOLine) – IO line to configure.

• io_mode (IOMode) – IO mode to set to the IO line.

744 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

get_io_configuration()

set_io_sampling_rate(rate)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

set_node_id(node_id)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

set_pan_id(value)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

set_parameter(parameter, value, apply=None)
Override.

See: AbstractXBeeDevice.set_parameter()

set_power_level(power_level)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

set_pwm_duty_cycle(io_line, cycle)
Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

Parameters

• io_line (IOLine) – IO Line to be assigned.

• cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

2.6. API reference 745



XBee Python Library Documentation, Release 1.4.0

• ValueError – If the given IO line does not have PWM capability or cycle is not
between 0 and 100.

See also:

IOLine

IOMode.PWM

set_sync_ops_timeout(sync_ops_timeout)
Sets the serial port read timeout.

Parameters sync_ops_timeout (Integer) – Read timeout in seconds.

start_listening(src_port)
Starts listening for incoming IP transmissions in the provided port.

Parameters src_port (Integer) – Port to listen for incoming transmissions.

Raises

• ValueError – If source_port is less than 0 or greater than 65535.

• TimeoutException – If there is a timeout setting the source port.

• XBeeException – If there is any other XBee related exception.

stop_listening()
Stops listening for incoming IP transmissions.

Raises

• TimeoutException – If there is a timeout processing the operation.

• XBeeException – If there is any other XBee related exception.

update_bluetooth_password(new_password)
Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

Parameters new_password (String) – New Bluetooth password.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

update_device_data_from(device)
Updates the current node information with provided data. This is only for internal use.

Parameters device (AbstractXBeeDevice) – XBee to get the data from.

Returns True if the node data has been updated, False otherwise.

Return type Boolean

746 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None,
timeout=None, progress_callback=None)

Performs a firmware update operation of the XBee.

Parameters

• xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

• xbee_firmware_file (String, optional, default=`None`) – Lo-
cation of the XBee binary firmware file.

• bootloader_firmware_file (String, optional,
default=`None`) – Location of the bootloader binary firmware file.

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the update process (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to to receive progress information. Receives two arguments:

– The current update task as a String

– The current update task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• OperationNotSupportedException – If XBee does not support firmware
update.

• FirmwareUpdateException – If there is any error during the firmware update.

write_changes()
Writes configurable parameter values to the non-volatile memory of the XBee so that parameter modifi-
cations persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by subsequent use of this method.

If changes are made without writing them, the XBee reverts back to previously saved parameters the next
time the module is powered-on.

Writing the parameter modifications does not mean those values are immediately applied, this depends on
the status of the ‘apply configuration changes’ option. Use method is_apply_changes_enabled()
to get its status and enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

2.6. API reference 747



XBee Python Library Documentation, Release 1.4.0

class digi.xbee.devices.WiFiDevice(port=None, baud_rate=None,
data_bits=<sphinx.ext.autodoc.importer._MockObject ob-
ject>, stop_bits=<sphinx.ext.autodoc.importer._MockObject
object>, parity=<sphinx.ext.autodoc.importer._MockObject
object>, flow_control=<FlowControl.NONE: None>,
_sync_ops_timeout=4, comm_iface=None)

Bases: digi.xbee.devices.IPDevice

This class represents a local Wi-Fi XBee.

Class constructor. Instantiates a new WiFiDevice with the provided parameters.

Parameters

• port (String) – Serial port identifier. Depends on operating system. e.g.
‘/dev/ttyUSB0’ on ‘GNU/Linux’ or ‘COM3’ on Windows.

• baud_rate (Integer) – Serial port baud rate.

• (Integer, default (_sync_ops_timeout) – serial.EIGHTBITS): Port
bitsize.

• (Integer, default – serial.STOPBITS_ONE): Port stop bits.

• (Character, default (parity) – serial.PARITY_NONE): Port parity.

• (Integer, default – FlowControl.NONE): Port flow control.

• (Integer, default – 3): Read timeout (in seconds).

• comm_iface (XBeeCommunicationInterface) – Communication interface.

Raises All exceptions raised by XBeeDevice.__init__() constructor.

See also:

IPDevice

v.__init__()

open(force_settings=False)
Override.

See also:

XBeeDevice.open()

get_protocol()
Override.

See also:

XBeeDevice.get_protocol()

get_wifi_ai_status()
Returns the current association status of the device.

748 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns

Current association status of the device.

Return type WiFiAssociationIndicationStatus

Raises

• TimeoutException – If there is a timeout getting the association indication status.

• XBeeException – If there is any other XBee related exception.

See also:

WiFiAssociationIndicationStatus

get_access_point(ssid)
Finds and returns the access point that matches the supplied SSID.

Parameters ssid (String) – SSID of the access point to get.

Returns

Discovered access point with the provided SID, or None if the timeout expires and the
access point was not found.

Return type AccessPoint

Raises

• TimeoutException – If there is a timeout getting the access point.

• XBeeException – If there is an error sending the discovery command.

See also:

AccessPoint

scan_access_points()
Performs a scan to search for access points in the vicinity.

This method blocks until all the access points are discovered or the configured access point timeout ex-
pires.

The access point timeout is configured using the WiFiDevice.set_access_point_timeout()
method and can be consulted with WiFiDevice.get_access_point_timeout() method.

Returns List of AccessPoint objects discovered.

Return type List

Raises

• TimeoutException – If there is a timeout scanning the access points.

• XBeeException – If there is any other XBee related exception.

See also:

AccessPoint

2.6. API reference 749



XBee Python Library Documentation, Release 1.4.0

connect_by_ap(access_point, password=None)
Connects to the provided access point.

This method blocks until the connection with the access point is established or the configured access point
timeout expires.

The access point timeout is configured using the WiFiDevice.set_access_point_timeout()
method and can be consulted with WiFiDevice.get_access_point_timeout() method.

Once the module is connected to the access point, you can issue the WiFiDevice.
write_changes() method to save the connection settings. This way the module will try to connect to
the access point every time it is powered on.

Parameters

• access_point (AccessPoint) – The access point to connect to.

• password (String, optional) – The password for the access point, None if it
does not have any encryption enabled.

Returns

True if the module connected to the access point successfully, False otherwise.

Return type Boolean

Raises

• ValueError – If access_point is None.

• TimeoutException – If there is a timeout sending the connect commands.

• XBeeException – If there is any other XBee related exception.

See also:

WiFiDevice.connect_by_ssid()

WiFiDevice.disconnect()

WiFiDevice.get_access_point()

WiFiDevice.get_access_point_timeout()

WiFiDevice.scan_access_points()

WiFiDevice.set_access_point_timeout()

connect_by_ssid(ssid, password=None)
Connects to the access point with provided SSID.

This method blocks until the connection with the access point is established or the configured access point
timeout expires.

The access point timeout is configured using the WiFiDevice.set_access_point_timeout()
method and can be consulted with WiFiDevice.get_access_point_timeout() method.

Once the module is connected to the access point, you can issue the WiFiDevice.
write_changes() method to save the connection settings. This way the module will try to connect to
the access point every time it is powered on.

Parameters

• ssid (String) – SSID of the access point to connect to.

750 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• password (String, optional) – The password for the access point, None if it
does not have any encryption enabled.

Returns

True if the module connected to the access point successfully, False otherwise.

Return type Boolean

Raises

• ValueError – If ssid is None.

• TimeoutException – If there is a timeout sending the connect commands.

• XBeeException – If the access point with the provided SSID cannot be found.

• XBeeException – If there is any other XBee related exception.

See also:

WiFiDevice.connect_by_ap()

WiFiDevice.disconnect()

WiFiDevice.get_access_point()

WiFiDevice.get_access_point_timeout()

WiFiDevice.scan_access_points()

WiFiDevice.set_access_point_timeout()

disconnect()
Disconnects from the access point that the device is connected to.

This method blocks until the device disconnects totally from the access point or the configured access
point timeout expires.

The access point timeout is configured using the WiFiDevice.set_access_point_timeout()
method and can be consulted with WiFiDevice.get_access_point_timeout() method.

Returns

True if the module disconnected from the access point successfully, False otherwise.

Return type Boolean

Raises

• TimeoutException – If there is a timeout sending the disconnect command.

• XBeeException – If there is any other XBee related exception.

See also:

WiFiDevice.connect_by_ap()

WiFiDevice.connect_by_ssid()

WiFiDevice.get_access_point_timeout()

WiFiDevice.set_access_point_timeout()

is_connected()
Returns whether the device is connected to an access point or not.

2.6. API reference 751



XBee Python Library Documentation, Release 1.4.0

Returns

True if the device is connected to an access point, False otherwise.

Return type Boolean

Raises TimeoutException – If there is a timeout getting the association indication status.

See also:

WiFiDevice.get_wifi_ai_status()

WiFiAssociationIndicationStatus

get_access_point_timeout()
Returns the configured access point timeout for connecting, disconnecting and scanning access points.

Returns The current access point timeout in milliseconds.

Return type Integer

See also:

WiFiDevice.set_access_point_timeout()

set_access_point_timeout(ap_timeout)
Configures the access point timeout in milliseconds for connecting, disconnecting and scanning access
points.

Parameters ap_timeout (Integer) – The new access point timeout in milliseconds.

Raises ValueError – If ap_timeout is less than 0.

See also:

WiFiDevice.get_access_point_timeout()

get_ip_addressing_mode()
Returns the IP addressing mode of the device.

Returns The IP addressing mode.

Return type IPAddressingMode

Raises TimeoutException – If there is a timeout reading the IP addressing mode.

See also:

WiFiDevice.set_ip_addressing_mode()

IPAddressingMode

set_ip_addressing_mode(mode)
Sets the IP addressing mode of the device.

752 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Parameters mode (IPAddressingMode) – The new IP addressing mode to set.

Raises TimeoutException – If there is a timeout setting the IP addressing mode.

See also:

WiFiDevice.get_ip_addressing_mode()

IPAddressingMode

set_ip_address(ip_address)
Sets the IP address of the module.

This method can only be called if the module is configured in IPAddressingMode.STATIC mode.
Otherwise an XBeeException will be thrown.

Parameters ip_address (ipaddress.IPv4Address) – New IP address to set.

Raises TimeoutException – If there is a timeout setting the IP address.

See also:

WiFiDevice.get_mask_address()

ipaddress.IPv4Address

get_mask_address()
Returns the subnet mask IP address.

Returns The subnet mask IP address.

Return type ipaddress.IPv4Address

Raises TimeoutException – If there is a timeout reading the subnet mask address.

See also:

WiFiDevice.set_mask_address()

ipaddress.IPv4Address

set_mask_address(mask_address)
Sets the subnet mask IP address.

This method can only be called if the module is configured in IPAddressingMode.STATIC mode.
Otherwise an XBeeException will be thrown.

Parameters mask_address (ipaddress.IPv4Address) – New subnet mask address
to set.

Raises TimeoutException – If there is a timeout setting the subnet mask address.

See also:

WiFiDevice.get_mask_address()

ipaddress.IPv4Address

2.6. API reference 753



XBee Python Library Documentation, Release 1.4.0

get_gateway_address()
Returns the IP address of the gateway.

Returns The IP address of the gateway.

Return type ipaddress.IPv4Address

Raises TimeoutException – If there is a timeout reading the gateway address.

See also:

WiFiDevice.set_dns_address()

ipaddress.IPv4Address

set_gateway_address(gateway_address)
Sets the IP address of the gateway.

This method can only be called if the module is configured in IPAddressingMode.STATIC mode.
Otherwise an XBeeException will be thrown.

Parameters gateway_address (ipaddress.IPv4Address) – The new gateway ad-
dress to set.

Raises TimeoutException – If there is a timeout setting the gateway address.

See also:

WiFiDevice.get_gateway_address()

ipaddress.IPv4Address

get_dns_address()
Returns the IP address of Domain Name Server (DNS).

Returns The DNS address configured.

Return type ipaddress.IPv4Address

Raises TimeoutException – If there is a timeout reading the DNS address.

See also:

WiFiDevice.set_dns_address()

ipaddress.IPv4Address

set_dns_address(dns_address)
Sets the IP address of Domain Name Server (DNS).

Parameters dns_address (ipaddress.IPv4Address) – The new DNS address to
set.

Raises TimeoutException – If there is a timeout setting the DNS address.

See also:

754 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

WiFiDevice.get_dns_address()

ipaddress.IPv4Address

add_bluetooth_data_received_callback(callback)
Adds a callback for the event BluetoothDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The Bluetooth data as a Bytearray.

add_data_received_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

add_expl_data_received_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

add_fs_frame_received_callback(callback)
Adds a callback for the event FileSystemFrameReceived.

Parameters callback (Function) – The callback. Receives four arguments.

• Source (AbstractXBeeDevice): The node that sent the file system frame.

• Frame id (Integer): The received frame id.

• Command (FSCmd): The file system command.

• Receive options (Integer): Bitfield indicating receive options.

See also:

AbstractXBeeDevice

FSCmd

ReceiveOptions

add_io_sample_received_callback(callback)
Adds a callback for the event IOSampleReceived.

Parameters callback (Function) – The callback. Receives three arguments.

• The received IO sample as an IOSample.

• The remote XBee which sent the packet as a RemoteXBeeDevice.

• The time in which the packet was received as an Integer.

add_ip_data_received_callback(callback)
Adds a callback for the event IPDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The data received as an IPMessage

add_micropython_data_received_callback(callback)
Adds a callback for the event MicroPythonDataReceived.

Parameters callback (Function) – The callback. Receives one argument.

2.6. API reference 755



XBee Python Library Documentation, Release 1.4.0

• The MicroPython data as a Bytearray.

add_modem_status_received_callback(callback)
Adds a callback for the event ModemStatusReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The modem status as a ModemStatus.

add_packet_received_callback(callback)
Adds a callback for the event PacketReceived.

Parameters callback (Function) – The callback. Receives one argument.

• The received packet as a XBeeAPIPacket.

add_route_received_callback(callback)
Adds a callback for the event RouteReceived. This works for Zigbee and Digimesh devices.

Parameters callback (Function) – The callback. Receives three arguments.

• source (XBeeDevice): The source node.

• destination (RemoteXBeeDevice): The destination node.

• hops (List): List of intermediate hops from closest to source to closest to destina-
tion (RemoteXBeeDevice).

See also:

XBeeDevice.del_route_received_callback()

add_socket_data_received_callback(callback)
Adds a callback for the event SocketDataReceived.

Parameters callback (Function) – The callback. Receives two arguments.

• The socket ID as an Integer.

• The data received as Bytearray.

add_socket_data_received_from_callback(callback)
Adds a callback for the event SocketDataReceivedFrom.

Parameters callback (Function) – The callback. Receives three arguments.

• The socket ID as an Integer.

• Source address pair (host, port) where host is a string representing an IPv4 ad-
dress like ‘100.50.200.5’, and port is an integer.

• The data received as Bytearray.

add_socket_state_received_callback(callback)
Adds a callback for the event SocketStateReceived.

Parameters callback (Function) – The callback. Receives two arguments.

• The socket ID as an Integer.

• The state received as a SocketState.

add_user_data_relay_received_callback(callback)
Adds a callback for the event RelayDataReceived.

756 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Parameters callback (Function) – The callback. Receives one argument.

• The relay data as a UserDataRelayMessage.

apply_changes()
Applies changes via ‘AC’ command.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

apply_profile(profile_path, timeout=None, progress_callback=None)
Applies the given XBee profile to the XBee.

Parameters

• profile_path (String) – Path of the XBee profile file to apply.

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the apply profile (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to receive progress information. Receives two arguments:

– The current apply profile task as a String

– The current apply profile task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• UpdateProfileException – If there is any error applying the XBee profile.

close()
Closes the communication with the XBee.

This method guarantees that all threads running are stopped and the serial port is closed.

comm_iface
Returns the hardware interface associated to the XBee.

Returns Hardware interface of the XBee.

Return type XBeeCommunicationInterface

See also:

XBeeCommunicationInterface

classmethod create_xbee_device(comm_port_data)
Creates and returns an XBeeDevice from data of the port to which is connected.

Parameters

2.6. API reference 757



XBee Python Library Documentation, Release 1.4.0

• comm_port_data (Dictionary) – Dictionary with all comm port data needed.

• dictionary keys are (The) –

“baudRate” –> Baud rate.
”port” –> Port number.
”bitSize” –> Bit size.
”stopBits” –> Stop bits.
”parity” –> Parity.
”flowControl” –> Flow control.
”timeout” for –> Timeout for synchronous operations (in seconds).

Returns XBee object created.

Return type XBeeDevice

Raises SerialException – If the port to open does not exist or is already opened.

See also:

XBeeDevice

del_bluetooth_data_received_callback(callback)
Deletes a callback for the callback list of BluetoothDataReceived event.

Parameters callback (Function) – The callback to delete.

del_data_received_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

del_expl_data_received_callback(callback)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

del_fs_frame_received_callback(callback)
Deletes a callback for the callback list of FileSystemFrameReceived event.

Parameters callback (Function) – The callback to delete.

del_io_sample_received_callback(callback)
Deletes a callback for the callback list of IOSampleReceived event.

Parameters callback (Function) – The callback to delete.

del_ip_data_received_callback(callback)
Deletes a callback for the callback list of IPDataReceived event.

Parameters callback (Function) – The callback to delete.

del_micropython_data_received_callback(callback)
Deletes a callback for the callback list of MicroPythonDataReceived event.

Parameters callback (Function) – The callback to delete.

del_modem_status_received_callback(callback)
Deletes a callback for the callback list of ModemStatusReceived event.

Parameters callback (Function) – The callback to delete.

758 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

del_packet_received_callback(callback)
Deletes a callback for the callback list of PacketReceived event.

Parameters callback (Function) – The callback to delete.

del_route_received_callback(callback)
Deletes a callback for the callback list of RouteReceived event.

Parameters callback (Function) – The callback to delete.

See also:

XBeeDevice.add_route_received_callback()

del_socket_data_received_callback(callback)
Deletes a callback for the callback list of SocketDataReceived event.

Parameters callback (Function) – The callback to delete.

del_socket_data_received_from_callback(callback)
Deletes a callback for the callback list of SocketDataReceivedFrom event.

Parameters callback (Function) – The callback to delete.

del_socket_state_received_callback(callback)
Deletes a callback for the callback list of SocketStateReceived event.

Parameters callback (Function) – The callback to delete.

del_user_data_relay_received_callback(callback)
Deletes a callback for the callback list of RelayDataReceived event.

Parameters callback (Function) – The callback to delete.

determine_protocol(hardware_version, firmware_version)
Determines the XBee protocol based on the given hardware and firmware versions.

Parameters

• hardware_version (Integer) – Hardware version to get its protocol.

• firmware_version (Bytearray) – Firmware version to get its protocol.

Returns

XBee protocol corresponding to the given hardware and firmware versions.

Return type XBeeProtocol

disable_bluetooth()
Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

2.6. API reference 759



XBee Python Library Documentation, Release 1.4.0

enable_apply_changes(value)
Sets apply changes flag.

Parameters value (Boolean) – True to enable apply changes flag, False to disable it.

enable_bluetooth()
Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth password if not done previously. Use
method AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

execute_command(parameter, value=None, apply=None)
Executes the provided command.

Parameters

• (String or (parameter) – class: .ATStringCommand): AT command to exe-
cute.

• value (bytearray, optional, default=`None`) – Command value (if
any).

• apply (Boolean, optional, default=`None`) – True to ap-
ply changes in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

flush_queues()
Flushes the packets queue.

760 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_16bit_addr()
Deprecated.

This protocol does not have an associated 16-bit address.

get_64bit_addr()
Returns the 64-bit address of the XBee.

Returns 64-bit address of the XBee.

Return type XBee64BitAddress

See also:

XBee64BitAddress

get_adc_value(io_line)
Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so, use AbstractXBeeDevice.
set_io_configuration() and IOMode.ADC.

Parameters io_line (IOLine) – IO line to get its ADC value.

Returns Analog value corresponding to the provided IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

set_io_configuration()

get_api_output_mode()
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the serial interface of the XBee.

Returns API output mode of the XBee.

Return type APIOutputMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

2.6. API reference 761



XBee Python Library Documentation, Release 1.4.0

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

APIOutputMode

get_api_output_mode_value()
Returns the API output mode of the XBee.

The API output mode determines the format that the received data is output through the serial interface of
the XBee.

Returns the parameter value.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

digi.xbee.models.mode.APIOutputModeBit

get_bluetooth_mac_addr()
Reads and returns the EUI-48 Bluetooth MAC address of this XBee following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

Returns The Bluetooth MAC address.

Return type String

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

get_current_frame_id()
Returns the last used frame ID.

762 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns Last used frame ID.

Return type Integer

get_dest_address()
Deprecated.

Operation not supported in this protocol. Use IPDevice.get_dest_ip_addr() instead. This
method raises an AttributeError.

get_dest_ip_addr()
Returns the destination IP address.

Returns Configured destination IP address.

Return type ipaddress.IPv4Address

Raises

• TimeoutException – If there is a timeout getting the destination IP address.

• XBeeException – If there is any other XBee related exception.

See also:

ipaddress.IPv4Address

get_dio_value(io_line)
Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O. To do so, use
AbstractXBeeDevice.set_io_configuration().

Parameters io_line (IOLine) – the DIO line to gets its digital value.

Returns current value of the provided IO line.

Return type IOValue

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

IOValue

set_io_configuration()

2.6. API reference 763



XBee Python Library Documentation, Release 1.4.0

get_file_manager()
Returns the file system manager for the XBee.

Returns The file system manager.

Return type FileSystemManager

Raises FileSystemNotSupportedException – If the XBee does not support filesys-
tem.

get_firmware_version()
Returns the firmware version of the XBee.

Returns Firmware version of the XBee.

Return type Bytearray

get_hardware_version()
Returns the hardware version of the XBee.

Returns Hardware version of the XBee.

Return type HardwareVersion

See also:

HardwareVersion

get_io_configuration(io_line)
Returns the configuration of the provided IO line.

Parameters io_line (IOLine) – IO line to get its configuration.

Returns IO mode of the IO line provided.

Return type IOMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

set_io_configuration()

get_io_sampling_rate()
Returns the IO sampling rate of the XBee.

Returns IO sampling rate of XBee.

Return type Integer

764 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

set_io_sampling_rate()

get_ip_addr()
Returns the IP address of this IP XBee.

To refresh this value use the method IPDevice.read_device_info().

Returns The IP address of this IP device.

Return type ipaddress.IPv4Address

See also:

ipaddress.IPv4Address

get_network()
Deprecated.

This protocol does not support the network functionality.

get_next_frame_id()
Returns the next frame ID of the XBee.

Returns The next frame ID of the XBee.

Return type Integer

get_node_id()
Returns the node identifier (‘NI’) value of the XBee.

Returns Node identifier (‘NI’) of the XBee.

Return type String

get_pan_id()
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

get_parameter(parameter, parameter_value=None, apply=None)
Override.

See also:

AbstractXBeeDevice.get_parameter()

2.6. API reference 765



XBee Python Library Documentation, Release 1.4.0

get_power_level()
Returns the power level of the XBee.

Returns Power level of the XBee.

Return type PowerLevel

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

PowerLevel

set_power_level()

get_pwm_duty_cycle(io_line)
Returns the PWM duty cycle in % corresponding to the provided IO line.

Parameters io_line (IOLine) – IO line to get its PWM duty cycle.

Returns PWM duty cycle of the given IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If io_line has no PWM capability.

See also:

IOLine

get_role()
Gets the XBee role.

Returns the role of the XBee.

Return type Role

See also:

Role

766 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_route_to_node(remote, timeout=10, force=True)
Gets the route from this XBee to the given remote node.

For Zigbee:

• ‘AR’ parameter of the local node must be configured with a value different from ‘FF’.

• Set force to True to force the Zigbee remote node to return its route independently of the local
node configuration as high or low RAM concentrator (‘DO’ of the local value)

Parameters

• remote (RemoteXBeeDevice) – The remote node.

• timeout (Float, optional, default=10) – Maximum number of seconds
to wait for the route.

• force (Boolean) – True to force asking for the route, False otherwise. Only for
Zigbee.

Returns

Tuple containing route data:

• status (TransmitStatus): The transmit status.

• Tuple with route data (None if the route was not read in the provided timeout):

– source (RemoteXBeeDevice): The source node of the route.

– destination (RemoteXBeeDevice): The destination node of the route.

– hops (List): List of intermediate nodes (RemoteXBeeDevice) ordered from
closest to source to closest to destination node (source and destination not in-
cluded).

Return type Tuple

get_sync_ops_timeout()
Returns the serial port read timeout.

Returns Serial port read timeout in seconds.

Return type Integer

get_xbee_device_callbacks()
Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee to get its callbacks. These callbacks
are executed before user callbacks.

Returns PacketReceived

has_explicit_packets()
Returns if there are pending explicit packets to read. This does not include non-explicit packets.

Returns True if there are pending packets, False otherwise.

Return type Boolean

See also:

XBeeDevice.has_packets()

2.6. API reference 767



XBee Python Library Documentation, Release 1.4.0

has_packets()
Returns if there are pending packets to read. This does not include explicit packets.

Returns True if there are pending packets, False otherwise.

Return type Boolean

See also:

XBeeDevice.has_explicit_packets()

is_apply_changes_enabled()
Returns whether apply changes flag is enabled.

Returns True if apply changes flag is enabled, False otherwise.

Return type Boolean

is_device_info_complete()
Override.

See also:

AbstractXBeeDevice.is_device_info_complete()

is_open()
Returns whether this XBee is open.

Returns Boolean. True if this XBee is open, False otherwise.

is_remote()
Override method.

See also:

AbstractXBeeDevice.is_remote()

log
Returns the XBee logger.

Returns The XBee device logger.

Return type Logger

operating_mode
Returns the operating mode of this XBee.

Returns OperatingMode. This XBee operating mode.

reachable
Returns whether the XBee is reachable.

Returns True if the device is reachable, False otherwise.

Return type Boolean

768 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

read_data(timeout=None)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

read_data_from(remote_xbee, timeout=None)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

read_device_info(init=True, fire_event=True)
Updates all instance parameters reading them from the XBee.

Parameters

• init (Boolean, optional, default=`True`) – If False only not initial-
ized parameters are read, all if True.

• fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.is_device_info_complete()

read_io_sample()
Returns an IO sample from the XBee containing the value of all enabled digital IO and analog input
channels.

Returns IO sample read from the XBee.

Return type IOSample

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOSample

2.6. API reference 769



XBee Python Library Documentation, Release 1.4.0

read_ip_data(timeout=3)
Reads new IP data received by this XBee during the provided timeout.

This method blocks until new IP data is received or the provided timeout expires.

For non-blocking operations, register a callback and use the method IPDevice.
add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming IP data at a specific port. Use the
method IPDevice.start_listening() for that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

Parameters timeout (Integer, optional) – The time to wait for new IP data in sec-
onds.

Returns IP message, None if this device did not receive new data.

Return type IPMessage

Raises ValueError – If timeout is less than 0.

read_ip_data_from(ip_addr, timeout=3)
Reads new IP data received from the given IP address during the provided timeout.

This method blocks until new IP data from the provided IP address is received or the given timeout expires.

For non-blocking operations, register a callback and use the method IPDevice.
add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming IP data at a specific port. Use the
method IPDevice.start_listening() for that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

Parameters

• ip_addr (ipaddress.IPv4Address) – The IP address to read data from.

• timeout (Integer, optional) – The time to wait for new IP data in seconds.

Returns

IP message, None if this device did not receive new data from the provided IP address.

Return type IPMessage

Raises ValueError – If timeout is less than 0.

reset()
Override method.

See also:

AbstractXBeeDevice.reset()

scan_counter
Returns the scan counter for this node.

Returns The scan counter for this node.

Return type Integer

send_bluetooth_data(data)
Sends the given data to the Bluetooth interface using a User Data Relay frame.

770 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Parameters data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If there is any problem sending the data.

See also:

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

send_data(remote_xbee, data, transmit_options=0)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

send_data_async(remote_xbee, data, transmit_options=0)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

send_data_broadcast(data, transmit_options=0)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

send_ip_data(ip_addr, dest_port, protocol, data, close_socket=False)
Sends the provided IP data to the given IP address and port using the specified IP protocol. For TCP and
TCP SSL protocols, you can also indicate if the socket should be closed when data is sent.

This method blocks until a success or error response arrives or the configured receive timeout expires.

Parameters

• ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

• dest_port (Integer) – The destination port of the transmission.

• protocol (IPProtocol) – The IP protocol used for the transmission.

• data (String or Bytearray) – The IP data to be sent.

• close_socket (Boolean, optional, default=`False`) – True to
close the socket just after the transmission. False to keep it open.

Raises

• ValueError – If ip_addr or protocol or data is None or dest_port is less than 0 or
greater than 65535.

• OperationNotSupportedException – If the XBee is remote.

• TimeoutException – If there is a timeout sending the data.

• XBeeException – If there is any other XBee related exception.

send_ip_data_async(ip_addr, dest_port, protocol, data, close_socket=False)
Sends the provided IP data to the given IP address and port asynchronously using the specified IP protocol.
For TCP and TCP SSL protocols, you can also indicate if the socket should be closed when data is sent.

Asynchronous transmissions do not wait for answer from the remote device or for transmit status packet.

2.6. API reference 771



XBee Python Library Documentation, Release 1.4.0

Parameters

• ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

• dest_port (Integer) – The destination port of the transmission.

• protocol (IPProtocol) – The IP protocol used for the transmission.

• data (String or Bytearray) – The IP data to be sent.

• close_socket (Boolean, optional, default=`False`) – True to
close the socket just after the transmission. False to keep it open.

Raises

• ValueError – If ip_addr or protocol or data is None or dest_port is less than 0 or
greater than 65535.

• OperationNotSupportedException – If the XBee is remote.

• XBeeException – If there is any other XBee related exception.

send_ip_data_broadcast(dest_port, data)
Sends the provided IP data to all clients.

This method blocks until a success or error transmit status arrives or the configured receive timeout ex-
pires.

Parameters

• dest_port (Integer) – The destination port of the transmission.

• data (String or Bytearray) – The IP data to be sent.

Raises

• ValueError – If data is None or dest_port is less than 0 or greater than 65535.

• TimeoutException – If there is a timeout sending the data.

• XBeeException – If there is any other XBee related exception.

send_micropython_data(data)
Sends the given data to the MicroPython interface using a User Data Relay frame.

Parameters data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If there is any problem sending the data.

See also:

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

send_packet(packet, sync=False)
Sends the packet and waits for the response. The packet to send is escaped depending on the current
operating mode.

This method can be synchronous or asynchronous.

772 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

If synchronous, this method discards all response packets until it finds the one that has the appropriate
frame ID, that is, the sent packet’s frame ID.

If asynchronous, this method does not wait for any response and returns None.

Parameters

• packet (XBeePacket) – The packet to send.

• sync (Boolean) – True to wait for the response of the sent packet and return it,
False otherwise.

Returns

Response packet if sync is True, None otherwise.

Return type XBeePacket

Raises

• TimeoutException – If sync is True and the response packet for the sent one
cannot be read.

• InvalidOperatingModeException – If the XBee operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• XBeeException – If the packet listener is not running or the XBee’s communica-
tion interface is closed.

See also:

XBeePacket

send_packet_sync_and_get_response(packet_to_send, timeout=None)
Sends the packet and waits for its corresponding response.

Parameters

• packet_to_send (XBeePacket) – The packet to transmit.

• timeout (Integer, optional, default=`None`) – Number of seconds
to wait. -1 to wait indefinitely.

Returns Received response packet.

Return type XBeePacket

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• TimeoutException – If response is not received in the configured timeout.

• XBeeException – If the XBee’s communication interface is closed.

See also:

XBeePacket

2.6. API reference 773



XBee Python Library Documentation, Release 1.4.0

send_user_data_relay(local_interface, data)
Sends the given data to the given XBee local interface.

Parameters

• local_interface (XBeeLocalInterface) – Destination XBee local inter-
face.

• data (Bytearray) – Data to send.

Raises

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ValueError – If local_interface is None.

• XBeeException – If there is any problem sending the User Data Relay.

See also:

XBeeLocalInterface

serial_port
Returns the serial port associated to the XBee, if any.

Returns

Serial port of the XBee. None if the local XBee does not use serial communication.

Return type XBeeSerialPort

See also:

XBeeSerialPort

set_16bit_addr(value)
Sets the 16-bit address of the XBee.

Parameters value (XBee16BitAddress) – New 16-bit address of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If the protocol is not 802.15.4.

set_api_output_mode(api_output_mode)
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

Parameters api_output_mode (APIOutputMode) – New API output mode.

774 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputMode

set_api_output_mode_value(api_output_mode)
Sets the API output mode of the XBee.

Parameters api_output_mode (Integer) – New API output mode op-
tions. Calculate this value using the method APIOutputModeBit.
calculate_api_output_mode_value() with a set of APIOutputModeBit.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputModeBit

set_dest_address(addr)
Deprecated.

Operation not supported in this protocol. Use IPDevice.set_dest_ip_addr() instead. This
method raises an AttributeError.

set_dest_ip_addr(address)
Sets the destination IP address.

Parameters address (ipaddress.IPv4Address) – Destination IP address.

Raises

• ValueError – If address is None.

• TimeoutException – If there is a timeout setting the destination IP address.

2.6. API reference 775



XBee Python Library Documentation, Release 1.4.0

• XBeeException – If there is any other XBee related exception.

See also:

ipaddress.IPv4Address

set_dio_change_detection(io_lines_set)
Sets the digital IO lines to be monitored and sampled whenever their status changes. A None set of lines
disables this feature.

Parameters io_lines_set – Set of IOLine.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

set_dio_value(io_line, io_value)
Sets the digital value (high or low) to the provided IO line.

Parameters

• io_line (IOLine) – Digital IO line to sets its value.

• io_value (IOValue) – IO value to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOValue

set_io_configuration(io_line, io_mode)
Sets the configuration of the provided IO line.

Parameters

776 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• io_line (IOLine) – IO line to configure.

• io_mode (IOMode) – IO mode to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

get_io_configuration()

set_io_sampling_rate(rate)
Sets the IO sampling rate of the XBee in seconds. A sample rate of 0 means the IO sampling feature is
disabled.

Parameters rate (Integer) – New IO sampling rate of the XBee in seconds.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

get_io_sampling_rate()

set_node_id(node_id)
Sets the node identifier (‘NI‘) value of the XBee.

Parameters node_id (String) – New node identifier (‘NI’) of the XBee.

Raises

• ValueError – If node_id is None or its length is greater than 20.

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

2.6. API reference 777



XBee Python Library Documentation, Release 1.4.0

set_pan_id(value)
Deprecated.

Operation not supported in this protocol. This method raises an AttributeError.

set_parameter(parameter, value, apply=None)
Override.

See: AbstractXBeeDevice.set_parameter()

set_power_level(power_level)
Sets the power level of the XBee.

Parameters power_level (PowerLevel) – New power level of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

PowerLevel

get_power_level()

set_pwm_duty_cycle(io_line, cycle)
Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

Parameters

• io_line (IOLine) – IO Line to be assigned.

• cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If the given IO line does not have PWM capability or cycle is not
between 0 and 100.

See also:

IOLine

IOMode.PWM

778 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

set_sync_ops_timeout(sync_ops_timeout)
Sets the serial port read timeout.

Parameters sync_ops_timeout (Integer) – Read timeout in seconds.

start_listening(src_port)
Starts listening for incoming IP transmissions in the provided port.

Parameters src_port (Integer) – Port to listen for incoming transmissions.

Raises

• ValueError – If source_port is less than 0 or greater than 65535.

• TimeoutException – If there is a timeout setting the source port.

• XBeeException – If there is any other XBee related exception.

stop_listening()
Stops listening for incoming IP transmissions.

Raises

• TimeoutException – If there is a timeout processing the operation.

• XBeeException – If there is any other XBee related exception.

update_bluetooth_password(new_password)
Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

Parameters new_password (String) – New Bluetooth password.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

update_device_data_from(device)
Updates the current node information with provided data. This is only for internal use.

Parameters device (AbstractXBeeDevice) – XBee to get the data from.

Returns True if the node data has been updated, False otherwise.

Return type Boolean

update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None,
timeout=None, progress_callback=None)

Performs a firmware update operation of the XBee.

Parameters

• xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

• xbee_firmware_file (String, optional, default=`None`) – Lo-
cation of the XBee binary firmware file.

• bootloader_firmware_file (String, optional,
default=`None`) – Location of the bootloader binary firmware file.

2.6. API reference 779



XBee Python Library Documentation, Release 1.4.0

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the update process (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to to receive progress information. Receives two arguments:

– The current update task as a String

– The current update task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• OperationNotSupportedException – If XBee does not support firmware
update.

• FirmwareUpdateException – If there is any error during the firmware update.

write_changes()
Writes configurable parameter values to the non-volatile memory of the XBee so that parameter modifi-
cations persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by subsequent use of this method.

If changes are made without writing them, the XBee reverts back to previously saved parameters the next
time the module is powered-on.

Writing the parameter modifications does not mean those values are immediately applied, this depends on
the status of the ‘apply configuration changes’ option. Use method is_apply_changes_enabled()
to get its status and enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

class digi.xbee.devices.RemoteXBeeDevice(local_xbee, x64bit_addr=<digi.xbee.models.address.XBee64BitAddress
object>, x16bit_addr=<digi.xbee.models.address.XBee16BitAddress
object>, node_id=None)

Bases: digi.xbee.devices.AbstractXBeeDevice

This class represents a remote XBee.

Class constructor. Instantiates a new RemoteXBeeDevice with the provided parameters.

Parameters

• local_xbee (XBeeDevice) – Local XBee associated with the remote one.

• x64bit_addr (XBee64BitAddress) – 64-bit address of the remote XBee.

• x16bit_addr (XBee16BitAddress) – 16-bit address of the remote XBee.

• node_id (String, optional) – Node identifier of the remote XBee.

See also:

780 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

XBee16BitAddress

XBee64BitAddress

XBeeDevice

get_parameter(parameter, parameter_value=None, apply=None)
Override.

See also:

AbstractXBeeDevice.get_parameter()

set_parameter(parameter, value, apply=None)
Override.

See also:

AbstractXBeeDevice.set_parameter()

is_remote()
Override method.

See also:

AbstractXBeeDevice.is_remote()

reset()
Override method.

See also:

AbstractXBeeDevice.reset()

get_local_xbee_device()
Returns the local XBee associated to the remote one.

Returns Local XBee.

Return type XBeeDevice

set_local_xbee_device(local_xbee_device)
This methods associates a XBeeDevice to the remote XBee.

Parameters local_xbee_device (XBeeDevice) – New local XBee associated to the
remote one.

See also:

XBeeDevice

2.6. API reference 781



XBee Python Library Documentation, Release 1.4.0

get_serial_port()
Returns the serial port of the local XBee associated to the remote one.

Returns

Serial port of the local XBee associated to the remote one.

Return type XBeeSerialPort

See also:

XBeeSerialPort

get_comm_iface()
Returns the communication interface of the local XBee associated to the remote one.

Returns

Communication interface of the local XBee associated to the remote one.

Return type XBeeCommunicationInterface

See also:

XBeeCommunicationInterface

get_ota_max_block_size()
Returns the maximum number of bytes to send for ota updates.

Returns Maximum ota block size to send.

Return type Integer

set_ota_max_block_size(size)
Sets the maximum number of bytes to send for ota updates.

Parameters size (Integer) – Maximum ota block size to send.

Raises ValueError – If size is not between 0 and 255.

update_filesystem_image(ota_filesystem_file, timeout=None, progress_callback=None)
Performs a filesystem image update operation of the device.

Parameters

• ota_filesystem_file (String) – Location of the OTA filesystem image file.

• timeout (Integer, optional) – Maximum time to wait for target read oper-
ations during the update process.

• progress_callback (Function, optional) – Function to receive progress
information. Receives two arguments:

– The current update task as a String.

– The current update task percentage as an Integer.

Raises

• XBeeException – If the device is not open.

782 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the device operating mode is invalid.

• FileSystemNotSupportedException – If the filesystem update is not sup-
ported in the XBee.

• FileSystemException – If there is any error performing the filesystem update.

apply_changes()
Applies changes via ‘AC’ command.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

apply_profile(profile_path, timeout=None, progress_callback=None)
Applies the given XBee profile to the XBee.

Parameters

• profile_path (String) – Path of the XBee profile file to apply.

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the apply profile (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to receive progress information. Receives two arguments:

– The current apply profile task as a String

– The current apply profile task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• UpdateProfileException – If there is any error applying the XBee profile.

determine_protocol(hardware_version, firmware_version)
Determines the XBee protocol based on the given hardware and firmware versions.

Parameters

• hardware_version (Integer) – Hardware version to get its protocol.

• firmware_version (Bytearray) – Firmware version to get its protocol.

Returns

XBee protocol corresponding to the given hardware and firmware versions.

Return type XBeeProtocol

disable_bluetooth()
Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

Raises

2.6. API reference 783



XBee Python Library Documentation, Release 1.4.0

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

enable_apply_changes(value)
Sets apply changes flag.

Parameters value (Boolean) – True to enable apply changes flag, False to disable it.

enable_bluetooth()
Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth password if not done previously. Use
method AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

execute_command(parameter, value=None, apply=None)
Executes the provided command.

Parameters

• (String or (parameter) – class: .ATStringCommand): AT command to exe-
cute.

• value (bytearray, optional, default=`None`) – Command value (if
any).

• apply (Boolean, optional, default=`None`) – True to ap-
ply changes in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

784 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

get_16bit_addr()
Returns the 16-bit address of the XBee.

Returns 16-bit address of the XBee.

Return type XBee16BitAddress

See also:

XBee16BitAddress

get_64bit_addr()
Returns the 64-bit address of the XBee.

Returns 64-bit address of the XBee.

Return type XBee64BitAddress

See also:

XBee64BitAddress

get_adc_value(io_line)
Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so, use AbstractXBeeDevice.
set_io_configuration() and IOMode.ADC.

Parameters io_line (IOLine) – IO line to get its ADC value.

Returns Analog value corresponding to the provided IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

set_io_configuration()

2.6. API reference 785



XBee Python Library Documentation, Release 1.4.0

get_api_output_mode()
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the serial interface of the XBee.

Returns API output mode of the XBee.

Return type APIOutputMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

APIOutputMode

get_api_output_mode_value()
Returns the API output mode of the XBee.

The API output mode determines the format that the received data is output through the serial interface of
the XBee.

Returns the parameter value.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

digi.xbee.models.mode.APIOutputModeBit

get_bluetooth_mac_addr()
Reads and returns the EUI-48 Bluetooth MAC address of this XBee following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

Returns The Bluetooth MAC address.

786 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type String

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

get_current_frame_id()
Returns the last used frame ID.

Returns Last used frame ID.

Return type Integer

get_dest_address()
Returns the 64-bit address of the XBee that is data destination.

Returns 64-bit address of destination XBee.

Return type XBee64BitAddress

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

XBee64BitAddress

set_dest_address()

get_dio_value(io_line)
Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O. To do so, use
AbstractXBeeDevice.set_io_configuration().

Parameters io_line (IOLine) – the DIO line to gets its digital value.

Returns current value of the provided IO line.

Return type IOValue

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

2.6. API reference 787



XBee Python Library Documentation, Release 1.4.0

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

IOValue

set_io_configuration()

get_file_manager()
Returns the file system manager for the XBee.

Returns The file system manager.

Return type FileSystemManager

Raises FileSystemNotSupportedException – If the XBee does not support filesys-
tem.

get_firmware_version()
Returns the firmware version of the XBee.

Returns Firmware version of the XBee.

Return type Bytearray

get_hardware_version()
Returns the hardware version of the XBee.

Returns Hardware version of the XBee.

Return type HardwareVersion

See also:

HardwareVersion

get_io_configuration(io_line)
Returns the configuration of the provided IO line.

Parameters io_line (IOLine) – IO line to get its configuration.

Returns IO mode of the IO line provided.

Return type IOMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

788 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

IOLine

IOMode

set_io_configuration()

get_io_sampling_rate()
Returns the IO sampling rate of the XBee.

Returns IO sampling rate of XBee.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

set_io_sampling_rate()

get_node_id()
Returns the node identifier (‘NI’) value of the XBee.

Returns Node identifier (‘NI’) of the XBee.

Return type String

get_pan_id()
Returns the operating PAN ID of the XBee.

Returns Operating PAN ID of the XBee.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

set_pan_id()

get_power_level()
Returns the power level of the XBee.

Returns Power level of the XBee.

2.6. API reference 789



XBee Python Library Documentation, Release 1.4.0

Return type PowerLevel

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

PowerLevel

set_power_level()

get_protocol()
Returns the current protocol of the XBee.

Returns Current protocol of the XBee.

Return type XBeeProtocol

See also:

XBeeProtocol

get_pwm_duty_cycle(io_line)
Returns the PWM duty cycle in % corresponding to the provided IO line.

Parameters io_line (IOLine) – IO line to get its PWM duty cycle.

Returns PWM duty cycle of the given IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If io_line has no PWM capability.

See also:

IOLine

get_role()
Gets the XBee role.

790 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns the role of the XBee.

Return type Role

See also:

Role

get_sync_ops_timeout()
Returns the serial port read timeout.

Returns Serial port read timeout in seconds.

Return type Integer

is_apply_changes_enabled()
Returns whether apply changes flag is enabled.

Returns True if apply changes flag is enabled, False otherwise.

Return type Boolean

is_device_info_complete()
Returns whether XBee node information is complete.

Returns True if node information is complete, False otherwise.

Return type Boolean

See also:

AbstractXBeeDevice.read_device_info()

log
Returns the XBee logger.

Returns The XBee device logger.

Return type Logger

reachable
Returns whether the XBee is reachable.

Returns True if the device is reachable, False otherwise.

Return type Boolean

read_device_info(init=True, fire_event=True)
Updates all instance parameters reading them from the XBee.

Parameters

• init (Boolean, optional, default=`True`) – If False only not initial-
ized parameters are read, all if True.

• fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

Raises

• TimeoutException – If response is not received before the read timeout expires.

2.6. API reference 791



XBee Python Library Documentation, Release 1.4.0

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.is_device_info_complete()

read_io_sample()
Returns an IO sample from the XBee containing the value of all enabled digital IO and analog input
channels.

Returns IO sample read from the XBee.

Return type IOSample

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOSample

scan_counter
Returns the scan counter for this node.

Returns The scan counter for this node.

Return type Integer

set_16bit_addr(value)
Sets the 16-bit address of the XBee.

Parameters value (XBee16BitAddress) – New 16-bit address of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If the protocol is not 802.15.4.

792 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

set_api_output_mode(api_output_mode)
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

Parameters api_output_mode (APIOutputMode) – New API output mode.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputMode

set_api_output_mode_value(api_output_mode)
Sets the API output mode of the XBee.

Parameters api_output_mode (Integer) – New API output mode op-
tions. Calculate this value using the method APIOutputModeBit.
calculate_api_output_mode_value() with a set of APIOutputModeBit.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputModeBit

set_dest_address(addr)
Sets the 64-bit address of the XBee that is data destination.

Parameters addr (XBee64BitAddress or RemoteXBeeDevice) – Address itself or
remote XBee to be data destination.

Raises

• TimeoutException – If response is not received before the read timeout expires.

2.6. API reference 793



XBee Python Library Documentation, Release 1.4.0

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If addr is None.

See also:

XBee64BitAddress

get_dest_address()

set_dio_change_detection(io_lines_set)
Sets the digital IO lines to be monitored and sampled whenever their status changes. A None set of lines
disables this feature.

Parameters io_lines_set – Set of IOLine.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

set_dio_value(io_line, io_value)
Sets the digital value (high or low) to the provided IO line.

Parameters

• io_line (IOLine) – Digital IO line to sets its value.

• io_value (IOValue) – IO value to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOValue

794 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

set_io_configuration(io_line, io_mode)
Sets the configuration of the provided IO line.

Parameters

• io_line (IOLine) – IO line to configure.

• io_mode (IOMode) – IO mode to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

get_io_configuration()

set_io_sampling_rate(rate)
Sets the IO sampling rate of the XBee in seconds. A sample rate of 0 means the IO sampling feature is
disabled.

Parameters rate (Integer) – New IO sampling rate of the XBee in seconds.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

get_io_sampling_rate()

set_node_id(node_id)
Sets the node identifier (‘NI‘) value of the XBee.

Parameters node_id (String) – New node identifier (‘NI’) of the XBee.

Raises

• ValueError – If node_id is None or its length is greater than 20.

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

2.6. API reference 795



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

set_pan_id(value)
Sets the operating PAN ID of the XBee.

Parameters value (Bytearray) – New operating PAN ID of the XBee. Must have only 1
or 2 bytes.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

get_pan_id()

set_power_level(power_level)
Sets the power level of the XBee.

Parameters power_level (PowerLevel) – New power level of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

PowerLevel

get_power_level()

set_pwm_duty_cycle(io_line, cycle)
Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

Parameters

• io_line (IOLine) – IO Line to be assigned.

• cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

Raises

• TimeoutException – If response is not received before the read timeout expires.

796 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If the given IO line does not have PWM capability or cycle is not
between 0 and 100.

See also:

IOLine

IOMode.PWM

set_sync_ops_timeout(sync_ops_timeout)
Sets the serial port read timeout.

Parameters sync_ops_timeout (Integer) – Read timeout in seconds.

update_bluetooth_password(new_password)
Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

Parameters new_password (String) – New Bluetooth password.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

update_device_data_from(device)
Updates the current node information with provided data. This is only for internal use.

Parameters device (AbstractXBeeDevice) – XBee to get the data from.

Returns True if the node data has been updated, False otherwise.

Return type Boolean

update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None,
timeout=None, progress_callback=None)

Performs a firmware update operation of the XBee.

Parameters

• xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

• xbee_firmware_file (String, optional, default=`None`) – Lo-
cation of the XBee binary firmware file.

• bootloader_firmware_file (String, optional,
default=`None`) – Location of the bootloader binary firmware file.

2.6. API reference 797



XBee Python Library Documentation, Release 1.4.0

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the update process (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to to receive progress information. Receives two arguments:

– The current update task as a String

– The current update task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• OperationNotSupportedException – If XBee does not support firmware
update.

• FirmwareUpdateException – If there is any error during the firmware update.

write_changes()
Writes configurable parameter values to the non-volatile memory of the XBee so that parameter modifi-
cations persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by subsequent use of this method.

If changes are made without writing them, the XBee reverts back to previously saved parameters the next
time the module is powered-on.

Writing the parameter modifications does not mean those values are immediately applied, this depends on
the status of the ‘apply configuration changes’ option. Use method is_apply_changes_enabled()
to get its status and enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

class digi.xbee.devices.RemoteRaw802Device(local_xbee, x64bit_addr=None,
x16bit_addr=None, node_id=None)

Bases: digi.xbee.devices.RemoteXBeeDevice

This class represents a remote 802.15.4 XBee.

Class constructor. Instantiates a new RemoteXBeeDevice with the provided parameters.

Parameters

• local_xbee (XBeeDevice) – Local XBee associated with the remote one.

• x64bit_addr (XBee64BitAddress) – 64-bit address of the remote XBee.

• x16bit_addr (XBee16BitAddress) – 16-bit address of the remote XBee.

• node_id (String, optional) – Node identifier of the remote XBee.

Raises XBeeException – If the protocol of local_xbee is invalid.

See also:

798 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

RemoteXBeeDevice

XBee16BitAddress

XBee64BitAddress

XBeeDevice

get_protocol()
Override.

See also:

RemoteXBeeDevice.get_protocol()

set_64bit_addr(address)
Sets the 64-bit address of this remote 802.15.4 device.

Parameters address (XBee64BitAddress) – The 64-bit address to set.

Raises ValueError – If address is None.

get_ai_status()
Returns the current association status of this XBee. It indicates occurrences of errors during the modem
initialization and connection.

Returns

The XBee association indication status.

Return type AssociationIndicationStatus

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

apply_changes()
Applies changes via ‘AC’ command.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

apply_profile(profile_path, timeout=None, progress_callback=None)
Applies the given XBee profile to the XBee.

Parameters

• profile_path (String) – Path of the XBee profile file to apply.

2.6. API reference 799



XBee Python Library Documentation, Release 1.4.0

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the apply profile (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to receive progress information. Receives two arguments:

– The current apply profile task as a String

– The current apply profile task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• UpdateProfileException – If there is any error applying the XBee profile.

determine_protocol(hardware_version, firmware_version)
Determines the XBee protocol based on the given hardware and firmware versions.

Parameters

• hardware_version (Integer) – Hardware version to get its protocol.

• firmware_version (Bytearray) – Firmware version to get its protocol.

Returns

XBee protocol corresponding to the given hardware and firmware versions.

Return type XBeeProtocol

disable_bluetooth()
Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

enable_apply_changes(value)
Sets apply changes flag.

Parameters value (Boolean) – True to enable apply changes flag, False to disable it.

enable_bluetooth()
Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth password if not done previously. Use
method AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

800 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

execute_command(parameter, value=None, apply=None)
Executes the provided command.

Parameters

• (String or (parameter) – class: .ATStringCommand): AT command to exe-
cute.

• value (bytearray, optional, default=`None`) – Command value (if
any).

• apply (Boolean, optional, default=`None`) – True to ap-
ply changes in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

get_16bit_addr()
Returns the 16-bit address of the XBee.

Returns 16-bit address of the XBee.

Return type XBee16BitAddress

See also:

XBee16BitAddress

get_64bit_addr()
Returns the 64-bit address of the XBee.

Returns 64-bit address of the XBee.

Return type XBee64BitAddress

2.6. API reference 801



XBee Python Library Documentation, Release 1.4.0

See also:

XBee64BitAddress

get_adc_value(io_line)
Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so, use AbstractXBeeDevice.
set_io_configuration() and IOMode.ADC.

Parameters io_line (IOLine) – IO line to get its ADC value.

Returns Analog value corresponding to the provided IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

set_io_configuration()

get_api_output_mode()
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the serial interface of the XBee.

Returns API output mode of the XBee.

Return type APIOutputMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

802 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

APIOutputMode

get_api_output_mode_value()
Returns the API output mode of the XBee.

The API output mode determines the format that the received data is output through the serial interface of
the XBee.

Returns the parameter value.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

digi.xbee.models.mode.APIOutputModeBit

get_bluetooth_mac_addr()
Reads and returns the EUI-48 Bluetooth MAC address of this XBee following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

Returns The Bluetooth MAC address.

Return type String

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

get_comm_iface()
Returns the communication interface of the local XBee associated to the remote one.

Returns

Communication interface of the local XBee associated to the remote one.

Return type XBeeCommunicationInterface

See also:

2.6. API reference 803



XBee Python Library Documentation, Release 1.4.0

XBeeCommunicationInterface

get_current_frame_id()
Returns the last used frame ID.

Returns Last used frame ID.

Return type Integer

get_dest_address()
Returns the 64-bit address of the XBee that is data destination.

Returns 64-bit address of destination XBee.

Return type XBee64BitAddress

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

XBee64BitAddress

set_dest_address()

get_dio_value(io_line)
Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O. To do so, use
AbstractXBeeDevice.set_io_configuration().

Parameters io_line (IOLine) – the DIO line to gets its digital value.

Returns current value of the provided IO line.

Return type IOValue

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

804 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

IOValue

set_io_configuration()

get_file_manager()
Returns the file system manager for the XBee.

Returns The file system manager.

Return type FileSystemManager

Raises FileSystemNotSupportedException – If the XBee does not support filesys-
tem.

get_firmware_version()
Returns the firmware version of the XBee.

Returns Firmware version of the XBee.

Return type Bytearray

get_hardware_version()
Returns the hardware version of the XBee.

Returns Hardware version of the XBee.

Return type HardwareVersion

See also:

HardwareVersion

get_io_configuration(io_line)
Returns the configuration of the provided IO line.

Parameters io_line (IOLine) – IO line to get its configuration.

Returns IO mode of the IO line provided.

Return type IOMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

set_io_configuration()

2.6. API reference 805



XBee Python Library Documentation, Release 1.4.0

get_io_sampling_rate()
Returns the IO sampling rate of the XBee.

Returns IO sampling rate of XBee.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

set_io_sampling_rate()

get_local_xbee_device()
Returns the local XBee associated to the remote one.

Returns Local XBee.

Return type XBeeDevice

get_node_id()
Returns the node identifier (‘NI’) value of the XBee.

Returns Node identifier (‘NI’) of the XBee.

Return type String

get_ota_max_block_size()
Returns the maximum number of bytes to send for ota updates.

Returns Maximum ota block size to send.

Return type Integer

get_pan_id()
Returns the operating PAN ID of the XBee.

Returns Operating PAN ID of the XBee.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

806 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

set_pan_id()

get_parameter(parameter, parameter_value=None, apply=None)
Override.

See also:

AbstractXBeeDevice.get_parameter()

get_power_level()
Returns the power level of the XBee.

Returns Power level of the XBee.

Return type PowerLevel

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

PowerLevel

set_power_level()

get_pwm_duty_cycle(io_line)
Returns the PWM duty cycle in % corresponding to the provided IO line.

Parameters io_line (IOLine) – IO line to get its PWM duty cycle.

Returns PWM duty cycle of the given IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If io_line has no PWM capability.

See also:

IOLine

2.6. API reference 807



XBee Python Library Documentation, Release 1.4.0

get_role()
Gets the XBee role.

Returns the role of the XBee.

Return type Role

See also:

Role

get_serial_port()
Returns the serial port of the local XBee associated to the remote one.

Returns

Serial port of the local XBee associated to the remote one.

Return type XBeeSerialPort

See also:

XBeeSerialPort

get_sync_ops_timeout()
Returns the serial port read timeout.

Returns Serial port read timeout in seconds.

Return type Integer

is_apply_changes_enabled()
Returns whether apply changes flag is enabled.

Returns True if apply changes flag is enabled, False otherwise.

Return type Boolean

is_device_info_complete()
Returns whether XBee node information is complete.

Returns True if node information is complete, False otherwise.

Return type Boolean

See also:

AbstractXBeeDevice.read_device_info()

is_remote()
Override method.

See also:

AbstractXBeeDevice.is_remote()

808 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

log
Returns the XBee logger.

Returns The XBee device logger.

Return type Logger

reachable
Returns whether the XBee is reachable.

Returns True if the device is reachable, False otherwise.

Return type Boolean

read_device_info(init=True, fire_event=True)
Updates all instance parameters reading them from the XBee.

Parameters

• init (Boolean, optional, default=`True`) – If False only not initial-
ized parameters are read, all if True.

• fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.is_device_info_complete()

read_io_sample()
Returns an IO sample from the XBee containing the value of all enabled digital IO and analog input
channels.

Returns IO sample read from the XBee.

Return type IOSample

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOSample

2.6. API reference 809



XBee Python Library Documentation, Release 1.4.0

reset()
Override method.

See also:

AbstractXBeeDevice.reset()

scan_counter
Returns the scan counter for this node.

Returns The scan counter for this node.

Return type Integer

set_16bit_addr(value)
Sets the 16-bit address of the XBee.

Parameters value (XBee16BitAddress) – New 16-bit address of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If the protocol is not 802.15.4.

set_api_output_mode(api_output_mode)
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

Parameters api_output_mode (APIOutputMode) – New API output mode.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputMode

set_api_output_mode_value(api_output_mode)
Sets the API output mode of the XBee.

810 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Parameters api_output_mode (Integer) – New API output mode op-
tions. Calculate this value using the method APIOutputModeBit.
calculate_api_output_mode_value() with a set of APIOutputModeBit.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputModeBit

set_dest_address(addr)
Sets the 64-bit address of the XBee that is data destination.

Parameters addr (XBee64BitAddress or RemoteXBeeDevice) – Address itself or
remote XBee to be data destination.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If addr is None.

See also:

XBee64BitAddress

get_dest_address()

set_dio_change_detection(io_lines_set)
Sets the digital IO lines to be monitored and sampled whenever their status changes. A None set of lines
disables this feature.

Parameters io_lines_set – Set of IOLine.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

2.6. API reference 811



XBee Python Library Documentation, Release 1.4.0

• ATCommandException – If response is not as expected.

See also:

IOLine

set_dio_value(io_line, io_value)
Sets the digital value (high or low) to the provided IO line.

Parameters

• io_line (IOLine) – Digital IO line to sets its value.

• io_value (IOValue) – IO value to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOValue

set_io_configuration(io_line, io_mode)
Sets the configuration of the provided IO line.

Parameters

• io_line (IOLine) – IO line to configure.

• io_mode (IOMode) – IO mode to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

get_io_configuration()

812 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

set_io_sampling_rate(rate)
Sets the IO sampling rate of the XBee in seconds. A sample rate of 0 means the IO sampling feature is
disabled.

Parameters rate (Integer) – New IO sampling rate of the XBee in seconds.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

get_io_sampling_rate()

set_local_xbee_device(local_xbee_device)
This methods associates a XBeeDevice to the remote XBee.

Parameters local_xbee_device (XBeeDevice) – New local XBee associated to the
remote one.

See also:

XBeeDevice

set_node_id(node_id)
Sets the node identifier (‘NI‘) value of the XBee.

Parameters node_id (String) – New node identifier (‘NI’) of the XBee.

Raises

• ValueError – If node_id is None or its length is greater than 20.

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

set_ota_max_block_size(size)
Sets the maximum number of bytes to send for ota updates.

Parameters size (Integer) – Maximum ota block size to send.

Raises ValueError – If size is not between 0 and 255.

set_pan_id(value)
Sets the operating PAN ID of the XBee.

2.6. API reference 813



XBee Python Library Documentation, Release 1.4.0

Parameters value (Bytearray) – New operating PAN ID of the XBee. Must have only 1
or 2 bytes.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

get_pan_id()

set_parameter(parameter, value, apply=None)
Override.

See also:

AbstractXBeeDevice.set_parameter()

set_power_level(power_level)
Sets the power level of the XBee.

Parameters power_level (PowerLevel) – New power level of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

PowerLevel

get_power_level()

set_pwm_duty_cycle(io_line, cycle)
Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

Parameters

• io_line (IOLine) – IO Line to be assigned.

• cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

814 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If the given IO line does not have PWM capability or cycle is not
between 0 and 100.

See also:

IOLine

IOMode.PWM

set_sync_ops_timeout(sync_ops_timeout)
Sets the serial port read timeout.

Parameters sync_ops_timeout (Integer) – Read timeout in seconds.

update_bluetooth_password(new_password)
Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

Parameters new_password (String) – New Bluetooth password.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

update_device_data_from(device)
Updates the current node information with provided data. This is only for internal use.

Parameters device (AbstractXBeeDevice) – XBee to get the data from.

Returns True if the node data has been updated, False otherwise.

Return type Boolean

update_filesystem_image(ota_filesystem_file, timeout=None, progress_callback=None)
Performs a filesystem image update operation of the device.

Parameters

• ota_filesystem_file (String) – Location of the OTA filesystem image file.

• timeout (Integer, optional) – Maximum time to wait for target read oper-
ations during the update process.

• progress_callback (Function, optional) – Function to receive progress
information. Receives two arguments:

2.6. API reference 815



XBee Python Library Documentation, Release 1.4.0

– The current update task as a String.

– The current update task percentage as an Integer.

Raises

• XBeeException – If the device is not open.

• InvalidOperatingModeException – If the device operating mode is invalid.

• FileSystemNotSupportedException – If the filesystem update is not sup-
ported in the XBee.

• FileSystemException – If there is any error performing the filesystem update.

update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None,
timeout=None, progress_callback=None)

Performs a firmware update operation of the XBee.

Parameters

• xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

• xbee_firmware_file (String, optional, default=`None`) – Lo-
cation of the XBee binary firmware file.

• bootloader_firmware_file (String, optional,
default=`None`) – Location of the bootloader binary firmware file.

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the update process (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to to receive progress information. Receives two arguments:

– The current update task as a String

– The current update task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• OperationNotSupportedException – If XBee does not support firmware
update.

• FirmwareUpdateException – If there is any error during the firmware update.

write_changes()
Writes configurable parameter values to the non-volatile memory of the XBee so that parameter modifi-
cations persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by subsequent use of this method.

If changes are made without writing them, the XBee reverts back to previously saved parameters the next
time the module is powered-on.

Writing the parameter modifications does not mean those values are immediately applied, this depends on
the status of the ‘apply configuration changes’ option. Use method is_apply_changes_enabled()
to get its status and enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

Raises

816 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

class digi.xbee.devices.RemoteDigiMeshDevice(local_xbee, x64bit_addr=None,
node_id=None)

Bases: digi.xbee.devices.RemoteXBeeDevice

This class represents a remote DigiMesh XBee device.

Class constructor. Instantiates a new RemoteDigiMeshDevice with the provided parameters.

Parameters

• local_xbee (XBeeDevice) – Local XBee associated with the remote one.

• x64bit_addr (XBee64BitAddress) – 64-bit address of the remote XBee.

• node_id (String, optional) – Node identifier of the remote XBee.

Raises XBeeException – If the protocol of local_xbee is invalid.

See also:

RemoteXBeeDevice

XBee64BitAddress

XBeeDevice

get_protocol()
Override.

See also:

RemoteXBeeDevice.get_protocol()

get_neighbors(neighbor_cb=None, finished_cb=None, timeout=None)
Returns the neighbors of this XBee. If neighbor_cb is not defined, the process blocks during the specified
timeout.

Parameters

• neighbor_cb (Function, optional, default=`None`) – Method
called when a new neighbor is received. Receives two arguments:

– The XBee that owns this new neighbor.

– The new neighbor.

• finished_cb (Function, optional, default=`None`) – Method to
execute when the process finishes. Receives three arguments:

– The XBee that is searching for its neighbors.

– A list with the discovered neighbors.

2.6. API reference 817



XBee Python Library Documentation, Release 1.4.0

– An error message if something went wrong.

• timeout (Float, optional, default=`NeighborFinder.
DEFAULT_TIMEOUT`) – The timeout in seconds.

Returns

List of Neighbor when neighbor_cb is not defined, None otherwise (in this case
neighbors are received in the callback).

Return type List

Raises OperationNotSupportedException – If XBee protocol is not DigiMesh.

See also:

com.digi.models.zdo.Neighbor

apply_changes()
Applies changes via ‘AC’ command.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

apply_profile(profile_path, timeout=None, progress_callback=None)
Applies the given XBee profile to the XBee.

Parameters

• profile_path (String) – Path of the XBee profile file to apply.

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the apply profile (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to receive progress information. Receives two arguments:

– The current apply profile task as a String

– The current apply profile task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• UpdateProfileException – If there is any error applying the XBee profile.

determine_protocol(hardware_version, firmware_version)
Determines the XBee protocol based on the given hardware and firmware versions.

Parameters

• hardware_version (Integer) – Hardware version to get its protocol.

818 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• firmware_version (Bytearray) – Firmware version to get its protocol.

Returns

XBee protocol corresponding to the given hardware and firmware versions.

Return type XBeeProtocol

disable_bluetooth()
Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

enable_apply_changes(value)
Sets apply changes flag.

Parameters value (Boolean) – True to enable apply changes flag, False to disable it.

enable_bluetooth()
Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth password if not done previously. Use
method AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

execute_command(parameter, value=None, apply=None)
Executes the provided command.

Parameters

• (String or (parameter) – class: .ATStringCommand): AT command to exe-
cute.

• value (bytearray, optional, default=`None`) – Command value (if
any).

• apply (Boolean, optional, default=`None`) – True to ap-
ply changes in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

2.6. API reference 819



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

get_16bit_addr()
Returns the 16-bit address of the XBee.

Returns 16-bit address of the XBee.

Return type XBee16BitAddress

See also:

XBee16BitAddress

get_64bit_addr()
Returns the 64-bit address of the XBee.

Returns 64-bit address of the XBee.

Return type XBee64BitAddress

See also:

XBee64BitAddress

get_adc_value(io_line)
Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so, use AbstractXBeeDevice.
set_io_configuration() and IOMode.ADC.

Parameters io_line (IOLine) – IO line to get its ADC value.

Returns Analog value corresponding to the provided IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

820 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

set_io_configuration()

get_api_output_mode()
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the serial interface of the XBee.

Returns API output mode of the XBee.

Return type APIOutputMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

APIOutputMode

get_api_output_mode_value()
Returns the API output mode of the XBee.

The API output mode determines the format that the received data is output through the serial interface of
the XBee.

Returns the parameter value.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

2.6. API reference 821



XBee Python Library Documentation, Release 1.4.0

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

digi.xbee.models.mode.APIOutputModeBit

get_bluetooth_mac_addr()
Reads and returns the EUI-48 Bluetooth MAC address of this XBee following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

Returns The Bluetooth MAC address.

Return type String

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

get_comm_iface()
Returns the communication interface of the local XBee associated to the remote one.

Returns

Communication interface of the local XBee associated to the remote one.

Return type XBeeCommunicationInterface

See also:

XBeeCommunicationInterface

get_current_frame_id()
Returns the last used frame ID.

Returns Last used frame ID.

Return type Integer

get_dest_address()
Returns the 64-bit address of the XBee that is data destination.

Returns 64-bit address of destination XBee.

Return type XBee64BitAddress

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

822 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

XBee64BitAddress

set_dest_address()

get_dio_value(io_line)
Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O. To do so, use
AbstractXBeeDevice.set_io_configuration().

Parameters io_line (IOLine) – the DIO line to gets its digital value.

Returns current value of the provided IO line.

Return type IOValue

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

IOValue

set_io_configuration()

get_file_manager()
Returns the file system manager for the XBee.

Returns The file system manager.

Return type FileSystemManager

Raises FileSystemNotSupportedException – If the XBee does not support filesys-
tem.

get_firmware_version()
Returns the firmware version of the XBee.

Returns Firmware version of the XBee.

Return type Bytearray

2.6. API reference 823



XBee Python Library Documentation, Release 1.4.0

get_hardware_version()
Returns the hardware version of the XBee.

Returns Hardware version of the XBee.

Return type HardwareVersion

See also:

HardwareVersion

get_io_configuration(io_line)
Returns the configuration of the provided IO line.

Parameters io_line (IOLine) – IO line to get its configuration.

Returns IO mode of the IO line provided.

Return type IOMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

set_io_configuration()

get_io_sampling_rate()
Returns the IO sampling rate of the XBee.

Returns IO sampling rate of XBee.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

set_io_sampling_rate()

824 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_local_xbee_device()
Returns the local XBee associated to the remote one.

Returns Local XBee.

Return type XBeeDevice

get_node_id()
Returns the node identifier (‘NI’) value of the XBee.

Returns Node identifier (‘NI’) of the XBee.

Return type String

get_ota_max_block_size()
Returns the maximum number of bytes to send for ota updates.

Returns Maximum ota block size to send.

Return type Integer

get_pan_id()
Returns the operating PAN ID of the XBee.

Returns Operating PAN ID of the XBee.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

set_pan_id()

get_parameter(parameter, parameter_value=None, apply=None)
Override.

See also:

AbstractXBeeDevice.get_parameter()

get_power_level()
Returns the power level of the XBee.

Returns Power level of the XBee.

Return type PowerLevel

Raises

• TimeoutException – If response is not received before the read timeout expires.

2.6. API reference 825



XBee Python Library Documentation, Release 1.4.0

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

PowerLevel

set_power_level()

get_pwm_duty_cycle(io_line)
Returns the PWM duty cycle in % corresponding to the provided IO line.

Parameters io_line (IOLine) – IO line to get its PWM duty cycle.

Returns PWM duty cycle of the given IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If io_line has no PWM capability.

See also:

IOLine

get_role()
Gets the XBee role.

Returns the role of the XBee.

Return type Role

See also:

Role

get_serial_port()
Returns the serial port of the local XBee associated to the remote one.

Returns

Serial port of the local XBee associated to the remote one.

Return type XBeeSerialPort

826 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

See also:

XBeeSerialPort

get_sync_ops_timeout()
Returns the serial port read timeout.

Returns Serial port read timeout in seconds.

Return type Integer

is_apply_changes_enabled()
Returns whether apply changes flag is enabled.

Returns True if apply changes flag is enabled, False otherwise.

Return type Boolean

is_device_info_complete()
Returns whether XBee node information is complete.

Returns True if node information is complete, False otherwise.

Return type Boolean

See also:

AbstractXBeeDevice.read_device_info()

is_remote()
Override method.

See also:

AbstractXBeeDevice.is_remote()

log
Returns the XBee logger.

Returns The XBee device logger.

Return type Logger

reachable
Returns whether the XBee is reachable.

Returns True if the device is reachable, False otherwise.

Return type Boolean

read_device_info(init=True, fire_event=True)
Updates all instance parameters reading them from the XBee.

Parameters

• init (Boolean, optional, default=`True`) – If False only not initial-
ized parameters are read, all if True.

2.6. API reference 827



XBee Python Library Documentation, Release 1.4.0

• fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.is_device_info_complete()

read_io_sample()
Returns an IO sample from the XBee containing the value of all enabled digital IO and analog input
channels.

Returns IO sample read from the XBee.

Return type IOSample

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOSample

reset()
Override method.

See also:

AbstractXBeeDevice.reset()

scan_counter
Returns the scan counter for this node.

Returns The scan counter for this node.

Return type Integer

set_16bit_addr(value)
Sets the 16-bit address of the XBee.

828 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Parameters value (XBee16BitAddress) – New 16-bit address of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If the protocol is not 802.15.4.

set_api_output_mode(api_output_mode)
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

Parameters api_output_mode (APIOutputMode) – New API output mode.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputMode

set_api_output_mode_value(api_output_mode)
Sets the API output mode of the XBee.

Parameters api_output_mode (Integer) – New API output mode op-
tions. Calculate this value using the method APIOutputModeBit.
calculate_api_output_mode_value() with a set of APIOutputModeBit.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

2.6. API reference 829



XBee Python Library Documentation, Release 1.4.0

APIOutputModeBit

set_dest_address(addr)
Sets the 64-bit address of the XBee that is data destination.

Parameters addr (XBee64BitAddress or RemoteXBeeDevice) – Address itself or
remote XBee to be data destination.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If addr is None.

See also:

XBee64BitAddress

get_dest_address()

set_dio_change_detection(io_lines_set)
Sets the digital IO lines to be monitored and sampled whenever their status changes. A None set of lines
disables this feature.

Parameters io_lines_set – Set of IOLine.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

set_dio_value(io_line, io_value)
Sets the digital value (high or low) to the provided IO line.

Parameters

• io_line (IOLine) – Digital IO line to sets its value.

• io_value (IOValue) – IO value to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

830 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOValue

set_io_configuration(io_line, io_mode)
Sets the configuration of the provided IO line.

Parameters

• io_line (IOLine) – IO line to configure.

• io_mode (IOMode) – IO mode to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

get_io_configuration()

set_io_sampling_rate(rate)
Sets the IO sampling rate of the XBee in seconds. A sample rate of 0 means the IO sampling feature is
disabled.

Parameters rate (Integer) – New IO sampling rate of the XBee in seconds.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

get_io_sampling_rate()

2.6. API reference 831



XBee Python Library Documentation, Release 1.4.0

set_local_xbee_device(local_xbee_device)
This methods associates a XBeeDevice to the remote XBee.

Parameters local_xbee_device (XBeeDevice) – New local XBee associated to the
remote one.

See also:

XBeeDevice

set_node_id(node_id)
Sets the node identifier (‘NI‘) value of the XBee.

Parameters node_id (String) – New node identifier (‘NI’) of the XBee.

Raises

• ValueError – If node_id is None or its length is greater than 20.

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

set_ota_max_block_size(size)
Sets the maximum number of bytes to send for ota updates.

Parameters size (Integer) – Maximum ota block size to send.

Raises ValueError – If size is not between 0 and 255.

set_pan_id(value)
Sets the operating PAN ID of the XBee.

Parameters value (Bytearray) – New operating PAN ID of the XBee. Must have only 1
or 2 bytes.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

get_pan_id()

set_parameter(parameter, value, apply=None)
Override.

See also:

832 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

AbstractXBeeDevice.set_parameter()

set_power_level(power_level)
Sets the power level of the XBee.

Parameters power_level (PowerLevel) – New power level of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

PowerLevel

get_power_level()

set_pwm_duty_cycle(io_line, cycle)
Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

Parameters

• io_line (IOLine) – IO Line to be assigned.

• cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If the given IO line does not have PWM capability or cycle is not
between 0 and 100.

See also:

IOLine

IOMode.PWM

set_sync_ops_timeout(sync_ops_timeout)
Sets the serial port read timeout.

Parameters sync_ops_timeout (Integer) – Read timeout in seconds.

2.6. API reference 833



XBee Python Library Documentation, Release 1.4.0

update_bluetooth_password(new_password)
Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

Parameters new_password (String) – New Bluetooth password.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

update_device_data_from(device)
Updates the current node information with provided data. This is only for internal use.

Parameters device (AbstractXBeeDevice) – XBee to get the data from.

Returns True if the node data has been updated, False otherwise.

Return type Boolean

update_filesystem_image(ota_filesystem_file, timeout=None, progress_callback=None)
Performs a filesystem image update operation of the device.

Parameters

• ota_filesystem_file (String) – Location of the OTA filesystem image file.

• timeout (Integer, optional) – Maximum time to wait for target read oper-
ations during the update process.

• progress_callback (Function, optional) – Function to receive progress
information. Receives two arguments:

– The current update task as a String.

– The current update task percentage as an Integer.

Raises

• XBeeException – If the device is not open.

• InvalidOperatingModeException – If the device operating mode is invalid.

• FileSystemNotSupportedException – If the filesystem update is not sup-
ported in the XBee.

• FileSystemException – If there is any error performing the filesystem update.

update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None,
timeout=None, progress_callback=None)

Performs a firmware update operation of the XBee.

Parameters

• xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

• xbee_firmware_file (String, optional, default=`None`) – Lo-
cation of the XBee binary firmware file.

834 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• bootloader_firmware_file (String, optional,
default=`None`) – Location of the bootloader binary firmware file.

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the update process (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to to receive progress information. Receives two arguments:

– The current update task as a String

– The current update task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• OperationNotSupportedException – If XBee does not support firmware
update.

• FirmwareUpdateException – If there is any error during the firmware update.

write_changes()
Writes configurable parameter values to the non-volatile memory of the XBee so that parameter modifi-
cations persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by subsequent use of this method.

If changes are made without writing them, the XBee reverts back to previously saved parameters the next
time the module is powered-on.

Writing the parameter modifications does not mean those values are immediately applied, this depends on
the status of the ‘apply configuration changes’ option. Use method is_apply_changes_enabled()
to get its status and enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

class digi.xbee.devices.RemoteDigiPointDevice(local_xbee, x64bit_addr=None,
node_id=None)

Bases: digi.xbee.devices.RemoteXBeeDevice

This class represents a remote DigiPoint XBee.

Class constructor. Instantiates a new RemoteDigiMeshDevice with the provided parameters.

Parameters

• local_xbee (XBeeDevice) – Local XBee associated with the remote one.

• x64bit_addr (XBee64BitAddress) – 64-bit address of the remote XBee.

• node_id (String, optional) – Node identifier of the remote XBee.

Raises XBeeException – If the protocol of local_xbee is invalid.

2.6. API reference 835



XBee Python Library Documentation, Release 1.4.0

See also:

RemoteXBeeDevice

XBee64BitAddress

XBeeDevice

get_protocol()
Override.

See also:

RemoteXBeeDevice.get_protocol()

apply_changes()
Applies changes via ‘AC’ command.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

apply_profile(profile_path, timeout=None, progress_callback=None)
Applies the given XBee profile to the XBee.

Parameters

• profile_path (String) – Path of the XBee profile file to apply.

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the apply profile (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to receive progress information. Receives two arguments:

– The current apply profile task as a String

– The current apply profile task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• UpdateProfileException – If there is any error applying the XBee profile.

determine_protocol(hardware_version, firmware_version)
Determines the XBee protocol based on the given hardware and firmware versions.

Parameters

• hardware_version (Integer) – Hardware version to get its protocol.

836 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• firmware_version (Bytearray) – Firmware version to get its protocol.

Returns

XBee protocol corresponding to the given hardware and firmware versions.

Return type XBeeProtocol

disable_bluetooth()
Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

enable_apply_changes(value)
Sets apply changes flag.

Parameters value (Boolean) – True to enable apply changes flag, False to disable it.

enable_bluetooth()
Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth password if not done previously. Use
method AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

execute_command(parameter, value=None, apply=None)
Executes the provided command.

Parameters

• (String or (parameter) – class: .ATStringCommand): AT command to exe-
cute.

• value (bytearray, optional, default=`None`) – Command value (if
any).

• apply (Boolean, optional, default=`None`) – True to ap-
ply changes in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

2.6. API reference 837



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

get_16bit_addr()
Returns the 16-bit address of the XBee.

Returns 16-bit address of the XBee.

Return type XBee16BitAddress

See also:

XBee16BitAddress

get_64bit_addr()
Returns the 64-bit address of the XBee.

Returns 64-bit address of the XBee.

Return type XBee64BitAddress

See also:

XBee64BitAddress

get_adc_value(io_line)
Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so, use AbstractXBeeDevice.
set_io_configuration() and IOMode.ADC.

Parameters io_line (IOLine) – IO line to get its ADC value.

Returns Analog value corresponding to the provided IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

838 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

set_io_configuration()

get_api_output_mode()
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the serial interface of the XBee.

Returns API output mode of the XBee.

Return type APIOutputMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

APIOutputMode

get_api_output_mode_value()
Returns the API output mode of the XBee.

The API output mode determines the format that the received data is output through the serial interface of
the XBee.

Returns the parameter value.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

2.6. API reference 839



XBee Python Library Documentation, Release 1.4.0

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

digi.xbee.models.mode.APIOutputModeBit

get_bluetooth_mac_addr()
Reads and returns the EUI-48 Bluetooth MAC address of this XBee following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

Returns The Bluetooth MAC address.

Return type String

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

get_comm_iface()
Returns the communication interface of the local XBee associated to the remote one.

Returns

Communication interface of the local XBee associated to the remote one.

Return type XBeeCommunicationInterface

See also:

XBeeCommunicationInterface

get_current_frame_id()
Returns the last used frame ID.

Returns Last used frame ID.

Return type Integer

get_dest_address()
Returns the 64-bit address of the XBee that is data destination.

Returns 64-bit address of destination XBee.

Return type XBee64BitAddress

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

840 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

XBee64BitAddress

set_dest_address()

get_dio_value(io_line)
Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O. To do so, use
AbstractXBeeDevice.set_io_configuration().

Parameters io_line (IOLine) – the DIO line to gets its digital value.

Returns current value of the provided IO line.

Return type IOValue

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

IOValue

set_io_configuration()

get_file_manager()
Returns the file system manager for the XBee.

Returns The file system manager.

Return type FileSystemManager

Raises FileSystemNotSupportedException – If the XBee does not support filesys-
tem.

get_firmware_version()
Returns the firmware version of the XBee.

Returns Firmware version of the XBee.

Return type Bytearray

2.6. API reference 841



XBee Python Library Documentation, Release 1.4.0

get_hardware_version()
Returns the hardware version of the XBee.

Returns Hardware version of the XBee.

Return type HardwareVersion

See also:

HardwareVersion

get_io_configuration(io_line)
Returns the configuration of the provided IO line.

Parameters io_line (IOLine) – IO line to get its configuration.

Returns IO mode of the IO line provided.

Return type IOMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

set_io_configuration()

get_io_sampling_rate()
Returns the IO sampling rate of the XBee.

Returns IO sampling rate of XBee.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

set_io_sampling_rate()

842 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_local_xbee_device()
Returns the local XBee associated to the remote one.

Returns Local XBee.

Return type XBeeDevice

get_node_id()
Returns the node identifier (‘NI’) value of the XBee.

Returns Node identifier (‘NI’) of the XBee.

Return type String

get_ota_max_block_size()
Returns the maximum number of bytes to send for ota updates.

Returns Maximum ota block size to send.

Return type Integer

get_pan_id()
Returns the operating PAN ID of the XBee.

Returns Operating PAN ID of the XBee.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

set_pan_id()

get_parameter(parameter, parameter_value=None, apply=None)
Override.

See also:

AbstractXBeeDevice.get_parameter()

get_power_level()
Returns the power level of the XBee.

Returns Power level of the XBee.

Return type PowerLevel

Raises

• TimeoutException – If response is not received before the read timeout expires.

2.6. API reference 843



XBee Python Library Documentation, Release 1.4.0

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

PowerLevel

set_power_level()

get_pwm_duty_cycle(io_line)
Returns the PWM duty cycle in % corresponding to the provided IO line.

Parameters io_line (IOLine) – IO line to get its PWM duty cycle.

Returns PWM duty cycle of the given IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If io_line has no PWM capability.

See also:

IOLine

get_role()
Gets the XBee role.

Returns the role of the XBee.

Return type Role

See also:

Role

get_serial_port()
Returns the serial port of the local XBee associated to the remote one.

Returns

Serial port of the local XBee associated to the remote one.

Return type XBeeSerialPort

844 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

See also:

XBeeSerialPort

get_sync_ops_timeout()
Returns the serial port read timeout.

Returns Serial port read timeout in seconds.

Return type Integer

is_apply_changes_enabled()
Returns whether apply changes flag is enabled.

Returns True if apply changes flag is enabled, False otherwise.

Return type Boolean

is_device_info_complete()
Returns whether XBee node information is complete.

Returns True if node information is complete, False otherwise.

Return type Boolean

See also:

AbstractXBeeDevice.read_device_info()

is_remote()
Override method.

See also:

AbstractXBeeDevice.is_remote()

log
Returns the XBee logger.

Returns The XBee device logger.

Return type Logger

reachable
Returns whether the XBee is reachable.

Returns True if the device is reachable, False otherwise.

Return type Boolean

read_device_info(init=True, fire_event=True)
Updates all instance parameters reading them from the XBee.

Parameters

• init (Boolean, optional, default=`True`) – If False only not initial-
ized parameters are read, all if True.

2.6. API reference 845



XBee Python Library Documentation, Release 1.4.0

• fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.is_device_info_complete()

read_io_sample()
Returns an IO sample from the XBee containing the value of all enabled digital IO and analog input
channels.

Returns IO sample read from the XBee.

Return type IOSample

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOSample

reset()
Override method.

See also:

AbstractXBeeDevice.reset()

scan_counter
Returns the scan counter for this node.

Returns The scan counter for this node.

Return type Integer

set_16bit_addr(value)
Sets the 16-bit address of the XBee.

846 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Parameters value (XBee16BitAddress) – New 16-bit address of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If the protocol is not 802.15.4.

set_api_output_mode(api_output_mode)
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

Parameters api_output_mode (APIOutputMode) – New API output mode.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputMode

set_api_output_mode_value(api_output_mode)
Sets the API output mode of the XBee.

Parameters api_output_mode (Integer) – New API output mode op-
tions. Calculate this value using the method APIOutputModeBit.
calculate_api_output_mode_value() with a set of APIOutputModeBit.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

2.6. API reference 847



XBee Python Library Documentation, Release 1.4.0

APIOutputModeBit

set_dest_address(addr)
Sets the 64-bit address of the XBee that is data destination.

Parameters addr (XBee64BitAddress or RemoteXBeeDevice) – Address itself or
remote XBee to be data destination.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If addr is None.

See also:

XBee64BitAddress

get_dest_address()

set_dio_change_detection(io_lines_set)
Sets the digital IO lines to be monitored and sampled whenever their status changes. A None set of lines
disables this feature.

Parameters io_lines_set – Set of IOLine.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

set_dio_value(io_line, io_value)
Sets the digital value (high or low) to the provided IO line.

Parameters

• io_line (IOLine) – Digital IO line to sets its value.

• io_value (IOValue) – IO value to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

848 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOValue

set_io_configuration(io_line, io_mode)
Sets the configuration of the provided IO line.

Parameters

• io_line (IOLine) – IO line to configure.

• io_mode (IOMode) – IO mode to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

get_io_configuration()

set_io_sampling_rate(rate)
Sets the IO sampling rate of the XBee in seconds. A sample rate of 0 means the IO sampling feature is
disabled.

Parameters rate (Integer) – New IO sampling rate of the XBee in seconds.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

get_io_sampling_rate()

2.6. API reference 849



XBee Python Library Documentation, Release 1.4.0

set_local_xbee_device(local_xbee_device)
This methods associates a XBeeDevice to the remote XBee.

Parameters local_xbee_device (XBeeDevice) – New local XBee associated to the
remote one.

See also:

XBeeDevice

set_node_id(node_id)
Sets the node identifier (‘NI‘) value of the XBee.

Parameters node_id (String) – New node identifier (‘NI’) of the XBee.

Raises

• ValueError – If node_id is None or its length is greater than 20.

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

set_ota_max_block_size(size)
Sets the maximum number of bytes to send for ota updates.

Parameters size (Integer) – Maximum ota block size to send.

Raises ValueError – If size is not between 0 and 255.

set_pan_id(value)
Sets the operating PAN ID of the XBee.

Parameters value (Bytearray) – New operating PAN ID of the XBee. Must have only 1
or 2 bytes.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

get_pan_id()

set_parameter(parameter, value, apply=None)
Override.

See also:

850 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

AbstractXBeeDevice.set_parameter()

set_power_level(power_level)
Sets the power level of the XBee.

Parameters power_level (PowerLevel) – New power level of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

PowerLevel

get_power_level()

set_pwm_duty_cycle(io_line, cycle)
Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

Parameters

• io_line (IOLine) – IO Line to be assigned.

• cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If the given IO line does not have PWM capability or cycle is not
between 0 and 100.

See also:

IOLine

IOMode.PWM

set_sync_ops_timeout(sync_ops_timeout)
Sets the serial port read timeout.

Parameters sync_ops_timeout (Integer) – Read timeout in seconds.

2.6. API reference 851



XBee Python Library Documentation, Release 1.4.0

update_bluetooth_password(new_password)
Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

Parameters new_password (String) – New Bluetooth password.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

update_device_data_from(device)
Updates the current node information with provided data. This is only for internal use.

Parameters device (AbstractXBeeDevice) – XBee to get the data from.

Returns True if the node data has been updated, False otherwise.

Return type Boolean

update_filesystem_image(ota_filesystem_file, timeout=None, progress_callback=None)
Performs a filesystem image update operation of the device.

Parameters

• ota_filesystem_file (String) – Location of the OTA filesystem image file.

• timeout (Integer, optional) – Maximum time to wait for target read oper-
ations during the update process.

• progress_callback (Function, optional) – Function to receive progress
information. Receives two arguments:

– The current update task as a String.

– The current update task percentage as an Integer.

Raises

• XBeeException – If the device is not open.

• InvalidOperatingModeException – If the device operating mode is invalid.

• FileSystemNotSupportedException – If the filesystem update is not sup-
ported in the XBee.

• FileSystemException – If there is any error performing the filesystem update.

update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None,
timeout=None, progress_callback=None)

Performs a firmware update operation of the XBee.

Parameters

• xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

• xbee_firmware_file (String, optional, default=`None`) – Lo-
cation of the XBee binary firmware file.

852 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• bootloader_firmware_file (String, optional,
default=`None`) – Location of the bootloader binary firmware file.

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the update process (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to to receive progress information. Receives two arguments:

– The current update task as a String

– The current update task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• OperationNotSupportedException – If XBee does not support firmware
update.

• FirmwareUpdateException – If there is any error during the firmware update.

write_changes()
Writes configurable parameter values to the non-volatile memory of the XBee so that parameter modifi-
cations persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by subsequent use of this method.

If changes are made without writing them, the XBee reverts back to previously saved parameters the next
time the module is powered-on.

Writing the parameter modifications does not mean those values are immediately applied, this depends on
the status of the ‘apply configuration changes’ option. Use method is_apply_changes_enabled()
to get its status and enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

class digi.xbee.devices.RemoteZigBeeDevice(local_xbee, x64bit_addr=None,
x16bit_addr=None, node_id=None)

Bases: digi.xbee.devices.RemoteXBeeDevice

This class represents a remote Zigbee XBee.

Class constructor. Instantiates a new RemoteDigiMeshDevice with the provided parameters.

Parameters

• local_xbee (XBeeDevice) – Local XBee associated with the remote one.

• x64bit_addr (XBee64BitAddress) – 64-bit address of the remote XBee.

• x16bit_addr (XBee16BitAddress) – 16-bit address of the remote XBee.

• node_id (String, optional) – Node identifier of the remote XBee.

2.6. API reference 853



XBee Python Library Documentation, Release 1.4.0

Raises XBeeException – If the protocol of local_xbee is invalid.

See also:

RemoteXBeeDevice

XBee16BitAddress

XBee64BitAddress

XBeeDevice

parent
Returns the parent of the XBee if it is an end device.

Returns

The parent of the node for end devices, None if unknown or if it is not an end device.

Return type AbstractXBeeDevice

get_protocol()
Override.

See also:

RemoteXBeeDevice.get_protocol()

is_device_info_complete()
Override.

See also:

AbstractXBeeDevice.is_device_info_complete()

get_ai_status()
Returns the current association status of this XBee. It indicates occurrences of errors during the modem
initialization and connection.

Returns

The XBee association indication status.

Return type AssociationIndicationStatus

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

854 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

force_disassociate()
Forces this XBee to immediately disassociate from the network and re-attempt to associate.

Only valid for End Devices.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

get_routes(route_cb=None, finished_cb=None, timeout=None)
Returns the routes of this XBee. If route_cb is not defined, the process blocks until the complete routing
table is read.

Parameters

• route_cb (Function, optional, default=`None`) – Method called
when a new route is received. Receives two arguments:

– The XBee that owns this new route.

– The new route.

• finished_cb (Function, optional, default=`None`) – Method to
execute when the process finishes. Receives three arguments:

– The XBee that executed the ZDO command.

– A list with the discovered routes.

– An error message if something went wrong.

• timeout (Float, optional, default=`RouteTableReader.
DEFAULT_TIMEOUT`) – The ZDO command timeout in seconds.

Returns

List of Route when route_cb is not defined, None otherwise (in this case routes are re-
ceived in the callback).

Return type List

Raises OperationNotSupportedException – If XBee protocol is not Zigbee or
Smart Energy.

See also:

com.digi.models.zdo.Route

get_neighbors(neighbor_cb=None, finished_cb=None, timeout=None)
Returns the neighbors of this XBee. If neighbor_cb is not defined, the process blocks until the complete
neighbor table is read.

Parameters

• neighbor_cb (Function, optional, default=`None`) – Method
called when a new neighbor is received. Receives two arguments:

2.6. API reference 855



XBee Python Library Documentation, Release 1.4.0

– The XBee that owns this new neighbor.

– The new neighbor.

• finished_cb (Function, optional, default=`None`) – Method to
execute when the process finishes. Receives three arguments:

– The XBee that executed the ZDO command.

– A list with the discovered neighbors.

– An error message if something went wrong.

• timeout (Float, optional, default=`NeighborTableReader.
DEFAULT_TIMEOUT`) – The ZDO command timeout in seconds.

Returns

List of Neighbor when neighbor_cb is not defined, None otherwise (in this case
neighbors are received in the callback).

Return type List

Raises OperationNotSupportedException – If XBee protocol is not Zigbee or
Smart Energy.

See also:

com.digi.models.zdo.Neighbor

apply_changes()
Applies changes via ‘AC’ command.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

apply_profile(profile_path, timeout=None, progress_callback=None)
Applies the given XBee profile to the XBee.

Parameters

• profile_path (String) – Path of the XBee profile file to apply.

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the apply profile (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to receive progress information. Receives two arguments:

– The current apply profile task as a String

– The current apply profile task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

856 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• UpdateProfileException – If there is any error applying the XBee profile.

determine_protocol(hardware_version, firmware_version)
Determines the XBee protocol based on the given hardware and firmware versions.

Parameters

• hardware_version (Integer) – Hardware version to get its protocol.

• firmware_version (Bytearray) – Firmware version to get its protocol.

Returns

XBee protocol corresponding to the given hardware and firmware versions.

Return type XBeeProtocol

disable_bluetooth()
Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

enable_apply_changes(value)
Sets apply changes flag.

Parameters value (Boolean) – True to enable apply changes flag, False to disable it.

enable_bluetooth()
Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth password if not done previously. Use
method AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

execute_command(parameter, value=None, apply=None)
Executes the provided command.

Parameters

• (String or (parameter) – class: .ATStringCommand): AT command to exe-
cute.

2.6. API reference 857



XBee Python Library Documentation, Release 1.4.0

• value (bytearray, optional, default=`None`) – Command value (if
any).

• apply (Boolean, optional, default=`None`) – True to ap-
ply changes in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

get_16bit_addr()
Returns the 16-bit address of the XBee.

Returns 16-bit address of the XBee.

Return type XBee16BitAddress

See also:

XBee16BitAddress

get_64bit_addr()
Returns the 64-bit address of the XBee.

Returns 64-bit address of the XBee.

Return type XBee64BitAddress

See also:

XBee64BitAddress

get_adc_value(io_line)
Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so, use AbstractXBeeDevice.
set_io_configuration() and IOMode.ADC.

858 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Parameters io_line (IOLine) – IO line to get its ADC value.

Returns Analog value corresponding to the provided IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

set_io_configuration()

get_api_output_mode()
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the serial interface of the XBee.

Returns API output mode of the XBee.

Return type APIOutputMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

APIOutputMode

get_api_output_mode_value()
Returns the API output mode of the XBee.

The API output mode determines the format that the received data is output through the serial interface of
the XBee.

Returns the parameter value.

Return type Bytearray

2.6. API reference 859



XBee Python Library Documentation, Release 1.4.0

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

digi.xbee.models.mode.APIOutputModeBit

get_bluetooth_mac_addr()
Reads and returns the EUI-48 Bluetooth MAC address of this XBee following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

Returns The Bluetooth MAC address.

Return type String

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

get_comm_iface()
Returns the communication interface of the local XBee associated to the remote one.

Returns

Communication interface of the local XBee associated to the remote one.

Return type XBeeCommunicationInterface

See also:

XBeeCommunicationInterface

get_current_frame_id()
Returns the last used frame ID.

Returns Last used frame ID.

Return type Integer

get_dest_address()
Returns the 64-bit address of the XBee that is data destination.

860 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns 64-bit address of destination XBee.

Return type XBee64BitAddress

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

XBee64BitAddress

set_dest_address()

get_dio_value(io_line)
Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O. To do so, use
AbstractXBeeDevice.set_io_configuration().

Parameters io_line (IOLine) – the DIO line to gets its digital value.

Returns current value of the provided IO line.

Return type IOValue

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If response does not contain the value
for the given IO line.

See also:

IOLine

IOValue

set_io_configuration()

get_file_manager()
Returns the file system manager for the XBee.

Returns The file system manager.

Return type FileSystemManager

2.6. API reference 861



XBee Python Library Documentation, Release 1.4.0

Raises FileSystemNotSupportedException – If the XBee does not support filesys-
tem.

get_firmware_version()
Returns the firmware version of the XBee.

Returns Firmware version of the XBee.

Return type Bytearray

get_hardware_version()
Returns the hardware version of the XBee.

Returns Hardware version of the XBee.

Return type HardwareVersion

See also:

HardwareVersion

get_io_configuration(io_line)
Returns the configuration of the provided IO line.

Parameters io_line (IOLine) – IO line to get its configuration.

Returns IO mode of the IO line provided.

Return type IOMode

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

set_io_configuration()

get_io_sampling_rate()
Returns the IO sampling rate of the XBee.

Returns IO sampling rate of XBee.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

862 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

set_io_sampling_rate()

get_local_xbee_device()
Returns the local XBee associated to the remote one.

Returns Local XBee.

Return type XBeeDevice

get_node_id()
Returns the node identifier (‘NI’) value of the XBee.

Returns Node identifier (‘NI’) of the XBee.

Return type String

get_ota_max_block_size()
Returns the maximum number of bytes to send for ota updates.

Returns Maximum ota block size to send.

Return type Integer

get_pan_id()
Returns the operating PAN ID of the XBee.

Returns Operating PAN ID of the XBee.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

set_pan_id()

get_parameter(parameter, parameter_value=None, apply=None)
Override.

See also:

AbstractXBeeDevice.get_parameter()

2.6. API reference 863



XBee Python Library Documentation, Release 1.4.0

get_power_level()
Returns the power level of the XBee.

Returns Power level of the XBee.

Return type PowerLevel

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

PowerLevel

set_power_level()

get_pwm_duty_cycle(io_line)
Returns the PWM duty cycle in % corresponding to the provided IO line.

Parameters io_line (IOLine) – IO line to get its PWM duty cycle.

Returns PWM duty cycle of the given IO line.

Return type Integer

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If io_line has no PWM capability.

See also:

IOLine

get_role()
Gets the XBee role.

Returns the role of the XBee.

Return type Role

See also:

Role

864 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_serial_port()
Returns the serial port of the local XBee associated to the remote one.

Returns

Serial port of the local XBee associated to the remote one.

Return type XBeeSerialPort

See also:

XBeeSerialPort

get_sync_ops_timeout()
Returns the serial port read timeout.

Returns Serial port read timeout in seconds.

Return type Integer

is_apply_changes_enabled()
Returns whether apply changes flag is enabled.

Returns True if apply changes flag is enabled, False otherwise.

Return type Boolean

is_remote()
Override method.

See also:

AbstractXBeeDevice.is_remote()

log
Returns the XBee logger.

Returns The XBee device logger.

Return type Logger

reachable
Returns whether the XBee is reachable.

Returns True if the device is reachable, False otherwise.

Return type Boolean

read_device_info(init=True, fire_event=True)
Updates all instance parameters reading them from the XBee.

Parameters

• init (Boolean, optional, default=`True`) – If False only not initial-
ized parameters are read, all if True.

• fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

Raises

2.6. API reference 865



XBee Python Library Documentation, Release 1.4.0

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

AbstractXBeeDevice.is_device_info_complete()

read_io_sample()
Returns an IO sample from the XBee containing the value of all enabled digital IO and analog input
channels.

Returns IO sample read from the XBee.

Return type IOSample

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOSample

reset()
Override method.

See also:

AbstractXBeeDevice.reset()

scan_counter
Returns the scan counter for this node.

Returns The scan counter for this node.

Return type Integer

set_16bit_addr(value)
Sets the 16-bit address of the XBee.

Parameters value (XBee16BitAddress) – New 16-bit address of the XBee.

Raises

866 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If the protocol is not 802.15.4.

set_api_output_mode(api_output_mode)
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

Parameters api_output_mode (APIOutputMode) – New API output mode.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputMode

set_api_output_mode_value(api_output_mode)
Sets the API output mode of the XBee.

Parameters api_output_mode (Integer) – New API output mode op-
tions. Calculate this value using the method APIOutputModeBit.
calculate_api_output_mode_value() with a set of APIOutputModeBit.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• OperationNotSupportedException – If it is not supported by the current
protocol.

See also:

APIOutputModeBit

2.6. API reference 867



XBee Python Library Documentation, Release 1.4.0

set_dest_address(addr)
Sets the 64-bit address of the XBee that is data destination.

Parameters addr (XBee64BitAddress or RemoteXBeeDevice) – Address itself or
remote XBee to be data destination.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If addr is None.

See also:

XBee64BitAddress

get_dest_address()

set_dio_change_detection(io_lines_set)
Sets the digital IO lines to be monitored and sampled whenever their status changes. A None set of lines
disables this feature.

Parameters io_lines_set – Set of IOLine.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

set_dio_value(io_line, io_value)
Sets the digital value (high or low) to the provided IO line.

Parameters

• io_line (IOLine) – Digital IO line to sets its value.

• io_value (IOValue) – IO value to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

868 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOValue

set_io_configuration(io_line, io_mode)
Sets the configuration of the provided IO line.

Parameters

• io_line (IOLine) – IO line to configure.

• io_mode (IOMode) – IO mode to set to the IO line.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

IOLine

IOMode

get_io_configuration()

set_io_sampling_rate(rate)
Sets the IO sampling rate of the XBee in seconds. A sample rate of 0 means the IO sampling feature is
disabled.

Parameters rate (Integer) – New IO sampling rate of the XBee in seconds.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

get_io_sampling_rate()

2.6. API reference 869



XBee Python Library Documentation, Release 1.4.0

set_local_xbee_device(local_xbee_device)
This methods associates a XBeeDevice to the remote XBee.

Parameters local_xbee_device (XBeeDevice) – New local XBee associated to the
remote one.

See also:

XBeeDevice

set_node_id(node_id)
Sets the node identifier (‘NI‘) value of the XBee.

Parameters node_id (String) – New node identifier (‘NI’) of the XBee.

Raises

• ValueError – If node_id is None or its length is greater than 20.

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

set_ota_max_block_size(size)
Sets the maximum number of bytes to send for ota updates.

Parameters size (Integer) – Maximum ota block size to send.

Raises ValueError – If size is not between 0 and 255.

set_pan_id(value)
Sets the operating PAN ID of the XBee.

Parameters value (Bytearray) – New operating PAN ID of the XBee. Must have only 1
or 2 bytes.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

get_pan_id()

set_parameter(parameter, value, apply=None)
Override.

See also:

870 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

AbstractXBeeDevice.set_parameter()

set_power_level(power_level)
Sets the power level of the XBee.

Parameters power_level (PowerLevel) – New power level of the XBee.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

PowerLevel

get_power_level()

set_pwm_duty_cycle(io_line, cycle)
Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

Parameters

• io_line (IOLine) – IO Line to be assigned.

• cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

• ValueError – If the given IO line does not have PWM capability or cycle is not
between 0 and 100.

See also:

IOLine

IOMode.PWM

set_sync_ops_timeout(sync_ops_timeout)
Sets the serial port read timeout.

Parameters sync_ops_timeout (Integer) – Read timeout in seconds.

2.6. API reference 871



XBee Python Library Documentation, Release 1.4.0

update_bluetooth_password(new_password)
Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

Parameters new_password (String) – New Bluetooth password.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

update_device_data_from(device)
Updates the current node information with provided data. This is only for internal use.

Parameters device (AbstractXBeeDevice) – XBee to get the data from.

Returns True if the node data has been updated, False otherwise.

Return type Boolean

update_filesystem_image(ota_filesystem_file, timeout=None, progress_callback=None)
Performs a filesystem image update operation of the device.

Parameters

• ota_filesystem_file (String) – Location of the OTA filesystem image file.

• timeout (Integer, optional) – Maximum time to wait for target read oper-
ations during the update process.

• progress_callback (Function, optional) – Function to receive progress
information. Receives two arguments:

– The current update task as a String.

– The current update task percentage as an Integer.

Raises

• XBeeException – If the device is not open.

• InvalidOperatingModeException – If the device operating mode is invalid.

• FileSystemNotSupportedException – If the filesystem update is not sup-
ported in the XBee.

• FileSystemException – If there is any error performing the filesystem update.

update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None,
timeout=None, progress_callback=None)

Performs a firmware update operation of the XBee.

Parameters

• xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

• xbee_firmware_file (String, optional, default=`None`) – Lo-
cation of the XBee binary firmware file.

872 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• bootloader_firmware_file (String, optional,
default=`None`) – Location of the bootloader binary firmware file.

• timeout (Integer, optional, default=`None`) – Maximum time to
wait for target read operations during the update process (seconds).

• progress_callback (Function, optional, default=`None`) –
Function to to receive progress information. Receives two arguments:

– The current update task as a String

– The current update task percentage as an Integer

Raises

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• OperationNotSupportedException – If XBee does not support firmware
update.

• FirmwareUpdateException – If there is any error during the firmware update.

write_changes()
Writes configurable parameter values to the non-volatile memory of the XBee so that parameter modifi-
cations persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by subsequent use of this method.

If changes are made without writing them, the XBee reverts back to previously saved parameters the next
time the module is powered-on.

Writing the parameter modifications does not mean those values are immediately applied, this depends on
the status of the ‘apply configuration changes’ option. Use method is_apply_changes_enabled()
to get its status and enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

class digi.xbee.devices.XBeeNetwork(xbee_device)
Bases: object

This class represents an XBee Network.

The network allows the discovery of remote devices in the same network as the local one and stores them.

Class constructor. Instantiates a new XBeeNetwork.

Parameters xbee_device (XBeeDevice) – Local XBee to get the network from.

Raises ValueError – If xbee_device is None.

ND_PACKET_FINISH = 1
Flag that indicates a “discovery process finish” packet.

2.6. API reference 873



XBee Python Library Documentation, Release 1.4.0

ND_PACKET_REMOTE = 2
Flag that indicates a discovery process packet with info about a remote XBee.

DEFAULT_TIME_BETWEEN_SCANS = 10
Default time (in seconds) to wait before starting a new scan.

MIN_TIME_BETWEEN_SCANS = 0
Low limit for the time (in seconds) to wait before starting a new scan.

MAX_TIME_BETWEEN_SCANS = 259200
High limit for the time (in seconds) to wait before starting a new scan.

DEFAULT_TIME_BETWEEN_REQUESTS = 5
Default time (in seconds) to wait between node neighbors requests.

MIN_TIME_BETWEEN_REQUESTS = 0
Low limit for the time (in seconds) to wait between node neighbors requests.

MAX_TIME_BETWEEN_REQUESTS = 600
High limit for the time (in seconds) to wait between node neighbors requests.

SCAN_TIL_CANCEL = 0
The neighbor discovery process continues until is manually stopped.

scan_counter
Returns the scan counter.

Returns The scan counter.

Return type Integer

start_discovery_process(deep=False, n_deep_scans=1)
Starts the discovery process. This method is not blocking.

This process can discover node neighbors and connections, or only nodes:

• Deep discovery: Network nodes and connections between them (including quality) are discovered.

The discovery process will be running the number of scans configured in n_deep_scans. A scan is
considered the process of discovering the full network. If there are more than one number of scans
configured, after finishing one another is started, until n_deep_scans is satisfied.

See set_deep_discovery_options() to establish the way the network discovery process is
performed.

• No deep discovery: Only network nodes are discovered.

The discovery process will be running until the configured timeout expires or, in case of 802.15.4,
until the ‘end’ packet is read.

It may occur that, after timeout expiration, there are nodes that continue sending discovery responses
to the local XBee. In this case, these nodes will not be added to the network.

In 802.15.4, both (deep and no deep discovery) are the same and none discover the node connections or
their quality. The difference is the possibility of running more than one scan using a deep discovery.

Parameters

• deep (Boolean, optional, default=`False`) – True for a deep network
scan, looking for neighbors and their connections, False otherwise.

• n_deep_scans (Integer, optional, default=1) – Number of scans to
perform before automatically stopping the discovery process. SCAN_TIL_CANCEL
means the process will not be automatically stopped. Only applicable if deep=True.

874 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

See also:

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.del_discovery_process_finished_callback()

XBeeNetwork.get_deep_discovery_options()

XBeeNetwork.set_deep_discovery_options()

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

stop_discovery_process()
Stops the discovery process if it is running.

Note that some DigiMesh/DigiPoint devices are blocked until the discovery time configured (‘NT’ pa-
rameter) has elapsed, so, when trying to get/set any parameter during the discovery process, a Timeou-
tException is raised.

discover_device(node_id)
Blocking method. Discovers and reports the first remote XBee that matches the supplied identifier.

Parameters node_id (String) – Node identifier of the node to discover.

Returns

Discovered remote XBee, None if the timeout expires and the node was not found.

Return type RemoteXBeeDevice

See also:

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

discover_devices(device_id_list)
Blocking method. Attempts to discover a list of nodes and add them to the current network.

This method does not guarantee that all nodes of device_id_list will be found, even if they exist physically.
This depends on the node discovery operation and timeout.

Parameters device_id_list (List) – List of device IDs to discover.

Returns

List with the discovered nodes. It may not contain all nodes specified in de-
vice_id_list.

Return type List

2.6. API reference 875



XBee Python Library Documentation, Release 1.4.0

See also:

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

is_discovery_running()
Returns whether the discovery process is running.

Returns True if the discovery process is running, False otherwise.

Return type Boolean

get_devices()
Returns a copy of the XBee devices list of the network.

If a new XBee node is added to the list after the execution of this method, this new XBee is not added to
the list returned by this method.

Returns A copy of the XBee devices list of the network.

Return type List

has_devices()
Returns whether there is any device in the network.

Returns

True if there is at least one node in the network, False otherwise.

Return type Boolean

get_number_devices()
Returns the number of nodes in the network.

Returns Number of nodes in the network.

Return type Integer

export(dir_path=None, name=None, desc=None)
Exports this network to the given file path.

If the provided path already exists the file is removed.

Params:

dir_path (String, optional, default=‘None‘): Absolute path of the directory to export the net-
work. It should not include the file name. If not defined home directory is used.

name (String, optional, default=‘None‘): Network human readable name. desc (String, optional,
default=‘None‘): Network description.

Returns

Tuple with result (0: success, 1: failure) and string (exported file path if success, error
string otherwise).

Return type Tuple (Integer, String)

876 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

add_network_modified_callback(callback)
Adds a callback for the event NetworkModified.

Parameters callback (Function) – The callback. Receives three arguments.

• The event type as a NetworkEventType.

• The reason of the event as a NetworkEventReason.

• The node added, updated or removed from the network as a XBeeDevice or
RemoteXBeeDevice.

See also:

XBeeNetwork.del_network_modified_callback()

add_device_discovered_callback(callback)
Adds a callback for the event DeviceDiscovered.

Parameters callback (Function) – The callback. Receives one argument.

• The discovered remote XBee as a RemoteXBeeDevice.

See also:

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

add_init_discovery_scan_callback(callback)
Adds a callback for the event InitDiscoveryScan.

Parameters callback (Function) – The callback. Receives two arguments.

• Number of scan to start (starting with 1).

• Total number of scans.

See also:

XBeeNetwork.del_init_discovery_scan_callback()

add_end_discovery_scan_callback(callback)
Adds a callback for the event EndDiscoveryScan.

Parameters callback (Function) – The callback. Receives two arguments.

• Number of scan that has finished (starting with 1).

• Total number of scans.

See also:

XBeeNetwork.del_end_discovery_scan_callback()

2.6. API reference 877



XBee Python Library Documentation, Release 1.4.0

add_discovery_process_finished_callback(callback)
Adds a callback for the event DiscoveryProcessFinished.

Parameters callback (Function) – The callback. Receives two arguments.

• The event code as an NetworkDiscoveryStatus.

• (Optional) A description of the discovery process as a string.

See also:

XBeeNetwork.del_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

add_packet_received_from_callback(node, callback)
Adds a callback to listen to any received packet from the provided node.

Parameters

• node (RemoteXBeeDevice) – The node to listen for frames.

• callback (Function) – The callback. Receives two arguments.

– The received packet as a XBeeAPIPacket.

– The remote XBee who sent the packet as a RemoteXBeeDevice.

See also:

XBeeNetwork.del_packet_received_from_callback()

del_network_modified_callback(callback)
Deletes a callback for the callback list of NetworkModified.

Parameters callback (Function) – The callback to delete.

See also:

XBeeNetwork.add_network_modified_callback()

del_device_discovered_callback(callback)
Deletes a callback for the callback list of DeviceDiscovered event.

Parameters callback (Function) – The callback to delete.

See also:

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

878 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

del_init_discovery_scan_callback(callback)
Deletes a callback for the callback list of InitDiscoveryScan.

Parameters callback (Function) – The callback to delete.

See also:

XBeeNetwork.add_init_discovery_scan_callback()

del_end_discovery_scan_callback(callback)
Deletes a callback for the callback list of EndDiscoveryScan.

Parameters callback (Function) – The callback to delete.

See also:

XBeeNetwork.add_end_discovery_scan_callback()

del_discovery_process_finished_callback(callback)
Deletes a callback for the callback list of DiscoveryProcessFinished event.

Parameters callback (Function) – The callback to delete.

See also:

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

del_packet_received_from_callback(node, callb=None)
Deletes a received packet callback from the provided node.

Parameters

• node (RemoteXBeeDevice) – The node to listen for frames.

• callb (Function, optional, default=`None`) – The callback to
delete, None to delete all.

See also:

XBeeNetwork.add_packet_received_from_callback()

clear()
Removes all remote XBee nodes from the network.

get_discovery_options()
Returns the network discovery process options.

Returns Discovery options value.

Return type Bytearray

2.6. API reference 879



XBee Python Library Documentation, Release 1.4.0

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

set_discovery_options(options)
Configures the discovery options (NO parameter) with the given value.

Parameters options (Set of DiscoveryOptions) – New discovery options, empty set
to clear the options.

Raises

• ValueError – If options is None.

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

See also:

DiscoveryOptions

get_deep_discovery_options()
Returns the deep discovery process options.

Returns

(NeighborDiscoveryMode, Boolean): Tuple containing:

• mode (NeighborDiscoveryMode): Neighbor discovery mode, the way to
perform the network discovery process.

• remove_nodes (Boolean): True to remove nodes from the network if they were
not discovered in the last scan, False otherwise.

Return type Tuple

See also:

digi.xbee.models.mode.NeighborDiscoveryMode

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

set_deep_discovery_options(deep_mode=<NeighborDiscoveryMode.CASCADE: (0, ’Cas-
cade’)>, del_not_discovered_nodes_in_last_scan=False)

Configures the deep discovery options with the given values. These options are only applicable for “deep”
discovery (see start_discovery_process())

880 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Parameters

• deep_mode (NeighborDiscoveryMode, optional, de-
fault=‘NeighborDiscoveryMode.CASCADE‘) – Neighbor discovery mode, the
way to perform the network discovery process.

• del_not_discovered_nodes_in_last_scan (Boolean, optional,
default=`False`) – True to remove nodes from the network if they were not
discovered in the last scan.

See also:

digi.xbee.models.mode.NeighborDiscoveryMode

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

get_discovery_timeout()
Returns the network discovery timeout.

Returns Network discovery timeout.

Return type Float

Raises

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

set_discovery_timeout(discovery_timeout)
Sets the discovery network timeout.

Parameters discovery_timeout (Float) – Timeout in seconds.

Raises

• ValueError – If discovery_timeout is not between the allowed minimum and max-
imum values.

• TimeoutException – If response is not received before the read timeout expires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not API
or ESCAPED API. This method only checks the cached value of the operating mode.

• ATCommandException – If response is not as expected.

get_deep_discovery_timeouts()
Gets deep discovery network timeouts. These timeouts are only applicable for “deep” discovery (see
start_discovery_process())

Returns

Tuple containing:

2.6. API reference 881



XBee Python Library Documentation, Release 1.4.0

• node_timeout (Float): Maximum duration in seconds of the discovery process
per node. This is used to find neighbors of a node. This timeout is highly depen-
dent on the nature of the network:

– It should be greater than the highest ‘NT’ (Node Discovery Timeout) of your
network.

– And include enough time to let the message propagate depending on the sleep
cycle of your network nodes.

• time_bw_nodes (Float): Time to wait between node neighbors requests. Use
this setting not to saturate your network:

– For ‘Cascade’, the number of seconds to wait after completion of the neighbor
discovery process of the previous node.

– For ‘Flood’, the minimum time to wait between each node’s neighbor requests.

• time_bw_scans (Float): Time to wait before starting a new network scan.

Return type Tuple (Float, Float, Float)

See also:

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

set_deep_discovery_timeouts(node_timeout=None, time_bw_requests=None,
time_bw_scans=None)

Sets deep discovery network timeouts. These timeouts are only applicable for “deep” discovery (see
start_discovery_process())

node_timeout (Float, optional, default=‘None‘): Maximum duration in seconds of the discovery pro-
cess used to find neighbors of a node. If None already configured timeouts are used.

time_bw_requests (Float, optional, default=‘DEFAULT_TIME_BETWEEN_REQUESTS‘): Time to wait
between node neighbors requests. It must be between MIN_TIME_BETWEEN_REQUESTS and
MAX_TIME_BETWEEN_REQUESTS seconds inclusive. Use this setting not to saturate your
network:

• For ‘Cascade’, the number of seconds to wait after completion of the neighbor dis-
covery process of the previous node.

• For ‘Flood’, the minimum time to wait between each node’s neighbor requests.

time_bw_scans (Float, optional, default=‘DEFAULT_TIME_BETWEEN_SCANS‘): Time to wait
before starting a new network scan. It must be between MIN_TIME_BETWEEN_SCANS and
MAX_TIME_BETWEEN_SCANS seconds inclusive.

Raises ValueError – if node_timeout, time_bw_requests or time_bw_scans are not be-
tween their corresponding limits.

See also:

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

882 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

classmethod get_nt_limits(protocol)
Returns a tuple with the minimum and maximum values for the ‘NT’ value depending on the protocol.

Returns

Minimum value in seconds, maximum value in seconds.

Return type Tuple (Float, Float)

is_node_in_network(node)
Checks if the provided node is in the network or if it is the local XBee.

Parameters node (AbstractXBeeDevice) – The node to check.

Returns True if the node is in the network, False otherwise.

Return type Boolean

Raises ValueError – If node is None.

get_device_by_64(x64bit_addr)
Returns the XBee in the network whose 64-bit address matches the given one.

Parameters x64bit_addr (XBee64BitAddress) – 64-bit address of the node to re-
trieve.

Returns XBee in the network or None if not found.

Return type AbstractXBeeDevice

Raises ValueError – If x64bit_addr is None or unknown.

get_device_by_16(x16bit_addr)
Returns the XBee in the network whose 16-bit address matches the given one.

Parameters x16bit_addr (XBee16BitAddress) – 16-bit address of the node to re-
trieve.

Returns XBee in the network or Non if not found.

Return type AbstractXBeeDevice

Raises ValueError – If x16bit_addr is None or unknown.

get_device_by_node_id(node_id)
Returns the XBee in the network whose node identifier matches the given one.

Parameters node_id (String) – Node identifier of the node to retrieve.

Returns XBee in the network or None if not found.

Return type AbstractXBeeDevice

Raises ValueError – If node_id is None.

add_if_not_exist(x64bit_addr=None, x16bit_addr=None, node_id=None)
Adds an XBee with the provided information if it does not exist in the current network.

If the XBee already exists, its data is updated with the provided information.

If no valid address is provided (x64bit_addr, x16bit_addr), None is returned.

Parameters

• x64bit_addr (XBee64BitAddress, optional, default=‘None‘) – 64-bit ad-
dress.

2.6. API reference 883



XBee Python Library Documentation, Release 1.4.0

• x16bit_addr (XBee16BitAddress, optional, default=‘None‘) – 16-bit ad-
dress.

• node_id (String, optional, default=`None`) – Node identifier.

Returns

the remote XBee with the updated information. If the XBee was not in the list yet,
this method returns the given XBee without changes.

Return type AbstractXBeeDevice

add_remote(remote_xbee)
Adds the provided remote XBee to the network if it is not in yet.

If the XBee is already in the network, its data is updated with the information of the provided XBee that
are not None.

Parameters remote_xbee (RemoteXBeeDevice) – Remote XBee to add.

Returns

Provided XBee with updated data. If the XBee was not in the list, it returns it with-
out changes.

Return type RemoteXBeeDevice

add_remotes(remote_xbees)
Adds a list of remote XBee nodes to the network.

If any node in the list is already in the network, its data is updated with the information of the correspond-
ing XBee in the list.

Parameters remote_xbees (List) – List of RemoteXBeeDevice to add.

remove_device(remote_xbee)
Removes the provided remote XBee from the network.

Parameters remote_xbee (RemoteXBeeDevice) – Remote XBee to remove.

Raises ValueError – If the provided remote_xbee is not in the network.

get_discovery_callbacks()
Returns the API callbacks that are used in the device discovery process.

This callbacks notify the user callbacks for each XBee discovered.

Returns

Callback for generic devices discovery process, callback for discovery specific XBee
ops.

Return type Tuple (Function, Function)

get_connections()
Returns a copy of the XBee network connections.

A deep discover must be performed to get the connections between network nodes.

If a new connection is added to the list after the execution of this method, this new connection is not added
to the list returned by this method.

Returns A copy of the list of Connection for the network.

Return type List

See also:

884 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

XBeeNetwork.get_node_connections()

XBeeNetwork.start_discovery_process()

get_node_connections(node)
Returns the network connections with one of their ends node.

A deep discover must be performed to get the connections between network nodes.

If a new connection is added to the list after the execution of this method, this new connection is not added
to the list returned by this method.

Parameters node (AbstractXBeeDevice) – The node to get its connections.

Returns List of Connection with node end.

Return type List

See also:

XBeeNetwork.get_connections()

XBeeNetwork.start_discovery_process()

class digi.xbee.devices.ZigBeeNetwork(device)
Bases: digi.xbee.devices.XBeeNetwork

This class represents a Zigbee network.

The network allows the discovery of remote nodes in the same network as the local one and stores them.

Class constructor. Instantiates a new ZigBeeNetwork.
Parameters device (ZigBeeDevice) – Local Zigbee node to get the network from.

Raises ValueError – If device is None.
add_device_discovered_callback(callback)

Adds a callback for the event DeviceDiscovered.

Parameters callback (Function) – The callback. Receives one argument.

• The discovered remote XBee as a RemoteXBeeDevice.

See also:

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

add_discovery_process_finished_callback(callback)
Adds a callback for the event DiscoveryProcessFinished.

Parameters callback (Function) – The callback. Receives two arguments.

• The event code as an NetworkDiscoveryStatus.

• (Optional) A description of the discovery process as a string.

See also:

2.6. API reference 885



XBee Python Library Documentation, Release 1.4.0

XBeeNetwork.del_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

add_end_discovery_scan_callback(callback)
Adds a callback for the event EndDiscoveryScan.

Parameters callback (Function) – The callback. Receives two arguments.

• Number of scan that has finished (starting with 1).

• Total number of scans.

See also:

XBeeNetwork.del_end_discovery_scan_callback()

add_if_not_exist(x64bit_addr=None, x16bit_addr=None, node_id=None)
Adds an XBee with the provided information if it does not exist in the current network.

If the XBee already exists, its data is updated with the provided information.

If no valid address is provided (x64bit_addr, x16bit_addr), None is returned.

Parameters

• x64bit_addr (XBee64BitAddress, optional, default=‘None‘) – 64-bit ad-
dress.

• x16bit_addr (XBee16BitAddress, optional, default=‘None‘) – 16-bit ad-
dress.

• node_id (String, optional, default=`None`) – Node identifier.

Returns

the remote XBee with the updated information. If the XBee was not in the list yet,
this method returns the given XBee without changes.

Return type AbstractXBeeDevice

add_init_discovery_scan_callback(callback)
Adds a callback for the event InitDiscoveryScan.

Parameters callback (Function) – The callback. Receives two arguments.

• Number of scan to start (starting with 1).

• Total number of scans.

See also:

XBeeNetwork.del_init_discovery_scan_callback()

add_network_modified_callback(callback)
Adds a callback for the event NetworkModified.

Parameters callback (Function) – The callback. Receives three arguments.

886 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• The event type as a NetworkEventType.

• The reason of the event as a NetworkEventReason.

• The node added, updated or removed from the network as a XBeeDevice or
RemoteXBeeDevice.

See also:

XBeeNetwork.del_network_modified_callback()

add_packet_received_from_callback(node, callback)
Adds a callback to listen to any received packet from the provided node.

Parameters

• node (RemoteXBeeDevice) – The node to listen for frames.

• callback (Function) – The callback. Receives two arguments.

– The received packet as a XBeeAPIPacket.

– The remote XBee who sent the packet as a RemoteXBeeDevice.

See also:

XBeeNetwork.del_packet_received_from_callback()

add_remote(remote_xbee)
Adds the provided remote XBee to the network if it is not in yet.

If the XBee is already in the network, its data is updated with the information of the provided XBee that
are not None.

Parameters remote_xbee (RemoteXBeeDevice) – Remote XBee to add.

Returns

Provided XBee with updated data. If the XBee was not in the list, it returns it with-
out changes.

Return type RemoteXBeeDevice

add_remotes(remote_xbees)
Adds a list of remote XBee nodes to the network.

If any node in the list is already in the network, its data is updated with the information of the correspond-
ing XBee in the list.

Parameters remote_xbees (List) – List of RemoteXBeeDevice to add.

clear()
Removes all remote XBee nodes from the network.

del_device_discovered_callback(callback)
Deletes a callback for the callback list of DeviceDiscovered event.

Parameters callback (Function) – The callback to delete.

See also:

2.6. API reference 887



XBee Python Library Documentation, Release 1.4.0

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

del_discovery_process_finished_callback(callback)
Deletes a callback for the callback list of DiscoveryProcessFinished event.

Parameters callback (Function) – The callback to delete.

See also:

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

del_end_discovery_scan_callback(callback)
Deletes a callback for the callback list of EndDiscoveryScan.

Parameters callback (Function) – The callback to delete.

See also:

XBeeNetwork.add_end_discovery_scan_callback()

del_init_discovery_scan_callback(callback)
Deletes a callback for the callback list of InitDiscoveryScan.

Parameters callback (Function) – The callback to delete.

See also:

XBeeNetwork.add_init_discovery_scan_callback()

del_network_modified_callback(callback)
Deletes a callback for the callback list of NetworkModified.

Parameters callback (Function) – The callback to delete.

See also:

XBeeNetwork.add_network_modified_callback()

del_packet_received_from_callback(node, callb=None)
Deletes a received packet callback from the provided node.

Parameters

• node (RemoteXBeeDevice) – The node to listen for frames.

888 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• callb (Function, optional, default=`None`) – The callback to
delete, None to delete all.

See also:

XBeeNetwork.add_packet_received_from_callback()

discover_device(node_id)
Blocking method. Discovers and reports the first remote XBee that matches the supplied identifier.

Parameters node_id (String) – Node identifier of the node to discover.

Returns

Discovered remote XBee, None if the timeout expires and the node was not found.

Return type RemoteXBeeDevice

See also:

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

discover_devices(device_id_list)
Blocking method. Attempts to discover a list of nodes and add them to the current network.

This method does not guarantee that all nodes of device_id_list will be found, even if they exist physically.
This depends on the node discovery operation and timeout.

Parameters device_id_list (List) – List of device IDs to discover.

Returns

List with the discovered nodes. It may not contain all nodes specified in de-
vice_id_list.

Return type List

See also:

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

export(dir_path=None, name=None, desc=None)
Exports this network to the given file path.

If the provided path already exists the file is removed.

Params:

2.6. API reference 889



XBee Python Library Documentation, Release 1.4.0

dir_path (String, optional, default=‘None‘): Absolute path of the directory to export the net-
work. It should not include the file name. If not defined home directory is used.

name (String, optional, default=‘None‘): Network human readable name. desc (String, optional,
default=‘None‘): Network description.

Returns

Tuple with result (0: success, 1: failure) and string (exported file path if success, er-
ror string otherwise).

Return type Tuple (Integer, String)

get_connections()
Returns a copy of the XBee network connections.

A deep discover must be performed to get the connections between network nodes.

If a new connection is added to the list after the execution of this method, this new connection is not added
to the list returned by this method.

Returns A copy of the list of Connection for the network.

Return type List

See also:

XBeeNetwork.get_node_connections()

XBeeNetwork.start_discovery_process()

get_deep_discovery_options()
Returns the deep discovery process options.

Returns

(NeighborDiscoveryMode, Boolean): Tuple containing:

• mode (NeighborDiscoveryMode): Neighbor discovery mode, the way
to perform the network discovery process.

• remove_nodes (Boolean): True to remove nodes from the network if they
were not discovered in the last scan, False otherwise.

Return type Tuple

See also:

digi.xbee.models.mode.NeighborDiscoveryMode

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

get_deep_discovery_timeouts()
Gets deep discovery network timeouts. These timeouts are only applicable for “deep” discovery (see
start_discovery_process())

Returns

890 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Tuple containing:

• node_timeout (Float): Maximum duration in seconds of the discovery
process per node. This is used to find neighbors of a node. This timeout is
highly dependent on the nature of the network:

– It should be greater than the highest ‘NT’ (Node Discovery Timeout) of
your network.

– And include enough time to let the message propagate depending on the
sleep cycle of your network nodes.

• time_bw_nodes (Float): Time to wait between node neighbors requests.
Use this setting not to saturate your network:

– For ‘Cascade’, the number of seconds to wait after completion of the
neighbor discovery process of the previous node.

– For ‘Flood’, the minimum time to wait between each node’s neighbor
requests.

• time_bw_scans (Float): Time to wait before starting a new network scan.

Return type Tuple (Float, Float, Float)

See also:

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

get_device_by_16(x16bit_addr)
Returns the XBee in the network whose 16-bit address matches the given one.

Parameters x16bit_addr (XBee16BitAddress) – 16-bit address of the node to re-
trieve.

Returns XBee in the network or Non if not found.

Return type AbstractXBeeDevice

Raises ValueError – If x16bit_addr is None or unknown.

get_device_by_64(x64bit_addr)
Returns the XBee in the network whose 64-bit address matches the given one.

Parameters x64bit_addr (XBee64BitAddress) – 64-bit address of the node to re-
trieve.

Returns XBee in the network or None if not found.

Return type AbstractXBeeDevice

Raises ValueError – If x64bit_addr is None or unknown.

get_device_by_node_id(node_id)
Returns the XBee in the network whose node identifier matches the given one.

Parameters node_id (String) – Node identifier of the node to retrieve.

Returns XBee in the network or None if not found.

Return type AbstractXBeeDevice

Raises ValueError – If node_id is None.

2.6. API reference 891



XBee Python Library Documentation, Release 1.4.0

get_devices()
Returns a copy of the XBee devices list of the network.

If a new XBee node is added to the list after the execution of this method, this new XBee is not added to
the list returned by this method.

Returns A copy of the XBee devices list of the network.

Return type List

get_discovery_callbacks()
Returns the API callbacks that are used in the device discovery process.

This callbacks notify the user callbacks for each XBee discovered.

Returns

Callback for generic devices discovery process, callback for discovery specific XBee
ops.

Return type Tuple (Function, Function)

get_discovery_options()
Returns the network discovery process options.

Returns Discovery options value.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout ex-
pires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of the operating
mode.

• ATCommandException – If response is not as expected.

get_discovery_timeout()
Returns the network discovery timeout.

Returns Network discovery timeout.

Return type Float

Raises

• TimeoutException – If response is not received before the read timeout ex-
pires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of the operating
mode.

• ATCommandException – If response is not as expected.

get_node_connections(node)
Returns the network connections with one of their ends node.

A deep discover must be performed to get the connections between network nodes.

892 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

If a new connection is added to the list after the execution of this method, this new connection is not added
to the list returned by this method.

Parameters node (AbstractXBeeDevice) – The node to get its connections.

Returns List of Connection with node end.

Return type List

See also:

XBeeNetwork.get_connections()

XBeeNetwork.start_discovery_process()

classmethod get_nt_limits(protocol)
Returns a tuple with the minimum and maximum values for the ‘NT’ value depending on the protocol.

Returns

Minimum value in seconds, maximum value in seconds.

Return type Tuple (Float, Float)

get_number_devices()
Returns the number of nodes in the network.

Returns Number of nodes in the network.

Return type Integer

has_devices()
Returns whether there is any device in the network.

Returns

True if there is at least one node in the network, False otherwise.

Return type Boolean

is_discovery_running()
Returns whether the discovery process is running.

Returns True if the discovery process is running, False otherwise.

Return type Boolean

is_node_in_network(node)
Checks if the provided node is in the network or if it is the local XBee.

Parameters node (AbstractXBeeDevice) – The node to check.

Returns True if the node is in the network, False otherwise.

Return type Boolean

Raises ValueError – If node is None.

remove_device(remote_xbee)
Removes the provided remote XBee from the network.

Parameters remote_xbee (RemoteXBeeDevice) – Remote XBee to remove.

Raises ValueError – If the provided remote_xbee is not in the network.

2.6. API reference 893



XBee Python Library Documentation, Release 1.4.0

scan_counter
Returns the scan counter.

Returns The scan counter.

Return type Integer

set_deep_discovery_options(deep_mode=<NeighborDiscoveryMode.CASCADE: (0, ’Cas-
cade’)>, del_not_discovered_nodes_in_last_scan=False)

Configures the deep discovery options with the given values. These options are only applicable for “deep”
discovery (see start_discovery_process())

Parameters

• deep_mode (NeighborDiscoveryMode, optional, de-
fault=‘NeighborDiscoveryMode.CASCADE‘) – Neighbor discovery mode,
the way to perform the network discovery process.

• del_not_discovered_nodes_in_last_scan (Boolean,
optional, default=`False`) – True to remove nodes from the net-
work if they were not discovered in the last scan.

See also:

digi.xbee.models.mode.NeighborDiscoveryMode

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

set_deep_discovery_timeouts(node_timeout=None, time_bw_requests=None,
time_bw_scans=None)

Sets deep discovery network timeouts. These timeouts are only applicable for “deep” discovery (see
start_discovery_process())

node_timeout (Float, optional, default=‘None‘): Maximum duration in seconds of the discovery pro-
cess used to find neighbors of a node. If None already configured timeouts are used.

time_bw_requests (Float, optional, default=‘DEFAULT_TIME_BETWEEN_REQUESTS‘): Time to wait
between node neighbors requests. It must be between MIN_TIME_BETWEEN_REQUESTS and
MAX_TIME_BETWEEN_REQUESTS seconds inclusive. Use this setting not to saturate your
network:

• For ‘Cascade’, the number of seconds to wait after completion of the neighbor dis-
covery process of the previous node.

• For ‘Flood’, the minimum time to wait between each node’s neighbor requests.

time_bw_scans (Float, optional, default=‘DEFAULT_TIME_BETWEEN_SCANS‘): Time to wait
before starting a new network scan. It must be between MIN_TIME_BETWEEN_SCANS and
MAX_TIME_BETWEEN_SCANS seconds inclusive.

Raises ValueError – if node_timeout, time_bw_requests or time_bw_scans are not be-
tween their corresponding limits.

See also:

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

894 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

set_discovery_options(options)
Configures the discovery options (NO parameter) with the given value.

Parameters options (Set of DiscoveryOptions) – New discovery options, empty set
to clear the options.

Raises

• ValueError – If options is None.

• TimeoutException – If response is not received before the read timeout ex-
pires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of the operating
mode.

• ATCommandException – If response is not as expected.

See also:

DiscoveryOptions

set_discovery_timeout(discovery_timeout)
Sets the discovery network timeout.

Parameters discovery_timeout (Float) – Timeout in seconds.

Raises

• ValueError – If discovery_timeout is not between the allowed minimum and
maximum values.

• TimeoutException – If response is not received before the read timeout ex-
pires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of the operating
mode.

• ATCommandException – If response is not as expected.

start_discovery_process(deep=False, n_deep_scans=1)
Starts the discovery process. This method is not blocking.

This process can discover node neighbors and connections, or only nodes:

• Deep discovery: Network nodes and connections between them (including quality) are discovered.

The discovery process will be running the number of scans configured in n_deep_scans. A scan is
considered the process of discovering the full network. If there are more than one number of scans
configured, after finishing one another is started, until n_deep_scans is satisfied.

See set_deep_discovery_options() to establish the way the network discovery process
is performed.

• No deep discovery: Only network nodes are discovered.

2.6. API reference 895



XBee Python Library Documentation, Release 1.4.0

The discovery process will be running until the configured timeout expires or, in case of 802.15.4,
until the ‘end’ packet is read.

It may occur that, after timeout expiration, there are nodes that continue sending discovery re-
sponses to the local XBee. In this case, these nodes will not be added to the network.

In 802.15.4, both (deep and no deep discovery) are the same and none discover the node connections or
their quality. The difference is the possibility of running more than one scan using a deep discovery.

Parameters

• deep (Boolean, optional, default=`False`) – True for a deep net-
work scan, looking for neighbors and their connections, False otherwise.

• n_deep_scans (Integer, optional, default=1) – Number of
scans to perform before automatically stopping the discovery process.
SCAN_TIL_CANCEL means the process will not be automatically stopped. Only
applicable if deep=True.

See also:

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.del_discovery_process_finished_callback()

XBeeNetwork.get_deep_discovery_options()

XBeeNetwork.set_deep_discovery_options()

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

stop_discovery_process()
Stops the discovery process if it is running.

Note that some DigiMesh/DigiPoint devices are blocked until the discovery time configured (‘NT’ pa-
rameter) has elapsed, so, when trying to get/set any parameter during the discovery process, a Timeou-
tException is raised.

class digi.xbee.devices.Raw802Network(xbee_device)
Bases: digi.xbee.devices.XBeeNetwork

This class represents an 802.15.4 network.

The network allows the discovery of remote nodes in the same network as the local one and stores them.

Class constructor. Instantiates a new XBeeNetwork.
Parameters xbee_device (XBeeDevice) – Local XBee to get the network from.

Raises ValueError – If xbee_device is None.
add_device_discovered_callback(callback)

Adds a callback for the event DeviceDiscovered.

Parameters callback (Function) – The callback. Receives one argument.

896 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• The discovered remote XBee as a RemoteXBeeDevice.

See also:

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

add_discovery_process_finished_callback(callback)
Adds a callback for the event DiscoveryProcessFinished.

Parameters callback (Function) – The callback. Receives two arguments.

• The event code as an NetworkDiscoveryStatus.

• (Optional) A description of the discovery process as a string.

See also:

XBeeNetwork.del_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

add_end_discovery_scan_callback(callback)
Adds a callback for the event EndDiscoveryScan.

Parameters callback (Function) – The callback. Receives two arguments.

• Number of scan that has finished (starting with 1).

• Total number of scans.

See also:

XBeeNetwork.del_end_discovery_scan_callback()

add_if_not_exist(x64bit_addr=None, x16bit_addr=None, node_id=None)
Adds an XBee with the provided information if it does not exist in the current network.

If the XBee already exists, its data is updated with the provided information.

If no valid address is provided (x64bit_addr, x16bit_addr), None is returned.

Parameters

• x64bit_addr (XBee64BitAddress, optional, default=‘None‘) – 64-bit ad-
dress.

• x16bit_addr (XBee16BitAddress, optional, default=‘None‘) – 16-bit ad-
dress.

• node_id (String, optional, default=`None`) – Node identifier.

Returns

2.6. API reference 897



XBee Python Library Documentation, Release 1.4.0

the remote XBee with the updated information. If the XBee was not in the list yet,
this method returns the given XBee without changes.

Return type AbstractXBeeDevice

add_init_discovery_scan_callback(callback)
Adds a callback for the event InitDiscoveryScan.

Parameters callback (Function) – The callback. Receives two arguments.

• Number of scan to start (starting with 1).

• Total number of scans.

See also:

XBeeNetwork.del_init_discovery_scan_callback()

add_network_modified_callback(callback)
Adds a callback for the event NetworkModified.

Parameters callback (Function) – The callback. Receives three arguments.

• The event type as a NetworkEventType.

• The reason of the event as a NetworkEventReason.

• The node added, updated or removed from the network as a XBeeDevice or
RemoteXBeeDevice.

See also:

XBeeNetwork.del_network_modified_callback()

add_packet_received_from_callback(node, callback)
Adds a callback to listen to any received packet from the provided node.

Parameters

• node (RemoteXBeeDevice) – The node to listen for frames.

• callback (Function) – The callback. Receives two arguments.

– The received packet as a XBeeAPIPacket.

– The remote XBee who sent the packet as a RemoteXBeeDevice.

See also:

XBeeNetwork.del_packet_received_from_callback()

add_remote(remote_xbee)
Adds the provided remote XBee to the network if it is not in yet.

If the XBee is already in the network, its data is updated with the information of the provided XBee that
are not None.

898 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Parameters remote_xbee (RemoteXBeeDevice) – Remote XBee to add.

Returns

Provided XBee with updated data. If the XBee was not in the list, it returns it with-
out changes.

Return type RemoteXBeeDevice

add_remotes(remote_xbees)
Adds a list of remote XBee nodes to the network.

If any node in the list is already in the network, its data is updated with the information of the correspond-
ing XBee in the list.

Parameters remote_xbees (List) – List of RemoteXBeeDevice to add.

clear()
Removes all remote XBee nodes from the network.

del_device_discovered_callback(callback)
Deletes a callback for the callback list of DeviceDiscovered event.

Parameters callback (Function) – The callback to delete.

See also:

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

del_discovery_process_finished_callback(callback)
Deletes a callback for the callback list of DiscoveryProcessFinished event.

Parameters callback (Function) – The callback to delete.

See also:

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

del_end_discovery_scan_callback(callback)
Deletes a callback for the callback list of EndDiscoveryScan.

Parameters callback (Function) – The callback to delete.

See also:

XBeeNetwork.add_end_discovery_scan_callback()

del_init_discovery_scan_callback(callback)
Deletes a callback for the callback list of InitDiscoveryScan.

Parameters callback (Function) – The callback to delete.

2.6. API reference 899



XBee Python Library Documentation, Release 1.4.0

See also:

XBeeNetwork.add_init_discovery_scan_callback()

del_network_modified_callback(callback)
Deletes a callback for the callback list of NetworkModified.

Parameters callback (Function) – The callback to delete.

See also:

XBeeNetwork.add_network_modified_callback()

del_packet_received_from_callback(node, callb=None)
Deletes a received packet callback from the provided node.

Parameters

• node (RemoteXBeeDevice) – The node to listen for frames.

• callb (Function, optional, default=`None`) – The callback to
delete, None to delete all.

See also:

XBeeNetwork.add_packet_received_from_callback()

discover_device(node_id)
Blocking method. Discovers and reports the first remote XBee that matches the supplied identifier.

Parameters node_id (String) – Node identifier of the node to discover.

Returns

Discovered remote XBee, None if the timeout expires and the node was not found.

Return type RemoteXBeeDevice

See also:

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

discover_devices(device_id_list)
Blocking method. Attempts to discover a list of nodes and add them to the current network.

This method does not guarantee that all nodes of device_id_list will be found, even if they exist physically.
This depends on the node discovery operation and timeout.

Parameters device_id_list (List) – List of device IDs to discover.

900 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns

List with the discovered nodes. It may not contain all nodes specified in de-
vice_id_list.

Return type List

See also:

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

export(dir_path=None, name=None, desc=None)
Exports this network to the given file path.

If the provided path already exists the file is removed.

Params:

dir_path (String, optional, default=‘None‘): Absolute path of the directory to export the net-
work. It should not include the file name. If not defined home directory is used.

name (String, optional, default=‘None‘): Network human readable name. desc (String, optional,
default=‘None‘): Network description.

Returns

Tuple with result (0: success, 1: failure) and string (exported file path if success, er-
ror string otherwise).

Return type Tuple (Integer, String)

get_connections()
Returns a copy of the XBee network connections.

A deep discover must be performed to get the connections between network nodes.

If a new connection is added to the list after the execution of this method, this new connection is not added
to the list returned by this method.

Returns A copy of the list of Connection for the network.

Return type List

See also:

XBeeNetwork.get_node_connections()

XBeeNetwork.start_discovery_process()

get_deep_discovery_options()
Returns the deep discovery process options.

Returns

(NeighborDiscoveryMode, Boolean): Tuple containing:

2.6. API reference 901



XBee Python Library Documentation, Release 1.4.0

• mode (NeighborDiscoveryMode): Neighbor discovery mode, the way
to perform the network discovery process.

• remove_nodes (Boolean): True to remove nodes from the network if they
were not discovered in the last scan, False otherwise.

Return type Tuple

See also:

digi.xbee.models.mode.NeighborDiscoveryMode

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

get_deep_discovery_timeouts()
Gets deep discovery network timeouts. These timeouts are only applicable for “deep” discovery (see
start_discovery_process())

Returns

Tuple containing:

• node_timeout (Float): Maximum duration in seconds of the discovery
process per node. This is used to find neighbors of a node. This timeout is
highly dependent on the nature of the network:

– It should be greater than the highest ‘NT’ (Node Discovery Timeout) of
your network.

– And include enough time to let the message propagate depending on the
sleep cycle of your network nodes.

• time_bw_nodes (Float): Time to wait between node neighbors requests.
Use this setting not to saturate your network:

– For ‘Cascade’, the number of seconds to wait after completion of the
neighbor discovery process of the previous node.

– For ‘Flood’, the minimum time to wait between each node’s neighbor
requests.

• time_bw_scans (Float): Time to wait before starting a new network scan.

Return type Tuple (Float, Float, Float)

See also:

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

get_device_by_16(x16bit_addr)
Returns the XBee in the network whose 16-bit address matches the given one.

Parameters x16bit_addr (XBee16BitAddress) – 16-bit address of the node to re-
trieve.

Returns XBee in the network or Non if not found.

Return type AbstractXBeeDevice

902 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Raises ValueError – If x16bit_addr is None or unknown.

get_device_by_64(x64bit_addr)
Returns the XBee in the network whose 64-bit address matches the given one.

Parameters x64bit_addr (XBee64BitAddress) – 64-bit address of the node to re-
trieve.

Returns XBee in the network or None if not found.

Return type AbstractXBeeDevice

Raises ValueError – If x64bit_addr is None or unknown.

get_device_by_node_id(node_id)
Returns the XBee in the network whose node identifier matches the given one.

Parameters node_id (String) – Node identifier of the node to retrieve.

Returns XBee in the network or None if not found.

Return type AbstractXBeeDevice

Raises ValueError – If node_id is None.

get_devices()
Returns a copy of the XBee devices list of the network.

If a new XBee node is added to the list after the execution of this method, this new XBee is not added to
the list returned by this method.

Returns A copy of the XBee devices list of the network.

Return type List

get_discovery_callbacks()
Returns the API callbacks that are used in the device discovery process.

This callbacks notify the user callbacks for each XBee discovered.

Returns

Callback for generic devices discovery process, callback for discovery specific XBee
ops.

Return type Tuple (Function, Function)

get_discovery_options()
Returns the network discovery process options.

Returns Discovery options value.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout ex-
pires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of the operating
mode.

• ATCommandException – If response is not as expected.

2.6. API reference 903



XBee Python Library Documentation, Release 1.4.0

get_discovery_timeout()
Returns the network discovery timeout.

Returns Network discovery timeout.

Return type Float

Raises

• TimeoutException – If response is not received before the read timeout ex-
pires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of the operating
mode.

• ATCommandException – If response is not as expected.

get_node_connections(node)
Returns the network connections with one of their ends node.

A deep discover must be performed to get the connections between network nodes.

If a new connection is added to the list after the execution of this method, this new connection is not added
to the list returned by this method.

Parameters node (AbstractXBeeDevice) – The node to get its connections.

Returns List of Connection with node end.

Return type List

See also:

XBeeNetwork.get_connections()

XBeeNetwork.start_discovery_process()

classmethod get_nt_limits(protocol)
Returns a tuple with the minimum and maximum values for the ‘NT’ value depending on the protocol.

Returns

Minimum value in seconds, maximum value in seconds.

Return type Tuple (Float, Float)

get_number_devices()
Returns the number of nodes in the network.

Returns Number of nodes in the network.

Return type Integer

has_devices()
Returns whether there is any device in the network.

Returns

True if there is at least one node in the network, False otherwise.

Return type Boolean

904 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

is_discovery_running()
Returns whether the discovery process is running.

Returns True if the discovery process is running, False otherwise.

Return type Boolean

is_node_in_network(node)
Checks if the provided node is in the network or if it is the local XBee.

Parameters node (AbstractXBeeDevice) – The node to check.

Returns True if the node is in the network, False otherwise.

Return type Boolean

Raises ValueError – If node is None.

remove_device(remote_xbee)
Removes the provided remote XBee from the network.

Parameters remote_xbee (RemoteXBeeDevice) – Remote XBee to remove.

Raises ValueError – If the provided remote_xbee is not in the network.

scan_counter
Returns the scan counter.

Returns The scan counter.

Return type Integer

set_deep_discovery_options(deep_mode=<NeighborDiscoveryMode.CASCADE: (0, ’Cas-
cade’)>, del_not_discovered_nodes_in_last_scan=False)

Configures the deep discovery options with the given values. These options are only applicable for “deep”
discovery (see start_discovery_process())

Parameters

• deep_mode (NeighborDiscoveryMode, optional, de-
fault=‘NeighborDiscoveryMode.CASCADE‘) – Neighbor discovery mode,
the way to perform the network discovery process.

• del_not_discovered_nodes_in_last_scan (Boolean,
optional, default=`False`) – True to remove nodes from the net-
work if they were not discovered in the last scan.

See also:

digi.xbee.models.mode.NeighborDiscoveryMode

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

set_deep_discovery_timeouts(node_timeout=None, time_bw_requests=None,
time_bw_scans=None)

Sets deep discovery network timeouts. These timeouts are only applicable for “deep” discovery (see
start_discovery_process())

node_timeout (Float, optional, default=‘None‘): Maximum duration in seconds of the discovery pro-
cess used to find neighbors of a node. If None already configured timeouts are used.

2.6. API reference 905



XBee Python Library Documentation, Release 1.4.0

time_bw_requests (Float, optional, default=‘DEFAULT_TIME_BETWEEN_REQUESTS‘): Time to wait
between node neighbors requests. It must be between MIN_TIME_BETWEEN_REQUESTS and
MAX_TIME_BETWEEN_REQUESTS seconds inclusive. Use this setting not to saturate your
network:

• For ‘Cascade’, the number of seconds to wait after completion of the neighbor dis-
covery process of the previous node.

• For ‘Flood’, the minimum time to wait between each node’s neighbor requests.

time_bw_scans (Float, optional, default=‘DEFAULT_TIME_BETWEEN_SCANS‘): Time to wait
before starting a new network scan. It must be between MIN_TIME_BETWEEN_SCANS and
MAX_TIME_BETWEEN_SCANS seconds inclusive.

Raises ValueError – if node_timeout, time_bw_requests or time_bw_scans are not be-
tween their corresponding limits.

See also:

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

set_discovery_options(options)
Configures the discovery options (NO parameter) with the given value.

Parameters options (Set of DiscoveryOptions) – New discovery options, empty set
to clear the options.

Raises

• ValueError – If options is None.

• TimeoutException – If response is not received before the read timeout ex-
pires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of the operating
mode.

• ATCommandException – If response is not as expected.

See also:

DiscoveryOptions

set_discovery_timeout(discovery_timeout)
Sets the discovery network timeout.

Parameters discovery_timeout (Float) – Timeout in seconds.

Raises

• ValueError – If discovery_timeout is not between the allowed minimum and
maximum values.

906 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• TimeoutException – If response is not received before the read timeout ex-
pires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of the operating
mode.

• ATCommandException – If response is not as expected.

start_discovery_process(deep=False, n_deep_scans=1)
Starts the discovery process. This method is not blocking.

This process can discover node neighbors and connections, or only nodes:

• Deep discovery: Network nodes and connections between them (including quality) are discovered.

The discovery process will be running the number of scans configured in n_deep_scans. A scan is
considered the process of discovering the full network. If there are more than one number of scans
configured, after finishing one another is started, until n_deep_scans is satisfied.

See set_deep_discovery_options() to establish the way the network discovery process
is performed.

• No deep discovery: Only network nodes are discovered.

The discovery process will be running until the configured timeout expires or, in case of 802.15.4,
until the ‘end’ packet is read.

It may occur that, after timeout expiration, there are nodes that continue sending discovery re-
sponses to the local XBee. In this case, these nodes will not be added to the network.

In 802.15.4, both (deep and no deep discovery) are the same and none discover the node connections or
their quality. The difference is the possibility of running more than one scan using a deep discovery.

Parameters

• deep (Boolean, optional, default=`False`) – True for a deep net-
work scan, looking for neighbors and their connections, False otherwise.

• n_deep_scans (Integer, optional, default=1) – Number of
scans to perform before automatically stopping the discovery process.
SCAN_TIL_CANCEL means the process will not be automatically stopped. Only
applicable if deep=True.

See also:

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.del_discovery_process_finished_callback()

XBeeNetwork.get_deep_discovery_options()

XBeeNetwork.set_deep_discovery_options()

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

2.6. API reference 907



XBee Python Library Documentation, Release 1.4.0

XBeeNetwork.set_discovery_timeout()

stop_discovery_process()
Stops the discovery process if it is running.

Note that some DigiMesh/DigiPoint devices are blocked until the discovery time configured (‘NT’ pa-
rameter) has elapsed, so, when trying to get/set any parameter during the discovery process, a Timeou-
tException is raised.

class digi.xbee.devices.DigiMeshNetwork(device)
Bases: digi.xbee.devices.XBeeNetwork

This class represents a DigiMesh network.

The network allows the discovery of remote nodes in the same network as the local one and stores them.

Class constructor. Instantiates a new DigiMeshNetwork.
Parameters device (DigiMeshDevice) – Local DigiMesh node to get the network from.

Raises ValueError – If device is None.
add_device_discovered_callback(callback)

Adds a callback for the event DeviceDiscovered.

Parameters callback (Function) – The callback. Receives one argument.

• The discovered remote XBee as a RemoteXBeeDevice.

See also:

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

add_discovery_process_finished_callback(callback)
Adds a callback for the event DiscoveryProcessFinished.

Parameters callback (Function) – The callback. Receives two arguments.

• The event code as an NetworkDiscoveryStatus.

• (Optional) A description of the discovery process as a string.

See also:

XBeeNetwork.del_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

add_end_discovery_scan_callback(callback)
Adds a callback for the event EndDiscoveryScan.

Parameters callback (Function) – The callback. Receives two arguments.

• Number of scan that has finished (starting with 1).

• Total number of scans.

908 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

See also:

XBeeNetwork.del_end_discovery_scan_callback()

add_if_not_exist(x64bit_addr=None, x16bit_addr=None, node_id=None)
Adds an XBee with the provided information if it does not exist in the current network.

If the XBee already exists, its data is updated with the provided information.

If no valid address is provided (x64bit_addr, x16bit_addr), None is returned.

Parameters

• x64bit_addr (XBee64BitAddress, optional, default=‘None‘) – 64-bit ad-
dress.

• x16bit_addr (XBee16BitAddress, optional, default=‘None‘) – 16-bit ad-
dress.

• node_id (String, optional, default=`None`) – Node identifier.

Returns

the remote XBee with the updated information. If the XBee was not in the list yet,
this method returns the given XBee without changes.

Return type AbstractXBeeDevice

add_init_discovery_scan_callback(callback)
Adds a callback for the event InitDiscoveryScan.

Parameters callback (Function) – The callback. Receives two arguments.

• Number of scan to start (starting with 1).

• Total number of scans.

See also:

XBeeNetwork.del_init_discovery_scan_callback()

add_network_modified_callback(callback)
Adds a callback for the event NetworkModified.

Parameters callback (Function) – The callback. Receives three arguments.

• The event type as a NetworkEventType.

• The reason of the event as a NetworkEventReason.

• The node added, updated or removed from the network as a XBeeDevice or
RemoteXBeeDevice.

See also:

XBeeNetwork.del_network_modified_callback()

2.6. API reference 909



XBee Python Library Documentation, Release 1.4.0

add_packet_received_from_callback(node, callback)
Adds a callback to listen to any received packet from the provided node.

Parameters

• node (RemoteXBeeDevice) – The node to listen for frames.

• callback (Function) – The callback. Receives two arguments.

– The received packet as a XBeeAPIPacket.

– The remote XBee who sent the packet as a RemoteXBeeDevice.

See also:

XBeeNetwork.del_packet_received_from_callback()

add_remote(remote_xbee)
Adds the provided remote XBee to the network if it is not in yet.

If the XBee is already in the network, its data is updated with the information of the provided XBee that
are not None.

Parameters remote_xbee (RemoteXBeeDevice) – Remote XBee to add.

Returns

Provided XBee with updated data. If the XBee was not in the list, it returns it with-
out changes.

Return type RemoteXBeeDevice

add_remotes(remote_xbees)
Adds a list of remote XBee nodes to the network.

If any node in the list is already in the network, its data is updated with the information of the correspond-
ing XBee in the list.

Parameters remote_xbees (List) – List of RemoteXBeeDevice to add.

clear()
Removes all remote XBee nodes from the network.

del_device_discovered_callback(callback)
Deletes a callback for the callback list of DeviceDiscovered event.

Parameters callback (Function) – The callback to delete.

See also:

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

del_discovery_process_finished_callback(callback)
Deletes a callback for the callback list of DiscoveryProcessFinished event.

Parameters callback (Function) – The callback to delete.

See also:

910 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

del_end_discovery_scan_callback(callback)
Deletes a callback for the callback list of EndDiscoveryScan.

Parameters callback (Function) – The callback to delete.

See also:

XBeeNetwork.add_end_discovery_scan_callback()

del_init_discovery_scan_callback(callback)
Deletes a callback for the callback list of InitDiscoveryScan.

Parameters callback (Function) – The callback to delete.

See also:

XBeeNetwork.add_init_discovery_scan_callback()

del_network_modified_callback(callback)
Deletes a callback for the callback list of NetworkModified.

Parameters callback (Function) – The callback to delete.

See also:

XBeeNetwork.add_network_modified_callback()

del_packet_received_from_callback(node, callb=None)
Deletes a received packet callback from the provided node.

Parameters

• node (RemoteXBeeDevice) – The node to listen for frames.

• callb (Function, optional, default=`None`) – The callback to
delete, None to delete all.

See also:

XBeeNetwork.add_packet_received_from_callback()

discover_device(node_id)
Blocking method. Discovers and reports the first remote XBee that matches the supplied identifier.

Parameters node_id (String) – Node identifier of the node to discover.

Returns

2.6. API reference 911



XBee Python Library Documentation, Release 1.4.0

Discovered remote XBee, None if the timeout expires and the node was not found.

Return type RemoteXBeeDevice

See also:

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

discover_devices(device_id_list)
Blocking method. Attempts to discover a list of nodes and add them to the current network.

This method does not guarantee that all nodes of device_id_list will be found, even if they exist physically.
This depends on the node discovery operation and timeout.

Parameters device_id_list (List) – List of device IDs to discover.

Returns

List with the discovered nodes. It may not contain all nodes specified in de-
vice_id_list.

Return type List

See also:

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

export(dir_path=None, name=None, desc=None)
Exports this network to the given file path.

If the provided path already exists the file is removed.

Params:

dir_path (String, optional, default=‘None‘): Absolute path of the directory to export the net-
work. It should not include the file name. If not defined home directory is used.

name (String, optional, default=‘None‘): Network human readable name. desc (String, optional,
default=‘None‘): Network description.

Returns

Tuple with result (0: success, 1: failure) and string (exported file path if success, er-
ror string otherwise).

Return type Tuple (Integer, String)

get_connections()
Returns a copy of the XBee network connections.

912 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

A deep discover must be performed to get the connections between network nodes.

If a new connection is added to the list after the execution of this method, this new connection is not added
to the list returned by this method.

Returns A copy of the list of Connection for the network.

Return type List

See also:

XBeeNetwork.get_node_connections()

XBeeNetwork.start_discovery_process()

get_deep_discovery_options()
Returns the deep discovery process options.

Returns

(NeighborDiscoveryMode, Boolean): Tuple containing:

• mode (NeighborDiscoveryMode): Neighbor discovery mode, the way
to perform the network discovery process.

• remove_nodes (Boolean): True to remove nodes from the network if they
were not discovered in the last scan, False otherwise.

Return type Tuple

See also:

digi.xbee.models.mode.NeighborDiscoveryMode

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

get_deep_discovery_timeouts()
Gets deep discovery network timeouts. These timeouts are only applicable for “deep” discovery (see
start_discovery_process())

Returns

Tuple containing:

• node_timeout (Float): Maximum duration in seconds of the discovery
process per node. This is used to find neighbors of a node. This timeout is
highly dependent on the nature of the network:

– It should be greater than the highest ‘NT’ (Node Discovery Timeout) of
your network.

– And include enough time to let the message propagate depending on the
sleep cycle of your network nodes.

• time_bw_nodes (Float): Time to wait between node neighbors requests.
Use this setting not to saturate your network:

– For ‘Cascade’, the number of seconds to wait after completion of the
neighbor discovery process of the previous node.

2.6. API reference 913



XBee Python Library Documentation, Release 1.4.0

– For ‘Flood’, the minimum time to wait between each node’s neighbor
requests.

• time_bw_scans (Float): Time to wait before starting a new network scan.

Return type Tuple (Float, Float, Float)

See also:

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

get_device_by_16(x16bit_addr)
Returns the XBee in the network whose 16-bit address matches the given one.

Parameters x16bit_addr (XBee16BitAddress) – 16-bit address of the node to re-
trieve.

Returns XBee in the network or Non if not found.

Return type AbstractXBeeDevice

Raises ValueError – If x16bit_addr is None or unknown.

get_device_by_64(x64bit_addr)
Returns the XBee in the network whose 64-bit address matches the given one.

Parameters x64bit_addr (XBee64BitAddress) – 64-bit address of the node to re-
trieve.

Returns XBee in the network or None if not found.

Return type AbstractXBeeDevice

Raises ValueError – If x64bit_addr is None or unknown.

get_device_by_node_id(node_id)
Returns the XBee in the network whose node identifier matches the given one.

Parameters node_id (String) – Node identifier of the node to retrieve.

Returns XBee in the network or None if not found.

Return type AbstractXBeeDevice

Raises ValueError – If node_id is None.

get_devices()
Returns a copy of the XBee devices list of the network.

If a new XBee node is added to the list after the execution of this method, this new XBee is not added to
the list returned by this method.

Returns A copy of the XBee devices list of the network.

Return type List

get_discovery_callbacks()
Returns the API callbacks that are used in the device discovery process.

This callbacks notify the user callbacks for each XBee discovered.

Returns

914 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Callback for generic devices discovery process, callback for discovery specific XBee
ops.

Return type Tuple (Function, Function)

get_discovery_options()
Returns the network discovery process options.

Returns Discovery options value.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout ex-
pires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of the operating
mode.

• ATCommandException – If response is not as expected.

get_discovery_timeout()
Returns the network discovery timeout.

Returns Network discovery timeout.

Return type Float

Raises

• TimeoutException – If response is not received before the read timeout ex-
pires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of the operating
mode.

• ATCommandException – If response is not as expected.

get_node_connections(node)
Returns the network connections with one of their ends node.

A deep discover must be performed to get the connections between network nodes.

If a new connection is added to the list after the execution of this method, this new connection is not added
to the list returned by this method.

Parameters node (AbstractXBeeDevice) – The node to get its connections.

Returns List of Connection with node end.

Return type List

See also:

XBeeNetwork.get_connections()

XBeeNetwork.start_discovery_process()

2.6. API reference 915



XBee Python Library Documentation, Release 1.4.0

classmethod get_nt_limits(protocol)
Returns a tuple with the minimum and maximum values for the ‘NT’ value depending on the protocol.

Returns

Minimum value in seconds, maximum value in seconds.

Return type Tuple (Float, Float)

get_number_devices()
Returns the number of nodes in the network.

Returns Number of nodes in the network.

Return type Integer

has_devices()
Returns whether there is any device in the network.

Returns

True if there is at least one node in the network, False otherwise.

Return type Boolean

is_discovery_running()
Returns whether the discovery process is running.

Returns True if the discovery process is running, False otherwise.

Return type Boolean

is_node_in_network(node)
Checks if the provided node is in the network or if it is the local XBee.

Parameters node (AbstractXBeeDevice) – The node to check.

Returns True if the node is in the network, False otherwise.

Return type Boolean

Raises ValueError – If node is None.

remove_device(remote_xbee)
Removes the provided remote XBee from the network.

Parameters remote_xbee (RemoteXBeeDevice) – Remote XBee to remove.

Raises ValueError – If the provided remote_xbee is not in the network.

scan_counter
Returns the scan counter.

Returns The scan counter.

Return type Integer

set_deep_discovery_options(deep_mode=<NeighborDiscoveryMode.CASCADE: (0, ’Cas-
cade’)>, del_not_discovered_nodes_in_last_scan=False)

Configures the deep discovery options with the given values. These options are only applicable for “deep”
discovery (see start_discovery_process())

Parameters

• deep_mode (NeighborDiscoveryMode, optional, de-
fault=‘NeighborDiscoveryMode.CASCADE‘) – Neighbor discovery mode,
the way to perform the network discovery process.

916 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• del_not_discovered_nodes_in_last_scan (Boolean,
optional, default=`False`) – True to remove nodes from the net-
work if they were not discovered in the last scan.

See also:

digi.xbee.models.mode.NeighborDiscoveryMode

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

set_deep_discovery_timeouts(node_timeout=None, time_bw_requests=None,
time_bw_scans=None)

Sets deep discovery network timeouts. These timeouts are only applicable for “deep” discovery (see
start_discovery_process())

node_timeout (Float, optional, default=‘None‘): Maximum duration in seconds of the discovery pro-
cess used to find neighbors of a node. If None already configured timeouts are used.

time_bw_requests (Float, optional, default=‘DEFAULT_TIME_BETWEEN_REQUESTS‘): Time to wait
between node neighbors requests. It must be between MIN_TIME_BETWEEN_REQUESTS and
MAX_TIME_BETWEEN_REQUESTS seconds inclusive. Use this setting not to saturate your
network:

• For ‘Cascade’, the number of seconds to wait after completion of the neighbor dis-
covery process of the previous node.

• For ‘Flood’, the minimum time to wait between each node’s neighbor requests.

time_bw_scans (Float, optional, default=‘DEFAULT_TIME_BETWEEN_SCANS‘): Time to wait
before starting a new network scan. It must be between MIN_TIME_BETWEEN_SCANS and
MAX_TIME_BETWEEN_SCANS seconds inclusive.

Raises ValueError – if node_timeout, time_bw_requests or time_bw_scans are not be-
tween their corresponding limits.

See also:

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

set_discovery_options(options)
Configures the discovery options (NO parameter) with the given value.

Parameters options (Set of DiscoveryOptions) – New discovery options, empty set
to clear the options.

Raises

• ValueError – If options is None.

• TimeoutException – If response is not received before the read timeout ex-
pires.

• XBeeException – If the XBee’s communication interface is closed.

2.6. API reference 917



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of the operating
mode.

• ATCommandException – If response is not as expected.

See also:

DiscoveryOptions

set_discovery_timeout(discovery_timeout)
Sets the discovery network timeout.

Parameters discovery_timeout (Float) – Timeout in seconds.

Raises

• ValueError – If discovery_timeout is not between the allowed minimum and
maximum values.

• TimeoutException – If response is not received before the read timeout ex-
pires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of the operating
mode.

• ATCommandException – If response is not as expected.

start_discovery_process(deep=False, n_deep_scans=1)
Starts the discovery process. This method is not blocking.

This process can discover node neighbors and connections, or only nodes:

• Deep discovery: Network nodes and connections between them (including quality) are discovered.

The discovery process will be running the number of scans configured in n_deep_scans. A scan is
considered the process of discovering the full network. If there are more than one number of scans
configured, after finishing one another is started, until n_deep_scans is satisfied.

See set_deep_discovery_options() to establish the way the network discovery process
is performed.

• No deep discovery: Only network nodes are discovered.

The discovery process will be running until the configured timeout expires or, in case of 802.15.4,
until the ‘end’ packet is read.

It may occur that, after timeout expiration, there are nodes that continue sending discovery re-
sponses to the local XBee. In this case, these nodes will not be added to the network.

In 802.15.4, both (deep and no deep discovery) are the same and none discover the node connections or
their quality. The difference is the possibility of running more than one scan using a deep discovery.

Parameters

• deep (Boolean, optional, default=`False`) – True for a deep net-
work scan, looking for neighbors and their connections, False otherwise.

918 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• n_deep_scans (Integer, optional, default=1) – Number of
scans to perform before automatically stopping the discovery process.
SCAN_TIL_CANCEL means the process will not be automatically stopped. Only
applicable if deep=True.

See also:

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.del_discovery_process_finished_callback()

XBeeNetwork.get_deep_discovery_options()

XBeeNetwork.set_deep_discovery_options()

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

stop_discovery_process()
Stops the discovery process if it is running.

Note that some DigiMesh/DigiPoint devices are blocked until the discovery time configured (‘NT’ pa-
rameter) has elapsed, so, when trying to get/set any parameter during the discovery process, a Timeou-
tException is raised.

class digi.xbee.devices.DigiPointNetwork(xbee_device)
Bases: digi.xbee.devices.XBeeNetwork

This class represents a DigiPoint network.

The network allows the discovery of remote nodes in the same network as the local one and stores them.

Class constructor. Instantiates a new XBeeNetwork.
Parameters xbee_device (XBeeDevice) – Local XBee to get the network from.

Raises ValueError – If xbee_device is None.
add_device_discovered_callback(callback)

Adds a callback for the event DeviceDiscovered.

Parameters callback (Function) – The callback. Receives one argument.

• The discovered remote XBee as a RemoteXBeeDevice.

See also:

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

add_discovery_process_finished_callback(callback)
Adds a callback for the event DiscoveryProcessFinished.

2.6. API reference 919



XBee Python Library Documentation, Release 1.4.0

Parameters callback (Function) – The callback. Receives two arguments.

• The event code as an NetworkDiscoveryStatus.

• (Optional) A description of the discovery process as a string.

See also:

XBeeNetwork.del_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

add_end_discovery_scan_callback(callback)
Adds a callback for the event EndDiscoveryScan.

Parameters callback (Function) – The callback. Receives two arguments.

• Number of scan that has finished (starting with 1).

• Total number of scans.

See also:

XBeeNetwork.del_end_discovery_scan_callback()

add_if_not_exist(x64bit_addr=None, x16bit_addr=None, node_id=None)
Adds an XBee with the provided information if it does not exist in the current network.

If the XBee already exists, its data is updated with the provided information.

If no valid address is provided (x64bit_addr, x16bit_addr), None is returned.

Parameters

• x64bit_addr (XBee64BitAddress, optional, default=‘None‘) – 64-bit ad-
dress.

• x16bit_addr (XBee16BitAddress, optional, default=‘None‘) – 16-bit ad-
dress.

• node_id (String, optional, default=`None`) – Node identifier.

Returns

the remote XBee with the updated information. If the XBee was not in the list yet,
this method returns the given XBee without changes.

Return type AbstractXBeeDevice

add_init_discovery_scan_callback(callback)
Adds a callback for the event InitDiscoveryScan.

Parameters callback (Function) – The callback. Receives two arguments.

• Number of scan to start (starting with 1).

• Total number of scans.

See also:

920 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

XBeeNetwork.del_init_discovery_scan_callback()

add_network_modified_callback(callback)
Adds a callback for the event NetworkModified.

Parameters callback (Function) – The callback. Receives three arguments.

• The event type as a NetworkEventType.

• The reason of the event as a NetworkEventReason.

• The node added, updated or removed from the network as a XBeeDevice or
RemoteXBeeDevice.

See also:

XBeeNetwork.del_network_modified_callback()

add_packet_received_from_callback(node, callback)
Adds a callback to listen to any received packet from the provided node.

Parameters

• node (RemoteXBeeDevice) – The node to listen for frames.

• callback (Function) – The callback. Receives two arguments.

– The received packet as a XBeeAPIPacket.

– The remote XBee who sent the packet as a RemoteXBeeDevice.

See also:

XBeeNetwork.del_packet_received_from_callback()

add_remote(remote_xbee)
Adds the provided remote XBee to the network if it is not in yet.

If the XBee is already in the network, its data is updated with the information of the provided XBee that
are not None.

Parameters remote_xbee (RemoteXBeeDevice) – Remote XBee to add.

Returns

Provided XBee with updated data. If the XBee was not in the list, it returns it with-
out changes.

Return type RemoteXBeeDevice

add_remotes(remote_xbees)
Adds a list of remote XBee nodes to the network.

If any node in the list is already in the network, its data is updated with the information of the correspond-
ing XBee in the list.

Parameters remote_xbees (List) – List of RemoteXBeeDevice to add.

2.6. API reference 921



XBee Python Library Documentation, Release 1.4.0

clear()
Removes all remote XBee nodes from the network.

del_device_discovered_callback(callback)
Deletes a callback for the callback list of DeviceDiscovered event.

Parameters callback (Function) – The callback to delete.

See also:

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

del_discovery_process_finished_callback(callback)
Deletes a callback for the callback list of DiscoveryProcessFinished event.

Parameters callback (Function) – The callback to delete.

See also:

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

del_end_discovery_scan_callback(callback)
Deletes a callback for the callback list of EndDiscoveryScan.

Parameters callback (Function) – The callback to delete.

See also:

XBeeNetwork.add_end_discovery_scan_callback()

del_init_discovery_scan_callback(callback)
Deletes a callback for the callback list of InitDiscoveryScan.

Parameters callback (Function) – The callback to delete.

See also:

XBeeNetwork.add_init_discovery_scan_callback()

del_network_modified_callback(callback)
Deletes a callback for the callback list of NetworkModified.

Parameters callback (Function) – The callback to delete.

See also:

922 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

XBeeNetwork.add_network_modified_callback()

del_packet_received_from_callback(node, callb=None)
Deletes a received packet callback from the provided node.

Parameters

• node (RemoteXBeeDevice) – The node to listen for frames.

• callb (Function, optional, default=`None`) – The callback to
delete, None to delete all.

See also:

XBeeNetwork.add_packet_received_from_callback()

discover_device(node_id)
Blocking method. Discovers and reports the first remote XBee that matches the supplied identifier.

Parameters node_id (String) – Node identifier of the node to discover.

Returns

Discovered remote XBee, None if the timeout expires and the node was not found.

Return type RemoteXBeeDevice

See also:

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

discover_devices(device_id_list)
Blocking method. Attempts to discover a list of nodes and add them to the current network.

This method does not guarantee that all nodes of device_id_list will be found, even if they exist physically.
This depends on the node discovery operation and timeout.

Parameters device_id_list (List) – List of device IDs to discover.

Returns

List with the discovered nodes. It may not contain all nodes specified in de-
vice_id_list.

Return type List

See also:

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

2.6. API reference 923



XBee Python Library Documentation, Release 1.4.0

XBeeNetwork.set_discovery_timeout()

export(dir_path=None, name=None, desc=None)
Exports this network to the given file path.

If the provided path already exists the file is removed.

Params:

dir_path (String, optional, default=‘None‘): Absolute path of the directory to export the net-
work. It should not include the file name. If not defined home directory is used.

name (String, optional, default=‘None‘): Network human readable name. desc (String, optional,
default=‘None‘): Network description.

Returns

Tuple with result (0: success, 1: failure) and string (exported file path if success, er-
ror string otherwise).

Return type Tuple (Integer, String)

get_connections()
Returns a copy of the XBee network connections.

A deep discover must be performed to get the connections between network nodes.

If a new connection is added to the list after the execution of this method, this new connection is not added
to the list returned by this method.

Returns A copy of the list of Connection for the network.

Return type List

See also:

XBeeNetwork.get_node_connections()

XBeeNetwork.start_discovery_process()

get_deep_discovery_options()
Returns the deep discovery process options.

Returns

(NeighborDiscoveryMode, Boolean): Tuple containing:

• mode (NeighborDiscoveryMode): Neighbor discovery mode, the way
to perform the network discovery process.

• remove_nodes (Boolean): True to remove nodes from the network if they
were not discovered in the last scan, False otherwise.

Return type Tuple

See also:

digi.xbee.models.mode.NeighborDiscoveryMode

XBeeNetwork.set_deep_discovery_timeouts()

924 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

XBeeNetwork.start_discovery_process()

get_deep_discovery_timeouts()
Gets deep discovery network timeouts. These timeouts are only applicable for “deep” discovery (see
start_discovery_process())

Returns

Tuple containing:

• node_timeout (Float): Maximum duration in seconds of the discovery
process per node. This is used to find neighbors of a node. This timeout is
highly dependent on the nature of the network:

– It should be greater than the highest ‘NT’ (Node Discovery Timeout) of
your network.

– And include enough time to let the message propagate depending on the
sleep cycle of your network nodes.

• time_bw_nodes (Float): Time to wait between node neighbors requests.
Use this setting not to saturate your network:

– For ‘Cascade’, the number of seconds to wait after completion of the
neighbor discovery process of the previous node.

– For ‘Flood’, the minimum time to wait between each node’s neighbor
requests.

• time_bw_scans (Float): Time to wait before starting a new network scan.

Return type Tuple (Float, Float, Float)

See also:

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

get_device_by_16(x16bit_addr)
Returns the XBee in the network whose 16-bit address matches the given one.

Parameters x16bit_addr (XBee16BitAddress) – 16-bit address of the node to re-
trieve.

Returns XBee in the network or Non if not found.

Return type AbstractXBeeDevice

Raises ValueError – If x16bit_addr is None or unknown.

get_device_by_64(x64bit_addr)
Returns the XBee in the network whose 64-bit address matches the given one.

Parameters x64bit_addr (XBee64BitAddress) – 64-bit address of the node to re-
trieve.

Returns XBee in the network or None if not found.

Return type AbstractXBeeDevice

Raises ValueError – If x64bit_addr is None or unknown.

2.6. API reference 925



XBee Python Library Documentation, Release 1.4.0

get_device_by_node_id(node_id)
Returns the XBee in the network whose node identifier matches the given one.

Parameters node_id (String) – Node identifier of the node to retrieve.

Returns XBee in the network or None if not found.

Return type AbstractXBeeDevice

Raises ValueError – If node_id is None.

get_devices()
Returns a copy of the XBee devices list of the network.

If a new XBee node is added to the list after the execution of this method, this new XBee is not added to
the list returned by this method.

Returns A copy of the XBee devices list of the network.

Return type List

get_discovery_callbacks()
Returns the API callbacks that are used in the device discovery process.

This callbacks notify the user callbacks for each XBee discovered.

Returns

Callback for generic devices discovery process, callback for discovery specific XBee
ops.

Return type Tuple (Function, Function)

get_discovery_options()
Returns the network discovery process options.

Returns Discovery options value.

Return type Bytearray

Raises

• TimeoutException – If response is not received before the read timeout ex-
pires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of the operating
mode.

• ATCommandException – If response is not as expected.

get_discovery_timeout()
Returns the network discovery timeout.

Returns Network discovery timeout.

Return type Float

Raises

• TimeoutException – If response is not received before the read timeout ex-
pires.

• XBeeException – If the XBee’s communication interface is closed.

926 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of the operating
mode.

• ATCommandException – If response is not as expected.

get_node_connections(node)
Returns the network connections with one of their ends node.

A deep discover must be performed to get the connections between network nodes.

If a new connection is added to the list after the execution of this method, this new connection is not added
to the list returned by this method.

Parameters node (AbstractXBeeDevice) – The node to get its connections.

Returns List of Connection with node end.

Return type List

See also:

XBeeNetwork.get_connections()

XBeeNetwork.start_discovery_process()

classmethod get_nt_limits(protocol)
Returns a tuple with the minimum and maximum values for the ‘NT’ value depending on the protocol.

Returns

Minimum value in seconds, maximum value in seconds.

Return type Tuple (Float, Float)

get_number_devices()
Returns the number of nodes in the network.

Returns Number of nodes in the network.

Return type Integer

has_devices()
Returns whether there is any device in the network.

Returns

True if there is at least one node in the network, False otherwise.

Return type Boolean

is_discovery_running()
Returns whether the discovery process is running.

Returns True if the discovery process is running, False otherwise.

Return type Boolean

is_node_in_network(node)
Checks if the provided node is in the network or if it is the local XBee.

Parameters node (AbstractXBeeDevice) – The node to check.

Returns True if the node is in the network, False otherwise.

2.6. API reference 927



XBee Python Library Documentation, Release 1.4.0

Return type Boolean

Raises ValueError – If node is None.

remove_device(remote_xbee)
Removes the provided remote XBee from the network.

Parameters remote_xbee (RemoteXBeeDevice) – Remote XBee to remove.

Raises ValueError – If the provided remote_xbee is not in the network.

scan_counter
Returns the scan counter.

Returns The scan counter.

Return type Integer

set_deep_discovery_options(deep_mode=<NeighborDiscoveryMode.CASCADE: (0, ’Cas-
cade’)>, del_not_discovered_nodes_in_last_scan=False)

Configures the deep discovery options with the given values. These options are only applicable for “deep”
discovery (see start_discovery_process())

Parameters

• deep_mode (NeighborDiscoveryMode, optional, de-
fault=‘NeighborDiscoveryMode.CASCADE‘) – Neighbor discovery mode,
the way to perform the network discovery process.

• del_not_discovered_nodes_in_last_scan (Boolean,
optional, default=`False`) – True to remove nodes from the net-
work if they were not discovered in the last scan.

See also:

digi.xbee.models.mode.NeighborDiscoveryMode

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

set_deep_discovery_timeouts(node_timeout=None, time_bw_requests=None,
time_bw_scans=None)

Sets deep discovery network timeouts. These timeouts are only applicable for “deep” discovery (see
start_discovery_process())

node_timeout (Float, optional, default=‘None‘): Maximum duration in seconds of the discovery pro-
cess used to find neighbors of a node. If None already configured timeouts are used.

time_bw_requests (Float, optional, default=‘DEFAULT_TIME_BETWEEN_REQUESTS‘): Time to wait
between node neighbors requests. It must be between MIN_TIME_BETWEEN_REQUESTS and
MAX_TIME_BETWEEN_REQUESTS seconds inclusive. Use this setting not to saturate your
network:

• For ‘Cascade’, the number of seconds to wait after completion of the neighbor dis-
covery process of the previous node.

• For ‘Flood’, the minimum time to wait between each node’s neighbor requests.

time_bw_scans (Float, optional, default=‘DEFAULT_TIME_BETWEEN_SCANS‘): Time to wait
before starting a new network scan. It must be between MIN_TIME_BETWEEN_SCANS and
MAX_TIME_BETWEEN_SCANS seconds inclusive.

928 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Raises ValueError – if node_timeout, time_bw_requests or time_bw_scans are not be-
tween their corresponding limits.

See also:

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

set_discovery_options(options)
Configures the discovery options (NO parameter) with the given value.

Parameters options (Set of DiscoveryOptions) – New discovery options, empty set
to clear the options.

Raises

• ValueError – If options is None.

• TimeoutException – If response is not received before the read timeout ex-
pires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of the operating
mode.

• ATCommandException – If response is not as expected.

See also:

DiscoveryOptions

set_discovery_timeout(discovery_timeout)
Sets the discovery network timeout.

Parameters discovery_timeout (Float) – Timeout in seconds.

Raises

• ValueError – If discovery_timeout is not between the allowed minimum and
maximum values.

• TimeoutException – If response is not received before the read timeout ex-
pires.

• XBeeException – If the XBee’s communication interface is closed.

• InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of the operating
mode.

• ATCommandException – If response is not as expected.

start_discovery_process(deep=False, n_deep_scans=1)
Starts the discovery process. This method is not blocking.

This process can discover node neighbors and connections, or only nodes:

2.6. API reference 929



XBee Python Library Documentation, Release 1.4.0

• Deep discovery: Network nodes and connections between them (including quality) are discovered.

The discovery process will be running the number of scans configured in n_deep_scans. A scan is
considered the process of discovering the full network. If there are more than one number of scans
configured, after finishing one another is started, until n_deep_scans is satisfied.

See set_deep_discovery_options() to establish the way the network discovery process
is performed.

• No deep discovery: Only network nodes are discovered.

The discovery process will be running until the configured timeout expires or, in case of 802.15.4,
until the ‘end’ packet is read.

It may occur that, after timeout expiration, there are nodes that continue sending discovery re-
sponses to the local XBee. In this case, these nodes will not be added to the network.

In 802.15.4, both (deep and no deep discovery) are the same and none discover the node connections or
their quality. The difference is the possibility of running more than one scan using a deep discovery.

Parameters

• deep (Boolean, optional, default=`False`) – True for a deep net-
work scan, looking for neighbors and their connections, False otherwise.

• n_deep_scans (Integer, optional, default=1) – Number of
scans to perform before automatically stopping the discovery process.
SCAN_TIL_CANCEL means the process will not be automatically stopped. Only
applicable if deep=True.

See also:

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.del_discovery_process_finished_callback()

XBeeNetwork.get_deep_discovery_options()

XBeeNetwork.set_deep_discovery_options()

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

stop_discovery_process()
Stops the discovery process if it is running.

Note that some DigiMesh/DigiPoint devices are blocked until the discovery time configured (‘NT’ pa-
rameter) has elapsed, so, when trying to get/set any parameter during the discovery process, a Timeou-
tException is raised.

class digi.xbee.devices.NetworkEventType(code, description)
Bases: enum.Enum

Enumerates the different network event types.

930 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Values:
NetworkEventType.ADD = (0, ‘XBee added to the network’)
NetworkEventType.DEL = (1, ‘XBee removed from the network’)
NetworkEventType.UPDATE = (2, ‘XBee in the network updated’)
NetworkEventType.CLEAR = (3, ‘Network cleared’)

code
Returns the code of the NetworkEventType element.

Returns Integer: Code of the NetworkEventType element.

description
Returns the description of the NetworkEventType element.

Returns Description of the NetworkEventType element.

Return type String

class digi.xbee.devices.NetworkEventReason(code, description)
Bases: enum.Enum

Enumerates the different network event reasons.

Values:
NetworkEventReason.DISCOVERED = (0, ‘Discovered XBee’)
NetworkEventReason.NEIGHBOR = (1, ‘Discovered as XBee neighbor’)
NetworkEventReason.RECEIVED_MSG = (2, ‘Received message from XBee’)
NetworkEventReason.MANUAL = (3, ‘Manual modification’)
NetworkEventReason.ROUTE = (4, ‘Hop of a network route’)
NetworkEventReason.READ_INFO = (5, ‘Read XBee information’)
NetworkEventReason.FIRMWARE_UPDATE = (6, ‘The firmware of the device was updated’)

code
Returns the code of the NetworkEventReason element.

Returns Code of the NetworkEventReason element.

Return type Integer

description
Returns the description of the NetworkEventReason element.

Returns Description of the NetworkEventReason element.

Return type String

class digi.xbee.devices.LinkQuality(lq=None, is_rssi=False)
Bases: object

This class represents the link quality of a connection. It can be a LQI (Link Quality Index) for Zigbee devices,
or RSSI (Received Signal Strength Indicator) for the rest.

Class constructor. Instantiates a new LinkQuality.
Parameters

2.6. API reference 931



XBee Python Library Documentation, Release 1.4.0

• lq (Integer, optional, default=`UNKNOWN`) – Link quality.

• is_rssi (Boolean, optional, default=`False`) – True to specify the
value is a RSSI, False for LQI.

UNKNOWN = <digi.xbee.devices.LinkQuality object>
Unknown link quality.

UNKNOWN_VALUE = -9999
Unknown link quality value.

lq
Returns the link quality value.

Returns The link quality value.

Return type Integer

is_rssi
Returns whether this is a RSSI value.

Returns True if this is an RSSI value, False for LQI.

Return type Boolean

class digi.xbee.devices.Connection(node_a, node_b, lq_a2b=None, lq_b2a=None, sta-
tus_a2b=None, status_b2a=None)

Bases: object

This class represents a generic connection between two nodes in a XBee network. It contains the source and
destination nodes, the link quality of the connection between them and its status.

Class constructor. Instantiates a new Connection.
Parameters

• node_a (AbstractXBeeDevice) – One of the connection ends.

• node_b (AbstractXBeeDevice) – The other connection end.

• lq_a2b (LinkQuality or Integer, optional, default=‘None‘) – Link quality for the
connection node_a -> node_b. If not specified LinkQuality.UNKNOWN is used.

• lq_b2a (LinkQuality or Integer, optional, default=‘None‘) – Link quality for the
connection node_b -> node_a. If not specified LinkQuality.UNKNOWN is used.

• status_a2b (digi.xbee.models.zdo.RouteStatus, optional, de-
fault=‘None‘) – The status for the connection node_a -> node_b. If not specified
RouteStatus.UNKNOWN is used.

• status_b2a (digi.xbee.models.zdo.RouteStatus, optional, de-
fault=‘None‘) – The status for the connection node_b -> node_a. If not specified
RouteStatus.UNKNOWN is used.

Raises ValueError – If node_a or node_b is None.
See also:

AbstractXBeeDevice

LinkQuality

digi.xbee.models.zdo.RouteStatus

node_a
Returns the node A of this connection.

932 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns The node A.

Return type AbstractXBeeDevice

See also:

AbstractXBeeDevice

node_b
Returns the node B of this connection.

Returns The node B.

Return type AbstractXBeeDevice

See also:

AbstractXBeeDevice

lq_a2b
Returns the link quality of the connection from node A to node B.

Returns Link quality for the connection A -> B.

Return type LinkQuality

See also:

LinkQuality

lq_b2a
Returns the link quality of the connection from node B to node A.

Returns Link quality for the connection B -> A.

Return type LinkQuality

See also:

LinkQuality

status_a2b
Returns the status of this connection from node A to node B.

Returns The status for A -> B connection.

Return type RouteStatus

See also:

digi.xbee.models.zdo.RouteStatus

2.6. API reference 933



XBee Python Library Documentation, Release 1.4.0

status_b2a
Returns the status of this connection from node B to node A.

Returns The status for B -> A connection.

Return type RouteStatus

See also:

digi.xbee.models.zdo.RouteStatus

scan_counter_a2b
Returns the scan counter for this connection, discovered by its A node.

Returns The scan counter for this connection, discovered by its A node.

Return type Integer

scan_counter_b2a
Returns the scan counter for this connection, discovered by its B node.

Returns The scan counter for this connection, discovered by its B node.

Return type Integer

digi.xbee.exception module

exception digi.xbee.exception.XBeeException
Bases: Exception

Generic XBee API exception. This class and its subclasses indicate conditions that an application might want
to catch.

All functionality of this class is the inherited of Exception.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception digi.xbee.exception.CommunicationException
Bases: digi.xbee.exception.XBeeException

This exception will be thrown when any problem related to the communication with the XBee device occurs.

All functionality of this class is the inherited of Exception.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception digi.xbee.exception.ATCommandException(message=’There was a problem
sending the AT command packet.’,
cmd_status=None)

Bases: digi.xbee.exception.CommunicationException

This exception will be thrown when a response of a packet is not success or OK.

All functionality of this class is the inherited of Exception.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

934 Chapter 2. Contents

https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception
https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception
https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception


XBee Python Library Documentation, Release 1.4.0

exception digi.xbee.exception.ConnectionException
Bases: digi.xbee.exception.XBeeException

This exception will be thrown when any problem related to the connection with the XBee device occurs.

All functionality of this class is the inherited of Exception.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception digi.xbee.exception.XBeeDeviceException
Bases: digi.xbee.exception.XBeeException

This exception will be thrown when any problem related to the XBee device occurs.

All functionality of this class is the inherited of Exception.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception digi.xbee.exception.InvalidConfigurationException(message=’The con-
figuration used to
open the interface is
invalid.’)

Bases: digi.xbee.exception.ConnectionException

This exception will be thrown when trying to open an interface with an invalid configuration.

All functionality of this class is the inherited of Exception.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception digi.xbee.exception.InvalidOperatingModeException(message=None,
op_mode=None)

Bases: digi.xbee.exception.ConnectionException

This exception will be thrown if the operating mode is different than OperatingMode.API_MODE and Operat-
ingMode.API_MODE

All functionality of this class is the inherited of Exception.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception digi.xbee.exception.InvalidPacketException(message=’The XBee API
packet is not properly formed.’)

Bases: digi.xbee.exception.CommunicationException

This exception will be thrown when there is an error parsing an API packet from the input stream.

All functionality of this class is the inherited of Exception.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception digi.xbee.exception.OperationNotSupportedException(message=’The re-
quested operation
is not supported by
either the connec-
tion interface or
the XBee device.’)

Bases: digi.xbee.exception.XBeeDeviceException

This exception will be thrown when the operation performed is not supported by the XBee device.

2.6. API reference 935

https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception
https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception
https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception
https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception
https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception


XBee Python Library Documentation, Release 1.4.0

All functionality of this class is the inherited of Exception.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception digi.xbee.exception.TimeoutException(message=’There was a timeout while ex-
ecuting the requested operation.’)

Bases: digi.xbee.exception.CommunicationException

This exception will be thrown when performing synchronous operations and the configured time expires.

All functionality of this class is the inherited of Exception.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception digi.xbee.exception.TransmitException(message=’There was a problem with a
transmitted packet response (status not
ok)’, transmit_status=None)

Bases: digi.xbee.exception.CommunicationException

This exception will be thrown when receiving a transmit status different than TransmitStatus.SUCCESS after
sending an XBee API packet.

All functionality of this class is the inherited of Exception.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception digi.xbee.exception.XBeeSocketException(message=’There was a socket er-
ror’, status=None)

Bases: digi.xbee.exception.XBeeException

This exception will be thrown when there is an error performing any socket operation.

All functionality of this class is the inherited of Exception.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception digi.xbee.exception.FirmwareUpdateException
Bases: digi.xbee.exception.XBeeException

This exception will be thrown when any problem related to the firmware update process of the XBee device
occurs.

All functionality of this class is the inherited of Exception.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception digi.xbee.exception.RecoveryException
Bases: digi.xbee.exception.XBeeException

This exception will be thrown when any problem related to the auto-recovery process of the XBee device occurs.

All functionality of this class is the inherited of Exception.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

936 Chapter 2. Contents

https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception
https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception
https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception
https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception
https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception
https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception


XBee Python Library Documentation, Release 1.4.0

digi.xbee.filesystem module

class digi.xbee.filesystem.FileSystemElement(name, path=None, is_dir=False, size=0,
is_secure=False)

Bases: object

Class used to represent XBee file system elements (files and directories).

Class constructor. Instantiates a new FileSystemElement object with the given parameters.
Parameters

• name (String or bytearray) – Name of the file system element.

• path (String or bytearray, optional, default=`None`) – Abso-
lute path of the element.

• is_dir (Boolean, optional, default=`True`) – True if the element is a
directory, False for a file.

• size (Integer, optional, default=0) – Element size in bytes. Only for
files.

• is_secure (Boolean, optional, default=`False`) – True for a secure
element, False otherwise.

Raises ValueError – If any of the parameters are invalid.
name

Returns the file system element name.

Returns File system element name.

Return type String

path
Returns the file system element absolute path.

Returns File system element absolute path.

Return type String

is_dir
Returns whether the file system element is a directory.

Returns True for a directory, False otherwise.

Return type Boolean

size
Returns the size in bytes of the element.

Returns The size in bytes of the file, 0 for a directory.

Return type Integer

size_pretty
Returns a human readable size (e.g., 1K 234M 2G).

Returns Human readable size.

Return type String

is_secure
Returns whether the element is secure.

Returns True for a secure element, False otherwise.

2.6. API reference 937



XBee Python Library Documentation, Release 1.4.0

Return type Boolean

static from_data(name, size, flags, path=None)
Creates a file element from its name and the bytearray with info and size.

Parameters

• name (String or bytearray) – The name of the element to create.

• size (Bytearray) – Byte array containing file size.

• flags (Integer) – Integer with file system element information.

• path (String or bytearray, optional, default=`None`) – The
absolute path of the element (without its name).

Returns The new file system element.

Return type FileSystemElement

exception digi.xbee.filesystem.FileSystemException(message, fs_status=None)
Bases: digi.xbee.exception.XBeeException
This exception will be thrown when any problem related with the XBee file system occurs.
All functionality of this class is the inherited from Exception.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception digi.xbee.filesystem.FileSystemNotSupportedException(message,
fs_status=None)

Bases: digi.xbee.filesystem.FileSystemException

This exception will be thrown when the file system feature is not supported in the device.

All functionality of this class is the inherited from Exception.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class digi.xbee.filesystem.FileProcess(f_mng, file, timeout)
Bases: object

This class represents a file process.

Class constructor. Instantiates a new _FileProcess object with the provided parameters.
Parameters

• (class (f_mng) – .FileSystemManager): The file system manager.

• file (FileSystemElement or String) – File or its absolute path.

• timeout (Float) – Timeout in seconds.
running

Returns if this file command is running.

Returns True if it is running, False otherwise.

Return type Boolean

status
Returns the status code.

Returns The status.

Return type Integer

938 Chapter 2. Contents

https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception
https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception


XBee Python Library Documentation, Release 1.4.0

block_size
Returns the size of the block for this file operation.

Returns Size of the block for this file operation.

Return type Integer

class digi.xbee.filesystem.FileSystemManager(xbee)
Bases: object

Helper class used to manage local or remote XBee file system.

Class constructor. Instantiates a new FileSystemManager with the given parameters.
Parameters xbee (AbstractXBeeDevice) – XBee to manage its file system.

Raises FileSystemNotSupportedException – If the XBee does not support filesystem.
xbee

Returns the XBee of this file system manager.

Returns XBee to manage its file system.

Return type AbstractXBeeDevice

np_value
The ‘NP’ parameter value of the local XBee.

Returns The ‘NP’ value.

Return type Integer

get_root()
Returns the root directory.

Returns The root directory.

Return type FileSystemElement

Raises FileSystemException – If there is any error performing the operation or the
function is not supported.

make_directory(dir_path, base=None, mk_parents=True, timeout=20)
Creates the provided directory.

Parameters

• dir_path (String) – Path of the new directory to create. It is relative to the
directory specify in base.

• base (FileSystemElement, optional, default=‘None) – Base directory. If not
specify it refers to ‘/flash’.

• mk_parents (Boolean, optional, default=`True`) – True to make
parent directories as needed, False otherwise.

• timeout (Float, optional, default=`DEFAULT_TIMEOUT`) –
Maximum number of seconds to wait for the operation completion. If mk_parents
this is the timeout per directory creation.

Returns List of FileSystemElement created directories.

Return type List

Raises

• FileSystemException – If there is any error performing the operation or the
function is not supported.

2.6. API reference 939



XBee Python Library Documentation, Release 1.4.0

• ValueError – If any of the parameters is invalid.

list_directory(directory=None, timeout=20)
Lists the contents of the given directory.

Parameters

• directory (FileSystemElement or String) – Directory to list or its absolute
path.

• timeout (Float, optional, default=`DEFAULT_TIMEOUT`) –
Maximum number of seconds to wait for the operation completion.

Returns

List of :class:.FilesystemElement‘ objects contained in the given directory, empty
list if status is not 0.

Return type List

Raises

• FileSystemException – If there is any error performing the operation or the
function is not supported.

• ValueError – If any of the parameters is invalid.

remove(entry, rm_children=True, timeout=20)
Removes the given file system entry.

All files in a directory must be deleted before removing the directory. On XBee 3 802.15.4, DigiMesh,
and Zigbee, deleted files are marked as unusable space unless they are at the “end” of the file system
(most-recently created). On these products, deleting a file triggers recovery of any deleted file space at
the end of the file system, and can lead to a delayed response.

Parameters

• entry (FileSystemElement or String) – File system entry to remove or its
absolute path.

• rm_children (Boolean, optional, default=`True`) – True to re-
move directory children if they exist, False otherwise.

• timeout (Float, optional, default=`DEFAULT_TIMEOUT`) –
Maximum number of seconds to wait for the operation completion.

Raises

• FileSystemException – If there is any error performing the operation or the
function is not supported.

• ValueError – If any of the parameters is invalid.

read_file(file, offset=0, progress_cb=None)
Reads from the provided file starting at the given offset. If there is no progress callback the function
blocks until the required amount of bytes is read.

Parameters

• file (FileSystemElement or String) – File to read or its absolute path.

• offset (Integer, optional, default=0) – File offset to start reading.

• progress_cb (Function, optional, default=`None`) – Function
called when new data is read. Receives four arguments:

940 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

– The chunk of data read as byte array.

– The progress percentage as float.

– The total size of the file.

– The status when process finishes.

Returns The process to read data from the file.

Return type FileProcess

Raises

• FileSystemException – If there is any error performing the operation and
progress_cb is None.

• ValueError – If any of the parameters is invalid.

See also:

get_file()

write_file(file, offset=0, secure=False, options=None, progress_cb=None)
Writes to the provided file the data starting at the given offset. The function blocks until the all data is
written.

Parameters

• file (FileSystemElement or String) – File to write or its absolute path.

• offset (Integer, optional, default=0) – File offset to start writing.

• secure (Boolean, optional, default=`False`) – True to store the
file securely (no read access), False otherwise.

• options (Dictionary, optional) – Other write options as list: exclusive,
truncate, append.

• progress_cb (Function, optional, default=`None`) – Function
call when data is written. Receives three arguments:

– The amount of bytes written (for each chunk).

– The progress percentage as float.

– The status when process finishes.

Raises

• FileSystemException – If there is any error performing the operation and
progress_cb is None.

• ValueError – If any of the parameters is invalid.

See also:

put_file()

get_file(src, dest, progress_cb=None)
Downloads the given XBee file in the specified destination path.

2.6. API reference 941



XBee Python Library Documentation, Release 1.4.0

Parameters

• src (FileSystemElement or String) – File to download or its absolute path.

• dest (String) – The absolute path of the destination file.

• progress_cb (Function, optional) – Function call when data is being
downloaded. Receives three arguments:

– The progress percentage as float.

– Destination file path.

– Source file path.

Raises

• FileSystemException – If there is any error performing the operation and
progress_cb is None.

• ValueError – If any of the parameters is invalid.

put_file(src, dest, secure=False, overwrite=False, mk_parents=True, progress_cb=None)
Uploads the given file to the specified destination path of the XBee.

Parameters

• src (String) – Absolute path of the file to upload.

• dest (FileSystemElement or String) – The file in the XBee or its absolute
path.

• secure (Boolean, optional, default=`False`) – True if the file
should be stored securely, False otherwise.

• overwrite (Boolean, optional, default=`False`) – True to over-
write the file if it exists, False otherwise.

• mk_parents (Boolean, optional, default=`True`) – True to make
parent directories as needed, False otherwise.

• progress_cb (Function, optional) – Function call when data is being
uploaded. Receives two arguments:

– The progress percentage as float.

– Destination file path.

– Source file path.

Returns The new created file.

Return type FileSystemElement

Raises

• FileSystemException – If there is any error performing the operation and
progress_cb is None.

• ValueError – If any of the parameters is invalid.

put_dir(src, dest=’/flash’, verify=True, progress_cb=None)
Uploads the given source directory contents into the given destination directory in the XBee.

Parameters

• src (String) – Local directory to upload its contents.

942 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• dest (FileSystemElement or String) – The destination dir in the XBee or its
absolute path. Defaults to ‘/flash’.

• verify (Boolean, optional, default=`True`) – True to check the
hash of the uploaded content.

• progress_cb (Function, optional) – Function call when data is being
uploaded. Receives three argument:

– The progress percentage as float.

– Destination file path.

– The absolute path of the local being uploaded as string.

Raises

• FileSystemException – If there is any error performing the operation and
progress_cb is None.

• ValueError – If any of the parameters is invalid.

get_file_hash(file, timeout=20)
Returns the SHA256 hash of the given file.

Parameters

• file (FileSystemElement or String) – File to get its hash or its absolute
path.

• timeout (Float, optional, default=`DEFAULT_TIMEOUT`) –
Maximum number of seconds to wait for the operation completion.

Returns SHA256 hash of the given file.

Return type Bytearray

Raises

• FileSystemException – If there is any error performing the operation or the
function is not supported.

• ValueError – If any of the parameters is invalid.

move(source, dest, timeout=20)
Moves the given source element to the given destination path.

Parameters

• source (FileSystemElement or String) – Source entry to move.

• dest (String) – Destination path of the element to move.

• timeout (Float, optional, default=`DEFAULT_TIMEOUT`) –
Maximum number of seconds to wait for the operation completion.

Raises

• FileSystemException – If there is any error performing the operation or the
function is not supported.

• ValueError – If any of the parameters is invalid.

get_volume_info(vol=’/flash’, timeout=20)
Returns the file system volume information. Currently ‘/flash’ is the only supported value.

Parameters

2.6. API reference 943



XBee Python Library Documentation, Release 1.4.0

• vol (FileSystemElement`or String, optional,
default=/flash‘) – Volume name.

• timeout (Float, optional, default=`DEFAULT_TIMEOUT`) –
Maximum number of seconds to wait for the operation completion.

Returns Collection of pair values describing volume information.

Return type Dictionary

Raises

• FileSystemException – If there is any error performing the operation or the
function is not supported.

• ValueError – If any of the parameters is invalid.

See also:

FSCommandStatus

format(vol=’/flash’, timeout=30)
Formats provided volume. Currently ‘/flash’ is the only supported value. Formatting the file system takes
time, and any other requests will fail until it completes and sends a response.

Parameters

• vol (FileSystemElement`or String, optional,
default=/flash‘) – Volume name.

• timeout (Float, optional, default=`DEFAULT_FORMAT_TIMEOUT`)
– Maximum number Of seconds to wait for the operation completion.

Returns Collection of pair values describing volume information.

Return type Dictionary

Raises

• FileSystemException – If there is any error performing the operation or the
function is not supported.

• ValueError – If any of the parameters is invalid.

See also:

FSCommandStatus

pget_path_id(dir_path, path_id=0, timeout=20)
Returns the directory path id of the given path. Returned directory path id expires if not referenced in 2
minutes.

Parameters

• dir_path (String) – Path of the directory to get its id. It is relative to the
directory path id.

• path_id (Integer, optional, default=0) – Directory path id. 0 for
the root directory.

944 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• timeout (Float, optional, default=`DEFAULT_TIMEOUT`) –
Maximum number of seconds to wait for the operation completion.

Returns

Status of the file system command execution, new directory path id (-1 if status is not
0) and its absolute path (empty if status is not 0). The full path may be None or
empty if it is too long and exceeds the communication frames length.

Return type Tuple (Integer, Integer, String)

Raises

• FileSystemException – If there is any error performing the operation or the
function is not supported.

• ValueError – If any of the parameters is invalid.

See also:

FSCommandStatus

pmake_directory(dir_path, path_id=0, timeout=20)
Creates the provided directory. Parent directories of the one to be created must exist. Separate requests
must be dane to make intermediate directories.

Parameters

• dir_path (String) – Path of the new directory to create. It is relative to the
directory path id.

• path_id (Integer, optional, default=0) – Directory path id. 0 for
the root directory.

• timeout (Float, optional, default=`DEFAULT_TIMEOUT`) –
Maximum number of seconds to wait for the operation completion. If mk_parents
this is the timeout per directory creation.

Returns

Status of the file system command execution (see FSCommandStatus).

Return type Integer

Raises

• FileSystemException – If there is any error performing the operation or the
function is not supported.

• ValueError – If any of the parameters is invalid.

See also:

FSCommandStatus

plist_directory(dir_path, path_id=0, timeout=20)
Lists the contents of the given directory.

Parameters

2.6. API reference 945



XBee Python Library Documentation, Release 1.4.0

• dir_path (String) – Path of the directory to list. It is relative to the directory
path id.

• path_id (Integer, optional, default=0) – Directory path id. 0 for
the root directory.

• timeout (Float, optional, default=`DEFAULT_TIMEOUT`) –
Maximum number of seconds to wait for the operation completion.

Returns

Status of the file system command execution and a list of
:class:.FilesystemElement‘ objects contained in the given directory, empty
list if status is not 0.

Return type Tuple (Integer, List)

Raises

• FileSystemException – If there is any error performing the operation or the
function is not supported.

• ValueError – If any of the parameters is invalid.

See also:

FSCommandStatus

premove(entry_path, path_id=0, timeout=20)
Removes the given file system entry.

All files in a directory must be deleted before removing the directory. On XBee 3 802.15.4, DigiMesh,
and Zigbee, deleted files are marked as as unusable space unless they are at the “end” of the file system
(most-recently created). On these products, deleting a file triggers recovery of any deleted file space at
the end of the file system, and can lead to a delayed response.

Parameters

• entry_path (String) – Path of the entry to remove. It is relative to the direc-
tory path id.

• path_id (Integer, optional, default=0) – Directory path id. 0 for
the root directory.

• timeout (Float, optional, default=`DEFAULT_TIMEOUT`) –
Maximum number of seconds to wait for the operation completion.

Returns

Status of the file system command execution (see FSCommandStatus).

Return type Integer

Raises

• FileSystemException – If there is any error performing the operation or the
function is not supported.

• ValueError – If any of the parameters is invalid.

See also:

946 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

FSCommandStatus

popen_file(file_path, path_id=0, options=<FileOpenRequestOption.READ: 4>, timeout=20)
Open a file for reading and/or writing. Use the FileOpenRequestOption.SECURE (0x80) bitmask for
options to upload a write-only file (one that cannot be downloaded or viewed), useful for protecting files
on the device. Returned file id expires if not referenced in 2 minutes.

Parameters

• file_path (String) – Path of the file to open. It is relative to the directory
path id.

• path_id (Integer, optional, default=0) – Directory path id. 0 for
the root directory.

• options (Integer, optional, default=`FileOpenRequestOption.
READ`) – Bitmask that specifies the options to open the file. It defaults
to FileOpenRequestOption.READ which means open for reading. See
FileOpenRequestOption for more options.

• timeout (Float, optional, default=`DEFAULT_TIMEOUT`) –
Maximum number of seconds to wait for the operation completion.

Returns

Status of the file system command execution (see FSCommandStatus), the file id
to use in later requests, and the size of the file (in bytes), 0xFFFFFFFF if unknown.

Return type Tuple (Integer, Integer, Integer)

Raises

• FileSystemException – If there is any error performing the operation or the
function is not supported.

• ValueError – If any of the parameters is invalid.

See also:

FileOpenRequestOption

FSCommandStatus

pclose_file()

pclose_file(file_id, timeout=20)
Closes an open file and releases its file handle.

Parameters

• file_id (Integer) – File id returned when opening.

• timeout (Float, optional, default=`DEFAULT_TIMEOUT`) –
Maximum number of seconds to wait for the operation completion.

Returns

Status of the file system command execution (see FSCommandStatus).

Return type Integer

Raises

2.6. API reference 947



XBee Python Library Documentation, Release 1.4.0

• FileSystemException – If there is any error performing the operation or the
function is not supported.

• ValueError – If any of the parameters is invalid.

See also:

FSCommandStatus

popen_file()

pread_file(file_id, offset=-1, size=-1, timeout=20)
Reads from the provided file the given amount of bytes starting at the given offset. The file must be
opened for reading first.

Parameters

• file_id (Integer) – File id returned when opening.

• offset (Integer, optional, default=-1) – File offset to start read-
ing. -1 to use current position.

• size (Integer, optional, default=-1) – Number of bytes to read. -1
to read as many as possible.

• timeout (Float, optional, default=`DEFAULT_TIMEOUT`) –
Maximum number of seconds to wait for the operation completion.

Returns

Status of the file system command execution (see FSCommandStatus), the file id,
the offset of the read data, and the read data.

Return type Tuple (Integer, Integer, Integer, Bytearray)

Raises

• FileSystemException – If there is any error performing the operation or the
function is not supported.

• ValueError – If any of the parameters is invalid.

See also:

FSCommandStatus

popen_file()

pwrite_file(file_id, data, offset=-1, timeout=20)
Writes to the provided file the given data bytes starting at the given offset. The file must be opened for
writing first.

Parameters

• file_id (Integer) – File id returned when opening.

• data (Bytearray, bytes or String) – Data to write.

• offset (Integer, optional, default=-1) – File offset to start writ-
ing. -1 to use current position.

948 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• timeout (Float, optional, default=`DEFAULT_TIMEOUT`) –
Maximum number of seconds to wait for the operation completion.

Returns

Status of the file system command execution (see FSCommandStatus), the file id,
and the current offset after writing.

Return type Tuple (Integer, Integer, Integer)

Raises

• FileSystemException – If there is any error performing the operation or the
function is not supported.

• ValueError – If any of the parameters is invalid.

See also:

FSCommandStatus

popen_file()

pget_file_hash(file_path, path_id=0, timeout=20)
Returns the SHA256 hash of the given file.

Parameters

• file_path (String) – Path of the file to get its hash. It is relative to the
directory path id.

• path_id (Integer, optional, default=0) – Directory path id. 0 for
the root directory.

• timeout (Float, optional, default=`DEFAULT_TIMEOUT`) –
Maximum number of seconds to wait for the operation completion.

Returns

Status of the file system command execution and SHA256 hash of the given file
(empty bytearray if status is not 0).

Return type Tuple (Integer, Bytearray)

Raises

• FileSystemException – If there is any error performing the operation or the
function is not supported.

• ValueError – If any of the parameters is invalid.

See also:

FSCommandStatus

prename(current_path, new_path, path_id=0, timeout=20)
Rename provided file.

Parameters

2.6. API reference 949



XBee Python Library Documentation, Release 1.4.0

• current_path (String) – Current path name. It is relative to the directory
path id.

• new_path (String) – New name. It is relative to the directory path id.

• path_id (Integer, optional, default=0) – Directory path id. 0 for
the root directory.

• timeout (Float, optional, default=`DEFAULT_TIMEOUT`) –
Maximum number of seconds to wait for the operation completion.

Returns

Status of the file system command execution (see FSCommandStatus).

Return type Integer

Raises

• FileSystemException – If there is any error performing the operation or the
function is not supported.

• ValueError – If any of the parameters is invalid.

See also:

FSCommandStatus

prelease_path_id(path_id, timeout=20)
Releases the provided directory path id.

Parameters

• path_id (Integer) – Directory path id to release.

• timeout (Float, optional, default=`DEFAULT_TIMEOUT`) –
Maximum number of seconds to wait for the operation completion.

Returns Status of the file system command execution.

Return type Integer

Raises

• FileSystemException – If there is any error performing the operation or the
function is not supported.

• ValueError – If any of the parameters is invalid.

See also:

FSCommandStatus

class digi.xbee.filesystem.LocalXBeeFileSystemManager(xbee_device)
Bases: object

Helper class used to manage the local XBee file system.

Class constructor. Instantiates a new LocalXBeeFileSystemManager with the given parameters.
Parameters xbee_device (XBeeDevice) – The local XBee to manage its file system.

950 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

is_connected
Returns whether the file system manager is connected or not.

Returns

True if the file system manager is connected, False otherwise.

Return type Boolean

connect()
Connects the file system manager.

Raises

• FileSystemException – If there is any error connecting the file system man-
ager.

• FileSystemNotSupportedException – If the device does not support
filesystem feature.

disconnect()
Disconnects the file system manager and restores the device connection.

Raises XBeeException – If there is any error restoring the XBee connection.

get_current_directory()
Returns the current device directory.

Returns Current device directory.

Return type String

Raises FileSystemException – If there is any error getting the current directory or the
function is not supported.

change_directory(directory)
Changes the current device working directory to the given one.

Parameters directory (String) – New directory to change to.

Returns Current device working directory after the directory change.

Return type String

Raises FileSystemException – If there is any error changing the current directory or
the function is not supported.

make_directory(directory)
Creates the provided directory.

Parameters directory (String) – New directory to create.

Raises FileSystemException – If there is any error creating the directory or the func-
tion is not supported.

list_directory(directory=None)
Lists the contents of the given directory.

Parameters directory (String, optional) – the directory to list its contents. If
not provided, the current directory contents are listed.

Returns

list of :class:.FilesystemElement‘ objects contained in the given (or current) direc-
tory.

Return type List

2.6. API reference 951



XBee Python Library Documentation, Release 1.4.0

Raises FileSystemException – if there is any error listing the directory contents or
the function is not supported.

remove_element(element_path)
Removes the given file system element path.

Parameters element_path (String) – Path of the file system element to remove.

Raises FileSystemException – If there is any error removing the element or the func-
tion is not supported.

move_element(source_path, dest_path)
Moves the given source element to the given destination path.

Parameters

• source_path (String) – Source path of the element to move.

• dest_path (String) – Destination path of the element to move.

Raises FileSystemException – If there is any error moving the element or the function
is not supported.

put_file(source_path, dest_path, secure=False, progress_callback=None)
Transfers the given file in the specified destination path of the XBee.

Parameters

• source_path (String) – the path of the file to transfer.

• dest_path (String) – the destination path to put the file in.

• secure (Boolean, optional, default=`False`) – True if the file
should be stored securely, False otherwise.

• progress_callback (Function, optional) – Function to execute to re-
ceive progress information. Takes the following arguments:

– The progress percentage as integer.

Raises FileSystemException – If there is any error transferring the file or the function
is not supported.

put_dir(source_dir, dest_dir=None, progress_callback=None)
Uploads the given source directory contents into the given destination directory in the device.

Parameters

• source_dir (String) – Local directory to upload its contents.

• dest_dir (String, optional) – Remote directory to upload the contents
to. Defaults to current directory.

• progress_callback (Function, optional) – Function to execute to re-
ceive progress information. Takes the following arguments:

– The file being uploaded as string.

– The progress percentage as integer.

Raises FileSystemException – If there is any error uploading the directory or the
function is not supported.

get_file(source_path, dest_path, progress_callback=None)
Downloads the given XBee device file in the specified destination path.

Parameters

952 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• source_path (String) – Path of the XBee device file to download.

• dest_path (String) – Destination path to store the file in.

• progress_callback (Function, optional) – Function to execute to re-
ceive progress information. Takes the following arguments:

– The progress percentage as integer.

Raises FileSystemException – If there is any error downloading the file or the func-
tion is not supported.

format_filesystem()
Formats the device file system.

Raises FileSystemException – If there is any error formatting the file system.

get_usage_information()
Returns the file system usage information.

Returns Collection of pair values describing the usage information.

Return type Dictionary

Raises FileSystemException – If there is any error retrieving the file system usage
information.

get_file_hash(file_path)
Returns the SHA256 hash of the given file path.

Parameters file_path (String) – Path of the file to get its hash.

Returns SHA256 hash of the given file path.

Return type String

Raises FileSystemException – If there is any error retrieving the file hash.

digi.xbee.filesystem.update_remote_filesystem_image(remote_device,
ota_filesystem_file,
max_block_size=0,
timeout=None,
progress_callback=None,
_prepare=True)

Performs a remote filesystem update operation in the given target.
Parameters

• remote_device (RemoteXBeeDevice) – Remote XBee to update its filesystem
image.

• ota_filesystem_file (String) – Path of the OTA filesystem file to upload.

• max_block_size (Integer, optional) – Maximum size of the ota block to
send.

• timeout (Integer, optional) – Timeout to wait for remote frame requests.

• progress_callback (Function, optional) – Function to execute to receive
progress information. Receives two arguments:

– The current update task as a String

– The current update task percentage as an Integer

Raises

2.6. API reference 953



XBee Python Library Documentation, Release 1.4.0

• FileSystemNotSupportedException – If the target does not support filesys-
tem update.

• FileSystemException – If there is any error updating the remote filesystem im-
age.

digi.xbee.filesystem.check_fs_support(xbee, min_fw_vers=None, max_fw_vers=None)
Checks if filesystem API feature is supported.

Parameters

• xbee (:AbstractXBeeDevice) – The XBee to check.

• min_fw_vers (Dictionary, optional, default=`None`) – A dictio-
nary with protocol as key, and minimum firmware version with filesystem support as
value.

• max_fw_vers (Dictionary, optional, default=`None`) – A dictio-
nary with protocol as key, and maximum firmware version with filesystem support as
value.

Returns True if filesystem is supported, False otherwise.

Return type Boolean

digi.xbee.filesystem.get_local_file_hash(local_path)
Returns the SHA256 hash of the given local file.

Parameters local_path (String) – Absolute path of the file to get its hash.

Returns SHA256 hash of the given file.

Return type Bytearray

digi.xbee.firmware module

class digi.xbee.firmware.UpdateConfigurer(node, timeout=None, callback=None)
Bases: object

For internal use only. Helper class used to prepare nodes and/or network for an update.

Class constructor. Instantiates a new UpdateConfigurer with the given parameters.
Parameters

• node (AbstractXBeeDevice) – Target being updated.

• timeout (Float, optional, default=`None`) – Operations timeout.

• callback (Function) – Function to notify about the progress.
sync_sleep

Returns whether node is part of a DigiMesh synchronous sleeping network.

Returns True if it synchronous sleeps, False otherwise.

Return type Boolean

prepare_total
Returns the total work for update preparation step.

Returns Total prepare work.

Return type Integer

restore_total
Returns the total work for update restoration step.

954 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns Total restore work.

Return type Integer

prepare_for_update(prepare_node=True, prepare_net=True, restore_later=True)
Prepares the node for an update process.

Parameters

• prepare_node (Boolean, optional, default=`True`) – True to
prepare the node.

• prepare_net (Boolean, optional, default=`True`) – True to pre-
pare the network.

• restore_later (Boolean, optional, default=`True`) – True to
restore node original values when finish the update process.

restore_after_update(restore_settings=True, port_settings=None)
Restores the node after an update process.

Parameters

• restore_settings (Boolean, optional, default=`True`) –
True to restore stored settings, False otherwise.

• port_settings (Dictionary, optional, default=`None`) –
Dictionary with the new serial port configuration, None for remote node or if the
serial config has not changed.

static exec_at_cmd(func, node, cmd, value=None, retries=5, apply=False)
Reads the given parameter from the XBee with the given number of retries.

Parameters

• func (Function) – Function to execute.

• node (AbstractXBeeDevice) – XBee to get/set parameter.

• (String or (cmd) – class: ATStringCommand): Parameter to get/set.

• value (Bytearray, optional, default=`None`) – Value to set.

• retries (Integer, optional, default=5) – Number of retries to per-
form.

• apply (Boolean, optional, default=`False`) – True to apply.

Returns Read parameter value.

Return type Bytearray

Raises XBeeException – If the value could be get/set after the retries.

progress_cb(task, done=0)
If a callback was provided in the constructor, notifies it with the provided task and the corresponding
percentage.

Parameters

• task (String) – The task to inform about, it must be TASK_PREPARE or
TASK_RESTORE.

• done (Integer, optional, default=0) – Total amount of done job. If
0, it is increased by one.

Returns Total work done for the task.

2.6. API reference 955



XBee Python Library Documentation, Release 1.4.0

Return type Integer

digi.xbee.firmware.update_local_firmware(target, xml_fw_file, xbee_firmware_file=None,
bootloader_firmware_file=None, timeout=None,
progress_callback=None)

Performs a local firmware update operation in the given target.
Parameters

• target (String or XBeeDevice) – Target of the firmware upload operation. String:
serial port identifier. XBeeDevice: XBee to upload its firmware.

• xml_fw_file (String) – Path of the XML file that describes the firmware.

• xbee_firmware_file (String, optional) – Location of the XBee binary
firmware file.

• bootloader_firmware_file (String, optional) – Location of the boot-
loader binary firmware file.

• timeout (Integer, optional) – Serial port read data timeout.

• progress_callback (Function, optional) – Function to receive progress
information. Receives two arguments:

– The current update task as a String

– The current update task percentage as an Integer

Raises FirmwareUpdateException – If there is any error performing the firmware update.

digi.xbee.firmware.update_remote_firmware(remote, xml_fw_file, firmware_file=None,
bootloader_file=None, max_block_size=0,
timeout=None, progress_callback=None,
_prepare=True)

Performs a remote firmware update operation in the given target.
Parameters

• remote (RemoteXBeeDevice) – Remote XBee to upload.

• xml_fw_file (String) – Path of the XML file that describes the firmware.

• firmware_file (String, optional) – Path of the binary firmware file.

• bootloader_file (String, optional) – Path of the bootloader firmware file.

• max_block_size (Integer, optional) – Maximum size of the ota block to
send.

• timeout (Integer, optional) – Timeout to wait for remote frame requests.

• progress_callback (Function, optional) – Function to receive progress
information. Receives two arguments:

– The current update task as a String

– The current update task percentage as an Integer

Raises FirmwareUpdateException – if there is any error performing the remote firmware
update.

digi.xbee.firmware.update_remote_filesystem(remote, ota_fs_file, max_block_size=0, time-
out=None, progress_callback=None, _pre-
pare=True)

Performs a remote filesystem update operation in the given target.
Parameters

956 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• remote (RemoteXBeeDevice) – Remote XBee to update its filesystem.

• ota_fs_file (String) – Path of the OTA filesystem image file.

• max_block_size (Integer, optional) – Maximum size of the ota block to
send.

• timeout (Integer, optional) – Timeout to wait for remote frame requests.

• progress_callback (Function, optional) – Function to receive progress
information. Receives two arguments:

– The current update task as a String

– The current update task percentage as an Integer

Raises FirmwareUpdateException – If there is any error updating the remote filesystem
image.

digi.xbee.io module

class digi.xbee.io.IOLine(description, index, at_command, pwm_command=None)
Bases: enum.Enum

Enumerates the different IO lines that can be found in the XBee devices.

Depending on the hardware and firmware of the device, the number of lines that can be used as
well as their functionality may vary. Refer to the product manual to learn more about the IO lines
of your XBee device.

Values:
IOLine.DIO0_AD0 = (‘DIO0/AD0’, 0, ‘D0’)
IOLine.DIO1_AD1 = (‘DIO1/AD1’, 1, ‘D1’)
IOLine.DIO2_AD2 = (‘DIO2/AD2’, 2, ‘D2’)
IOLine.DIO3_AD3 = (‘DIO3/AD3’, 3, ‘D3’)
IOLine.DIO4_AD4 = (‘DIO4/AD4’, 4, ‘D4’)
IOLine.DIO5_AD5 = (‘DIO5/AD5’, 5, ‘D5’)
IOLine.DIO6 = (‘DIO6’, 6, ‘D6’)
IOLine.DIO7 = (‘DIO7’, 7, ‘D7’)
IOLine.DIO8 = (‘DIO8’, 8, ‘D8’)
IOLine.DIO9 = (‘DIO9’, 9, ‘D9’)
IOLine.DIO10_PWM0 = (‘DIO10/PWM0’, 10, ‘P0’, ‘M0’)
IOLine.DIO11_PWM1 = (‘DIO11/PWM1’, 11, ‘P1’, ‘M1’)
IOLine.DIO12 = (‘DIO12’, 12, ‘P2’)
IOLine.DIO13 = (‘DIO13’, 13, ‘P3’)
IOLine.DIO14 = (‘DIO14’, 14, ‘P4’)
IOLine.DIO15 = (‘DIO15’, 15, ‘P5’)
IOLine.DIO16 = (‘DIO16’, 16, ‘P6’)
IOLine.DIO17 = (‘DIO17’, 17, ‘P7’)
IOLine.DIO18 = (‘DIO18’, 18, ‘P8’)
IOLine.DIO19 = (‘DIO19’, 19, ‘P9’)

2.6. API reference 957



XBee Python Library Documentation, Release 1.4.0

description
Returns the description of the IOLine element.

Returns The description of the IOLine element.

Return type String

index
Returns the index of the IOLine element.

Returns The index of the IOLine element.

Return type Integer

at_command
Returns the AT command of the IOLine element.

Returns The AT command of the IOLine element.

Return type String

pwm_at_command
Returns the PWM AT command associated to the IOLine element.

Returns

The PWM AT command associated to the IO line, None if the IO line does not have
a PWM AT command associated.

Return type String

has_pwm_capability()
Returns whether the IO line has PWM capability or not.

Returns True if the IO line has PWM capability, False otherwise.

Return type Boolean

class digi.xbee.io.IOValue(code)
Bases: enum.Enum

Enumerates the possible values of a IOLine configured as digital I/O.

Values:
IOValue.LOW = 4
IOValue.HIGH = 5

code
Returns the code of the IOValue element.

Returns The code of the IOValue element.

Return type String

class digi.xbee.io.IOSample(io_sample_payload)
Bases: object

This class represents an IO Data Sample. The sample is built using the the constructor. The sample contains an
analog and digital mask indicating which IO lines are configured with that functionality.

958 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Depending on the protocol the XBee device is executing, the digital and analog masks are retrieved in separated
bytes (2 bytes for the digital mask and 1 for the analog mask) or merged contained (digital and analog masks
are contained in 2 bytes).

Digital and analog channels masks Indicates which digital and ADC IO lines are configured in the module. Each
bit corresponds to one digital or ADC IO line on the module:

bit 0 = DIO01
bit 1 = DIO10
bit 2 = DIO20
bit 3 = DIO31
bit 4 = DIO40
bit 5 = DIO51
bit 6 = DIO60
bit 7 = DIO70
bit 8 = DIO80
bit 9 = AD00
bit 10 = AD11
bit 11 = AD21
bit 12 = AD30
bit 13 = AD40
bit 14 = AD50
bit 15 = NA0

Example: mask of 0x0C29 means DIO0, DIO3, DIO5, AD1 and AD2 enabled.
0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1

Digital Channel Mask Indicates which digital IO lines are configured in the module. Each bit corresponds to
one digital IO line on the module:

bit 0 = DIO0AD0
bit 1 = DIO1AD1
bit 2 = DIO2AD2
bit 3 = DIO3AD3
bit 4 = DIO4AD4
bit 5 = DIO5AD5ASSOC
bit 6 = DIO6RTS
bit 7 = DIO7CTS
bit 8 = DIO8DTRSLEEP_RQ
bit 9 = DIO9ON_SLEEP
bit 10 = DIO10PWM0RSSI
bit 11 = DIO11PWM1
bit 12 = DIO12CD
bit 13 = DIO13
bit 14 = DIO14
bit 15 = NA

Example: mask of 0x040B means DIO0, DIO1, DIO2, DIO3 and DIO10 enabled.
0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1

Analog Channel Mask Indicates which lines are configured as ADC. Each bit in the analog channel mask
corresponds to one ADC line on the module.

bit 0 = AD0DIO0
bit 1 = AD1DIO1
bit 2 = AD2DIO2
bit 3 = AD3DIO3
bit 4 = AD4DIO4

(continues on next page)

2.6. API reference 959



XBee Python Library Documentation, Release 1.4.0

(continued from previous page)

bit 5 = AD5DIO5ASSOC
bit 6 = NA
bit 7 = Supply Voltage Value

Example: mask of 0x03 means AD0, and AD1 enabled.
0 0 0 0 0 0 1 1

Class constructor. Instantiates a new IOSample object with the provided parameters.
Parameters io_sample_payload (Bytearray) – The payload corresponding to an IO sam-

ple.

Raises ValueError – If io_sample_payload length is less than 5.
static min_io_sample_payload()

Returns the minimum IO sample payload length.

Returns The minimum IO sample payload length.

Return type Integer

digital_hsb_mask
Returns the High Significant Byte (HSB) of the digital mask.

Returns The HSB of the digital mask.

Return type Integer

digital_lsb_mask
Returns the Low Significant Byte (HSB) of the digital mask.

Returns The LSB of the digital mask.

Return type Integer

digital_mask
Returns the combined (HSB + LSB) of the digital mask.

Returns The digital mask.

Return type Integer

digital_values
Returns the digital values map.

To verify if this sample contains a valid digital values, use the method IOSample.
has_digital_values().

Returns The digital values map.

Return type Dictionary

analog_mask
Returns the analog mask.

Returns the analog mask.

Return type Integer

analog_values
Returns the analog values map.

To verify if this sample contains a valid analog values, use the method IOSample.
has_analog_values().

Returns The analog values map.

960 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type Dictionary

power_supply_value
Returns the value of the power supply voltage.

To verify if this sample contains the power supply voltage, use the method IOSample.
has_power_supply_value().

Returns

The power supply value, None if the sample does not contain power supply value.

Return type Integer

has_digital_values()
Checks whether the IOSample has digital values or not.

Returns True if the sample has digital values, False otherwise.

Return type Boolean

has_digital_value(io_line)
Returns whether th IO sample contains a digital value for the provided IO line or not.

Parameters io_line (IOLine) – The IO line to check if it has a digital value.

Returns

True if the given IO line has a digital value, False otherwise.

Return type Boolean

has_analog_value(io_line)
Returns whether the given IOLine has an analog value or not.

Returns

True if the given IOLine has an analog value, False otherwise.

Return type Boolean

has_analog_values()
Returns whether the {@code IOSample} has analog values or not.

Returns Boolean. True if there are analog values, False otherwise.

has_power_supply_value()
Returns whether the IOSample has power supply value or not.

Returns

Boolean. True if the given IOLine has a power supply value, False otherwise.

get_digital_value(io_line)
Returns the digital value of the provided IO line.

To verify if this sample contains a digital value for the given IOLine, use the method IOSample.
has_digital_value().

Parameters io_line (IOLine) – The IO line to get its digital value.

Returns

The IOValue of the given IO line or None if the IO sample does not contain a digi-
tal value for the given IO line.

Return type IOValue

2.6. API reference 961

mailto:\protect \T1\textbraceleft @code


XBee Python Library Documentation, Release 1.4.0

See also:

IOLine

IOValue

get_analog_value(io_line)
Returns the analog value of the provided IO line.

To verify if this sample contains an analog value for the given IOLine, use the method IOSample.
has_analog_value().

Parameters io_line (IOLine) – The IO line to get its analog value.

Returns

The analog value of the given IO line or None if the IO sample does not contain an
analog value for the given IO line.

Return type Integer

See also:

IOLine

class digi.xbee.io.IOMode
Bases: enum.Enum

Enumerates the different Input/Output modes that an IO line can be configured with.

DISABLED = 0
Disabled

SPECIAL_FUNCTIONALITY = 1
Firmware special functionality

PWM = 2
PWM output

ADC = 2
Analog to Digital Converter

DIGITAL_IN = 3
Digital input

DIGITAL_OUT_LOW = 4
Digital output, Low

DIGITAL_OUT_HIGH = 5
Digital output, High

I2C_FUNCTIONALITY = 6
I2C functionality

962 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

digi.xbee.profile module

class digi.xbee.profile.FirmwareBaudrate(index, baudrate)
Bases: enum.Enum

This class lists the available firmware baudrate options for XBee Profiles.

Inherited properties:
name (String): The name of this FirmwareBaudrate.
value (Integer): The ID of this FirmwareBaudrate.

Values:
FirmwareBaudrate.BD_1200 = (0, 1200)
FirmwareBaudrate.BD_2400 = (1, 2400)
FirmwareBaudrate.BD_4800 = (2, 4800)
FirmwareBaudrate.BD_9600 = (3, 9600)
FirmwareBaudrate.BD_19200 = (4, 19200)
FirmwareBaudrate.BD_38400 = (5, 38400)
FirmwareBaudrate.BD_57600 = (6, 57600)
FirmwareBaudrate.BD_115200 = (7, 115200)
FirmwareBaudrate.BD_230400 = (8, 230400)
FirmwareBaudrate.BD_460800 = (9, 460800)
FirmwareBaudrate.BD_921600 = (10, 921600)

index
Returns the index of the FirmwareBaudrate element.

Returns Index of the FirmwareBaudrate element.

Return type Integer

baudrate
Returns the baudrate of the FirmwareBaudrate element.

Returns Baudrate of the FirmwareBaudrate element.

Return type Integer

class digi.xbee.profile.FirmwareParity(index, parity)
Bases: enum.Enum

This class lists the available firmware parity options for XBee Profiles.

Inherited properties:
name (String): The name of this FirmwareParity.
value (Integer): The ID of this FirmwareParity.

Values:
FirmwareParity.NONE = (0, <sphinx.ext.autodoc.importer._MockObject object at 0x7ff5547305d0>)
FirmwareParity.EVEN = (1, <sphinx.ext.autodoc.importer._MockObject object at 0x7ff5535c5ad0>)

2.6. API reference 963



XBee Python Library Documentation, Release 1.4.0

FirmwareParity.ODD = (2, <sphinx.ext.autodoc.importer._MockObject object at 0x7ff553623150>)
FirmwareParity.MARK = (3, <sphinx.ext.autodoc.importer._MockObject object at 0x7ff553a1dc50>)
FirmwareParity.SPACE = (4, <sphinx.ext.autodoc.importer._MockObject object at 0x7ff553a1da10>)

index
Returns the index of the FirmwareParity element.

Returns Index of the FirmwareParity element.

Return type Integer

parity
Returns the parity of the FirmwareParity element.

Returns Parity of the FirmwareParity element.

Return type String

class digi.xbee.profile.FirmwareStopbits(index, stop_bits)
Bases: enum.Enum

This class lists the available firmware stop bits options for XBee Profiles.

Inherited properties:
name (String): The name of this FirmwareStopbits.
value (Integer): The ID of this FirmwareStopbits.

Values:
FirmwareStopbits.SB_1 = (0, <sphinx.ext.autodoc.importer._MockObject object at 0x7ff553a1d390>)
FirmwareStopbits.SB_2 = (1, <sphinx.ext.autodoc.importer._MockObject object at 0x7ff553a1d710>)
FirmwareStopbits.SB_1_5 = (2, <sphinx.ext.autodoc.importer._MockObject object at
0x7ff55471c550>)

index
Returns the index of the FirmwareStopbits element.

Returns Index of the FirmwareStopbits element.

Return type Integer

stop_bits
Returns the stop bits of the FirmwareStopbits element.

Returns Stop bits of the FirmwareStopbits element.

Return type Float

class digi.xbee.profile.FlashFirmwareOption(code, description)
Bases: enum.Enum

This class lists the available flash firmware options for XBee Profiles.

Inherited properties:

964 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

name (String): The name of this FlashFirmwareOption.
value (Integer): The ID of this FlashFirmwareOption.

Values:
FlashFirmwareOption.FLASH_ALWAYS = (0, ‘Flash always’)
FlashFirmwareOption.FLASH_DIFFERENT = (1, ‘Flash firmware if it is different’)
FlashFirmwareOption.DONT_FLASH = (2, ‘Do not flash firmware’)

code
Returns the code of the FlashFirmwareOption element.

Returns Code of the FlashFirmwareOption element.

Return type Integer

description
Returns the description of the FlashFirmwareOption element.

Returns Description of the FlashFirmwareOption element.

Return type String

class digi.xbee.profile.XBeeSettingType(tag, description)
Bases: enum.Enum

This class lists the available firmware setting types.

Inherited properties:
name (String): The name of this XBeeSettingType.
value (Integer): The ID of this XBeeSettingType.

Values:
XBeeSettingType.NUMBER = (‘number’, ‘Number’)
XBeeSettingType.COMBO = (‘combo’, ‘Combo’)
XBeeSettingType.TEXT = (‘text’, ‘Text’)
XBeeSettingType.BUTTON = (‘button’, ‘Button’)
XBeeSettingType.NO_TYPE = (‘none’, ‘No type’)

tag
Returns the tag of the XBeeSettingType element.

Returns Tag of the XBeeSettingType element.

Return type String

description
Returns the description of the XBeeSettingType element.

Returns Description of the XBeeSettingType element.

Return type String

2.6. API reference 965



XBee Python Library Documentation, Release 1.4.0

class digi.xbee.profile.XBeeSettingFormat(tag, description)
Bases: enum.Enum

This class lists the available text firmware setting formats.

Inherited properties:
name (String): The name of this XBeeSettingFormat.
value (Integer): The ID of this XBeeSettingFormat.

Values:
XBeeSettingFormat.HEX = (‘HEX’, ‘Hexadecimal’)
XBeeSettingFormat.ASCII = (‘ASCII’, ‘ASCII’)
XBeeSettingFormat.IPV4 = (‘IPV4’, ‘IPv4’)
XBeeSettingFormat.IPV6 = (‘IPV6’, ‘IPv6’)
XBeeSettingFormat.PHONE = (‘PHONE’, ‘phone’)
XBeeSettingFormat.NO_FORMAT = (‘none’, ‘No format’)

tag
Returns the tag of the XBeeSettingFormat element.

Returns Tag of the XBeeSettingFormat element.

Return type String

description
Returns the description of the XBeeSettingFormat element.

Returns Description of the XBeeSettingFormat element.

Return type String

class digi.xbee.profile.XBeeProfileSetting(name, setting_type, setting_format, value)
Bases: object

This class represents an XBee profile setting and provides information like the setting name, type, format and
value.

Class constructor. Instantiates a new XBeeProfileSetting with the given parameters.
Parameters

• name (String) – Setting name.

• setting_type (XBeeSettingType) – Setting type.

• setting_format (XBeeSettingType) – Setting format.

• value (String) – Setting value.
name

Returns the XBee setting name.

Returns XBee setting name.

Return type String

type
Returns the XBee setting type.

Returns XBee setting type.

966 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Return type XBeeSettingType

format
Returns the XBee setting format.

Returns XBee setting format.

Return type XBeeSettingFormat

value
Returns the XBee setting value as string.

Returns XBee setting value as string.

Return type String

bytearray_value
Returns the XBee setting value as bytearray to be set in the device.

Returns XBee setting value as bytearray to be set in the device.

Return type Bytearray

exception digi.xbee.profile.ReadProfileException
Bases: digi.xbee.exception.XBeeException

This exception will be thrown when any problem reading the XBee profile occurs.

All functionality of this class is the inherited from Exception.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception digi.xbee.profile.UpdateProfileException
Bases: digi.xbee.exception.XBeeException

This exception will be thrown when any problem updating the XBee profile into a device occurs.

All functionality of this class is the inherited from Exception.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class digi.xbee.profile.XBeeProfile(profile_file)
Bases: object

Helper class used to manage serial port break line in a parallel thread.

Class constructor. Instantiates a new XBeeProfile with the given parameters.
Parameters profile_file (String) – Path of the ‘.xpro’ profile file.

Raises

• ProfileReadException – If there is any error reading the profile file.

• ValueError – If the provided profile file is not valid
open()

Opens the profile so its components are accessible from properties firmware_description_file,
file_system_path, remote_file_system_image, and bootloader_file.

The user is responsible for closing the profile when done with it.

Raises ProfileReadException – If there is any error opening the profile.

See also:

2.6. API reference 967

https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception
https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception


XBee Python Library Documentation, Release 1.4.0

close()

is_open()

close()
Closes the profile. Its components are no more accessible.

See also:

open()

is_open()

is_open()
Returns True if the profile is opened, False otherwise.

See also:

open()

close()

get_setting_default_value(setting_name)
Returns the default value of the given firmware setting.

Parameters setting_name (String or ATStringCommand) – Name of the setting to
retrieve its default value.

Returns

Default value of the setting, None if the setting is not found or it has no default
value.

Return type String

profile_file
Returns the profile file.

Returns Profile file.

Return type String

version
Returns the profile version.

Returns Profile version.

Return type String

flash_firmware_option
Returns the profile flash firmware option.

Returns Profile flash firmware option.

Return type FlashFirmwareOption

See also:

968 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

FlashFirmwareOption

description
Returns the profile description.

Returns Profile description.

Return type String

reset_settings
Returns whether the settings of the XBee will be reset before applying the profile ones or not.

Returns

True if the settings of the XBee will be reset before applying the profile ones, False
otherwise.

Return type Boolean

has_local_filesystem
Returns whether the profile has local filesystem information or not.

Returns

True if the profile has local filesystem information, False otherwise.

Return type Boolean

has_remote_filesystem
Returns whether the profile has remote filesystem information or not.

Returns

True if the profile has remote filesystem information, False otherwise.

Return type Boolean

has_filesystem
Returns whether the profile has filesystem information (local or remote) or not.

Returns

True if the profile has filesystem information (local or remote), False otherwise.

Return type Boolean

has_local_firmware_files
Returns whether the profile has local firmware binaries.

Returns

True if the profile has local firmware files, False otherwise.

Return type Boolean

has_remote_firmware_files
Returns whether the profile has remote firmware binaries.

Returns

True if the profile has remote firmware files, False otherwise.

Return type Boolean

has_firmware_files
Returns whether the profile has firmware binaries (local or remote).

2.6. API reference 969



XBee Python Library Documentation, Release 1.4.0

Returns

True if the profile has local or remote firmware files, False otherwise.

Return type Boolean

profile_settings
Returns all the firmware settings that the profile configures.

Returns

List with all the firmware settings that the profile configures
(XBeeProfileSetting).

Return type Dict

firmware_version
Returns the compatible firmware version of the profile.

Returns Compatible firmware version of the profile.

Return type Integer

hardware_version
Returns the compatible hardware version of the profile.

Returns Compatible hardware version of the profile.

Return type Integer

compatibility_number
Returns the compatibility number of the profile.

Returns The compatibility number, None if not defined.

Return type Integer

region_lock
Returns the region lock of the profile.

Returns The region lock, None if not defined.

Return type Integer

profile_description_file
Returns the path of the profile description file.

Returns Path of the profile description file.

Return type String

firmware_description_file
Returns the path of the profile firmware description file.

Returns Path of the profile firmware description file.

Return type String

file_system_path
Returns the profile file system path. None until the profile is extracted.

Returns Path of the profile file system directory.

Return type String

remote_file_system_image
Returns the path of the remote OTA file system image. None until the profile is extracted.

970 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns Path of the remote OTA file system image.

Return type String

bootloader_file
Returns the profile bootloader file path. None until the profile is extracted.

Returns Path of the profile bootloader file.

Return type String

protocol
Returns the profile XBee protocol.

Returns Profile XBee protocol.

Return type XBeeProtocol

digi.xbee.profile.apply_xbee_profile(target, profile_path, timeout=None,
progress_callback=None)

Applies the given XBee profile into the given XBee. If a serial port is provided as target, the XBee profile must
include the firmware binaries, that are always programmed. In this case, a restore defaults is also performed
before applying settings in the profile (no matter if the profile is configured to do so or not). If the value of ‘AP’
(operating mode) in the profile is not an API mode or it is not defined, XBee is configured to use API 1.

Parameters

• target (String or AbstractXBeeDevice) – Target to apply profile to. String:
serial port identifier. AbstractXBeeDevice: XBee to apply the profile.

• profile_path (String) – path of the XBee profile file to apply.

• timeout (Integer, optional) – Maximum time to wait for target read opera-
tions during the apply profile.

• progress_callback (Function, optional) – Function to execute to receive
progress information. Receives two arguments:

– The current update task as a String

– The current update task percentage as an Integer

Raises

• ValueError – If the XBee profile or the XBee device is not valid.

• UpdateProfileException – If there is any error during the update XBee profile
operation.

digi.xbee.reader module

class digi.xbee.reader.XBeeEvent
Bases: list

This class represents a generic XBee event.

New event callbacks can be added here following this prototype:

def callback_prototype(*args, **kwargs):
#do something...

All of them will be executed when the event is fired.

See also:

2.6. API reference 971



XBee Python Library Documentation, Release 1.4.0

list (Python standard class)

append()
Append object to the end of the list.

clear()
Remove all items from list.

copy()
Return a shallow copy of the list.

count()
Return number of occurrences of value.

extend()
Extend list by appending elements from the iterable.

index()
Return first index of value.

Raises ValueError if the value is not present.

insert()
Insert object before index.

pop()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse()
Reverse IN PLACE.

sort()
Stable sort IN PLACE.

class digi.xbee.reader.PacketReceived
Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives any packet, independent of its frame type.
The callbacks for handle this events will receive the following arguments:

1. received_packet (XBeeAPIPacket): Received packet.
See also:

XBeeAPIPacket

XBeeEvent

append()
Append object to the end of the list.

clear()
Remove all items from list.

972 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

copy()
Return a shallow copy of the list.

count()
Return number of occurrences of value.

extend()
Extend list by appending elements from the iterable.

index()
Return first index of value.

Raises ValueError if the value is not present.

insert()
Insert object before index.

pop()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse()
Reverse IN PLACE.

sort()
Stable sort IN PLACE.

class digi.xbee.reader.PacketReceivedFrom
Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives any packet, independent of its frame type.
The callbacks for handle this events will receive the following arguments:

1. received_packet (XBeeAPIPacket): Received packet.

2. sender (RemoteXBeeDevice): Remote XBee who sent the packet.
See also:

RemoteXBeeDevice

XBeeAPIPacket

XBeeEvent

append()
Append object to the end of the list.

clear()
Remove all items from list.

copy()
Return a shallow copy of the list.

count()
Return number of occurrences of value.

2.6. API reference 973



XBee Python Library Documentation, Release 1.4.0

extend()
Extend list by appending elements from the iterable.

index()
Return first index of value.

Raises ValueError if the value is not present.

insert()
Insert object before index.

pop()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse()
Reverse IN PLACE.

sort()
Stable sort IN PLACE.

class digi.xbee.reader.DataReceived
Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives data.
The callbacks for handle this events will receive the following arguments:

1. message (XBeeMessage): Message containing the data received, the sender and the time.
See also:

XBeeEvent

XBeeMessage

append()
Append object to the end of the list.

clear()
Remove all items from list.

copy()
Return a shallow copy of the list.

count()
Return number of occurrences of value.

extend()
Extend list by appending elements from the iterable.

index()
Return first index of value.

Raises ValueError if the value is not present.

insert()
Insert object before index.

974 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

pop()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse()
Reverse IN PLACE.

sort()
Stable sort IN PLACE.

class digi.xbee.reader.ModemStatusReceived
Bases: digi.xbee.reader.XBeeEvent

This event is fired when a XBee receives a modem status packet.
The callbacks for handle this events will receive the following arguments:

1. modem_status (ModemStatus): Modem status received.
See also:

XBeeEvent

ModemStatus

append()
Append object to the end of the list.

clear()
Remove all items from list.

copy()
Return a shallow copy of the list.

count()
Return number of occurrences of value.

extend()
Extend list by appending elements from the iterable.

index()
Return first index of value.

Raises ValueError if the value is not present.

insert()
Insert object before index.

pop()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove()
Remove first occurrence of value.

Raises ValueError if the value is not present.

2.6. API reference 975



XBee Python Library Documentation, Release 1.4.0

reverse()
Reverse IN PLACE.

sort()
Stable sort IN PLACE.

class digi.xbee.reader.IOSampleReceived
Bases: digi.xbee.reader.XBeeEvent

This event is fired when a XBee receives an IO packet.

This includes:
1. IO data sample RX indicator packet.
2. RX IO 16 packet.
3. RX IO 64 packet.

The callbacks that handle this event will receive the following arguments:

1. io_sample (IOSample): Received IO sample.

2. sender (RemoteXBeeDevice): Remote XBee who sent the packet.

3. time (Integer): the time in which the packet was received.

See also:

IOSample

RemoteXBeeDevice

XBeeEvent

append()
Append object to the end of the list.

clear()
Remove all items from list.

copy()
Return a shallow copy of the list.

count()
Return number of occurrences of value.

extend()
Extend list by appending elements from the iterable.

index()
Return first index of value.

Raises ValueError if the value is not present.

insert()
Insert object before index.

pop()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove()
Remove first occurrence of value.

Raises ValueError if the value is not present.

976 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

reverse()
Reverse IN PLACE.

sort()
Stable sort IN PLACE.

class digi.xbee.reader.NetworkModified
Bases: digi.xbee.reader.XBeeEvent

This event is fired when the network is being modified by the addition of a new node, an existing node informa-
tion is updated, a node removal, or when the network items are cleared.
The callbacks that handle this event will receive the following arguments:

1. event_type (digi.xbee.devices.NetworkEventType): Network event type.

2. reason (digi.xbee.devices.NetworkEventReason): Reason of the event.

3. node (digi.xbee.devices.XBeeDevice or digi.xbee.devices.
RemoteXBeeDevice): Node added, updated or removed from the network.

See also:

digi.xbee.devices.NetworkEventReason

digi.xbee.devices.NetworkEventType

digi.xbee.devices.RemoteXBeeDevice

digi.xbee.devices.XBeeDevice

XBeeEvent

append()
Append object to the end of the list.

clear()
Remove all items from list.

copy()
Return a shallow copy of the list.

count()
Return number of occurrences of value.

extend()
Extend list by appending elements from the iterable.

index()
Return first index of value.

Raises ValueError if the value is not present.

insert()
Insert object before index.

pop()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove()
Remove first occurrence of value.

Raises ValueError if the value is not present.

2.6. API reference 977



XBee Python Library Documentation, Release 1.4.0

reverse()
Reverse IN PLACE.

sort()
Stable sort IN PLACE.

class digi.xbee.reader.DeviceDiscovered
Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee discovers another remote XBee during a discovering operation.
The callbacks that handle this event will receive the following arguments:

1. discovered_device (RemoteXBeeDevice): Discovered remote XBee.
See also:

RemoteXBeeDevice

XBeeEvent

append()
Append object to the end of the list.

clear()
Remove all items from list.

copy()
Return a shallow copy of the list.

count()
Return number of occurrences of value.

extend()
Extend list by appending elements from the iterable.

index()
Return first index of value.

Raises ValueError if the value is not present.

insert()
Insert object before index.

pop()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse()
Reverse IN PLACE.

sort()
Stable sort IN PLACE.

class digi.xbee.reader.DiscoveryProcessFinished
Bases: digi.xbee.reader.XBeeEvent

This event is fired when the discovery process finishes, either successfully or due to an error.

978 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

The callbacks that handle this event will receive the following arguments:

1. status (NetworkDiscoveryStatus): Network discovery status.

2. description (String, optional): Description of the discovery status.
See also:

NetworkDiscoveryStatus

XBeeEvent

append()
Append object to the end of the list.

clear()
Remove all items from list.

copy()
Return a shallow copy of the list.

count()
Return number of occurrences of value.

extend()
Extend list by appending elements from the iterable.

index()
Return first index of value.

Raises ValueError if the value is not present.

insert()
Insert object before index.

pop()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse()
Reverse IN PLACE.

sort()
Stable sort IN PLACE.

class digi.xbee.reader.ExplicitDataReceived
Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives an explicit data packet.
The callbacks for handle this events will receive the following arguments:

1. message (ExplicitXBeeMessage): Message containing the received data, the sender, the time,
and explicit data message parameters.

See also:

XBeeEvent

2.6. API reference 979



XBee Python Library Documentation, Release 1.4.0

XBeeMessage

append()
Append object to the end of the list.

clear()
Remove all items from list.

copy()
Return a shallow copy of the list.

count()
Return number of occurrences of value.

extend()
Extend list by appending elements from the iterable.

index()
Return first index of value.

Raises ValueError if the value is not present.

insert()
Insert object before index.

pop()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse()
Reverse IN PLACE.

sort()
Stable sort IN PLACE.

class digi.xbee.reader.IPDataReceived
Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives IP data.
The callbacks for handle this events will receive the following arguments:

1. message (IPMessage): Message containing containing the IP address the message belongs to,
source and destination ports, IP protocol, and the content (data) of the message.

See also:

XBeeEvent

IPMessage

append()
Append object to the end of the list.

clear()
Remove all items from list.

980 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

copy()
Return a shallow copy of the list.

count()
Return number of occurrences of value.

extend()
Extend list by appending elements from the iterable.

index()
Return first index of value.

Raises ValueError if the value is not present.

insert()
Insert object before index.

pop()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse()
Reverse IN PLACE.

sort()
Stable sort IN PLACE.

class digi.xbee.reader.SMSReceived
Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives an SMS.
The callbacks for handle this events will receive the following arguments:

1. message (SMSMessage): Message containing the phone number that sent the message and the
content (data) of the message.

See also:

XBeeEvent

SMSMessage

append()
Append object to the end of the list.

clear()
Remove all items from list.

copy()
Return a shallow copy of the list.

count()
Return number of occurrences of value.

extend()
Extend list by appending elements from the iterable.

2.6. API reference 981



XBee Python Library Documentation, Release 1.4.0

index()
Return first index of value.

Raises ValueError if the value is not present.

insert()
Insert object before index.

pop()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse()
Reverse IN PLACE.

sort()
Stable sort IN PLACE.

class digi.xbee.reader.RelayDataReceived
Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives a user data relay output packet.
The callbacks to handle these events will receive the following arguments:

1. message (UserDataRelayMessage): Message containing the source interface and the content
(data) of the message.

See also:

XBeeEvent

UserDataRelayMessage

append()
Append object to the end of the list.

clear()
Remove all items from list.

copy()
Return a shallow copy of the list.

count()
Return number of occurrences of value.

extend()
Extend list by appending elements from the iterable.

index()
Return first index of value.

Raises ValueError if the value is not present.

insert()
Insert object before index.

982 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

pop()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse()
Reverse IN PLACE.

sort()
Stable sort IN PLACE.

class digi.xbee.reader.BluetoothDataReceived
Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives data from the Bluetooth interface.
The callbacks to handle these events will receive the following arguments:

1. data (Bytearray): Received Bluetooth data.
See also:

XBeeEvent

append()
Append object to the end of the list.

clear()
Remove all items from list.

copy()
Return a shallow copy of the list.

count()
Return number of occurrences of value.

extend()
Extend list by appending elements from the iterable.

index()
Return first index of value.

Raises ValueError if the value is not present.

insert()
Insert object before index.

pop()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse()
Reverse IN PLACE.

2.6. API reference 983



XBee Python Library Documentation, Release 1.4.0

sort()
Stable sort IN PLACE.

class digi.xbee.reader.MicroPythonDataReceived
Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives data from the MicroPython interface.
The callbacks to handle these events will receive the following arguments:

1. data (Bytearray): Received MicroPython data.
See also:

XBeeEvent

append()
Append object to the end of the list.

clear()
Remove all items from list.

copy()
Return a shallow copy of the list.

count()
Return number of occurrences of value.

extend()
Extend list by appending elements from the iterable.

index()
Return first index of value.

Raises ValueError if the value is not present.

insert()
Insert object before index.

pop()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse()
Reverse IN PLACE.

sort()
Stable sort IN PLACE.

class digi.xbee.reader.SocketStateReceived
Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives a socket state packet.
The callbacks to handle these events will receive the following arguments:

1. socket_id (Integer): Socket ID for state reported.

2. state (SocketState): Received state.

984 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

See also:

XBeeEvent

append()
Append object to the end of the list.

clear()
Remove all items from list.

copy()
Return a shallow copy of the list.

count()
Return number of occurrences of value.

extend()
Extend list by appending elements from the iterable.

index()
Return first index of value.

Raises ValueError if the value is not present.

insert()
Insert object before index.

pop()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse()
Reverse IN PLACE.

sort()
Stable sort IN PLACE.

class digi.xbee.reader.SocketDataReceived
Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives a socket receive data packet.
The callbacks to handle these events will receive the following arguments:

1. socket_id (Integer): ID of the socket that received the data.

2. payload (Bytearray): Received data.
See also:

XBeeEvent

append()
Append object to the end of the list.

2.6. API reference 985



XBee Python Library Documentation, Release 1.4.0

clear()
Remove all items from list.

copy()
Return a shallow copy of the list.

count()
Return number of occurrences of value.

extend()
Extend list by appending elements from the iterable.

index()
Return first index of value.

Raises ValueError if the value is not present.

insert()
Insert object before index.

pop()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse()
Reverse IN PLACE.

sort()
Stable sort IN PLACE.

class digi.xbee.reader.SocketDataReceivedFrom
Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives a socket receive from data packet.
The callbacks to handle these events will receive the following arguments:

1. socket_id (Integer): ID of the socket that received the data.

2. address (Tuple): Pair (host, port) of the source address where host is a string representing an
IPv4 address like ‘100.50.200.5’, and port is an integer.

3. payload (Bytearray): Received data.
See also:

XBeeEvent

append()
Append object to the end of the list.

clear()
Remove all items from list.

copy()
Return a shallow copy of the list.

986 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

count()
Return number of occurrences of value.

extend()
Extend list by appending elements from the iterable.

index()
Return first index of value.

Raises ValueError if the value is not present.

insert()
Insert object before index.

pop()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse()
Reverse IN PLACE.

sort()
Stable sort IN PLACE.

class digi.xbee.reader.RouteRecordIndicatorReceived
Bases: digi.xbee.reader.XBeeEvent

This event is fired when a route record packet is received.
The callbacks to handle these events will receive the following arguments:

1. Source (RemoteXBeeDevice): Remote node that sent the route record.

2. Hops (List): List of intermediate hops 16-bit addresses from closest to source (who sent the
route record) to closest to destination (XBee16BitAddress).

See also:

XBeeEvent

append()
Append object to the end of the list.

clear()
Remove all items from list.

copy()
Return a shallow copy of the list.

count()
Return number of occurrences of value.

extend()
Extend list by appending elements from the iterable.

index()
Return first index of value.

2.6. API reference 987



XBee Python Library Documentation, Release 1.4.0

Raises ValueError if the value is not present.

insert()
Insert object before index.

pop()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse()
Reverse IN PLACE.

sort()
Stable sort IN PLACE.

class digi.xbee.reader.RouteInformationReceived
Bases: digi.xbee.reader.XBeeEvent

This event is fired when a route information packet is received.
The callbacks to handle these events will receive the following arguments:

1. Source event (Integer): Source event (0x11: NACK, 0x12: Trace route)

2. Timestamp (Integer): System timer value on the node generating this package. The times-
tamp is in microseconds.

3. ACK timeout count (Integer): Number of MAC ACK timeouts that occur.

4. TX blocked count (Integer): Number of times the transmissions was blocked due to reception
in progress.

5. Destination address (XBee64BitAddress): 64-bit address of the final destination node.

6. Source address (XBee64BitAddress): 64-bit address of the source node.

7. Responder address (XBee64BitAddress): 64-bit address of of the node that generates this
packet after it sends (or attempts to send) the packet to the next hop (successor node)

8. Successor address (XBee64BitAddress): 64-bit address of of the next node after the respon-
der in the route towards the destination.

See also:

XBeeEvent

append()
Append object to the end of the list.

clear()
Remove all items from list.

copy()
Return a shallow copy of the list.

count()
Return number of occurrences of value.

988 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

extend()
Extend list by appending elements from the iterable.

index()
Return first index of value.

Raises ValueError if the value is not present.

insert()
Insert object before index.

pop()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse()
Reverse IN PLACE.

sort()
Stable sort IN PLACE.

class digi.xbee.reader.RouteReceived
Bases: digi.xbee.reader.XBeeEvent

This event is fired when a route is received.
The callbacks to handle these events will receive the following arguments:

1. source (XBeeDevice): Local node.

2. destination (RemoteXBeeDevice): Remote node.

3. hops (List): List of intermediate hops from source node to closest to destination
(RemoteXBeeDevice).

See also:

XBeeEvent

append()
Append object to the end of the list.

clear()
Remove all items from list.

copy()
Return a shallow copy of the list.

count()
Return number of occurrences of value.

extend()
Extend list by appending elements from the iterable.

index()
Return first index of value.

Raises ValueError if the value is not present.

2.6. API reference 989



XBee Python Library Documentation, Release 1.4.0

insert()
Insert object before index.

pop()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse()
Reverse IN PLACE.

sort()
Stable sort IN PLACE.

class digi.xbee.reader.InitDiscoveryScan
Bases: digi.xbee.reader.XBeeEvent

This event is fired when a new network discovery scan is about to start.
The callbacks to handle these events will receive the following arguments:

1. Number of scan to start (starting with 1).

2. Total number of scans.
See also:

XBeeEvent

append()
Append object to the end of the list.

clear()
Remove all items from list.

copy()
Return a shallow copy of the list.

count()
Return number of occurrences of value.

extend()
Extend list by appending elements from the iterable.

index()
Return first index of value.

Raises ValueError if the value is not present.

insert()
Insert object before index.

pop()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

990 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

remove()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse()
Reverse IN PLACE.

sort()
Stable sort IN PLACE.

class digi.xbee.reader.EndDiscoveryScan
Bases: digi.xbee.reader.XBeeEvent

This event is fired when a network discovery scan has just finished.
The callbacks to handle these events will receive the following arguments:

1. Number of scan that has finished (starting with 1).

2. Total number of scans.
See also:

XBeeEvent

append()
Append object to the end of the list.

clear()
Remove all items from list.

copy()
Return a shallow copy of the list.

count()
Return number of occurrences of value.

extend()
Extend list by appending elements from the iterable.

index()
Return first index of value.

Raises ValueError if the value is not present.

insert()
Insert object before index.

pop()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse()
Reverse IN PLACE.

sort()
Stable sort IN PLACE.

2.6. API reference 991



XBee Python Library Documentation, Release 1.4.0

class digi.xbee.reader.FileSystemFrameReceived
Bases: digi.xbee.reader.XBeeEvent

This event is fired when a file system packet is received.
The callbacks to handle these events will receive the following arguments:

1. Source (AbstractXBeeDevice): Node that sent the file system frame.

2. Frame id (Integer): Received frame id.

3. Command (FSCmd): File system command.

4. Status (:class: .FSCommandStatus): Status code.

5. Receive options (Integer): Bitfield indicating receive options. See ReceiveOptions.
See also:

XBeeEvent

append()
Append object to the end of the list.

clear()
Remove all items from list.

copy()
Return a shallow copy of the list.

count()
Return number of occurrences of value.

extend()
Extend list by appending elements from the iterable.

index()
Return first index of value.

Raises ValueError if the value is not present.

insert()
Insert object before index.

pop()
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove()
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse()
Reverse IN PLACE.

sort()
Stable sort IN PLACE.

class digi.xbee.reader.PacketListener(comm_iface, xbee_device, queue_max_size=None)
Bases: threading.Thread

992 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

This class represents a packet listener, which is a thread that’s always listening for incoming packets to the
XBee.

When it receives a packet, this class throws an event depending on which packet it is. You can add your own
callbacks for this events via certain class methods. This callbacks must have a certain header, see each event
documentation.

This class has fields that are events. Its recommended to use only the append() and remove() method on them,
or -= and += operators. If you do something more with them, it’s for your own risk.

Here are the parameters which will be received by the event callbacks, depending on which event it is in each
case:

The following parameters are passed via **kwargs to event callbacks of:
1. PacketReceived: 1.1 received_packet (XBeeAPIPacket): Received packet.
2. DataReceived

2.1 message (XBeeMessage): Message containing the data received, the sender and the time.
3. ModemStatusReceived 3.1 modem_status (ModemStatus): Modem status received.

Class constructor. Instantiates a new PacketListener object with the provided parameters.
Parameters

• comm_iface (XBeeCommunicationInterface) – Hardware interface to listen
to.

• xbee_device (XBeeDevice) – XBee that is the listener owner.

• queue_max_size (Integer) – Maximum size of the XBee queue.
daemon

A boolean value indicating whether this thread is a daemon thread.

This must be set before start() is called, otherwise RuntimeError is raised. Its initial value is inherited
from the creating thread; the main thread is not a daemon thread and therefore all threads created in the
main thread default to daemon = False.

The entire Python program exits when only daemon threads are left.

wait_until_started(timeout=None)
Blocks until the thread has fully started. If already started, returns immediately.

Parameters timeout (Float) – Timeout for the operation in seconds.

run()
This is the method that will be executing for listening packets.

For each packet, it will execute the proper callbacks.

stop()
Stops listening.

is_running()
Returns whether this instance is running or not.

Returns True if this instance is running, False otherwise.

Return type Boolean

get_queue()
Returns the packets queue.

Returns Packets queue.

Return type XBeeQueue

2.6. API reference 993



XBee Python Library Documentation, Release 1.4.0

get_data_queue()
Returns the data packets queue.

Returns Data packets queue.

Return type XBeeQueue

get_explicit_queue()
Returns the explicit packets queue.

Returns Explicit packets queue.

Return type XBeeQueue

get_ip_queue()
Returns the IP packets queue.

Returns IP packets queue.

Return type XBeeQueue

add_packet_received_callback(callback)
Adds a callback for the event PacketReceived.

Parameters callback (Function or List of functions) – Callback. Re-
ceives one argument.

• The received packet as a XBeeAPIPacket

add_packet_received_from_callback(callback)
Adds a callback for the event PacketReceivedFrom.

Parameters callback (Function or List of functions) – Callback. Re-
ceives two arguments.

• The received packet as a XBeeAPIPacket

• The remote XBee device who has sent the packet as a RemoteXBeeDevice

add_data_received_callback(callback)
Adds a callback for the event DataReceived.

Parameters callback (Function or List of functions) – Callback. Re-
ceives one argument.

• The data received as an XBeeMessage

add_modem_status_received_callback(callback)
Adds a callback for the event ModemStatusReceived.

Parameters callback (Function or List of functions) – Callback. Re-
ceives one argument.

• The modem status as a ModemStatus

add_io_sample_received_callback(callback)
Adds a callback for the event IOSampleReceived.

Parameters callback (Function or List of functions) – Callback. Re-
ceives three arguments.

• The received IO sample as an IOSample

• The remote XBee device who has sent the packet as a RemoteXBeeDevice

• The time in which the packet was received as an Integer

994 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

add_explicit_data_received_callback(callback)
Adds a callback for the event ExplicitDataReceived.

Parameters callback (Function or List of functions) – Callback. Re-
ceives one argument.

• The explicit data received as an ExplicitXBeeMessage

add_ip_data_received_callback(callback)
Adds a callback for the event IPDataReceived.

Parameters callback (Function or List of functions) – Callback. Re-
ceives one argument.

• The data received as an IPMessage

add_sms_received_callback(callback)
Adds a callback for the event SMSReceived.

Parameters callback (Function or List of functions) – Callback. Re-
ceives one argument.

• The data received as an SMSMessage

add_user_data_relay_received_callback(callback)
Adds a callback for the event RelayDataReceived.

Parameters callback (Function or List of functions) – Callback. Re-
ceives one argument.

• The data received as a UserDataRelayMessage

add_bluetooth_data_received_callback(callback)
Adds a callback for the event BluetoothDataReceived.

Parameters callback (Function or List of functions) – Callback. Re-
ceives one argument.

• The data received as a Bytearray

add_micropython_data_received_callback(callback)
Adds a callback for the event MicroPythonDataReceived.

Parameters callback (Function or List of functions) – Callback. Re-
ceives one argument.

• The data received as a Bytearray

add_socket_state_received_callback(callback)
Adds a callback for the event SocketStateReceived.

Parameters callback (Function or List of functions) – Callback. Re-
ceives two arguments.

• The socket ID as an Integer.

• The state received as a SocketState

add_socket_data_received_callback(callback)
Adds a callback for the event SocketDataReceived.

Parameters callback (Function or List of functions) – Callback. Re-
ceives two arguments.

• The socket ID as an Integer.

2.6. API reference 995



XBee Python Library Documentation, Release 1.4.0

• The status received as a SocketStatus

add_socket_data_received_from_callback(callback)
Adds a callback for the event SocketDataReceivedFrom.

Parameters callback (Function or List of functions) – Callback. Re-
ceives three arguments.

• The socket ID as an Integer.

• A pair (host, port) of the source address where host is a string representing an IPv4
address like ‘100.50.200.5’, and port is an integer.

• The status received as a SocketStatus

add_route_record_received_callback(callback)
Adds a callback for the event RouteRecordIndicatorReceived.

Parameters callback (Function or List of functions) – Callback. Re-
ceives two arguments.

• Source (RemoteXBeeDevice): Remote node that sent the route record.

• Hops (List): List of intermediate hops 16-bit addresses from closest to source
(who sent the route record) to closest to destination.

add_route_info_received_callback(callback)
Adds a callback for the event RouteInformationReceived.

Parameters callback (Function or List of functions) – Callback. Re-
ceives eight arguments.

• Source event (Integer): Source event (0x11: NACK, 0x12: Trace route)

• Timestamp (Integer): System timer value on the node generating this package. The
timestamp is in microseconds.

• ACK timeout count (Integer): Number of MAC ACK timeouts that occur.

• TX blocked count (Integer): Number of times the transmissions was blocked due
to reception in progress.

• Destination address (XBee64BitAddress): 64-bit address of the final destina-
tion node.

• Source address (XBee64BitAddress): 64-bit address of the source node.

• Responder address (XBee64BitAddress): 64-bit address of the node that gen-
erated this packet after it sent (or attempted to send) the packet to the next hop
(successor node)

• Successor address (XBee64BitAddress): 64-bit address of the next node after
the responder in the route towards the destination.

add_fs_frame_received_callback(callback)
Adds a callback for the event FileSystemFrameReceived.

Parameters callback (Function or List of functions) – Callback. Re-
ceives four arguments.

• Source (AbstractXBeeDevice): Node that sent the file system frame.

• Frame id (Integer): Received frame id.

• Command (FSCmd): File system command.

996 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

• Receive options (Integer): Bitfield indicating receive options. See
ReceiveOptions.

del_packet_received_callback(callback)
Deletes a callback for the callback list of PacketReceived event.

Parameters callback (Function) – Callback to delete.

Raises ValueError – If callback is not in the callback list of PacketReceived event.

del_packet_received_from_callback(callback)
Deletes a callback for the callback list of PacketReceivedFrom event.

Parameters callback (Function) – Callback to delete.

Raises ValueError – If callback is not in the callback list of PacketReceivedFrom
event.

del_data_received_callback(callback)
Deletes a callback for the callback list of DataReceived event.

Parameters callback (Function) – Callback to delete.

Raises ValueError – If callback is not in the callback list of DataReceived event.

del_modem_status_received_callback(callback)
Deletes a callback for the callback list of ModemStatusReceived event.

Parameters callback (Function) – Callback to delete.

Raises ValueError – If callback is not in the callback list of ModemStatusReceived
event.

del_io_sample_received_callback(callback)
Deletes a callback for the callback list of IOSampleReceived event.

Parameters callback (Function) – Callback to delete.

Raises ValueError – If callback is not in the callback list of IOSampleReceived
event.

del_explicit_data_received_callback(callback)
Deletes a callback for the callback list of ExplicitDataReceived event.

Parameters callback (Function) – Callback to delete.

Raises ValueError – If callback is not in the callback list of
ExplicitDataReceived event.

del_ip_data_received_callback(callback)
Deletes a callback for the callback list of IPDataReceived event.

Parameters callback (Function) – Callback to delete.

Raises ValueError – If callback is not in the callback list of IPDataReceived event.

del_sms_received_callback(callback)
Deletes a callback for the callback list of SMSReceived event.

Parameters callback (Function) – Callback to delete.

Raises ValueError – If callback is not in the callback list of SMSReceived event.

del_user_data_relay_received_callback(callback)
Deletes a callback for the callback list of RelayDataReceived event.

Parameters callback (Function) – Callback to delete.

2.6. API reference 997



XBee Python Library Documentation, Release 1.4.0

Raises ValueError – If callback is not in the callback list of RelayDataReceived
event.

del_bluetooth_data_received_callback(callback)
Deletes a callback for the callback list of BluetoothDataReceived event.

Parameters callback (Function) – Callback to delete.

Raises ValueError – If callback is not in the callback list of
BluetoothDataReceived event.

del_micropython_data_received_callback(callback)
Deletes a callback for the callback list of MicroPythonDataReceived event.

Parameters callback (Function) – Callback to delete.

Raises ValueError – If callback is not in the callback list of
MicroPythonDataReceived event.

del_socket_state_received_callback(callback)
Deletes a callback for the callback list of SocketStateReceived event.

Parameters callback (Function) – Callback to delete.

Raises ValueError – If callback is not in the callback list of SocketStateReceived
event.

del_socket_data_received_callback(callback)
Deletes a callback for the callback list of SocketDataReceived event.

Parameters callback (Function) – Callback to delete.

Raises ValueError – If callback is not in the callback list of SocketDataReceived
event.

del_socket_data_received_from_callback(callback)
Deletes a callback for the callback list of SocketDataReceivedFrom event.

Parameters callback (Function) – Callback to delete.

Raises ValueError – If callback is not in the callback list of
SocketDataReceivedFrom event.

del_route_record_received_callback(callback)
Deletes a callback for the callback list of RouteRecordIndicatorReceived event.

Parameters callback (Function) – Callback to delete.

Raises ValueError – If callback is not in the callback list of
RouteRecordIndicatorReceived event.

del_route_info_callback(callback)
Deletes a callback for the callback list of RouteInformationReceived event.

Parameters callback (Function) – Callback to delete.

Raises ValueError – If callback is not in the callback list of
RouteInformationReceived event.

del_fs_frame_received_callback(callback)
Deletes a callback for the callback list of FileSystemFrameReceived event.

Parameters callback (Function) – Callback to delete.

Raises ValueError – If callback is not in the callback list of
FileSystemFrameReceived event.

998 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_packet_received_callbacks()
Returns the list of registered callbacks for received packets.

Returns List of PacketReceived events.

Return type List

get_packet_received_from_callbacks()
Returns the list of registered callbacks for received packets.

Returns List of PacketReceivedFrom events.

Return type List

get_data_received_callbacks()
Returns the list of registered callbacks for received data.

Returns List of DataReceived events.

Return type List

get_modem_status_received_callbacks()
Returns the list of registered callbacks for received modem status.

Returns List of ModemStatusReceived events.

Return type List

get_io_sample_received_callbacks()
Returns the list of registered callbacks for received IO samples.

Returns List of IOSampleReceived events.

Return type List

get_explicit_data_received_callbacks()
Returns the list of registered callbacks for received explicit data.

Returns List of ExplicitDataReceived events.

Return type List

get_ip_data_received_callbacks()
Returns the list of registered callbacks for received IP data.

Returns List of IPDataReceived events.

Return type List

get_sms_received_callbacks()
Returns the list of registered callbacks for received SMS.

Returns List of SMSReceived events.

Return type List

get_user_data_relay_received_callbacks()
Returns the list of registered callbacks for received user data relay.

Returns List of RelayDataReceived events.

Return type List

get_bluetooth_data_received_callbacks()
Returns the list of registered callbacks for received Bluetooth data.

Returns List of BluetoothDataReceived events.

2.6. API reference 999



XBee Python Library Documentation, Release 1.4.0

Return type List

get_micropython_data_received_callbacks()
Returns the list of registered callbacks for received MicroPython data.

Returns List of MicroPythonDataReceived events.

Return type List

get_socket_state_received_callbacks()
Returns the list of registered callbacks for received socket state.

Returns List of SocketStateReceived events.

Return type List

get_socket_data_received_callbacks()
Returns the list of registered callbacks for received socket data.

Returns List of SocketDataReceived events.

Return type List

get_socket_data_received_from_callbacks()
Returns the list of registered callbacks for received socket data from.

Returns List of SocketDataReceivedFrom events.

Return type List

get_route_record_received_callbacks()
Returns the list of registered callbacks for received route records.

Returns List of RouteRecordIndicatorReceived events.

Return type List

get_route_info_callbacks()
Returns the list of registered callbacks for received route information packets.

Returns List of RouteInformationReceived events.

Return type List

get_fs_frame_received_callbacks()
Returns the list of registered callbacks for received file system packets.

Returns List of FileSystemFrameReceived events.

Return type List

ident
Thread identifier of this thread or None if it has not been started.

This is a nonzero integer. See the get_ident() function. Thread identifiers may be recycled when a thread
exits and another thread is created. The identifier is available even after the thread has exited.

isAlive()
Return whether the thread is alive.

This method is deprecated, use is_alive() instead.

is_alive()
Return whether the thread is alive.

This method returns True just before the run() method starts until just after the run() method terminates.
The module function enumerate() returns a list of all alive threads.

1000 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

join(timeout=None)
Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is called terminates – either normally
or through an unhandled exception or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a floating point number specifying a
timeout for the operation in seconds (or fractions thereof). As join() always returns None, you must call
is_alive() after join() to decide whether a timeout happened – if the thread is still alive, the join() call
timed out.

When the timeout argument is not present or None, the operation will block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current thread as that would cause a deadlock.
It is also an error to join() a thread before it has been started and attempts to do so raises the same
exception.

name
A string used for identification purposes only.

It has no semantics. Multiple threads may be given the same name. The initial name is set by the
constructor.

start()
Start the thread’s activity.

It must be called at most once per thread object. It arranges for the object’s run() method to be invoked in
a separate thread of control.

This method will raise a RuntimeError if called more than once on the same thread object.

class digi.xbee.reader.XBeeQueue(maxsize=10)
Bases: queue.Queue

This class represents an XBee queue.

Class constructor. Instantiates a new XBeeQueue with the provided parameters.
Parameters maxsize (Integer, optional, default=10) – Maximum size of the

queue.
get(block=True, timeout=None)

Returns the first element of the queue if there is some element ready before timeout expires, in case of the
timeout is not None.

If timeout is None, this method is non-blocking. In this case, if there is not any element available, it
returns None, otherwise it returns an XBeeAPIPacket.

Parameters

• block (Boolean) – True to block during timeout waiting for a packet, False to
not block.

• timeout (Integer, optional) – timeout in seconds.

Returns

Packet if there is any packet available before timeout expires. If timeout is None, the
returned value may be None.

Return type XBeeAPIPacket

Raises TimeoutException – If timeout is not None and there is not any packet available
before the timeout expires.

2.6. API reference 1001



XBee Python Library Documentation, Release 1.4.0

get_by_remote(remote, timeout=None)
Returns the first element of the queue that had been sent by remote, if there is some in the specified
timeout.

If timeout is None, this method is non-blocking. In this case, if there is not any packet sent by remote in
the queue, it returns None, otherwise it returns an XBeeAPIPacket.

Parameters

• remote (RemoteXBeeDevice) – Remote XBee to get its first element from
queue.

• timeout (Integer, optional, default=`None`) – Timeout in sec-
onds.

Returns

If there is any packet available before the timeout expires. If timeout is None, the
returned value may be None.

Return type XBeeAPIPacket

Raises TimeoutException – If timeout is not None and there is not any packet available
that was sent by remote before the timeout expires.

get_by_ip(ip_addr, timeout=None)
Returns the first IP data packet from the queue whose IP address matches the provided address.

If timeout is None, this method is non-blocking. In this case, if there is not any packet sent by ip_addr in
the queue, it returns None, otherwise it returns an XBeeAPIPacket.

Parameters

• ip_addr (ipaddress.IPv4Address) – IP address to look for in the list of
packets.

• timeout (Integer, optional, default=`None`) – Timeout in sec-
onds.

Returns

If there is any packet available before the timeout expires. If timeout is None, the
returned value may be None.

Return type XBeeAPIPacket

Raises TimeoutException – If timeout is not None and there is not any packet available
that was sent by ip_addr before the timeout expires.

empty()
Return True if the queue is empty, False otherwise (not reliable!).

This method is likely to be removed at some point. Use qsize() == 0 as a direct substitute, but be aware
that either approach risks a race condition where a queue can grow before the result of empty() or qsize()
can be used.

To create code that needs to wait for all queued tasks to be completed, the preferred technique is to use
the join() method.

full()
Return True if the queue is full, False otherwise (not reliable!).

This method is likely to be removed at some point. Use qsize() >= n as a direct substitute, but be aware
that either approach risks a race condition where a queue can shrink before the result of full() or qsize()
can be used.

1002 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

get_by_id(frame_id, timeout=None)
Returns the first packet from the queue whose frame ID matches the provided one.

If timeout is None, this method is non-blocking. In this case, if there is not any received packet with the
provided frame ID in the queue, it returns None, otherwise it returns an XBeeAPIPacket.

Parameters

• frame_id (Integer) – Frame ID to look for in the list of packets.

• timeout (Integer, optional, default=`None`) – Timeout in sec-
onds.

Returns

If there is any packet available before the timeout expires. If timeout is None, the
returned value may be None.

Return type XBeeAPIPacket

Raises TimeoutException – If timeout is not None and there is not any packet available
that matches the provided frame ID before the timeout expires.

get_nowait()
Remove and return an item from the queue without blocking.

Only get an item if one is immediately available. Otherwise raise the Empty exception.

join()
Blocks until all items in the Queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down
whenever a consumer thread calls task_done() to indicate the item was retrieved and all work on it is
complete.

When the count of unfinished tasks drops to zero, join() unblocks.

put(item, block=True, timeout=None)
Put an item into the queue.

If optional args ‘block’ is true and ‘timeout’ is None (the default), block if necessary until a free slot is
available. If ‘timeout’ is a non-negative number, it blocks at most ‘timeout’ seconds and raises the Full
exception if no free slot was available within that time. Otherwise (‘block’ is false), put an item on the
queue if a free slot is immediately available, else raise the Full exception (‘timeout’ is ignored in that
case).

put_nowait(item)
Put an item into the queue without blocking.

Only enqueue the item if a free slot is immediately available. Otherwise raise the Full exception.

qsize()
Return the approximate size of the queue (not reliable!).

task_done()
Indicate that a formerly enqueued task is complete.

Used by Queue consumer threads. For each get() used to fetch a task, a subsequent call to task_done()
tells the queue that the processing on the task is complete.

If a join() is currently blocking, it will resume when all items have been processed (meaning that a
task_done() call was received for every item that had been put() into the queue).

Raises a ValueError if called more times than there were items placed in the queue.

2.6. API reference 1003



XBee Python Library Documentation, Release 1.4.0

flush()
Clears the queue.

digi.xbee.recovery module

digi.xbee.recovery.recover_device(target)
Recovers the XBee from an unknown state and leaves if configured for normal operations.

Parameters target (String or XBeeDevice) – Target of the recovery operation.

Raises RecoveryException – If there is any error performing the recovery action.

digi.xbee.recovery.enter_at_command_mode(port)
Attempts to put this device in AT Command mode.

Parameters port – The serial port where the XBee is connected to.

Returns

True if the XBee has entered in AT command mode, False otherwise.

Return type Boolean

Raises

• SerialTimeoutException – If there is any error trying to write to the serial port.

• InvalidOperatingModeException – If the XBee is in API mode.

digi.xbee.sender module

class digi.xbee.sender.PacketSender(xbee)
Bases: object

Class to send XBee packets.

Class constructor. Instantiates a new PacketSender object with the provided parameters.
Parameters xbee (XBeeDevice) – The XBee.

send_packet(packet)
Sends a packet to the XBee. The packet to send is escaped depending on the current operating mode.

Parameters packet (XBeePacket) – The packet to send.

Raises

• InvalidOperatingModeException – If the XBee device’s operating mode
is not API or ESCAPED API. This method only checks the cached value of the
operating mode.

• XBeeException – if the XBee device’s communication interface is closed.

See also:

XBeePacket

is_op_mode_valid(value)
Returns True if the provided value is a valid operating mode for the library.

Parameters value (Bytearray) – The value to check.

1004 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns True for a valid value, False otherwise.

Return type Boolean

at_response_received_cb(response)
Callback to deal with AT command responses and update the corresponding node. Only for internal use.

Parameters ( (response) – class: .XBeeAPIPacket): The received API packet.

class digi.xbee.sender.SyncRequestSender(xbee, packet_to_send, timeout)
Bases: object

Class to synchronously send XBee packets. This means after sending the packet it waits for its response, if the
package includes a frame ID, otherwise it does not wait.

Class constructor. Instantiates a new SyncRequestSender object with the provided parameters.
Parameters

• xbee (XBeeDevice) – The local XBee to send the packet.

• packet_to_send (XBeePacket) – The packet to transmit.

• timeout (Integer) – Number of seconds to wait. -1 to wait indefinitely.
send()

Sends the packet and waits for its corresponding response.

Returns Received response packet.

Return type XBeePacket

Raises

• InvalidOperatingModeException – If the XBee device’s operating mode
is not API or ESCAPED API. This method only checks the cached value of the
operating mode.

• TimeoutException – If the response is not received in the configured timeout.

• XBeeException – If the XBee device’s communication interface is closed.

See also:

XBeePacket

xbee
Returns the local XBee to send the packet.

Returns Local XBee device.

Return type XBeeDevice

packet
Returns the packet to send.

Returns Packet to send.

Return type XBeePacket

timeout
Returns the maximum number of seconds to wait for a response.

Returns Timeout to wait for a response.

Return type Integer

2.6. API reference 1005



XBee Python Library Documentation, Release 1.4.0

digi.xbee.serial module

class digi.xbee.serial.FlowControl
Bases: enum.Enum

This class represents all available flow controls.

class digi.xbee.serial.XBeeSerialPort(baud_rate, port, data_bits=<sphinx.ext.autodoc.importer._MockObject
object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject
object>, parity=<sphinx.ext.autodoc.importer._MockObject
object>, flow_control=<FlowControl.NONE: None>,
timeout=0.1)

Bases: sphinx.ext.autodoc.importer._MockObject, digi.xbee.comm_interface.
XBeeCommunicationInterface

This class extends the functionality of Serial class (PySerial).

It also introduces a minor change in its behaviour: the serial port is not automatically open when instantiated,
only when calling open().

See also:

_PySerial: https://github.com/pyserial/pyserial

Class constructor. Instantiates a new XBeeSerialPort object with the given port parameters.
Parameters

• baud_rate (Integer) – Serial port baud rate.

• port (String) – Serial port name to use.

• data_bits (Integer, optional, default=8) – Serial data bits.

• stop_bits (Float, optional, default=1) – sSerial stop bits.

• parity (Char, optional, default=`N`) – Parity. Default to ‘N’ (None).

• flow_control (Integer, optional, default=`None`) – Flow control.

• timeout (Integer, optional, default=0.1) – Read timeout (seconds).
See also:

_PySerial: https://github.com/pyserial/pyserial

is_interface_open
Returns whether the underlying hardware communication interface is active.

Returns Boolean. True if the interface is active, False otherwise.

write_frame(frame)
Writes an XBee frame to the underlying hardware interface.

Subclasses may throw specific exceptions to signal implementation specific hardware errors.

Parameters frame (Bytearray) – The XBee API frame packet to write. If the bytearray
does not correctly represent an XBee frame, the behaviour is undefined.

1006 Chapter 2. Contents

https://github.com/pyserial/pyserial
https://github.com/pyserial/pyserial


XBee Python Library Documentation, Release 1.4.0

read_byte()
Synchronous. Reads one byte from serial port.

Returns The read byte.

Return type Integer

Raises TimeoutException – If there is no bytes ins serial port buffer.

read_bytes(num_bytes)
Synchronous. Reads the specified number of bytes from the serial port.

Parameters num_bytes (Integer) – the number of bytes to read.

Returns the read bytes.

Return type Bytearray

Raises TimeoutException – if the number of bytes read is less than num_bytes.

quit_reading()
Makes the thread (if any) blocking on wait_for_frame return.

If a thread was blocked on wait_for_frame, this method blocks (for a maximum of ‘timeout’ seconds)
until the blocked thread is resumed.

wait_for_frame(operating_mode)
Reads the next packet. Starts to read when finds the start delimiter. The last byte read is the checksum.

If there is something in the COM buffer after the start delimiter, this method discards it.

If the method can’t read a complete and correct packet, it will return None.

Parameters operating_mode (OperatingMode) – The operating mode in which the
packet should be read.

Returns

The read packet as bytearray if a packet is read, None otherwise.

Return type Bytearray

read_existing()
Asynchronous. Reads all bytes in the serial port buffer. May read 0 bytes.

Returns The bytes read.

Return type Bytearray

get_read_timeout()
Returns the serial port read timeout.

Returns Read timeout in seconds.

Return type Integer

set_read_timeout(read_timeout)
Sets the serial port read timeout in seconds.

Parameters read_timeout (Integer) – The new serial port read timeout in seconds.

set_baudrate(new_baudrate)
Changes the serial port baudrate.

Parameters new_baudrate (Integer) – The new baudrate to set.

purge_port()
Purges the serial port by cleaning the input and output buffers.

2.6. API reference 1007



XBee Python Library Documentation, Release 1.4.0

apply_profile(xbee, profile_path, timeout=None, progress_callback=None)
Applies the given XBee profile to the XBee device.

Parameters

• xbee (AbstractXBeeDevice) – Local or remote XBee node to be updated.

• profile_path (String) – Path of the XBee profile file to apply.

• timeout (Integer, optional) – Maximum time to wait for target read op-
erations during the apply profile.

• progress_callback (Function, optional) – Function to execute to re-
ceive progress information. Receives two arguments:

– The current apply profile task as a String

– The current apply profile task percentage as an Integer

Raises

• XBeeException – If the local XBee is not open.

• InvalidOperatingModeException – If the local XBee operating mode is
invalid.

• UpdateProfileException – If there is any error applying the XBee profile.

• OperationNotSupportedException – If XBee profiles are not supported
in the XBee.

close()
Terminates the underlying hardware communication interface.

Subclasses may throw specific exceptions to signal implementation specific hardware errors.

get_local_xbee_info()
Returns a tuple with the local XBee information.

This is used when opening the local XBee. If this information is provided, it is used as internal XBee
data, if not provided, the data is requested to the XBee.

Returns

Tuple with local XBee information: operation mode (int), hardware version (int),
firmware version (int), 64-bit address (string), 16-bit address (string), node identi-
fier (string), and role (int).

Return type Tuple

get_network(local_xbee)
Returns the XBeeNetwork object associated to the XBeeDevice associated to this XBeeCommunication-
Interface.

Some XBeeCommunicationInterface implementations may need to handle the ‘XBeeNetwork associated
to the XBeeDevice themselves. If that is the case, a implementation-specific XBeeNetwork object that
complains to the generic XBeeNetwork class will be returned. Otherwise, this method returns None and
the associated XBeeNetwork is handled as for a serial-connected XBeeDevice.

Parameters local_xbee (XBeeDevice) – The local XBee device.

Returns

class: .XBeeNetwork: None if the XBeeNetwork should handled as usual, other-
wise a XBeeNetwork object.

1008 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

open()
Establishes the underlying hardware communication interface.

Subclasses may throw specific exceptions to signal implementation specific errors.

supports_apply_profile()
Returns if the interface supports the apply profile feature.

Returns True if it is supported, False otherwise.

Return type Boolean

supports_update_firmware()
Returns if the interface supports the firmware update feature.

Returns True if it is supported, False otherwise.

Return type Boolean

timeout
Returns the read timeout.

Returns Read timeout in seconds.

Return type Integer

update_firmware(xbee, xml_fw_file, xbee_fw_file=None, bootloader_fw_file=None, time-
out=None, progress_callback=None)

Performs a firmware update operation of the provided XBee.

Parameters

• xbee (AbstractXBeeDevice) – Local or remote XBee node to be updated.

• xml_fw_file (String) – Path of the XML file that describes the firmware to
upload.

• xbee_fw_file (String, optional) – Location of the XBee binary
firmware file.

• bootloader_fw_file (String, optional) – Location of the bootloader
binary firmware file.

• timeout (Integer, optional) – Maximum time to wait for target read op-
erations during the update process.

• progress_callback (Function, optional) – Function to execute to re-
ceive progress information. Receives two arguments:

– The current update task as a String

– The current update task percentage as an Integer

Raises

• XBeeException – If the local XBee is not open.

• InvalidOperatingModeException – If the local XBee operating mode is
invalid.

• OperationNotSupportedException – If the firmware update is not sup-
ported in the XBee.

• FirmwareUpdateException – If there is any error performing the firmware
update.

2.6. API reference 1009



XBee Python Library Documentation, Release 1.4.0

digi.xbee.xsocket module

class digi.xbee.xsocket.socket(xbee_device, ip_protocol=<IPProtocol.TCP: (1, ’TCP’)>)
Bases: object

This class represents an XBee socket and provides methods to create, connect, bind and close a socket, as well
as send and receive data with it.

Class constructor. Instantiates a new XBee socket object for the given XBee device.
Parameters

• xbee_device (XBeeDevice) – XBee device of the socket.

• ip_protocol (IPProtocol) – protocol of the socket.

Raises

• ValueError – if xbee_device is None or if xbee_device is not an instance of Cellu-
larDevice.

• ValueError – if ip_protocol is None.

• XBeeException – if the connection with the XBee device is not open.
connect(address)

Connects to a remote socket at the given address.

Parameters address (Tuple) – A pair (host, port) where host is the domain name or
string representation of an IPv4 and port is the numeric port value.

Raises

• TimeoutException – If the connect response is not received in the configured
timeout.

• ValueError – If address is None or not a pair (host, port).

• ValueError – If port is less than 1 or greater than 65535.

• XBeeException – If the connection with the XBee device is not open.

• XBeeSocketException – If the connect status is not SUCCESS.

bind(address)
Binds the socket to the given address. The socket must not already be bound.

Parameters address (Tuple) – A pair (host, port) where host is the local interface (not
used) and port is the numeric port value.

Raises

• TimeoutException – If the bind response is not received in the configured
timeout.

• ValueError – If address is None or not a pair (host, port).

• ValueError – If port is less than 1 or greater than 65535.

• XBeeException – If the connection with the XBee device is not open.

• XBeeSocketException – If the bind status is not SUCCESS.

• XBeeSocketException – If the socket is already bound.

listen(backlog=1)
Enables a server to accept connections.

1010 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Parameters backlog (Integer, optional) – The number of unaccepted connec-
tions that the system will allow before refusing new connections. If specified, it must
be at least 0 (if it is lower, it is set to 0).

Raises XBeeSocketException – If the socket is not bound.

accept()
Accepts a connection. The socket must be bound to an address and listening for connections.

Returns

A pair (conn, address) where conn is a new socket object usable to send and receive
data on the connection, and address is a pair (host, port) with the address bound to
the socket on the other end of the connection.

Return type Tuple

Raises

• XBeeException – If the connection with the XBee device is not open.

• XBeeSocketException – If the socket is not bound or not listening.

gettimeout()
Returns the configured socket timeout in seconds.

Returns The configured timeout in seconds.

Return type Integer

settimeout(timeout)
Sets the socket timeout in seconds.

Parameters timeout (Integer) – The new socket timeout in seconds.

getblocking()
Returns whether the socket is in blocking mode or not.

Returns True if the socket is in blocking mode, False otherwise.

Return type Boolean

setblocking(flag)
Sets the socket in blocking or non-blocking mode.

Parameters flag (Boolean) – True to set the socket in blocking mode, False to set it in
no blocking mode and configure the timeout with the default value (5 seconds).

recv(bufsize)
Receives data from the socket.

Parameters bufsize (Integer) – The maximum amount of data to be received at once.

Returns The data received.

Return type Bytearray

Raises ValueError – If bufsize is less than 1.

recvfrom(bufsize)
Receives data from the socket.

Parameters bufsize (Integer) – The maximum amount of data to be received at once.

Returns

2.6. API reference 1011



XBee Python Library Documentation, Release 1.4.0

Pair containing the data received (Bytearray) and the address of the socket sending
the data. The address is also a pair (host, port) where host is the string representa-
tion of an IPv4 and port is the numeric port value.

Return type Tuple (Bytearray, Tuple)

Raises ValueError – If bufsize is less than 1.

send(data)
Sends data to the socket and returns the number of bytes sent. The socket must be connected to a remote
socket. Applications are responsible for checking that all data has been sent; if only some of the data was
transmitted, the application needs to attempt delivery of the remaining data.

Parameters data (Bytearray) – The data to send.

Returns The number of bytes sent.

Return type Integer

Raises

• ValueError – If the data to send is None.

• ValueError – If the number of bytes to send is 0.

• XBeeException – If the connection with the XBee device is not open.

• XBeeSocketException – If the socket is not valid.

• XBeeSocketException – If the socket is not open.

sendall(data)
Sends data to the socket. The socket must be connected to a remote socket. Unlike send(), this method
continues to send data from bytes until either all data has been sent or an error occurs. None is returned
on success. On error, an exception is raised, and there is no way to determine how much data, if any, was
successfully sent.

Parameters data (Bytearray) – The data to send.

Raises

• TimeoutException – If the send status response is not received in the config-
ured timeout.

• ValueError – If the data to send is None.

• ValueError – If the number of bytes to send is 0.

• XBeeException – If the connection with the XBee device is not open.

• XBeeSocketException – If the socket is not valid.

• XBeeSocketException – If the send status is not SUCCESS.

• XBeeSocketException – If the socket is not open.

sendto(data, address)
Sends data to the socket. The socket should not be connected to a remote socket, since the destination
socket is specified by address.

Parameters

• data (Bytearray) – The data to send.

• address (Tuple) – The address of the destination socket. It must be a pair (host,
port) where host is the domain name or string representation of an IPv4 and port is
the numeric port value.

1012 Chapter 2. Contents



XBee Python Library Documentation, Release 1.4.0

Returns The number of bytes sent.

Return type Integer

Raises

• TimeoutException – If the send status response is not received in the config-
ured timeout.

• ValueError – If the data to send is None.

• ValueError – If the number of bytes to send is 0.

• XBeeException – If the connection with the XBee device is not open.

• XBeeSocketException – If the socket is already open.

• XBeeSocketException – If the send status is not SUCCESS.

close()
Closes the socket.

Raises

• TimeoutException – If the close response is not received in the configured
timeout.

• XBeeException – If the connection with the XBee device is not open.

• XBeeSocketException – If the close status is not SUCCESS.

setsocketopt(option, value)
Sets the value of the given socket option.

Parameters

• option (SocketOption) – The socket option to set its value.

• value (Bytearray) – The new value of the socket option.

Raises

• TimeoutException – If the socket option response is not received in the con-
figured timeout.

• ValueError – If the option to set is None.

• ValueError – If the value of the option is None.

• XBeeException – If the connection with the XBee device is not open.

• XBeeSocketException – If the socket option response status is not SUC-
CESS.

getsocketopt(option)
Returns the value of the given socket option.

Parameters option (SocketOption) – The socket option to get its value.

Returns The value of the socket option.

Return type Bytearray

Raises

• TimeoutException – If the socket option response is not received in the con-
figured timeout.

• ValueError – If the option to set is None.

2.6. API reference 1013



XBee Python Library Documentation, Release 1.4.0

• XBeeException – If the connection with the XBee device is not open.

• XBeeSocketException – If the socket option response status is not SUC-
CESS.

add_socket_state_callback(callback)
Adds a callback for the event digi.xbee.reader.SocketStateReceived.

Parameters callback (Function) – The callback. Receives two arguments.

• The socket ID as an Integer.

• The state received as a SocketState

del_socket_state_callback(callback)
Deletes a callback for the callback list of digi.xbee.reader.SocketStateReceived event.

Parameters callback (Function) – The callback to delete.

Raises ValueError – If callback is not in the callback list of digi.xbee.reader.
SocketStateReceived event.

get_sock_info()
Returns the information of this socket.

Returns The socket information.

Return type SocketInfo

Raises

• InvalidOperatingModeException – If the XBee device’s operating mode
is not API or ESCAPED API. This method only checks the cached value of the
operating mode.

• TimeoutException – If the response is not received before the read timeout
expires.

• XBeeException – If the XBee device’s communication interface is closed.

See also:

SocketInfo

is_connected
Returns whether the socket is connected or not.

Returns True if the socket is connected False otherwise.

Return type Boolean

1014 Chapter 2. Contents



CHAPTER 3

Indices and tables

• genindex

• modindex

• search

1015



XBee Python Library Documentation, Release 1.4.0

1016 Chapter 3. Indices and tables



CHAPTER 4

License

Copyright 2017-2021, Digi International Inc.

This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the MPL was not
distributed with this file, you can obtain one at http://mozilla.org/MPL/2.0/.

THE SOFTWARE IS PROVIDED “AS IS” AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH RE-
GARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Digi International Inc. 11001 Bren Road East, Minnetonka, MN 55343

1017

http://mozilla.org/MPL/2.0/


XBee Python Library Documentation, Release 1.4.0

1018 Chapter 4. License



Python Module Index

d
digi, 124
digi.xbee, 124
digi.xbee.comm_interface, 464
digi.xbee.devices, 467
digi.xbee.exception, 934
digi.xbee.filesystem, 937
digi.xbee.firmware, 954
digi.xbee.io, 957
digi.xbee.models, 124
digi.xbee.models.accesspoint, 124
digi.xbee.models.address, 195
digi.xbee.models.atcomm, 126
digi.xbee.models.filesystem, 131
digi.xbee.models.hw, 187
digi.xbee.models.info, 190
digi.xbee.models.message, 199
digi.xbee.models.mode, 192
digi.xbee.models.options, 203
digi.xbee.models.protocol, 211
digi.xbee.models.status, 213
digi.xbee.models.zdo, 227
digi.xbee.packets, 236
digi.xbee.packets.aft, 236
digi.xbee.packets.base, 238
digi.xbee.packets.cellular, 247
digi.xbee.packets.common, 253
digi.xbee.packets.devicecloud, 299
digi.xbee.packets.digimesh, 318
digi.xbee.packets.factory, 455
digi.xbee.packets.filesystem, 323
digi.xbee.packets.network, 336
digi.xbee.packets.raw, 343
digi.xbee.packets.relay, 367
digi.xbee.packets.socket, 374
digi.xbee.packets.wifi, 425
digi.xbee.packets.zigbee, 437
digi.xbee.profile, 963
digi.xbee.reader, 971

digi.xbee.recovery, 1004
digi.xbee.sender, 1004
digi.xbee.serial, 1006
digi.xbee.util, 457
digi.xbee.util.utils, 457
digi.xbee.util.xmodem, 461
digi.xbee.xsocket, 1010

1019



XBee Python Library Documentation, Release 1.4.0

1020 Python Module Index



Index

A
AbstractXBeeDevice (class in digi.xbee.devices),

467
accept() (digi.xbee.xsocket.socket method), 1011
AccessPoint (class in digi.xbee.models.accesspoint),

124
ack_timeout_count

(digi.xbee.packets.digimesh.RouteInformationPacket
attribute), 320

actual_offset (digi.xbee.models.filesystem.WriteFileCmdResponse
attribute), 151

ADC (digi.xbee.io.IOMode attribute), 962
add_bluetooth_data_received_callback()

(digi.xbee.devices.CellularDevice method), 673
add_bluetooth_data_received_callback()

(digi.xbee.devices.DigiMeshDevice method),
547

add_bluetooth_data_received_callback()
(digi.xbee.devices.DigiPointDevice method),
579

add_bluetooth_data_received_callback()
(digi.xbee.devices.IPDevice method), 647

add_bluetooth_data_received_callback()
(digi.xbee.devices.LPWANDevice method), 697

add_bluetooth_data_received_callback()
(digi.xbee.devices.NBIoTDevice method), 722

add_bluetooth_data_received_callback()
(digi.xbee.devices.Raw802Device method), 515

add_bluetooth_data_received_callback()
(digi.xbee.devices.WiFiDevice method), 755

add_bluetooth_data_received_callback()
(digi.xbee.devices.XBeeDevice method), 491

add_bluetooth_data_received_callback()
(digi.xbee.devices.ZigBeeDevice method), 616

add_bluetooth_data_received_callback()
(digi.xbee.reader.PacketListener method), 995

add_data_received_callback()
(digi.xbee.devices.CellularDevice method),
673

add_data_received_callback()
(digi.xbee.devices.DigiMeshDevice method),
547

add_data_received_callback()
(digi.xbee.devices.DigiPointDevice method),
579

add_data_received_callback()
(digi.xbee.devices.IPDevice method), 647

add_data_received_callback()
(digi.xbee.devices.LPWANDevice method),
697

add_data_received_callback()
(digi.xbee.devices.NBIoTDevice method),
723

add_data_received_callback()
(digi.xbee.devices.Raw802Device method),
515

add_data_received_callback()
(digi.xbee.devices.WiFiDevice method), 755

add_data_received_callback()
(digi.xbee.devices.XBeeDevice method),
491

add_data_received_callback()
(digi.xbee.devices.ZigBeeDevice method),
616

add_data_received_callback()
(digi.xbee.reader.PacketListener method),
994

add_device_discovered_callback()
(digi.xbee.devices.DigiMeshNetwork method),
908

add_device_discovered_callback()
(digi.xbee.devices.DigiPointNetwork method),
919

add_device_discovered_callback()
(digi.xbee.devices.Raw802Network method),
896

add_device_discovered_callback()
(digi.xbee.devices.XBeeNetwork method),
877

1021



XBee Python Library Documentation, Release 1.4.0

add_device_discovered_callback()
(digi.xbee.devices.ZigBeeNetwork method),
885

add_discovery_process_finished_callback()
(digi.xbee.devices.DigiMeshNetwork method),
908

add_discovery_process_finished_callback()
(digi.xbee.devices.DigiPointNetwork method),
919

add_discovery_process_finished_callback()
(digi.xbee.devices.Raw802Network method),
897

add_discovery_process_finished_callback()
(digi.xbee.devices.XBeeNetwork method), 878

add_discovery_process_finished_callback()
(digi.xbee.devices.ZigBeeNetwork method),
885

add_end_discovery_scan_callback()
(digi.xbee.devices.DigiMeshNetwork method),
908

add_end_discovery_scan_callback()
(digi.xbee.devices.DigiPointNetwork method),
920

add_end_discovery_scan_callback()
(digi.xbee.devices.Raw802Network method),
897

add_end_discovery_scan_callback()
(digi.xbee.devices.XBeeNetwork method),
877

add_end_discovery_scan_callback()
(digi.xbee.devices.ZigBeeNetwork method),
886

add_expl_data_received_callback()
(digi.xbee.devices.CellularDevice method),
673

add_expl_data_received_callback()
(digi.xbee.devices.DigiMeshDevice method),
547

add_expl_data_received_callback()
(digi.xbee.devices.DigiPointDevice method),
579

add_expl_data_received_callback()
(digi.xbee.devices.IPDevice method), 647

add_expl_data_received_callback()
(digi.xbee.devices.LPWANDevice method),
697

add_expl_data_received_callback()
(digi.xbee.devices.NBIoTDevice method),
723

add_expl_data_received_callback()
(digi.xbee.devices.Raw802Device method),
515

add_expl_data_received_callback()
(digi.xbee.devices.WiFiDevice method), 755

add_expl_data_received_callback()
(digi.xbee.devices.XBeeDevice method),
491

add_expl_data_received_callback()
(digi.xbee.devices.ZigBeeDevice method),
616

add_explicit_data_received_callback()
(digi.xbee.reader.PacketListener method), 994

add_fs_frame_received_callback()
(digi.xbee.devices.CellularDevice method),
673

add_fs_frame_received_callback()
(digi.xbee.devices.DigiMeshDevice method),
547

add_fs_frame_received_callback()
(digi.xbee.devices.DigiPointDevice method),
579

add_fs_frame_received_callback()
(digi.xbee.devices.IPDevice method), 647

add_fs_frame_received_callback()
(digi.xbee.devices.LPWANDevice method),
697

add_fs_frame_received_callback()
(digi.xbee.devices.NBIoTDevice method),
723

add_fs_frame_received_callback()
(digi.xbee.devices.Raw802Device method),
515

add_fs_frame_received_callback()
(digi.xbee.devices.WiFiDevice method), 755

add_fs_frame_received_callback()
(digi.xbee.devices.XBeeDevice method),
492

add_fs_frame_received_callback()
(digi.xbee.devices.ZigBeeDevice method),
616

add_fs_frame_received_callback()
(digi.xbee.reader.PacketListener method),
996

add_if_not_exist()
(digi.xbee.devices.DigiMeshNetwork method),
909

add_if_not_exist()
(digi.xbee.devices.DigiPointNetwork method),
920

add_if_not_exist()
(digi.xbee.devices.Raw802Network method),
897

add_if_not_exist()
(digi.xbee.devices.XBeeNetwork method),
883

add_if_not_exist()
(digi.xbee.devices.ZigBeeNetwork method),
886

1022 Index



XBee Python Library Documentation, Release 1.4.0

add_init_discovery_scan_callback()
(digi.xbee.devices.DigiMeshNetwork method),
909

add_init_discovery_scan_callback()
(digi.xbee.devices.DigiPointNetwork method),
920

add_init_discovery_scan_callback()
(digi.xbee.devices.Raw802Network method),
898

add_init_discovery_scan_callback()
(digi.xbee.devices.XBeeNetwork method), 877

add_init_discovery_scan_callback()
(digi.xbee.devices.ZigBeeNetwork method),
886

add_io_sample_received_callback()
(digi.xbee.devices.CellularDevice method),
672

add_io_sample_received_callback()
(digi.xbee.devices.DigiMeshDevice method),
548

add_io_sample_received_callback()
(digi.xbee.devices.DigiPointDevice method),
579

add_io_sample_received_callback()
(digi.xbee.devices.IPDevice method), 648

add_io_sample_received_callback()
(digi.xbee.devices.LPWANDevice method),
698

add_io_sample_received_callback()
(digi.xbee.devices.NBIoTDevice method),
723

add_io_sample_received_callback()
(digi.xbee.devices.Raw802Device method),
515

add_io_sample_received_callback()
(digi.xbee.devices.WiFiDevice method), 755

add_io_sample_received_callback()
(digi.xbee.devices.XBeeDevice method),
491

add_io_sample_received_callback()
(digi.xbee.devices.ZigBeeDevice method),
617

add_io_sample_received_callback()
(digi.xbee.reader.PacketListener method),
994

add_ip_data_received_callback()
(digi.xbee.devices.CellularDevice method),
673

add_ip_data_received_callback()
(digi.xbee.devices.IPDevice method), 644

add_ip_data_received_callback()
(digi.xbee.devices.LPWANDevice method),
698

add_ip_data_received_callback()

(digi.xbee.devices.NBIoTDevice method),
723

add_ip_data_received_callback()
(digi.xbee.devices.WiFiDevice method), 755

add_ip_data_received_callback()
(digi.xbee.reader.PacketListener method),
995

add_micropython_data_received_callback()
(digi.xbee.devices.CellularDevice method), 673

add_micropython_data_received_callback()
(digi.xbee.devices.DigiMeshDevice method),
548

add_micropython_data_received_callback()
(digi.xbee.devices.DigiPointDevice method),
579

add_micropython_data_received_callback()
(digi.xbee.devices.IPDevice method), 648

add_micropython_data_received_callback()
(digi.xbee.devices.LPWANDevice method), 698

add_micropython_data_received_callback()
(digi.xbee.devices.NBIoTDevice method), 723

add_micropython_data_received_callback()
(digi.xbee.devices.Raw802Device method), 516

add_micropython_data_received_callback()
(digi.xbee.devices.WiFiDevice method), 755

add_micropython_data_received_callback()
(digi.xbee.devices.XBeeDevice method), 491

add_micropython_data_received_callback()
(digi.xbee.devices.ZigBeeDevice method), 617

add_micropython_data_received_callback()
(digi.xbee.reader.PacketListener method), 995

add_modem_status_received_callback()
(digi.xbee.devices.CellularDevice method), 674

add_modem_status_received_callback()
(digi.xbee.devices.DigiMeshDevice method),
548

add_modem_status_received_callback()
(digi.xbee.devices.DigiPointDevice method),
579

add_modem_status_received_callback()
(digi.xbee.devices.IPDevice method), 648

add_modem_status_received_callback()
(digi.xbee.devices.LPWANDevice method), 698

add_modem_status_received_callback()
(digi.xbee.devices.NBIoTDevice method), 723

add_modem_status_received_callback()
(digi.xbee.devices.Raw802Device method), 516

add_modem_status_received_callback()
(digi.xbee.devices.WiFiDevice method), 756

add_modem_status_received_callback()
(digi.xbee.devices.XBeeDevice method), 491

add_modem_status_received_callback()
(digi.xbee.devices.ZigBeeDevice method), 617

add_modem_status_received_callback()

Index 1023



XBee Python Library Documentation, Release 1.4.0

(digi.xbee.reader.PacketListener method), 994
add_network_modified_callback()

(digi.xbee.devices.DigiMeshNetwork method),
909

add_network_modified_callback()
(digi.xbee.devices.DigiPointNetwork method),
921

add_network_modified_callback()
(digi.xbee.devices.Raw802Network method),
898

add_network_modified_callback()
(digi.xbee.devices.XBeeNetwork method),
876

add_network_modified_callback()
(digi.xbee.devices.ZigBeeNetwork method),
886

add_packet_received_callback()
(digi.xbee.devices.CellularDevice method),
674

add_packet_received_callback()
(digi.xbee.devices.DigiMeshDevice method),
548

add_packet_received_callback()
(digi.xbee.devices.DigiPointDevice method),
580

add_packet_received_callback()
(digi.xbee.devices.IPDevice method), 648

add_packet_received_callback()
(digi.xbee.devices.LPWANDevice method),
698

add_packet_received_callback()
(digi.xbee.devices.NBIoTDevice method),
723

add_packet_received_callback()
(digi.xbee.devices.Raw802Device method),
516

add_packet_received_callback()
(digi.xbee.devices.WiFiDevice method), 756

add_packet_received_callback()
(digi.xbee.devices.XBeeDevice method),
491

add_packet_received_callback()
(digi.xbee.devices.ZigBeeDevice method),
617

add_packet_received_callback()
(digi.xbee.reader.PacketListener method),
994

add_packet_received_from_callback()
(digi.xbee.devices.DigiMeshNetwork method),
909

add_packet_received_from_callback()
(digi.xbee.devices.DigiPointNetwork method),
921

add_packet_received_from_callback()

(digi.xbee.devices.Raw802Network method),
898

add_packet_received_from_callback()
(digi.xbee.devices.XBeeNetwork method), 878

add_packet_received_from_callback()
(digi.xbee.devices.ZigBeeNetwork method),
887

add_packet_received_from_callback()
(digi.xbee.reader.PacketListener method), 994

add_remote() (digi.xbee.devices.DigiMeshNetwork
method), 910

add_remote() (digi.xbee.devices.DigiPointNetwork
method), 921

add_remote() (digi.xbee.devices.Raw802Network
method), 898

add_remote() (digi.xbee.devices.XBeeNetwork
method), 884

add_remote() (digi.xbee.devices.ZigBeeNetwork
method), 887

add_remotes() (digi.xbee.devices.DigiMeshNetwork
method), 910

add_remotes() (digi.xbee.devices.DigiPointNetwork
method), 921

add_remotes() (digi.xbee.devices.Raw802Network
method), 899

add_remotes() (digi.xbee.devices.XBeeNetwork
method), 884

add_remotes() (digi.xbee.devices.ZigBeeNetwork
method), 887

add_route_info_received_callback()
(digi.xbee.reader.PacketListener method), 996

add_route_received_callback()
(digi.xbee.devices.CellularDevice method),
674

add_route_received_callback()
(digi.xbee.devices.DigiMeshDevice method),
548

add_route_received_callback()
(digi.xbee.devices.DigiPointDevice method),
580

add_route_received_callback()
(digi.xbee.devices.IPDevice method), 648

add_route_received_callback()
(digi.xbee.devices.LPWANDevice method),
698

add_route_received_callback()
(digi.xbee.devices.NBIoTDevice method),
724

add_route_received_callback()
(digi.xbee.devices.Raw802Device method),
516

add_route_received_callback()
(digi.xbee.devices.WiFiDevice method), 756

add_route_received_callback()

1024 Index



XBee Python Library Documentation, Release 1.4.0

(digi.xbee.devices.XBeeDevice method),
495

add_route_received_callback()
(digi.xbee.devices.ZigBeeDevice method),
617

add_route_record_received_callback()
(digi.xbee.reader.PacketListener method), 996

add_sms_callback()
(digi.xbee.devices.CellularDevice method),
670

add_sms_callback()
(digi.xbee.devices.LPWANDevice method),
697

add_sms_callback()
(digi.xbee.devices.NBIoTDevice method),
724

add_sms_received_callback()
(digi.xbee.reader.PacketListener method),
995

add_socket_data_received_callback()
(digi.xbee.devices.CellularDevice method), 674

add_socket_data_received_callback()
(digi.xbee.devices.DigiMeshDevice method),
548

add_socket_data_received_callback()
(digi.xbee.devices.DigiPointDevice method),
580

add_socket_data_received_callback()
(digi.xbee.devices.IPDevice method), 649

add_socket_data_received_callback()
(digi.xbee.devices.LPWANDevice method), 699

add_socket_data_received_callback()
(digi.xbee.devices.NBIoTDevice method), 724

add_socket_data_received_callback()
(digi.xbee.devices.Raw802Device method), 516

add_socket_data_received_callback()
(digi.xbee.devices.WiFiDevice method), 756

add_socket_data_received_callback()
(digi.xbee.devices.XBeeDevice method), 492

add_socket_data_received_callback()
(digi.xbee.devices.ZigBeeDevice method), 617

add_socket_data_received_callback()
(digi.xbee.reader.PacketListener method), 995

add_socket_data_received_from_callback()
(digi.xbee.devices.CellularDevice method), 674

add_socket_data_received_from_callback()
(digi.xbee.devices.DigiMeshDevice method),
549

add_socket_data_received_from_callback()
(digi.xbee.devices.DigiPointDevice method),
580

add_socket_data_received_from_callback()
(digi.xbee.devices.IPDevice method), 649

add_socket_data_received_from_callback()

(digi.xbee.devices.LPWANDevice method), 699
add_socket_data_received_from_callback()

(digi.xbee.devices.NBIoTDevice method), 724
add_socket_data_received_from_callback()

(digi.xbee.devices.Raw802Device method), 516
add_socket_data_received_from_callback()

(digi.xbee.devices.WiFiDevice method), 756
add_socket_data_received_from_callback()

(digi.xbee.devices.XBeeDevice method), 492
add_socket_data_received_from_callback()

(digi.xbee.devices.ZigBeeDevice method), 618
add_socket_data_received_from_callback()

(digi.xbee.reader.PacketListener method), 996
add_socket_state_callback()

(digi.xbee.xsocket.socket method), 1014
add_socket_state_received_callback()

(digi.xbee.devices.CellularDevice method), 674
add_socket_state_received_callback()

(digi.xbee.devices.DigiMeshDevice method),
549

add_socket_state_received_callback()
(digi.xbee.devices.DigiPointDevice method),
580

add_socket_state_received_callback()
(digi.xbee.devices.IPDevice method), 649

add_socket_state_received_callback()
(digi.xbee.devices.LPWANDevice method), 699

add_socket_state_received_callback()
(digi.xbee.devices.NBIoTDevice method), 724

add_socket_state_received_callback()
(digi.xbee.devices.Raw802Device method), 517

add_socket_state_received_callback()
(digi.xbee.devices.WiFiDevice method), 756

add_socket_state_received_callback()
(digi.xbee.devices.XBeeDevice method), 492

add_socket_state_received_callback()
(digi.xbee.devices.ZigBeeDevice method), 618

add_socket_state_received_callback()
(digi.xbee.reader.PacketListener method), 995

add_user_data_relay_received_callback()
(digi.xbee.devices.CellularDevice method), 675

add_user_data_relay_received_callback()
(digi.xbee.devices.DigiMeshDevice method),
549

add_user_data_relay_received_callback()
(digi.xbee.devices.DigiPointDevice method),
580

add_user_data_relay_received_callback()
(digi.xbee.devices.IPDevice method), 649

add_user_data_relay_received_callback()
(digi.xbee.devices.LPWANDevice method), 699

add_user_data_relay_received_callback()
(digi.xbee.devices.NBIoTDevice method), 724

add_user_data_relay_received_callback()

Index 1025



XBee Python Library Documentation, Release 1.4.0

(digi.xbee.devices.Raw802Device method), 517
add_user_data_relay_received_callback()

(digi.xbee.devices.WiFiDevice method), 756
add_user_data_relay_received_callback()

(digi.xbee.devices.XBeeDevice method), 491
add_user_data_relay_received_callback()

(digi.xbee.devices.ZigBeeDevice method), 618
add_user_data_relay_received_callback()

(digi.xbee.reader.PacketListener method), 995
address (digi.xbee.models.address.XBee16BitAddress

attribute), 197
address (digi.xbee.models.address.XBee64BitAddress

attribute), 198
address (digi.xbee.models.address.XBeeIMEIAddress

attribute), 198
analog_mask (digi.xbee.io.IOSample attribute), 960
analog_values (digi.xbee.io.IOSample attribute),

960
ApiFrameType (class in digi.xbee.packets.aft), 236
APIOutputMode (class in digi.xbee.models.mode), 192
APIOutputModeBit (class in digi.xbee.models.mode),

193
APPEND (digi.xbee.models.options.FileOpenRequestOption

attribute), 211
append() (digi.xbee.reader.BluetoothDataReceived

method), 983
append() (digi.xbee.reader.DataReceived method),

974
append() (digi.xbee.reader.DeviceDiscovered method),

978
append() (digi.xbee.reader.DiscoveryProcessFinished

method), 979
append() (digi.xbee.reader.EndDiscoveryScan

method), 991
append() (digi.xbee.reader.ExplicitDataReceived

method), 980
append() (digi.xbee.reader.FileSystemFrameReceived

method), 992
append() (digi.xbee.reader.InitDiscoveryScan

method), 990
append() (digi.xbee.reader.IOSampleReceived

method), 976
append() (digi.xbee.reader.IPDataReceived method),

980
append() (digi.xbee.reader.MicroPythonDataReceived

method), 984
append() (digi.xbee.reader.ModemStatusReceived

method), 975
append() (digi.xbee.reader.NetworkModified method),

977
append() (digi.xbee.reader.PacketReceived method),

972
append() (digi.xbee.reader.PacketReceivedFrom

method), 973

append() (digi.xbee.reader.RelayDataReceived
method), 982

append() (digi.xbee.reader.RouteInformationReceived
method), 988

append() (digi.xbee.reader.RouteReceived method),
989

append() (digi.xbee.reader.RouteRecordIndicatorReceived
method), 987

append() (digi.xbee.reader.SMSReceived method), 981
append() (digi.xbee.reader.SocketDataReceived

method), 985
append() (digi.xbee.reader.SocketDataReceivedFrom

method), 986
append() (digi.xbee.reader.SocketStateReceived

method), 985
append() (digi.xbee.reader.XBeeEvent method), 972
APPEND_DD (digi.xbee.models.options.DiscoveryOptions

attribute), 208
APPEND_RSSI (digi.xbee.models.options.DiscoveryOptions

attribute), 208
APPLY_CHANGES (digi.xbee.models.options.RemoteATCmdOptions

attribute), 207
apply_changes() (digi.xbee.devices.AbstractXBeeDevice

method), 469
apply_changes() (digi.xbee.devices.CellularDevice

method), 675
apply_changes() (digi.xbee.devices.DigiMeshDevice

method), 549
apply_changes() (digi.xbee.devices.DigiPointDevice

method), 580
apply_changes() (digi.xbee.devices.IPDevice

method), 649
apply_changes() (digi.xbee.devices.LPWANDevice

method), 699
apply_changes() (digi.xbee.devices.NBIoTDevice

method), 724
apply_changes() (digi.xbee.devices.Raw802Device

method), 517
apply_changes() (digi.xbee.devices.RemoteDigiMeshDevice

method), 818
apply_changes() (digi.xbee.devices.RemoteDigiPointDevice

method), 836
apply_changes() (digi.xbee.devices.RemoteRaw802Device

method), 799
apply_changes() (digi.xbee.devices.RemoteXBeeDevice

method), 783
apply_changes() (digi.xbee.devices.RemoteZigBeeDevice

method), 856
apply_changes() (digi.xbee.devices.WiFiDevice

method), 757
apply_changes() (digi.xbee.devices.XBeeDevice

method), 496
apply_changes() (digi.xbee.devices.ZigBeeDevice

method), 618

1026 Index



XBee Python Library Documentation, Release 1.4.0

apply_profile() (digi.xbee.comm_interface.XBeeCommunicationInterface
method), 466

apply_profile() (digi.xbee.devices.AbstractXBeeDevice
method), 483

apply_profile() (digi.xbee.devices.CellularDevice
method), 675

apply_profile() (digi.xbee.devices.DigiMeshDevice
method), 549

apply_profile() (digi.xbee.devices.DigiPointDevice
method), 581

apply_profile() (digi.xbee.devices.IPDevice
method), 649

apply_profile() (digi.xbee.devices.LPWANDevice
method), 699

apply_profile() (digi.xbee.devices.NBIoTDevice
method), 725

apply_profile() (digi.xbee.devices.Raw802Device
method), 517

apply_profile() (digi.xbee.devices.RemoteDigiMeshDevice
method), 818

apply_profile() (digi.xbee.devices.RemoteDigiPointDevice
method), 836

apply_profile() (digi.xbee.devices.RemoteRaw802Device
method), 799

apply_profile() (digi.xbee.devices.RemoteXBeeDevice
method), 783

apply_profile() (digi.xbee.devices.RemoteZigBeeDevice
method), 856

apply_profile() (digi.xbee.devices.WiFiDevice
method), 757

apply_profile() (digi.xbee.devices.XBeeDevice
method), 496

apply_profile() (digi.xbee.devices.ZigBeeDevice
method), 618

apply_profile() (digi.xbee.serial.XBeeSerialPort
method), 1007

apply_xbee_profile() (in module
digi.xbee.profile), 971

APS_ENCRYPTED (digi.xbee.models.options.ReceiveOptions
attribute), 204

ascii_to_int() (in module digi.xbee.util.utils), 459
AssociationIndicationStatus (class in

digi.xbee.models.status), 218
at_command (digi.xbee.io.IOLine attribute), 958
at_response_received_cb()

(digi.xbee.sender.PacketSender method),
1005

ATCommand (class in digi.xbee.models.atcomm), 129
ATCommandException, 934
ATCommandResponse (class in

digi.xbee.models.atcomm), 130
ATCommandStatus (class in digi.xbee.models.status),

213
ATCommPacket (class in digi.xbee.packets.common),

253
ATCommQueuePacket (class in

digi.xbee.packets.common), 256
ATCommResponsePacket (class in

digi.xbee.packets.common), 259
ATStringCommand (class in

digi.xbee.models.atcomm), 126

B
baudrate (digi.xbee.profile.FirmwareBaudrate at-

tribute), 963
bind() (digi.xbee.xsocket.socket method), 1010
block_number (digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket

attribute), 455
block_size (digi.xbee.filesystem.FileProcess at-

tribute), 938
BluetoothDataReceived (class in

digi.xbee.reader), 983
bootloader_file (digi.xbee.profile.XBeeProfile at-

tribute), 971
bootloader_msg_type

(digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket
attribute), 455

BROADCAST_ADDRESS
(digi.xbee.models.address.XBee16BitAddress
attribute), 195

BROADCAST_ADDRESS
(digi.xbee.models.address.XBee64BitAddress
attribute), 197

BROADCAST_PACKET (digi.xbee.models.options.ReceiveOptions
attribute), 204

BROADCAST_PAN (digi.xbee.models.options.TransmitOptions
attribute), 205

BROADCAST_PANS_PACKET
(digi.xbee.models.options.ReceiveOptions
attribute), 204

broadcast_radius (digi.xbee.packets.common.ExplicitAddressingPacket
attribute), 294

broadcast_radius (digi.xbee.packets.common.TransmitPacket
attribute), 277

build_aggregate_routes()
(digi.xbee.devices.DigiMeshDevice method),
542

build_frame() (in module digi.xbee.packets.factory),
457

build_fs_command() (in module
digi.xbee.packets.filesystem), 336

bytearray_value (digi.xbee.profile.XBeeProfileSetting
attribute), 967

bytes_bad (digi.xbee.models.filesystem.VolFormatCmdResponse
attribute), 186

bytes_bad (digi.xbee.models.filesystem.VolStatCmdResponse
attribute), 182

Index 1027



XBee Python Library Documentation, Release 1.4.0

bytes_free (digi.xbee.models.filesystem.VolFormatCmdResponse
attribute), 186

bytes_free (digi.xbee.models.filesystem.VolStatCmdResponse
attribute), 182

bytes_to_int() (in module digi.xbee.util.utils), 459
bytes_used (digi.xbee.models.filesystem.VolFormatCmdResponse

attribute), 186
bytes_used (digi.xbee.models.filesystem.VolStatCmdResponse

attribute), 182

C
CASCADE (digi.xbee.models.mode.NeighborDiscoveryMode

attribute), 194
CellularAssociationIndicationStatus

(class in digi.xbee.models.status), 220
CellularDevice (class in digi.xbee.devices), 669
change_directory()

(digi.xbee.filesystem.LocalXBeeFileSystemManager
method), 951

channel (digi.xbee.models.accesspoint.AccessPoint at-
tribute), 125

check_fs_support() (in module
digi.xbee.filesystem), 954

clear() (digi.xbee.devices.DigiMeshNetwork method),
910

clear() (digi.xbee.devices.DigiPointNetwork method),
921

clear() (digi.xbee.devices.Raw802Network method),
899

clear() (digi.xbee.devices.XBeeNetwork method), 879
clear() (digi.xbee.devices.ZigBeeNetwork method),

887
clear() (digi.xbee.reader.BluetoothDataReceived

method), 983
clear() (digi.xbee.reader.DataReceived method), 974
clear() (digi.xbee.reader.DeviceDiscovered method),

978
clear() (digi.xbee.reader.DiscoveryProcessFinished

method), 979
clear() (digi.xbee.reader.EndDiscoveryScan method),

991
clear() (digi.xbee.reader.ExplicitDataReceived

method), 980
clear() (digi.xbee.reader.FileSystemFrameReceived

method), 992
clear() (digi.xbee.reader.InitDiscoveryScan method),

990
clear() (digi.xbee.reader.IOSampleReceived method),

976
clear() (digi.xbee.reader.IPDataReceived method),

980
clear() (digi.xbee.reader.MicroPythonDataReceived

method), 984

clear() (digi.xbee.reader.ModemStatusReceived
method), 975

clear() (digi.xbee.reader.NetworkModified method),
977

clear() (digi.xbee.reader.PacketReceived method),
972

clear() (digi.xbee.reader.PacketReceivedFrom
method), 973

clear() (digi.xbee.reader.RelayDataReceived
method), 982

clear() (digi.xbee.reader.RouteInformationReceived
method), 988

clear() (digi.xbee.reader.RouteReceived method), 989
clear() (digi.xbee.reader.RouteRecordIndicatorReceived

method), 987
clear() (digi.xbee.reader.SMSReceived method), 981
clear() (digi.xbee.reader.SocketDataReceived

method), 985
clear() (digi.xbee.reader.SocketDataReceivedFrom

method), 986
clear() (digi.xbee.reader.SocketStateReceived

method), 985
clear() (digi.xbee.reader.XBeeEvent method), 972
client_socket_id (digi.xbee.packets.socket.SocketNewIPv4ClientPacket

attribute), 414
close() (digi.xbee.comm_interface.XBeeCommunicationInterface

method), 464
close() (digi.xbee.devices.CellularDevice method),

675
close() (digi.xbee.devices.DigiMeshDevice method),

550
close() (digi.xbee.devices.DigiPointDevice method),

581
close() (digi.xbee.devices.IPDevice method), 650
close() (digi.xbee.devices.LPWANDevice method),

700
close() (digi.xbee.devices.NBIoTDevice method), 725
close() (digi.xbee.devices.Raw802Device method),

517
close() (digi.xbee.devices.WiFiDevice method), 757
close() (digi.xbee.devices.XBeeDevice method), 486
close() (digi.xbee.devices.ZigBeeDevice method), 619
close() (digi.xbee.profile.XBeeProfile method), 968
close() (digi.xbee.serial.XBeeSerialPort method),

1008
close() (digi.xbee.xsocket.socket method), 1013
CloseDirCmdRequest (class in

digi.xbee.models.filesystem), 163
CloseDirCmdResponse (class in

digi.xbee.models.filesystem), 164
CloseFileCmdRequest (class in

digi.xbee.models.filesystem), 142
CloseFileCmdResponse (class in

digi.xbee.models.filesystem), 143

1028 Index



XBee Python Library Documentation, Release 1.4.0

cluster_id (digi.xbee.models.message.ExplicitXBeeMessage
attribute), 200

cluster_id (digi.xbee.packets.common.ExplicitAddressingPacket
attribute), 294

cluster_id (digi.xbee.packets.common.ExplicitRXIndicatorPacket
attribute), 299

code (digi.xbee.devices.NetworkEventReason attribute),
931

code (digi.xbee.devices.NetworkEventType attribute),
931

code (digi.xbee.io.IOValue attribute), 958
code (digi.xbee.models.accesspoint.WiFiEncryptionType

attribute), 126
code (digi.xbee.models.atcomm.SpecialByte attribute),

129
code (digi.xbee.models.filesystem.FSCmdType at-

tribute), 131
code (digi.xbee.models.hw.HardwareVersion attribute),

189
code (digi.xbee.models.hw.LegacyHardwareVersion at-

tribute), 190
code (digi.xbee.models.mode.APIOutputMode at-

tribute), 193
code (digi.xbee.models.mode.APIOutputModeBit

attribute), 193
code (digi.xbee.models.mode.IPAddressingMode at-

tribute), 194
code (digi.xbee.models.mode.NeighborDiscoveryMode

attribute), 194
code (digi.xbee.models.mode.OperatingMode attribute),

192
code (digi.xbee.models.options.DiscoveryOptions at-

tribute), 208
code (digi.xbee.models.options.RegisterKeyOptions at-

tribute), 209
code (digi.xbee.models.options.SendDataRequestOptions

attribute), 207
code (digi.xbee.models.options.SocketOption attribute),

210
code (digi.xbee.models.options.XBeeLocalInterface at-

tribute), 209
code (digi.xbee.models.protocol.IPProtocol attribute),

212
code (digi.xbee.models.protocol.XBeeProtocol at-

tribute), 212
code (digi.xbee.models.status.AssociationIndicationStatus

attribute), 220
code (digi.xbee.models.status.ATCommandStatus

attribute), 214
code (digi.xbee.models.status.CellularAssociationIndicationStatus

attribute), 220
code (digi.xbee.models.status.DeviceCloudStatus

attribute), 221
code (digi.xbee.models.status.DiscoveryStatus at-

tribute), 214
code (digi.xbee.models.status.EmberBootloaderMessageType

attribute), 224
code (digi.xbee.models.status.FrameError attribute),

222
code (digi.xbee.models.status.FSCommandStatus

attribute), 226
code (digi.xbee.models.status.ModemStatus attribute),

217
code (digi.xbee.models.status.NetworkDiscoveryStatus

attribute), 223
code (digi.xbee.models.status.PowerLevel attribute),

218
code (digi.xbee.models.status.SocketInfoState attribute),

226
code (digi.xbee.models.status.SocketState attribute), 225
code (digi.xbee.models.status.SocketStatus attribute),

224
code (digi.xbee.models.status.TransmitStatus attribute),

216
code (digi.xbee.models.status.WiFiAssociationIndicationStatus

attribute), 222
code (digi.xbee.models.status.ZigbeeRegisterStatus at-

tribute), 223
code (digi.xbee.packets.aft.ApiFrameType attribute),

238
code (digi.xbee.profile.FlashFirmwareOption attribute),

965
comm_iface (digi.xbee.devices.CellularDevice at-

tribute), 675
comm_iface (digi.xbee.devices.DigiMeshDevice at-

tribute), 550
comm_iface (digi.xbee.devices.DigiPointDevice

attribute), 581
comm_iface (digi.xbee.devices.IPDevice attribute),

650
comm_iface (digi.xbee.devices.LPWANDevice at-

tribute), 700
comm_iface (digi.xbee.devices.NBIoTDevice at-

tribute), 725
comm_iface (digi.xbee.devices.Raw802Device at-

tribute), 517
comm_iface (digi.xbee.devices.WiFiDevice attribute),

757
comm_iface (digi.xbee.devices.XBeeDevice attribute),

486
comm_iface (digi.xbee.devices.ZigBeeDevice at-

tribute), 619
command (digi.xbee.models.atcomm.ATCommand at-

tribute), 130
command (digi.xbee.models.atcomm.ATCommandResponse

attribute), 130
command (digi.xbee.models.atcomm.ATStringCommand

attribute), 129

Index 1029



XBee Python Library Documentation, Release 1.4.0

command (digi.xbee.packets.common.ATCommPacket
attribute), 255

command (digi.xbee.packets.common.ATCommQueuePacket
attribute), 258

command (digi.xbee.packets.common.ATCommResponsePacket
attribute), 261

command (digi.xbee.packets.common.RemoteATCommandPacket
attribute), 269

command (digi.xbee.packets.common.RemoteATCommandResponsePacket
attribute), 272

command (digi.xbee.packets.filesystem.FSRequestPacket
attribute), 324

command (digi.xbee.packets.filesystem.FSResponsePacket
attribute), 327

command (digi.xbee.packets.filesystem.RemoteFSRequestPacket
attribute), 330

command (digi.xbee.packets.filesystem.RemoteFSResponsePacket
attribute), 335

command (digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket
attribute), 436

command (digi.xbee.packets.wifi.RemoteATCommandWifiPacket
attribute), 431

command_value (digi.xbee.packets.common.ATCommResponsePacket
attribute), 261

command_value (digi.xbee.packets.common.RemoteATCommandResponsePacket
attribute), 273

command_value (digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket
attribute), 436

CommunicationException, 934
compatibility_number

(digi.xbee.profile.XBeeProfile attribute),
970

complex_desc_supported
(digi.xbee.models.zdo.NodeDescriptor at-
tribute), 228

connect() (digi.xbee.filesystem.LocalXBeeFileSystemManager
method), 951

connect() (digi.xbee.xsocket.socket method), 1010
connect_by_ap() (digi.xbee.devices.WiFiDevice

method), 750
connect_by_ssid() (digi.xbee.devices.WiFiDevice

method), 750
Connection (class in digi.xbee.devices), 932
ConnectionException, 934
content_type (digi.xbee.packets.devicecloud.SendDataRequestPacket

attribute), 313
COORDINATOR_ADDRESS

(digi.xbee.models.address.XBee16BitAddress
attribute), 195

COORDINATOR_ADDRESS
(digi.xbee.models.address.XBee64BitAddress
attribute), 197

copy() (digi.xbee.reader.BluetoothDataReceived
method), 983

copy() (digi.xbee.reader.DataReceived method), 974
copy() (digi.xbee.reader.DeviceDiscovered method),

978
copy() (digi.xbee.reader.DiscoveryProcessFinished

method), 979
copy() (digi.xbee.reader.EndDiscoveryScan method),

991
copy() (digi.xbee.reader.ExplicitDataReceived

method), 980
copy() (digi.xbee.reader.FileSystemFrameReceived

method), 992
copy() (digi.xbee.reader.InitDiscoveryScan method),

990
copy() (digi.xbee.reader.IOSampleReceived method),

976
copy() (digi.xbee.reader.IPDataReceived method), 980
copy() (digi.xbee.reader.MicroPythonDataReceived

method), 984
copy() (digi.xbee.reader.ModemStatusReceived

method), 975
copy() (digi.xbee.reader.NetworkModified method),

977
copy() (digi.xbee.reader.PacketReceived method), 972
copy() (digi.xbee.reader.PacketReceivedFrom method),

973
copy() (digi.xbee.reader.RelayDataReceived method),

982
copy() (digi.xbee.reader.RouteInformationReceived

method), 988
copy() (digi.xbee.reader.RouteReceived method), 989
copy() (digi.xbee.reader.RouteRecordIndicatorReceived

method), 987
copy() (digi.xbee.reader.SMSReceived method), 981
copy() (digi.xbee.reader.SocketDataReceived method),

986
copy() (digi.xbee.reader.SocketDataReceivedFrom

method), 986
copy() (digi.xbee.reader.SocketStateReceived method),

985
copy() (digi.xbee.reader.XBeeEvent method), 972
count() (digi.xbee.reader.BluetoothDataReceived

method), 983
count() (digi.xbee.reader.DataReceived method), 974
count() (digi.xbee.reader.DeviceDiscovered method),

978
count() (digi.xbee.reader.DiscoveryProcessFinished

method), 979
count() (digi.xbee.reader.EndDiscoveryScan method),

991
count() (digi.xbee.reader.ExplicitDataReceived

method), 980
count() (digi.xbee.reader.FileSystemFrameReceived

method), 992
count() (digi.xbee.reader.InitDiscoveryScan method),

1030 Index



XBee Python Library Documentation, Release 1.4.0

990
count() (digi.xbee.reader.IOSampleReceived method),

976
count() (digi.xbee.reader.IPDataReceived method),

981
count() (digi.xbee.reader.MicroPythonDataReceived

method), 984
count() (digi.xbee.reader.ModemStatusReceived

method), 975
count() (digi.xbee.reader.NetworkModified method),

977
count() (digi.xbee.reader.PacketReceived method),

973
count() (digi.xbee.reader.PacketReceivedFrom

method), 973
count() (digi.xbee.reader.RelayDataReceived

method), 982
count() (digi.xbee.reader.RouteInformationReceived

method), 988
count() (digi.xbee.reader.RouteReceived method), 989
count() (digi.xbee.reader.RouteRecordIndicatorReceived

method), 987
count() (digi.xbee.reader.SMSReceived method), 981
count() (digi.xbee.reader.SocketDataReceived

method), 986
count() (digi.xbee.reader.SocketDataReceivedFrom

method), 986
count() (digi.xbee.reader.SocketStateReceived

method), 985
count() (digi.xbee.reader.XBeeEvent method), 972
CREATE (digi.xbee.models.options.FileOpenRequestOption

attribute), 210
create_cmd() (digi.xbee.models.filesystem.CloseDirCmdRequest

class method), 163
create_cmd() (digi.xbee.models.filesystem.CloseDirCmdResponse

class method), 165
create_cmd() (digi.xbee.models.filesystem.CloseFileCmdRequest

class method), 142
create_cmd() (digi.xbee.models.filesystem.CloseFileCmdResponse

class method), 144
create_cmd() (digi.xbee.models.filesystem.CreateDirCmdRequest

class method), 156
create_cmd() (digi.xbee.models.filesystem.CreateDirCmdResponse

class method), 158
create_cmd() (digi.xbee.models.filesystem.DeleteCmdRequest

class method), 177
create_cmd() (digi.xbee.models.filesystem.DeleteCmdResponse

class method), 179
create_cmd() (digi.xbee.models.filesystem.FileIdCmd

class method), 135
create_cmd() (digi.xbee.models.filesystem.FileIdNameCmd

class method), 137
create_cmd() (digi.xbee.models.filesystem.FSCmd

class method), 133

create_cmd() (digi.xbee.models.filesystem.GetPathIdCmdRequest
class method), 170

create_cmd() (digi.xbee.models.filesystem.GetPathIdCmdResponse
class method), 172

create_cmd() (digi.xbee.models.filesystem.HashFileCmdRequest
class method), 153

create_cmd() (digi.xbee.models.filesystem.HashFileCmdResponse
class method), 155

create_cmd() (digi.xbee.models.filesystem.OpenDirCmdRequest
class method), 159

create_cmd() (digi.xbee.models.filesystem.OpenDirCmdResponse
class method), 162

create_cmd() (digi.xbee.models.filesystem.OpenFileCmdRequest
class method), 139

create_cmd() (digi.xbee.models.filesystem.OpenFileCmdResponse
class method), 141

create_cmd() (digi.xbee.models.filesystem.ReadDirCmdRequest
class method), 166

create_cmd() (digi.xbee.models.filesystem.ReadDirCmdResponse
class method), 168

create_cmd() (digi.xbee.models.filesystem.ReadFileCmdRequest
class method), 146

create_cmd() (digi.xbee.models.filesystem.ReadFileCmdResponse
class method), 147

create_cmd() (digi.xbee.models.filesystem.RenameCmdRequest
class method), 174

create_cmd() (digi.xbee.models.filesystem.RenameCmdResponse
class method), 176

create_cmd() (digi.xbee.models.filesystem.UnknownFSCmd
class method), 134

create_cmd() (digi.xbee.models.filesystem.VolFormatCmdRequest
class method), 185

create_cmd() (digi.xbee.models.filesystem.VolFormatCmdResponse
class method), 187

create_cmd() (digi.xbee.models.filesystem.VolStatCmdRequest
class method), 180

create_cmd() (digi.xbee.models.filesystem.VolStatCmdResponse
class method), 182

create_cmd() (digi.xbee.models.filesystem.WriteFileCmdRequest
class method), 149

create_cmd() (digi.xbee.models.filesystem.WriteFileCmdResponse
class method), 151

create_packet() (digi.xbee.packets.base.GenericXBeePacket
static method), 242

create_packet() (digi.xbee.packets.base.UnknownXBeePacket
static method), 245

create_packet() (digi.xbee.packets.base.XBeeAPIPacket
static method), 241

create_packet() (digi.xbee.packets.base.XBeePacket
static method), 239

create_packet() (digi.xbee.packets.cellular.RXSMSPacket
static method), 248

create_packet() (digi.xbee.packets.cellular.TXSMSPacket
static method), 251

Index 1031



XBee Python Library Documentation, Release 1.4.0

create_packet() (digi.xbee.packets.common.ATCommPacket
static method), 254

create_packet() (digi.xbee.packets.common.ATCommQueuePacket
static method), 257

create_packet() (digi.xbee.packets.common.ATCommResponsePacket
static method), 260

create_packet() (digi.xbee.packets.common.ExplicitAddressingPacket
static method), 291

create_packet() (digi.xbee.packets.common.ExplicitRXIndicatorPacket
static method), 297

create_packet() (digi.xbee.packets.common.IODataSampleRxIndicatorPacket
static method), 287

create_packet() (digi.xbee.packets.common.ModemStatusPacket
static method), 283

create_packet() (digi.xbee.packets.common.ReceivePacket
static method), 264

create_packet() (digi.xbee.packets.common.RemoteATCommandPacket
static method), 268

create_packet() (digi.xbee.packets.common.RemoteATCommandResponsePacket
static method), 272

create_packet() (digi.xbee.packets.common.TransmitPacket
static method), 276

create_packet() (digi.xbee.packets.common.TransmitStatusPacket
static method), 280

create_packet() (digi.xbee.packets.devicecloud.DeviceRequestPacket
static method), 300

create_packet() (digi.xbee.packets.devicecloud.DeviceResponsePacket
static method), 303

create_packet() (digi.xbee.packets.devicecloud.DeviceResponseStatusPacket
static method), 306

create_packet() (digi.xbee.packets.devicecloud.FrameErrorPacket
static method), 309

create_packet() (digi.xbee.packets.devicecloud.SendDataRequestPacket
static method), 312

create_packet() (digi.xbee.packets.devicecloud.SendDataResponsePacket
static method), 317

create_packet() (digi.xbee.packets.digimesh.RouteInformationPacket
static method), 319

create_packet() (digi.xbee.packets.filesystem.FSRequestPacket
static method), 323

create_packet() (digi.xbee.packets.filesystem.FSResponsePacket
static method), 326

create_packet() (digi.xbee.packets.filesystem.RemoteFSRequestPacket
static method), 330

create_packet() (digi.xbee.packets.filesystem.RemoteFSResponsePacket
static method), 334

create_packet() (digi.xbee.packets.network.RXIPv4Packet
static method), 337

create_packet() (digi.xbee.packets.network.TXIPv4Packet
static method), 340

create_packet() (digi.xbee.packets.raw.RX16IOPacket
static method), 365

create_packet() (digi.xbee.packets.raw.RX16Packet
static method), 357

create_packet() (digi.xbee.packets.raw.RX64IOPacket
static method), 360

create_packet() (digi.xbee.packets.raw.RX64Packet
static method), 353

create_packet() (digi.xbee.packets.raw.TX16Packet
static method), 347

create_packet() (digi.xbee.packets.raw.TX64Packet
static method), 344

create_packet() (digi.xbee.packets.raw.TXStatusPacket
static method), 350

create_packet() (digi.xbee.packets.relay.UserDataRelayOutputPacket
static method), 371

create_packet() (digi.xbee.packets.relay.UserDataRelayPacket
static method), 368

create_packet() (digi.xbee.packets.socket.SocketBindListenPacket
static method), 407

create_packet() (digi.xbee.packets.socket.SocketClosePacket
static method), 394

create_packet() (digi.xbee.packets.socket.SocketCloseResponsePacket
static method), 397

create_packet() (digi.xbee.packets.socket.SocketConnectPacket
static method), 388

create_packet() (digi.xbee.packets.socket.SocketConnectResponsePacket
static method), 391

create_packet() (digi.xbee.packets.socket.SocketCreatePacket
static method), 374

create_packet() (digi.xbee.packets.socket.SocketCreateResponsePacket
static method), 377

create_packet() (digi.xbee.packets.socket.SocketListenResponsePacket
static method), 410

create_packet() (digi.xbee.packets.socket.SocketNewIPv4ClientPacket
static method), 413

create_packet() (digi.xbee.packets.socket.SocketOptionRequestPacket
static method), 380

create_packet() (digi.xbee.packets.socket.SocketOptionResponsePacket
static method), 384

create_packet() (digi.xbee.packets.socket.SocketReceiveFromPacket
static method), 421

create_packet() (digi.xbee.packets.socket.SocketReceivePacket
static method), 418

create_packet() (digi.xbee.packets.socket.SocketSendPacket
static method), 400

create_packet() (digi.xbee.packets.socket.SocketSendToPacket
static method), 404

create_packet() (digi.xbee.packets.socket.SocketStatePacket
static method), 424

create_packet() (digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket
static method), 426

create_packet() (digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket
static method), 435

create_packet() (digi.xbee.packets.wifi.RemoteATCommandWifiPacket
static method), 430

create_packet() (digi.xbee.packets.zigbee.CreateSourceRoutePacket
static method), 448

1032 Index



XBee Python Library Documentation, Release 1.4.0

create_packet() (digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket
static method), 453

create_packet() (digi.xbee.packets.zigbee.RegisterDeviceStatusPacket
static method), 441

create_packet() (digi.xbee.packets.zigbee.RegisterJoiningDevicePacket
static method), 437

create_packet() (digi.xbee.packets.zigbee.RouteRecordIndicatorPacket
static method), 444

create_socket_info()
(digi.xbee.models.info.SocketInfo static
method), 191

create_source_route()
(digi.xbee.devices.ZigBeeDevice method),
616

create_xbee_device()
(digi.xbee.devices.CellularDevice class
method), 675

create_xbee_device()
(digi.xbee.devices.DigiMeshDevice class
method), 550

create_xbee_device()
(digi.xbee.devices.DigiPointDevice class
method), 581

create_xbee_device()
(digi.xbee.devices.IPDevice class method),
650

create_xbee_device()
(digi.xbee.devices.LPWANDevice class
method), 700

create_xbee_device()
(digi.xbee.devices.NBIoTDevice class method),
725

create_xbee_device()
(digi.xbee.devices.Raw802Device class
method), 518

create_xbee_device()
(digi.xbee.devices.WiFiDevice class method),
757

create_xbee_device()
(digi.xbee.devices.XBeeDevice class method),
485

create_xbee_device()
(digi.xbee.devices.ZigBeeDevice class method),
619

CreateDirCmdRequest (class in
digi.xbee.models.filesystem), 156

CreateDirCmdResponse (class in
digi.xbee.models.filesystem), 158

CreateSourceRoutePacket (class in
digi.xbee.packets.zigbee), 447

D
daemon (digi.xbee.reader.PacketListener attribute), 993

data (digi.xbee.models.filesystem.ReadFileCmdResponse
attribute), 147

data (digi.xbee.models.filesystem.WriteFileCmdRequest
attribute), 149

data (digi.xbee.models.message.ExplicitXBeeMessage
attribute), 200

data (digi.xbee.models.message.IPMessage attribute),
202

data (digi.xbee.models.message.SMSMessage at-
tribute), 202

data (digi.xbee.models.message.UserDataRelayMessage
attribute), 203

data (digi.xbee.models.message.XBeeMessage at-
tribute), 199

data (digi.xbee.packets.cellular.RXSMSPacket at-
tribute), 249

data (digi.xbee.packets.cellular.TXSMSPacket at-
tribute), 253

data (digi.xbee.packets.network.RXIPv4Packet at-
tribute), 338

data (digi.xbee.packets.network.TXIPv4Packet at-
tribute), 343

data (digi.xbee.packets.relay.UserDataRelayOutputPacket
attribute), 373

data (digi.xbee.packets.relay.UserDataRelayPacket at-
tribute), 369

DataReceived (class in digi.xbee.reader), 974
DEFAULT_TIME_BETWEEN_REQUESTS

(digi.xbee.devices.XBeeNetwork attribute),
874

DEFAULT_TIME_BETWEEN_SCANS
(digi.xbee.devices.XBeeNetwork attribute),
874

del_bluetooth_data_received_callback()
(digi.xbee.devices.CellularDevice method), 676

del_bluetooth_data_received_callback()
(digi.xbee.devices.DigiMeshDevice method),
550

del_bluetooth_data_received_callback()
(digi.xbee.devices.DigiPointDevice method),
582

del_bluetooth_data_received_callback()
(digi.xbee.devices.IPDevice method), 650

del_bluetooth_data_received_callback()
(digi.xbee.devices.LPWANDevice method), 700

del_bluetooth_data_received_callback()
(digi.xbee.devices.NBIoTDevice method), 726

del_bluetooth_data_received_callback()
(digi.xbee.devices.Raw802Device method), 518

del_bluetooth_data_received_callback()
(digi.xbee.devices.WiFiDevice method), 758

del_bluetooth_data_received_callback()
(digi.xbee.devices.XBeeDevice method), 493

del_bluetooth_data_received_callback()

Index 1033



XBee Python Library Documentation, Release 1.4.0

(digi.xbee.devices.ZigBeeDevice method), 619
del_bluetooth_data_received_callback()

(digi.xbee.reader.PacketListener method), 998
del_data_received_callback()

(digi.xbee.devices.CellularDevice method),
676

del_data_received_callback()
(digi.xbee.devices.DigiMeshDevice method),
550

del_data_received_callback()
(digi.xbee.devices.DigiPointDevice method),
582

del_data_received_callback()
(digi.xbee.devices.IPDevice method), 647

del_data_received_callback()
(digi.xbee.devices.LPWANDevice method),
700

del_data_received_callback()
(digi.xbee.devices.NBIoTDevice method),
726

del_data_received_callback()
(digi.xbee.devices.Raw802Device method),
518

del_data_received_callback()
(digi.xbee.devices.WiFiDevice method), 758

del_data_received_callback()
(digi.xbee.devices.XBeeDevice method),
492

del_data_received_callback()
(digi.xbee.devices.ZigBeeDevice method),
619

del_data_received_callback()
(digi.xbee.reader.PacketListener method),
997

del_device_discovered_callback()
(digi.xbee.devices.DigiMeshNetwork method),
910

del_device_discovered_callback()
(digi.xbee.devices.DigiPointNetwork method),
922

del_device_discovered_callback()
(digi.xbee.devices.Raw802Network method),
899

del_device_discovered_callback()
(digi.xbee.devices.XBeeNetwork method),
878

del_device_discovered_callback()
(digi.xbee.devices.ZigBeeNetwork method),
887

del_discovery_process_finished_callback()
(digi.xbee.devices.DigiMeshNetwork method),
910

del_discovery_process_finished_callback()
(digi.xbee.devices.DigiPointNetwork method),

922
del_discovery_process_finished_callback()

(digi.xbee.devices.Raw802Network method),
899

del_discovery_process_finished_callback()
(digi.xbee.devices.XBeeNetwork method), 879

del_discovery_process_finished_callback()
(digi.xbee.devices.ZigBeeNetwork method),
888

del_end_discovery_scan_callback()
(digi.xbee.devices.DigiMeshNetwork method),
911

del_end_discovery_scan_callback()
(digi.xbee.devices.DigiPointNetwork method),
922

del_end_discovery_scan_callback()
(digi.xbee.devices.Raw802Network method),
899

del_end_discovery_scan_callback()
(digi.xbee.devices.XBeeNetwork method),
879

del_end_discovery_scan_callback()
(digi.xbee.devices.ZigBeeNetwork method),
888

del_expl_data_received_callback()
(digi.xbee.devices.CellularDevice method),
676

del_expl_data_received_callback()
(digi.xbee.devices.DigiMeshDevice method),
550

del_expl_data_received_callback()
(digi.xbee.devices.DigiPointDevice method),
582

del_expl_data_received_callback()
(digi.xbee.devices.IPDevice method), 647

del_expl_data_received_callback()
(digi.xbee.devices.LPWANDevice method),
701

del_expl_data_received_callback()
(digi.xbee.devices.NBIoTDevice method),
726

del_expl_data_received_callback()
(digi.xbee.devices.Raw802Device method),
518

del_expl_data_received_callback()
(digi.xbee.devices.WiFiDevice method), 758

del_expl_data_received_callback()
(digi.xbee.devices.XBeeDevice method),
493

del_expl_data_received_callback()
(digi.xbee.devices.ZigBeeDevice method),
620

del_explicit_data_received_callback()
(digi.xbee.reader.PacketListener method), 997

1034 Index



XBee Python Library Documentation, Release 1.4.0

del_fs_frame_received_callback()
(digi.xbee.devices.CellularDevice method),
676

del_fs_frame_received_callback()
(digi.xbee.devices.DigiMeshDevice method),
551

del_fs_frame_received_callback()
(digi.xbee.devices.DigiPointDevice method),
582

del_fs_frame_received_callback()
(digi.xbee.devices.IPDevice method), 650

del_fs_frame_received_callback()
(digi.xbee.devices.LPWANDevice method),
701

del_fs_frame_received_callback()
(digi.xbee.devices.NBIoTDevice method),
726

del_fs_frame_received_callback()
(digi.xbee.devices.Raw802Device method),
518

del_fs_frame_received_callback()
(digi.xbee.devices.WiFiDevice method), 758

del_fs_frame_received_callback()
(digi.xbee.devices.XBeeDevice method),
493

del_fs_frame_received_callback()
(digi.xbee.devices.ZigBeeDevice method),
620

del_fs_frame_received_callback()
(digi.xbee.reader.PacketListener method),
998

del_init_discovery_scan_callback()
(digi.xbee.devices.DigiMeshNetwork method),
911

del_init_discovery_scan_callback()
(digi.xbee.devices.DigiPointNetwork method),
922

del_init_discovery_scan_callback()
(digi.xbee.devices.Raw802Network method),
899

del_init_discovery_scan_callback()
(digi.xbee.devices.XBeeNetwork method), 878

del_init_discovery_scan_callback()
(digi.xbee.devices.ZigBeeNetwork method),
888

del_io_sample_received_callback()
(digi.xbee.devices.CellularDevice method),
672

del_io_sample_received_callback()
(digi.xbee.devices.DigiMeshDevice method),
551

del_io_sample_received_callback()
(digi.xbee.devices.DigiPointDevice method),
582

del_io_sample_received_callback()
(digi.xbee.devices.IPDevice method), 651

del_io_sample_received_callback()
(digi.xbee.devices.LPWANDevice method),
701

del_io_sample_received_callback()
(digi.xbee.devices.NBIoTDevice method),
726

del_io_sample_received_callback()
(digi.xbee.devices.Raw802Device method),
518

del_io_sample_received_callback()
(digi.xbee.devices.WiFiDevice method), 758

del_io_sample_received_callback()
(digi.xbee.devices.XBeeDevice method),
493

del_io_sample_received_callback()
(digi.xbee.devices.ZigBeeDevice method),
620

del_io_sample_received_callback()
(digi.xbee.reader.PacketListener method),
997

del_ip_data_received_callback()
(digi.xbee.devices.CellularDevice method),
676

del_ip_data_received_callback()
(digi.xbee.devices.IPDevice method), 644

del_ip_data_received_callback()
(digi.xbee.devices.LPWANDevice method),
701

del_ip_data_received_callback()
(digi.xbee.devices.NBIoTDevice method),
726

del_ip_data_received_callback()
(digi.xbee.devices.WiFiDevice method), 758

del_ip_data_received_callback()
(digi.xbee.reader.PacketListener method),
997

del_micropython_data_received_callback()
(digi.xbee.devices.CellularDevice method), 676

del_micropython_data_received_callback()
(digi.xbee.devices.DigiMeshDevice method),
551

del_micropython_data_received_callback()
(digi.xbee.devices.DigiPointDevice method),
582

del_micropython_data_received_callback()
(digi.xbee.devices.IPDevice method), 651

del_micropython_data_received_callback()
(digi.xbee.devices.LPWANDevice method), 701

del_micropython_data_received_callback()
(digi.xbee.devices.NBIoTDevice method), 726

del_micropython_data_received_callback()
(digi.xbee.devices.Raw802Device method), 519

Index 1035



XBee Python Library Documentation, Release 1.4.0

del_micropython_data_received_callback()
(digi.xbee.devices.WiFiDevice method), 758

del_micropython_data_received_callback()
(digi.xbee.devices.XBeeDevice method), 493

del_micropython_data_received_callback()
(digi.xbee.devices.ZigBeeDevice method), 620

del_micropython_data_received_callback()
(digi.xbee.reader.PacketListener method), 998

del_modem_status_received_callback()
(digi.xbee.devices.CellularDevice method), 676

del_modem_status_received_callback()
(digi.xbee.devices.DigiMeshDevice method),
551

del_modem_status_received_callback()
(digi.xbee.devices.DigiPointDevice method),
582

del_modem_status_received_callback()
(digi.xbee.devices.IPDevice method), 651

del_modem_status_received_callback()
(digi.xbee.devices.LPWANDevice method), 701

del_modem_status_received_callback()
(digi.xbee.devices.NBIoTDevice method), 726

del_modem_status_received_callback()
(digi.xbee.devices.Raw802Device method), 519

del_modem_status_received_callback()
(digi.xbee.devices.WiFiDevice method), 758

del_modem_status_received_callback()
(digi.xbee.devices.XBeeDevice method), 493

del_modem_status_received_callback()
(digi.xbee.devices.ZigBeeDevice method), 620

del_modem_status_received_callback()
(digi.xbee.reader.PacketListener method), 997

del_network_modified_callback()
(digi.xbee.devices.DigiMeshNetwork method),
911

del_network_modified_callback()
(digi.xbee.devices.DigiPointNetwork method),
922

del_network_modified_callback()
(digi.xbee.devices.Raw802Network method),
900

del_network_modified_callback()
(digi.xbee.devices.XBeeNetwork method),
878

del_network_modified_callback()
(digi.xbee.devices.ZigBeeNetwork method),
888

del_packet_received_callback()
(digi.xbee.devices.CellularDevice method),
676

del_packet_received_callback()
(digi.xbee.devices.DigiMeshDevice method),
551

del_packet_received_callback()

(digi.xbee.devices.DigiPointDevice method),
582

del_packet_received_callback()
(digi.xbee.devices.IPDevice method), 651

del_packet_received_callback()
(digi.xbee.devices.LPWANDevice method),
701

del_packet_received_callback()
(digi.xbee.devices.NBIoTDevice method),
726

del_packet_received_callback()
(digi.xbee.devices.Raw802Device method),
519

del_packet_received_callback()
(digi.xbee.devices.WiFiDevice method), 758

del_packet_received_callback()
(digi.xbee.devices.XBeeDevice method),
492

del_packet_received_callback()
(digi.xbee.devices.ZigBeeDevice method),
620

del_packet_received_callback()
(digi.xbee.reader.PacketListener method),
997

del_packet_received_from_callback()
(digi.xbee.devices.DigiMeshNetwork method),
911

del_packet_received_from_callback()
(digi.xbee.devices.DigiPointNetwork method),
923

del_packet_received_from_callback()
(digi.xbee.devices.Raw802Network method),
900

del_packet_received_from_callback()
(digi.xbee.devices.XBeeNetwork method), 879

del_packet_received_from_callback()
(digi.xbee.devices.ZigBeeNetwork method),
888

del_packet_received_from_callback()
(digi.xbee.reader.PacketListener method), 997

del_route_info_callback()
(digi.xbee.reader.PacketListener method),
998

del_route_received_callback()
(digi.xbee.devices.CellularDevice method),
677

del_route_received_callback()
(digi.xbee.devices.DigiMeshDevice method),
551

del_route_received_callback()
(digi.xbee.devices.DigiPointDevice method),
582

del_route_received_callback()
(digi.xbee.devices.IPDevice method), 651

1036 Index



XBee Python Library Documentation, Release 1.4.0

del_route_received_callback()
(digi.xbee.devices.LPWANDevice method),
701

del_route_received_callback()
(digi.xbee.devices.NBIoTDevice method),
726

del_route_received_callback()
(digi.xbee.devices.Raw802Device method),
519

del_route_received_callback()
(digi.xbee.devices.WiFiDevice method), 759

del_route_received_callback()
(digi.xbee.devices.XBeeDevice method),
495

del_route_received_callback()
(digi.xbee.devices.ZigBeeDevice method),
620

del_route_record_received_callback()
(digi.xbee.reader.PacketListener method), 998

del_sms_callback()
(digi.xbee.devices.CellularDevice method),
670

del_sms_callback()
(digi.xbee.devices.LPWANDevice method),
697

del_sms_callback()
(digi.xbee.devices.NBIoTDevice method),
727

del_sms_received_callback()
(digi.xbee.reader.PacketListener method),
997

del_socket_data_received_callback()
(digi.xbee.devices.CellularDevice method), 677

del_socket_data_received_callback()
(digi.xbee.devices.DigiMeshDevice method),
551

del_socket_data_received_callback()
(digi.xbee.devices.DigiPointDevice method),
583

del_socket_data_received_callback()
(digi.xbee.devices.IPDevice method), 651

del_socket_data_received_callback()
(digi.xbee.devices.LPWANDevice method), 701

del_socket_data_received_callback()
(digi.xbee.devices.NBIoTDevice method), 727

del_socket_data_received_callback()
(digi.xbee.devices.Raw802Device method), 519

del_socket_data_received_callback()
(digi.xbee.devices.WiFiDevice method), 759

del_socket_data_received_callback()
(digi.xbee.devices.XBeeDevice method), 493

del_socket_data_received_callback()
(digi.xbee.devices.ZigBeeDevice method), 620

del_socket_data_received_callback()

(digi.xbee.reader.PacketListener method), 998
del_socket_data_received_from_callback()

(digi.xbee.devices.CellularDevice method), 677
del_socket_data_received_from_callback()

(digi.xbee.devices.DigiMeshDevice method),
551

del_socket_data_received_from_callback()
(digi.xbee.devices.DigiPointDevice method),
583

del_socket_data_received_from_callback()
(digi.xbee.devices.IPDevice method), 651

del_socket_data_received_from_callback()
(digi.xbee.devices.LPWANDevice method), 701

del_socket_data_received_from_callback()
(digi.xbee.devices.NBIoTDevice method), 727

del_socket_data_received_from_callback()
(digi.xbee.devices.Raw802Device method), 519

del_socket_data_received_from_callback()
(digi.xbee.devices.WiFiDevice method), 759

del_socket_data_received_from_callback()
(digi.xbee.devices.XBeeDevice method), 493

del_socket_data_received_from_callback()
(digi.xbee.devices.ZigBeeDevice method), 620

del_socket_data_received_from_callback()
(digi.xbee.reader.PacketListener method), 998

del_socket_state_callback()
(digi.xbee.xsocket.socket method), 1014

del_socket_state_received_callback()
(digi.xbee.devices.CellularDevice method), 677

del_socket_state_received_callback()
(digi.xbee.devices.DigiMeshDevice method),
551

del_socket_state_received_callback()
(digi.xbee.devices.DigiPointDevice method),
583

del_socket_state_received_callback()
(digi.xbee.devices.IPDevice method), 651

del_socket_state_received_callback()
(digi.xbee.devices.LPWANDevice method), 701

del_socket_state_received_callback()
(digi.xbee.devices.NBIoTDevice method), 727

del_socket_state_received_callback()
(digi.xbee.devices.Raw802Device method), 519

del_socket_state_received_callback()
(digi.xbee.devices.WiFiDevice method), 759

del_socket_state_received_callback()
(digi.xbee.devices.XBeeDevice method), 493

del_socket_state_received_callback()
(digi.xbee.devices.ZigBeeDevice method), 620

del_socket_state_received_callback()
(digi.xbee.reader.PacketListener method), 998

del_user_data_relay_received_callback()
(digi.xbee.devices.CellularDevice method), 677

del_user_data_relay_received_callback()

Index 1037



XBee Python Library Documentation, Release 1.4.0

(digi.xbee.devices.DigiMeshDevice method),
551

del_user_data_relay_received_callback()
(digi.xbee.devices.DigiPointDevice method),
583

del_user_data_relay_received_callback()
(digi.xbee.devices.IPDevice method), 651

del_user_data_relay_received_callback()
(digi.xbee.devices.LPWANDevice method), 701

del_user_data_relay_received_callback()
(digi.xbee.devices.NBIoTDevice method), 727

del_user_data_relay_received_callback()
(digi.xbee.devices.Raw802Device method), 519

del_user_data_relay_received_callback()
(digi.xbee.devices.WiFiDevice method), 759

del_user_data_relay_received_callback()
(digi.xbee.devices.XBeeDevice method), 493

del_user_data_relay_received_callback()
(digi.xbee.devices.ZigBeeDevice method), 620

del_user_data_relay_received_callback()
(digi.xbee.reader.PacketListener method), 997

DeleteCmdRequest (class in
digi.xbee.models.filesystem), 177

DeleteCmdResponse (class in
digi.xbee.models.filesystem), 179

deprecated() (in module digi.xbee.util.utils), 461
depth (digi.xbee.models.zdo.Neighbor attribute), 235
desc_capabilities

(digi.xbee.models.zdo.NodeDescriptor at-
tribute), 229

description (digi.xbee.devices.NetworkEventReason
attribute), 931

description (digi.xbee.devices.NetworkEventType
attribute), 931

description (digi.xbee.io.IOLine attribute), 957
description (digi.xbee.models.accesspoint.WiFiEncryptionType

attribute), 126
description (digi.xbee.models.atcomm.ATStringCommand

attribute), 129
description (digi.xbee.models.filesystem.FSCmdType

attribute), 131
description (digi.xbee.models.hw.HardwareVersion

attribute), 189
description (digi.xbee.models.mode.APIOutputMode

attribute), 193
description (digi.xbee.models.mode.APIOutputModeBit

attribute), 193
description (digi.xbee.models.mode.IPAddressingMode

attribute), 194
description (digi.xbee.models.mode.NeighborDiscoveryMode

attribute), 195
description (digi.xbee.models.mode.OperatingMode

attribute), 192
description (digi.xbee.models.options.DiscoveryOptions

attribute), 208
description (digi.xbee.models.options.RegisterKeyOptions

attribute), 209
description (digi.xbee.models.options.SendDataRequestOptions

attribute), 207
description (digi.xbee.models.options.SocketOption

attribute), 210
description (digi.xbee.models.options.XBeeLocalInterface

attribute), 209
description (digi.xbee.models.protocol.IPProtocol

attribute), 213
description (digi.xbee.models.protocol.Role at-

tribute), 213
description (digi.xbee.models.protocol.XBeeProtocol

attribute), 212
description (digi.xbee.models.status.AssociationIndicationStatus

attribute), 220
description (digi.xbee.models.status.ATCommandStatus

attribute), 214
description (digi.xbee.models.status.CellularAssociationIndicationStatus

attribute), 220
description (digi.xbee.models.status.DeviceCloudStatus

attribute), 221
description (digi.xbee.models.status.DiscoveryStatus

attribute), 214
description (digi.xbee.models.status.EmberBootloaderMessageType

attribute), 224
description (digi.xbee.models.status.FrameError at-

tribute), 222
description (digi.xbee.models.status.FSCommandStatus

attribute), 227
description (digi.xbee.models.status.ModemStatus

attribute), 218
description (digi.xbee.models.status.NetworkDiscoveryStatus

attribute), 223
description (digi.xbee.models.status.PowerLevel at-

tribute), 218
description (digi.xbee.models.status.SocketInfoState

attribute), 226
description (digi.xbee.models.status.SocketState at-

tribute), 225
description (digi.xbee.models.status.SocketStatus

attribute), 225
description (digi.xbee.models.status.TransmitStatus

attribute), 216
description (digi.xbee.models.status.WiFiAssociationIndicationStatus

attribute), 222
description (digi.xbee.models.status.ZigbeeRegisterStatus

attribute), 223
description (digi.xbee.packets.aft.ApiFrameType at-

tribute), 238
description (digi.xbee.profile.FlashFirmwareOption

attribute), 965
description (digi.xbee.profile.XBeeProfile attribute),

1038 Index



XBee Python Library Documentation, Release 1.4.0

969
description (digi.xbee.profile.XBeeSettingFormat at-

tribute), 966
description (digi.xbee.profile.XBeeSettingType at-

tribute), 965
dest_address (digi.xbee.packets.network.TXIPv4Packet

attribute), 341
dest_address (digi.xbee.packets.socket.SocketConnectPacket

attribute), 389
dest_address (digi.xbee.packets.socket.SocketSendToPacket

attribute), 404
dest_address (digi.xbee.packets.wifi.RemoteATCommandWifiPacket

attribute), 431
DEST_ADDRESS_BINARY

(digi.xbee.packets.socket.SocketConnectPacket
attribute), 388

DEST_ADDRESS_STRING
(digi.xbee.packets.socket.SocketConnectPacket
attribute), 388

dest_address_type
(digi.xbee.packets.socket.SocketConnectPacket
attribute), 389

dest_endpoint (digi.xbee.models.message.ExplicitXBeeMessage
attribute), 200

dest_endpoint (digi.xbee.packets.common.ExplicitAddressingPacket
attribute), 294

dest_endpoint (digi.xbee.packets.common.ExplicitRXIndicatorPacket
attribute), 299

dest_interface (digi.xbee.packets.relay.UserDataRelayPacket
attribute), 369

dest_port (digi.xbee.models.message.IPMessage at-
tribute), 201

dest_port (digi.xbee.packets.network.RXIPv4Packet
attribute), 337

dest_port (digi.xbee.packets.network.TXIPv4Packet
attribute), 342

dest_port (digi.xbee.packets.socket.SocketConnectPacket
attribute), 389

dest_port (digi.xbee.packets.socket.SocketSendToPacket
attribute), 405

destination (digi.xbee.models.zdo.Route attribute),
231

determine_protocol()
(digi.xbee.devices.AbstractXBeeDevice
method), 470

determine_protocol()
(digi.xbee.devices.CellularDevice method),
677

determine_protocol()
(digi.xbee.devices.DigiMeshDevice method),
551

determine_protocol()
(digi.xbee.devices.DigiPointDevice method),
583

determine_protocol()
(digi.xbee.devices.IPDevice method), 651

determine_protocol()
(digi.xbee.devices.LPWANDevice method),
702

determine_protocol()
(digi.xbee.devices.NBIoTDevice method),
727

determine_protocol()
(digi.xbee.devices.Raw802Device method),
519

determine_protocol()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 818

determine_protocol()
(digi.xbee.devices.RemoteDigiPointDevice
method), 836

determine_protocol()
(digi.xbee.devices.RemoteRaw802Device
method), 800

determine_protocol()
(digi.xbee.devices.RemoteXBeeDevice
method), 783

determine_protocol()
(digi.xbee.devices.RemoteZigBeeDevice
method), 857

determine_protocol()
(digi.xbee.devices.WiFiDevice method), 759

determine_protocol()
(digi.xbee.devices.XBeeDevice method),
497

determine_protocol()
(digi.xbee.devices.ZigBeeDevice method),
620

DeviceCloudStatus (class in
digi.xbee.models.status), 221

DeviceDiscovered (class in digi.xbee.reader), 978
DeviceRequestPacket (class in

digi.xbee.packets.devicecloud), 299
DeviceResponsePacket (class in

digi.xbee.packets.devicecloud), 303
DeviceResponseStatusPacket (class in

digi.xbee.packets.devicecloud), 306
DictKeys (class in digi.xbee.packets.base), 238
digi (module), 124
digi.xbee (module), 124
digi.xbee.comm_interface (module), 464
digi.xbee.devices (module), 467
digi.xbee.exception (module), 934
digi.xbee.filesystem (module), 937
digi.xbee.firmware (module), 954
digi.xbee.io (module), 957
digi.xbee.models (module), 124
digi.xbee.models.accesspoint (module), 124

Index 1039



XBee Python Library Documentation, Release 1.4.0

digi.xbee.models.address (module), 195
digi.xbee.models.atcomm (module), 126
digi.xbee.models.filesystem (module), 131
digi.xbee.models.hw (module), 187
digi.xbee.models.info (module), 190
digi.xbee.models.message (module), 199
digi.xbee.models.mode (module), 192
digi.xbee.models.options (module), 203
digi.xbee.models.protocol (module), 211
digi.xbee.models.status (module), 213
digi.xbee.models.zdo (module), 227
digi.xbee.packets (module), 236
digi.xbee.packets.aft (module), 236
digi.xbee.packets.base (module), 238
digi.xbee.packets.cellular (module), 247
digi.xbee.packets.common (module), 253
digi.xbee.packets.devicecloud (module),

299
digi.xbee.packets.digimesh (module), 318
digi.xbee.packets.factory (module), 455
digi.xbee.packets.filesystem (module), 323
digi.xbee.packets.network (module), 336
digi.xbee.packets.raw (module), 343
digi.xbee.packets.relay (module), 367
digi.xbee.packets.socket (module), 374
digi.xbee.packets.wifi (module), 425
digi.xbee.packets.zigbee (module), 437
digi.xbee.profile (module), 963
digi.xbee.reader (module), 971
digi.xbee.recovery (module), 1004
digi.xbee.sender (module), 1004
digi.xbee.serial (module), 1006
digi.xbee.util (module), 457
digi.xbee.util.utils (module), 457
digi.xbee.util.xmodem (module), 461
digi.xbee.xsocket (module), 1010
DIGIMESH_MODE (digi.xbee.models.options.ReceiveOptions

attribute), 204
DIGIMESH_MODE (digi.xbee.models.options.TransmitOptions

attribute), 206
DigiMeshDevice (class in digi.xbee.devices), 541
DigiMeshNetwork (class in digi.xbee.devices), 908
DigiPointDevice (class in digi.xbee.devices), 573
DigiPointNetwork (class in digi.xbee.devices), 919
digital_hsb_mask (digi.xbee.io.IOSample at-

tribute), 960
DIGITAL_IN (digi.xbee.io.IOMode attribute), 962
digital_lsb_mask (digi.xbee.io.IOSample at-

tribute), 960
digital_mask (digi.xbee.io.IOSample attribute), 960
DIGITAL_OUT_HIGH (digi.xbee.io.IOMode attribute),

962
DIGITAL_OUT_LOW (digi.xbee.io.IOMode attribute),

962

digital_values (digi.xbee.io.IOSample attribute),
960

direction (digi.xbee.models.filesystem.CloseDirCmdRequest
attribute), 163

direction (digi.xbee.models.filesystem.CloseDirCmdResponse
attribute), 165

direction (digi.xbee.models.filesystem.CloseFileCmdRequest
attribute), 142

direction (digi.xbee.models.filesystem.CloseFileCmdResponse
attribute), 144

direction (digi.xbee.models.filesystem.CreateDirCmdRequest
attribute), 157

direction (digi.xbee.models.filesystem.CreateDirCmdResponse
attribute), 158

direction (digi.xbee.models.filesystem.DeleteCmdRequest
attribute), 178

direction (digi.xbee.models.filesystem.DeleteCmdResponse
attribute), 179

direction (digi.xbee.models.filesystem.FileIdCmd at-
tribute), 135

direction (digi.xbee.models.filesystem.FileIdNameCmd
attribute), 137

direction (digi.xbee.models.filesystem.FSCmd
attribute), 132

direction (digi.xbee.models.filesystem.GetPathIdCmdRequest
attribute), 171

direction (digi.xbee.models.filesystem.GetPathIdCmdResponse
attribute), 173

direction (digi.xbee.models.filesystem.HashFileCmdRequest
attribute), 153

direction (digi.xbee.models.filesystem.HashFileCmdResponse
attribute), 155

direction (digi.xbee.models.filesystem.OpenDirCmdRequest
attribute), 160

direction (digi.xbee.models.filesystem.OpenDirCmdResponse
attribute), 162

direction (digi.xbee.models.filesystem.OpenFileCmdRequest
attribute), 139

direction (digi.xbee.models.filesystem.OpenFileCmdResponse
attribute), 141

direction (digi.xbee.models.filesystem.ReadDirCmdRequest
attribute), 167

direction (digi.xbee.models.filesystem.ReadDirCmdResponse
attribute), 168

direction (digi.xbee.models.filesystem.ReadFileCmdRequest
attribute), 146

direction (digi.xbee.models.filesystem.ReadFileCmdResponse
attribute), 148

direction (digi.xbee.models.filesystem.RenameCmdRequest
attribute), 174

direction (digi.xbee.models.filesystem.RenameCmdResponse
attribute), 176

direction (digi.xbee.models.filesystem.UnknownFSCmd
attribute), 134

1040 Index



XBee Python Library Documentation, Release 1.4.0

direction (digi.xbee.models.filesystem.VolFormatCmdRequest
attribute), 184

direction (digi.xbee.models.filesystem.VolFormatCmdResponse
attribute), 186

direction (digi.xbee.models.filesystem.VolStatCmdRequest
attribute), 181

direction (digi.xbee.models.filesystem.VolStatCmdResponse
attribute), 183

direction (digi.xbee.models.filesystem.WriteFileCmdRequest
attribute), 150

direction (digi.xbee.models.filesystem.WriteFileCmdResponse
attribute), 151

DirResponseFlag (class in
digi.xbee.models.options), 211

DISABLE_ACK (digi.xbee.models.options.RemoteATCmdOptions
attribute), 207

DISABLE_ACK (digi.xbee.models.options.TransmitOptions
attribute), 205

disable_bluetooth()
(digi.xbee.devices.AbstractXBeeDevice
method), 482

disable_bluetooth()
(digi.xbee.devices.CellularDevice method),
677

disable_bluetooth()
(digi.xbee.devices.DigiMeshDevice method),
552

disable_bluetooth()
(digi.xbee.devices.DigiPointDevice method),
583

disable_bluetooth() (digi.xbee.devices.IPDevice
method), 652

disable_bluetooth()
(digi.xbee.devices.LPWANDevice method),
702

disable_bluetooth()
(digi.xbee.devices.NBIoTDevice method),
727

disable_bluetooth()
(digi.xbee.devices.Raw802Device method),
519

disable_bluetooth()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 819

disable_bluetooth()
(digi.xbee.devices.RemoteDigiPointDevice
method), 837

disable_bluetooth()
(digi.xbee.devices.RemoteRaw802Device
method), 800

disable_bluetooth()
(digi.xbee.devices.RemoteXBeeDevice
method), 783

disable_bluetooth()

(digi.xbee.devices.RemoteZigBeeDevice
method), 857

disable_bluetooth()
(digi.xbee.devices.WiFiDevice method), 759

disable_bluetooth()
(digi.xbee.devices.XBeeDevice method),
497

disable_bluetooth()
(digi.xbee.devices.ZigBeeDevice method),
621

disable_logger() (in module digi.xbee.util.utils),
461

DISABLE_RETRIES_AND_REPAIR
(digi.xbee.models.options.TransmitOptions
attribute), 205

DISABLED (digi.xbee.io.IOMode attribute), 962
disconnect() (digi.xbee.devices.WiFiDevice

method), 751
disconnect() (digi.xbee.filesystem.LocalXBeeFileSystemManager

method), 951
discover_device()

(digi.xbee.devices.DigiMeshNetwork method),
911

discover_device()
(digi.xbee.devices.DigiPointNetwork method),
923

discover_device()
(digi.xbee.devices.Raw802Network method),
900

discover_device()
(digi.xbee.devices.XBeeNetwork method),
875

discover_device()
(digi.xbee.devices.ZigBeeNetwork method),
889

discover_devices()
(digi.xbee.devices.DigiMeshNetwork method),
912

discover_devices()
(digi.xbee.devices.DigiPointNetwork method),
923

discover_devices()
(digi.xbee.devices.Raw802Network method),
900

discover_devices()
(digi.xbee.devices.XBeeNetwork method),
875

discover_devices()
(digi.xbee.devices.ZigBeeNetwork method),
889

DISCOVER_MYSELF (digi.xbee.models.options.DiscoveryOptions
attribute), 208

discovery_status (digi.xbee.packets.common.TransmitStatusPacket
attribute), 281

Index 1041



XBee Python Library Documentation, Release 1.4.0

DiscoveryOptions (class in
digi.xbee.models.options), 207

DiscoveryProcessFinished (class in
digi.xbee.reader), 978

DiscoveryStatus (class in digi.xbee.models.status),
214

doc_enum() (in module digi.xbee.util.utils), 461
DONT_ATTEMPT_RD (digi.xbee.models.options.TransmitOptions

attribute), 205
dst_addr (digi.xbee.packets.digimesh.RouteInformationPacket

attribute), 322

E
EmberBootloaderMessageType (class in

digi.xbee.models.status), 223
empty() (digi.xbee.reader.XBeeQueue method), 1002
enable_apply_changes()

(digi.xbee.devices.AbstractXBeeDevice
method), 473

enable_apply_changes()
(digi.xbee.devices.CellularDevice method),
677

enable_apply_changes()
(digi.xbee.devices.DigiMeshDevice method),
552

enable_apply_changes()
(digi.xbee.devices.DigiPointDevice method),
583

enable_apply_changes()
(digi.xbee.devices.IPDevice method), 652

enable_apply_changes()
(digi.xbee.devices.LPWANDevice method),
702

enable_apply_changes()
(digi.xbee.devices.NBIoTDevice method),
727

enable_apply_changes()
(digi.xbee.devices.Raw802Device method),
520

enable_apply_changes()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 819

enable_apply_changes()
(digi.xbee.devices.RemoteDigiPointDevice
method), 837

enable_apply_changes()
(digi.xbee.devices.RemoteRaw802Device
method), 800

enable_apply_changes()
(digi.xbee.devices.RemoteXBeeDevice
method), 784

enable_apply_changes()
(digi.xbee.devices.RemoteZigBeeDevice
method), 857

enable_apply_changes()
(digi.xbee.devices.WiFiDevice method), 759

enable_apply_changes()
(digi.xbee.devices.XBeeDevice method),
497

enable_apply_changes()
(digi.xbee.devices.ZigBeeDevice method),
621

ENABLE_APS_ENCRYPTION
(digi.xbee.models.options.TransmitOptions
attribute), 206

enable_bluetooth()
(digi.xbee.devices.AbstractXBeeDevice
method), 482

enable_bluetooth()
(digi.xbee.devices.CellularDevice method),
678

enable_bluetooth()
(digi.xbee.devices.DigiMeshDevice method),
552

enable_bluetooth()
(digi.xbee.devices.DigiPointDevice method),
583

enable_bluetooth() (digi.xbee.devices.IPDevice
method), 652

enable_bluetooth()
(digi.xbee.devices.LPWANDevice method),
702

enable_bluetooth()
(digi.xbee.devices.NBIoTDevice method),
728

enable_bluetooth()
(digi.xbee.devices.Raw802Device method),
520

enable_bluetooth()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 819

enable_bluetooth()
(digi.xbee.devices.RemoteDigiPointDevice
method), 837

enable_bluetooth()
(digi.xbee.devices.RemoteRaw802Device
method), 800

enable_bluetooth()
(digi.xbee.devices.RemoteXBeeDevice
method), 784

enable_bluetooth()
(digi.xbee.devices.RemoteZigBeeDevice
method), 857

enable_bluetooth()
(digi.xbee.devices.WiFiDevice method), 760

enable_bluetooth()
(digi.xbee.devices.XBeeDevice method),
497

1042 Index



XBee Python Library Documentation, Release 1.4.0

enable_bluetooth()
(digi.xbee.devices.ZigBeeDevice method),
621

enable_logger() (in module digi.xbee.util.utils),
461

ENABLE_MULTICAST (digi.xbee.models.options.TransmitOptions
attribute), 206

ENABLE_TRACE_ROUTE
(digi.xbee.models.options.TransmitOptions
attribute), 206

ENABLE_UNICAST_NACK
(digi.xbee.models.options.TransmitOptions
attribute), 205

ENABLE_UNICAST_TRACE_ROUTE
(digi.xbee.models.options.TransmitOptions
attribute), 205

encryption_type (digi.xbee.models.accesspoint.AccessPoint
attribute), 125

EndDiscoveryScan (class in digi.xbee.reader), 991
enter_at_command_mode() (in module

digi.xbee.recovery), 1004
error (digi.xbee.models.zdo.NeighborFinder attribute),

235
error (digi.xbee.models.zdo.NeighborTableReader at-

tribute), 233
error (digi.xbee.models.zdo.NodeDescriptorReader at-

tribute), 227
error (digi.xbee.models.zdo.RouteTableReader at-

tribute), 230
error (digi.xbee.packets.devicecloud.FrameErrorPacket

attribute), 310
EXCLUSIVE (digi.xbee.models.options.FileOpenRequestOption

attribute), 210
exec_at_cmd() (digi.xbee.firmware.UpdateConfigurer

static method), 955
execute_command()

(digi.xbee.devices.AbstractXBeeDevice
method), 468

execute_command()
(digi.xbee.devices.CellularDevice method),
678

execute_command()
(digi.xbee.devices.DigiMeshDevice method),
552

execute_command()
(digi.xbee.devices.DigiPointDevice method),
584

execute_command() (digi.xbee.devices.IPDevice
method), 652

execute_command()
(digi.xbee.devices.LPWANDevice method),
702

execute_command()
(digi.xbee.devices.NBIoTDevice method),

728
execute_command()

(digi.xbee.devices.Raw802Device method),
520

execute_command()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 819

execute_command()
(digi.xbee.devices.RemoteDigiPointDevice
method), 837

execute_command()
(digi.xbee.devices.RemoteRaw802Device
method), 801

execute_command()
(digi.xbee.devices.RemoteXBeeDevice
method), 784

execute_command()
(digi.xbee.devices.RemoteZigBeeDevice
method), 857

execute_command() (digi.xbee.devices.WiFiDevice
method), 760

execute_command() (digi.xbee.devices.XBeeDevice
method), 497

execute_command()
(digi.xbee.devices.ZigBeeDevice method),
621

ExplicitAddressingPacket (class in
digi.xbee.packets.common), 290

ExplicitDataReceived (class in digi.xbee.reader),
979

ExplicitRXIndicatorPacket (class in
digi.xbee.packets.common), 295

ExplicitXBeeMessage (class in
digi.xbee.models.message), 199

export() (digi.xbee.devices.DigiMeshNetwork
method), 912

export() (digi.xbee.devices.DigiPointNetwork
method), 924

export() (digi.xbee.devices.Raw802Network method),
901

export() (digi.xbee.devices.XBeeNetwork method),
876

export() (digi.xbee.devices.ZigBeeNetwork method),
889

extend() (digi.xbee.reader.BluetoothDataReceived
method), 983

extend() (digi.xbee.reader.DataReceived method),
974

extend() (digi.xbee.reader.DeviceDiscovered method),
978

extend() (digi.xbee.reader.DiscoveryProcessFinished
method), 979

extend() (digi.xbee.reader.EndDiscoveryScan
method), 991

Index 1043



XBee Python Library Documentation, Release 1.4.0

extend() (digi.xbee.reader.ExplicitDataReceived
method), 980

extend() (digi.xbee.reader.FileSystemFrameReceived
method), 992

extend() (digi.xbee.reader.InitDiscoveryScan
method), 990

extend() (digi.xbee.reader.IOSampleReceived
method), 976

extend() (digi.xbee.reader.IPDataReceived method),
981

extend() (digi.xbee.reader.MicroPythonDataReceived
method), 984

extend() (digi.xbee.reader.ModemStatusReceived
method), 975

extend() (digi.xbee.reader.NetworkModified method),
977

extend() (digi.xbee.reader.PacketReceived method),
973

extend() (digi.xbee.reader.PacketReceivedFrom
method), 973

extend() (digi.xbee.reader.RelayDataReceived
method), 982

extend() (digi.xbee.reader.RouteInformationReceived
method), 988

extend() (digi.xbee.reader.RouteReceived method),
989

extend() (digi.xbee.reader.RouteRecordIndicatorReceived
method), 987

extend() (digi.xbee.reader.SMSReceived method), 981
extend() (digi.xbee.reader.SocketDataReceived

method), 986
extend() (digi.xbee.reader.SocketDataReceivedFrom

method), 987
extend() (digi.xbee.reader.SocketStateReceived

method), 985
extend() (digi.xbee.reader.XBeeEvent method), 972
EXTENDED_TIMEOUT (digi.xbee.models.options.RemoteATCmdOptions

attribute), 207

F
file_data (digi.xbee.packets.devicecloud.SendDataRequestPacket

attribute), 313
file_hash (digi.xbee.models.filesystem.HashFileCmdResponse

attribute), 155
file_system_path (digi.xbee.profile.XBeeProfile at-

tribute), 970
FileIdCmd (class in digi.xbee.models.filesystem), 135
FileIdNameCmd (class in digi.xbee.models.filesystem),

136
FileOpenRequestOption (class in

digi.xbee.models.options), 210
FileProcess (class in digi.xbee.filesystem), 938
FileSystemElement (class in digi.xbee.filesystem),

937

FileSystemException, 938
FileSystemFrameReceived (class in

digi.xbee.reader), 991
FileSystemManager (class in digi.xbee.filesystem),

939
FileSystemNotSupportedException, 938
firmware_description_file

(digi.xbee.profile.XBeeProfile attribute),
970

firmware_version (digi.xbee.profile.XBeeProfile at-
tribute), 970

FirmwareBaudrate (class in digi.xbee.profile), 963
FirmwareParity (class in digi.xbee.profile), 963
FirmwareStopbits (class in digi.xbee.profile), 964
FirmwareUpdateException, 936
flags (digi.xbee.packets.devicecloud.DeviceRequestPacket

attribute), 301
flash_firmware_option

(digi.xbee.profile.XBeeProfile attribute),
968

FlashFirmwareOption (class in digi.xbee.profile),
964

FLOOD (digi.xbee.models.mode.NeighborDiscoveryMode
attribute), 194

FlowControl (class in digi.xbee.serial), 1006
flush() (digi.xbee.reader.XBeeQueue method), 1003
flush_queues() (digi.xbee.devices.CellularDevice

method), 678
flush_queues() (digi.xbee.devices.DigiMeshDevice

method), 553
flush_queues() (digi.xbee.devices.DigiPointDevice

method), 584
flush_queues() (digi.xbee.devices.IPDevice

method), 653
flush_queues() (digi.xbee.devices.LPWANDevice

method), 703
flush_queues() (digi.xbee.devices.NBIoTDevice

method), 728
flush_queues() (digi.xbee.devices.Raw802Device

method), 521
flush_queues() (digi.xbee.devices.WiFiDevice

method), 760
flush_queues() (digi.xbee.devices.XBeeDevice

method), 490
flush_queues() (digi.xbee.devices.ZigBeeDevice

method), 622
force_disassociate()

(digi.xbee.devices.RemoteZigBeeDevice
method), 854

force_disassociate()
(digi.xbee.devices.ZigBeeDevice method),
606

format (digi.xbee.profile.XBeeProfileSetting attribute),
967

1044 Index



XBee Python Library Documentation, Release 1.4.0

format() (digi.xbee.filesystem.FileSystemManager
method), 944

format_filesystem()
(digi.xbee.filesystem.LocalXBeeFileSystemManager
method), 953

frame_id (digi.xbee.packets.base.GenericXBeePacket
attribute), 243

frame_id (digi.xbee.packets.base.UnknownXBeePacket
attribute), 246

frame_id (digi.xbee.packets.base.XBeeAPIPacket at-
tribute), 241

frame_id (digi.xbee.packets.cellular.RXSMSPacket at-
tribute), 249

frame_id (digi.xbee.packets.cellular.TXSMSPacket at-
tribute), 251

frame_id (digi.xbee.packets.common.ATCommPacket
attribute), 255

frame_id (digi.xbee.packets.common.ATCommQueuePacket
attribute), 258

frame_id (digi.xbee.packets.common.ATCommResponsePacket
attribute), 262

frame_id (digi.xbee.packets.common.ExplicitAddressingPacket
attribute), 292

frame_id (digi.xbee.packets.common.ExplicitRXIndicatorPacket
attribute), 296

frame_id (digi.xbee.packets.common.IODataSampleRxIndicatorPacket
attribute), 288

frame_id (digi.xbee.packets.common.ModemStatusPacket
attribute), 284

frame_id (digi.xbee.packets.common.ReceivePacket
attribute), 265

frame_id (digi.xbee.packets.common.RemoteATCommandPacket
attribute), 269

frame_id (digi.xbee.packets.common.RemoteATCommandResponsePacket
attribute), 273

frame_id (digi.xbee.packets.common.TransmitPacket
attribute), 278

frame_id (digi.xbee.packets.common.TransmitStatusPacket
attribute), 281

frame_id (digi.xbee.packets.devicecloud.DeviceRequestPacket
attribute), 301

frame_id (digi.xbee.packets.devicecloud.DeviceResponsePacket
attribute), 304

frame_id (digi.xbee.packets.devicecloud.DeviceResponseStatusPacket
attribute), 307

frame_id (digi.xbee.packets.devicecloud.FrameErrorPacket
attribute), 310

frame_id (digi.xbee.packets.devicecloud.SendDataRequestPacket
attribute), 313

frame_id (digi.xbee.packets.devicecloud.SendDataResponsePacket
attribute), 316

frame_id (digi.xbee.packets.digimesh.RouteInformationPacket
attribute), 320

frame_id (digi.xbee.packets.filesystem.FSRequestPacket

attribute), 324
frame_id (digi.xbee.packets.filesystem.FSResponsePacket

attribute), 327
frame_id (digi.xbee.packets.filesystem.RemoteFSRequestPacket

attribute), 331
frame_id (digi.xbee.packets.filesystem.RemoteFSResponsePacket

attribute), 333
frame_id (digi.xbee.packets.network.RXIPv4Packet at-

tribute), 338
frame_id (digi.xbee.packets.network.TXIPv4Packet at-

tribute), 341
frame_id (digi.xbee.packets.raw.RX16IOPacket

attribute), 364
frame_id (digi.xbee.packets.raw.RX16Packet at-

tribute), 358
frame_id (digi.xbee.packets.raw.RX64IOPacket

attribute), 362
frame_id (digi.xbee.packets.raw.RX64Packet at-

tribute), 355
frame_id (digi.xbee.packets.raw.TX16Packet at-

tribute), 348
frame_id (digi.xbee.packets.raw.TX64Packet at-

tribute), 345
frame_id (digi.xbee.packets.raw.TXStatusPacket at-

tribute), 351
frame_id (digi.xbee.packets.relay.UserDataRelayOutputPacket

attribute), 372
frame_id (digi.xbee.packets.relay.UserDataRelayPacket

attribute), 369
frame_id (digi.xbee.packets.socket.SocketBindListenPacket

attribute), 408
frame_id (digi.xbee.packets.socket.SocketClosePacket

attribute), 395
frame_id (digi.xbee.packets.socket.SocketCloseResponsePacket

attribute), 398
frame_id (digi.xbee.packets.socket.SocketConnectPacket

attribute), 389
frame_id (digi.xbee.packets.socket.SocketConnectResponsePacket

attribute), 392
frame_id (digi.xbee.packets.socket.SocketCreatePacket

attribute), 375
frame_id (digi.xbee.packets.socket.SocketCreateResponsePacket

attribute), 378
frame_id (digi.xbee.packets.socket.SocketListenResponsePacket

attribute), 411
frame_id (digi.xbee.packets.socket.SocketNewIPv4ClientPacket

attribute), 414
frame_id (digi.xbee.packets.socket.SocketOptionRequestPacket

attribute), 382
frame_id (digi.xbee.packets.socket.SocketOptionResponsePacket

attribute), 385
frame_id (digi.xbee.packets.socket.SocketReceiveFromPacket

attribute), 420
frame_id (digi.xbee.packets.socket.SocketReceivePacket

Index 1045



XBee Python Library Documentation, Release 1.4.0

attribute), 417
frame_id (digi.xbee.packets.socket.SocketSendPacket

attribute), 401
frame_id (digi.xbee.packets.socket.SocketSendToPacket

attribute), 405
frame_id (digi.xbee.packets.socket.SocketStatePacket

attribute), 423
frame_id (digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket

attribute), 427
frame_id (digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket

attribute), 434
frame_id (digi.xbee.packets.wifi.RemoteATCommandWifiPacket

attribute), 431
frame_id (digi.xbee.packets.zigbee.CreateSourceRoutePacket

attribute), 450
frame_id (digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket

attribute), 452
frame_id (digi.xbee.packets.zigbee.RegisterDeviceStatusPacket

attribute), 442
frame_id (digi.xbee.packets.zigbee.RegisterJoiningDevicePacket

attribute), 439
frame_id (digi.xbee.packets.zigbee.RouteRecordIndicatorPacket

attribute), 446
FrameError (class in digi.xbee.models.status), 221
FrameErrorPacket (class in

digi.xbee.packets.devicecloud), 309
freq_band (digi.xbee.models.zdo.NodeDescriptor at-

tribute), 228
from_bytes() (digi.xbee.models.address.XBee16BitAddress

class method), 196
from_bytes() (digi.xbee.models.address.XBee64BitAddress

class method), 197
from_data() (digi.xbee.filesystem.FileSystemElement

static method), 938
from_hex_string()

(digi.xbee.models.address.XBee16BitAddress
class method), 196

from_hex_string()
(digi.xbee.models.address.XBee64BitAddress
class method), 197

from_string() (digi.xbee.models.address.XBeeIMEIAddress
class method), 198

fs_entries (digi.xbee.models.filesystem.OpenDirCmdResponse
attribute), 161

fs_entries (digi.xbee.models.filesystem.ReadDirCmdResponse
attribute), 168

fs_id (digi.xbee.models.filesystem.CloseDirCmdRequest
attribute), 164

fs_id (digi.xbee.models.filesystem.CloseFileCmdRequest
attribute), 143

fs_id (digi.xbee.models.filesystem.CreateDirCmdRequest
attribute), 157

fs_id (digi.xbee.models.filesystem.DeleteCmdRequest
attribute), 178

fs_id (digi.xbee.models.filesystem.FileIdCmd at-
tribute), 135

fs_id (digi.xbee.models.filesystem.FileIdNameCmd at-
tribute), 137

fs_id (digi.xbee.models.filesystem.GetPathIdCmdRequest
attribute), 171

fs_id (digi.xbee.models.filesystem.GetPathIdCmdResponse
attribute), 173

fs_id (digi.xbee.models.filesystem.HashFileCmdRequest
attribute), 153

fs_id (digi.xbee.models.filesystem.OpenDirCmdRequest
attribute), 160

fs_id (digi.xbee.models.filesystem.OpenDirCmdResponse
attribute), 162

fs_id (digi.xbee.models.filesystem.OpenFileCmdRequest
attribute), 139

fs_id (digi.xbee.models.filesystem.OpenFileCmdResponse
attribute), 141

fs_id (digi.xbee.models.filesystem.ReadDirCmdRequest
attribute), 167

fs_id (digi.xbee.models.filesystem.ReadDirCmdResponse
attribute), 169

fs_id (digi.xbee.models.filesystem.ReadFileCmdRequest
attribute), 146

fs_id (digi.xbee.models.filesystem.ReadFileCmdResponse
attribute), 148

fs_id (digi.xbee.models.filesystem.RenameCmdRequest
attribute), 174

fs_id (digi.xbee.models.filesystem.WriteFileCmdRequest
attribute), 150

fs_id (digi.xbee.models.filesystem.WriteFileCmdResponse
attribute), 152

FSCmd (class in digi.xbee.models.filesystem), 132
FSCmdType (class in digi.xbee.models.filesystem), 131
FSCommandStatus (class in digi.xbee.models.status),

226
FSRequestPacket (class in

digi.xbee.packets.filesystem), 323
FSResponsePacket (class in

digi.xbee.packets.filesystem), 326
full() (digi.xbee.reader.XBeeQueue method), 1002
full_path (digi.xbee.models.filesystem.GetPathIdCmdResponse

attribute), 172

G
GenericXBeePacket (class in

digi.xbee.packets.base), 242
get() (digi.xbee.reader.XBeeQueue method), 1001
get_16bit_addr() (digi.xbee.devices.AbstractXBeeDevice

method), 472
get_16bit_addr() (digi.xbee.devices.CellularDevice

method), 678
get_16bit_addr() (digi.xbee.devices.DigiMeshDevice

method), 553

1046 Index



XBee Python Library Documentation, Release 1.4.0

get_16bit_addr() (digi.xbee.devices.DigiPointDevice
method), 584

get_16bit_addr() (digi.xbee.devices.IPDevice
method), 646

get_16bit_addr() (digi.xbee.devices.LPWANDevice
method), 703

get_16bit_addr() (digi.xbee.devices.NBIoTDevice
method), 728

get_16bit_addr() (digi.xbee.devices.Raw802Device
method), 521

get_16bit_addr() (digi.xbee.devices.RemoteDigiMeshDevice
method), 820

get_16bit_addr() (digi.xbee.devices.RemoteDigiPointDevice
method), 838

get_16bit_addr() (digi.xbee.devices.RemoteRaw802Device
method), 801

get_16bit_addr() (digi.xbee.devices.RemoteXBeeDevice
method), 785

get_16bit_addr() (digi.xbee.devices.RemoteZigBeeDevice
method), 858

get_16bit_addr() (digi.xbee.devices.WiFiDevice
method), 760

get_16bit_addr() (digi.xbee.devices.XBeeDevice
method), 498

get_16bit_addr() (digi.xbee.devices.ZigBeeDevice
method), 622

get_64bit_addr() (digi.xbee.devices.AbstractXBeeDevice
method), 472

get_64bit_addr() (digi.xbee.devices.CellularDevice
method), 672

get_64bit_addr() (digi.xbee.devices.DigiMeshDevice
method), 553

get_64bit_addr() (digi.xbee.devices.DigiPointDevice
method), 585

get_64bit_addr() (digi.xbee.devices.IPDevice
method), 653

get_64bit_addr() (digi.xbee.devices.LPWANDevice
method), 703

get_64bit_addr() (digi.xbee.devices.NBIoTDevice
method), 729

get_64bit_addr() (digi.xbee.devices.Raw802Device
method), 521

get_64bit_addr() (digi.xbee.devices.RemoteDigiMeshDevice
method), 820

get_64bit_addr() (digi.xbee.devices.RemoteDigiPointDevice
method), 838

get_64bit_addr() (digi.xbee.devices.RemoteRaw802Device
method), 801

get_64bit_addr() (digi.xbee.devices.RemoteXBeeDevice
method), 785

get_64bit_addr() (digi.xbee.devices.RemoteZigBeeDevice
method), 858

get_64bit_addr() (digi.xbee.devices.WiFiDevice
method), 761

get_64bit_addr() (digi.xbee.devices.XBeeDevice
method), 498

get_64bit_addr() (digi.xbee.devices.ZigBeeDevice
method), 622

get_access_point()
(digi.xbee.devices.WiFiDevice method), 749

get_access_point_timeout()
(digi.xbee.devices.WiFiDevice method), 752

get_adc_value() (digi.xbee.devices.AbstractXBeeDevice
method), 477

get_adc_value() (digi.xbee.devices.CellularDevice
method), 679

get_adc_value() (digi.xbee.devices.DigiMeshDevice
method), 553

get_adc_value() (digi.xbee.devices.DigiPointDevice
method), 585

get_adc_value() (digi.xbee.devices.IPDevice
method), 653

get_adc_value() (digi.xbee.devices.LPWANDevice
method), 703

get_adc_value() (digi.xbee.devices.NBIoTDevice
method), 729

get_adc_value() (digi.xbee.devices.Raw802Device
method), 521

get_adc_value() (digi.xbee.devices.RemoteDigiMeshDevice
method), 820

get_adc_value() (digi.xbee.devices.RemoteDigiPointDevice
method), 838

get_adc_value() (digi.xbee.devices.RemoteRaw802Device
method), 802

get_adc_value() (digi.xbee.devices.RemoteXBeeDevice
method), 785

get_adc_value() (digi.xbee.devices.RemoteZigBeeDevice
method), 858

get_adc_value() (digi.xbee.devices.WiFiDevice
method), 761

get_adc_value() (digi.xbee.devices.XBeeDevice
method), 498

get_adc_value() (digi.xbee.devices.ZigBeeDevice
method), 622

get_ai_status() (digi.xbee.devices.Raw802Device
method), 512

get_ai_status() (digi.xbee.devices.RemoteRaw802Device
method), 799

get_ai_status() (digi.xbee.devices.RemoteZigBeeDevice
method), 854

get_ai_status() (digi.xbee.devices.ZigBeeDevice
method), 606

get_analog_value() (digi.xbee.io.IOSample
method), 962

get_api_output_mode()
(digi.xbee.devices.AbstractXBeeDevice
method), 480

get_api_output_mode()

Index 1047



XBee Python Library Documentation, Release 1.4.0

(digi.xbee.devices.CellularDevice method),
679

get_api_output_mode()
(digi.xbee.devices.DigiMeshDevice method),
554

get_api_output_mode()
(digi.xbee.devices.DigiPointDevice method),
585

get_api_output_mode()
(digi.xbee.devices.IPDevice method), 654

get_api_output_mode()
(digi.xbee.devices.LPWANDevice method),
704

get_api_output_mode()
(digi.xbee.devices.NBIoTDevice method),
729

get_api_output_mode()
(digi.xbee.devices.Raw802Device method),
522

get_api_output_mode()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 821

get_api_output_mode()
(digi.xbee.devices.RemoteDigiPointDevice
method), 839

get_api_output_mode()
(digi.xbee.devices.RemoteRaw802Device
method), 802

get_api_output_mode()
(digi.xbee.devices.RemoteXBeeDevice
method), 786

get_api_output_mode()
(digi.xbee.devices.RemoteZigBeeDevice
method), 859

get_api_output_mode()
(digi.xbee.devices.WiFiDevice method), 761

get_api_output_mode()
(digi.xbee.devices.XBeeDevice method),
499

get_api_output_mode()
(digi.xbee.devices.ZigBeeDevice method),
623

get_api_output_mode_value()
(digi.xbee.devices.AbstractXBeeDevice
method), 480

get_api_output_mode_value()
(digi.xbee.devices.CellularDevice method),
679

get_api_output_mode_value()
(digi.xbee.devices.DigiMeshDevice method),
554

get_api_output_mode_value()
(digi.xbee.devices.DigiPointDevice method),
586

get_api_output_mode_value()
(digi.xbee.devices.IPDevice method), 654

get_api_output_mode_value()
(digi.xbee.devices.LPWANDevice method),
704

get_api_output_mode_value()
(digi.xbee.devices.NBIoTDevice method),
730

get_api_output_mode_value()
(digi.xbee.devices.Raw802Device method),
522

get_api_output_mode_value()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 821

get_api_output_mode_value()
(digi.xbee.devices.RemoteDigiPointDevice
method), 839

get_api_output_mode_value()
(digi.xbee.devices.RemoteRaw802Device
method), 803

get_api_output_mode_value()
(digi.xbee.devices.RemoteXBeeDevice
method), 786

get_api_output_mode_value()
(digi.xbee.devices.RemoteZigBeeDevice
method), 859

get_api_output_mode_value()
(digi.xbee.devices.WiFiDevice method), 762

get_api_output_mode_value()
(digi.xbee.devices.XBeeDevice method),
499

get_api_output_mode_value()
(digi.xbee.devices.ZigBeeDevice method),
623

get_bluetooth_data_received_callbacks()
(digi.xbee.reader.PacketListener method), 999

get_bluetooth_mac_addr()
(digi.xbee.devices.AbstractXBeeDevice
method), 482

get_bluetooth_mac_addr()
(digi.xbee.devices.CellularDevice method),
680

get_bluetooth_mac_addr()
(digi.xbee.devices.DigiMeshDevice method),
555

get_bluetooth_mac_addr()
(digi.xbee.devices.DigiPointDevice method),
586

get_bluetooth_mac_addr()
(digi.xbee.devices.IPDevice method), 654

get_bluetooth_mac_addr()
(digi.xbee.devices.LPWANDevice method),
705

get_bluetooth_mac_addr()

1048 Index



XBee Python Library Documentation, Release 1.4.0

(digi.xbee.devices.NBIoTDevice method),
730

get_bluetooth_mac_addr()
(digi.xbee.devices.Raw802Device method),
523

get_bluetooth_mac_addr()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 822

get_bluetooth_mac_addr()
(digi.xbee.devices.RemoteDigiPointDevice
method), 840

get_bluetooth_mac_addr()
(digi.xbee.devices.RemoteRaw802Device
method), 803

get_bluetooth_mac_addr()
(digi.xbee.devices.RemoteXBeeDevice
method), 786

get_bluetooth_mac_addr()
(digi.xbee.devices.RemoteZigBeeDevice
method), 860

get_bluetooth_mac_addr()
(digi.xbee.devices.WiFiDevice method), 762

get_bluetooth_mac_addr()
(digi.xbee.devices.XBeeDevice method),
500

get_bluetooth_mac_addr()
(digi.xbee.devices.ZigBeeDevice method),
624

get_by_id() (digi.xbee.reader.XBeeQueue method),
1002

get_by_ip() (digi.xbee.reader.XBeeQueue method),
1002

get_by_remote() (digi.xbee.reader.XBeeQueue
method), 1001

get_cellular_ai_status()
(digi.xbee.devices.CellularDevice method),
670

get_cellular_ai_status()
(digi.xbee.devices.LPWANDevice method),
705

get_cellular_ai_status()
(digi.xbee.devices.NBIoTDevice method),
730

get_checksum() (digi.xbee.packets.base.GenericXBeePacket
method), 243

get_checksum() (digi.xbee.packets.base.UnknownXBeePacket
method), 246

get_checksum() (digi.xbee.packets.base.XBeeAPIPacket
method), 241

get_checksum() (digi.xbee.packets.base.XBeePacket
method), 238

get_checksum() (digi.xbee.packets.cellular.RXSMSPacket
method), 249

get_checksum() (digi.xbee.packets.cellular.TXSMSPacket

method), 252
get_checksum() (digi.xbee.packets.common.ATCommPacket

method), 255
get_checksum() (digi.xbee.packets.common.ATCommQueuePacket

method), 258
get_checksum() (digi.xbee.packets.common.ATCommResponsePacket

method), 262
get_checksum() (digi.xbee.packets.common.ExplicitAddressingPacket

method), 292
get_checksum() (digi.xbee.packets.common.ExplicitRXIndicatorPacket

method), 296
get_checksum() (digi.xbee.packets.common.IODataSampleRxIndicatorPacket

method), 289
get_checksum() (digi.xbee.packets.common.ModemStatusPacket

method), 284
get_checksum() (digi.xbee.packets.common.ReceivePacket

method), 265
get_checksum() (digi.xbee.packets.common.RemoteATCommandPacket

method), 269
get_checksum() (digi.xbee.packets.common.RemoteATCommandResponsePacket

method), 273
get_checksum() (digi.xbee.packets.common.TransmitPacket

method), 278
get_checksum() (digi.xbee.packets.common.TransmitStatusPacket

method), 281
get_checksum() (digi.xbee.packets.devicecloud.DeviceRequestPacket

method), 301
get_checksum() (digi.xbee.packets.devicecloud.DeviceResponsePacket

method), 304
get_checksum() (digi.xbee.packets.devicecloud.DeviceResponseStatusPacket

method), 307
get_checksum() (digi.xbee.packets.devicecloud.FrameErrorPacket

method), 310
get_checksum() (digi.xbee.packets.devicecloud.SendDataRequestPacket

method), 314
get_checksum() (digi.xbee.packets.devicecloud.SendDataResponsePacket

method), 316
get_checksum() (digi.xbee.packets.digimesh.RouteInformationPacket

method), 320
get_checksum() (digi.xbee.packets.filesystem.FSRequestPacket

method), 324
get_checksum() (digi.xbee.packets.filesystem.FSResponsePacket

method), 327
get_checksum() (digi.xbee.packets.filesystem.RemoteFSRequestPacket

method), 331
get_checksum() (digi.xbee.packets.filesystem.RemoteFSResponsePacket

method), 333
get_checksum() (digi.xbee.packets.network.RXIPv4Packet

method), 338
get_checksum() (digi.xbee.packets.network.TXIPv4Packet

method), 341
get_checksum() (digi.xbee.packets.raw.RX16IOPacket

method), 364
get_checksum() (digi.xbee.packets.raw.RX16Packet

Index 1049



XBee Python Library Documentation, Release 1.4.0

method), 358
get_checksum() (digi.xbee.packets.raw.RX64IOPacket

method), 362
get_checksum() (digi.xbee.packets.raw.RX64Packet

method), 355
get_checksum() (digi.xbee.packets.raw.TX16Packet

method), 348
get_checksum() (digi.xbee.packets.raw.TX64Packet

method), 345
get_checksum() (digi.xbee.packets.raw.TXStatusPacket

method), 351
get_checksum() (digi.xbee.packets.relay.UserDataRelayOutputPacket

method), 372
get_checksum() (digi.xbee.packets.relay.UserDataRelayPacket

method), 369
get_checksum() (digi.xbee.packets.socket.SocketBindListenPacket

method), 408
get_checksum() (digi.xbee.packets.socket.SocketClosePacket

method), 395
get_checksum() (digi.xbee.packets.socket.SocketCloseResponsePacket

method), 398
get_checksum() (digi.xbee.packets.socket.SocketConnectPacket

method), 389
get_checksum() (digi.xbee.packets.socket.SocketConnectResponsePacket

method), 392
get_checksum() (digi.xbee.packets.socket.SocketCreatePacket

method), 375
get_checksum() (digi.xbee.packets.socket.SocketCreateResponsePacket

method), 378
get_checksum() (digi.xbee.packets.socket.SocketListenResponsePacket

method), 411
get_checksum() (digi.xbee.packets.socket.SocketNewIPv4ClientPacket

method), 414
get_checksum() (digi.xbee.packets.socket.SocketOptionRequestPacket

method), 382
get_checksum() (digi.xbee.packets.socket.SocketOptionResponsePacket

method), 385
get_checksum() (digi.xbee.packets.socket.SocketReceiveFromPacket

method), 420
get_checksum() (digi.xbee.packets.socket.SocketReceivePacket

method), 417
get_checksum() (digi.xbee.packets.socket.SocketSendPacket

method), 401
get_checksum() (digi.xbee.packets.socket.SocketSendToPacket

method), 405
get_checksum() (digi.xbee.packets.socket.SocketStatePacket

method), 423
get_checksum() (digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket

method), 428
get_checksum() (digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket

method), 434
get_checksum() (digi.xbee.packets.wifi.RemoteATCommandWifiPacket

method), 431
get_checksum() (digi.xbee.packets.zigbee.CreateSourceRoutePacket

method), 450
get_checksum() (digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket

method), 452
get_checksum() (digi.xbee.packets.zigbee.RegisterDeviceStatusPacket

method), 442
get_checksum() (digi.xbee.packets.zigbee.RegisterJoiningDevicePacket

method), 439
get_checksum() (digi.xbee.packets.zigbee.RouteRecordIndicatorPacket

method), 446
get_comm_iface() (digi.xbee.devices.RemoteDigiMeshDevice

method), 822
get_comm_iface() (digi.xbee.devices.RemoteDigiPointDevice

method), 840
get_comm_iface() (digi.xbee.devices.RemoteRaw802Device

method), 803
get_comm_iface() (digi.xbee.devices.RemoteXBeeDevice

method), 782
get_comm_iface() (digi.xbee.devices.RemoteZigBeeDevice

method), 860
get_connections()

(digi.xbee.devices.DigiMeshNetwork method),
912

get_connections()
(digi.xbee.devices.DigiPointNetwork method),
924

get_connections()
(digi.xbee.devices.Raw802Network method),
901

get_connections()
(digi.xbee.devices.XBeeNetwork method),
884

get_connections()
(digi.xbee.devices.ZigBeeNetwork method),
890

get_current_directory()
(digi.xbee.filesystem.LocalXBeeFileSystemManager
method), 951

get_current_frame_id()
(digi.xbee.devices.AbstractXBeeDevice
method), 472

get_current_frame_id()
(digi.xbee.devices.CellularDevice method),
680

get_current_frame_id()
(digi.xbee.devices.DigiMeshDevice method),
555

get_current_frame_id()
(digi.xbee.devices.DigiPointDevice method),
587

get_current_frame_id()
(digi.xbee.devices.IPDevice method), 655

get_current_frame_id()
(digi.xbee.devices.LPWANDevice method),
705

1050 Index



XBee Python Library Documentation, Release 1.4.0

get_current_frame_id()
(digi.xbee.devices.NBIoTDevice method),
731

get_current_frame_id()
(digi.xbee.devices.Raw802Device method),
523

get_current_frame_id()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 822

get_current_frame_id()
(digi.xbee.devices.RemoteDigiPointDevice
method), 840

get_current_frame_id()
(digi.xbee.devices.RemoteRaw802Device
method), 804

get_current_frame_id()
(digi.xbee.devices.RemoteXBeeDevice
method), 787

get_current_frame_id()
(digi.xbee.devices.RemoteZigBeeDevice
method), 860

get_current_frame_id()
(digi.xbee.devices.WiFiDevice method), 762

get_current_frame_id()
(digi.xbee.devices.XBeeDevice method),
500

get_current_frame_id()
(digi.xbee.devices.ZigBeeDevice method),
624

get_data_queue() (digi.xbee.reader.PacketListener
method), 993

get_data_received_callbacks()
(digi.xbee.reader.PacketListener method),
999

get_deep_discovery_options()
(digi.xbee.devices.DigiMeshNetwork method),
913

get_deep_discovery_options()
(digi.xbee.devices.DigiPointNetwork method),
924

get_deep_discovery_options()
(digi.xbee.devices.Raw802Network method),
901

get_deep_discovery_options()
(digi.xbee.devices.XBeeNetwork method),
880

get_deep_discovery_options()
(digi.xbee.devices.ZigBeeNetwork method),
890

get_deep_discovery_timeouts()
(digi.xbee.devices.DigiMeshNetwork method),
913

get_deep_discovery_timeouts()
(digi.xbee.devices.DigiPointNetwork method),

925
get_deep_discovery_timeouts()

(digi.xbee.devices.Raw802Network method),
902

get_deep_discovery_timeouts()
(digi.xbee.devices.XBeeNetwork method),
881

get_deep_discovery_timeouts()
(digi.xbee.devices.ZigBeeNetwork method),
890

get_dest_address()
(digi.xbee.devices.AbstractXBeeDevice
method), 473

get_dest_address()
(digi.xbee.devices.CellularDevice method),
680

get_dest_address()
(digi.xbee.devices.DigiMeshDevice method),
555

get_dest_address()
(digi.xbee.devices.DigiPointDevice method),
587

get_dest_address() (digi.xbee.devices.IPDevice
method), 646

get_dest_address()
(digi.xbee.devices.LPWANDevice method),
705

get_dest_address()
(digi.xbee.devices.NBIoTDevice method),
731

get_dest_address()
(digi.xbee.devices.Raw802Device method),
523

get_dest_address()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 822

get_dest_address()
(digi.xbee.devices.RemoteDigiPointDevice
method), 840

get_dest_address()
(digi.xbee.devices.RemoteRaw802Device
method), 804

get_dest_address()
(digi.xbee.devices.RemoteXBeeDevice
method), 787

get_dest_address()
(digi.xbee.devices.RemoteZigBeeDevice
method), 860

get_dest_address()
(digi.xbee.devices.WiFiDevice method), 763

get_dest_address()
(digi.xbee.devices.XBeeDevice method),
500

get_dest_address()

Index 1051



XBee Python Library Documentation, Release 1.4.0

(digi.xbee.devices.ZigBeeDevice method),
624

get_dest_ip_addr()
(digi.xbee.devices.CellularDevice method),
680

get_dest_ip_addr() (digi.xbee.devices.IPDevice
method), 644

get_dest_ip_addr()
(digi.xbee.devices.LPWANDevice method),
705

get_dest_ip_addr()
(digi.xbee.devices.NBIoTDevice method),
731

get_dest_ip_addr()
(digi.xbee.devices.WiFiDevice method), 763

get_device_by_16()
(digi.xbee.devices.DigiMeshNetwork method),
914

get_device_by_16()
(digi.xbee.devices.DigiPointNetwork method),
925

get_device_by_16()
(digi.xbee.devices.Raw802Network method),
902

get_device_by_16()
(digi.xbee.devices.XBeeNetwork method),
883

get_device_by_16()
(digi.xbee.devices.ZigBeeNetwork method),
891

get_device_by_64()
(digi.xbee.devices.DigiMeshNetwork method),
914

get_device_by_64()
(digi.xbee.devices.DigiPointNetwork method),
925

get_device_by_64()
(digi.xbee.devices.Raw802Network method),
903

get_device_by_64()
(digi.xbee.devices.XBeeNetwork method),
883

get_device_by_64()
(digi.xbee.devices.ZigBeeNetwork method),
891

get_device_by_node_id()
(digi.xbee.devices.DigiMeshNetwork method),
914

get_device_by_node_id()
(digi.xbee.devices.DigiPointNetwork method),
925

get_device_by_node_id()
(digi.xbee.devices.Raw802Network method),
903

get_device_by_node_id()
(digi.xbee.devices.XBeeNetwork method),
883

get_device_by_node_id()
(digi.xbee.devices.ZigBeeNetwork method),
891

get_devices() (digi.xbee.devices.DigiMeshNetwork
method), 914

get_devices() (digi.xbee.devices.DigiPointNetwork
method), 926

get_devices() (digi.xbee.devices.Raw802Network
method), 903

get_devices() (digi.xbee.devices.XBeeNetwork
method), 876

get_devices() (digi.xbee.devices.ZigBeeNetwork
method), 891

get_digital_value() (digi.xbee.io.IOSample
method), 961

get_dio_value() (digi.xbee.devices.AbstractXBeeDevice
method), 479

get_dio_value() (digi.xbee.devices.CellularDevice
method), 681

get_dio_value() (digi.xbee.devices.DigiMeshDevice
method), 555

get_dio_value() (digi.xbee.devices.DigiPointDevice
method), 587

get_dio_value() (digi.xbee.devices.IPDevice
method), 655

get_dio_value() (digi.xbee.devices.LPWANDevice
method), 706

get_dio_value() (digi.xbee.devices.NBIoTDevice
method), 731

get_dio_value() (digi.xbee.devices.Raw802Device
method), 523

get_dio_value() (digi.xbee.devices.RemoteDigiMeshDevice
method), 823

get_dio_value() (digi.xbee.devices.RemoteDigiPointDevice
method), 841

get_dio_value() (digi.xbee.devices.RemoteRaw802Device
method), 804

get_dio_value() (digi.xbee.devices.RemoteXBeeDevice
method), 787

get_dio_value() (digi.xbee.devices.RemoteZigBeeDevice
method), 861

get_dio_value() (digi.xbee.devices.WiFiDevice
method), 763

get_dio_value() (digi.xbee.devices.XBeeDevice
method), 501

get_dio_value() (digi.xbee.devices.ZigBeeDevice
method), 625

get_discovery_callbacks()
(digi.xbee.devices.DigiMeshNetwork method),
914

get_discovery_callbacks()

1052 Index



XBee Python Library Documentation, Release 1.4.0

(digi.xbee.devices.DigiPointNetwork method),
926

get_discovery_callbacks()
(digi.xbee.devices.Raw802Network method),
903

get_discovery_callbacks()
(digi.xbee.devices.XBeeNetwork method),
884

get_discovery_callbacks()
(digi.xbee.devices.ZigBeeNetwork method),
892

get_discovery_options()
(digi.xbee.devices.DigiMeshNetwork method),
915

get_discovery_options()
(digi.xbee.devices.DigiPointNetwork method),
926

get_discovery_options()
(digi.xbee.devices.Raw802Network method),
903

get_discovery_options()
(digi.xbee.devices.XBeeNetwork method),
879

get_discovery_options()
(digi.xbee.devices.ZigBeeNetwork method),
892

get_discovery_timeout()
(digi.xbee.devices.DigiMeshNetwork method),
915

get_discovery_timeout()
(digi.xbee.devices.DigiPointNetwork method),
926

get_discovery_timeout()
(digi.xbee.devices.Raw802Network method),
903

get_discovery_timeout()
(digi.xbee.devices.XBeeNetwork method),
881

get_discovery_timeout()
(digi.xbee.devices.ZigBeeNetwork method),
892

get_dns_address() (digi.xbee.devices.WiFiDevice
method), 754

get_explicit_data_received_callbacks()
(digi.xbee.reader.PacketListener method), 999

get_explicit_queue()
(digi.xbee.reader.PacketListener method),
994

get_file() (digi.xbee.filesystem.FileSystemManager
method), 941

get_file() (digi.xbee.filesystem.LocalXBeeFileSystemManager
method), 952

get_file_hash() (digi.xbee.filesystem.FileSystemManager
method), 943

get_file_hash() (digi.xbee.filesystem.LocalXBeeFileSystemManager
method), 953

get_file_manager()
(digi.xbee.devices.AbstractXBeeDevice
method), 484

get_file_manager()
(digi.xbee.devices.CellularDevice method),
681

get_file_manager()
(digi.xbee.devices.DigiMeshDevice method),
556

get_file_manager()
(digi.xbee.devices.DigiPointDevice method),
588

get_file_manager() (digi.xbee.devices.IPDevice
method), 655

get_file_manager()
(digi.xbee.devices.LPWANDevice method),
706

get_file_manager()
(digi.xbee.devices.NBIoTDevice method),
732

get_file_manager()
(digi.xbee.devices.Raw802Device method),
524

get_file_manager()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 823

get_file_manager()
(digi.xbee.devices.RemoteDigiPointDevice
method), 841

get_file_manager()
(digi.xbee.devices.RemoteRaw802Device
method), 805

get_file_manager()
(digi.xbee.devices.RemoteXBeeDevice
method), 788

get_file_manager()
(digi.xbee.devices.RemoteZigBeeDevice
method), 861

get_file_manager()
(digi.xbee.devices.WiFiDevice method), 763

get_file_manager()
(digi.xbee.devices.XBeeDevice method),
501

get_file_manager()
(digi.xbee.devices.ZigBeeDevice method),
625

get_file_ymodem() (in module
digi.xbee.util.xmodem), 463

get_firmware_version()
(digi.xbee.devices.AbstractXBeeDevice
method), 471

get_firmware_version()

Index 1053



XBee Python Library Documentation, Release 1.4.0

(digi.xbee.devices.CellularDevice method),
681

get_firmware_version()
(digi.xbee.devices.DigiMeshDevice method),
556

get_firmware_version()
(digi.xbee.devices.DigiPointDevice method),
588

get_firmware_version()
(digi.xbee.devices.IPDevice method), 655

get_firmware_version()
(digi.xbee.devices.LPWANDevice method),
706

get_firmware_version()
(digi.xbee.devices.NBIoTDevice method),
732

get_firmware_version()
(digi.xbee.devices.Raw802Device method),
524

get_firmware_version()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 823

get_firmware_version()
(digi.xbee.devices.RemoteDigiPointDevice
method), 841

get_firmware_version()
(digi.xbee.devices.RemoteRaw802Device
method), 805

get_firmware_version()
(digi.xbee.devices.RemoteXBeeDevice
method), 788

get_firmware_version()
(digi.xbee.devices.RemoteZigBeeDevice
method), 862

get_firmware_version()
(digi.xbee.devices.WiFiDevice method), 764

get_firmware_version()
(digi.xbee.devices.XBeeDevice method),
501

get_firmware_version()
(digi.xbee.devices.ZigBeeDevice method),
625

get_frame_spec_data()
(digi.xbee.packets.base.GenericXBeePacket
method), 243

get_frame_spec_data()
(digi.xbee.packets.base.UnknownXBeePacket
method), 246

get_frame_spec_data()
(digi.xbee.packets.base.XBeeAPIPacket
method), 240

get_frame_spec_data()
(digi.xbee.packets.base.XBeePacket method),
239

get_frame_spec_data()
(digi.xbee.packets.cellular.RXSMSPacket
method), 249

get_frame_spec_data()
(digi.xbee.packets.cellular.TXSMSPacket
method), 252

get_frame_spec_data()
(digi.xbee.packets.common.ATCommPacket
method), 255

get_frame_spec_data()
(digi.xbee.packets.common.ATCommQueuePacket
method), 258

get_frame_spec_data()
(digi.xbee.packets.common.ATCommResponsePacket
method), 262

get_frame_spec_data()
(digi.xbee.packets.common.ExplicitAddressingPacket
method), 292

get_frame_spec_data()
(digi.xbee.packets.common.ExplicitRXIndicatorPacket
method), 296

get_frame_spec_data()
(digi.xbee.packets.common.IODataSampleRxIndicatorPacket
method), 289

get_frame_spec_data()
(digi.xbee.packets.common.ModemStatusPacket
method), 285

get_frame_spec_data()
(digi.xbee.packets.common.ReceivePacket
method), 266

get_frame_spec_data()
(digi.xbee.packets.common.RemoteATCommandPacket
method), 270

get_frame_spec_data()
(digi.xbee.packets.common.RemoteATCommandResponsePacket
method), 274

get_frame_spec_data()
(digi.xbee.packets.common.TransmitPacket
method), 278

get_frame_spec_data()
(digi.xbee.packets.common.TransmitStatusPacket
method), 282

get_frame_spec_data()
(digi.xbee.packets.devicecloud.DeviceRequestPacket
method), 301

get_frame_spec_data()
(digi.xbee.packets.devicecloud.DeviceResponsePacket
method), 304

get_frame_spec_data()
(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket
method), 307

get_frame_spec_data()
(digi.xbee.packets.devicecloud.FrameErrorPacket
method), 310

1054 Index



XBee Python Library Documentation, Release 1.4.0

get_frame_spec_data()
(digi.xbee.packets.devicecloud.SendDataRequestPacket
method), 314

get_frame_spec_data()
(digi.xbee.packets.devicecloud.SendDataResponsePacket
method), 316

get_frame_spec_data()
(digi.xbee.packets.digimesh.RouteInformationPacket
method), 321

get_frame_spec_data()
(digi.xbee.packets.filesystem.FSRequestPacket
method), 325

get_frame_spec_data()
(digi.xbee.packets.filesystem.FSResponsePacket
method), 327

get_frame_spec_data()
(digi.xbee.packets.filesystem.RemoteFSRequestPacket
method), 331

get_frame_spec_data()
(digi.xbee.packets.filesystem.RemoteFSResponsePacket
method), 333

get_frame_spec_data()
(digi.xbee.packets.network.RXIPv4Packet
method), 338

get_frame_spec_data()
(digi.xbee.packets.network.TXIPv4Packet
method), 341

get_frame_spec_data()
(digi.xbee.packets.raw.RX16IOPacket method),
364

get_frame_spec_data()
(digi.xbee.packets.raw.RX16Packet method),
359

get_frame_spec_data()
(digi.xbee.packets.raw.RX64IOPacket method),
362

get_frame_spec_data()
(digi.xbee.packets.raw.RX64Packet method),
355

get_frame_spec_data()
(digi.xbee.packets.raw.TX16Packet method),
348

get_frame_spec_data()
(digi.xbee.packets.raw.TX64Packet method),
345

get_frame_spec_data()
(digi.xbee.packets.raw.TXStatusPacket
method), 351

get_frame_spec_data()
(digi.xbee.packets.relay.UserDataRelayOutputPacket
method), 372

get_frame_spec_data()
(digi.xbee.packets.relay.UserDataRelayPacket
method), 369

get_frame_spec_data()
(digi.xbee.packets.socket.SocketBindListenPacket
method), 408

get_frame_spec_data()
(digi.xbee.packets.socket.SocketClosePacket
method), 395

get_frame_spec_data()
(digi.xbee.packets.socket.SocketCloseResponsePacket
method), 399

get_frame_spec_data()
(digi.xbee.packets.socket.SocketConnectPacket
method), 389

get_frame_spec_data()
(digi.xbee.packets.socket.SocketConnectResponsePacket
method), 392

get_frame_spec_data()
(digi.xbee.packets.socket.SocketCreatePacket
method), 375

get_frame_spec_data()
(digi.xbee.packets.socket.SocketCreateResponsePacket
method), 379

get_frame_spec_data()
(digi.xbee.packets.socket.SocketListenResponsePacket
method), 411

get_frame_spec_data()
(digi.xbee.packets.socket.SocketNewIPv4ClientPacket
method), 415

get_frame_spec_data()
(digi.xbee.packets.socket.SocketOptionRequestPacket
method), 382

get_frame_spec_data()
(digi.xbee.packets.socket.SocketOptionResponsePacket
method), 385

get_frame_spec_data()
(digi.xbee.packets.socket.SocketReceiveFromPacket
method), 420

get_frame_spec_data()
(digi.xbee.packets.socket.SocketReceivePacket
method), 417

get_frame_spec_data()
(digi.xbee.packets.socket.SocketSendPacket
method), 402

get_frame_spec_data()
(digi.xbee.packets.socket.SocketSendToPacket
method), 405

get_frame_spec_data()
(digi.xbee.packets.socket.SocketStatePacket
method), 423

get_frame_spec_data()
(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket
method), 428

get_frame_spec_data()
(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket
method), 434

Index 1055



XBee Python Library Documentation, Release 1.4.0

get_frame_spec_data()
(digi.xbee.packets.wifi.RemoteATCommandWifiPacket
method), 432

get_frame_spec_data()
(digi.xbee.packets.zigbee.CreateSourceRoutePacket
method), 450

get_frame_spec_data()
(digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket
method), 452

get_frame_spec_data()
(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket
method), 442

get_frame_spec_data()
(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket
method), 439

get_frame_spec_data()
(digi.xbee.packets.zigbee.RouteRecordIndicatorPacket
method), 446

get_frame_type() (digi.xbee.packets.base.GenericXBeePacket
method), 244

get_frame_type() (digi.xbee.packets.base.UnknownXBeePacket
method), 246

get_frame_type() (digi.xbee.packets.base.XBeeAPIPacket
method), 240

get_frame_type() (digi.xbee.packets.cellular.RXSMSPacket
method), 249

get_frame_type() (digi.xbee.packets.cellular.TXSMSPacket
method), 252

get_frame_type() (digi.xbee.packets.common.ATCommPacket
method), 255

get_frame_type() (digi.xbee.packets.common.ATCommQueuePacket
method), 258

get_frame_type() (digi.xbee.packets.common.ATCommResponsePacket
method), 262

get_frame_type() (digi.xbee.packets.common.ExplicitAddressingPacket
method), 292

get_frame_type() (digi.xbee.packets.common.ExplicitRXIndicatorPacket
method), 296

get_frame_type() (digi.xbee.packets.common.IODataSampleRxIndicatorPacket
method), 289

get_frame_type() (digi.xbee.packets.common.ModemStatusPacket
method), 285

get_frame_type() (digi.xbee.packets.common.ReceivePacket
method), 266

get_frame_type() (digi.xbee.packets.common.RemoteATCommandPacket
method), 270

get_frame_type() (digi.xbee.packets.common.RemoteATCommandResponsePacket
method), 274

get_frame_type() (digi.xbee.packets.common.TransmitPacket
method), 278

get_frame_type() (digi.xbee.packets.common.TransmitStatusPacket
method), 282

get_frame_type() (digi.xbee.packets.devicecloud.DeviceRequestPacket
method), 302

get_frame_type() (digi.xbee.packets.devicecloud.DeviceResponsePacket
method), 305

get_frame_type() (digi.xbee.packets.devicecloud.DeviceResponseStatusPacket
method), 308

get_frame_type() (digi.xbee.packets.devicecloud.FrameErrorPacket
method), 311

get_frame_type() (digi.xbee.packets.devicecloud.SendDataRequestPacket
method), 314

get_frame_type() (digi.xbee.packets.devicecloud.SendDataResponsePacket
method), 316

get_frame_type() (digi.xbee.packets.digimesh.RouteInformationPacket
method), 321

get_frame_type() (digi.xbee.packets.filesystem.FSRequestPacket
method), 325

get_frame_type() (digi.xbee.packets.filesystem.FSResponsePacket
method), 328

get_frame_type() (digi.xbee.packets.filesystem.RemoteFSRequestPacket
method), 331

get_frame_type() (digi.xbee.packets.filesystem.RemoteFSResponsePacket
method), 333

get_frame_type() (digi.xbee.packets.network.RXIPv4Packet
method), 338

get_frame_type() (digi.xbee.packets.network.TXIPv4Packet
method), 341

get_frame_type() (digi.xbee.packets.raw.RX16IOPacket
method), 364

get_frame_type() (digi.xbee.packets.raw.RX16Packet
method), 359

get_frame_type() (digi.xbee.packets.raw.RX64IOPacket
method), 362

get_frame_type() (digi.xbee.packets.raw.RX64Packet
method), 355

get_frame_type() (digi.xbee.packets.raw.TX16Packet
method), 349

get_frame_type() (digi.xbee.packets.raw.TX64Packet
method), 345

get_frame_type() (digi.xbee.packets.raw.TXStatusPacket
method), 352

get_frame_type() (digi.xbee.packets.relay.UserDataRelayOutputPacket
method), 372

get_frame_type() (digi.xbee.packets.relay.UserDataRelayPacket
method), 369

get_frame_type() (digi.xbee.packets.socket.SocketBindListenPacket
method), 408

get_frame_type() (digi.xbee.packets.socket.SocketClosePacket
method), 396

get_frame_type() (digi.xbee.packets.socket.SocketCloseResponsePacket
method), 399

get_frame_type() (digi.xbee.packets.socket.SocketConnectPacket
method), 389

get_frame_type() (digi.xbee.packets.socket.SocketConnectResponsePacket
method), 393

get_frame_type() (digi.xbee.packets.socket.SocketCreatePacket
method), 375

1056 Index



XBee Python Library Documentation, Release 1.4.0

get_frame_type() (digi.xbee.packets.socket.SocketCreateResponsePacket
method), 379

get_frame_type() (digi.xbee.packets.socket.SocketListenResponsePacket
method), 412

get_frame_type() (digi.xbee.packets.socket.SocketNewIPv4ClientPacket
method), 415

get_frame_type() (digi.xbee.packets.socket.SocketOptionRequestPacket
method), 382

get_frame_type() (digi.xbee.packets.socket.SocketOptionResponsePacket
method), 386

get_frame_type() (digi.xbee.packets.socket.SocketReceiveFromPacket
method), 420

get_frame_type() (digi.xbee.packets.socket.SocketReceivePacket
method), 417

get_frame_type() (digi.xbee.packets.socket.SocketSendPacket
method), 402

get_frame_type() (digi.xbee.packets.socket.SocketSendToPacket
method), 405

get_frame_type() (digi.xbee.packets.socket.SocketStatePacket
method), 423

get_frame_type() (digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket
method), 428

get_frame_type() (digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket
method), 434

get_frame_type() (digi.xbee.packets.wifi.RemoteATCommandWifiPacket
method), 432

get_frame_type() (digi.xbee.packets.zigbee.CreateSourceRoutePacket
method), 450

get_frame_type() (digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket
method), 453

get_frame_type() (digi.xbee.packets.zigbee.RegisterDeviceStatusPacket
method), 442

get_frame_type() (digi.xbee.packets.zigbee.RegisterJoiningDevicePacket
method), 439

get_frame_type() (digi.xbee.packets.zigbee.RouteRecordIndicatorPacket
method), 446

get_frame_type_value()
(digi.xbee.packets.base.GenericXBeePacket
method), 244

get_frame_type_value()
(digi.xbee.packets.base.UnknownXBeePacket
method), 246

get_frame_type_value()
(digi.xbee.packets.base.XBeeAPIPacket
method), 240

get_frame_type_value()
(digi.xbee.packets.cellular.RXSMSPacket
method), 249

get_frame_type_value()
(digi.xbee.packets.cellular.TXSMSPacket
method), 252

get_frame_type_value()
(digi.xbee.packets.common.ATCommPacket
method), 256

get_frame_type_value()
(digi.xbee.packets.common.ATCommQueuePacket
method), 259

get_frame_type_value()
(digi.xbee.packets.common.ATCommResponsePacket
method), 262

get_frame_type_value()
(digi.xbee.packets.common.ExplicitAddressingPacket
method), 293

get_frame_type_value()
(digi.xbee.packets.common.ExplicitRXIndicatorPacket
method), 297

get_frame_type_value()
(digi.xbee.packets.common.IODataSampleRxIndicatorPacket
method), 289

get_frame_type_value()
(digi.xbee.packets.common.ModemStatusPacket
method), 285

get_frame_type_value()
(digi.xbee.packets.common.ReceivePacket
method), 266

get_frame_type_value()
(digi.xbee.packets.common.RemoteATCommandPacket
method), 270

get_frame_type_value()
(digi.xbee.packets.common.RemoteATCommandResponsePacket
method), 274

get_frame_type_value()
(digi.xbee.packets.common.TransmitPacket
method), 278

get_frame_type_value()
(digi.xbee.packets.common.TransmitStatusPacket
method), 282

get_frame_type_value()
(digi.xbee.packets.devicecloud.DeviceRequestPacket
method), 302

get_frame_type_value()
(digi.xbee.packets.devicecloud.DeviceResponsePacket
method), 305

get_frame_type_value()
(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket
method), 308

get_frame_type_value()
(digi.xbee.packets.devicecloud.FrameErrorPacket
method), 311

get_frame_type_value()
(digi.xbee.packets.devicecloud.SendDataRequestPacket
method), 314

get_frame_type_value()
(digi.xbee.packets.devicecloud.SendDataResponsePacket
method), 316

get_frame_type_value()
(digi.xbee.packets.digimesh.RouteInformationPacket
method), 321

Index 1057



XBee Python Library Documentation, Release 1.4.0

get_frame_type_value()
(digi.xbee.packets.filesystem.FSRequestPacket
method), 325

get_frame_type_value()
(digi.xbee.packets.filesystem.FSResponsePacket
method), 328

get_frame_type_value()
(digi.xbee.packets.filesystem.RemoteFSRequestPacket
method), 331

get_frame_type_value()
(digi.xbee.packets.filesystem.RemoteFSResponsePacket
method), 334

get_frame_type_value()
(digi.xbee.packets.network.RXIPv4Packet
method), 339

get_frame_type_value()
(digi.xbee.packets.network.TXIPv4Packet
method), 342

get_frame_type_value()
(digi.xbee.packets.raw.RX16IOPacket method),
365

get_frame_type_value()
(digi.xbee.packets.raw.RX16Packet method),
359

get_frame_type_value()
(digi.xbee.packets.raw.RX64IOPacket method),
362

get_frame_type_value()
(digi.xbee.packets.raw.RX64Packet method),
355

get_frame_type_value()
(digi.xbee.packets.raw.TX16Packet method),
349

get_frame_type_value()
(digi.xbee.packets.raw.TX64Packet method),
346

get_frame_type_value()
(digi.xbee.packets.raw.TXStatusPacket
method), 352

get_frame_type_value()
(digi.xbee.packets.relay.UserDataRelayOutputPacket
method), 372

get_frame_type_value()
(digi.xbee.packets.relay.UserDataRelayPacket
method), 370

get_frame_type_value()
(digi.xbee.packets.socket.SocketBindListenPacket
method), 409

get_frame_type_value()
(digi.xbee.packets.socket.SocketClosePacket
method), 396

get_frame_type_value()
(digi.xbee.packets.socket.SocketCloseResponsePacket
method), 399

get_frame_type_value()
(digi.xbee.packets.socket.SocketConnectPacket
method), 390

get_frame_type_value()
(digi.xbee.packets.socket.SocketConnectResponsePacket
method), 393

get_frame_type_value()
(digi.xbee.packets.socket.SocketCreatePacket
method), 376

get_frame_type_value()
(digi.xbee.packets.socket.SocketCreateResponsePacket
method), 379

get_frame_type_value()
(digi.xbee.packets.socket.SocketListenResponsePacket
method), 412

get_frame_type_value()
(digi.xbee.packets.socket.SocketNewIPv4ClientPacket
method), 415

get_frame_type_value()
(digi.xbee.packets.socket.SocketOptionRequestPacket
method), 382

get_frame_type_value()
(digi.xbee.packets.socket.SocketOptionResponsePacket
method), 386

get_frame_type_value()
(digi.xbee.packets.socket.SocketReceiveFromPacket
method), 420

get_frame_type_value()
(digi.xbee.packets.socket.SocketReceivePacket
method), 417

get_frame_type_value()
(digi.xbee.packets.socket.SocketSendPacket
method), 402

get_frame_type_value()
(digi.xbee.packets.socket.SocketSendToPacket
method), 405

get_frame_type_value()
(digi.xbee.packets.socket.SocketStatePacket
method), 423

get_frame_type_value()
(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket
method), 428

get_frame_type_value()
(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket
method), 434

get_frame_type_value()
(digi.xbee.packets.wifi.RemoteATCommandWifiPacket
method), 432

get_frame_type_value()
(digi.xbee.packets.zigbee.CreateSourceRoutePacket
method), 450

get_frame_type_value()
(digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket
method), 453

1058 Index



XBee Python Library Documentation, Release 1.4.0

get_frame_type_value()
(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket
method), 442

get_frame_type_value()
(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket
method), 439

get_frame_type_value()
(digi.xbee.packets.zigbee.RouteRecordIndicatorPacket
method), 446

get_fs_frame_received_callbacks()
(digi.xbee.reader.PacketListener method),
1000

get_gateway_address()
(digi.xbee.devices.WiFiDevice method), 754

get_hardware_version()
(digi.xbee.devices.AbstractXBeeDevice
method), 471

get_hardware_version()
(digi.xbee.devices.CellularDevice method),
682

get_hardware_version()
(digi.xbee.devices.DigiMeshDevice method),
556

get_hardware_version()
(digi.xbee.devices.DigiPointDevice method),
588

get_hardware_version()
(digi.xbee.devices.IPDevice method), 656

get_hardware_version()
(digi.xbee.devices.LPWANDevice method),
706

get_hardware_version()
(digi.xbee.devices.NBIoTDevice method),
732

get_hardware_version()
(digi.xbee.devices.Raw802Device method),
524

get_hardware_version()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 823

get_hardware_version()
(digi.xbee.devices.RemoteDigiPointDevice
method), 841

get_hardware_version()
(digi.xbee.devices.RemoteRaw802Device
method), 805

get_hardware_version()
(digi.xbee.devices.RemoteXBeeDevice
method), 788

get_hardware_version()
(digi.xbee.devices.RemoteZigBeeDevice
method), 862

get_hardware_version()
(digi.xbee.devices.WiFiDevice method), 764

get_hardware_version()
(digi.xbee.devices.XBeeDevice method),
501

get_hardware_version()
(digi.xbee.devices.ZigBeeDevice method),
625

get_hsb() (digi.xbee.models.address.XBee16BitAddress
method), 196

get_imei_addr() (digi.xbee.devices.CellularDevice
method), 671

get_imei_addr() (digi.xbee.devices.LPWANDevice
method), 707

get_imei_addr() (digi.xbee.devices.NBIoTDevice
method), 732

get_int_from_byte() (in module
digi.xbee.util.utils), 458

get_io_configuration()
(digi.xbee.devices.AbstractXBeeDevice
method), 476

get_io_configuration()
(digi.xbee.devices.CellularDevice method),
682

get_io_configuration()
(digi.xbee.devices.DigiMeshDevice method),
556

get_io_configuration()
(digi.xbee.devices.DigiPointDevice method),
588

get_io_configuration()
(digi.xbee.devices.IPDevice method), 656

get_io_configuration()
(digi.xbee.devices.LPWANDevice method),
707

get_io_configuration()
(digi.xbee.devices.NBIoTDevice method),
732

get_io_configuration()
(digi.xbee.devices.Raw802Device method),
524

get_io_configuration()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 824

get_io_configuration()
(digi.xbee.devices.RemoteDigiPointDevice
method), 842

get_io_configuration()
(digi.xbee.devices.RemoteRaw802Device
method), 805

get_io_configuration()
(digi.xbee.devices.RemoteXBeeDevice
method), 788

get_io_configuration()
(digi.xbee.devices.RemoteZigBeeDevice
method), 862

Index 1059



XBee Python Library Documentation, Release 1.4.0

get_io_configuration()
(digi.xbee.devices.WiFiDevice method), 764

get_io_configuration()
(digi.xbee.devices.XBeeDevice method),
501

get_io_configuration()
(digi.xbee.devices.ZigBeeDevice method),
626

get_io_sample_received_callbacks()
(digi.xbee.reader.PacketListener method), 999

get_io_sampling_rate()
(digi.xbee.devices.AbstractXBeeDevice
method), 476

get_io_sampling_rate()
(digi.xbee.devices.CellularDevice method),
672

get_io_sampling_rate()
(digi.xbee.devices.DigiMeshDevice method),
557

get_io_sampling_rate()
(digi.xbee.devices.DigiPointDevice method),
588

get_io_sampling_rate()
(digi.xbee.devices.IPDevice method), 656

get_io_sampling_rate()
(digi.xbee.devices.LPWANDevice method),
707

get_io_sampling_rate()
(digi.xbee.devices.NBIoTDevice method),
733

get_io_sampling_rate()
(digi.xbee.devices.Raw802Device method),
525

get_io_sampling_rate()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 824

get_io_sampling_rate()
(digi.xbee.devices.RemoteDigiPointDevice
method), 842

get_io_sampling_rate()
(digi.xbee.devices.RemoteRaw802Device
method), 805

get_io_sampling_rate()
(digi.xbee.devices.RemoteXBeeDevice
method), 789

get_io_sampling_rate()
(digi.xbee.devices.RemoteZigBeeDevice
method), 862

get_io_sampling_rate()
(digi.xbee.devices.WiFiDevice method), 764

get_io_sampling_rate()
(digi.xbee.devices.XBeeDevice method),
502

get_io_sampling_rate()

(digi.xbee.devices.ZigBeeDevice method),
626

get_ip_addr() (digi.xbee.devices.CellularDevice
method), 682

get_ip_addr() (digi.xbee.devices.IPDevice method),
643

get_ip_addr() (digi.xbee.devices.LPWANDevice
method), 707

get_ip_addr() (digi.xbee.devices.NBIoTDevice
method), 733

get_ip_addr() (digi.xbee.devices.WiFiDevice
method), 765

get_ip_addressing_mode()
(digi.xbee.devices.WiFiDevice method), 752

get_ip_data_received_callbacks()
(digi.xbee.reader.PacketListener method),
999

get_ip_queue() (digi.xbee.reader.PacketListener
method), 994

get_local_file_hash() (in module
digi.xbee.filesystem), 954

get_local_xbee_device()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 825

get_local_xbee_device()
(digi.xbee.devices.RemoteDigiPointDevice
method), 843

get_local_xbee_device()
(digi.xbee.devices.RemoteRaw802Device
method), 806

get_local_xbee_device()
(digi.xbee.devices.RemoteXBeeDevice
method), 781

get_local_xbee_device()
(digi.xbee.devices.RemoteZigBeeDevice
method), 863

get_local_xbee_info()
(digi.xbee.comm_interface.XBeeCommunicationInterface
method), 465

get_local_xbee_info()
(digi.xbee.serial.XBeeSerialPort method),
1008

get_lsb() (digi.xbee.models.address.XBee16BitAddress
method), 196

get_many_to_one_broadcasting_time()
(digi.xbee.devices.ZigBeeDevice method), 606

get_mask_address()
(digi.xbee.devices.WiFiDevice method), 753

get_micropython_data_received_callbacks()
(digi.xbee.reader.PacketListener method), 1000

get_modem_status_received_callbacks()
(digi.xbee.reader.PacketListener method), 999

get_neighbor_table()
(digi.xbee.models.zdo.NeighborTableReader

1060 Index



XBee Python Library Documentation, Release 1.4.0

method), 233
get_neighbors() (digi.xbee.devices.DigiMeshDevice

method), 546
get_neighbors() (digi.xbee.devices.RemoteDigiMeshDevice

method), 817
get_neighbors() (digi.xbee.devices.RemoteZigBeeDevice

method), 855
get_neighbors() (digi.xbee.devices.ZigBeeDevice

method), 615
get_neighbors() (digi.xbee.models.zdo.NeighborFinder

method), 235
get_network() (digi.xbee.comm_interface.XBeeCommunicationInterface

method), 465
get_network() (digi.xbee.devices.CellularDevice

method), 682
get_network() (digi.xbee.devices.DigiMeshDevice

method), 557
get_network() (digi.xbee.devices.DigiPointDevice

method), 589
get_network() (digi.xbee.devices.IPDevice method),

646
get_network() (digi.xbee.devices.LPWANDevice

method), 707
get_network() (digi.xbee.devices.NBIoTDevice

method), 733
get_network() (digi.xbee.devices.Raw802Device

method), 525
get_network() (digi.xbee.devices.WiFiDevice

method), 765
get_network() (digi.xbee.devices.XBeeDevice

method), 494
get_network() (digi.xbee.devices.ZigBeeDevice

method), 626
get_network() (digi.xbee.serial.XBeeSerialPort

method), 1008
get_next_frame_id()

(digi.xbee.devices.CellularDevice method),
682

get_next_frame_id()
(digi.xbee.devices.DigiMeshDevice method),
557

get_next_frame_id()
(digi.xbee.devices.DigiPointDevice method),
589

get_next_frame_id() (digi.xbee.devices.IPDevice
method), 657

get_next_frame_id()
(digi.xbee.devices.LPWANDevice method),
708

get_next_frame_id()
(digi.xbee.devices.NBIoTDevice method),
733

get_next_frame_id()
(digi.xbee.devices.Raw802Device method),

525
get_next_frame_id()

(digi.xbee.devices.WiFiDevice method), 765
get_next_frame_id()

(digi.xbee.devices.XBeeDevice method),
495

get_next_frame_id()
(digi.xbee.devices.ZigBeeDevice method),
626

get_node_connections()
(digi.xbee.devices.DigiMeshNetwork method),
915

get_node_connections()
(digi.xbee.devices.DigiPointNetwork method),
927

get_node_connections()
(digi.xbee.devices.Raw802Network method),
904

get_node_connections()
(digi.xbee.devices.XBeeNetwork method),
885

get_node_connections()
(digi.xbee.devices.ZigBeeNetwork method),
892

get_node_descriptor()
(digi.xbee.models.zdo.NodeDescriptorReader
method), 227

get_node_id() (digi.xbee.devices.AbstractXBeeDevice
method), 471

get_node_id() (digi.xbee.devices.CellularDevice
method), 672

get_node_id() (digi.xbee.devices.DigiMeshDevice
method), 558

get_node_id() (digi.xbee.devices.DigiPointDevice
method), 589

get_node_id() (digi.xbee.devices.IPDevice method),
657

get_node_id() (digi.xbee.devices.LPWANDevice
method), 708

get_node_id() (digi.xbee.devices.NBIoTDevice
method), 733

get_node_id() (digi.xbee.devices.Raw802Device
method), 525

get_node_id() (digi.xbee.devices.RemoteDigiMeshDevice
method), 825

get_node_id() (digi.xbee.devices.RemoteDigiPointDevice
method), 843

get_node_id() (digi.xbee.devices.RemoteRaw802Device
method), 806

get_node_id() (digi.xbee.devices.RemoteXBeeDevice
method), 789

get_node_id() (digi.xbee.devices.RemoteZigBeeDevice
method), 863

get_node_id() (digi.xbee.devices.WiFiDevice

Index 1061



XBee Python Library Documentation, Release 1.4.0

method), 765
get_node_id() (digi.xbee.devices.XBeeDevice

method), 502
get_node_id() (digi.xbee.devices.ZigBeeDevice

method), 627
get_nowait() (digi.xbee.reader.XBeeQueue method),

1003
get_nt_limits() (digi.xbee.devices.DigiMeshNetwork

class method), 915
get_nt_limits() (digi.xbee.devices.DigiPointNetwork

class method), 927
get_nt_limits() (digi.xbee.devices.Raw802Network

class method), 904
get_nt_limits() (digi.xbee.devices.XBeeNetwork

class method), 882
get_nt_limits() (digi.xbee.devices.ZigBeeNetwork

class method), 893
get_number_devices()

(digi.xbee.devices.DigiMeshNetwork method),
916

get_number_devices()
(digi.xbee.devices.DigiPointNetwork method),
927

get_number_devices()
(digi.xbee.devices.Raw802Network method),
904

get_number_devices()
(digi.xbee.devices.XBeeNetwork method),
876

get_number_devices()
(digi.xbee.devices.ZigBeeNetwork method),
893

get_ota_max_block_size()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 825

get_ota_max_block_size()
(digi.xbee.devices.RemoteDigiPointDevice
method), 843

get_ota_max_block_size()
(digi.xbee.devices.RemoteRaw802Device
method), 806

get_ota_max_block_size()
(digi.xbee.devices.RemoteXBeeDevice
method), 782

get_ota_max_block_size()
(digi.xbee.devices.RemoteZigBeeDevice
method), 863

get_packet_received_callbacks()
(digi.xbee.reader.PacketListener method),
998

get_packet_received_from_callbacks()
(digi.xbee.reader.PacketListener method), 999

get_pan_id() (digi.xbee.devices.AbstractXBeeDevice
method), 474

get_pan_id() (digi.xbee.devices.CellularDevice
method), 683

get_pan_id() (digi.xbee.devices.DigiMeshDevice
method), 558

get_pan_id() (digi.xbee.devices.DigiPointDevice
method), 589

get_pan_id() (digi.xbee.devices.IPDevice method),
647

get_pan_id() (digi.xbee.devices.LPWANDevice
method), 708

get_pan_id() (digi.xbee.devices.NBIoTDevice
method), 733

get_pan_id() (digi.xbee.devices.Raw802Device
method), 525

get_pan_id() (digi.xbee.devices.RemoteDigiMeshDevice
method), 825

get_pan_id() (digi.xbee.devices.RemoteDigiPointDevice
method), 843

get_pan_id() (digi.xbee.devices.RemoteRaw802Device
method), 806

get_pan_id() (digi.xbee.devices.RemoteXBeeDevice
method), 789

get_pan_id() (digi.xbee.devices.RemoteZigBeeDevice
method), 863

get_pan_id() (digi.xbee.devices.WiFiDevice
method), 765

get_pan_id() (digi.xbee.devices.XBeeDevice
method), 502

get_pan_id() (digi.xbee.devices.ZigBeeDevice
method), 627

get_parameter() (digi.xbee.devices.AbstractXBeeDevice
method), 467

get_parameter() (digi.xbee.devices.CellularDevice
method), 683

get_parameter() (digi.xbee.devices.DigiMeshDevice
method), 558

get_parameter() (digi.xbee.devices.DigiPointDevice
method), 590

get_parameter() (digi.xbee.devices.IPDevice
method), 657

get_parameter() (digi.xbee.devices.LPWANDevice
method), 708

get_parameter() (digi.xbee.devices.NBIoTDevice
method), 733

get_parameter() (digi.xbee.devices.Raw802Device
method), 526

get_parameter() (digi.xbee.devices.RemoteDigiMeshDevice
method), 825

get_parameter() (digi.xbee.devices.RemoteDigiPointDevice
method), 843

get_parameter() (digi.xbee.devices.RemoteRaw802Device
method), 807

get_parameter() (digi.xbee.devices.RemoteXBeeDevice
method), 781

1062 Index



XBee Python Library Documentation, Release 1.4.0

get_parameter() (digi.xbee.devices.RemoteZigBeeDevice
method), 863

get_parameter() (digi.xbee.devices.WiFiDevice
method), 765

get_parameter() (digi.xbee.devices.XBeeDevice
method), 486

get_parameter() (digi.xbee.devices.ZigBeeDevice
method), 627

get_parameter_string()
(digi.xbee.models.atcomm.ATCommand
method), 130

get_phone_number_byte_array()
(digi.xbee.packets.cellular.RXSMSPacket
method), 248

get_phone_number_byte_array()
(digi.xbee.packets.cellular.TXSMSPacket
method), 252

get_power_level()
(digi.xbee.devices.AbstractXBeeDevice
method), 475

get_power_level()
(digi.xbee.devices.CellularDevice method),
673

get_power_level()
(digi.xbee.devices.DigiMeshDevice method),
558

get_power_level()
(digi.xbee.devices.DigiPointDevice method),
590

get_power_level() (digi.xbee.devices.IPDevice
method), 657

get_power_level()
(digi.xbee.devices.LPWANDevice method),
708

get_power_level()
(digi.xbee.devices.NBIoTDevice method),
733

get_power_level()
(digi.xbee.devices.Raw802Device method),
526

get_power_level()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 825

get_power_level()
(digi.xbee.devices.RemoteDigiPointDevice
method), 843

get_power_level()
(digi.xbee.devices.RemoteRaw802Device
method), 807

get_power_level()
(digi.xbee.devices.RemoteXBeeDevice
method), 789

get_power_level()
(digi.xbee.devices.RemoteZigBeeDevice

method), 864
get_power_level() (digi.xbee.devices.WiFiDevice

method), 766
get_power_level() (digi.xbee.devices.XBeeDevice

method), 503
get_power_level()

(digi.xbee.devices.ZigBeeDevice method),
627

get_protocol() (digi.xbee.devices.AbstractXBeeDevice
method), 471

get_protocol() (digi.xbee.devices.CellularDevice
method), 670

get_protocol() (digi.xbee.devices.DigiMeshDevice
method), 542

get_protocol() (digi.xbee.devices.DigiPointDevice
method), 574

get_protocol() (digi.xbee.devices.IPDevice
method), 657

get_protocol() (digi.xbee.devices.LPWANDevice
method), 708

get_protocol() (digi.xbee.devices.NBIoTDevice
method), 722

get_protocol() (digi.xbee.devices.Raw802Device
method), 512

get_protocol() (digi.xbee.devices.RemoteDigiMeshDevice
method), 817

get_protocol() (digi.xbee.devices.RemoteDigiPointDevice
method), 836

get_protocol() (digi.xbee.devices.RemoteRaw802Device
method), 799

get_protocol() (digi.xbee.devices.RemoteXBeeDevice
method), 790

get_protocol() (digi.xbee.devices.RemoteZigBeeDevice
method), 854

get_protocol() (digi.xbee.devices.WiFiDevice
method), 748

get_protocol() (digi.xbee.devices.XBeeDevice
method), 503

get_protocol() (digi.xbee.devices.ZigBeeDevice
method), 606

get_pwm_duty_cycle()
(digi.xbee.devices.AbstractXBeeDevice
method), 478

get_pwm_duty_cycle()
(digi.xbee.devices.CellularDevice method),
683

get_pwm_duty_cycle()
(digi.xbee.devices.DigiMeshDevice method),
559

get_pwm_duty_cycle()
(digi.xbee.devices.DigiPointDevice method),
590

get_pwm_duty_cycle()
(digi.xbee.devices.IPDevice method), 658

Index 1063



XBee Python Library Documentation, Release 1.4.0

get_pwm_duty_cycle()
(digi.xbee.devices.LPWANDevice method),
708

get_pwm_duty_cycle()
(digi.xbee.devices.NBIoTDevice method),
733

get_pwm_duty_cycle()
(digi.xbee.devices.Raw802Device method),
526

get_pwm_duty_cycle()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 826

get_pwm_duty_cycle()
(digi.xbee.devices.RemoteDigiPointDevice
method), 844

get_pwm_duty_cycle()
(digi.xbee.devices.RemoteRaw802Device
method), 807

get_pwm_duty_cycle()
(digi.xbee.devices.RemoteXBeeDevice
method), 790

get_pwm_duty_cycle()
(digi.xbee.devices.RemoteZigBeeDevice
method), 864

get_pwm_duty_cycle()
(digi.xbee.devices.WiFiDevice method), 766

get_pwm_duty_cycle()
(digi.xbee.devices.XBeeDevice method),
503

get_pwm_duty_cycle()
(digi.xbee.devices.ZigBeeDevice method),
628

get_queue() (digi.xbee.reader.PacketListener
method), 993

get_read_timeout()
(digi.xbee.serial.XBeeSerialPort method),
1007

get_role() (digi.xbee.devices.AbstractXBeeDevice
method), 472

get_role() (digi.xbee.devices.CellularDevice
method), 683

get_role() (digi.xbee.devices.DigiMeshDevice
method), 559

get_role() (digi.xbee.devices.DigiPointDevice
method), 591

get_role() (digi.xbee.devices.IPDevice method), 658
get_role() (digi.xbee.devices.LPWANDevice

method), 709
get_role() (digi.xbee.devices.NBIoTDevice method),

734
get_role() (digi.xbee.devices.Raw802Device

method), 527
get_role() (digi.xbee.devices.RemoteDigiMeshDevice

method), 826

get_role() (digi.xbee.devices.RemoteDigiPointDevice
method), 844

get_role() (digi.xbee.devices.RemoteRaw802Device
method), 808

get_role() (digi.xbee.devices.RemoteXBeeDevice
method), 790

get_role() (digi.xbee.devices.RemoteZigBeeDevice
method), 864

get_role() (digi.xbee.devices.WiFiDevice method),
766

get_role() (digi.xbee.devices.XBeeDevice method),
504

get_role() (digi.xbee.devices.ZigBeeDevice method),
628

get_root() (digi.xbee.filesystem.FileSystemManager
method), 939

get_route_info_callbacks()
(digi.xbee.reader.PacketListener method),
1000

get_route_record_received_callbacks()
(digi.xbee.reader.PacketListener method), 1000

get_route_table()
(digi.xbee.models.zdo.RouteTableReader
method), 230

get_route_to_node()
(digi.xbee.devices.CellularDevice method),
683

get_route_to_node()
(digi.xbee.devices.DigiMeshDevice method),
559

get_route_to_node()
(digi.xbee.devices.DigiPointDevice method),
591

get_route_to_node() (digi.xbee.devices.IPDevice
method), 658

get_route_to_node()
(digi.xbee.devices.LPWANDevice method),
709

get_route_to_node()
(digi.xbee.devices.NBIoTDevice method),
734

get_route_to_node()
(digi.xbee.devices.Raw802Device method),
527

get_route_to_node()
(digi.xbee.devices.WiFiDevice method), 767

get_route_to_node()
(digi.xbee.devices.XBeeDevice method),
495

get_route_to_node()
(digi.xbee.devices.ZigBeeDevice method),
628

get_routes() (digi.xbee.devices.RemoteZigBeeDevice
method), 855

1064 Index



XBee Python Library Documentation, Release 1.4.0

get_routes() (digi.xbee.devices.ZigBeeDevice
method), 614

get_serial_port()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 826

get_serial_port()
(digi.xbee.devices.RemoteDigiPointDevice
method), 844

get_serial_port()
(digi.xbee.devices.RemoteRaw802Device
method), 808

get_serial_port()
(digi.xbee.devices.RemoteXBeeDevice
method), 782

get_serial_port()
(digi.xbee.devices.RemoteZigBeeDevice
method), 865

get_setting_default_value()
(digi.xbee.profile.XBeeProfile method), 968

get_sms_received_callbacks()
(digi.xbee.reader.PacketListener method),
999

get_sock_info() (digi.xbee.xsocket.socket method),
1014

get_socket_data_received_callbacks()
(digi.xbee.reader.PacketListener method), 1000

get_socket_data_received_from_callbacks()
(digi.xbee.reader.PacketListener method), 1000

get_socket_info()
(digi.xbee.devices.CellularDevice method),
672

get_socket_info()
(digi.xbee.devices.LPWANDevice method),
709

get_socket_info()
(digi.xbee.devices.NBIoTDevice method),
735

get_socket_state_received_callbacks()
(digi.xbee.reader.PacketListener method), 1000

get_sockets_list()
(digi.xbee.devices.CellularDevice method),
671

get_sockets_list()
(digi.xbee.devices.LPWANDevice method),
710

get_sockets_list()
(digi.xbee.devices.NBIoTDevice method),
735

get_sync_ops_timeout()
(digi.xbee.devices.AbstractXBeeDevice
method), 473

get_sync_ops_timeout()
(digi.xbee.devices.CellularDevice method),
684

get_sync_ops_timeout()
(digi.xbee.devices.DigiMeshDevice method),
560

get_sync_ops_timeout()
(digi.xbee.devices.DigiPointDevice method),
591

get_sync_ops_timeout()
(digi.xbee.devices.IPDevice method), 659

get_sync_ops_timeout()
(digi.xbee.devices.LPWANDevice method),
710

get_sync_ops_timeout()
(digi.xbee.devices.NBIoTDevice method),
735

get_sync_ops_timeout()
(digi.xbee.devices.Raw802Device method),
528

get_sync_ops_timeout()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 827

get_sync_ops_timeout()
(digi.xbee.devices.RemoteDigiPointDevice
method), 845

get_sync_ops_timeout()
(digi.xbee.devices.RemoteRaw802Device
method), 808

get_sync_ops_timeout()
(digi.xbee.devices.RemoteXBeeDevice
method), 791

get_sync_ops_timeout()
(digi.xbee.devices.RemoteZigBeeDevice
method), 865

get_sync_ops_timeout()
(digi.xbee.devices.WiFiDevice method), 767

get_sync_ops_timeout()
(digi.xbee.devices.XBeeDevice method),
504

get_sync_ops_timeout()
(digi.xbee.devices.ZigBeeDevice method),
629

get_usage_information()
(digi.xbee.filesystem.LocalXBeeFileSystemManager
method), 953

get_user_data_relay_received_callbacks()
(digi.xbee.reader.PacketListener method), 999

get_volume_info()
(digi.xbee.filesystem.FileSystemManager
method), 943

get_wifi_ai_status()
(digi.xbee.devices.WiFiDevice method), 748

get_xbee_device_callbacks()
(digi.xbee.devices.CellularDevice method),
684

get_xbee_device_callbacks()

Index 1065



XBee Python Library Documentation, Release 1.4.0

(digi.xbee.devices.DigiMeshDevice method),
560

get_xbee_device_callbacks()
(digi.xbee.devices.DigiPointDevice method),
591

get_xbee_device_callbacks()
(digi.xbee.devices.IPDevice method), 659

get_xbee_device_callbacks()
(digi.xbee.devices.LPWANDevice method),
710

get_xbee_device_callbacks()
(digi.xbee.devices.NBIoTDevice method),
735

get_xbee_device_callbacks()
(digi.xbee.devices.Raw802Device method),
528

get_xbee_device_callbacks()
(digi.xbee.devices.WiFiDevice method), 767

get_xbee_device_callbacks()
(digi.xbee.devices.XBeeDevice method),
493

get_xbee_device_callbacks()
(digi.xbee.devices.ZigBeeDevice method),
629

getblocking() (digi.xbee.xsocket.socket method),
1011

GetPathIdCmdRequest (class in
digi.xbee.models.filesystem), 170

GetPathIdCmdResponse (class in
digi.xbee.models.filesystem), 172

getsocketopt() (digi.xbee.xsocket.socket method),
1013

gettimeout() (digi.xbee.xsocket.socket method),
1011

H
hardware_version (digi.xbee.profile.XBeeProfile at-

tribute), 970
HardwareVersion (class in digi.xbee.models.hw),

187
has_analog_value() (digi.xbee.io.IOSample

method), 961
has_analog_values() (digi.xbee.io.IOSample

method), 961
has_devices() (digi.xbee.devices.DigiMeshNetwork

method), 916
has_devices() (digi.xbee.devices.DigiPointNetwork

method), 927
has_devices() (digi.xbee.devices.Raw802Network

method), 904
has_devices() (digi.xbee.devices.XBeeNetwork

method), 876
has_devices() (digi.xbee.devices.ZigBeeNetwork

method), 893

has_digital_value() (digi.xbee.io.IOSample
method), 961

has_digital_values() (digi.xbee.io.IOSample
method), 961

has_explicit_packets()
(digi.xbee.devices.CellularDevice method),
684

has_explicit_packets()
(digi.xbee.devices.DigiMeshDevice method),
560

has_explicit_packets()
(digi.xbee.devices.DigiPointDevice method),
591

has_explicit_packets()
(digi.xbee.devices.IPDevice method), 659

has_explicit_packets()
(digi.xbee.devices.LPWANDevice method),
710

has_explicit_packets()
(digi.xbee.devices.NBIoTDevice method),
736

has_explicit_packets()
(digi.xbee.devices.Raw802Device method),
528

has_explicit_packets()
(digi.xbee.devices.WiFiDevice method), 767

has_explicit_packets()
(digi.xbee.devices.XBeeDevice method),
490

has_explicit_packets()
(digi.xbee.devices.ZigBeeDevice method),
629

has_filesystem (digi.xbee.profile.XBeeProfile at-
tribute), 969

has_firmware_files (digi.xbee.profile.XBeeProfile
attribute), 969

has_local_filesystem
(digi.xbee.profile.XBeeProfile attribute),
969

has_local_firmware_files
(digi.xbee.profile.XBeeProfile attribute),
969

has_packets() (digi.xbee.devices.CellularDevice
method), 684

has_packets() (digi.xbee.devices.DigiMeshDevice
method), 560

has_packets() (digi.xbee.devices.DigiPointDevice
method), 592

has_packets() (digi.xbee.devices.IPDevice method),
659

has_packets() (digi.xbee.devices.LPWANDevice
method), 710

has_packets() (digi.xbee.devices.NBIoTDevice
method), 736

1066 Index



XBee Python Library Documentation, Release 1.4.0

has_packets() (digi.xbee.devices.Raw802Device
method), 528

has_packets() (digi.xbee.devices.WiFiDevice
method), 767

has_packets() (digi.xbee.devices.XBeeDevice
method), 490

has_packets() (digi.xbee.devices.ZigBeeDevice
method), 629

has_power_supply_value()
(digi.xbee.io.IOSample method), 961

has_pwm_capability() (digi.xbee.io.IOLine
method), 958

has_remote_filesystem
(digi.xbee.profile.XBeeProfile attribute),
969

has_remote_firmware_files
(digi.xbee.profile.XBeeProfile attribute),
969

HashFileCmdRequest (class in
digi.xbee.models.filesystem), 152

HashFileCmdResponse (class in
digi.xbee.models.filesystem), 154

hex_string_to_bytes() (in module
digi.xbee.util.utils), 458

hex_to_string() (in module digi.xbee.util.utils),
461

hops (digi.xbee.packets.zigbee.CreateSourceRoutePacket
attribute), 449

hops (digi.xbee.packets.zigbee.RouteRecordIndicatorPacket
attribute), 445

I
I2C_FUNCTIONALITY (digi.xbee.io.IOMode at-

tribute), 962
id (digi.xbee.models.protocol.Role attribute), 213
id (digi.xbee.models.zdo.NeighborRelationship at-

tribute), 234
id (digi.xbee.models.zdo.RouteStatus attribute), 231
ident (digi.xbee.reader.PacketListener attribute), 1000
index (digi.xbee.io.IOLine attribute), 958
index (digi.xbee.profile.FirmwareBaudrate attribute),

963
index (digi.xbee.profile.FirmwareParity attribute), 964
index (digi.xbee.profile.FirmwareStopbits attribute),

964
index() (digi.xbee.reader.BluetoothDataReceived

method), 983
index() (digi.xbee.reader.DataReceived method), 974
index() (digi.xbee.reader.DeviceDiscovered method),

978
index() (digi.xbee.reader.DiscoveryProcessFinished

method), 979
index() (digi.xbee.reader.EndDiscoveryScan method),

991

index() (digi.xbee.reader.ExplicitDataReceived
method), 980

index() (digi.xbee.reader.FileSystemFrameReceived
method), 992

index() (digi.xbee.reader.InitDiscoveryScan method),
990

index() (digi.xbee.reader.IOSampleReceived method),
976

index() (digi.xbee.reader.IPDataReceived method),
981

index() (digi.xbee.reader.MicroPythonDataReceived
method), 984

index() (digi.xbee.reader.ModemStatusReceived
method), 975

index() (digi.xbee.reader.NetworkModified method),
977

index() (digi.xbee.reader.PacketReceived method),
973

index() (digi.xbee.reader.PacketReceivedFrom
method), 974

index() (digi.xbee.reader.RelayDataReceived
method), 982

index() (digi.xbee.reader.RouteInformationReceived
method), 989

index() (digi.xbee.reader.RouteReceived method), 989
index() (digi.xbee.reader.RouteRecordIndicatorReceived

method), 987
index() (digi.xbee.reader.SMSReceived method), 981
index() (digi.xbee.reader.SocketDataReceived

method), 986
index() (digi.xbee.reader.SocketDataReceivedFrom

method), 987
index() (digi.xbee.reader.SocketStateReceived

method), 985
index() (digi.xbee.reader.XBeeEvent method), 972
INDIRECT_TRANSMISSION

(digi.xbee.models.options.TransmitOptions
attribute), 206

InitDiscoveryScan (class in digi.xbee.reader), 990
insert() (digi.xbee.reader.BluetoothDataReceived

method), 983
insert() (digi.xbee.reader.DataReceived method),

974
insert() (digi.xbee.reader.DeviceDiscovered method),

978
insert() (digi.xbee.reader.DiscoveryProcessFinished

method), 979
insert() (digi.xbee.reader.EndDiscoveryScan

method), 991
insert() (digi.xbee.reader.ExplicitDataReceived

method), 980
insert() (digi.xbee.reader.FileSystemFrameReceived

method), 992
insert() (digi.xbee.reader.InitDiscoveryScan

Index 1067



XBee Python Library Documentation, Release 1.4.0

method), 990
insert() (digi.xbee.reader.IOSampleReceived

method), 976
insert() (digi.xbee.reader.IPDataReceived method),

981
insert() (digi.xbee.reader.MicroPythonDataReceived

method), 984
insert() (digi.xbee.reader.ModemStatusReceived

method), 975
insert() (digi.xbee.reader.NetworkModified method),

977
insert() (digi.xbee.reader.PacketReceived method),

973
insert() (digi.xbee.reader.PacketReceivedFrom

method), 974
insert() (digi.xbee.reader.RelayDataReceived

method), 982
insert() (digi.xbee.reader.RouteInformationReceived

method), 989
insert() (digi.xbee.reader.RouteReceived method),

989
insert() (digi.xbee.reader.RouteRecordIndicatorReceived

method), 988
insert() (digi.xbee.reader.SMSReceived method), 982
insert() (digi.xbee.reader.SocketDataReceived

method), 986
insert() (digi.xbee.reader.SocketDataReceivedFrom

method), 987
insert() (digi.xbee.reader.SocketStateReceived

method), 985
insert() (digi.xbee.reader.XBeeEvent method), 972
int_to_ascii() (in module digi.xbee.util.utils), 460
int_to_bytes() (in module digi.xbee.util.utils), 458
int_to_length() (in module digi.xbee.util.utils),

460
InvalidConfigurationException, 935
InvalidOperatingModeException, 935
InvalidPacketException, 935
io_sample (digi.xbee.packets.common.IODataSampleRxIndicatorPacket

attribute), 288
io_sample (digi.xbee.packets.raw.RX16IOPacket at-

tribute), 367
io_sample (digi.xbee.packets.raw.RX64IOPacket at-

tribute), 363
io_sample (digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket

attribute), 427
IODataSampleRxIndicatorPacket (class in

digi.xbee.packets.common), 286
IODataSampleRxIndicatorWifiPacket (class

in digi.xbee.packets.wifi), 425
IOLine (class in digi.xbee.io), 957
IOMode (class in digi.xbee.io), 962
IOSample (class in digi.xbee.io), 958
IOSampleReceived (class in digi.xbee.reader), 976

IOValue (class in digi.xbee.io), 958
ip_addr (digi.xbee.models.message.IPMessage at-

tribute), 201
ip_protocol (digi.xbee.packets.network.RXIPv4Packet

attribute), 338
ip_protocol (digi.xbee.packets.network.TXIPv4Packet

attribute), 343
IPAddressingMode (class in digi.xbee.models.mode),

194
IPDataReceived (class in digi.xbee.reader), 980
IPDevice (class in digi.xbee.devices), 642
IPMessage (class in digi.xbee.models.message), 201
IPProtocol (class in digi.xbee.models.protocol), 212
is_alive() (digi.xbee.reader.PacketListener method),

1000
is_apply_changes_enabled()

(digi.xbee.devices.AbstractXBeeDevice
method), 473

is_apply_changes_enabled()
(digi.xbee.devices.CellularDevice method),
685

is_apply_changes_enabled()
(digi.xbee.devices.DigiMeshDevice method),
560

is_apply_changes_enabled()
(digi.xbee.devices.DigiPointDevice method),
592

is_apply_changes_enabled()
(digi.xbee.devices.IPDevice method), 659

is_apply_changes_enabled()
(digi.xbee.devices.LPWANDevice method),
711

is_apply_changes_enabled()
(digi.xbee.devices.NBIoTDevice method),
736

is_apply_changes_enabled()
(digi.xbee.devices.Raw802Device method),
528

is_apply_changes_enabled()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 827

is_apply_changes_enabled()
(digi.xbee.devices.RemoteDigiPointDevice
method), 845

is_apply_changes_enabled()
(digi.xbee.devices.RemoteRaw802Device
method), 808

is_apply_changes_enabled()
(digi.xbee.devices.RemoteXBeeDevice
method), 791

is_apply_changes_enabled()
(digi.xbee.devices.RemoteZigBeeDevice
method), 865

is_apply_changes_enabled()

1068 Index



XBee Python Library Documentation, Release 1.4.0

(digi.xbee.devices.WiFiDevice method), 768
is_apply_changes_enabled()

(digi.xbee.devices.XBeeDevice method),
504

is_apply_changes_enabled()
(digi.xbee.devices.ZigBeeDevice method),
629

is_bit_enabled() (in module digi.xbee.util.utils),
457

is_broadcast (digi.xbee.models.message.ExplicitXBeeMessage
attribute), 200

is_broadcast (digi.xbee.models.message.XBeeMessage
attribute), 199

is_broadcast() (digi.xbee.packets.base.GenericXBeePacket
method), 244

is_broadcast() (digi.xbee.packets.base.UnknownXBeePacket
method), 246

is_broadcast() (digi.xbee.packets.base.XBeeAPIPacket
method), 241

is_broadcast() (digi.xbee.packets.cellular.RXSMSPacket
method), 250

is_broadcast() (digi.xbee.packets.cellular.TXSMSPacket
method), 253

is_broadcast() (digi.xbee.packets.common.ATCommPacket
method), 256

is_broadcast() (digi.xbee.packets.common.ATCommQueuePacket
method), 259

is_broadcast() (digi.xbee.packets.common.ATCommResponsePacket
method), 262

is_broadcast() (digi.xbee.packets.common.ExplicitAddressingPacket
method), 293

is_broadcast() (digi.xbee.packets.common.ExplicitRXIndicatorPacket
method), 298

is_broadcast() (digi.xbee.packets.common.IODataSampleRxIndicatorPacket
method), 287

is_broadcast() (digi.xbee.packets.common.ModemStatusPacket
method), 285

is_broadcast() (digi.xbee.packets.common.ReceivePacket
method), 264

is_broadcast() (digi.xbee.packets.common.RemoteATCommandPacket
method), 270

is_broadcast() (digi.xbee.packets.common.RemoteATCommandResponsePacket
method), 274

is_broadcast() (digi.xbee.packets.common.TransmitPacket
method), 279

is_broadcast() (digi.xbee.packets.common.TransmitStatusPacket
method), 282

is_broadcast() (digi.xbee.packets.devicecloud.DeviceRequestPacket
method), 302

is_broadcast() (digi.xbee.packets.devicecloud.DeviceResponsePacket
method), 305

is_broadcast() (digi.xbee.packets.devicecloud.DeviceResponseStatusPacket
method), 308

is_broadcast() (digi.xbee.packets.devicecloud.FrameErrorPacket

method), 311
is_broadcast() (digi.xbee.packets.devicecloud.SendDataRequestPacket

method), 314
is_broadcast() (digi.xbee.packets.devicecloud.SendDataResponsePacket

method), 316
is_broadcast() (digi.xbee.packets.digimesh.RouteInformationPacket

method), 321
is_broadcast() (digi.xbee.packets.filesystem.FSRequestPacket

method), 325
is_broadcast() (digi.xbee.packets.filesystem.FSResponsePacket

method), 328
is_broadcast() (digi.xbee.packets.filesystem.RemoteFSRequestPacket

method), 332
is_broadcast() (digi.xbee.packets.filesystem.RemoteFSResponsePacket

method), 334
is_broadcast() (digi.xbee.packets.network.RXIPv4Packet

method), 339
is_broadcast() (digi.xbee.packets.network.TXIPv4Packet

method), 342
is_broadcast() (digi.xbee.packets.raw.RX16IOPacket

method), 366
is_broadcast() (digi.xbee.packets.raw.RX16Packet

method), 358
is_broadcast() (digi.xbee.packets.raw.RX64IOPacket

method), 361
is_broadcast() (digi.xbee.packets.raw.RX64Packet

method), 354
is_broadcast() (digi.xbee.packets.raw.TX16Packet

method), 349
is_broadcast() (digi.xbee.packets.raw.TX64Packet

method), 346
is_broadcast() (digi.xbee.packets.raw.TXStatusPacket

method), 352
is_broadcast() (digi.xbee.packets.relay.UserDataRelayOutputPacket

method), 373
is_broadcast() (digi.xbee.packets.relay.UserDataRelayPacket

method), 370
is_broadcast() (digi.xbee.packets.socket.SocketBindListenPacket

method), 409
is_broadcast() (digi.xbee.packets.socket.SocketClosePacket

method), 396
is_broadcast() (digi.xbee.packets.socket.SocketCloseResponsePacket

method), 399
is_broadcast() (digi.xbee.packets.socket.SocketConnectPacket

method), 390
is_broadcast() (digi.xbee.packets.socket.SocketConnectResponsePacket

method), 393
is_broadcast() (digi.xbee.packets.socket.SocketCreatePacket

method), 376
is_broadcast() (digi.xbee.packets.socket.SocketCreateResponsePacket

method), 379
is_broadcast() (digi.xbee.packets.socket.SocketListenResponsePacket

method), 412
is_broadcast() (digi.xbee.packets.socket.SocketNewIPv4ClientPacket

Index 1069



XBee Python Library Documentation, Release 1.4.0

method), 415
is_broadcast() (digi.xbee.packets.socket.SocketOptionRequestPacket

method), 382
is_broadcast() (digi.xbee.packets.socket.SocketOptionResponsePacket

method), 386
is_broadcast() (digi.xbee.packets.socket.SocketReceiveFromPacket

method), 421
is_broadcast() (digi.xbee.packets.socket.SocketReceivePacket

method), 417
is_broadcast() (digi.xbee.packets.socket.SocketSendPacket

method), 402
is_broadcast() (digi.xbee.packets.socket.SocketSendToPacket

method), 406
is_broadcast() (digi.xbee.packets.socket.SocketStatePacket

method), 424
is_broadcast() (digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket

method), 428
is_broadcast() (digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket

method), 435
is_broadcast() (digi.xbee.packets.wifi.RemoteATCommandWifiPacket

method), 432
is_broadcast() (digi.xbee.packets.zigbee.CreateSourceRoutePacket

method), 450
is_broadcast() (digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket

method), 453
is_broadcast() (digi.xbee.packets.zigbee.RegisterDeviceStatusPacket

method), 443
is_broadcast() (digi.xbee.packets.zigbee.RegisterJoiningDevicePacket

method), 440
is_broadcast() (digi.xbee.packets.zigbee.RouteRecordIndicatorPacket

method), 445
is_connected (digi.xbee.filesystem.LocalXBeeFileSystemManager

attribute), 951
is_connected (digi.xbee.xsocket.socket attribute),

1014
is_connected() (digi.xbee.devices.CellularDevice

method), 670
is_connected() (digi.xbee.devices.LPWANDevice

method), 711
is_connected() (digi.xbee.devices.NBIoTDevice

method), 736
is_connected() (digi.xbee.devices.WiFiDevice

method), 751
is_device_info_complete()

(digi.xbee.devices.AbstractXBeeDevice
method), 470

is_device_info_complete()
(digi.xbee.devices.CellularDevice method),
670

is_device_info_complete()
(digi.xbee.devices.DigiMeshDevice method),
560

is_device_info_complete()
(digi.xbee.devices.DigiPointDevice method),

592
is_device_info_complete()

(digi.xbee.devices.IPDevice method), 643
is_device_info_complete()

(digi.xbee.devices.LPWANDevice method),
711

is_device_info_complete()
(digi.xbee.devices.NBIoTDevice method),
736

is_device_info_complete()
(digi.xbee.devices.Raw802Device method),
528

is_device_info_complete()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 827

is_device_info_complete()
(digi.xbee.devices.RemoteDigiPointDevice
method), 845

is_device_info_complete()
(digi.xbee.devices.RemoteRaw802Device
method), 808

is_device_info_complete()
(digi.xbee.devices.RemoteXBeeDevice
method), 791

is_device_info_complete()
(digi.xbee.devices.RemoteZigBeeDevice
method), 854

is_device_info_complete()
(digi.xbee.devices.WiFiDevice method), 768

is_device_info_complete()
(digi.xbee.devices.XBeeDevice method),
504

is_device_info_complete()
(digi.xbee.devices.ZigBeeDevice method),
630

is_dir (digi.xbee.filesystem.FileSystemElement at-
tribute), 937

IS_DIR (digi.xbee.models.options.DirResponseFlag at-
tribute), 211

is_discovery_running()
(digi.xbee.devices.DigiMeshNetwork method),
916

is_discovery_running()
(digi.xbee.devices.DigiPointNetwork method),
927

is_discovery_running()
(digi.xbee.devices.Raw802Network method),
904

is_discovery_running()
(digi.xbee.devices.XBeeNetwork method),
876

is_discovery_running()
(digi.xbee.devices.ZigBeeNetwork method),
893

1070 Index



XBee Python Library Documentation, Release 1.4.0

is_interface_open
(digi.xbee.comm_interface.XBeeCommunicationInterface
attribute), 464

is_interface_open
(digi.xbee.serial.XBeeSerialPort attribute),
1006

is_known_node_addr()
(digi.xbee.models.address.XBee16BitAddress
class method), 196

is_known_node_addr()
(digi.xbee.models.address.XBee64BitAddress
class method), 198

is_last (digi.xbee.models.filesystem.OpenDirCmdResponse
attribute), 161

is_last (digi.xbee.models.filesystem.ReadDirCmdResponse
attribute), 169

IS_LAST (digi.xbee.models.options.DirResponseFlag
attribute), 211

is_low_memory (digi.xbee.models.zdo.Route at-
tribute), 232

is_many_to_one (digi.xbee.models.zdo.Route at-
tribute), 232

is_node_in_network()
(digi.xbee.devices.DigiMeshNetwork method),
916

is_node_in_network()
(digi.xbee.devices.DigiPointNetwork method),
927

is_node_in_network()
(digi.xbee.devices.Raw802Network method),
905

is_node_in_network()
(digi.xbee.devices.XBeeNetwork method),
883

is_node_in_network()
(digi.xbee.devices.ZigBeeNetwork method),
893

is_op_mode_valid()
(digi.xbee.sender.PacketSender method),
1004

is_open() (digi.xbee.devices.CellularDevice method),
685

is_open() (digi.xbee.devices.DigiMeshDevice
method), 561

is_open() (digi.xbee.devices.DigiPointDevice
method), 592

is_open() (digi.xbee.devices.IPDevice method), 659
is_open() (digi.xbee.devices.LPWANDevice method),

711
is_open() (digi.xbee.devices.NBIoTDevice method),

736
is_open() (digi.xbee.devices.Raw802Device method),

528
is_open() (digi.xbee.devices.WiFiDevice method),

768
is_open() (digi.xbee.devices.XBeeDevice method),

493
is_open() (digi.xbee.devices.ZigBeeDevice method),

630
is_open() (digi.xbee.profile.XBeeProfile method), 968
is_remote() (digi.xbee.devices.AbstractXBeeDevice

method), 473
is_remote() (digi.xbee.devices.CellularDevice

method), 685
is_remote() (digi.xbee.devices.DigiMeshDevice

method), 561
is_remote() (digi.xbee.devices.DigiPointDevice

method), 592
is_remote() (digi.xbee.devices.IPDevice method),

660
is_remote() (digi.xbee.devices.LPWANDevice

method), 711
is_remote() (digi.xbee.devices.NBIoTDevice

method), 737
is_remote() (digi.xbee.devices.Raw802Device

method), 529
is_remote() (digi.xbee.devices.RemoteDigiMeshDevice

method), 827
is_remote() (digi.xbee.devices.RemoteDigiPointDevice

method), 845
is_remote() (digi.xbee.devices.RemoteRaw802Device

method), 808
is_remote() (digi.xbee.devices.RemoteXBeeDevice

method), 781
is_remote() (digi.xbee.devices.RemoteZigBeeDevice

method), 865
is_remote() (digi.xbee.devices.WiFiDevice method),

768
is_remote() (digi.xbee.devices.XBeeDevice method),

493
is_remote() (digi.xbee.devices.ZigBeeDevice

method), 630
is_route_record_required

(digi.xbee.models.zdo.Route attribute), 232
is_rssi (digi.xbee.devices.LinkQuality attribute), 932
is_running() (digi.xbee.reader.PacketListener

method), 993
is_secure (digi.xbee.filesystem.FileSystemElement at-

tribute), 937
IS_SECURE (digi.xbee.models.options.DirResponseFlag

attribute), 211
is_valid() (digi.xbee.models.address.XBee16BitAddress

class method), 196
is_valid() (digi.xbee.models.address.XBee64BitAddress

class method), 197
is_valid() (digi.xbee.models.address.XBeeIMEIAddress

class method), 198
isAlive() (digi.xbee.reader.PacketListener method),

Index 1071



XBee Python Library Documentation, Release 1.4.0

1000

J
join() (digi.xbee.reader.PacketListener method), 1000
join() (digi.xbee.reader.XBeeQueue method), 1003

K
key (digi.xbee.packets.zigbee.RegisterJoiningDevicePacket

attribute), 439

L
LegacyHardwareVersion (class in

digi.xbee.models.hw), 189
length (digi.xbee.packets.digimesh.RouteInformationPacket

attribute), 320
length_to_int() (in module digi.xbee.util.utils),

459
letter (digi.xbee.models.hw.LegacyHardwareVersion

attribute), 190
LinkQuality (class in digi.xbee.devices), 931
list_directory() (digi.xbee.filesystem.FileSystemManager

method), 940
list_directory() (digi.xbee.filesystem.LocalXBeeFileSystemManager

method), 951
listen() (digi.xbee.xsocket.socket method), 1010
local_interface (digi.xbee.models.message.UserDataRelayMessage

attribute), 203
local_port (digi.xbee.models.info.SocketInfo at-

tribute), 191
LocalXBeeFileSystemManager (class in

digi.xbee.filesystem), 950
log (digi.xbee.devices.AbstractXBeeDevice attribute),

484
log (digi.xbee.devices.CellularDevice attribute), 685
log (digi.xbee.devices.DigiMeshDevice attribute), 561
log (digi.xbee.devices.DigiPointDevice attribute), 592
log (digi.xbee.devices.IPDevice attribute), 660
log (digi.xbee.devices.LPWANDevice attribute), 711
log (digi.xbee.devices.NBIoTDevice attribute), 737
log (digi.xbee.devices.Raw802Device attribute), 529
log (digi.xbee.devices.RemoteDigiMeshDevice at-

tribute), 827
log (digi.xbee.devices.RemoteDigiPointDevice at-

tribute), 845
log (digi.xbee.devices.RemoteRaw802Device attribute),

809
log (digi.xbee.devices.RemoteXBeeDevice attribute),

791
log (digi.xbee.devices.RemoteZigBeeDevice attribute),

865
log (digi.xbee.devices.WiFiDevice attribute), 768
log (digi.xbee.devices.XBeeDevice attribute), 504
log (digi.xbee.devices.ZigBeeDevice attribute), 630
LPWANDevice (class in digi.xbee.devices), 696

lq (digi.xbee.devices.LinkQuality attribute), 932
lq (digi.xbee.models.zdo.Neighbor attribute), 235
lq_a2b (digi.xbee.devices.Connection attribute), 933
lq_b2a (digi.xbee.devices.Connection attribute), 933

M
mac_capabilities (digi.xbee.models.zdo.NodeDescriptor

attribute), 229
make_directory() (digi.xbee.filesystem.FileSystemManager

method), 939
make_directory() (digi.xbee.filesystem.LocalXBeeFileSystemManager

method), 951
manufacturer_code

(digi.xbee.models.zdo.NodeDescriptor at-
tribute), 229

max_buffer_size (digi.xbee.models.zdo.NodeDescriptor
attribute), 229

max_in_transfer_size
(digi.xbee.models.zdo.NodeDescriptor at-
tribute), 229

max_out_transfer_size
(digi.xbee.models.zdo.NodeDescriptor at-
tribute), 229

MAX_TIME_BETWEEN_REQUESTS
(digi.xbee.devices.XBeeNetwork attribute),
874

MAX_TIME_BETWEEN_SCANS
(digi.xbee.devices.XBeeNetwork attribute),
874

MicroPythonDataReceived (class in
digi.xbee.reader), 984

min_io_sample_payload()
(digi.xbee.io.IOSample static method), 960

MIN_TIME_BETWEEN_REQUESTS
(digi.xbee.devices.XBeeNetwork attribute),
874

MIN_TIME_BETWEEN_SCANS
(digi.xbee.devices.XBeeNetwork attribute),
874

modem_status (digi.xbee.packets.common.ModemStatusPacket
attribute), 284

ModemStatus (class in digi.xbee.models.status), 216
ModemStatusPacket (class in

digi.xbee.packets.common), 283
ModemStatusReceived (class in digi.xbee.reader),

975
move() (digi.xbee.filesystem.FileSystemManager

method), 943
move_element() (digi.xbee.filesystem.LocalXBeeFileSystemManager

method), 952

N
name (digi.xbee.filesystem.FileSystemElement attribute),

937

1072 Index



XBee Python Library Documentation, Release 1.4.0

name (digi.xbee.models.filesystem.CreateDirCmdRequest
attribute), 157

name (digi.xbee.models.filesystem.DeleteCmdRequest at-
tribute), 178

name (digi.xbee.models.filesystem.FileIdNameCmd at-
tribute), 137

name (digi.xbee.models.filesystem.GetPathIdCmdRequest
attribute), 171

name (digi.xbee.models.filesystem.HashFileCmdRequest
attribute), 153

name (digi.xbee.models.filesystem.OpenDirCmdRequest
attribute), 160

name (digi.xbee.models.filesystem.OpenFileCmdRequest
attribute), 139

name (digi.xbee.models.filesystem.RenameCmdRequest
attribute), 175

name (digi.xbee.models.filesystem.VolFormatCmdRequest
attribute), 184

name (digi.xbee.models.filesystem.VolStatCmdRequest
attribute), 180

name (digi.xbee.profile.XBeeProfileSetting attribute),
966

name (digi.xbee.reader.PacketListener attribute), 1001
NBIoTDevice (class in digi.xbee.devices), 722
ND_PACKET_FINISH (digi.xbee.devices.XBeeNetwork

attribute), 873
ND_PACKET_REMOTE (digi.xbee.devices.XBeeNetwork

attribute), 873
needs_id() (digi.xbee.packets.base.GenericXBeePacket

method), 243
needs_id() (digi.xbee.packets.base.UnknownXBeePacket

method), 247
needs_id() (digi.xbee.packets.base.XBeeAPIPacket

method), 241
needs_id() (digi.xbee.packets.cellular.RXSMSPacket

method), 248
needs_id() (digi.xbee.packets.cellular.TXSMSPacket

method), 251
needs_id() (digi.xbee.packets.common.ATCommPacket

method), 255
needs_id() (digi.xbee.packets.common.ATCommQueuePacket

method), 258
needs_id() (digi.xbee.packets.common.ATCommResponsePacket

method), 261
needs_id() (digi.xbee.packets.common.ExplicitAddressingPacket

method), 293
needs_id() (digi.xbee.packets.common.ExplicitRXIndicatorPacket

method), 298
needs_id() (digi.xbee.packets.common.IODataSampleRxIndicatorPacket

method), 287
needs_id() (digi.xbee.packets.common.ModemStatusPacket

method), 284
needs_id() (digi.xbee.packets.common.ReceivePacket

method), 264

needs_id() (digi.xbee.packets.common.RemoteATCommandPacket
method), 268

needs_id() (digi.xbee.packets.common.RemoteATCommandResponsePacket
method), 272

needs_id() (digi.xbee.packets.common.TransmitPacket
method), 277

needs_id() (digi.xbee.packets.common.TransmitStatusPacket
method), 281

needs_id() (digi.xbee.packets.devicecloud.DeviceRequestPacket
method), 300

needs_id() (digi.xbee.packets.devicecloud.DeviceResponsePacket
method), 304

needs_id() (digi.xbee.packets.devicecloud.DeviceResponseStatusPacket
method), 307

needs_id() (digi.xbee.packets.devicecloud.FrameErrorPacket
method), 310

needs_id() (digi.xbee.packets.devicecloud.SendDataRequestPacket
method), 313

needs_id() (digi.xbee.packets.devicecloud.SendDataResponsePacket
method), 318

needs_id() (digi.xbee.packets.digimesh.RouteInformationPacket
method), 320

needs_id() (digi.xbee.packets.filesystem.FSRequestPacket
method), 324

needs_id() (digi.xbee.packets.filesystem.FSResponsePacket
method), 327

needs_id() (digi.xbee.packets.filesystem.RemoteFSRequestPacket
method), 330

needs_id() (digi.xbee.packets.filesystem.RemoteFSResponsePacket
method), 335

needs_id() (digi.xbee.packets.network.RXIPv4Packet
method), 337

needs_id() (digi.xbee.packets.network.TXIPv4Packet
method), 341

needs_id() (digi.xbee.packets.raw.RX16IOPacket
method), 366

needs_id() (digi.xbee.packets.raw.RX16Packet
method), 357

needs_id() (digi.xbee.packets.raw.RX64IOPacket
method), 361

needs_id() (digi.xbee.packets.raw.RX64Packet
method), 354

needs_id() (digi.xbee.packets.raw.TX16Packet
method), 347

needs_id() (digi.xbee.packets.raw.TX64Packet
method), 344

needs_id() (digi.xbee.packets.raw.TXStatusPacket
method), 351

needs_id() (digi.xbee.packets.relay.UserDataRelayOutputPacket
method), 371

needs_id() (digi.xbee.packets.relay.UserDataRelayPacket
method), 368

needs_id() (digi.xbee.packets.socket.SocketBindListenPacket
method), 408

Index 1073



XBee Python Library Documentation, Release 1.4.0

needs_id() (digi.xbee.packets.socket.SocketClosePacket
method), 395

needs_id() (digi.xbee.packets.socket.SocketCloseResponsePacket
method), 398

needs_id() (digi.xbee.packets.socket.SocketConnectPacket
method), 388

needs_id() (digi.xbee.packets.socket.SocketConnectResponsePacket
method), 392

needs_id() (digi.xbee.packets.socket.SocketCreatePacket
method), 375

needs_id() (digi.xbee.packets.socket.SocketCreateResponsePacket
method), 378

needs_id() (digi.xbee.packets.socket.SocketListenResponsePacket
method), 411

needs_id() (digi.xbee.packets.socket.SocketNewIPv4ClientPacket
method), 414

needs_id() (digi.xbee.packets.socket.SocketOptionRequestPacket
method), 381

needs_id() (digi.xbee.packets.socket.SocketOptionResponsePacket
method), 384

needs_id() (digi.xbee.packets.socket.SocketReceiveFromPacket
method), 422

needs_id() (digi.xbee.packets.socket.SocketReceivePacket
method), 418

needs_id() (digi.xbee.packets.socket.SocketSendPacket
method), 401

needs_id() (digi.xbee.packets.socket.SocketSendToPacket
method), 404

needs_id() (digi.xbee.packets.socket.SocketStatePacket
method), 425

needs_id() (digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket
method), 426

needs_id() (digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket
method), 436

needs_id() (digi.xbee.packets.wifi.RemoteATCommandWifiPacket
method), 430

needs_id() (digi.xbee.packets.zigbee.CreateSourceRoutePacket
method), 448

needs_id() (digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket
method), 454

needs_id() (digi.xbee.packets.zigbee.RegisterDeviceStatusPacket
method), 441

needs_id() (digi.xbee.packets.zigbee.RegisterJoiningDevicePacket
method), 438

needs_id() (digi.xbee.packets.zigbee.RouteRecordIndicatorPacket
method), 444

Neighbor (class in digi.xbee.models.zdo), 234
NeighborDiscoveryMode (class in

digi.xbee.models.mode), 194
NeighborFinder (class in digi.xbee.models.zdo), 235
NeighborRelationship (class in

digi.xbee.models.zdo), 233
NeighborTableReader (class in

digi.xbee.models.zdo), 232

NetworkDiscoveryStatus (class in
digi.xbee.models.status), 222

NetworkEventReason (class in digi.xbee.devices),
931

NetworkEventType (class in digi.xbee.devices), 930
NetworkModified (class in digi.xbee.reader), 977
new_name (digi.xbee.models.filesystem.RenameCmdRequest

attribute), 174
next_hop (digi.xbee.models.zdo.Route attribute), 232
node (digi.xbee.models.zdo.Neighbor attribute), 234
node_a (digi.xbee.devices.Connection attribute), 932
node_b (digi.xbee.devices.Connection attribute), 933
NodeDescriptor (class in digi.xbee.models.zdo), 228
NodeDescriptorReader (class in

digi.xbee.models.zdo), 227
NONE (digi.xbee.models.options.ReceiveOptions at-

tribute), 204
NONE (digi.xbee.models.options.RemoteATCmdOptions

attribute), 207
NONE (digi.xbee.models.options.TransmitOptions at-

tribute), 205
np_value (digi.xbee.filesystem.FileSystemManager at-

tribute), 939
number_of_hops (digi.xbee.packets.zigbee.CreateSourceRoutePacket

attribute), 449
number_of_hops (digi.xbee.packets.zigbee.RouteRecordIndicatorPacket

attribute), 445

O
offset (digi.xbee.models.filesystem.ReadFileCmdRequest

attribute), 145
offset (digi.xbee.models.filesystem.ReadFileCmdResponse

attribute), 147
offset (digi.xbee.models.filesystem.WriteFileCmdRequest

attribute), 149
op_mode (digi.xbee.packets.base.GenericXBeePacket

attribute), 244
op_mode (digi.xbee.packets.base.UnknownXBeePacket

attribute), 247
op_mode (digi.xbee.packets.base.XBeeAPIPacket

attribute), 242
op_mode (digi.xbee.packets.base.XBeePacket attribute),

238
op_mode (digi.xbee.packets.cellular.RXSMSPacket at-

tribute), 250
op_mode (digi.xbee.packets.cellular.TXSMSPacket at-

tribute), 253
op_mode (digi.xbee.packets.common.ATCommPacket

attribute), 256
op_mode (digi.xbee.packets.common.ATCommQueuePacket

attribute), 259
op_mode (digi.xbee.packets.common.ATCommResponsePacket

attribute), 263

1074 Index



XBee Python Library Documentation, Release 1.4.0

op_mode (digi.xbee.packets.common.ExplicitAddressingPacket
attribute), 293

op_mode (digi.xbee.packets.common.ExplicitRXIndicatorPacket
attribute), 297

op_mode (digi.xbee.packets.common.IODataSampleRxIndicatorPacket
attribute), 289

op_mode (digi.xbee.packets.common.ModemStatusPacket
attribute), 285

op_mode (digi.xbee.packets.common.ReceivePacket at-
tribute), 266

op_mode (digi.xbee.packets.common.RemoteATCommandPacket
attribute), 270

op_mode (digi.xbee.packets.common.RemoteATCommandResponsePacket
attribute), 274

op_mode (digi.xbee.packets.common.TransmitPacket at-
tribute), 279

op_mode (digi.xbee.packets.common.TransmitStatusPacket
attribute), 282

op_mode (digi.xbee.packets.devicecloud.DeviceRequestPacket
attribute), 302

op_mode (digi.xbee.packets.devicecloud.DeviceResponsePacket
attribute), 305

op_mode (digi.xbee.packets.devicecloud.DeviceResponseStatusPacket
attribute), 308

op_mode (digi.xbee.packets.devicecloud.FrameErrorPacket
attribute), 311

op_mode (digi.xbee.packets.devicecloud.SendDataRequestPacket
attribute), 315

op_mode (digi.xbee.packets.devicecloud.SendDataResponsePacket
attribute), 317

op_mode (digi.xbee.packets.digimesh.RouteInformationPacket
attribute), 321

op_mode (digi.xbee.packets.filesystem.FSRequestPacket
attribute), 325

op_mode (digi.xbee.packets.filesystem.FSResponsePacket
attribute), 328

op_mode (digi.xbee.packets.filesystem.RemoteFSRequestPacket
attribute), 332

op_mode (digi.xbee.packets.filesystem.RemoteFSResponsePacket
attribute), 334

op_mode (digi.xbee.packets.network.RXIPv4Packet at-
tribute), 339

op_mode (digi.xbee.packets.network.TXIPv4Packet at-
tribute), 342

op_mode (digi.xbee.packets.raw.RX16IOPacket at-
tribute), 365

op_mode (digi.xbee.packets.raw.RX16Packet attribute),
359

op_mode (digi.xbee.packets.raw.RX64IOPacket at-
tribute), 363

op_mode (digi.xbee.packets.raw.RX64Packet attribute),
356

op_mode (digi.xbee.packets.raw.TX16Packet attribute),
349

op_mode (digi.xbee.packets.raw.TX64Packet attribute),
346

op_mode (digi.xbee.packets.raw.TXStatusPacket at-
tribute), 352

op_mode (digi.xbee.packets.relay.UserDataRelayOutputPacket
attribute), 373

op_mode (digi.xbee.packets.relay.UserDataRelayPacket
attribute), 370

op_mode (digi.xbee.packets.socket.SocketBindListenPacket
attribute), 409

op_mode (digi.xbee.packets.socket.SocketClosePacket
attribute), 396

op_mode (digi.xbee.packets.socket.SocketCloseResponsePacket
attribute), 399

op_mode (digi.xbee.packets.socket.SocketConnectPacket
attribute), 390

op_mode (digi.xbee.packets.socket.SocketConnectResponsePacket
attribute), 393

op_mode (digi.xbee.packets.socket.SocketCreatePacket
attribute), 376

op_mode (digi.xbee.packets.socket.SocketCreateResponsePacket
attribute), 379

op_mode (digi.xbee.packets.socket.SocketListenResponsePacket
attribute), 412

op_mode (digi.xbee.packets.socket.SocketNewIPv4ClientPacket
attribute), 415

op_mode (digi.xbee.packets.socket.SocketOptionRequestPacket
attribute), 383

op_mode (digi.xbee.packets.socket.SocketOptionResponsePacket
attribute), 386

op_mode (digi.xbee.packets.socket.SocketReceiveFromPacket
attribute), 421

op_mode (digi.xbee.packets.socket.SocketReceivePacket
attribute), 418

op_mode (digi.xbee.packets.socket.SocketSendPacket at-
tribute), 402

op_mode (digi.xbee.packets.socket.SocketSendToPacket
attribute), 406

op_mode (digi.xbee.packets.socket.SocketStatePacket
attribute), 424

op_mode (digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket
attribute), 429

op_mode (digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket
attribute), 435

op_mode (digi.xbee.packets.wifi.RemoteATCommandWifiPacket
attribute), 432

op_mode (digi.xbee.packets.zigbee.CreateSourceRoutePacket
attribute), 451

op_mode (digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket
attribute), 453

op_mode (digi.xbee.packets.zigbee.RegisterDeviceStatusPacket
attribute), 443

op_mode (digi.xbee.packets.zigbee.RegisterJoiningDevicePacket
attribute), 440

Index 1075



XBee Python Library Documentation, Release 1.4.0

op_mode (digi.xbee.packets.zigbee.RouteRecordIndicatorPacket
attribute), 447

open() (digi.xbee.comm_interface.XBeeCommunicationInterface
method), 464

open() (digi.xbee.devices.CellularDevice method), 670
open() (digi.xbee.devices.DigiMeshDevice method),

542
open() (digi.xbee.devices.DigiPointDevice method),

574
open() (digi.xbee.devices.IPDevice method), 660
open() (digi.xbee.devices.LPWANDevice method), 711
open() (digi.xbee.devices.NBIoTDevice method), 722
open() (digi.xbee.devices.Raw802Device method), 512
open() (digi.xbee.devices.WiFiDevice method), 748
open() (digi.xbee.devices.XBeeDevice method), 485
open() (digi.xbee.devices.ZigBeeDevice method), 605
open() (digi.xbee.profile.XBeeProfile method), 967
open() (digi.xbee.serial.XBeeSerialPort method), 1008
OpenDirCmdRequest (class in

digi.xbee.models.filesystem), 159
OpenDirCmdResponse (class in

digi.xbee.models.filesystem), 161
OpenFileCmdRequest (class in

digi.xbee.models.filesystem), 138
OpenFileCmdResponse (class in

digi.xbee.models.filesystem), 140
operating_mode (digi.xbee.devices.CellularDevice

attribute), 685
operating_mode (digi.xbee.devices.DigiMeshDevice

attribute), 561
operating_mode (digi.xbee.devices.DigiPointDevice

attribute), 593
operating_mode (digi.xbee.devices.IPDevice at-

tribute), 660
operating_mode (digi.xbee.devices.LPWANDevice

attribute), 712
operating_mode (digi.xbee.devices.NBIoTDevice at-

tribute), 737
operating_mode (digi.xbee.devices.Raw802Device

attribute), 529
operating_mode (digi.xbee.devices.WiFiDevice at-

tribute), 768
operating_mode (digi.xbee.devices.XBeeDevice at-

tribute), 486
operating_mode (digi.xbee.devices.ZigBeeDevice at-

tribute), 630
OperatingMode (class in digi.xbee.models.mode), 192
OperationNotSupportedException, 935
option (digi.xbee.packets.socket.SocketOptionRequestPacket

attribute), 381
option (digi.xbee.packets.socket.SocketOptionResponsePacket

attribute), 385
option_data (digi.xbee.packets.socket.SocketOptionRequestPacket

attribute), 381

option_data (digi.xbee.packets.socket.SocketOptionResponsePacket
attribute), 385

options (digi.xbee.models.filesystem.OpenFileCmdRequest
attribute), 139

options (digi.xbee.packets.devicecloud.SendDataRequestPacket
attribute), 313

options (digi.xbee.packets.zigbee.RegisterJoiningDevicePacket
attribute), 438

OPTIONS_CLOSE_SOCKET
(digi.xbee.packets.network.TXIPv4Packet
attribute), 340

OPTIONS_LEAVE_SOCKET_OPEN
(digi.xbee.packets.network.TXIPv4Packet
attribute), 340

OTAFirmwareUpdateStatusPacket (class in
digi.xbee.packets.zigbee), 451

output() (digi.xbee.models.filesystem.CloseDirCmdRequest
method), 164

output() (digi.xbee.models.filesystem.CloseDirCmdResponse
method), 165

output() (digi.xbee.models.filesystem.CloseFileCmdRequest
method), 143

output() (digi.xbee.models.filesystem.CloseFileCmdResponse
method), 144

output() (digi.xbee.models.filesystem.CreateDirCmdRequest
method), 157

output() (digi.xbee.models.filesystem.CreateDirCmdResponse
method), 158

output() (digi.xbee.models.filesystem.DeleteCmdRequest
method), 178

output() (digi.xbee.models.filesystem.DeleteCmdResponse
method), 179

output() (digi.xbee.models.filesystem.FileIdCmd
method), 136

output() (digi.xbee.models.filesystem.FileIdNameCmd
method), 137

output() (digi.xbee.models.filesystem.FSCmd
method), 133

output() (digi.xbee.models.filesystem.GetPathIdCmdRequest
method), 171

output() (digi.xbee.models.filesystem.GetPathIdCmdResponse
method), 173

output() (digi.xbee.models.filesystem.HashFileCmdRequest
method), 154

output() (digi.xbee.models.filesystem.HashFileCmdResponse
method), 155

output() (digi.xbee.models.filesystem.OpenDirCmdRequest
method), 160

output() (digi.xbee.models.filesystem.OpenDirCmdResponse
method), 162

output() (digi.xbee.models.filesystem.OpenFileCmdRequest
method), 139

output() (digi.xbee.models.filesystem.OpenFileCmdResponse
method), 141

1076 Index



XBee Python Library Documentation, Release 1.4.0

output() (digi.xbee.models.filesystem.ReadDirCmdRequest
method), 167

output() (digi.xbee.models.filesystem.ReadDirCmdResponse
method), 169

output() (digi.xbee.models.filesystem.ReadFileCmdRequest
method), 146

output() (digi.xbee.models.filesystem.ReadFileCmdResponse
method), 148

output() (digi.xbee.models.filesystem.RenameCmdRequest
method), 175

output() (digi.xbee.models.filesystem.RenameCmdResponse
method), 176

output() (digi.xbee.models.filesystem.UnknownFSCmd
method), 134

output() (digi.xbee.models.filesystem.VolFormatCmdRequest
method), 184

output() (digi.xbee.models.filesystem.VolFormatCmdResponse
method), 186

output() (digi.xbee.models.filesystem.VolStatCmdRequest
method), 181

output() (digi.xbee.models.filesystem.VolStatCmdResponse
method), 183

output() (digi.xbee.models.filesystem.WriteFileCmdRequest
method), 150

output() (digi.xbee.models.filesystem.WriteFileCmdResponse
method), 152

output() (digi.xbee.packets.base.GenericXBeePacket
method), 244

output() (digi.xbee.packets.base.UnknownXBeePacket
method), 247

output() (digi.xbee.packets.base.XBeeAPIPacket
method), 242

output() (digi.xbee.packets.base.XBeePacket method),
239

output() (digi.xbee.packets.cellular.RXSMSPacket
method), 250

output() (digi.xbee.packets.cellular.TXSMSPacket
method), 253

output() (digi.xbee.packets.common.ATCommPacket
method), 256

output() (digi.xbee.packets.common.ATCommQueuePacket
method), 259

output() (digi.xbee.packets.common.ATCommResponsePacket
method), 263

output() (digi.xbee.packets.common.ExplicitAddressingPacket
method), 293

output() (digi.xbee.packets.common.ExplicitRXIndicatorPacket
method), 297

output() (digi.xbee.packets.common.IODataSampleRxIndicatorPacket
method), 289

output() (digi.xbee.packets.common.ModemStatusPacket
method), 285

output() (digi.xbee.packets.common.ReceivePacket
method), 266

output() (digi.xbee.packets.common.RemoteATCommandPacket
method), 270

output() (digi.xbee.packets.common.RemoteATCommandResponsePacket
method), 275

output() (digi.xbee.packets.common.TransmitPacket
method), 279

output() (digi.xbee.packets.common.TransmitStatusPacket
method), 283

output() (digi.xbee.packets.devicecloud.DeviceRequestPacket
method), 302

output() (digi.xbee.packets.devicecloud.DeviceResponsePacket
method), 305

output() (digi.xbee.packets.devicecloud.DeviceResponseStatusPacket
method), 308

output() (digi.xbee.packets.devicecloud.FrameErrorPacket
method), 311

output() (digi.xbee.packets.devicecloud.SendDataRequestPacket
method), 315

output() (digi.xbee.packets.devicecloud.SendDataResponsePacket
method), 317

output() (digi.xbee.packets.digimesh.RouteInformationPacket
method), 322

output() (digi.xbee.packets.filesystem.FSRequestPacket
method), 325

output() (digi.xbee.packets.filesystem.FSResponsePacket
method), 328

output() (digi.xbee.packets.filesystem.RemoteFSRequestPacket
method), 332

output() (digi.xbee.packets.filesystem.RemoteFSResponsePacket
method), 334

output() (digi.xbee.packets.network.RXIPv4Packet
method), 339

output() (digi.xbee.packets.network.TXIPv4Packet
method), 342

output() (digi.xbee.packets.raw.RX16IOPacket
method), 365

output() (digi.xbee.packets.raw.RX16Packet method),
359

output() (digi.xbee.packets.raw.RX64IOPacket
method), 363

output() (digi.xbee.packets.raw.RX64Packet method),
356

output() (digi.xbee.packets.raw.TX16Packet method),
349

output() (digi.xbee.packets.raw.TX64Packet method),
346

output() (digi.xbee.packets.raw.TXStatusPacket
method), 352

output() (digi.xbee.packets.relay.UserDataRelayOutputPacket
method), 373

output() (digi.xbee.packets.relay.UserDataRelayPacket
method), 370

output() (digi.xbee.packets.socket.SocketBindListenPacket
method), 409

Index 1077



XBee Python Library Documentation, Release 1.4.0

output() (digi.xbee.packets.socket.SocketClosePacket
method), 396

output() (digi.xbee.packets.socket.SocketCloseResponsePacket
method), 399

output() (digi.xbee.packets.socket.SocketConnectPacket
method), 390

output() (digi.xbee.packets.socket.SocketConnectResponsePacket
method), 393

output() (digi.xbee.packets.socket.SocketCreatePacket
method), 376

output() (digi.xbee.packets.socket.SocketCreateResponsePacket
method), 379

output() (digi.xbee.packets.socket.SocketListenResponsePacket
method), 412

output() (digi.xbee.packets.socket.SocketNewIPv4ClientPacket
method), 416

output() (digi.xbee.packets.socket.SocketOptionRequestPacket
method), 383

output() (digi.xbee.packets.socket.SocketOptionResponsePacket
method), 386

output() (digi.xbee.packets.socket.SocketReceiveFromPacket
method), 421

output() (digi.xbee.packets.socket.SocketReceivePacket
method), 418

output() (digi.xbee.packets.socket.SocketSendPacket
method), 403

output() (digi.xbee.packets.socket.SocketSendToPacket
method), 406

output() (digi.xbee.packets.socket.SocketStatePacket
method), 424

output() (digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket
method), 429

output() (digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket
method), 435

output() (digi.xbee.packets.wifi.RemoteATCommandWifiPacket
method), 432

output() (digi.xbee.packets.zigbee.CreateSourceRoutePacket
method), 451

output() (digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket
method), 453

output() (digi.xbee.packets.zigbee.RegisterDeviceStatusPacket
method), 443

output() (digi.xbee.packets.zigbee.RegisterJoiningDevicePacket
method), 440

output() (digi.xbee.packets.zigbee.RouteRecordIndicatorPacket
method), 447

P
packet (digi.xbee.sender.SyncRequestSender attribute),

1005
PACKET_ACKNOWLEDGED

(digi.xbee.models.options.ReceiveOptions
attribute), 204

PacketListener (class in digi.xbee.reader), 992

PacketReceived (class in digi.xbee.reader), 972
PacketReceivedFrom (class in digi.xbee.reader),

973
PacketSender (class in digi.xbee.sender), 1004
parameter (digi.xbee.models.atcomm.ATCommand at-

tribute), 130
parameter (digi.xbee.packets.common.ATCommPacket

attribute), 255
parameter (digi.xbee.packets.common.ATCommQueuePacket

attribute), 258
parameter (digi.xbee.packets.common.RemoteATCommandPacket

attribute), 269
parameter (digi.xbee.packets.wifi.RemoteATCommandWifiPacket

attribute), 431
parent (digi.xbee.devices.RemoteZigBeeDevice at-

tribute), 854
parity (digi.xbee.profile.FirmwareParity attribute),

964
parse_socket_list()

(digi.xbee.models.info.SocketInfo static
method), 191

path (digi.xbee.filesystem.FileSystemElement attribute),
937

path (digi.xbee.packets.devicecloud.SendDataRequestPacket
attribute), 313

PATTERN (digi.xbee.models.address.XBee16BitAddress
attribute), 195

PATTERN (digi.xbee.models.address.XBee64BitAddress
attribute), 197

PATTERN (digi.xbee.models.address.XBeeIMEIAddress
attribute), 198

PATTERN_PHONE_NUMBER (in module
digi.xbee.packets.cellular), 247

payload (digi.xbee.packets.socket.SocketReceiveFromPacket
attribute), 422

payload (digi.xbee.packets.socket.SocketReceivePacket
attribute), 419

payload (digi.xbee.packets.socket.SocketSendPacket at-
tribute), 401

payload (digi.xbee.packets.socket.SocketSendToPacket
attribute), 405

pclose_file() (digi.xbee.filesystem.FileSystemManager
method), 947

pget_file_hash() (digi.xbee.filesystem.FileSystemManager
method), 949

pget_path_id() (digi.xbee.filesystem.FileSystemManager
method), 944

phone_number (digi.xbee.models.message.SMSMessage
attribute), 202

phone_number (digi.xbee.packets.cellular.RXSMSPacket
attribute), 248

phone_number (digi.xbee.packets.cellular.TXSMSPacket
attribute), 253

plist_directory()

1078 Index



XBee Python Library Documentation, Release 1.4.0

(digi.xbee.filesystem.FileSystemManager
method), 945

pmake_directory()
(digi.xbee.filesystem.FileSystemManager
method), 945

POINT_MULTIPOINT_MODE
(digi.xbee.models.options.ReceiveOptions
attribute), 204

POINT_MULTIPOINT_MODE
(digi.xbee.models.options.TransmitOptions
attribute), 206

pop() (digi.xbee.reader.BluetoothDataReceived
method), 983

pop() (digi.xbee.reader.DataReceived method), 974
pop() (digi.xbee.reader.DeviceDiscovered method), 978
pop() (digi.xbee.reader.DiscoveryProcessFinished

method), 979
pop() (digi.xbee.reader.EndDiscoveryScan method),

991
pop() (digi.xbee.reader.ExplicitDataReceived method),

980
pop() (digi.xbee.reader.FileSystemFrameReceived

method), 992
pop() (digi.xbee.reader.InitDiscoveryScan method), 990
pop() (digi.xbee.reader.IOSampleReceived method),

976
pop() (digi.xbee.reader.IPDataReceived method), 981
pop() (digi.xbee.reader.MicroPythonDataReceived

method), 984
pop() (digi.xbee.reader.ModemStatusReceived method),

975
pop() (digi.xbee.reader.NetworkModified method), 977
pop() (digi.xbee.reader.PacketReceived method), 973
pop() (digi.xbee.reader.PacketReceivedFrom method),

974
pop() (digi.xbee.reader.RelayDataReceived method),

982
pop() (digi.xbee.reader.RouteInformationReceived

method), 989
pop() (digi.xbee.reader.RouteReceived method), 990
pop() (digi.xbee.reader.RouteRecordIndicatorReceived

method), 988
pop() (digi.xbee.reader.SMSReceived method), 982
pop() (digi.xbee.reader.SocketDataReceived method),

986
pop() (digi.xbee.reader.SocketDataReceivedFrom

method), 987
pop() (digi.xbee.reader.SocketStateReceived method),

985
pop() (digi.xbee.reader.XBeeEvent method), 972
popen_file() (digi.xbee.filesystem.FileSystemManager

method), 947
power_supply_value (digi.xbee.io.IOSample

attribute), 961

PowerLevel (class in digi.xbee.models.status), 218
pread_file() (digi.xbee.filesystem.FileSystemManager

method), 948
prelease_path_id()

(digi.xbee.filesystem.FileSystemManager
method), 950

premove() (digi.xbee.filesystem.FileSystemManager
method), 946

prename() (digi.xbee.filesystem.FileSystemManager
method), 949

prepare_for_update()
(digi.xbee.firmware.UpdateConfigurer
method), 955

prepare_total (digi.xbee.firmware.UpdateConfigurer
attribute), 954

profile_description_file
(digi.xbee.profile.XBeeProfile attribute),
970

profile_file (digi.xbee.profile.XBeeProfile at-
tribute), 968

profile_id (digi.xbee.models.message.ExplicitXBeeMessage
attribute), 200

profile_id (digi.xbee.packets.common.ExplicitAddressingPacket
attribute), 294

profile_id (digi.xbee.packets.common.ExplicitRXIndicatorPacket
attribute), 299

profile_settings (digi.xbee.profile.XBeeProfile at-
tribute), 970

progress_cb() (digi.xbee.firmware.UpdateConfigurer
method), 955

protocol (digi.xbee.models.info.SocketInfo attribute),
191

protocol (digi.xbee.models.message.IPMessage at-
tribute), 202

protocol (digi.xbee.packets.socket.SocketCreatePacket
attribute), 375

protocol (digi.xbee.profile.XBeeProfile attribute), 971
purge_port() (digi.xbee.serial.XBeeSerialPort

method), 1007
put() (digi.xbee.reader.XBeeQueue method), 1003
put_dir() (digi.xbee.filesystem.FileSystemManager

method), 942
put_dir() (digi.xbee.filesystem.LocalXBeeFileSystemManager

method), 952
put_file() (digi.xbee.filesystem.FileSystemManager

method), 942
put_file() (digi.xbee.filesystem.LocalXBeeFileSystemManager

method), 952
put_nowait() (digi.xbee.reader.XBeeQueue method),

1003
PWM (digi.xbee.io.IOMode attribute), 962
pwm_at_command (digi.xbee.io.IOLine attribute), 958
pwrite_file() (digi.xbee.filesystem.FileSystemManager

method), 948

Index 1079



XBee Python Library Documentation, Release 1.4.0

Q
qsize() (digi.xbee.reader.XBeeQueue method), 1003
quit_reading() (digi.xbee.comm_interface.XBeeCommunicationInterface

method), 464
quit_reading() (digi.xbee.serial.XBeeSerialPort

method), 1007

R
Raw802Device (class in digi.xbee.devices), 512
Raw802Network (class in digi.xbee.devices), 896
reachable (digi.xbee.devices.AbstractXBeeDevice at-

tribute), 484
reachable (digi.xbee.devices.CellularDevice at-

tribute), 685
reachable (digi.xbee.devices.DigiMeshDevice at-

tribute), 561
reachable (digi.xbee.devices.DigiPointDevice at-

tribute), 593
reachable (digi.xbee.devices.IPDevice attribute), 660
reachable (digi.xbee.devices.LPWANDevice at-

tribute), 712
reachable (digi.xbee.devices.NBIoTDevice attribute),

737
reachable (digi.xbee.devices.Raw802Device at-

tribute), 529
reachable (digi.xbee.devices.RemoteDigiMeshDevice

attribute), 827
reachable (digi.xbee.devices.RemoteDigiPointDevice

attribute), 845
reachable (digi.xbee.devices.RemoteRaw802Device

attribute), 809
reachable (digi.xbee.devices.RemoteXBeeDevice at-

tribute), 791
reachable (digi.xbee.devices.RemoteZigBeeDevice at-

tribute), 865
reachable (digi.xbee.devices.WiFiDevice attribute),

768
reachable (digi.xbee.devices.XBeeDevice attribute),

505
reachable (digi.xbee.devices.ZigBeeDevice attribute),

630
READ (digi.xbee.models.options.FileOpenRequestOption

attribute), 210
READ_AS_MANY (digi.xbee.models.filesystem.ReadFileCmdRequest

attribute), 145
read_byte() (digi.xbee.serial.XBeeSerialPort

method), 1006
read_bytes() (digi.xbee.serial.XBeeSerialPort

method), 1007
read_data() (digi.xbee.devices.CellularDevice

method), 685
read_data() (digi.xbee.devices.DigiMeshDevice

method), 561

read_data() (digi.xbee.devices.DigiPointDevice
method), 593

read_data() (digi.xbee.devices.IPDevice method),
647

read_data() (digi.xbee.devices.LPWANDevice
method), 712

read_data() (digi.xbee.devices.NBIoTDevice
method), 737

read_data() (digi.xbee.devices.Raw802Device
method), 529

read_data() (digi.xbee.devices.WiFiDevice method),
768

read_data() (digi.xbee.devices.XBeeDevice method),
489

read_data() (digi.xbee.devices.ZigBeeDevice
method), 630

read_data_from() (digi.xbee.devices.CellularDevice
method), 685

read_data_from() (digi.xbee.devices.DigiMeshDevice
method), 562

read_data_from() (digi.xbee.devices.DigiPointDevice
method), 593

read_data_from() (digi.xbee.devices.IPDevice
method), 647

read_data_from() (digi.xbee.devices.LPWANDevice
method), 712

read_data_from() (digi.xbee.devices.NBIoTDevice
method), 737

read_data_from() (digi.xbee.devices.Raw802Device
method), 530

read_data_from() (digi.xbee.devices.WiFiDevice
method), 769

read_data_from() (digi.xbee.devices.XBeeDevice
method), 489

read_data_from() (digi.xbee.devices.ZigBeeDevice
method), 631

read_device_info()
(digi.xbee.devices.AbstractXBeeDevice
method), 470

read_device_info()
(digi.xbee.devices.CellularDevice method),
685

read_device_info()
(digi.xbee.devices.DigiMeshDevice method),
562

read_device_info()
(digi.xbee.devices.DigiPointDevice method),
594

read_device_info() (digi.xbee.devices.IPDevice
method), 660

read_device_info()
(digi.xbee.devices.LPWANDevice method),
712

read_device_info()

1080 Index



XBee Python Library Documentation, Release 1.4.0

(digi.xbee.devices.NBIoTDevice method),
737

read_device_info()
(digi.xbee.devices.Raw802Device method),
530

read_device_info()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 827

read_device_info()
(digi.xbee.devices.RemoteDigiPointDevice
method), 845

read_device_info()
(digi.xbee.devices.RemoteRaw802Device
method), 809

read_device_info()
(digi.xbee.devices.RemoteXBeeDevice
method), 791

read_device_info()
(digi.xbee.devices.RemoteZigBeeDevice
method), 865

read_device_info()
(digi.xbee.devices.WiFiDevice method), 769

read_device_info()
(digi.xbee.devices.XBeeDevice method),
505

read_device_info()
(digi.xbee.devices.ZigBeeDevice method),
631

read_existing() (digi.xbee.serial.XBeeSerialPort
method), 1007

read_expl_data() (digi.xbee.devices.DigiMeshDevice
method), 543

read_expl_data() (digi.xbee.devices.DigiPointDevice
method), 575

read_expl_data() (digi.xbee.devices.ZigBeeDevice
method), 608

read_expl_data_from()
(digi.xbee.devices.DigiMeshDevice method),
544

read_expl_data_from()
(digi.xbee.devices.DigiPointDevice method),
576

read_expl_data_from()
(digi.xbee.devices.ZigBeeDevice method),
609

read_file() (digi.xbee.filesystem.FileSystemManager
method), 940

read_io_sample() (digi.xbee.devices.AbstractXBeeDevice
method), 477

read_io_sample() (digi.xbee.devices.CellularDevice
method), 686

read_io_sample() (digi.xbee.devices.DigiMeshDevice
method), 563

read_io_sample() (digi.xbee.devices.DigiPointDevice

method), 594
read_io_sample() (digi.xbee.devices.IPDevice

method), 661
read_io_sample() (digi.xbee.devices.LPWANDevice

method), 712
read_io_sample() (digi.xbee.devices.NBIoTDevice

method), 738
read_io_sample() (digi.xbee.devices.Raw802Device

method), 531
read_io_sample() (digi.xbee.devices.RemoteDigiMeshDevice

method), 828
read_io_sample() (digi.xbee.devices.RemoteDigiPointDevice

method), 846
read_io_sample() (digi.xbee.devices.RemoteRaw802Device

method), 809
read_io_sample() (digi.xbee.devices.RemoteXBeeDevice

method), 792
read_io_sample() (digi.xbee.devices.RemoteZigBeeDevice

method), 866
read_io_sample() (digi.xbee.devices.WiFiDevice

method), 769
read_io_sample() (digi.xbee.devices.XBeeDevice

method), 505
read_io_sample() (digi.xbee.devices.ZigBeeDevice

method), 632
read_ip_data() (digi.xbee.devices.CellularDevice

method), 686
read_ip_data() (digi.xbee.devices.IPDevice

method), 645
read_ip_data() (digi.xbee.devices.LPWANDevice

method), 713
read_ip_data() (digi.xbee.devices.NBIoTDevice

method), 738
read_ip_data() (digi.xbee.devices.WiFiDevice

method), 769
read_ip_data_from()

(digi.xbee.devices.CellularDevice method),
687

read_ip_data_from() (digi.xbee.devices.IPDevice
method), 646

read_ip_data_from()
(digi.xbee.devices.LPWANDevice method),
713

read_ip_data_from()
(digi.xbee.devices.NBIoTDevice method),
738

read_ip_data_from()
(digi.xbee.devices.WiFiDevice method), 770

ReadDirCmdRequest (class in
digi.xbee.models.filesystem), 166

ReadDirCmdResponse (class in
digi.xbee.models.filesystem), 168

ReadFileCmdRequest (class in
digi.xbee.models.filesystem), 145

Index 1081



XBee Python Library Documentation, Release 1.4.0

ReadFileCmdResponse (class in
digi.xbee.models.filesystem), 147

ReadProfileException, 967
real_status (digi.xbee.packets.common.ATCommResponsePacket

attribute), 261
real_status (digi.xbee.packets.common.RemoteATCommandResponsePacket

attribute), 273
receive_options (digi.xbee.packets.common.ExplicitRXIndicatorPacket

attribute), 299
receive_options (digi.xbee.packets.common.IODataSampleRxIndicatorPacket

attribute), 288
receive_options (digi.xbee.packets.common.ReceivePacket

attribute), 265
receive_options (digi.xbee.packets.filesystem.RemoteFSResponsePacket

attribute), 335
receive_options (digi.xbee.packets.raw.RX16IOPacket

attribute), 367
receive_options (digi.xbee.packets.raw.RX16Packet

attribute), 358
receive_options (digi.xbee.packets.raw.RX64IOPacket

attribute), 361
receive_options (digi.xbee.packets.raw.RX64Packet

attribute), 354
receive_options (digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket

attribute), 427
receive_options (digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket

attribute), 455
receive_options (digi.xbee.packets.zigbee.RouteRecordIndicatorPacket

attribute), 445
ReceiveOptions (class in digi.xbee.models.options),

203
ReceivePacket (class in digi.xbee.packets.common),

263
recover_device() (in module digi.xbee.recovery),

1004
RecoveryException, 936
recv() (digi.xbee.xsocket.socket method), 1011
recvfrom() (digi.xbee.xsocket.socket method), 1011
region_lock (digi.xbee.profile.XBeeProfile attribute),

970
register_joining_device()

(digi.xbee.devices.ZigBeeDevice method),
612

register_joining_device_async()
(digi.xbee.devices.ZigBeeDevice method),
613

RegisterDeviceStatusPacket (class in
digi.xbee.packets.zigbee), 440

RegisterJoiningDevicePacket (class in
digi.xbee.packets.zigbee), 437

RegisterKeyOptions (class in
digi.xbee.models.options), 209

registrant_address
(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket

attribute), 438
relationship (digi.xbee.models.zdo.Neighbor

attribute), 234
RelayDataReceived (class in digi.xbee.reader), 982
remote_address (digi.xbee.models.info.SocketInfo

attribute), 191
remote_address (digi.xbee.packets.socket.SocketNewIPv4ClientPacket

attribute), 414
remote_device (digi.xbee.models.message.ExplicitXBeeMessage

attribute), 201
remote_device (digi.xbee.models.message.XBeeMessage

attribute), 199
remote_file_system_image

(digi.xbee.profile.XBeeProfile attribute),
970

remote_port (digi.xbee.models.info.SocketInfo
attribute), 191

remote_port (digi.xbee.packets.socket.SocketNewIPv4ClientPacket
attribute), 414

RemoteATCmdOptions (class in
digi.xbee.models.options), 206

RemoteATCommandPacket (class in
digi.xbee.packets.common), 267

RemoteATCommandResponsePacket (class in
digi.xbee.packets.common), 271

RemoteATCommandResponseWifiPacket (class
in digi.xbee.packets.wifi), 433

RemoteATCommandWifiPacket (class in
digi.xbee.packets.wifi), 429

RemoteDigiMeshDevice (class in
digi.xbee.devices), 817

RemoteDigiPointDevice (class in
digi.xbee.devices), 835

RemoteFSRequestPacket (class in
digi.xbee.packets.filesystem), 329

RemoteFSResponsePacket (class in
digi.xbee.packets.filesystem), 332

RemoteRaw802Device (class in digi.xbee.devices),
798

RemoteXBeeDevice (class in digi.xbee.devices), 780
RemoteZigBeeDevice (class in digi.xbee.devices),

853
remove() (digi.xbee.filesystem.FileSystemManager

method), 940
remove() (digi.xbee.reader.BluetoothDataReceived

method), 983
remove() (digi.xbee.reader.DataReceived method),

975
remove() (digi.xbee.reader.DeviceDiscovered method),

978
remove() (digi.xbee.reader.DiscoveryProcessFinished

method), 979
remove() (digi.xbee.reader.EndDiscoveryScan

method), 991

1082 Index



XBee Python Library Documentation, Release 1.4.0

remove() (digi.xbee.reader.ExplicitDataReceived
method), 980

remove() (digi.xbee.reader.FileSystemFrameReceived
method), 992

remove() (digi.xbee.reader.InitDiscoveryScan
method), 990

remove() (digi.xbee.reader.IOSampleReceived
method), 976

remove() (digi.xbee.reader.IPDataReceived method),
981

remove() (digi.xbee.reader.MicroPythonDataReceived
method), 984

remove() (digi.xbee.reader.ModemStatusReceived
method), 975

remove() (digi.xbee.reader.NetworkModified method),
977

remove() (digi.xbee.reader.PacketReceived method),
973

remove() (digi.xbee.reader.PacketReceivedFrom
method), 974

remove() (digi.xbee.reader.RelayDataReceived
method), 983

remove() (digi.xbee.reader.RouteInformationReceived
method), 989

remove() (digi.xbee.reader.RouteReceived method),
990

remove() (digi.xbee.reader.RouteRecordIndicatorReceived
method), 988

remove() (digi.xbee.reader.SMSReceived method), 982
remove() (digi.xbee.reader.SocketDataReceived

method), 986
remove() (digi.xbee.reader.SocketDataReceivedFrom

method), 987
remove() (digi.xbee.reader.SocketStateReceived

method), 985
remove() (digi.xbee.reader.XBeeEvent method), 972
remove_device() (digi.xbee.devices.DigiMeshNetwork

method), 916
remove_device() (digi.xbee.devices.DigiPointNetwork

method), 928
remove_device() (digi.xbee.devices.Raw802Network

method), 905
remove_device() (digi.xbee.devices.XBeeNetwork

method), 884
remove_device() (digi.xbee.devices.ZigBeeNetwork

method), 893
remove_element() (digi.xbee.filesystem.LocalXBeeFileSystemManager

method), 952
RenameCmdRequest (class in

digi.xbee.models.filesystem), 173
RenameCmdResponse (class in

digi.xbee.models.filesystem), 175
REPEATER_MODE (digi.xbee.models.options.ReceiveOptions

attribute), 204

REPEATER_MODE (digi.xbee.models.options.TransmitOptions
attribute), 206

request_data (digi.xbee.packets.devicecloud.DeviceRequestPacket
attribute), 301

request_data (digi.xbee.packets.devicecloud.DeviceResponsePacket
attribute), 304

request_id (digi.xbee.packets.devicecloud.DeviceRequestPacket
attribute), 301

request_id (digi.xbee.packets.devicecloud.DeviceResponsePacket
attribute), 304

reset() (digi.xbee.devices.AbstractXBeeDevice
method), 470

reset() (digi.xbee.devices.CellularDevice method),
687

reset() (digi.xbee.devices.DigiMeshDevice method),
563

reset() (digi.xbee.devices.DigiPointDevice method),
595

reset() (digi.xbee.devices.IPDevice method), 661
reset() (digi.xbee.devices.LPWANDevice method),

713
reset() (digi.xbee.devices.NBIoTDevice method), 739
reset() (digi.xbee.devices.Raw802Device method),

531
reset() (digi.xbee.devices.RemoteDigiMeshDevice

method), 828
reset() (digi.xbee.devices.RemoteDigiPointDevice

method), 846
reset() (digi.xbee.devices.RemoteRaw802Device

method), 810
reset() (digi.xbee.devices.RemoteXBeeDevice

method), 781
reset() (digi.xbee.devices.RemoteZigBeeDevice

method), 866
reset() (digi.xbee.devices.WiFiDevice method), 770
reset() (digi.xbee.devices.XBeeDevice method), 491
reset() (digi.xbee.devices.ZigBeeDevice method), 632
reset_settings (digi.xbee.profile.XBeeProfile at-

tribute), 969
responder_addr (digi.xbee.packets.digimesh.RouteInformationPacket

attribute), 322
response (digi.xbee.models.atcomm.ATCommandResponse

attribute), 130
restore_after_update()

(digi.xbee.firmware.UpdateConfigurer
method), 955

restore_total (digi.xbee.firmware.UpdateConfigurer
attribute), 954

reverse() (digi.xbee.reader.BluetoothDataReceived
method), 983

reverse() (digi.xbee.reader.DataReceived method),
975

reverse() (digi.xbee.reader.DeviceDiscovered
method), 978

Index 1083



XBee Python Library Documentation, Release 1.4.0

reverse() (digi.xbee.reader.DiscoveryProcessFinished
method), 979

reverse() (digi.xbee.reader.EndDiscoveryScan
method), 991

reverse() (digi.xbee.reader.ExplicitDataReceived
method), 980

reverse() (digi.xbee.reader.FileSystemFrameReceived
method), 992

reverse() (digi.xbee.reader.InitDiscoveryScan
method), 991

reverse() (digi.xbee.reader.IOSampleReceived
method), 977

reverse() (digi.xbee.reader.IPDataReceived method),
981

reverse() (digi.xbee.reader.MicroPythonDataReceived
method), 984

reverse() (digi.xbee.reader.ModemStatusReceived
method), 975

reverse() (digi.xbee.reader.NetworkModified
method), 977

reverse() (digi.xbee.reader.PacketReceived method),
973

reverse() (digi.xbee.reader.PacketReceivedFrom
method), 974

reverse() (digi.xbee.reader.RelayDataReceived
method), 983

reverse() (digi.xbee.reader.RouteInformationReceived
method), 989

reverse() (digi.xbee.reader.RouteReceived method),
990

reverse() (digi.xbee.reader.RouteRecordIndicatorReceived
method), 988

reverse() (digi.xbee.reader.SMSReceived method),
982

reverse() (digi.xbee.reader.SocketDataReceived
method), 986

reverse() (digi.xbee.reader.SocketDataReceivedFrom
method), 987

reverse() (digi.xbee.reader.SocketStateReceived
method), 985

reverse() (digi.xbee.reader.XBeeEvent method), 972
rf_data (digi.xbee.packets.common.ExplicitAddressingPacket

attribute), 294
rf_data (digi.xbee.packets.common.ExplicitRXIndicatorPacket

attribute), 299
rf_data (digi.xbee.packets.common.IODataSampleRxIndicatorPacket

attribute), 288
rf_data (digi.xbee.packets.common.ReceivePacket at-

tribute), 265
rf_data (digi.xbee.packets.common.TransmitPacket at-

tribute), 277
rf_data (digi.xbee.packets.raw.RX16IOPacket at-

tribute), 367
rf_data (digi.xbee.packets.raw.RX16Packet attribute),

358
rf_data (digi.xbee.packets.raw.RX64IOPacket at-

tribute), 362
rf_data (digi.xbee.packets.raw.RX64Packet attribute),

355
rf_data (digi.xbee.packets.raw.TX16Packet attribute),

348
rf_data (digi.xbee.packets.raw.TX64Packet attribute),

345
rf_data (digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket

attribute), 427
Role (class in digi.xbee.models.protocol), 213
role (digi.xbee.models.zdo.NodeDescriptor attribute),

228
Route (class in digi.xbee.models.zdo), 231
route_cmd_options

(digi.xbee.packets.zigbee.CreateSourceRoutePacket
attribute), 449

RouteInformationPacket (class in
digi.xbee.packets.digimesh), 318

RouteInformationReceived (class in
digi.xbee.reader), 988

RouteReceived (class in digi.xbee.reader), 989
RouteRecordIndicatorPacket (class in

digi.xbee.packets.zigbee), 443
RouteRecordIndicatorReceived (class in

digi.xbee.reader), 987
RouteStatus (class in digi.xbee.models.zdo), 231
RouteTableReader (class in digi.xbee.models.zdo),

229
rssi (digi.xbee.packets.raw.RX16IOPacket attribute),

366
rssi (digi.xbee.packets.raw.RX16Packet attribute), 358
rssi (digi.xbee.packets.raw.RX64IOPacket attribute),

361
rssi (digi.xbee.packets.raw.RX64Packet attribute), 354
rssi (digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket

attribute), 427
run() (digi.xbee.reader.PacketListener method), 993
running (digi.xbee.filesystem.FileProcess attribute),

938
running (digi.xbee.models.zdo.NeighborFinder at-

tribute), 235
running (digi.xbee.models.zdo.NeighborTableReader

attribute), 233
running (digi.xbee.models.zdo.NodeDescriptorReader

attribute), 227
running (digi.xbee.models.zdo.RouteTableReader at-

tribute), 231
RX16IOPacket (class in digi.xbee.packets.raw), 363
RX16Packet (class in digi.xbee.packets.raw), 356
RX64IOPacket (class in digi.xbee.packets.raw), 360
RX64Packet (class in digi.xbee.packets.raw), 353
RXIPv4Packet (class in digi.xbee.packets.network),

1084 Index



XBee Python Library Documentation, Release 1.4.0

336
RXSMSPacket (class in digi.xbee.packets.cellular), 247

S
scan_access_points()

(digi.xbee.devices.WiFiDevice method), 749
scan_counter (digi.xbee.devices.AbstractXBeeDevice

attribute), 484
scan_counter (digi.xbee.devices.CellularDevice at-

tribute), 687
scan_counter (digi.xbee.devices.DigiMeshDevice at-

tribute), 563
scan_counter (digi.xbee.devices.DigiMeshNetwork

attribute), 916
scan_counter (digi.xbee.devices.DigiPointDevice at-

tribute), 595
scan_counter (digi.xbee.devices.DigiPointNetwork

attribute), 928
scan_counter (digi.xbee.devices.IPDevice attribute),

661
scan_counter (digi.xbee.devices.LPWANDevice at-

tribute), 714
scan_counter (digi.xbee.devices.NBIoTDevice

attribute), 739
scan_counter (digi.xbee.devices.Raw802Device at-

tribute), 531
scan_counter (digi.xbee.devices.Raw802Network at-

tribute), 905
scan_counter (digi.xbee.devices.RemoteDigiMeshDevice

attribute), 828
scan_counter (digi.xbee.devices.RemoteDigiPointDevice

attribute), 846
scan_counter (digi.xbee.devices.RemoteRaw802Device

attribute), 810
scan_counter (digi.xbee.devices.RemoteXBeeDevice

attribute), 792
scan_counter (digi.xbee.devices.RemoteZigBeeDevice

attribute), 866
scan_counter (digi.xbee.devices.WiFiDevice at-

tribute), 770
scan_counter (digi.xbee.devices.XBeeDevice at-

tribute), 505
scan_counter (digi.xbee.devices.XBeeNetwork at-

tribute), 874
scan_counter (digi.xbee.devices.ZigBeeDevice at-

tribute), 632
scan_counter (digi.xbee.devices.ZigBeeNetwork at-

tribute), 893
scan_counter_a2b (digi.xbee.devices.Connection

attribute), 934
scan_counter_b2a (digi.xbee.devices.Connection

attribute), 934
SCAN_TIL_CANCEL (digi.xbee.devices.XBeeNetwork

attribute), 874

SECURE (digi.xbee.models.options.FileOpenRequestOption
attribute), 211

SECURE_SESSION_ENC
(digi.xbee.models.options.ReceiveOptions
attribute), 204

SECURE_SESSION_ENC
(digi.xbee.models.options.RemoteATCmdOptions
attribute), 207

SECURE_SESSION_ENC
(digi.xbee.models.options.TransmitOptions
attribute), 206

send() (digi.xbee.sender.SyncRequestSender method),
1005

send() (digi.xbee.xsocket.socket method), 1012
send_bluetooth_data()

(digi.xbee.devices.CellularDevice method),
687

send_bluetooth_data()
(digi.xbee.devices.DigiMeshDevice method),
563

send_bluetooth_data()
(digi.xbee.devices.DigiPointDevice method),
595

send_bluetooth_data()
(digi.xbee.devices.IPDevice method), 661

send_bluetooth_data()
(digi.xbee.devices.LPWANDevice method),
714

send_bluetooth_data()
(digi.xbee.devices.NBIoTDevice method),
739

send_bluetooth_data()
(digi.xbee.devices.Raw802Device method),
531

send_bluetooth_data()
(digi.xbee.devices.WiFiDevice method), 770

send_bluetooth_data()
(digi.xbee.devices.XBeeDevice method),
488

send_bluetooth_data()
(digi.xbee.devices.ZigBeeDevice method),
632

send_data() (digi.xbee.devices.CellularDevice
method), 688

send_data() (digi.xbee.devices.DigiMeshDevice
method), 564

send_data() (digi.xbee.devices.DigiPointDevice
method), 595

send_data() (digi.xbee.devices.IPDevice method),
647

send_data() (digi.xbee.devices.LPWANDevice
method), 714

send_data() (digi.xbee.devices.NBIoTDevice
method), 739

Index 1085



XBee Python Library Documentation, Release 1.4.0

send_data() (digi.xbee.devices.Raw802Device
method), 531

send_data() (digi.xbee.devices.WiFiDevice method),
771

send_data() (digi.xbee.devices.XBeeDevice method),
487

send_data() (digi.xbee.devices.ZigBeeDevice
method), 633

send_data_16() (digi.xbee.devices.Raw802Device
method), 514

send_data_64() (digi.xbee.devices.DigiMeshDevice
method), 542

send_data_64() (digi.xbee.devices.Raw802Device
method), 513

send_data_64_16()
(digi.xbee.devices.DigiPointDevice method),
574

send_data_64_16()
(digi.xbee.devices.ZigBeeDevice method),
607

send_data_async()
(digi.xbee.devices.CellularDevice method),
688

send_data_async()
(digi.xbee.devices.DigiMeshDevice method),
564

send_data_async()
(digi.xbee.devices.DigiPointDevice method),
596

send_data_async() (digi.xbee.devices.IPDevice
method), 647

send_data_async()
(digi.xbee.devices.LPWANDevice method),
714

send_data_async()
(digi.xbee.devices.NBIoTDevice method),
739

send_data_async()
(digi.xbee.devices.Raw802Device method),
532

send_data_async() (digi.xbee.devices.WiFiDevice
method), 771

send_data_async() (digi.xbee.devices.XBeeDevice
method), 487

send_data_async()
(digi.xbee.devices.ZigBeeDevice method),
633

send_data_async_16()
(digi.xbee.devices.Raw802Device method),
514

send_data_async_64()
(digi.xbee.devices.DigiMeshDevice method),
543

send_data_async_64()

(digi.xbee.devices.Raw802Device method),
513

send_data_async_64_16()
(digi.xbee.devices.DigiPointDevice method),
575

send_data_async_64_16()
(digi.xbee.devices.ZigBeeDevice method),
607

send_data_broadcast()
(digi.xbee.devices.CellularDevice method),
688

send_data_broadcast()
(digi.xbee.devices.DigiMeshDevice method),
565

send_data_broadcast()
(digi.xbee.devices.DigiPointDevice method),
596

send_data_broadcast()
(digi.xbee.devices.IPDevice method), 647

send_data_broadcast()
(digi.xbee.devices.LPWANDevice method),
714

send_data_broadcast()
(digi.xbee.devices.NBIoTDevice method),
739

send_data_broadcast()
(digi.xbee.devices.Raw802Device method),
533

send_data_broadcast()
(digi.xbee.devices.WiFiDevice method), 771

send_data_broadcast()
(digi.xbee.devices.XBeeDevice method),
488

send_data_broadcast()
(digi.xbee.devices.ZigBeeDevice method),
634

send_expl_data() (digi.xbee.devices.DigiMeshDevice
method), 544

send_expl_data() (digi.xbee.devices.DigiPointDevice
method), 576

send_expl_data() (digi.xbee.devices.ZigBeeDevice
method), 609

send_expl_data_async()
(digi.xbee.devices.DigiMeshDevice method),
546

send_expl_data_async()
(digi.xbee.devices.DigiPointDevice method),
578

send_expl_data_async()
(digi.xbee.devices.ZigBeeDevice method),
611

send_expl_data_broadcast()
(digi.xbee.devices.DigiMeshDevice method),
545

1086 Index



XBee Python Library Documentation, Release 1.4.0

send_expl_data_broadcast()
(digi.xbee.devices.DigiPointDevice method),
577

send_expl_data_broadcast()
(digi.xbee.devices.ZigBeeDevice method),
610

send_file_xmodem() (in module
digi.xbee.util.xmodem), 462

send_file_ymodem() (in module
digi.xbee.util.xmodem), 462

send_ip_data() (digi.xbee.devices.CellularDevice
method), 688

send_ip_data() (digi.xbee.devices.IPDevice
method), 644

send_ip_data() (digi.xbee.devices.LPWANDevice
method), 696

send_ip_data() (digi.xbee.devices.NBIoTDevice
method), 739

send_ip_data() (digi.xbee.devices.WiFiDevice
method), 771

send_ip_data_async()
(digi.xbee.devices.CellularDevice method),
688

send_ip_data_async()
(digi.xbee.devices.IPDevice method), 645

send_ip_data_async()
(digi.xbee.devices.LPWANDevice method),
697

send_ip_data_async()
(digi.xbee.devices.NBIoTDevice method),
740

send_ip_data_async()
(digi.xbee.devices.WiFiDevice method), 771

send_ip_data_broadcast()
(digi.xbee.devices.CellularDevice method),
689

send_ip_data_broadcast()
(digi.xbee.devices.IPDevice method), 645

send_ip_data_broadcast()
(digi.xbee.devices.LPWANDevice method),
714

send_ip_data_broadcast()
(digi.xbee.devices.NBIoTDevice method),
740

send_ip_data_broadcast()
(digi.xbee.devices.WiFiDevice method), 772

send_micropython_data()
(digi.xbee.devices.CellularDevice method),
689

send_micropython_data()
(digi.xbee.devices.DigiMeshDevice method),
565

send_micropython_data()
(digi.xbee.devices.DigiPointDevice method),

597
send_micropython_data()

(digi.xbee.devices.IPDevice method), 662
send_micropython_data()

(digi.xbee.devices.LPWANDevice method),
715

send_micropython_data()
(digi.xbee.devices.NBIoTDevice method),
740

send_micropython_data()
(digi.xbee.devices.Raw802Device method),
533

send_micropython_data()
(digi.xbee.devices.WiFiDevice method), 772

send_micropython_data()
(digi.xbee.devices.XBeeDevice method),
489

send_micropython_data()
(digi.xbee.devices.ZigBeeDevice method),
634

send_multicast_data()
(digi.xbee.devices.ZigBeeDevice method),
611

send_multicast_data_async()
(digi.xbee.devices.ZigBeeDevice method),
612

send_packet() (digi.xbee.devices.CellularDevice
method), 689

send_packet() (digi.xbee.devices.DigiMeshDevice
method), 565

send_packet() (digi.xbee.devices.DigiPointDevice
method), 597

send_packet() (digi.xbee.devices.IPDevice method),
662

send_packet() (digi.xbee.devices.LPWANDevice
method), 715

send_packet() (digi.xbee.devices.NBIoTDevice
method), 741

send_packet() (digi.xbee.devices.Raw802Device
method), 533

send_packet() (digi.xbee.devices.WiFiDevice
method), 772

send_packet() (digi.xbee.devices.XBeeDevice
method), 494

send_packet() (digi.xbee.devices.ZigBeeDevice
method), 634

send_packet() (digi.xbee.sender.PacketSender
method), 1004

send_packet_sync_and_get_response()
(digi.xbee.devices.CellularDevice method), 690

send_packet_sync_and_get_response()
(digi.xbee.devices.DigiMeshDevice method),
566

send_packet_sync_and_get_response()

Index 1087



XBee Python Library Documentation, Release 1.4.0

(digi.xbee.devices.DigiPointDevice method),
598

send_packet_sync_and_get_response()
(digi.xbee.devices.IPDevice method), 663

send_packet_sync_and_get_response()
(digi.xbee.devices.LPWANDevice method), 716

send_packet_sync_and_get_response()
(digi.xbee.devices.NBIoTDevice method), 741

send_packet_sync_and_get_response()
(digi.xbee.devices.Raw802Device method), 534

send_packet_sync_and_get_response()
(digi.xbee.devices.WiFiDevice method), 773

send_packet_sync_and_get_response()
(digi.xbee.devices.XBeeDevice method), 494

send_packet_sync_and_get_response()
(digi.xbee.devices.ZigBeeDevice method), 635

send_sms() (digi.xbee.devices.CellularDevice
method), 671

send_sms() (digi.xbee.devices.LPWANDevice
method), 697

send_sms() (digi.xbee.devices.NBIoTDevice method),
742

send_sms_async() (digi.xbee.devices.CellularDevice
method), 671

send_sms_async() (digi.xbee.devices.LPWANDevice
method), 697

send_sms_async() (digi.xbee.devices.NBIoTDevice
method), 742

send_user_data_relay()
(digi.xbee.devices.CellularDevice method),
690

send_user_data_relay()
(digi.xbee.devices.DigiMeshDevice method),
566

send_user_data_relay()
(digi.xbee.devices.DigiPointDevice method),
598

send_user_data_relay()
(digi.xbee.devices.IPDevice method), 663

send_user_data_relay()
(digi.xbee.devices.LPWANDevice method),
716

send_user_data_relay()
(digi.xbee.devices.NBIoTDevice method),
742

send_user_data_relay()
(digi.xbee.devices.Raw802Device method),
534

send_user_data_relay()
(digi.xbee.devices.WiFiDevice method), 773

send_user_data_relay()
(digi.xbee.devices.XBeeDevice method),
488

send_user_data_relay()

(digi.xbee.devices.ZigBeeDevice method),
636

sendall() (digi.xbee.xsocket.socket method), 1012
SendDataRequestOptions (class in

digi.xbee.models.options), 207
SendDataRequestPacket (class in

digi.xbee.packets.devicecloud), 312
SendDataResponsePacket (class in

digi.xbee.packets.devicecloud), 315
sendto() (digi.xbee.xsocket.socket method), 1012
SENT_FROM_END_DEVICE

(digi.xbee.models.options.ReceiveOptions
attribute), 204

serial_port (digi.xbee.devices.CellularDevice at-
tribute), 691

serial_port (digi.xbee.devices.DigiMeshDevice at-
tribute), 567

serial_port (digi.xbee.devices.DigiPointDevice at-
tribute), 598

serial_port (digi.xbee.devices.IPDevice attribute),
663

serial_port (digi.xbee.devices.LPWANDevice
attribute), 716

serial_port (digi.xbee.devices.NBIoTDevice at-
tribute), 742

serial_port (digi.xbee.devices.Raw802Device
attribute), 535

serial_port (digi.xbee.devices.WiFiDevice at-
tribute), 774

serial_port (digi.xbee.devices.XBeeDevice at-
tribute), 486

serial_port (digi.xbee.devices.ZigBeeDevice at-
tribute), 636

set_16bit_addr() (digi.xbee.devices.AbstractXBeeDevice
method), 472

set_16bit_addr() (digi.xbee.devices.CellularDevice
method), 691

set_16bit_addr() (digi.xbee.devices.DigiMeshDevice
method), 567

set_16bit_addr() (digi.xbee.devices.DigiPointDevice
method), 599

set_16bit_addr() (digi.xbee.devices.IPDevice
method), 664

set_16bit_addr() (digi.xbee.devices.LPWANDevice
method), 717

set_16bit_addr() (digi.xbee.devices.NBIoTDevice
method), 742

set_16bit_addr() (digi.xbee.devices.Raw802Device
method), 535

set_16bit_addr() (digi.xbee.devices.RemoteDigiMeshDevice
method), 828

set_16bit_addr() (digi.xbee.devices.RemoteDigiPointDevice
method), 846

set_16bit_addr() (digi.xbee.devices.RemoteRaw802Device

1088 Index



XBee Python Library Documentation, Release 1.4.0

method), 810
set_16bit_addr() (digi.xbee.devices.RemoteXBeeDevice

method), 792
set_16bit_addr() (digi.xbee.devices.RemoteZigBeeDevice

method), 866
set_16bit_addr() (digi.xbee.devices.WiFiDevice

method), 774
set_16bit_addr() (digi.xbee.devices.XBeeDevice

method), 506
set_16bit_addr() (digi.xbee.devices.ZigBeeDevice

method), 636
set_64bit_addr() (digi.xbee.devices.RemoteRaw802Device

method), 799
set_access_point_timeout()

(digi.xbee.devices.WiFiDevice method), 752
set_api_output_mode()

(digi.xbee.devices.AbstractXBeeDevice
method), 481

set_api_output_mode()
(digi.xbee.devices.CellularDevice method),
691

set_api_output_mode()
(digi.xbee.devices.DigiMeshDevice method),
567

set_api_output_mode()
(digi.xbee.devices.DigiPointDevice method),
599

set_api_output_mode()
(digi.xbee.devices.IPDevice method), 664

set_api_output_mode()
(digi.xbee.devices.LPWANDevice method),
717

set_api_output_mode()
(digi.xbee.devices.NBIoTDevice method),
743

set_api_output_mode()
(digi.xbee.devices.Raw802Device method),
535

set_api_output_mode()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 829

set_api_output_mode()
(digi.xbee.devices.RemoteDigiPointDevice
method), 847

set_api_output_mode()
(digi.xbee.devices.RemoteRaw802Device
method), 810

set_api_output_mode()
(digi.xbee.devices.RemoteXBeeDevice
method), 792

set_api_output_mode()
(digi.xbee.devices.RemoteZigBeeDevice
method), 867

set_api_output_mode()

(digi.xbee.devices.WiFiDevice method), 774
set_api_output_mode()

(digi.xbee.devices.XBeeDevice method),
506

set_api_output_mode()
(digi.xbee.devices.ZigBeeDevice method),
636

set_api_output_mode_value()
(digi.xbee.devices.AbstractXBeeDevice
method), 481

set_api_output_mode_value()
(digi.xbee.devices.CellularDevice method),
692

set_api_output_mode_value()
(digi.xbee.devices.DigiMeshDevice method),
568

set_api_output_mode_value()
(digi.xbee.devices.DigiPointDevice method),
599

set_api_output_mode_value()
(digi.xbee.devices.IPDevice method), 664

set_api_output_mode_value()
(digi.xbee.devices.LPWANDevice method),
717

set_api_output_mode_value()
(digi.xbee.devices.NBIoTDevice method),
743

set_api_output_mode_value()
(digi.xbee.devices.Raw802Device method),
536

set_api_output_mode_value()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 829

set_api_output_mode_value()
(digi.xbee.devices.RemoteDigiPointDevice
method), 847

set_api_output_mode_value()
(digi.xbee.devices.RemoteRaw802Device
method), 810

set_api_output_mode_value()
(digi.xbee.devices.RemoteXBeeDevice
method), 793

set_api_output_mode_value()
(digi.xbee.devices.RemoteZigBeeDevice
method), 867

set_api_output_mode_value()
(digi.xbee.devices.WiFiDevice method), 775

set_api_output_mode_value()
(digi.xbee.devices.XBeeDevice method),
506

set_api_output_mode_value()
(digi.xbee.devices.ZigBeeDevice method),
637

set_baudrate() (digi.xbee.serial.XBeeSerialPort

Index 1089



XBee Python Library Documentation, Release 1.4.0

method), 1007
set_deep_discovery_options()

(digi.xbee.devices.DigiMeshNetwork method),
916

set_deep_discovery_options()
(digi.xbee.devices.DigiPointNetwork method),
928

set_deep_discovery_options()
(digi.xbee.devices.Raw802Network method),
905

set_deep_discovery_options()
(digi.xbee.devices.XBeeNetwork method),
880

set_deep_discovery_options()
(digi.xbee.devices.ZigBeeNetwork method),
894

set_deep_discovery_timeouts()
(digi.xbee.devices.DigiMeshNetwork method),
917

set_deep_discovery_timeouts()
(digi.xbee.devices.DigiPointNetwork method),
928

set_deep_discovery_timeouts()
(digi.xbee.devices.Raw802Network method),
905

set_deep_discovery_timeouts()
(digi.xbee.devices.XBeeNetwork method),
882

set_deep_discovery_timeouts()
(digi.xbee.devices.ZigBeeNetwork method),
894

set_dest_address()
(digi.xbee.devices.AbstractXBeeDevice
method), 473

set_dest_address()
(digi.xbee.devices.CellularDevice method),
692

set_dest_address()
(digi.xbee.devices.DigiMeshDevice method),
568

set_dest_address()
(digi.xbee.devices.DigiPointDevice method),
600

set_dest_address() (digi.xbee.devices.IPDevice
method), 646

set_dest_address()
(digi.xbee.devices.LPWANDevice method),
718

set_dest_address()
(digi.xbee.devices.NBIoTDevice method),
744

set_dest_address()
(digi.xbee.devices.Raw802Device method),
536

set_dest_address()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 830

set_dest_address()
(digi.xbee.devices.RemoteDigiPointDevice
method), 848

set_dest_address()
(digi.xbee.devices.RemoteRaw802Device
method), 811

set_dest_address()
(digi.xbee.devices.RemoteXBeeDevice
method), 793

set_dest_address()
(digi.xbee.devices.RemoteZigBeeDevice
method), 867

set_dest_address()
(digi.xbee.devices.WiFiDevice method), 775

set_dest_address()
(digi.xbee.devices.XBeeDevice method),
507

set_dest_address()
(digi.xbee.devices.ZigBeeDevice method),
637

set_dest_ip_addr()
(digi.xbee.devices.CellularDevice method),
692

set_dest_ip_addr() (digi.xbee.devices.IPDevice
method), 643

set_dest_ip_addr()
(digi.xbee.devices.LPWANDevice method),
718

set_dest_ip_addr()
(digi.xbee.devices.NBIoTDevice method),
744

set_dest_ip_addr()
(digi.xbee.devices.WiFiDevice method), 775

set_dio_change_detection()
(digi.xbee.devices.AbstractXBeeDevice
method), 480

set_dio_change_detection()
(digi.xbee.devices.CellularDevice method),
672

set_dio_change_detection()
(digi.xbee.devices.DigiMeshDevice method),
569

set_dio_change_detection()
(digi.xbee.devices.DigiPointDevice method),
600

set_dio_change_detection()
(digi.xbee.devices.IPDevice method), 665

set_dio_change_detection()
(digi.xbee.devices.LPWANDevice method),
718

set_dio_change_detection()

1090 Index



XBee Python Library Documentation, Release 1.4.0

(digi.xbee.devices.NBIoTDevice method),
744

set_dio_change_detection()
(digi.xbee.devices.Raw802Device method),
536

set_dio_change_detection()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 830

set_dio_change_detection()
(digi.xbee.devices.RemoteDigiPointDevice
method), 848

set_dio_change_detection()
(digi.xbee.devices.RemoteRaw802Device
method), 811

set_dio_change_detection()
(digi.xbee.devices.RemoteXBeeDevice
method), 794

set_dio_change_detection()
(digi.xbee.devices.RemoteZigBeeDevice
method), 868

set_dio_change_detection()
(digi.xbee.devices.WiFiDevice method), 776

set_dio_change_detection()
(digi.xbee.devices.XBeeDevice method),
507

set_dio_change_detection()
(digi.xbee.devices.ZigBeeDevice method),
638

set_dio_value() (digi.xbee.devices.AbstractXBeeDevice
method), 479

set_dio_value() (digi.xbee.devices.CellularDevice
method), 692

set_dio_value() (digi.xbee.devices.DigiMeshDevice
method), 569

set_dio_value() (digi.xbee.devices.DigiPointDevice
method), 601

set_dio_value() (digi.xbee.devices.IPDevice
method), 665

set_dio_value() (digi.xbee.devices.LPWANDevice
method), 718

set_dio_value() (digi.xbee.devices.NBIoTDevice
method), 744

set_dio_value() (digi.xbee.devices.Raw802Device
method), 537

set_dio_value() (digi.xbee.devices.RemoteDigiMeshDevice
method), 830

set_dio_value() (digi.xbee.devices.RemoteDigiPointDevice
method), 848

set_dio_value() (digi.xbee.devices.RemoteRaw802Device
method), 812

set_dio_value() (digi.xbee.devices.RemoteXBeeDevice
method), 794

set_dio_value() (digi.xbee.devices.RemoteZigBeeDevice
method), 868

set_dio_value() (digi.xbee.devices.WiFiDevice
method), 776

set_dio_value() (digi.xbee.devices.XBeeDevice
method), 507

set_dio_value() (digi.xbee.devices.ZigBeeDevice
method), 638

set_discovery_options()
(digi.xbee.devices.DigiMeshNetwork method),
917

set_discovery_options()
(digi.xbee.devices.DigiPointNetwork method),
929

set_discovery_options()
(digi.xbee.devices.Raw802Network method),
906

set_discovery_options()
(digi.xbee.devices.XBeeNetwork method),
880

set_discovery_options()
(digi.xbee.devices.ZigBeeNetwork method),
895

set_discovery_timeout()
(digi.xbee.devices.DigiMeshNetwork method),
918

set_discovery_timeout()
(digi.xbee.devices.DigiPointNetwork method),
929

set_discovery_timeout()
(digi.xbee.devices.Raw802Network method),
906

set_discovery_timeout()
(digi.xbee.devices.XBeeNetwork method),
881

set_discovery_timeout()
(digi.xbee.devices.ZigBeeNetwork method),
895

set_dns_address() (digi.xbee.devices.WiFiDevice
method), 754

set_gateway_address()
(digi.xbee.devices.WiFiDevice method), 754

set_io_configuration()
(digi.xbee.devices.AbstractXBeeDevice
method), 475

set_io_configuration()
(digi.xbee.devices.CellularDevice method),
693

set_io_configuration()
(digi.xbee.devices.DigiMeshDevice method),
569

set_io_configuration()
(digi.xbee.devices.DigiPointDevice method),
601

set_io_configuration()
(digi.xbee.devices.IPDevice method), 665

Index 1091



XBee Python Library Documentation, Release 1.4.0

set_io_configuration()
(digi.xbee.devices.LPWANDevice method),
719

set_io_configuration()
(digi.xbee.devices.NBIoTDevice method),
744

set_io_configuration()
(digi.xbee.devices.Raw802Device method),
537

set_io_configuration()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 831

set_io_configuration()
(digi.xbee.devices.RemoteDigiPointDevice
method), 849

set_io_configuration()
(digi.xbee.devices.RemoteRaw802Device
method), 812

set_io_configuration()
(digi.xbee.devices.RemoteXBeeDevice
method), 795

set_io_configuration()
(digi.xbee.devices.RemoteZigBeeDevice
method), 869

set_io_configuration()
(digi.xbee.devices.WiFiDevice method), 776

set_io_configuration()
(digi.xbee.devices.XBeeDevice method),
508

set_io_configuration()
(digi.xbee.devices.ZigBeeDevice method),
639

set_io_sampling_rate()
(digi.xbee.devices.AbstractXBeeDevice
method), 477

set_io_sampling_rate()
(digi.xbee.devices.CellularDevice method),
672

set_io_sampling_rate()
(digi.xbee.devices.DigiMeshDevice method),
570

set_io_sampling_rate()
(digi.xbee.devices.DigiPointDevice method),
601

set_io_sampling_rate()
(digi.xbee.devices.IPDevice method), 666

set_io_sampling_rate()
(digi.xbee.devices.LPWANDevice method),
719

set_io_sampling_rate()
(digi.xbee.devices.NBIoTDevice method),
745

set_io_sampling_rate()
(digi.xbee.devices.Raw802Device method),

538
set_io_sampling_rate()

(digi.xbee.devices.RemoteDigiMeshDevice
method), 831

set_io_sampling_rate()
(digi.xbee.devices.RemoteDigiPointDevice
method), 849

set_io_sampling_rate()
(digi.xbee.devices.RemoteRaw802Device
method), 812

set_io_sampling_rate()
(digi.xbee.devices.RemoteXBeeDevice
method), 795

set_io_sampling_rate()
(digi.xbee.devices.RemoteZigBeeDevice
method), 869

set_io_sampling_rate()
(digi.xbee.devices.WiFiDevice method), 777

set_io_sampling_rate()
(digi.xbee.devices.XBeeDevice method),
508

set_io_sampling_rate()
(digi.xbee.devices.ZigBeeDevice method),
639

set_ip_address() (digi.xbee.devices.WiFiDevice
method), 753

set_ip_addressing_mode()
(digi.xbee.devices.WiFiDevice method), 752

set_local_xbee_device()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 832

set_local_xbee_device()
(digi.xbee.devices.RemoteDigiPointDevice
method), 850

set_local_xbee_device()
(digi.xbee.devices.RemoteRaw802Device
method), 813

set_local_xbee_device()
(digi.xbee.devices.RemoteXBeeDevice
method), 781

set_local_xbee_device()
(digi.xbee.devices.RemoteZigBeeDevice
method), 869

set_many_to_one_broadcasting_time()
(digi.xbee.devices.ZigBeeDevice method), 607

set_mask_address()
(digi.xbee.devices.WiFiDevice method), 753

set_node_id() (digi.xbee.devices.AbstractXBeeDevice
method), 471

set_node_id() (digi.xbee.devices.CellularDevice
method), 673

set_node_id() (digi.xbee.devices.DigiMeshDevice
method), 570

set_node_id() (digi.xbee.devices.DigiPointDevice

1092 Index



XBee Python Library Documentation, Release 1.4.0

method), 602
set_node_id() (digi.xbee.devices.IPDevice method),

666
set_node_id() (digi.xbee.devices.LPWANDevice

method), 719
set_node_id() (digi.xbee.devices.NBIoTDevice

method), 745
set_node_id() (digi.xbee.devices.Raw802Device

method), 538
set_node_id() (digi.xbee.devices.RemoteDigiMeshDevice

method), 832
set_node_id() (digi.xbee.devices.RemoteDigiPointDevice

method), 850
set_node_id() (digi.xbee.devices.RemoteRaw802Device

method), 813
set_node_id() (digi.xbee.devices.RemoteXBeeDevice

method), 795
set_node_id() (digi.xbee.devices.RemoteZigBeeDevice

method), 870
set_node_id() (digi.xbee.devices.WiFiDevice

method), 777
set_node_id() (digi.xbee.devices.XBeeDevice

method), 509
set_node_id() (digi.xbee.devices.ZigBeeDevice

method), 639
set_ota_max_block_size()

(digi.xbee.devices.RemoteDigiMeshDevice
method), 832

set_ota_max_block_size()
(digi.xbee.devices.RemoteDigiPointDevice
method), 850

set_ota_max_block_size()
(digi.xbee.devices.RemoteRaw802Device
method), 813

set_ota_max_block_size()
(digi.xbee.devices.RemoteXBeeDevice
method), 782

set_ota_max_block_size()
(digi.xbee.devices.RemoteZigBeeDevice
method), 870

set_pan_id() (digi.xbee.devices.AbstractXBeeDevice
method), 474

set_pan_id() (digi.xbee.devices.CellularDevice
method), 693

set_pan_id() (digi.xbee.devices.DigiMeshDevice
method), 570

set_pan_id() (digi.xbee.devices.DigiPointDevice
method), 602

set_pan_id() (digi.xbee.devices.IPDevice method),
647

set_pan_id() (digi.xbee.devices.LPWANDevice
method), 719

set_pan_id() (digi.xbee.devices.NBIoTDevice
method), 745

set_pan_id() (digi.xbee.devices.Raw802Device
method), 538

set_pan_id() (digi.xbee.devices.RemoteDigiMeshDevice
method), 832

set_pan_id() (digi.xbee.devices.RemoteDigiPointDevice
method), 850

set_pan_id() (digi.xbee.devices.RemoteRaw802Device
method), 813

set_pan_id() (digi.xbee.devices.RemoteXBeeDevice
method), 796

set_pan_id() (digi.xbee.devices.RemoteZigBeeDevice
method), 870

set_pan_id() (digi.xbee.devices.WiFiDevice
method), 777

set_pan_id() (digi.xbee.devices.XBeeDevice
method), 509

set_pan_id() (digi.xbee.devices.ZigBeeDevice
method), 640

set_parameter() (digi.xbee.devices.AbstractXBeeDevice
method), 468

set_parameter() (digi.xbee.devices.CellularDevice
method), 693

set_parameter() (digi.xbee.devices.DigiMeshDevice
method), 571

set_parameter() (digi.xbee.devices.DigiPointDevice
method), 602

set_parameter() (digi.xbee.devices.IPDevice
method), 667

set_parameter() (digi.xbee.devices.LPWANDevice
method), 719

set_parameter() (digi.xbee.devices.NBIoTDevice
method), 745

set_parameter() (digi.xbee.devices.Raw802Device
method), 539

set_parameter() (digi.xbee.devices.RemoteDigiMeshDevice
method), 832

set_parameter() (digi.xbee.devices.RemoteDigiPointDevice
method), 850

set_parameter() (digi.xbee.devices.RemoteRaw802Device
method), 814

set_parameter() (digi.xbee.devices.RemoteXBeeDevice
method), 781

set_parameter() (digi.xbee.devices.RemoteZigBeeDevice
method), 870

set_parameter() (digi.xbee.devices.WiFiDevice
method), 778

set_parameter() (digi.xbee.devices.XBeeDevice
method), 486

set_parameter() (digi.xbee.devices.ZigBeeDevice
method), 640

set_power_level()
(digi.xbee.devices.AbstractXBeeDevice
method), 475

set_power_level()

Index 1093



XBee Python Library Documentation, Release 1.4.0

(digi.xbee.devices.CellularDevice method),
673

set_power_level()
(digi.xbee.devices.DigiMeshDevice method),
571

set_power_level()
(digi.xbee.devices.DigiPointDevice method),
603

set_power_level() (digi.xbee.devices.IPDevice
method), 667

set_power_level()
(digi.xbee.devices.LPWANDevice method),
719

set_power_level()
(digi.xbee.devices.NBIoTDevice method),
745

set_power_level()
(digi.xbee.devices.Raw802Device method),
539

set_power_level()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 833

set_power_level()
(digi.xbee.devices.RemoteDigiPointDevice
method), 851

set_power_level()
(digi.xbee.devices.RemoteRaw802Device
method), 814

set_power_level()
(digi.xbee.devices.RemoteXBeeDevice
method), 796

set_power_level()
(digi.xbee.devices.RemoteZigBeeDevice
method), 871

set_power_level() (digi.xbee.devices.WiFiDevice
method), 778

set_power_level() (digi.xbee.devices.XBeeDevice
method), 509

set_power_level()
(digi.xbee.devices.ZigBeeDevice method),
640

set_pwm_duty_cycle()
(digi.xbee.devices.AbstractXBeeDevice
method), 478

set_pwm_duty_cycle()
(digi.xbee.devices.CellularDevice method),
693

set_pwm_duty_cycle()
(digi.xbee.devices.DigiMeshDevice method),
571

set_pwm_duty_cycle()
(digi.xbee.devices.DigiPointDevice method),
603

set_pwm_duty_cycle()

(digi.xbee.devices.IPDevice method), 667
set_pwm_duty_cycle()

(digi.xbee.devices.LPWANDevice method),
719

set_pwm_duty_cycle()
(digi.xbee.devices.NBIoTDevice method),
745

set_pwm_duty_cycle()
(digi.xbee.devices.Raw802Device method),
539

set_pwm_duty_cycle()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 833

set_pwm_duty_cycle()
(digi.xbee.devices.RemoteDigiPointDevice
method), 851

set_pwm_duty_cycle()
(digi.xbee.devices.RemoteRaw802Device
method), 814

set_pwm_duty_cycle()
(digi.xbee.devices.RemoteXBeeDevice
method), 796

set_pwm_duty_cycle()
(digi.xbee.devices.RemoteZigBeeDevice
method), 871

set_pwm_duty_cycle()
(digi.xbee.devices.WiFiDevice method), 778

set_pwm_duty_cycle()
(digi.xbee.devices.XBeeDevice method),
510

set_pwm_duty_cycle()
(digi.xbee.devices.ZigBeeDevice method),
640

set_read_timeout()
(digi.xbee.serial.XBeeSerialPort method),
1007

set_sync_ops_timeout()
(digi.xbee.devices.AbstractXBeeDevice
method), 473

set_sync_ops_timeout()
(digi.xbee.devices.CellularDevice method),
694

set_sync_ops_timeout()
(digi.xbee.devices.DigiMeshDevice method),
572

set_sync_ops_timeout()
(digi.xbee.devices.DigiPointDevice method),
603

set_sync_ops_timeout()
(digi.xbee.devices.IPDevice method), 667

set_sync_ops_timeout()
(digi.xbee.devices.LPWANDevice method),
720

set_sync_ops_timeout()

1094 Index



XBee Python Library Documentation, Release 1.4.0

(digi.xbee.devices.NBIoTDevice method),
746

set_sync_ops_timeout()
(digi.xbee.devices.Raw802Device method),
540

set_sync_ops_timeout()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 833

set_sync_ops_timeout()
(digi.xbee.devices.RemoteDigiPointDevice
method), 851

set_sync_ops_timeout()
(digi.xbee.devices.RemoteRaw802Device
method), 815

set_sync_ops_timeout()
(digi.xbee.devices.RemoteXBeeDevice
method), 797

set_sync_ops_timeout()
(digi.xbee.devices.RemoteZigBeeDevice
method), 871

set_sync_ops_timeout()
(digi.xbee.devices.WiFiDevice method), 778

set_sync_ops_timeout()
(digi.xbee.devices.XBeeDevice method),
510

set_sync_ops_timeout()
(digi.xbee.devices.ZigBeeDevice method),
641

setblocking() (digi.xbee.xsocket.socket method),
1011

setsocketopt() (digi.xbee.xsocket.socket method),
1013

settimeout() (digi.xbee.xsocket.socket method),
1011

signal_quality (digi.xbee.models.accesspoint.AccessPoint
attribute), 125

size (digi.xbee.filesystem.FileSystemElement attribute),
937

size (digi.xbee.models.filesystem.OpenFileCmdResponse
attribute), 140

size (digi.xbee.models.filesystem.ReadFileCmdRequest
attribute), 145

size_pretty (digi.xbee.filesystem.FileSystemElement
attribute), 937

SMSMessage (class in digi.xbee.models.message), 202
SMSReceived (class in digi.xbee.reader), 981
socket (class in digi.xbee.xsocket), 1010
socket_id (digi.xbee.models.info.SocketInfo at-

tribute), 191
socket_id (digi.xbee.packets.socket.SocketBindListenPacket

attribute), 408
socket_id (digi.xbee.packets.socket.SocketClosePacket

attribute), 395
socket_id (digi.xbee.packets.socket.SocketCloseResponsePacket

attribute), 398
socket_id (digi.xbee.packets.socket.SocketConnectPacket

attribute), 389
socket_id (digi.xbee.packets.socket.SocketConnectResponsePacket

attribute), 392
socket_id (digi.xbee.packets.socket.SocketCreateResponsePacket

attribute), 378
socket_id (digi.xbee.packets.socket.SocketListenResponsePacket

attribute), 411
socket_id (digi.xbee.packets.socket.SocketNewIPv4ClientPacket

attribute), 414
socket_id (digi.xbee.packets.socket.SocketOptionRequestPacket

attribute), 381
socket_id (digi.xbee.packets.socket.SocketOptionResponsePacket

attribute), 385
socket_id (digi.xbee.packets.socket.SocketReceiveFromPacket

attribute), 422
socket_id (digi.xbee.packets.socket.SocketReceivePacket

attribute), 419
socket_id (digi.xbee.packets.socket.SocketSendPacket

attribute), 401
socket_id (digi.xbee.packets.socket.SocketSendToPacket

attribute), 404
socket_id (digi.xbee.packets.socket.SocketStatePacket

attribute), 425
SocketBindListenPacket (class in

digi.xbee.packets.socket), 406
SocketClosePacket (class in

digi.xbee.packets.socket), 394
SocketCloseResponsePacket (class in

digi.xbee.packets.socket), 397
SocketConnectPacket (class in

digi.xbee.packets.socket), 387
SocketConnectResponsePacket (class in

digi.xbee.packets.socket), 390
SocketCreatePacket (class in

digi.xbee.packets.socket), 374
SocketCreateResponsePacket (class in

digi.xbee.packets.socket), 376
SocketDataReceived (class in digi.xbee.reader),

985
SocketDataReceivedFrom (class in

digi.xbee.reader), 986
SocketInfo (class in digi.xbee.models.info), 190
SocketInfoState (class in digi.xbee.models.status),

225
SocketListenResponsePacket (class in

digi.xbee.packets.socket), 409
SocketNewIPv4ClientPacket (class in

digi.xbee.packets.socket), 412
SocketOption (class in digi.xbee.models.options),

209
SocketOptionRequestPacket (class in

digi.xbee.packets.socket), 380

Index 1095



XBee Python Library Documentation, Release 1.4.0

SocketOptionResponsePacket (class in
digi.xbee.packets.socket), 383

SocketReceiveFromPacket (class in
digi.xbee.packets.socket), 419

SocketReceivePacket (class in
digi.xbee.packets.socket), 416

SocketSendPacket (class in
digi.xbee.packets.socket), 400

SocketSendToPacket (class in
digi.xbee.packets.socket), 403

SocketState (class in digi.xbee.models.status), 225
SocketStatePacket (class in

digi.xbee.packets.socket), 422
SocketStateReceived (class in digi.xbee.reader),

984
SocketStatus (class in digi.xbee.models.status), 224
sort() (digi.xbee.reader.BluetoothDataReceived

method), 983
sort() (digi.xbee.reader.DataReceived method), 975
sort() (digi.xbee.reader.DeviceDiscovered method),

978
sort() (digi.xbee.reader.DiscoveryProcessFinished

method), 979
sort() (digi.xbee.reader.EndDiscoveryScan method),

991
sort() (digi.xbee.reader.ExplicitDataReceived

method), 980
sort() (digi.xbee.reader.FileSystemFrameReceived

method), 992
sort() (digi.xbee.reader.InitDiscoveryScan method),

991
sort() (digi.xbee.reader.IOSampleReceived method),

977
sort() (digi.xbee.reader.IPDataReceived method), 981
sort() (digi.xbee.reader.MicroPythonDataReceived

method), 984
sort() (digi.xbee.reader.ModemStatusReceived

method), 976
sort() (digi.xbee.reader.NetworkModified method),

978
sort() (digi.xbee.reader.PacketReceived method), 973
sort() (digi.xbee.reader.PacketReceivedFrom method),

974
sort() (digi.xbee.reader.RelayDataReceived method),

983
sort() (digi.xbee.reader.RouteInformationReceived

method), 989
sort() (digi.xbee.reader.RouteReceived method), 990
sort() (digi.xbee.reader.RouteRecordIndicatorReceived

method), 988
sort() (digi.xbee.reader.SMSReceived method), 982
sort() (digi.xbee.reader.SocketDataReceived method),

986
sort() (digi.xbee.reader.SocketDataReceivedFrom

method), 987
sort() (digi.xbee.reader.SocketStateReceived method),

985
sort() (digi.xbee.reader.XBeeEvent method), 972
source_address (digi.xbee.packets.network.RXIPv4Packet

attribute), 337
source_address (digi.xbee.packets.socket.SocketReceiveFromPacket

attribute), 422
source_address (digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket

attribute), 427
source_address (digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket

attribute), 436
source_endpoint (digi.xbee.models.message.ExplicitXBeeMessage

attribute), 200
source_endpoint (digi.xbee.packets.common.ExplicitAddressingPacket

attribute), 294
source_endpoint (digi.xbee.packets.common.ExplicitRXIndicatorPacket

attribute), 298
source_port (digi.xbee.models.message.IPMessage

attribute), 201
source_port (digi.xbee.packets.network.RXIPv4Packet

attribute), 338
source_port (digi.xbee.packets.network.TXIPv4Packet

attribute), 343
source_port (digi.xbee.packets.socket.SocketBindListenPacket

attribute), 408
source_port (digi.xbee.packets.socket.SocketReceiveFromPacket

attribute), 422
SPECIAL_FUNCTIONALITY (digi.xbee.io.IOMode at-

tribute), 962
SpecialByte (class in digi.xbee.models.atcomm), 129
src_addr (digi.xbee.packets.digimesh.RouteInformationPacket

attribute), 322
src_event (digi.xbee.packets.digimesh.RouteInformationPacket

attribute), 320
src_interface (digi.xbee.packets.relay.UserDataRelayOutputPacket

attribute), 373
ssid (digi.xbee.models.accesspoint.AccessPoint at-

tribute), 125
start() (digi.xbee.reader.PacketListener method),

1001
start_discovery_process()

(digi.xbee.devices.DigiMeshNetwork method),
918

start_discovery_process()
(digi.xbee.devices.DigiPointNetwork method),
929

start_discovery_process()
(digi.xbee.devices.Raw802Network method),
907

start_discovery_process()
(digi.xbee.devices.XBeeNetwork method),
874

start_discovery_process()

1096 Index



XBee Python Library Documentation, Release 1.4.0

(digi.xbee.devices.ZigBeeNetwork method),
895

start_listening()
(digi.xbee.devices.CellularDevice method),
694

start_listening() (digi.xbee.devices.IPDevice
method), 644

start_listening()
(digi.xbee.devices.LPWANDevice method),
720

start_listening()
(digi.xbee.devices.NBIoTDevice method),
746

start_listening() (digi.xbee.devices.WiFiDevice
method), 779

state (digi.xbee.models.info.SocketInfo attribute), 191
state (digi.xbee.packets.socket.SocketStatePacket at-

tribute), 425
status (digi.xbee.filesystem.FileProcess attribute), 938
status (digi.xbee.models.atcomm.ATCommandResponse

attribute), 131
status (digi.xbee.models.filesystem.CloseDirCmdRequest

attribute), 164
status (digi.xbee.models.filesystem.CloseDirCmdResponse

attribute), 165
status (digi.xbee.models.filesystem.CloseFileCmdRequest

attribute), 143
status (digi.xbee.models.filesystem.CloseFileCmdResponse

attribute), 144
status (digi.xbee.models.filesystem.CreateDirCmdRequest

attribute), 157
status (digi.xbee.models.filesystem.CreateDirCmdResponse

attribute), 158
status (digi.xbee.models.filesystem.DeleteCmdRequest

attribute), 178
status (digi.xbee.models.filesystem.DeleteCmdResponse

attribute), 179
status (digi.xbee.models.filesystem.FileIdCmd at-

tribute), 136
status (digi.xbee.models.filesystem.FileIdNameCmd

attribute), 137
status (digi.xbee.models.filesystem.FSCmd attribute),

132
status (digi.xbee.models.filesystem.GetPathIdCmdRequest

attribute), 171
status (digi.xbee.models.filesystem.GetPathIdCmdResponse

attribute), 173
status (digi.xbee.models.filesystem.HashFileCmdRequest

attribute), 154
status (digi.xbee.models.filesystem.HashFileCmdResponse

attribute), 155
status (digi.xbee.models.filesystem.OpenDirCmdRequest

attribute), 160
status (digi.xbee.models.filesystem.OpenDirCmdResponse

attribute), 162
status (digi.xbee.models.filesystem.OpenFileCmdRequest

attribute), 139
status (digi.xbee.models.filesystem.OpenFileCmdResponse

attribute), 141
status (digi.xbee.models.filesystem.ReadDirCmdRequest

attribute), 167
status (digi.xbee.models.filesystem.ReadDirCmdResponse

attribute), 169
status (digi.xbee.models.filesystem.ReadFileCmdRequest

attribute), 146
status (digi.xbee.models.filesystem.ReadFileCmdResponse

attribute), 148
status (digi.xbee.models.filesystem.RenameCmdRequest

attribute), 175
status (digi.xbee.models.filesystem.RenameCmdResponse

attribute), 176
status (digi.xbee.models.filesystem.UnknownFSCmd

attribute), 134
status (digi.xbee.models.filesystem.VolFormatCmdRequest

attribute), 184
status (digi.xbee.models.filesystem.VolFormatCmdResponse

attribute), 186
status (digi.xbee.models.filesystem.VolStatCmdRequest

attribute), 181
status (digi.xbee.models.filesystem.VolStatCmdResponse

attribute), 183
status (digi.xbee.models.filesystem.WriteFileCmdRequest

attribute), 150
status (digi.xbee.models.filesystem.WriteFileCmdResponse

attribute), 152
status (digi.xbee.models.zdo.Route attribute), 232
status (digi.xbee.packets.common.ATCommResponsePacket

attribute), 261
status (digi.xbee.packets.common.RemoteATCommandResponsePacket

attribute), 273
status (digi.xbee.packets.devicecloud.DeviceResponseStatusPacket

attribute), 307
status (digi.xbee.packets.devicecloud.SendDataResponsePacket

attribute), 318
status (digi.xbee.packets.socket.SocketCloseResponsePacket

attribute), 398
status (digi.xbee.packets.socket.SocketConnectResponsePacket

attribute), 392
status (digi.xbee.packets.socket.SocketCreateResponsePacket

attribute), 378
status (digi.xbee.packets.socket.SocketListenResponsePacket

attribute), 411
status (digi.xbee.packets.socket.SocketOptionResponsePacket

attribute), 385
status (digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket

attribute), 436
status (digi.xbee.packets.zigbee.RegisterDeviceStatusPacket

attribute), 441

Index 1097



XBee Python Library Documentation, Release 1.4.0

status_a2b (digi.xbee.devices.Connection attribute),
933

status_b2a (digi.xbee.devices.Connection attribute),
934

status_value (digi.xbee.models.filesystem.CloseDirCmdRequest
attribute), 164

status_value (digi.xbee.models.filesystem.CloseDirCmdResponse
attribute), 166

status_value (digi.xbee.models.filesystem.CloseFileCmdRequest
attribute), 143

status_value (digi.xbee.models.filesystem.CloseFileCmdResponse
attribute), 144

status_value (digi.xbee.models.filesystem.CreateDirCmdRequest
attribute), 157

status_value (digi.xbee.models.filesystem.CreateDirCmdResponse
attribute), 159

status_value (digi.xbee.models.filesystem.DeleteCmdRequest
attribute), 178

status_value (digi.xbee.models.filesystem.DeleteCmdResponse
attribute), 180

status_value (digi.xbee.models.filesystem.FileIdCmd
attribute), 136

status_value (digi.xbee.models.filesystem.FileIdNameCmd
attribute), 138

status_value (digi.xbee.models.filesystem.FSCmd
attribute), 132

status_value (digi.xbee.models.filesystem.GetPathIdCmdRequest
attribute), 171

status_value (digi.xbee.models.filesystem.GetPathIdCmdResponse
attribute), 173

status_value (digi.xbee.models.filesystem.HashFileCmdRequest
attribute), 154

status_value (digi.xbee.models.filesystem.HashFileCmdResponse
attribute), 155

status_value (digi.xbee.models.filesystem.OpenDirCmdRequest
attribute), 160

status_value (digi.xbee.models.filesystem.OpenDirCmdResponse
attribute), 162

status_value (digi.xbee.models.filesystem.OpenFileCmdRequest
attribute), 140

status_value (digi.xbee.models.filesystem.OpenFileCmdResponse
attribute), 141

status_value (digi.xbee.models.filesystem.ReadDirCmdRequest
attribute), 167

status_value (digi.xbee.models.filesystem.ReadDirCmdResponse
attribute), 169

status_value (digi.xbee.models.filesystem.ReadFileCmdRequest
attribute), 146

status_value (digi.xbee.models.filesystem.ReadFileCmdResponse
attribute), 148

status_value (digi.xbee.models.filesystem.RenameCmdRequest
attribute), 175

status_value (digi.xbee.models.filesystem.RenameCmdResponse
attribute), 176

status_value (digi.xbee.models.filesystem.UnknownFSCmd
attribute), 134

status_value (digi.xbee.models.filesystem.VolFormatCmdRequest
attribute), 184

status_value (digi.xbee.models.filesystem.VolFormatCmdResponse
attribute), 186

status_value (digi.xbee.models.filesystem.VolStatCmdRequest
attribute), 181

status_value (digi.xbee.models.filesystem.VolStatCmdResponse
attribute), 183

status_value (digi.xbee.models.filesystem.WriteFileCmdRequest
attribute), 150

status_value (digi.xbee.models.filesystem.WriteFileCmdResponse
attribute), 152

stop() (digi.xbee.models.zdo.NeighborFinder method),
235

stop() (digi.xbee.models.zdo.NeighborTableReader
method), 233

stop() (digi.xbee.models.zdo.NodeDescriptorReader
method), 227

stop() (digi.xbee.models.zdo.RouteTableReader
method), 231

stop() (digi.xbee.reader.PacketListener method), 993
stop_bits (digi.xbee.profile.FirmwareStopbits at-

tribute), 964
stop_discovery_process()

(digi.xbee.devices.DigiMeshNetwork method),
919

stop_discovery_process()
(digi.xbee.devices.DigiPointNetwork method),
930

stop_discovery_process()
(digi.xbee.devices.Raw802Network method),
908

stop_discovery_process()
(digi.xbee.devices.XBeeNetwork method),
875

stop_discovery_process()
(digi.xbee.devices.ZigBeeNetwork method),
896

stop_listening() (digi.xbee.devices.CellularDevice
method), 694

stop_listening() (digi.xbee.devices.IPDevice
method), 644

stop_listening() (digi.xbee.devices.LPWANDevice
method), 720

stop_listening() (digi.xbee.devices.NBIoTDevice
method), 746

stop_listening() (digi.xbee.devices.WiFiDevice
method), 779

successor_addr (digi.xbee.packets.digimesh.RouteInformationPacket
attribute), 323

supports_apply_profile()
(digi.xbee.comm_interface.XBeeCommunicationInterface

1098 Index



XBee Python Library Documentation, Release 1.4.0

method), 466
supports_apply_profile()

(digi.xbee.serial.XBeeSerialPort method),
1009

supports_update_firmware()
(digi.xbee.comm_interface.XBeeCommunicationInterface
method), 465

supports_update_firmware()
(digi.xbee.serial.XBeeSerialPort method),
1009

sync_sleep (digi.xbee.firmware.UpdateConfigurer at-
tribute), 954

SyncRequestSender (class in digi.xbee.sender),
1005

T
tag (digi.xbee.profile.XBeeSettingFormat attribute), 966
tag (digi.xbee.profile.XBeeSettingType attribute), 965
target (digi.xbee.packets.devicecloud.DeviceRequestPacket

attribute), 301
task_done() (digi.xbee.reader.XBeeQueue method),

1003
timeout (digi.xbee.comm_interface.XBeeCommunicationInterface

attribute), 466
timeout (digi.xbee.sender.SyncRequestSender at-

tribute), 1005
timeout (digi.xbee.serial.XBeeSerialPort attribute),

1009
TIMEOUT_READ_PACKET

(digi.xbee.devices.XBeeDevice attribute),
485

TimeoutException, 936
timestamp (digi.xbee.models.message.ExplicitXBeeMessage

attribute), 201
timestamp (digi.xbee.models.message.XBeeMessage

attribute), 199
timestamp (digi.xbee.packets.digimesh.RouteInformationPacket

attribute), 320
to_dict() (digi.xbee.models.filesystem.CloseDirCmdRequest

method), 164
to_dict() (digi.xbee.models.filesystem.CloseDirCmdResponse

method), 166
to_dict() (digi.xbee.models.filesystem.CloseFileCmdRequest

method), 143
to_dict() (digi.xbee.models.filesystem.CloseFileCmdResponse

method), 145
to_dict() (digi.xbee.models.filesystem.CreateDirCmdRequest

method), 157
to_dict() (digi.xbee.models.filesystem.CreateDirCmdResponse

method), 159
to_dict() (digi.xbee.models.filesystem.DeleteCmdRequest

method), 178
to_dict() (digi.xbee.models.filesystem.DeleteCmdResponse

method), 180

to_dict() (digi.xbee.models.filesystem.FileIdCmd
method), 136

to_dict() (digi.xbee.models.filesystem.FileIdNameCmd
method), 138

to_dict() (digi.xbee.models.filesystem.FSCmd
method), 133

to_dict() (digi.xbee.models.filesystem.GetPathIdCmdRequest
method), 171

to_dict() (digi.xbee.models.filesystem.GetPathIdCmdResponse
method), 173

to_dict() (digi.xbee.models.filesystem.HashFileCmdRequest
method), 154

to_dict() (digi.xbee.models.filesystem.HashFileCmdResponse
method), 156

to_dict() (digi.xbee.models.filesystem.OpenDirCmdRequest
method), 161

to_dict() (digi.xbee.models.filesystem.OpenDirCmdResponse
method), 163

to_dict() (digi.xbee.models.filesystem.OpenFileCmdRequest
method), 140

to_dict() (digi.xbee.models.filesystem.OpenFileCmdResponse
method), 142

to_dict() (digi.xbee.models.filesystem.ReadDirCmdRequest
method), 167

to_dict() (digi.xbee.models.filesystem.ReadDirCmdResponse
method), 169

to_dict() (digi.xbee.models.filesystem.ReadFileCmdRequest
method), 147

to_dict() (digi.xbee.models.filesystem.ReadFileCmdResponse
method), 148

to_dict() (digi.xbee.models.filesystem.RenameCmdRequest
method), 175

to_dict() (digi.xbee.models.filesystem.RenameCmdResponse
method), 177

to_dict() (digi.xbee.models.filesystem.UnknownFSCmd
method), 134

to_dict() (digi.xbee.models.filesystem.VolFormatCmdRequest
method), 185

to_dict() (digi.xbee.models.filesystem.VolFormatCmdResponse
method), 187

to_dict() (digi.xbee.models.filesystem.VolStatCmdRequest
method), 181

to_dict() (digi.xbee.models.filesystem.VolStatCmdResponse
method), 183

to_dict() (digi.xbee.models.filesystem.WriteFileCmdRequest
method), 150

to_dict() (digi.xbee.models.filesystem.WriteFileCmdResponse
method), 152

to_dict() (digi.xbee.models.message.ExplicitXBeeMessage
method), 200

to_dict() (digi.xbee.models.message.IPMessage
method), 202

to_dict() (digi.xbee.models.message.SMSMessage
method), 202

Index 1099



XBee Python Library Documentation, Release 1.4.0

to_dict() (digi.xbee.models.message.UserDataRelayMessage
method), 203

to_dict() (digi.xbee.models.message.XBeeMessage
method), 199

to_dict() (digi.xbee.packets.base.GenericXBeePacket
method), 244

to_dict() (digi.xbee.packets.base.UnknownXBeePacket
method), 247

to_dict() (digi.xbee.packets.base.XBeeAPIPacket
method), 242

to_dict() (digi.xbee.packets.base.XBeePacket
method), 239

to_dict() (digi.xbee.packets.cellular.RXSMSPacket
method), 250

to_dict() (digi.xbee.packets.cellular.TXSMSPacket
method), 253

to_dict() (digi.xbee.packets.common.ATCommPacket
method), 256

to_dict() (digi.xbee.packets.common.ATCommQueuePacket
method), 259

to_dict() (digi.xbee.packets.common.ATCommResponsePacket
method), 263

to_dict() (digi.xbee.packets.common.ExplicitAddressingPacket
method), 293

to_dict() (digi.xbee.packets.common.ExplicitRXIndicatorPacket
method), 297

to_dict() (digi.xbee.packets.common.IODataSampleRxIndicatorPacket
method), 290

to_dict() (digi.xbee.packets.common.ModemStatusPacket
method), 286

to_dict() (digi.xbee.packets.common.ReceivePacket
method), 267

to_dict() (digi.xbee.packets.common.RemoteATCommandPacket
method), 270

to_dict() (digi.xbee.packets.common.RemoteATCommandResponsePacket
method), 275

to_dict() (digi.xbee.packets.common.TransmitPacket
method), 279

to_dict() (digi.xbee.packets.common.TransmitStatusPacket
method), 283

to_dict() (digi.xbee.packets.devicecloud.DeviceRequestPacket
method), 302

to_dict() (digi.xbee.packets.devicecloud.DeviceResponsePacket
method), 305

to_dict() (digi.xbee.packets.devicecloud.DeviceResponseStatusPacket
method), 308

to_dict() (digi.xbee.packets.devicecloud.FrameErrorPacket
method), 311

to_dict() (digi.xbee.packets.devicecloud.SendDataRequestPacket
method), 315

to_dict() (digi.xbee.packets.devicecloud.SendDataResponsePacket
method), 317

to_dict() (digi.xbee.packets.digimesh.RouteInformationPacket
method), 322

to_dict() (digi.xbee.packets.filesystem.FSRequestPacket
method), 326

to_dict() (digi.xbee.packets.filesystem.FSResponsePacket
method), 328

to_dict() (digi.xbee.packets.filesystem.RemoteFSRequestPacket
method), 332

to_dict() (digi.xbee.packets.filesystem.RemoteFSResponsePacket
method), 334

to_dict() (digi.xbee.packets.network.RXIPv4Packet
method), 339

to_dict() (digi.xbee.packets.network.TXIPv4Packet
method), 342

to_dict() (digi.xbee.packets.raw.RX16IOPacket
method), 365

to_dict() (digi.xbee.packets.raw.RX16Packet
method), 359

to_dict() (digi.xbee.packets.raw.RX64IOPacket
method), 363

to_dict() (digi.xbee.packets.raw.RX64Packet
method), 356

to_dict() (digi.xbee.packets.raw.TX16Packet
method), 349

to_dict() (digi.xbee.packets.raw.TX64Packet
method), 346

to_dict() (digi.xbee.packets.raw.TXStatusPacket
method), 352

to_dict() (digi.xbee.packets.relay.UserDataRelayOutputPacket
method), 373

to_dict() (digi.xbee.packets.relay.UserDataRelayPacket
method), 370

to_dict() (digi.xbee.packets.socket.SocketBindListenPacket
method), 409

to_dict() (digi.xbee.packets.socket.SocketClosePacket
method), 396

to_dict() (digi.xbee.packets.socket.SocketCloseResponsePacket
method), 400

to_dict() (digi.xbee.packets.socket.SocketConnectPacket
method), 390

to_dict() (digi.xbee.packets.socket.SocketConnectResponsePacket
method), 393

to_dict() (digi.xbee.packets.socket.SocketCreatePacket
method), 376

to_dict() (digi.xbee.packets.socket.SocketCreateResponsePacket
method), 379

to_dict() (digi.xbee.packets.socket.SocketListenResponsePacket
method), 412

to_dict() (digi.xbee.packets.socket.SocketNewIPv4ClientPacket
method), 416

to_dict() (digi.xbee.packets.socket.SocketOptionRequestPacket
method), 383

to_dict() (digi.xbee.packets.socket.SocketOptionResponsePacket
method), 386

to_dict() (digi.xbee.packets.socket.SocketReceiveFromPacket
method), 421

1100 Index



XBee Python Library Documentation, Release 1.4.0

to_dict() (digi.xbee.packets.socket.SocketReceivePacket
method), 418

to_dict() (digi.xbee.packets.socket.SocketSendPacket
method), 403

to_dict() (digi.xbee.packets.socket.SocketSendToPacket
method), 406

to_dict() (digi.xbee.packets.socket.SocketStatePacket
method), 424

to_dict() (digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket
method), 429

to_dict() (digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket
method), 435

to_dict() (digi.xbee.packets.wifi.RemoteATCommandWifiPacket
method), 432

to_dict() (digi.xbee.packets.zigbee.CreateSourceRoutePacket
method), 451

to_dict() (digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket
method), 453

to_dict() (digi.xbee.packets.zigbee.RegisterDeviceStatusPacket
method), 443

to_dict() (digi.xbee.packets.zigbee.RegisterJoiningDevicePacket
method), 440

to_dict() (digi.xbee.packets.zigbee.RouteRecordIndicatorPacket
method), 447

transmit_options (digi.xbee.packets.common.ExplicitAddressingPacket
attribute), 294

transmit_options (digi.xbee.packets.common.RemoteATCommandPacket
attribute), 269

transmit_options (digi.xbee.packets.common.TransmitPacket
attribute), 277

transmit_options (digi.xbee.packets.filesystem.RemoteFSRequestPacket
attribute), 330

transmit_options (digi.xbee.packets.network.TXIPv4Packet
attribute), 343

transmit_options (digi.xbee.packets.raw.TX16Packet
attribute), 348

transmit_options (digi.xbee.packets.raw.TX64Packet
attribute), 344

transmit_options (digi.xbee.packets.wifi.RemoteATCommandWifiPacket
attribute), 431

transmit_retry_count
(digi.xbee.packets.common.TransmitStatusPacket
attribute), 281

transmit_status (digi.xbee.packets.common.TransmitStatusPacket
attribute), 281

transmit_status (digi.xbee.packets.raw.TXStatusPacket
attribute), 351

TransmitException, 936
TransmitOptions (class in

digi.xbee.models.options), 204
TransmitPacket (class in

digi.xbee.packets.common), 275
TransmitStatus (class in digi.xbee.models.status),

215

TransmitStatusPacket (class in
digi.xbee.packets.common), 279

transport (digi.xbee.packets.devicecloud.DeviceRequestPacket
attribute), 301

TRUNCATE (digi.xbee.models.options.FileOpenRequestOption
attribute), 211

TX16Packet (class in digi.xbee.packets.raw), 346
TX64Packet (class in digi.xbee.packets.raw), 343
tx_block_count (digi.xbee.packets.digimesh.RouteInformationPacket

attribute), 320
TXIPv4Packet (class in digi.xbee.packets.network),

339
TXSMSPacket (class in digi.xbee.packets.cellular), 250
TXStatusPacket (class in digi.xbee.packets.raw),

350
type (digi.xbee.models.filesystem.CloseDirCmdRequest

attribute), 164
type (digi.xbee.models.filesystem.CloseDirCmdResponse

attribute), 166
type (digi.xbee.models.filesystem.CloseFileCmdRequest

attribute), 143
type (digi.xbee.models.filesystem.CloseFileCmdResponse

attribute), 145
type (digi.xbee.models.filesystem.CreateDirCmdRequest

attribute), 158
type (digi.xbee.models.filesystem.CreateDirCmdResponse

attribute), 159
type (digi.xbee.models.filesystem.DeleteCmdRequest at-

tribute), 178
type (digi.xbee.models.filesystem.DeleteCmdResponse

attribute), 180
type (digi.xbee.models.filesystem.FileIdCmd attribute),

136
type (digi.xbee.models.filesystem.FileIdNameCmd at-

tribute), 138
type (digi.xbee.models.filesystem.FSCmd attribute), 132
type (digi.xbee.models.filesystem.GetPathIdCmdRequest

attribute), 172
type (digi.xbee.models.filesystem.GetPathIdCmdResponse

attribute), 173
type (digi.xbee.models.filesystem.HashFileCmdRequest

attribute), 154
type (digi.xbee.models.filesystem.HashFileCmdResponse

attribute), 156
type (digi.xbee.models.filesystem.OpenDirCmdRequest

attribute), 161
type (digi.xbee.models.filesystem.OpenDirCmdResponse

attribute), 163
type (digi.xbee.models.filesystem.OpenFileCmdRequest

attribute), 140
type (digi.xbee.models.filesystem.OpenFileCmdResponse

attribute), 142
type (digi.xbee.models.filesystem.ReadDirCmdRequest

attribute), 167

Index 1101



XBee Python Library Documentation, Release 1.4.0

type (digi.xbee.models.filesystem.ReadDirCmdResponse
attribute), 169

type (digi.xbee.models.filesystem.ReadFileCmdRequest
attribute), 147

type (digi.xbee.models.filesystem.ReadFileCmdResponse
attribute), 149

type (digi.xbee.models.filesystem.RenameCmdRequest
attribute), 175

type (digi.xbee.models.filesystem.RenameCmdResponse
attribute), 177

type (digi.xbee.models.filesystem.UnknownFSCmd at-
tribute), 133

type (digi.xbee.models.filesystem.VolFormatCmdRequest
attribute), 185

type (digi.xbee.models.filesystem.VolFormatCmdResponse
attribute), 187

type (digi.xbee.models.filesystem.VolStatCmdRequest
attribute), 182

type (digi.xbee.models.filesystem.VolStatCmdResponse
attribute), 183

type (digi.xbee.models.filesystem.WriteFileCmdRequest
attribute), 151

type (digi.xbee.models.filesystem.WriteFileCmdResponse
attribute), 152

type (digi.xbee.profile.XBeeProfileSetting attribute),
966

U
unescape_data() (digi.xbee.packets.base.GenericXBeePacket

static method), 244
unescape_data() (digi.xbee.packets.base.UnknownXBeePacket

static method), 247
unescape_data() (digi.xbee.packets.base.XBeeAPIPacket

static method), 242
unescape_data() (digi.xbee.packets.base.XBeePacket

static method), 239
unescape_data() (digi.xbee.packets.cellular.RXSMSPacket

static method), 250
unescape_data() (digi.xbee.packets.cellular.TXSMSPacket

static method), 253
unescape_data() (digi.xbee.packets.common.ATCommPacket

static method), 256
unescape_data() (digi.xbee.packets.common.ATCommQueuePacket

static method), 259
unescape_data() (digi.xbee.packets.common.ATCommResponsePacket

static method), 263
unescape_data() (digi.xbee.packets.common.ExplicitAddressingPacket

static method), 293
unescape_data() (digi.xbee.packets.common.ExplicitRXIndicatorPacket

static method), 297
unescape_data() (digi.xbee.packets.common.IODataSampleRxIndicatorPacket

static method), 290
unescape_data() (digi.xbee.packets.common.ModemStatusPacket

static method), 286

unescape_data() (digi.xbee.packets.common.ReceivePacket
static method), 267

unescape_data() (digi.xbee.packets.common.RemoteATCommandPacket
static method), 271

unescape_data() (digi.xbee.packets.common.RemoteATCommandResponsePacket
static method), 275

unescape_data() (digi.xbee.packets.common.TransmitPacket
static method), 279

unescape_data() (digi.xbee.packets.common.TransmitStatusPacket
static method), 283

unescape_data() (digi.xbee.packets.devicecloud.DeviceRequestPacket
static method), 302

unescape_data() (digi.xbee.packets.devicecloud.DeviceResponsePacket
static method), 306

unescape_data() (digi.xbee.packets.devicecloud.DeviceResponseStatusPacket
static method), 309

unescape_data() (digi.xbee.packets.devicecloud.FrameErrorPacket
static method), 311

unescape_data() (digi.xbee.packets.devicecloud.SendDataRequestPacket
static method), 315

unescape_data() (digi.xbee.packets.devicecloud.SendDataResponsePacket
static method), 317

unescape_data() (digi.xbee.packets.digimesh.RouteInformationPacket
static method), 322

unescape_data() (digi.xbee.packets.filesystem.FSRequestPacket
static method), 326

unescape_data() (digi.xbee.packets.filesystem.FSResponsePacket
static method), 329

unescape_data() (digi.xbee.packets.filesystem.RemoteFSRequestPacket
static method), 332

unescape_data() (digi.xbee.packets.filesystem.RemoteFSResponsePacket
static method), 334

unescape_data() (digi.xbee.packets.network.RXIPv4Packet
static method), 339

unescape_data() (digi.xbee.packets.network.TXIPv4Packet
static method), 342

unescape_data() (digi.xbee.packets.raw.RX16IOPacket
static method), 365

unescape_data() (digi.xbee.packets.raw.RX16Packet
static method), 360

unescape_data() (digi.xbee.packets.raw.RX64IOPacket
static method), 363

unescape_data() (digi.xbee.packets.raw.RX64Packet
static method), 356

unescape_data() (digi.xbee.packets.raw.TX16Packet
static method), 349

unescape_data() (digi.xbee.packets.raw.TX64Packet
static method), 346

unescape_data() (digi.xbee.packets.raw.TXStatusPacket
static method), 352

unescape_data() (digi.xbee.packets.relay.UserDataRelayOutputPacket
static method), 373

unescape_data() (digi.xbee.packets.relay.UserDataRelayPacket
static method), 370

1102 Index



XBee Python Library Documentation, Release 1.4.0

unescape_data() (digi.xbee.packets.socket.SocketBindListenPacket
static method), 409

unescape_data() (digi.xbee.packets.socket.SocketClosePacket
static method), 396

unescape_data() (digi.xbee.packets.socket.SocketCloseResponsePacket
static method), 400

unescape_data() (digi.xbee.packets.socket.SocketConnectPacket
static method), 390

unescape_data() (digi.xbee.packets.socket.SocketConnectResponsePacket
static method), 394

unescape_data() (digi.xbee.packets.socket.SocketCreatePacket
static method), 376

unescape_data() (digi.xbee.packets.socket.SocketCreateResponsePacket
static method), 380

unescape_data() (digi.xbee.packets.socket.SocketListenResponsePacket
static method), 412

unescape_data() (digi.xbee.packets.socket.SocketNewIPv4ClientPacket
static method), 416

unescape_data() (digi.xbee.packets.socket.SocketOptionRequestPacket
static method), 383

unescape_data() (digi.xbee.packets.socket.SocketOptionResponsePacket
static method), 387

unescape_data() (digi.xbee.packets.socket.SocketReceiveFromPacket
static method), 421

unescape_data() (digi.xbee.packets.socket.SocketReceivePacket
static method), 418

unescape_data() (digi.xbee.packets.socket.SocketSendPacket
static method), 403

unescape_data() (digi.xbee.packets.socket.SocketSendToPacket
static method), 406

unescape_data() (digi.xbee.packets.socket.SocketStatePacket
static method), 424

unescape_data() (digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket
static method), 429

unescape_data() (digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket
static method), 435

unescape_data() (digi.xbee.packets.wifi.RemoteATCommandWifiPacket
static method), 433

unescape_data() (digi.xbee.packets.zigbee.CreateSourceRoutePacket
static method), 451

unescape_data() (digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket
static method), 453

unescape_data() (digi.xbee.packets.zigbee.RegisterDeviceStatusPacket
static method), 443

unescape_data() (digi.xbee.packets.zigbee.RegisterJoiningDevicePacket
static method), 440

unescape_data() (digi.xbee.packets.zigbee.RouteRecordIndicatorPacket
static method), 447

UNKNOWN (digi.xbee.devices.LinkQuality attribute), 932
UNKNOWN_ADDRESS (digi.xbee.models.address.XBee16BitAddress

attribute), 196
UNKNOWN_ADDRESS (digi.xbee.models.address.XBee64BitAddress

attribute), 197
UNKNOWN_VALUE (digi.xbee.devices.LinkQuality

attribute), 932
UnknownFSCmd (class in digi.xbee.models.filesystem),

133
UnknownXBeePacket (class in

digi.xbee.packets.base), 245
unregister_joining_device()

(digi.xbee.devices.ZigBeeDevice method),
614

unregister_joining_device_async()
(digi.xbee.devices.ZigBeeDevice method),
614

update_bluetooth_password()
(digi.xbee.devices.AbstractXBeeDevice
method), 483

update_bluetooth_password()
(digi.xbee.devices.CellularDevice method),
694

update_bluetooth_password()
(digi.xbee.devices.DigiMeshDevice method),
572

update_bluetooth_password()
(digi.xbee.devices.DigiPointDevice method),
603

update_bluetooth_password()
(digi.xbee.devices.IPDevice method), 668

update_bluetooth_password()
(digi.xbee.devices.LPWANDevice method),
720

update_bluetooth_password()
(digi.xbee.devices.NBIoTDevice method),
746

update_bluetooth_password()
(digi.xbee.devices.Raw802Device method),
540

update_bluetooth_password()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 833

update_bluetooth_password()
(digi.xbee.devices.RemoteDigiPointDevice
method), 851

update_bluetooth_password()
(digi.xbee.devices.RemoteRaw802Device
method), 815

update_bluetooth_password()
(digi.xbee.devices.RemoteXBeeDevice
method), 797

update_bluetooth_password()
(digi.xbee.devices.RemoteZigBeeDevice
method), 871

update_bluetooth_password()
(digi.xbee.devices.WiFiDevice method), 779

update_bluetooth_password()
(digi.xbee.devices.XBeeDevice method),
510

Index 1103



XBee Python Library Documentation, Release 1.4.0

update_bluetooth_password()
(digi.xbee.devices.ZigBeeDevice method),
641

update_device_data_from()
(digi.xbee.devices.AbstractXBeeDevice
method), 467

update_device_data_from()
(digi.xbee.devices.CellularDevice method),
695

update_device_data_from()
(digi.xbee.devices.DigiMeshDevice method),
572

update_device_data_from()
(digi.xbee.devices.DigiPointDevice method),
604

update_device_data_from()
(digi.xbee.devices.IPDevice method), 668

update_device_data_from()
(digi.xbee.devices.LPWANDevice method),
720

update_device_data_from()
(digi.xbee.devices.NBIoTDevice method),
746

update_device_data_from()
(digi.xbee.devices.Raw802Device method),
540

update_device_data_from()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 834

update_device_data_from()
(digi.xbee.devices.RemoteDigiPointDevice
method), 852

update_device_data_from()
(digi.xbee.devices.RemoteRaw802Device
method), 815

update_device_data_from()
(digi.xbee.devices.RemoteXBeeDevice
method), 797

update_device_data_from()
(digi.xbee.devices.RemoteZigBeeDevice
method), 872

update_device_data_from()
(digi.xbee.devices.WiFiDevice method), 779

update_device_data_from()
(digi.xbee.devices.XBeeDevice method),
510

update_device_data_from()
(digi.xbee.devices.ZigBeeDevice method),
641

update_filesystem_image()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 834

update_filesystem_image()
(digi.xbee.devices.RemoteDigiPointDevice

method), 852
update_filesystem_image()

(digi.xbee.devices.RemoteRaw802Device
method), 815

update_filesystem_image()
(digi.xbee.devices.RemoteXBeeDevice
method), 782

update_filesystem_image()
(digi.xbee.devices.RemoteZigBeeDevice
method), 872

update_firmware()
(digi.xbee.comm_interface.XBeeCommunicationInterface
method), 465

update_firmware()
(digi.xbee.devices.AbstractXBeeDevice
method), 483

update_firmware()
(digi.xbee.devices.CellularDevice method),
695

update_firmware()
(digi.xbee.devices.DigiMeshDevice method),
572

update_firmware()
(digi.xbee.devices.DigiPointDevice method),
604

update_firmware() (digi.xbee.devices.IPDevice
method), 668

update_firmware()
(digi.xbee.devices.LPWANDevice method),
721

update_firmware()
(digi.xbee.devices.NBIoTDevice method),
746

update_firmware()
(digi.xbee.devices.Raw802Device method),
540

update_firmware()
(digi.xbee.devices.RemoteDigiMeshDevice
method), 834

update_firmware()
(digi.xbee.devices.RemoteDigiPointDevice
method), 852

update_firmware()
(digi.xbee.devices.RemoteRaw802Device
method), 816

update_firmware()
(digi.xbee.devices.RemoteXBeeDevice
method), 797

update_firmware()
(digi.xbee.devices.RemoteZigBeeDevice
method), 872

update_firmware() (digi.xbee.devices.WiFiDevice
method), 779

update_firmware() (digi.xbee.devices.XBeeDevice

1104 Index



XBee Python Library Documentation, Release 1.4.0

method), 511
update_firmware()

(digi.xbee.devices.ZigBeeDevice method),
641

update_firmware()
(digi.xbee.serial.XBeeSerialPort method),
1009

update_local_firmware() (in module
digi.xbee.firmware), 956

update_remote_filesystem() (in module
digi.xbee.firmware), 956

update_remote_filesystem_image() (in mod-
ule digi.xbee.filesystem), 953

update_remote_firmware() (in module
digi.xbee.firmware), 956

UpdateConfigurer (class in digi.xbee.firmware),
954

UpdateProfileException, 967
USE_BROADCAST_PAN_ID

(digi.xbee.models.options.TransmitOptions
attribute), 205

USE_CURRENT_OFFSET
(digi.xbee.models.filesystem.ReadFileCmdRequest
attribute), 145

USE_CURRENT_OFFSET
(digi.xbee.models.filesystem.WriteFileCmdRequest
attribute), 149

USE_EXTENDED_TIMEOUT
(digi.xbee.models.options.TransmitOptions
attribute), 206

user_desc_supported
(digi.xbee.models.zdo.NodeDescriptor at-
tribute), 228

UserDataRelayMessage (class in
digi.xbee.models.message), 202

UserDataRelayOutputPacket (class in
digi.xbee.packets.relay), 370

UserDataRelayPacket (class in
digi.xbee.packets.relay), 367

V
value (digi.xbee.profile.XBeeProfileSetting attribute),

967
version (digi.xbee.profile.XBeeProfile attribute), 968
VolFormatCmdRequest (class in

digi.xbee.models.filesystem), 184
VolFormatCmdResponse (class in

digi.xbee.models.filesystem), 185
VolStatCmdRequest (class in

digi.xbee.models.filesystem), 180
VolStatCmdResponse (class in

digi.xbee.models.filesystem), 182

W
wait_for_frame() (digi.xbee.comm_interface.XBeeCommunicationInterface

method), 464
wait_for_frame() (digi.xbee.serial.XBeeSerialPort

method), 1007
wait_until_started()

(digi.xbee.reader.PacketListener method),
993

WiFiAssociationIndicationStatus (class in
digi.xbee.models.status), 222

WiFiDevice (class in digi.xbee.devices), 747
WiFiEncryptionType (class in

digi.xbee.models.accesspoint), 125
with_traceback() (digi.xbee.exception.ATCommandException

method), 934
with_traceback() (digi.xbee.exception.CommunicationException

method), 934
with_traceback() (digi.xbee.exception.ConnectionException

method), 935
with_traceback() (digi.xbee.exception.FirmwareUpdateException

method), 936
with_traceback() (digi.xbee.exception.InvalidConfigurationException

method), 935
with_traceback() (digi.xbee.exception.InvalidOperatingModeException

method), 935
with_traceback() (digi.xbee.exception.InvalidPacketException

method), 935
with_traceback() (digi.xbee.exception.OperationNotSupportedException

method), 936
with_traceback() (digi.xbee.exception.RecoveryException

method), 936
with_traceback() (digi.xbee.exception.TimeoutException

method), 936
with_traceback() (digi.xbee.exception.TransmitException

method), 936
with_traceback() (digi.xbee.exception.XBeeDeviceException

method), 935
with_traceback() (digi.xbee.exception.XBeeException

method), 934
with_traceback() (digi.xbee.exception.XBeeSocketException

method), 936
with_traceback() (digi.xbee.filesystem.FileSystemException

method), 938
with_traceback() (digi.xbee.filesystem.FileSystemNotSupportedException

method), 938
with_traceback() (digi.xbee.profile.ReadProfileException

method), 967
with_traceback() (digi.xbee.profile.UpdateProfileException

method), 967
with_traceback() (digi.xbee.util.xmodem.XModemCancelException

method), 462
with_traceback() (digi.xbee.util.xmodem.XModemException

method), 462
WRITE (digi.xbee.models.options.FileOpenRequestOption

Index 1105



XBee Python Library Documentation, Release 1.4.0

attribute), 210
write_changes() (digi.xbee.devices.AbstractXBeeDevice

method), 469
write_changes() (digi.xbee.devices.CellularDevice

method), 695
write_changes() (digi.xbee.devices.DigiMeshDevice

method), 573
write_changes() (digi.xbee.devices.DigiPointDevice

method), 604
write_changes() (digi.xbee.devices.IPDevice

method), 669
write_changes() (digi.xbee.devices.LPWANDevice

method), 721
write_changes() (digi.xbee.devices.NBIoTDevice

method), 747
write_changes() (digi.xbee.devices.Raw802Device

method), 541
write_changes() (digi.xbee.devices.RemoteDigiMeshDevice

method), 835
write_changes() (digi.xbee.devices.RemoteDigiPointDevice

method), 853
write_changes() (digi.xbee.devices.RemoteRaw802Device

method), 816
write_changes() (digi.xbee.devices.RemoteXBeeDevice

method), 798
write_changes() (digi.xbee.devices.RemoteZigBeeDevice

method), 873
write_changes() (digi.xbee.devices.WiFiDevice

method), 780
write_changes() (digi.xbee.devices.XBeeDevice

method), 511
write_changes() (digi.xbee.devices.ZigBeeDevice

method), 642
write_file() (digi.xbee.filesystem.FileSystemManager

method), 941
write_frame() (digi.xbee.comm_interface.XBeeCommunicationInterface

method), 465
write_frame() (digi.xbee.serial.XBeeSerialPort

method), 1006
WriteFileCmdRequest (class in

digi.xbee.models.filesystem), 149
WriteFileCmdResponse (class in

digi.xbee.models.filesystem), 151

X
x16bit_dest_addr (digi.xbee.packets.common.ExplicitAddressingPacket

attribute), 295
x16bit_dest_addr (digi.xbee.packets.common.RemoteATCommandPacket

attribute), 269
x16bit_dest_addr (digi.xbee.packets.common.TransmitPacket

attribute), 277
x16bit_dest_addr (digi.xbee.packets.common.TransmitStatusPacket

attribute), 281

x16bit_dest_addr (digi.xbee.packets.raw.TX16Packet
attribute), 348

x16bit_dest_addr (digi.xbee.packets.zigbee.CreateSourceRoutePacket
attribute), 449

x16bit_source_addr
(digi.xbee.packets.common.ExplicitRXIndicatorPacket
attribute), 298

x16bit_source_addr
(digi.xbee.packets.common.IODataSampleRxIndicatorPacket
attribute), 288

x16bit_source_addr
(digi.xbee.packets.common.ReceivePacket
attribute), 265

x16bit_source_addr
(digi.xbee.packets.common.RemoteATCommandResponsePacket
attribute), 273

x16bit_source_addr
(digi.xbee.packets.raw.RX16IOPacket at-
tribute), 366

x16bit_source_addr
(digi.xbee.packets.raw.RX16Packet attribute),
358

x16bit_source_addr
(digi.xbee.packets.zigbee.RouteRecordIndicatorPacket
attribute), 445

x16bit_updater_addr
(digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket
attribute), 454

x64bit_dest_addr (digi.xbee.packets.common.ExplicitAddressingPacket
attribute), 294

x64bit_dest_addr (digi.xbee.packets.common.RemoteATCommandPacket
attribute), 268

x64bit_dest_addr (digi.xbee.packets.common.TransmitPacket
attribute), 277

x64bit_dest_addr (digi.xbee.packets.filesystem.RemoteFSRequestPacket
attribute), 330

x64bit_dest_addr (digi.xbee.packets.raw.TX64Packet
attribute), 344

x64bit_dest_addr (digi.xbee.packets.zigbee.CreateSourceRoutePacket
attribute), 449

x64bit_source_addr
(digi.xbee.packets.common.ExplicitRXIndicatorPacket
attribute), 298

x64bit_source_addr
(digi.xbee.packets.common.IODataSampleRxIndicatorPacket
attribute), 287

x64bit_source_addr
(digi.xbee.packets.common.ReceivePacket
attribute), 265

x64bit_source_addr
(digi.xbee.packets.common.RemoteATCommandResponsePacket
attribute), 273

x64bit_source_addr
(digi.xbee.packets.filesystem.RemoteFSResponsePacket

1106 Index



XBee Python Library Documentation, Release 1.4.0

attribute), 335
x64bit_source_addr

(digi.xbee.packets.raw.RX64IOPacket at-
tribute), 361

x64bit_source_addr
(digi.xbee.packets.raw.RX64Packet attribute),
354

x64bit_source_addr
(digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket
attribute), 454

x64bit_source_addr
(digi.xbee.packets.zigbee.RouteRecordIndicatorPacket
attribute), 445

x64bit_target_addr
(digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket
attribute), 455

xbee (digi.xbee.filesystem.FileSystemManager at-
tribute), 939

xbee (digi.xbee.sender.SyncRequestSender attribute),
1005

XBee16BitAddress (class in
digi.xbee.models.address), 195

XBee64BitAddress (class in
digi.xbee.models.address), 197

XBeeAPIPacket (class in digi.xbee.packets.base), 240
XBeeCommunicationInterface (class in

digi.xbee.comm_interface), 464
XBeeDevice (class in digi.xbee.devices), 484
XBeeDeviceException, 935
XBeeEvent (class in digi.xbee.reader), 971
XBeeException, 934
XBeeIMEIAddress (class in

digi.xbee.models.address), 198
XBeeLocalInterface (class in

digi.xbee.models.options), 208
XBeeMessage (class in digi.xbee.models.message), 199
XBeeNetwork (class in digi.xbee.devices), 873
XBeePacket (class in digi.xbee.packets.base), 238
XBeeProfile (class in digi.xbee.profile), 967
XBeeProfileSetting (class in digi.xbee.profile),

966
XBeeProtocol (class in digi.xbee.models.protocol),

211
XBeeQueue (class in digi.xbee.reader), 1001
XBeeSerialPort (class in digi.xbee.serial), 1006
XBeeSettingFormat (class in digi.xbee.profile), 965
XBeeSettingType (class in digi.xbee.profile), 965
XBeeSocketException, 936
XModemCancelException, 462
XModemException, 461

Z
ZigBeeDevice (class in digi.xbee.devices), 605
ZigBeeNetwork (class in digi.xbee.devices), 885

ZigbeeRegisterStatus (class in
digi.xbee.models.status), 223

Index 1107


	Requirements
	Contents
	Getting Started
	User Documentation
	Examples
	FAQ
	Changelog
	API reference
	Get started with XBee Python library
	Install your software
	Configure your XBee modules
	Run your first XBee Python application

	XBee terminology
	RF modules
	XBee RF modules
	Radio firmware
	Radio communication protocols
	Radio module operating modes
	API frames
	AT settings or commands

	Work with XBee classes
	Instantiate an XBee device
	Open the XBee device connection
	Close the XBee device connection

	Configure the XBee device
	Read and set common parameters
	Read, set and execute other parameters
	Apply configuration changes
	Write configuration changes
	Reset the device
	Configure Wi-Fi settings
	Configure Bluetooth settings

	Discover the XBee network
	Discovery types
	Deep discovery
	Standard discovery
	Discover the network
	Access discovered nodes
	Access connections between nodes
	Add and remove nodes manually
	Listen to network modification events

	Communicate with XBee devices
	Send and receive data
	Send and receive explicit data
	Send and receive IP data
	Send and receive SMS messages
	Send and receive Bluetooth data
	Send and receive MicroPython data
	Receive modem status events
	Communicate using XBee sockets

	Handle analog and digital IO lines
	Configure the IO lines
	Read IO samples
	Change detection sampling

	Update the XBee
	Update the XBee firmware
	Update the XBee file system
	Apply an XBee profile

	Log events
	Logging level

	XBee Python samples
	Configuration samples
	Network samples
	Communication samples
	IO samples
	Firmware samples
	File system samples
	Profile samples

	Frequently Asked Questions (FAQs)
	What is XCTU and how do I download it?
	How do I find the serial port and baud rate of my module?
	Can I use the XBee Python Library with modules in AT operating mode?
	I get the Python error ImportError: No module named 'serial'
	I get the Python error ImportError: No module named 'srp'

	Changelog
	v1.4.0 - 03/18/2021
	v1.3.0 - 11/05/2019
	v1.2.0 - 04/05/2019
	v1.1.1 - 04/25/2018
	v1.1.0 - 01/19/2018
	v1.0.0 - 10/02/2017

	API reference
	digi package



	Indices and tables
	License
	Python Module Index
	Index

