

XBee Python Library

Release v1.4.0. (Installation)

[image: _images/digi-xbee.svg]
 [https://pepy.tech/project/digi-xbee][image: _images/digi-xbee1.svg]
 [https://pypi.org/project/digi-xbee/][image: PyPI - Python Version]
 [https://pypi.org/project/digi-xbee/]XBee devices allow you to enable wireless connectivity to your projects creating
a network of connected devices. They provide features to exchange data with
other devices in the network, configure them and control their I/O lines. An
application running in an intelligent device can take advantage of these
features to monitor and manage the entire network.

Despite the available documentation and configuration tools for working with
XBee devices, it is not always easy to develop these kinds of applications.

[image: XBee Python library diagram]
The XBee Python Library is a Python API that dramatically reduces the time to
market of XBee projects developed in Python and facilitates the development of
these types of applications, making it an easy and smooth process. The XBee
Python Library includes the following features:

	Support for multiple XBee devices and protocols.

	High abstraction layer provides an easy-to-use workflow.

	Ability to configure local and remote XBee devices of the network.

	Discovery feature finds remote nodes on the same network as the local module.

	Ability to transmit and receive data from any XBee device on the network.

	Ability to manage the General Purpose Input and Output lines of all your XBee
devices.

	Ability to send and receive data from other XBee interfaces (Serial,
Bluetooth Low Energy and MicroPython).

This portal provides the following documentation to help you with the different
development stages of your Python applications using the XBee Python Library.

Requirements

The XBee Python library requires the following components in order to work
properly:

	Python 3.6. You can get it from https://www.python.org/getit/

	PySerial 3. Install it with pip (pip install pyserial) or refer to
the PySerial installation guide [http://pythonhosted.org/pyserial/pyserial.html#installation] for further
information about getting PySerial.

	SRP Install it with pip (pip install srp).

Contents

The XBee Python library documentation is split in different sections:

	Getting Started

	User Documentation

	Examples

	FAQ

	Changelog

	API reference

Getting Started

Perform your first steps with the XBee Python library. Learn how to setup your
environment and communicate with your XBee devices using the library.

	Get started with XBee Python library

User Documentation

Access detailed information about the different features and capabilities
provided by the library and how to use them.

	XBee terminology

	Work with XBee classes

	Configure the XBee device

	Discover the XBee network

	Communicate with XBee devices

	Handle analog and digital IO lines

	Update the XBee

	Log events

Examples

The library includes a good amount of examples that demonstrate most of the
functionality that it provides.

	XBee Python samples

FAQ

Find the answer to the most common questions or problems related to the XBee
Python library in the FAQ section.

	Frequently Asked Questions (FAQs)

Changelog

	Changelog

API reference

The API reference contains more detailed documentation about the API for
developers who are interested in using and extending the library functionality.

	API reference

Indices and tables

	Index

	Module Index

	Search Page

License

Copyright 2017-2021, Digi International Inc.

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, you can obtain one at http://mozilla.org/MPL/2.0/.

THE SOFTWARE IS PROVIDED “AS IS” AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Digi International Inc. 11001 Bren Road East, Minnetonka, MN 55343

Get started with XBee Python library

This getting started guide describes how to set up your environment and use
the XBee Python Library to communicate with your XBee devices. It explains
how to configure your modules and write your first XBee Python application.

The guide is split into 3 main sections:

	Install your software

	Configure your XBee modules

	Run your first XBee Python application

Install your software

The following software components are required to write and run your first
XBee Python application:

	Python 3

	PySerial 3

	SRP

	XBee Python library software

	XCTU

Python 3

The XBee Python library requires Python 3. If you don’t have
Python 3, you can get it from https://www.python.org/getit/.

Warning

The XBee Python library is currently only compatible with Python 3.

PySerial 3

You must be able to communicate with the radio modules over a serial
connection. The XBee Python library uses the PySerial module for that
functionality.

This module is automatically downloaded when you install the XBee Python
library.

SRP

The XBee Python library uses the SRP module to authenticate with
XBee devices over Bluetooth Low Energy.

This module is automatically downloaded when you install the XBee Python
library.

XBee Python library software

The best way to install the XBee Python library is with the
pip [https://pip.pypa.io/en/stable] tool (which is what Python uses to
install packages). The pip tool comes with recent versions of Python.

To install the library, run this command in your terminal application:

$ pip install digi-xbee

The library is automatically downloaded and installed in your Python
interpreter.

Get the source code

The XBee Python library is actively developed on GitHub, where the code is
always available [https://github.com/digidotcom/xbee-python]. You can
clone the repository with:

$ git clone git@github.com:digidotcom/xbee-python.git

XCTU

XCTU is a free multi-platform application that enables developers to interact
with Digi RF modules through a simple-to-use graphical interface. It includes
new tools that make it easy to set up, configure, and test XBee RF modules.

For instructions on downloading and using XCTU, go to:

http://www.digi.com/xctu

Once you have downloaded XCTU, run the installer and follow the steps to finish
the installation process.

After you load XCTU, a message about software updates appears. We recommend you
always update XCTU to the latest available version.

Configure your XBee modules

You need to configure two XBee devices. One module (the sender) sends
“Hello XBee World!” using the Python application. The other device (the
receiver) receives the message.

To communicate, both devices must be working in the same protocol (802.15.4,
Zigbee, DigiMesh, Point-to-Multipoint, or Wi-Fi) and must be configured to
operate in the same network.

Note

If you are getting started with cellular, you only need to configure one
device. Cellular protocol devices are connected directly to the Internet,
so there is no network of remote devices to communicate with them. For
the cellular protocol, the XBee application demonstrated in the getting
started guide differs from other protocols. The cellular protocol sends and
reads data from an echo server.

Use XCTU to configure the devices. Plug the devices into the XBee adapters and
connect them to your computer’s USB or serial ports.

Note

For more information about XCTU, see the XCTU User
Guide [https://www.digi.com/resources/documentation/digidocs/90001458-13].
You can also access the documentation from the Help menu of the tool.

Once XCTU is running, add your devices to the tool and then select them from
the Radio Modules section. When XCTU is finished reading the device
parameters, complete the following steps according to your device type.
Repeat these steps to configure your XBee devices using XCTU.

	802.15.4 devices

	Zigbee devices

	DigiMesh devices

	DigiPoint devices

	Cellular devices

	Wi-Fi devices

802.15.4 devices

	Click Load default firmware settings in the Radio Configuration
toolbar to load the default values for the device firmware.

	Make sure API mode (API1 or API2) is enabled. To do so, set the AP
parameter value to 1 (API mode without escapes) or 2 (API mode
with escapes).

	Configure ID (PAN ID) setting to CAFE.

	Configure CH (Channel setting) to C.

	Click Write radio settings in the Radio Configuration toolbar to
apply the new values to the module.

	Once you have configured both modules, check to make sure they can see each
other. Click Discover radio modules in the same network, the second
button of the device panel in the Radio Modules view. The other device
must be listed in the Discovering remote devices dialog.

Note

If the other module is not listed, reboot both devices by pressing the
Reset button of the carrier board and try adding the device again. If
the list is still empty, see the product manual for your device.

Zigbee devices

	For old Zigbee devices (S2 and S2B), make sure the devices are using
API firmware. The firmware appears in the Function label of the
device in the Radio Modules view.

	One of the devices must be a coordinator - Function: Zigbee Coordinator
API

	Digi recommends the other one is a router - Function: Zigbee Router AP.

Note

If any of the two previous conditions is not satisfied, you must change
the firmware of the device. Click the Update firmware button of the
Radio Configuration toolbar.

	Click Load default firmware settings in the Radio Configuration
toolbar to load the default values for the device firmware.

	Do the following:

	If the device has the AP parameter, set it to 1 (API mode without
escapes) or 2 (API mode with escapes).

	If the device has the CE parameter, set it to Enabled in the
coordinator.

	Configure ID (PAN ID) setting to C001BEE.

	Configure SC (Scan Channels) setting to FFF.

	Click Write radio settings in the Radio Configuration toolbar to
apply the new values to the module.

	Once you have configured both modules, check to make sure they can see each
other. Click Discover radio modules in the same network, the second
button of the device panel in the Radio Modules view. The other device
must be listed in the Discovering remote devices dialog.

Note

If the other module is not listed, reboot both devices by pressing the
Reset button of the carrier board and try adding the device again. If
the list is still empty, go to the corresponding product manual for your
devices.

DigiMesh devices

	Click Load default firmware settings in the Radio Configuration
toolbar to load the default values for the device firmware.

	Ensure the API mode (API1 or API2) is enabled. To do so, the AP
parameter value must be 1 (API mode without escapes) or 2 (API mode
with escapes).

	Configure ID (PAN ID) setting to CAFE.

	Configure CH (Operating Channel) to C.

	Click Write radio settings in the Radio Configuration toolbar to
apply the new values to the module.

	Once you have configured both modules, check to make sure they can see each
other. Click Discover radio modules in the same network, the second
button of the device panel in the Radio Modules view. The other device
must be listed in the Discovering remote devices dialog.

Note

If the other module is not listed, reboot both devices by pressing the
Reset button of the carrier board and try adding the device again. If
the list is still empty, go to the corresponding product manual for your
devices.

DigiPoint devices

	Click Load default firmware settings in the Radio Configuration
toolbar to load the default values for the device firmware.

	Ensure the API mode (API1 or API2) is enabled. To do so, the AP
parameter value must be 1 (API mode without escapes) or 2 (API mode
with escapes).

	Configure ID (PAN ID) setting to CAFE.

	Configure HP (Hopping Channel) to 5.

	Click Write radio settings in the Radio Configuration toolbar to
apply the new values to the module.

	Once you have configured both modules, check to make sure they can see each
other. Click Discover radio modules in the same network, the second
button of the device panel in the Radio Modules view. The other device
must be listed in the Discovering remote devices dialog.

Note

If the other module is not listed, reboot both devices by pressing the
Reset button of the carrier board and try adding the device again. If
the list is still empty, go to the corresponding product manual for your
devices.

Cellular devices

	Click Load default firmware settings in the Radio Configuration toolbar
to load the default values for the device firmware.

	Ensure the API mode (API1 or API2) is enabled. To do so, the AP
parameter value must be 1 (API mode without escapes) or 2 (API mode
with escapes).

	Click Write radio settings in the Radio Configuration toolbar to apply
the new values to the module.

	Verify the module is correctly registered and connected to the Internet.
To do so check that the LED on the development board blinks. If it is solid
or has a double-blink, registration has not occurred properly. Registration
can take several minutes.

Note

In addition to the LED confirmation, you can check the IP address assigned
to the module by reading the MY parameter and verifying it has a value
different than 0.0.0.0.

Wi-Fi devices

	Click Load default firmware settings in the Radio Configuration toolbar
to load the default values for the device firmware.

	Ensure the API mode (API1 or API2) is enabled. To do so, the AP
parameter value must be 1 (API mode without escapes) or 2 (API mode
with escapes).

	Connect to an access point:

	Click the Active Scan button.

	Select the desired access point from the list of the Active Scan
result dialog.

	If the access point requires a password, type your password.

	Click the Connect button and wait for the module to connect to the
access point.

	Click Write radio settings in the Radio Configuration toolbar to apply
the new values to the module.

	Verify the module is correctly connected to the access point by checking
the IP address assigned to the module by reading the MY parameter and
verifying it has a value different than 0.0.0.0.

Run your first XBee Python application

The XBee Python application demonstrated in the guide broadcasts the message
Hello XBee World! from one of the devices connected to your computer (the
sender) to all remote devices on the same network as the sender. Once the
message is sent, the receiver XBee module must receive it. You can use XCTU
to verify receipt.

The commands to be executed depend on the protocol of the XBee devices. Follow
the corresponding steps depending on the protocol of your XBee devices.

	Zigbee, DigiMesh, DigiPoint or 802.15.4 devices

	Wi-Fi devices

	Cellular devices

Zigbee, DigiMesh, DigiPoint or 802.15.4 devices

Follow these steps to send the broadcast message and verify that it is received
successfully:

	First, prepare the receiver XBee device in XCTU to verify
that the broadcast message sent by the sender device is received
successfully. Follow these steps to do so:

	Launch XCTU.

	Add the receiver module to XCTU.

	Click Open the serial connection with the radio module to switch to
Consoles working mode and open the serial connection. This allows
you to see the data when it is received.

	Open the Python interpreter and write the application commands.

	Import the XBeeDevice class by executing the following command:

> from digi.xbee.devices import XBeeDevice

	Instantiate a generic XBee device:

> device = XBeeDevice("COM1", 9600)

Note

Remember to replace the COM port with the one your sender XBee device
is connected to. In UNIX-based systems, the port usually starts with
/dev/tty.

	Open the connection with the device:

> device.open()

	Send the Hello XBee World! broadcast message.

> device.send_data_broadcast("Hello XBee World!")

	Close the connection with the device:

> device.close()

	Verify that the message is received by the receiver XBee in XCTU. An
RX (Receive) frame should be displayed in the Console log with the
following information:

	Start delimiter

	7E

	Length

	Depends on the XBee protocol

	Frame type

	Depends on the XBee protocol

	16/64-bit source address

	XBee sender’s 16/64-bit address

	Options

	02

	RF data/Received data

	48 65 6C 6C 6F 20 58 42 65 65 20 57 6F 72 6C 64 21

Wi-Fi devices

Wi-Fi devices send broadcast data using the send_ip_data_broadcast()
command instead of the send_data_broadcast() one. For that reason, you must
instantiate a WiFiDevice instead of a generic XBeeDevice to execute the
proper command.

Follow these steps to send the broadcast message and verify that it is received
successfully:

	First, prepare the receiver XBee device in XCTU to verify
that the broadcast message sent by the sender device is received
successfully by the receiver device.

	Launch XCTU.

	Add the receiver module to XCTU.

	Click Open the serial connection with the radio module to switch to
Consoles working mode and open the serial connection. This allows
you to see the data when it is received.

	Open the Python interpreter and write the application commands.

	Import the WiFiDevice class by executing the following command:

> from digi.xbee.devices import WiFiDevice

	Instantiate a Wi-Fi XBee device:

> device = WiFiDevice("COM1", 9600)

Note

Remember to replace the COM port with the one your sender XBee device
is connected to. In UNIX-based systems, the port usually starts with
/dev/tty.

	Open the connection with the device:

> device.open()

	Send the Hello XBee World! broadcast message.

> device.send_ip_data_broadcast(9750, "Hello XBee World!")

	Close the connection with the device:

> device.close()

	Verify that the message is received by the receiver XBee in XCTU. An
RX IPv4 frame should be displayed in the Console log with the
following information:

	Start delimiter

	7E

	Length

	00 1C

	Frame type

	B0

	IPv4 source address

	XBee Wi-Fi sender’s IP address

	16-bit dest port

	26 16

	16-bit source port

	26 16

	Protocol

	00

	Status

	00

	RF data

	48 65 6C 6C 6F 20 58 42 65 65 20 57 6F 72 6C 64 21

Cellular devices

Cellular devices are connected directly to the Internet, so there is no
network of remote devices to communicate with them. For cellular
protocol, the application demonstrated in this guide differs from other
protocols.

The application sends and reads data from an echo server. Follow these steps to
execute it:

	Open the Python interpreter and write the application commands.

	Import the CellularDevice, IPProtocol and IPv4Address
classes:

> from digi.xbee.devices import CellularDevice
> from digi.xbee.models.protocol import IPProtocol
> from ipaddress import IPv4Address

	Instantiate a cellular XBee device:

> device = CellularDevice("COM1", 9600)

Note

Remember to replace the COM port by the one your Cellular XBee device
is connected to. In UNIX-based systems, the port usually starts with
/dev/tty.

	Open the connection with the device:

> device.open()

	Send the Hello XBee World! message to the echo server with IP
52.43.121.77 and port 11001 using the TCP IP protocol.

> device.send_ip_data(IPv4Address("52.43.121.77"), 11001, IPProtocol.TCP, "Hello XBee World!")

	Read and print the response from the echo server. If response cannot be
received, print ERROR.

> ip_message = device.read_ip_data()
> print(ip_message.data.decode("utf8") if ip_message is not None else "ERROR")

	Close the connection with the device:

> device.close()

XBee terminology

This section covers basic XBee concepts and terminology. The XBee Python
library manual refers to these concepts frequently, so it is important to
understand these concepts.

RF modules

A radio frequency (RF) module is a small electronic circuit used to transmit
and receive radio signals on different frequencies. Digi produces a wide
variety of RF modules to meet the requirements of almost any wireless solution,
such as long-range, low-cost, and low power modules.

XBee RF modules

XBee is the brand name of a family of RF modules produced by Digi International
Inc. XBee RF modules are modular products that make it easy and cost-effective
to deploy wireless technology. Multiple protocols and RF features are available,
giving customers enormous flexibility to choose the best technology for their
needs.

The XBee RF modules are available in three form factors: Through-Hole, Surface
Mount, and Micro, with different antenna options. Almost all modules are
available in the Through-Hole form factor and share the same footprint.

[image: XBee form factor]

Radio firmware

Radio firmware is the program code stored in the radio module’s persistent
memory that provides the control program for the device. From XCTU or the local
web interface of the XBee Gateway, you can update or change the firmware of the
local XBee module or any other module connected to the same network. This is a
common task when changing the role of the device or updating to the latest
version of the firmware.

Radio communication protocols

A radio communication protocol is a set of rules for data exchange between
radio devices. An XBee module supports a specific radio communication protocol
depending on the module and its radio firmware.

Following is the complete list of protocols supported by the XBee radio modules:

	IEEE 802.15.4

	Zigbee

	Zigbee Smart Energy

	DigiMesh (Digi proprietary)

	ZNet

	IEEE 802.11 (Wi-Fi)

	Point-to-multipoint (Digi proprietary)

	XSC (XStream compatibility)

	Cellular

	Thread

[image: RF protocols]

Note

Not all XBee devices can run all these communication protocols. The
combination of XBee hardware and radio firmware determines the protocol that
an XBee device can execute. Refer to the
XBee RF Family Comparison Matrix [https://www.digi.com/pdf/chart_xbee_rf_features.pdf]
for more information about the available XBee RF modules and the protocols
they support.

Radio module operating modes

The operating mode of an XBee radio module establishes the way a user, or any
microcontroller attached to the XBee, communicates with the module through the
Universal Asynchronous Receiver/Transmitter (UART) or serial interface.

Depending on the firmware and its configuration, the radio modules can work in
three different operating modes:

	Application Transparent (AT) operating mode

	API operating mode

	API escaped operating mode

In some cases, the operating mode of a radio module is established by the
firmware version and the firmware’s AP setting. The module’s firmware version
determines whether the operating mode is AT or API. The firmware’s AP setting
determines if the API mode is escaped (AP = 2) or not (AP = 1). In
other cases, the operating mode is only determined by the AP setting, which
allows you to configure the mode to be AT (AP = 0), API (AP = 1) or
API escaped (AP = 2).

Application Transparent (AT) operating mode

In Application Transparent (AT) or transparent operating mode, all serial data
received by the radio module is queued up for RF transmission. When the module
receives RF data, it sends the data out through the serial interface.

To configure an XBee module operating in AT, put the device in command mode to
send the configuration commands.

Command mode

When the radio module is working in AT operating mode, configure settings using
the command mode interface.

To enter command mode, send the 3-character command sequence through the serial
interface of the radio module, usually +++, within one second. Once the
command mode has been established, the module sends the reply OK, the
command mode timer starts, and the radio module can receive AT commands.

The structure of an AT command follows this format:

AT[ASCII command][Space (optional)][Parameter (optional)][Carriage return]

Example:

ATNI MyDevice\r

If no valid AT commands are received within the command mode timeout, the radio
module automatically exits command mode. You can also exit command mode issuing
the CN command (Exit Command mode).

API operating mode

Application Programming Interface (API) operating mode is an alternative to AT
operating mode. API operating mode requires that communication with the module
through a structured interface; that is, data communicated in API frames.

The API specifies how commands, command responses, the module sends and
receives status messages using the serial interface. API operation mode enables
many operations, such as the following:

	Configure the XBee device itself.

	Configure remote devices in the network.

	Manage data transmission to multiple destinations.

	Receive success/failure status of each transmitted RF packet.

	Identify the source address of each received packet.

Depending on the AP parameter value, the device can operate in one of two modes:
API (AP = 1) or API escaped (AP = 2) operating mode.

API escaped operating mode

API escaped operating mode (AP = 2) works similarly to API mode. The only
difference is that when working in API escaped mode, some bytes of the API
frame specific data must be escaped.

Use API escaped operating mode to add reliability to the RF transmission, which
prevents conflicts with special characters such as the start-of-frame byte
(0x7E). Since 0x7E can only appear at the start of an API packet, if 0x7E is
received at any time, you can assume that a new packet has started regardless
of length. In API escaped mode, those special bytes are escaped.

Escape characters

When sending or receiving an API frame in API escaped mode, you must escape
(flag) specific data values so they do not interfere with the data frame
sequence. To escape a data byte, insert 0x7D and follow it with the byte being
escaped, XOR’d with 0x20.

The following data bytes must be escaped:

	0x7E: Frame delimiter

	0x7D: Escape

	0x11: XON

	0x13: XOFF

API frames

An API frame is the structured data sent and received through the serial
interface of the radio module when it is configured in API or API escaped
operating modes. API frames are used to communicate with the module or with
other modules in the network.

An API frame has the following structure:

[image: API frames]

	Start delimiter

	This field is always 0x7E.

	Length

	The length field has a two-byte value that specifies the number of bytes that are contained in the frame data field. It does not include the checksum field.

	Frame Data

	The content of this field is composed by the API identifier and the API identifier specific data. Depending on the API identifier (also called API frame type), the content of the specific data changes.

	Checksum

	Byte containing the hash sum of the API frame bytes.

In API escaped mode, some bytes in the Length, Frame Data and
Checksum fields must be escaped.

[image: API frames escaped]

AT settings or commands

The firmware running in the XBee RF modules contains a group of settings and
commands that you can configure to change the behavior of the module or to
perform any related action. Depending on the protocol, the number of settings
and meanings vary, but all the XBee RF modules can be configured with AT
commands.

All the firmware settings or commands are identified with two ASCII characters
and some applications and documents refer to them as AT settings or
AT commands.

The configuration process of the AT settings varies depending on the operating
mode of the XBee RF module.

	AT operating mode. In this mode, you must put the module in a special mode
called command mode, so it can receive AT commands. For more information about
configuring XBee RF modules working in AT operating mode, see
Application Transparent (AT) operating mode.

	API operating mode. To configure or execute AT commands when the XBee RF
module operates in API mode, you must generate an AT command API frame
containing the AT setting identifier and the value of that setting, and send
it to the XBee RF module. For more information about API frames, see
API frames.

Work with XBee classes

When working with the XBee Python Library, start with an XBee device object
that represents a physical module. A physical XBee device is the combination
of hardware and firmware. Depending on that combination, the device runs a
specific wireless communication protocol such as Zigbee, 802.15.4, DigiMesh,
Wi-Fi, or cellular. An XBeeDevice class represents the XBee module in the
API.

Most of the protocols share the same features and settings, but there are some
differences between them. For that reason, the XBee Python Library also
includes a set of classes that represent XBee devices running different
communication protocols. The XBee Python Library supports one XBee device
class per protocol, as follows:

[image: XBee Class hierarchy]

	XBee Zigbee device (ZigBeeDevice)

	XBee 802.15.4 device (Raw802Device)

	XBee DigiMesh device (DigiMeshDevice)

	XBee Point-to-multipoint device (DigiPointDevice)

	XBee IP devices (This is a non-instantiable class)

	XBee Cellular device (CellularDevice)

	XBee Wi-Fi device (WiFiDevice)

All these XBee device classes allow you to configure the physical XBee device,
communicate with the device, send data to other nodes on the network, receive
data from remote devices, and so on. Depending on the class, you may have
additional methods to execute protocol-specific features or similar methods.

To work with the API and perform actions involving the physical device, you
must instantiate a generic XBeeDevice object or one that is
protocol-specific. This documentation refers to the XBeeDevice object
generically when describing the different features, but they can be applicable
to any XBee device class.

Instantiate an XBee device

When you are working with the XBee Python Library, the first step is to
instantiate an XBee device object. The API works well using the generic
XBeeDevice class, but you can also instantiate a protocol-specific XBee
device object if you know the protocol your physical XBee device is running.

An XBee device is represented as either local or remote in the XBee
Python Library, depending upon how you communicate with the device.

Local XBee device

A local XBee device is the object in the library representing the device that
is physically attached to your PC through a serial or USB port. The classes
you can instantiate to represent a local device are listed in the following
table:

	Class

	Description

	XBeeDevice

	Generic object, protocol-independent

	ZigBeeDevice

	Zigbee protocol

	Raw802Device

	802.15.4 protocol

	DigiMeshDevice

	DigiMesh protocol

	DigiPointDevice

	Point-to-multipoint protocol

	CellularDevice

	Cellular protocol

	WiFiDevice

	Wi-Fi protocol

To instantiate a generic or protocol-specific XBee device, you need to provide
the following two parameters:

	Serial port name

	Serial port baud rate

Instantiate a local XBee device

[...]

xbee = XBeeDevice("COM1", 9600)

[...]

Remote XBee device

Remote XBee device objects represent remote nodes of the network. These are
XBee devices that are not attached to your PC but operate in the same network
as the attached (local) device.

Warning

When working with remote XBee devices, it is very important to understand
that you cannot communicate directly with them. You need to provide a local
XBee device operating in the same network that acts as bridge between your
serial port and the remote node.

Managing remote devices is similar to managing local devices, but with
limitations. You can configure them, handle their IO lines, and so on, in the
same way you manage local devices. Local XBee devices have several methods for
sending data to remote devices, but the remote devices cannot use these
methods because they are already remote. Therefore, a remote device cannot send
data to another remote device.

In the local XBee device instantiation, you can choose between instantiating a
generic remote XBee device object or a protocol-specific remote XBee device.
The following table lists the remote XBee device classes:

	Class

	Description

	RemoteXBeeDevice

	Generic object, protocol independent

	RemoteZigBeeDevice

	Zigbee protocol

	RemoteRaw802Device

	802.15.4 protocol

	RemoteDigiMeshDevice

	DigiMesh protocol

	RemoteDigiPointDevice

	Point-to-multipoint protocol

Note

XBee Cellular and Wi-Fi protocols do not support remote devices.

To instantiate a remote XBee device object, you need to provide the following
parameters:

	Local XBee device attached to your PC that serves as the communication
interface.

	64-bit address of the remote device.

RemoteRaw802Device objects can be also instantiated by providing the local
XBee device attached to your PC and the 16-bit address of the remote
device.

Instantiate a remote XBee device

[...]

local_xbee = XBeeDevice("COM1", 9600)
remote_xbee = RemoteXBeeDevice(local_xbee, XBee64BitAddress.from_hex_string("0013A20012345678"))

[...]

The local device must also be the same protocol for protocol-specific remote
XBee devices.

Open the XBee device connection

Before trying to communicate with the local XBee device attached to your PC,
you need to open its communication interface, which is typically a serial/USB
port. Use the open() method of the instantiated XBee device, and you can
then communicate and configure the device.

Remote XBee devices do not have an open method. They use a local XBee device
as the connection interface. If you want to perform any operation with a remote
XBee device you must open the connection of the associated local device.

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)

Open the device connection.
local_xbee.open()

[...]

The open() method may fail for the following reasons:

	All the possible errors are caught as XBeeException:

	If there is any problem with the communication, throwing a
TimeoutException.

	If the operating mode of the device is not API or API_ESCAPE,
throwing an InvalidOperatingModeException.

	There is an error writing to the XBee interface, or device is closed,
throwing a generic XBeeException.

The open() action performs some other operations apart from opening the
connection interface of the device. It reads the device information (reads
some sensitive data from it) and determines the operating mode of the device.

Use force_settings=True as open() method parameter, to reconfigure
the XBee serial settings (baud rate, data bits, stop bits, etc.) to those
specified in the XBee object constructor.

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)

Open the connection using constructor parameters: 9600 8N1.
This reconfigures the XBee if its serial settings do not match.
local_xbee.open(force_settings=True)

[...]

	Example: Recover XBee serial communication

	The XBee Python Library includes a sample application that displays how to recover the serial connection with a local XBee.
It can be located in the following path:

examples/configuration/RecoverSerialConnection/RecoverSerialConnection.py

Read device information

The read device information process reads the following parameters from the
local or remote XBee device and stores them inside. You can then access
parameters at any time, calling their corresponding getters.

	64-bit address

	16-bit address

	Node identifier

	Firmware version

	Hardware version

	IPv4 address (only for cellular and Wi-Fi modules)

	IMEI (only for cellular modules)

The read process is performed automatically in local XBee devices when
opening them with the open() method. If remote XBee devices cannot be
opened, you must use read_device_info() to read their device information.

Initialize a remote XBee device

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Instantiate a remote XBee device object.
remote_xbee = RemoteXBeeDevice(local_xbee, XBee64BitAddress.from_hex_string("0013A20040XXXXXX"))

Read the device information of the remote XBee device.
remote_xbee.read_device_info()

[...]

The read_device_info() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	If the operating mode of the device is not API or API_ESCAPE,
throwing an InvalidOperatingModeException.

	If the response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, or device is closed,
throwing a generic XBeeException.

Note

Although the readDeviceInfo method is executed automatically in local XBee
devices when they are open, you can issue it at any time to refresh the
information of the device.

Get device information

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Get the 64-bit address of the device.
addr_64 = device.get_64bit_addr()
Get the node identifier of the device.
node_id = device.get_node_id()
Get the hardware version of the device.
hardware_version = device.get_hardware_version()
Get the firmware version of the device.
firmware_version = device.get_firmware_version()

The read device information process also determines the communication protocol
of the local or remote XBee device object. This is typically something you
need to know beforehand if you are not using the generic XBeeDevice object.

However, the API performs this operation to ensure that the class you
instantiated is the correct one. So, if you instantiated a Zigbee device and
the open() process realizes that the physical device is actually a DigiMesh
device, you receive an XBeeDeviceException indicating the device mismatch.

You can retrieve the protocol of the XBee device from the object executing the
corresponding getter.

Get the XBee protocol

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Get the protocol of the device.
protocol = local_xbee.get_protocol()

Device operating mode

The open() process also reads the operating mode of the physical local
device and stores it in the object. As with previous settings, you can
retrieve the operating mode from the object at any time by calling the
corresponding getter.

Get the operating mode

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Get the operating mode of the device.
operating_mode = local_xbee.get_operating_mode()

Remote devices do not have an open() method, so you receive UNKNOWN
when retrieving the operating mode of a remote XBee device.

The XBee Python Library supports two operating modes for local devices:

	API

	API with escaped characters

This means that AT (transparent) mode is not supported by the API. So, if
you try to execute the open() method in a local device working in AT mode,
you get an XBeeException caused by an InvalidOperatingModeException.

Close the XBee device connection

You must call the close() method each time you finish your XBee
application. You can use this in the finally block or something similar.

If you don’t do this, you may have problems with the packet listener
being executed in a separate thread.

This method guarantees that the listener thread will be stopped and the
serial port will be closed.

Close the connection

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)

try:
 xbee.open()

 [...]

finally:
 if xbee is not None and xbee.is_open():
 xbee.close()

Note

Remote XBee devices cannot be opened, so they cannot be closed either. To close
the connection of a remote device you need to close the connection of the local
associated device.

Configure the XBee device

One of the main features of the XBee Python Library is the ability to configure
the parameters of local and remote XBee devices and execute some actions or
commands on them.

To apply a complete configuration profile see Apply an XBee profile.

Warning

The values set on the different parameters are not persistent through
subsequent resets unless you store those changes in the device. For more
information, see Write configuration changes.

Read and set common parameters

Local and remote XBee device objects provide a set of methods to get and set
common parameters of the device. Some of these parameters are saved inside the
XBee device object, and a cached value is returned when the parameter is
requested. Other parameters are read directly from the physical XBee device
when requested.

Cached parameters

Some parameters in an XBee device are used or requested frequently. To avoid
the overhead of those parameters being read from the physical XBee device
every time they are requested, they are saved inside the XBeeDevice
object being returned when the getters are called.

The following table lists cached parameters and their corresponding
getters:

	Parameter

	Method

	64-bit address

	get_64bit_addr()

	16-bit address

	get_16bit_addr()

	Node identifier

	get_node_id()

	Firmware version

	get_firmware_version()

	Hardware version

	get_hardware_version()

	Role

	get_role()

Local XBee devices read and save previous parameters automatically when
opening the connection of the device. In remote XBee devices, you must
issue the read_device_info() method to initialize the parameters.

You can refresh the value of those parameters (that is, read their values and
update them inside the XBee device object) at any time by calling the
read_device_info() method.

	Method

	Description

	read_device_info(init=False)

	Updates cache parameters reading them from the XBee: If init is True it reads all values, else only those not initialized.

Refresh cached parameters

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Refresh the cached values.
local_xbee.refresh_device_info()

[...]

The read_device_info() method may fail for the following reasons:

	There is a timeout getting any of the device parameters, throwing a
TimeoutException.

	The operating mode of the device is not API_MODE or ESCAPED_API_MODE,
throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an ATCommandException.

	There is an error writing to the XBee interface, or device is closed,
throwing a generic XBeeException.

All the cached parameters but the Node Identifier do not change; therefore,
they cannot be set. For the Node Identifier, there is a method within all the
XBee device classes that allows you to change it:

	Method

	Description

	set_node_id(String)

	Specifies the new Node Identifier of the device. This method configures the physical XBee device with the provided Node Identifier and updates the cached value with the one provided.

Non-cached parameters

The following non-cached parameters have their own methods to be
configured within the XBee device classes:

	Destination Address: This setting specifies the default 64-bit
destination address of a module that is used to report data generated by
the XBee device (that is, IO sampling data). This setting can be read and set.

	Method

	Description

	get_dest_address()

	Returns the 64-bit address of the device that data will be reported to.

	set_dest_address(XBee64BitAddress)

	Specifies the 64-bit address of the device where the data will be reported.

	PAN ID: This is the ID of the Personal Area Network the XBee device is
operating in. This setting can be read and set.

	Method

	Description

	get_pan_id()

	Returns a byte array containing the ID of the Personal Area Network where the XBee device is operating.

	set_pan_id(Bytearray)

	Specifies the value in byte array format of the PAN ID where the XBee device should work.

	Power level: This setting specifies the output power level of the XBee
device. This setting can be read and set.

	Method

	Description

	get_power_level()

	Returns a PowerLevel enumeration entry indicating the power level of the XBee device.

	set_power_level(PowerLevel)

	Specifies a PowerLevel enumeration entry containing the desired output level of the XBee device.

Configure non-cached parameters

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Set the destination address of the device.
dest_address = XBee64BitAddress.from_hex_string("0013A20040XXXXXX")
local_xbee.set_dest_address(dest_address)

Read the operating PAN ID of the device.
dest_addr = local_xbee.get_dst_address()

Read the operating PAN ID of the device.
pan_id = local_xbee.get_pan_id()

Read the output power level.
p_level = local_xbee.get_power_level()

[...]

All the previous getters and setters of the different options may fail for
the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

	Example: Common parameters

	The XBee Python Library includes a sample application that displays how to get and set common parameters. It can be located in the following path:

examples/configuration/ManageCommonParametersSample

Read, set and execute other parameters

If you want to read or set a parameter that does not have a custom getter or
setter within the XBee device object, you can do so. All the XBee device
classes (local or remote) include two methods to get and set any AT parameter,
and a third one to run a command in the XBee device.

Get a parameter

You can read the value of any parameter of an XBee device using the
get_parameter() method provided by all the XBee device classes. Use this
method to get the value of a parameter that does not have its getter method
within the XBee device object.

	Method

	Description

	get_parameter(String)

	Specifies the AT command (string format) to retrieve its value. The method returns the value of the parameter in a byte array.

Get a parameter from the XBee device

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Get the value of the Sleep Time (SP) parameter.
sp = local_xbee.get_parameter("SP")

[...]

The get_parameter() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE,
throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

	Example: Set and get parameters

	The XBee Python Library includes a sample application that displays how to get and set parameters using the methods explained previously. It can be located in the following path:

examples/configuration/SetAndGetParametersSample

Set a parameter

To set a parameter that does not have its own setter method, you can use the
set_parameter() method provided by all the XBee device classes.

	Method

	Description

	set_parameter(String, Bytearray)

	Specifies the AT command (String format) to be set in the device and a byte array containing the value of the parameter.

Set a parameter in the XBee device

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Configure the Node ID using the set_parameter() method.
local_xbee.set_parameter("NI", bytearray("Yoda", 'utf8'))

[...]

The set_parameter() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

	Example: Set and get parameters

	The XBee Python Library includes a sample application that displays how to get and set parameters using the methods explained previously. It can be located in the following path:

examples/configuration/SetAndGetParametersSample

Execute a command

There are other AT parameters that cannot be read or written. They are actions
that are executed by the XBee device. The XBee Python library has several
commands that handle most common executable parameters, but to run a parameter
that does not have a custom command, you can use the execute_command()
method provided by all the XBee device classes.

	Method

	Description

	execute_command(String)

	Specifies the AT command (String format) to be run in the device.

Run a command in the XBee device

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Run the apply changes command.
local_xbee.execute_command("AC")

[...]

The execute_command() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

Apply configuration changes

By default, when you perform any configuration on a local or remote XBee
device, the changes are automatically applied. However, there could be some
scenarios when you want to configure different settings or parameters of a
device and apply the changes at the end when everything is configured. For
that purpose, the XBeeDevice and RemoteXBeeDevice objects provide some
methods that allow you to manage when to apply configuration changes.

	Method

	Description

	Notes

	enable_apply_changes(Boolean)

	Specifies whether the changes on settings and parameters are applied when set.

	The apply configuration changes flag is enabled by default.

	is_apply_changes_enabled()

	Returns whether the XBee device is configured to apply parameter changes when they are set.

	

	apply_changes()

	Applies the changes on parameters that were already set but are pending to be applied.

	This method is useful when the XBee device is configured to not apply changes when they are set.

Apply configuration changes

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Check if device is configured to apply changes.
apply_changes_enabled = local_xbee.is_apply_changes_enabled()

Configure the device not to apply parameter changes automatically.
if apply_changes_enabled:
 local_xbee.enable_apply_changes(False)

Set the PAN ID of the XBee device to BABE.
local_xbee.set_pan_id(utils.hex_string_to_bytes("BABE"))

Perform other configurations.
[...]

Apply changes.
local_xbee.apply_changes()

[...]

The apply_changes() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

Write configuration changes

If you want configuration changes performed in an XBee device to persist
through subsequent resets, you need to write those changes in the device.
Writing changes means that the parameter values configured in the device are
written to the non-volatile memory of the XBee device. The module loads the
parameter values from non-volatile memory every time it is started.

The XBee device classes (local and remote) provide a method to write (save)
the parameter modifications in the XBee device memory so they persist through
subsequent resets: write_changes().

Write configuration changes

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Set the PAN ID of the XBee device to BABE.
local_xbee.set_pan_id(utils.hex_string_to_bytes("BABE"))

Perform other configurations.
[...]

Apply changes.
local_xbee.apply_changes()

Write changes.
local_xbee.write_changes()

[...]

The write_changes() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

Reset the device

It may be necessary to reset the XBee device when the system is not
operating properly or you are initializing the system. All the XBee
device classes of the XBee API provide the reset() method to perform a
software reset on the local or remote XBee module.

In local modules, the reset() method blocks until a confirmation from the
module is received, which usually takes one or two seconds. Remote modules do
not send any kind of confirmation, so the method does not block when resetting
them.

Reset the module

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Reset the module.
local_xbee.reset()

[...]

The reset() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

	Example: Reset module

	The XBee Python Library includes a sample application that shows you how to perform a reset on your XBee device. The example is located in the following path:

examples/configuration/ResetModuleSample

Configure Wi-Fi settings

Unlike other protocols such as Zigbee or DigiMesh where devices are connected to
each other, the XBee Wi-Fi protocol requires that the module is connected to
an access point in order to communicate with other TCP/IP devices.

This configuration and connection with access points can be done using
applications such as XCTU; however, the XBee Python Library includes a set of
methods to configure the network settings, scan access points, and connect to
an access point.

	Example: Configure Wi-Fi settings and connect to an access point

	The XBee Python Library includes a sample application that demonstrates how to configure the network settings of a Wi-Fi device and connect to an access point. You can locate the example in the following path:

examples/configuration/ConnectToAccessPointSample

Configure IP addressing mode

Before connecting your Wi-Fi module to an access point, you must decide how
to configure the network settings using the IP addressing mode option. The
supported IP addressing modes are contained in an enumerator called
IPAddressingMode. It allows you to choose between:

	DHCP

	STATIC

	Method

	Description

	set_ip_addressing_mode(IPAddressingMode)

	Sets the IP addressing mode of the Wi-Fi module. Depending on the provided mode, network settings are configured differently:

	DHCP: Network settings are assigned by a server.

	STATIC: Network settings must be provided manually one by one.

Configure IP addressing mode

[...]

Instantiate an XBee device object.
local_xbee = WiFiDevice("COM1", 9600)
local_xbee.open()

Configure the IP addressing mode to DHCP.
local_xbee.set_ip_addressing_mode(IPAddressingMode.DHCP)

Save the IP addressing mode.
local_xbee.write_changes()

[...]

The set_ip_addressing_mode() method may fail for the following reasons:

	There is a timeout setting the IP addressing parameter, throwing a
TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

Configure IP network settings

Like any TCP/IP protocol device, the XBee Wi-Fi modules have the IP address,
subnet mask, default gateway and DNS settings that you can get at any time
using the XBee Python Library.

Unlike some general configuration settings, these parameters are not saved
inside the WiFiDevice object. Every time you request the parameters, they are
read directly from the Wi-Fi module connected to the computer. The following
parameters are used in the configuration of the TCP/IP protocol:

	Parameter

	Method

	IP address

	get_ip_address()

	Subnet mask

	get_mask_address()

	Gateway IP

	get_gateway_address()

	DNS address

	get_dns_address()

Read IP network settings

[...]

Instantiate an XBee device object.
local_xbee = WiFiDevice("COM1", 9600)
local_xbee.open()

Configure the IP addressing mode to DHCP.
local_xbee.set_ip_addressing_mode(IPAddressingMode.DHCP)

Connect to access point with SSID 'My SSID' and password 'myPassword'
local_xbee.connect_by_ssid("My SSID", "myPassword")

Display the IP network settings that were assigned by the DHCP server.
print("- IP address: %s" % local_xbee.get_ip_address())
print("- Subnet mask: %s" % local_xbee.get_mask_address())
print("- Gateway IP address: %s" % local_xbee.get_gateway_address())
print("- DNS IP address: %s" % local_xbee.get_dns_address())

[...]

You can also change those settings when the module has static IP configuration
with the following methods:

	Parameter

	Method

	IP address

	set_ip_addr()

	Subnet mask

	set_mask_address()

	Gateway IP

	set_gateway_address()

	DNS address

	set_dns_address()

Configure Bluetooth settings

Newer XBee3 devices have a Bluetooth® Low Energy (BLE) interface that enables
you to connect your XBee device to another device such as a cellphone. The XBee
device classes (local and remote) offer some methods that allow you to:

	Enable and disable Bluetooth

	Configure the Bluetooth password

	Read the Bluetooth MAC address

Enable and disable Bluetooth

Before connecting to your XBee device over Bluetooth Low Energy, you first have
to enable this interface. The XBee Python Library provides a couple of methods
to enable or disable this interface:

	Method

	Description

	enable_bluetooth()

	Enables the Bluetooth Low Energy interface of your XBee device.

	disable_bluetooth()

	Disables the Bluetooth Low Energy interface of your XBee device.

Enabling and disabling the Bluetooth interface

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Enable the Bluetooth interface.
local_xbee.enable_bluetooth()

[...]

Disable the Bluetooth interface.
local_xbee.disable_bluetooth()

[...]

These methods may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

Configure the Bluetooth password

Once you have enabled the Bluetooth Low Energy, you must configure the password
you will use to connect to the device over that interface (if not previously
done). For this purpose, the API offers the following method:

	Method

	Description

	update_bluetooth_password(String)

	Specifies the new Bluetooth password of the XBee device.

Configuring or changing the Bluetooth password

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

new_password = "myBluetoothPassword" # Do not hard-code it in the app!

Configure the Bluetooth password.
local_xbee.update_bluetooth_password(new_password)

[...]

The update_bluetooth_password method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

Warning

Never hard-code the Bluetooth password in the code, a malicious person could
decompile the application and find it out.

Read the Bluetooth MAC address

Another method that the XBee Java Library provides is
get_bluetooth_mac_addr(), which returns the EUI-48 Bluetooth MAC address of
your XBee device in a format such as “00112233AABB”.

Reading the Bluetooth MAC address

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

print("The Bluetooth MAC address is: %s" % local_xbee.get_bluetooth_mac_addr())

[...]

The get_bluetooth_mac_addr method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

Discover the XBee network

Several XBee modules working together and communicating with each other form a
network. XBee networks have different topologies and behaviors depending on the
protocol of the XBee nodes that form it.

The XBee Python Library includes a class, called XBeeNetwork, that
represents the set of nodes forming the actual XBee network. This class allows
you to perform some operations related to the nodes.

Note

There are XBeeNetwork subclasses for different protocols which correspond
to the XBeeDevice subclasses:

	XBee Zigbee network (ZigBeeNetwork)

	XBee 802.15.4 network (Raw802Network)

	XBee DigiMesh network (DigiMeshNetwork)

	XBee DigiPoint network (DigiPointNetwork)

Warning

Because XBee Cellular and Wi-Fi module protocols are directly connected to the
Internet and do not share a connection, these protocols do not support XBee
networks.

The XBee network object can be retrieved from a local XBee after it has been
opened with the method get_network().

Retrieve the XBee network

[...]

Instantiate a local XBee object.
xbee = XBeeDevice("COM1", 9600)
xbee.open()

Get the network.
xnet = xbee.get_network()
[...]

A main feature of the XBeeNetwork class is the ability to discover the XBee
nodes that form the network and store them in a internal list. The
XBeeNetwork object provides the following operations related to the XBee
discovery feature:

	Discovery types

	Deep discovery

	Standard discovery

	Discover the network

	Access discovered nodes

	Access connections between nodes

	Add and remove nodes manually

	Listen to network modification events

Discovery types

There are two different types of discovery processes available in this API:

	Deep discovery finds network nodes and connections between them
(including quality) even if they are sleeping. It also allows to establish a
number of rounds to continually explore the network.

	Standard discovery only identifies network nodes. It may not
discover sleeping nodes.

See Discover the network to know how to launch a deep or standard discovery
process.

Note

In 802.15.4, both (deep and standard discovery) are the same and none discover
the node connections nor their quality. The difference is the possibility of
running more than one round using a deep discovery.

Deep discovery

This discovery process finds network nodes and their connections including the
quality. It asks each node for its neighbors and retrieves information about
the signal quality between them.

This mechanism also discovers sleeping nodes.

It is possible to configure the discovery process to run a specific number of
times or even endlessly. Each discovery round is called a scan.

Deep discovery modes

This mode establishes the way the network deep discovery process is performed.
Available modes are defined in the NeighborDiscoveryMode enumeration:

	Cascade (NeighborDiscoveryMode.CASCADE): The discovery of the
neighbors of a node is requested once the previous request finishes. This
means that just one discovery process is running at the same time.
This mode is recommended for large networks, it might be a slower method but
it generates less traffic than ‘Flood’.

	Flood (NeighborDiscoveryMode.FLOOD): The discovery of the neighbors
of a node is requested when the node is found in the network. This means that
several discovery processes might be running at the same time.
This might be a faster method, but it generates a lot of traffic and might
saturate the network.

The default discovery mode is Cascade. You can configure the discovery mode
with the method set_deep_discovery_options(NeighborDiscoveryMode, Boolean).

Configure the deep discovery process

Before discovering the nodes of a network, you can configure the settings of
the process. The API provides two methods to configure the discovery timeout
and discovery options.

	Method

	Description

	set_deep_discovery_timeouts(Float, Float, Float)

	Configures the deep discovery timeouts:

	node_timeout (Float, optional): Maximum duration in seconds of the discovery process used to find neighbors of a node.

	time_bw_requests (Float, optional): Time to wait between node neighbors requests (in seconds)

	For cascade: Time to wait after completion of the a node neighbor discovery process and before next node request.

	For flood: Minimum time to wait between each neighbor request.

	time_bw_scans (Float, optional): Time to wait before starting a new network scan (in seconds)

	set_deep_discovery_options(NeighborDiscoveryMode, Boolean)

	Configures the deep discovery options:

	deep_mode (NeighborDiscoveryMode, optional): Neighbor discovery mode, the way to perform the network discovery process. See :ref:`deepDiscoveryMode`

	del_not_discovered_nodes_in_last_scan (Boolean, optional): True to remove nodes from the network if they were not discovered in the last scan.

Configure deep discovery timeout and options

[...]

Instantiate a local XBee object.
xbee = XBeeDevice(...)

[...]

Get the network.
xnet = xbee.get_network()

Configure the discovery options.
xnet.set_deep_discovery_options(deep_mode=NeighborDiscoveryMode.CASCADE,
 del_not_discovered_nodes_in_last_scan=False)

Configure the discovery timeout, in SECONDS.
xnet.set_deep_discovery_timeout(node_timeout=30, time_bw_requests=10,
 time_bw_scans=20)

[...]

Standard discovery

This type of discovery process only finds network nodes, it does not include
information about the quality of the connections between them.

XBee nodes sleeping may not respond to this request, this means, it may not be
found using this discovery process type.

The discovery process runs until the configured timeout expires or, in case of
802.15.4, until the ‘end’ packet is received (see
Configure the standard discovery process)

Configure the standard discovery process

Before discovering the nodes of a network, you can configure the settings of
the process. The API provides two methods to configure the discovery timeout
and discovery options. These methods set the values in the radio module.

	Method

	Description

	set_discovery_timeout(Float)

	Configures the discovery timeout (NT parameter) with the given value in seconds.

	set_discovery_options(Set<DiscoveryOptions>)

	Configures the discovery options (NO parameter) with the set of options. The set of discovery options contains the different DiscoveryOptions configuration values that are applied to the local XBee module when performing the discovery process. These options are the following:

	DiscoveryOptions.APPEND_DD: Appends the device type identifier (DD) to the information retrieved when a node is discovered. This option is valid for DigiMesh, Point-to-multipoint (Digi Point) and Zigbee protocols.

	DiscoveryOptions.DISCOVER_MYSELF: The local XBee is returned as a discovered node. This option is valid for all protocols.

	DiscoveryOptions.APPEND_RSSI: Appends the RSSI value of the last hop to the information retrieved when a node is discovered. This option is valid for DigiMesh and Point-to-multipoint (Digi Point) protocols.

Configure discovery timeout and options

[...]

Instantiate a local XBee object.
xbee = XBeeDevice(...)

[...]

Get the network.
xnet = xbee.get_network()

Configure the discovery options.
xnet.set_discovery_options({DiscoveryOptions.DISCOVER_MYSELF,
 DiscoveryOptions.APPEND_DD})

Configure the discovery timeout, in SECONDS.
xnet.set_discovery_timeout(25)

[...]

Discover the network

The XBeeNetwork object discovery process allows you to discover and store
all the XBee nodes that form the network. The XBeeNetwork object provides a
method for executing a discovery process of the selected type:

	Method

	Description

	start_discovery_process(Boolean, Integer)

	Starts the discovery process, saving the remote XBee found inside the XBeeNetwork object.

	deep (Boolean, optional): True for a deep network scan, False otherwise. See Discovery types.

	n_deep_scans (Integer, optional): Number of discovery scans to perform. Only for deep discovery.

When a discovery process has started, you can monitor and manage it using the
following methods provided by the XBeeNetwork object:

	Method

	Description

	is_discovery_running()

	Returns whether or not the discovery process is running.

	stop_discovery_process()

	Stops the discovery process that is taking place.

Warning

For a standard discovery and depending on your hardware and firmware version,
although you call the stop_discovery_process method, DigiMesh and
DigiPoint modules are blocked until the configured discovery time has elapsed.
This means, if you try to get or set any parameter during that time, a
TimeoutException may be thrown.
This does not occur for:

	XBee 3 modules running DigiMesh firmware 300B or higher.

	XBee SX modules running firmware A008 or higher, 9008 or higher.

Once the process has finished, you can retrieve the list of nodes that form
the network using the get_devices() method provided by the network object.
If the discovery process is running, this method returns None.

All discovered XBee nodes are stored in the XBeeNetwork instance.

Discover the network (deep)

[...]

Instantiate a local XBee object.
xbee = XBeeDevice(...)

Get the XBee network object from the local XBee.
xnet = xbee.get_network()

Start the discovery process and wait for it to be over.
xnet.start_discovery_process(deep=True, n_deep_scans=1)
while xnet.is_discovery_running():
 time.sleep(0.5)

Get the list of the nodes in the network.
nodes = xnet.get_devices()

[...]

Discover the network (standard)

[...]

Instantiate a local XBee object.
xbee = XBeeDevice(...)

Get the XBee network object from the local XBee.
xnet = xbee.get_network()

Start the discovery process and wait for it to be over.
xnet.start_discovery_process()
while xnet.is_discovery_running():
 time.sleep(0.5)

Get the list of the nodes in the network.
nodes = xnet.get_devices()

[...]

Discover the network with an event notification

The API also allows you to add a discovery event listener to notify when:

	New nodes are discovered.

	The process finishes.

	An error occurs during the process.

Notify new discovered nodes

To get notifications when nodes are discovered, you must provide a callback
before starting the discovery process using the
add_device_discovered_callback() method.

Add a callback to device discovered event

[...]

Instantiate a local XBee object.
xbee = XBeeDevice(...)

Define the device discovered callback.
def callback(remote):
 [...]

Get the XBee network object from the local XBee.
xnet = xbee.get_network()

Add the device discovered callback.
xnet.add_device_discovered_callback(callback)

Start the discovery process.
xnet.start_discovery_process(deep=True)

[...]

Every time a new remote XBee node is discovered all registered device discovered
callbacks are executed, even if the discovered node is already in the node list
of the network. Each callback receives a RemoteXBeeDevice as argument, with
all the available information. Unknown parameters of this remote node are None.

Notify discovery finishes

To get notifications when a discovery process finishes, you must provide a
callback before starting the discovery process using the
add_discovery_process_finished_callback() method.

Add a callback to discovery process finished event

[...]

Instantiate a local XBee object.
xbee = XBeeDevice(...)

Define the discovery process finished callback.
def callback(status):
 if status == NetworkDiscoveryStatus.ERROR_READ_TIMEOUT:
 [...]

Add the discovery process finished callback.
xnet.add_discovery_process_finished_callback(callback)

[...]

When a discovery process finishes (either successfully or with an error), all
registered discovery finished callbacks are executed. This method receives a
NetworkDiscoveryStatus object as parameter. This status represents the
result of the network discovery process.

	Example: Device discovery

	The XBee Python Library includes a sample application that displays how to perform a network discovery using a callback. It can be located in the following path:

examples/network/DiscoverDevicesSample/DiscoverDevicesSample.py

Discover specific nodes

The XBeeNetwork object also provides methods to discover specific nodes
within a network. This may be useful, for example, if you only need to work
with a particular remote node.

	Method

	Description

	discover_device(String)

	Specify the node identifier of the XBee to find. Returns the remote XBee whose node identifier equals the one provided or None if the node was not found. In the case of more than one coincidences, it returns the first one.

	discover_devices([String])

	Specify the node identifiers of the XBee nodes to find. Returns a list with the remote XBee nodes whose node identifiers equal those provided.

Note

These methods are blocking, so the application will block until the nodes are
found or the configured timeout expires.

Note

These methods may not discover sleeping nodes.

Discover specific nodes

[...]

Instantiate a local XBee object.
xbee = XBeeDevice(...)

[...]

Get the XBee network object from the local XBee.
xnet = xbee.get_network()

Discover the remote node whose node ID is ‘SOME NODE ID’.
remote = xnet.discover_device("SOME NODE ID")

Discover the remote nodes whose node IDs are ‘ID 2’ and ‘ID 3’.
remote_list = xnet.discover_devices(["ID 2", "ID 3"])

[...]

Access discovered nodes

Once a discovery process finishes, the discovered nodes are saved inside the
XBeeNetwork object. You can get a list of discovered nodes at any time
using the get_devices().

This is the list of methods provided by the XBeeNetwork object that allow
you to retrieve already discovered nodes:

	Method

	Description

	get_devices()

	Returns a copy of the list of remote XBee nodes. If any node is added to the network after calling this method, the returned list is not updated.

	get_device_by_64(XBee64BitAddress)

	Returns the remote node already in the network whose 64-bit address matches the given one or None if the node is not in the network.

	get_device_by_16(XBee16BitAddress)

	Returns the remote node already in the network whose 16-bit address matches the given one or None if the node is not in the network.

	get_device_by_node_id(String)

	Returns the remote node already in the network whose node identifier matches the given one or None if the node is not in the network.

Access discovered nodes

[...]

Instantiate a local XBee object.
xbee = XBeeDevice(...)

Get the XBee network object from the local XBee.
xnet = xbee.get_network()

[...]

x64addr = XBee64BitAddress(...)
node_id = "SOME_XBEE"

Discover a node based on a 64-bit address.
spec_node = xnet.get_device_by_64(x64addr)
if spec_node is None:
 print("Device with 64-bit addr: %s not found" % str(x64addr))

Discover a node based on a Node ID.
spec_node = xnet.get_device_by_node_id(node_id)
if spec_node is not None:
 print("Device with node id: %s not found" % node_id)

[...]

Access connections between nodes

A deep discovery process stores the connections between found nodes inside the
XBeeNetwork object. You can get these connections using the
get_connections() method.

This is the list of methods provided by the XBeeNetwork object that allow
you to retrieve the connections between nodes:

	Method

	Description

	get_connections()

	Returns a copy of the network connections. If any connection is added after the execution of this method, returned list is not updated.

	get_node_connections(AbstractXBeeDevice)

	Returns a copy of the connections with the provided node in one of its ends. If any connection is added after the execution of this method, returned list is not updated.

Warning

A deep discovery process must be performed to have network connections
available.

Each Connection object contains:

	The two nodes between this connection is established.

	The link quality of the connection in both directions (LinkQuality):

	From node A to node B

	From node B to node A

	The connection status in both directions (RouteStatus), active, inactive,
etc:

	From node A to node B

	From node B to node A

Access network connections

[...]

Instantiate a local XBee object.
xbee = XBeeDevice(...)

Get the XBee network object from the local XBee.
xnet = xbee.get_network()

[...]

Start the discovery process and wait for it to be over.
xnet.start_discovery_process(deep=True, n_deep_scans=1)
while xnet.is_discovery_running():
 time.sleep(0.5)

print("%s" % '\n'.join(map(str, xnet.get_connections())))

[...]

Add and remove nodes manually

This section provides information on methods for adding, removing, and clearing
the list of remote XBee nodes.

Note

These methods modifies the list of nodes inside the XBeeNetwork object,
but do not change the real XBee network. They do not trigger a node join
event, a disassociation, or a network reset.

Manually add nodes to the XBee network

There are several methods for adding remote XBee nodes to an XBee network, in
addition to the discovery methods provided by the XBeeNetwork object.

	Method

	Description

	add_remote(RemoteXBeeDevice)

	Specifies the remote XBee to add to the list of remote nodes of the XBeeNetwork object.

Notice that this operation does not join the remote XBee to the network; it just adds that node to the list. The node is added to the node list, but may not be physically in the same network.

Note that if the given node already exists in the network, it will not be added, but the node in the current network will be updated with the known parameters of the given node.

This method returns the same node with its information updated. If the node was not in the list yet, this method returns it without changes.

	add_remotes([RemoteXBeeDevice])

	Specifies the remote XBee nodes to add to the list of remote nodes of the XBeeNetwork object.

Notice that this operation does not join the remote XBee nodes to the network; it just adds those nodes to the list. Nodes are added to the node list but may not be physically in the same network.

Add a remote node manually to the network

[...]

Instantiate a local XBee object.
xbee = XBeeDevice(...)

[...]

Get the XBee network object from the local XBee.
xnet = xbee.get_network()

Get the remote XBee node.
remote = xnet.get_remote(...)

Add the remote node to the network.
xnet.add_remote(remote)

[...]

Remove an existing node from the XBee network

It is also possible to remove a remote XBee from the list of remote XBee nodes
of the XBeeNetwork object by calling the following method.

	Method

	Description

	remove_device(RemoteXBeeDevice)

	Specifies the remote XBee to remove from the list of remote nodes of the XBeeNetwork object. If the node was not contained in the list, the method will raise a ValueError.

Notice that this operation does not disassociates the remote XBee from the actual XBee network; it just deletes the node from the network object list. However, next time you perform a discovery, it could be added again automatically.

Remove a remote node from the network

[...]

Instantiate a local XBee object.
xbee = XBeeDevice(...)

[...]

Get the XBee network object from the local XBee.
xnet = xbee.get_network()

Get the remote XBee and add it to the network.
remote = xnet.get_remote(...)
xnet.add_remote(remote)

Remove the remote node from the network.
xnet.remove_device(remote)

[...]

Clear the list of remote XBee nodes from the XBee network

The XBeeNetwork object also includes a method to clear the list of remote
nodes. This can be useful when you want to perform a clean discovery, cleaning
the list before calling the discovery method.

	Method

	Description

	clear()

	Removes all the devices from the list of remote nodes of the network.

Notice that this does not imply dismantling the XBee the actual XBee network; it just clears the list of nodes in the XBeeNetwork object. Next time you perform a discovery, the list could be filled with the found remote XBee nodes.

Clear the list of remote nodes

[...]

Instantiate a local XBee object.
xbee = XBeeDevice(...)

[...]

Get the XBee network object from the local XBee.
xnet = xbee.get_network()

Discover XBee devices in the network and add them to the list of nodes.
[...]

Clear the list of nodes.
xnet.clear()

[...]

Listen to network modification events

When a discovery process finds new nodes that were not in the XBee network
list (XBeeNetwork or a subclass), they are stored generating a modification
event in the XBee network object. A manual removal or addition of an XBee to the
network also launches modification events.

The XBee library notifies about these network list modification events to
registered callbacks. These events inform about the following network
modifications:

	Addition of new nodes

	Removal of existing nodes

	Update of nodes

	Network clear

To receive any of these modification events you must provide a callback using
the add_network_modified_callback() method.
This callback must follow the format:

def my_callback(event_type, reason, node):
 """
 Callback to notify about a new network modification event.

 Args:
 event_type (:class:`.NetworkEventType`): The type of modification.
 reason (:class:`.NetworkEventReason`): The cause of the modification.
 node (:class:`.AbstractXBeeDevice`): The node involved in the
 modification (``None`` for ``NetworkEventType.CLEAR`` events)
 """
 [...]

When a modification in the network list occurs, all network modification
callbacks are executed. Each callback receives the following arguments:

	The type of network modification as a NetworkEventType
(addition, removal, update or clear)

	The modification cause as a NetworkEventReason (discovered, discovered as
neighbor, received message, hop of a network route, refresh node information,
firmware update, manual)

	The XBee node, local or remote, (AbstractXBeeDevice) involved in the
modification (None for a clear event type)

Register a network modifications callback

[...]

Define the network modified callback.
def cb_network_modified(event_type, reason, node):
 print(" >>>> Network event:")
 print(" Type: %s (%d)" % (event_type.description, event_type.code))
 print(" Reason: %s (%d)" % (reason.description, reason.code))

 if not node:
 return

 print(" Node:")
 print(" %s" % node)

xnet = xbee.get_network()

Add the network modified callback.
xnet.add_network_modified_callback(cb_network_modified)

[...]

Network events

The NetworkEventType class enumerates the possible network cache
modification types:

	Addition (NetworkEventType.ADD): A new XBee has just been added to the
network cache.

	Deletion (NetworkEventType.DEL): An XBee in the network cache has just
been removed.

	Update (NetworkEventType.UPDATE): An existing XBee in the network cache
has just been updated. This means any of its parameters (node id, 16-bit
address, role, …) changed.

	Clear (NetworkEventType.CLEAR): The network cached has just been cleared.

As well, NetworkEventReason enumerates the network modification causes:

	NetworkEventReason.DISCOVERED: The node was added/removed/updated during
a standard discovery process.

	NetworkEventReason.NEIGHBOR: The node was added/removed/updated during
a deep discovery process.

	NetworkEventReason.RECEIVED_MSG: The node was added/updated after
receiving a message from it.

	NetworkEventReason.ROUTE: The node was added/updated as a hop of a
received network route.

	NetworkEventReason.READ_INFO: The node was updated after refreshing its
information.

	NetworkEventReason.FIRMWARE_UPDATE: The node was updated/removed, or the
network cleared after a firmware update.

	NetworkEventReason.MANUAL: The node was manually added/updated/removed, or
the network cleared.

For example, if, during a deep discovery process, a new node is found and:

	it is not in the network list yet, the addition triggers a new event with:

	type: NetworkEventType.ADD

	cause: NetworkEventReason.NEIGHBOR

	it is already in the network list but its node identifier is updated, a new
event is raised with:

	type: NetworkEventType.UPDATE

	cause: NetworkEventReason.NEIGHBOR

	it is already in the network and nothing has changed, no event is triggered.

	Example: Network modifications

	The XBee Python Library includes a sample application that displays how to receive network modification events. It can be located in the following path:

examples/network/NetworkModificationsSample/NetworkModificationsSample.py

Communicate with XBee devices

The XBee Python Library provides the ability to communicate with remote nodes in
the network, IoT devices and other interfaces of the local device. The
communication between XBee devices in a network involves the transmission and
reception of data.

Warning

Communication features described in this topic and sub-topics are only
applicable for local XBee devices. Remote XBee device classes do not include
methods for transmitting or receiving data.

Send and receive data

XBee modules can communicate with other devices that are on the same network and
use the same radio frequency. The XBee Python Library provides several methods
to send and receive data between the local XBee device and any remote on the
network.

	Send data

	Receive data

Send data

A data transmission operation sends data from your local (attached) XBee device
to a remote device on the network. The operation sends data in API frames, but
the XBee Python library abstracts the process so you only need to specify the
device you want to send data to and the data itself.

You can send data either using a unicast or broadcast transmission. Unicast
transmissions route data from one source device to one destination device,
whereas broadcast transmissions are sent to all devices in the network.

Send data to one device

Unicast transmissions are sent from one source device to another destination
device. The destination device could be an immediate neighbor of the source,
or it could be several hops away.

Data transmission can be synchronous or asynchronous, depending on the method
used.

Synchronous operation

This type of operation is blocking. This means the method waits until the
transmit status response is received or the default timeout is reached.

The XBeeDevice class of the API provides the following method to perform a
synchronous unicast transmission with a remote node of the network:

	Method

	Description

	send_data(RemoteXBeeDevice, String or Bytearray, Integer)

	Specifies the remote XBee destination object, the data to send and optionally the transmit options.

Protocol-specific classes offer additional synchronous unicast transmission
methods apart from the one provided by the XBeeDevice object:

	XBee class

	Method

	Description

	ZigBeeDevice

	send_data_64_16(XBee64BitAddress, XBee16BitAddress, String or Bytearray, Integer)

	Specifies the 64-bit and 16-bit destination addresses, the data to send and optionally the transmit options. If you do not know the 16-bit address, use the XBee16BitAddress.UNKNOWN_ADDRESS.

	Raw802Device

	send_data_16(XBee16BitAddress, String or Bytearray, Integer)

	Specifies the 16-bit destination address, the data to send and optionally the transmit options.

	send_data_64(XBee64BitAddress, String or Bytearray, Integer)

	Specifies the 64-bit destination address, the data to send and optionally the transmit options.

	DigiMeshDevice

	send_data_64(XBee64BitAddress, String or Bytearray, Integer)

	Specifies the 64-bit destination address, the data to send and optionally the transmit options.

	DigiPointDevice

	send_data_64_16(XBee64BitAddress, XBee16BitAddress, String or Bytearray, Integer)

	Specifies the 64-bit and 16-bit destination addresses, the data to send and optionally the transmit options. If you do not know the 16-bit address, use the XBee16BitAddress.UNKNOWN_ADDRESS.

Send data synchronously

[...]

Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

Instantiate a remote XBee device object.
remote_device = RemoteXBeeDevice(device, XBee64BitAddress.from_hex_string("0013A20040XXXXXX"))

Send data using the remote object.
device.send_data(remote_device, "Hello XBee!")

[...]

The previous methods may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API or ESCAPED_API_MODE,
throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

The default timeout to wait for the send status is two seconds. However, you
can configure the timeout using the get_sync_ops_timeout and
set_sync_ops_timeout methods of an XBee device class.

Get/set the timeout for synchronous operations

[...]

NEW_TIMEOUT_FOR_SYNC_OPERATIONS = 5 # 5 seconds

device = [...]

Retrieving the configured timeout for synchronous operations.
print("Current timeout: %d seconds" % device.get_sync_ops_timeout())

[...]

Configuring the new timeout (in seconds) for synchronous operations.
device.set_sync_ops_timeout(NEW_TIMEOUT_FOR_SYNC_OPERATIONS)

[...]

	Example: Synchronous unicast transmission

	The XBee Python Library includes a sample application that shows you how to send data to another XBee device on the network. The example is located in the following path:

examples/communication/SendDataSample

Asynchronous operation

Transmitting data asynchronously means that your application does not block
during the transmit process. However, you cannot ensure that the data was
successfully sent to the remote device.

The XBeeDevice class of the API provides the following method to perform
an asynchronous unicast transmission with a remote node on the network:

	Method

	Description

	send_data_async(RemoteXBeeDevice, String or Bytearray, Integer)

	Specifies the remote XBee destination object, the data to send and optionally the transmit options.

Protocol-specific classes offer some other asynchronous unicast transmission
methods in addition to the one provided by the XBeeDevice object:

	XBee class

	Method

	Description

	ZigBeeDevice

	send_data_async_64_16(XBee64BitAddress, XBee16BitAddress, String or Bytearray, Integer)

	Specifies the 64-bit and 16-bit destination addresses, the data to send and optionally the transmit options. If you do not know the 16-bit address, use the XBee16BitAddress.UNKNOWN_ADDRESS.

	Raw802Device

	send_data_async_16(XBee16BitAddress, String or Bytearray, Integer)

	Specifies the 16-bit destination address, the data to send and optionally the transmit options.

	send_data_async_64(XBee64BitAddress, String or Bytearray, Integer)

	Specifies the 64-bit destination address, the data to send and optionally the transmit options.

	DigiMeshDevice

	send_data_async_64(XBee64BitAddress, String or Bytearray, Integer)

	Specifies the 64-bit destination address, the data to send and optionally the transmit options.

	DigiPointDevice

	send_data_async_64_16(XBee64BitAddress, XBee16BitAddress, String or Bytearray, Integer)

	Specifies the 64-bit and 16-bit destination addresses, the data to send and optionally the transmit options. If you do not know the 16-bit address, use the XBee16BitAddress.UNKNOWN_ADDRESS.

Send data asynchronously

[...]

Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

Instantiate a remote XBee device object.
remote_device = RemoteXBeeDevice(device, XBee64BitAddress.from_hex_string("0013A20040XXXXXX"))

Send data using the remote object.
device.send_data_async(remote_device, "Hello XBee!")

[...]

The previous methods may fail for the following reasons:

	All the possible errors are caught as an XBeeException:

	The operating mode of the device is not API or ESCAPED_API_MODE,
throwing an InvalidOperatingModeException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

	Example: Asynchronous unicast transmission

	The XBee Python Library includes a sample application that shows you how to send data to another XBee device asynchronously. The example is located in the following path:

examples/communication/SendDataAsyncSample

Send data to all devices of the network

Broadcast transmissions are sent from one source device to all the other
devices on the network.

All the XBee device classes (generic and protocol specific) provide the same
method to send broadcast data:

	Method

	Description

	send_data_broadcast(String or Bytearray, Integer)

	Specifies the data to send and optionally the transmit options.

Send broadcast data

[...]

Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

Send broadcast data.
device.send_data_broadcast("Hello XBees!")

[...]

The send_data_broadcast method may fail for the following reasons:

	Transmit status is not received in the configured timeout, throwing a
TimeoutException exception.

	Error types catch as XBeeException:

	The operating mode of the device is not API or ESCAPED_API_MODE,
throwing an InvalidOperatingModeException.

	The transmit status is not SUCCESS, throwing a TransmitException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

	Example: Broadcast transmission

	The XBee Python Library includes a sample application that shows you how to send data to all the devices on the network (broadcast). The example is located in the following path:

examples/communication/SendBroadcastDataSample

Receive data

The data reception operation allows you to receive and handle data sent by
other remote nodes of the network.

There are two different ways to read data from the device:

	Polling for data. This mechanism allows you to read (ask) for new data in
a polling sequence. The read method blocks until data is received or until a
configurable timeout has expired.

	Data reception callback. In this case, you must register a listener that
executes a callback each time new data is received by the local XBee device
(that is, the device attached to your PC) providing data and other related
information.

Polling for data

The simplest way to read for data is by executing the read_data method of
the local XBee device. This method blocks your application until data from any
XBee device of the network is received or the timeout provided has expired:

	Method

	Description

	read_data(Integer)

	Specifies the time to wait for data reception (method blocks during that time and throws a TimeoutException if no data is received). If you do not specify a timeout, the method returns immediately the read message or None if the device did not receive new data.

Reading data from any remote XBee device (polling)

[...]

Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

Read data.
xbee_message = device.read_data()

[...]

The method returns the read data inside an XBeeMessage object. This object
contains the following information:

	RemoteXBeeDevice that sent the message.

	Byte array with the contents of the received data.

	Flag indicating if the data was sent via broadcast.

	Time when the message was received.

You can retrieve the previous information using the corresponding attributes of
the XBeeMessage object:

Get the XBeeMessage information

[...]

xbee_message = device.read_data()

remote_device = xbee_message.remote_device
data = xbee_message.data
is_broadcast = xbee_message.is_broadcast
timestamp = xbee_message.timestamp

[...]

You can also read data from a specific remote XBee device of the network. For
that purpose, the XBee device object provides the read_data_from method:

	Method

	Description

	read_data_from(RemoteXBeeDevice, Integer)

	Specifies the remote XBee device to read data from and the time to wait for data reception (method blocks during that time and throws a TimeoutException if no data is received). If you do not specify a timeout, the method returns immediately the read message or None if the device did not receive new data.

Read data from a specific remote XBee device (polling)

[...]

Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

Instantiate a remote XBee device object.
remote_device = RemoteXBeeDevice(device, XBee64BitAddress.from_hex_string("0013A200XXXXXX"))

Read data sent by the remote device.
xbee_message = device.read_data(remote_device)

[...]

As in the previous method, this method also returns an XBeeMessage object
with all the information inside.

The default timeout to wait for the send status is two seconds. However, you
can configure the timeout using the get_sync_ops_timeout and
set_sync_ops_timeout methods of an XBee device class.

	Example: Receive data with polling

	The XBee Python Library includes a sample application that shows you how to receive data using the polling mechanism. The example is located in the following path:

examples/communication/ReceiveDataPollingSample

Data reception callback

This mechanism for reading data does not block your application. Instead,
you can be notified when new data has been received if you are subscribed or
registered to the data reception service using the
add_data_received_callback method with a data reception callback as
parameter.

Register for data reception

[...]

Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

Define callback.
def my_data_received_callback(xbee_message):
 address = xbee_message.remote_device.get_64bit_addr()
 data = xbee_message.data.decode("utf8")
 print("Received data from %s: %s" % (address, data))

Add the callback.
device.add_data_received_callback(my_data_received_callback)

[...]

When new data is received, your callback is executed providing as parameter an
XBeeMessage object which contains the data and other useful information:

	RemoteXBeeDevice that sent the message.

	Byte array with the contents of the received data.

	Flag indicating if the data was sent via broadcast.

	Time when the message was received.

To stop listening to new received data, use the del_data_received_callback
method to unsubscribe the already-registered callback.

Deregister data reception

[...]

def my_data_received_callback(xbee_message):
 [...]

device.add_data_received_callback(my_data_received_callback)

[...]

Delete the callback
device.del_data_received_callback(my_data_received_callback)

[...]

	Example: Register for data reception

	The XBee Python Library includes a sample application that shows you how to subscribe to the data reception service to receive data. The example is located in the following path:

examples/communication/ReceiveDataSample

Send and receive explicit data

Some Zigbee applications may require communication with third-party (non-Digi)
RF modules. These applications often send and receive data on different public
profiles such as Home Automation or Smart Energy to other modules.

XBee Zigbee modules offer a special type of frame for this purpose. Explicit
frames are used to transmit and receive explicit data. When sending public
profile packets, the frames transmit the data itself plus the application
layer-specific fields—the source and destination endpoints, profile ID, and
cluster ID.

Warning

Only Zigbee, DigiMesh, and Point-to-Multipoint protocols support the
transmission and reception of data in explicit format. This means you cannot
transmit or receive explicit data using a generic XBeeDevice object. You
must use a protocol-specific XBee device object such as a ZigBeeDevice.

	Send explicit data

	Receive explicit data

Send explicit data

You can send explicit data as either unicast or broadcast transmissions.
Unicast transmissions route data from one source device to one destination
device, whereas broadcast transmissions are sent to all devices in the network.

Send explicit data to one device

Unicast transmissions are sent from one source device to another destination
device. The destination device could be an immediate neighbor of the source,
or it could be several hops away.

Unicast explicit data transmission can be a synchronous or asynchronous
operation, depending on the method used.

Synchronous operation

The synchronous data transmission is a blocking operation. That is, the method
waits until it either receives the transmit status response or the default
timeout is reached.

All local XBee device classes that support explicit data transmission provide a
method to transmit unicast and synchronous explicit data to a remote node of
the network:

	Method

	Description

	send_expl_data(RemoteXBeeDevice, Integer, Integer, Integer, Integer, String or Bytearray, Integer)

	Specifies remote XBee destination object, four application layer fields (source endpoint, destination endpoint, cluster ID, and profile ID), the data to send and optionally the transmit options.

Send unicast explicit data synchronously

[...]

Instantiate a Zigbee device object.
device = ZigBeeDevice("COM1", 9600)
device.open()

Instantiate a remote Zigbee device object.
remote_device = RemoteZigBeeDevice(device, XBee64BitAddress.from_hex_string("0013A20040XXXXXX"))

Send explicit data using the remote object.
device.send_expl_data(remote_device, 0xA0, 0xA1, 0x1554, 0xC105, "Hello XBee!")

[...]

The previous methods may fail for the following reasons:

	The method throws a TimeoutException exception if the response is not
received in the configured timeout.

	Other errors register as XBeeException:

	If the operating mode of the device is not API or ESCAPED_API_MODE
, the method throws an InvalidOperatingModeException.

	If the transmit status is not SUCCESS, the method throws a
TransmitException.

	If there is an error writing to the XBee interface, the method throws a
generic XBeeException.

The default timeout to wait for the send status is two seconds. However, you
can configure the timeout using the get_sync_ops_timeout and
set_sync_ops_timeout methods of an XBee device class.

	Example: Transmit explicit synchronous unicast data

	The XBee Python Library includes a sample application that demonstrates how to send explicit data to a remote device of the network (unicast). It can be located in the following path:

examples/communication/explicit/SendExplicitDataSample

Asynchronous operation

Transmitting explicit data asynchronously means that your application does not
block during the transmit process. However, you cannot ensure that the data was
successfully sent to the remote device.

All local XBee device classes that support explicit data transmission provide
a method to transmit unicast and asynchronous explicit data to a remote node
of the network:

	Method

	Description

	send_expl_data_async(RemoteXBeeDevice, Integer, Integer, Integer, Integer, String or Bytearray, Integer)

	Specifies remote XBee destination object, four application layer fields (source endpoint, destination endpoint, cluster ID, and profile ID), the data to send and optionally the transmit options.

Send unicast explicit data asynchronously

[...]

Instantiate a Zigbee device object.
device = ZigBeeDevice("COM1", 9600)
device.open()

Instantiate a remote Zigbee device object.
remote_device = RemoteZigBeeDevice(device, XBee64BitAddress.from_hex_string("0013A20040XXXXXX"))

Send explicit data asynchronously using the remote object.
device.send_expl_data_async(remote_device, 0xA0, 0xA1, 0x1554, 0xC105, "Hello XBee!")

[...]

The previous methods may fail for the following reasons:

	All the possible errors are caught as an XBeeException:

	The operating mode of the device is not API or ESCAPED_API_MODE,
throwing an InvalidOperatingModeException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

	Example: Transmit explicit asynchronous unicast data

	The XBee Python Library includes a sample application that demonstrates how to send explicit data to other XBee devices asynchronously. It can be located in the following path:

examples/communication/explicit/SendExplicitDataAsyncSample

Send explicit data to all devices in the network

Broadcast transmissions are sent from one source device to all other devices in
the network.

All protocol-specific XBee device classes that support the transmission of
explicit data provide the same method to send broadcast explicit data:

	Method

	Description

	send_expl_data_broadcast(Integer, Integer, Integer, Integer, String or Bytearray, Integer)

	Specifies the four application layer fields (source endpoint, destination endpoint, cluster ID, and profile ID), the data to send and optionally the transmit options.

Send broadcast data

[...]

Instantiate a Zigbee device object.
device = ZigBeeDevice("COM1", 9600)
device.open()

Send broadcast data.
device.send_expl_data_broadcast(0xA0, 0xA1, 0x1554, 0xC105, "Hello XBees!")

[...]

The send_expl_data_broadcast method may fail for the following reasons:

	Transmit status is not received in the configured timeout, throwing a
TimeoutException exception.

	Error types catch as XBeeException:

	The operating mode of the device is not API or ESCAPED_API_MODE,
throwing an InvalidOperatingModeException.

	The transmit status is not SUCCESS, throwing a TransmitException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

	Example: Send explicit broadcast data

	The XBee Python Library includes a sample application that demonstrates how to send explicit data to all devices in the network (broadcast). It can be located in the following path:

examples/communication/explicit/SendBroadcastExplicitDataSample

Receive explicit data

Some applications developed with the XBee Python Library may require modules to
receive data in application layer, or explicit, data format.

To receive data in explicit format, you must first configure the data output
mode of the receiver XBee device to explicit format using the
set_api_output_mode_value method.

	Method

	Description

	get_api_output_mode_value()

	Returns the API output mode of the data received by the XBee device.

	set_api_output_mode_value(Integer)

	Specifies the API output mode of the data received by the XBee device. Calculate the mode
with the method calculate_api_output_mode_value with a set of APIOutputModeBit.

Set API output mode

[...]

Instantiate a Zigbee device object.
device = ZigBeeDevice("COM1", 9600)
device.open()

Set explicit output mode
mode = APIOutputModeBit.calculate_api_output_mode_value(device.get_protocol(),
 {APIOutputModeBit.EXPLICIT})
device.set_api_output_mode_value(mode)

Set native output mode
mode = 0
device.set_api_output_mode_value(mode)

Set explicit plus unsupported ZDO request pass-through
mode = APIOutputModeBit.calculate_api_output_mode_value(device.get_protocol(),
 {APIOutputModeBit.EXPLICIT, APIOutputModeBit.UNSUPPORTED_ZDO_PASSTHRU})
device.set_api_output_mode_value(mode)

[...]

Once you have configured the device to receive data in explicit format, you can
read it using one of the following mechanisms provided by the XBee device
object.

Polling for explicit data

The simplest way to read for explicit data is by executing the
read_expl_data method of the local XBee device. This method blocks your
application until explicit data from any XBee device of the network is received
or the provided timeout has expired:

	Method

	Description

	read_expl_data(Integer)

	Specifies the time to wait in seconds for explicit data reception (method blocks during that time and throws a TimeoutException if no data is received). If you do not specify a timeout, the method returns immediately the read message or None if the device did not receive new data.

Read explicit data from any remote XBee device (polling)

[...]

Instantiate a Zigbee device object.
device = ZigBeeDevice("COM1", 9600)
device.open()

Read data.
xbee_message = device.read_expl_data()

[...]

The method returns the read data inside an ExplicitXBeeMessage object. This
object contains the following information:

	RemoteXBeeDevice that sent the message.

	Endpoint of the source that initiated the transmission.

	Endpoint of the destination where the message is addressed.

	Cluster ID where the data was addressed.

	Profile ID where the data was addressed.

	Byte array with the contents of the received data.

	Flag indicating if the data was sent via broadcast.

	Time when the message was received.

You can retrieve the previous information using the corresponding attributes of
the ExplicitXBeeMessage object:

Get the ExplicitXBeeMessage information

[...]

expl_xbee_message = device.read_expl_data()

remote_device = expl_xbee_message.remote_device
source_endpoint = expl_xbee_message.source_endpoint
dest_endpoint = expl_xbee_message.dest_endpoint
cluster_id = expl_xbee_message.cluster_id
profile_id = expl_xbee_message.profile_id
data = xbee_message.data
is_broadcast = expl_xbee_message.is_broadcast
timestamp = expl_xbee_message.timestamp

[...]

You can also read explicit data from a specific remote XBee device of the
network. For that purpose, the XBee device object provides the
read_expl_data_from method:

	Method

	Description

	read_expl_data_from(RemoteXBeeDevice, Integer)

	Specifies the remote XBee device to read explicit data from and the time to wait for explicit data reception (method blocks during that time and throws a TimeoutException if no data is received). If you do not specify a timeout, the method returns immediately the read message or None if the device did not receive new data.

Read explicit data from a specific remote XBee device (polling)

[...]

Instantiate a Zigbee device object.
device = ZigBeeDevice("COM1", 9600)
device.open()

Instantiate a remote Zigbee device object.
remote_device = RemoteZigBeeDevice(device, XBee64BitAddress.from_hex_string("0013A200XXXXXX"))

Read data sent by the remote device.
expl_xbee_message = device.read_expl_data(remote_device)

[...]

As in the previous method, this method also returns an ExplicitXBeeMessage
object with all the information inside.

The default timeout to wait for data is two seconds. However, you
can configure the timeout using the get_sync_ops_timeout and
set_sync_ops_timeout methods of an XBee device class.

	Example: Receive explicit data with polling

	The XBee Python Library includes a sample application that demonstrates how to receive explicit data using the polling mechanism. It can be located in the following path:

examples/communication/explicit/ReceiveExplicitDataPollingSample

Explicit data reception callback

This mechanism for reading explicit data does not block your application.
Instead, you can be notified when new explicit data has been received if you
are subscribed or registered to the explicit data reception service by using the
add_expl_data_received_callback.

Explicit data reception registration

[...]

Instantiate a Zigbee device object.
device = ZigBeeDevice("COM1", 9600)
device.open()

Define callback.
def my_expl_data_received_callback(expl_xbee_message):
 address = expl_xbee_message.remote_device.get_64bit_addr()
 source_endpoint = expl_xbee_message.source_endpoint
 dest_endpoint = expl_xbee_message.dest_endpoint
 cluster = expl_xbee_message.cluster_id
 profile = expl_xbee_message.profile_id
 data = expl_xbee_message.data.decode("utf8")

 print("Received explicit data from %s: %s" % (address, data))

Add the callback.
device.add_expl_data_received_callback(my_expl_data_received_callback)

[...]

When new explicit data is received, your callback is executed providing as
parameter an ExplicitXBeeMessage object which contains the data and other
useful information:

	RemoteXBeeDevice that sent the message.

	Endpoint of the source that initiated the transmission.

	Endpoint of the destination where the message is addressed.

	Cluster ID where the data was addressed.

	Profile ID where the data was addressed.

	Byte array with the contents of the received data.

	Flag indicating if the data was sent via broadcast.

	Time when the message was received.

To stop listening to new received explicit data, use the
del_expl_data_received_callback method to unsubscribe the already-registered
callback.

Explicit data reception deregistration

[...]

def my_expl_data_received_callback(xbee_message):
 [...]

device.add_expl_data_received_callback(my_expl_data_received_callback)

[...]

Delete the callback
device.del_expl_data_received_callback(my_expl_data_received_callback)

[...]

	Example: Receive explicit data via callback

	The XBee Python Library includes a sample application that demonstrates how to subscribe to the explicit data reception service in order to receive explicit data. It can be located in the following path:

examples/communication/explicit/ReceiveExplicitDataSample

Note

If your XBee module is configured to receive explicit data
(API output mode greater than 0) and another device sends non-explicit data or
a IO sample, you receive an explicit message whose application layer field
values are:

	For remote data:

	Source endpoint: 0xE8

	Destination endpoint: 0xE8

	Cluster ID: 0x0011

	Profile ID: 0xC105

	For remote IO sample:

	Source endpoint: 0xE8

	Destination endpoint: 0xE8

	Cluster ID: 0x0092

	Profile ID: 0xC105

That is, when an XBee receives explicit data with these values, the message
notifies the following reception callbacks in case you have registered them:

	Explicit and non-explicit data callbacks when receiving remote data.

	Explicit data callback and IO sample callback when receiving remote samples.

If you read the received data with the polling mechanism, you also receive
the message through both methods.

Send and receive IP data

In contrast to XBee protocols like Zigbee, DigiMesh or 802.15.4, where the
devices are connected each other, in cellular and Wi-Fi protocols the modules
are part of the Internet.

XBee Cellular and Wi-Fi modules offer a special type of frame for communicating
with other Internet-connected devices. It allows sending and receiving data
specifying the destination IP address, port, and protocol (TCP, TCP SSL or UDP).

Warning

Only Cellular and Wi-Fi protocols support the transmission and reception of IP
data. This means you cannot transmit or receive IP data using a generic
XBeeDevice object; you must use the protocol-specific XBee device objects
CellularDevice or WiFiDevice.

	Send IP data

	Receive IP data

Send IP data

IP data transmission can be a synchronous or asynchronous operation, depending
on the method you use.

Synchronous operation

The synchronous data transmission is a blocking operation; that is, the method
waits until it either receives the transmit status response or it reaches the
default timeout.

The CellularDevice and WiFiDevice classes include several methods to
transmit IP data synchronously:

	Method

	Description

	send_ip_data(IPv4Address, Integer, IPProtocol, String or Bytearray, Boolean)

	Specifies the destination IP address, destination port, IP protocol (UDP, TCP or TCP SSL), data to send for transmissions and whether the socket should be closed after the transmission or not (optional).

Send network data synchronously

[...]

Instantiate a Cellular device object.
xbee = CellularDevice("COM1", 9600)
xbee.open()

Send IP data using TCP.
dest_addr = IPv4Address("56.23.102.96")
dest_port = 5050
protocol = IPProtocol.TCP
data = "Hello XBee!"

xbee.send_ip_data(dest_addr, dest_port, protocol, data)

[...]

The send_ip_data method may fail for the following reasons:

	There is a timeout setting the IP addressing parameter, throwing a
TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API or ESCAPED_API_MODE,
throwing an InvalidOperatingModeException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

	Example: Transmit IP data synchronously

	The XBee Python Library includes a sample application that demonstrates how to send IP data. You can locate the example in the following path:

examples/communication/ip/SendIPDataSample

	Example: Transmit UDP data

	The XBee Python Library includes a sample application that demonstrates how to send UDP data. You can locate the example in the following path:

examples/communication/ip/SendUDPDataSample

	Example: Connect to echo server

	The XBee Python Library includes a sample application that demonstrates how to connect to an echo server, send a message to it and receive its response. You can locate the example in the following path:

examples/communication/ip/ConnectToEchoServerSample

Asynchronous operation

Transmitting IP data asynchronously means that your application does not block
during the transmit process. However, you cannot ensure that the data was
successfully sent.

The CellularDevice and WiFiDevice classes include several methods to
transmit IP data asynchronously:

	Method

	Description

	send_ip_data_async(IPv4Address, Integer, IPProtocol, String or Bytearray, Boolean)

	Specifies the destination IP address, destination port, IP protocol (UDP, TCP or TCP SSL), data to send for transmissions and whether the socket should be closed after the transmission or not (optional).

Send network data asynchronously

[...]

Instantiate a Cellular device object.
xbee = CellularDevice("COM1", 9600)
xbee.open()

Send IP data using TCP.
dest_addr = IPv4Address("56.23.102.96")
dest_port = 5050
protocol = IPProtocol.TCP
data = "Hello XBee!"

xbee.send_ip_data_async(dest_addr, dest_port, protocol, data)

[...]

The send_ip_data_async method may fail for the following reasons:

	All possible errors are caught as XBeeException:

	The operating mode of the device is not API or ESCAPED_API_MODE,
throwing an InvalidOperatingModeException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

Receive IP data

Some applications developed with the XBee Python Library may require modules to
receive IP data.

XBee Cellular and Wi-Fi modules operate the same way as other TCP/IP devices.
They can initiate communications with other devices or listen for TCP or UDP
transmissions at a specific port. In either case, you must apply any of the
receive methods explained in this section in order to read IP data from other
devices.

Listen for incoming transmissions

If the cellular or Wi-Fi module operates as a server, listening for incoming
TCP or UDP transmissions, you must start listening at a specific port,
similar to the bind operation of a socket. The XBee Python Library
provides a method to listen for incoming transmissions:

	Method

	Description

	start_listening(Integer)

	Starts listening for incoming IP transmissions in the provided port.

Listen for incoming transmissions

[...]

Instantiate a Cellular device object.
device = CellularDevice("COM1", 9600)
device.open()

Listen for TCP or UDP transmissions at port 1234.
device.start_listening(1234);

[...]

The start_listening method may fail for the following reasons:

	If the listening port provided is lesser than 0 or greater than 65535, the
method throws a ValueError error.

	If there is a timeout setting the listening port, the method throws a
TimeoutException exception .

	Errors that register as an XBeeException:

	If the operating mode of the device is not API or ESCAPED_API_MODE
, the method throws an InvalidOperatingModeException.

	If the response of the listening port command is not valid, the method
throws an ATCommandException.

	If there is an error writing to the XBee interface, the method throws a
generic XBeeException.

You can call the stop_listening method to stop listening for incoming TCP or
UDP transmissions:

	Method

	Description

	stop_listening()

	Stops listening for incoming IP transmissions.

Stop listening for incoming transmissions

[...]

Instantiate a Cellular device object.
device = CellularDevice("COM1", 9600)
device.open()

Stop listening for TCP or UDP transmissions.
device.stop_listening()

[...]

The stop_listening method may fail for the following reasons:

	There is a timeout setting the listening port, throwing a
TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API or ESCAPED_API_MODE,
throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

Polling for IP data

The simplest way to read IP data is by executing the read_ip_data method of
the local Cellular or Wi-Fi devices. This method blocks your application until
IP data is received or the provided timeout has expired.

	Method

	Description

	read_ip_data(Integer)

	Specifies the time to wait in seconds for IP data reception (method blocks during that time or until IP data is received). If you don’t specify a timeout, the method uses the default receive timeout configured in XBeeDevice.

Read IP data (polling)

[...]

Instantiate a Cellular device object.
device = CellularDevice("COM1", 9600)
device.open()

Read IP data.
ip_message = device.read_ip_data()

[...]

The method returns the read data inside an IPMessage object and contains the
following information:

	IP address of the device that sent the data

	Transmission protocol

	Source and destination ports

	Byte array with the contents of the received data

You can retrieve the previous information using the corresponding attributes of
the IPMessage object:

Get the IPMessage information

[...]

Instantiate a cellular device object.
device = CellularDevice("COM1", 9600)
device.open()

Read IP data.
ip_message = device.read_ip_data()

ip_addr = ip_message.ip_addr
source_port = ip_message.source_port
dest_port = ip_message.dest_port
protocol = ip_message.protocol
data = ip_message.data

[...]

You can also read IP data that comes from a specific IP address. For that
purpose, the cellular and Wi-Fi device objects provide the read_ip_data_from
method:

Read IP data from a specific IP address (polling)

[...]

Instantiate a cellular device object.
device = CellularDevice("COM1", 9600)
device.open()

Read IP data.
ip_message = device.read_ip_data_from(IPv4Address("52.36.102.96"))

[...]

This method also returns an IPMessage object containing the same information
described before.

	Example: Receive IP data with polling

	The XBee Python Library includes a sample application that demonstrates how to receive IP data using the polling mechanism. You can locate the example in the following path:

examples/communication/ip/ConnectToEchoServerSample

IP data reception callback

This mechanism for reading IP data does not block your application. Instead,
you can be notified when new IP data has been received if you have subscribed
or registered with the IP data reception service by using the
add_ip_data_received_callback method.

IP data reception registration

[...]

Instantiate a Cellular device object.
device = CellularDevice("COM1", 9600)
device.open()

Define the callback.
def my_ip_data_received_callback(ip_message):
 print("Received IP data from %s: %s" % (ip_message.ip_addr, ip_message.data))

Add the callback.
device.add_ip_data_received_callback(my_ip_data_received_callback)

[...]

When new IP data is received, your callback is executed providing as parameter
an IPMessage object which contains the data and other useful information:

	IP address of the device that sent the data

	Transmission protocol

	Source and destination ports

	Byte array with the contents of the received data

To stop listening to new received IP data, use the
del_ip_data_received_callback method to unsubscribe the already-registered
listener.

Data reception deregistration

[...]

device = [...]

def my_ip_data_received_callback(ip_message):
 [...]

device.add_ip_data_received_callback(my_ip_data_received_callback)

[...]

Delete the IP data callback.
device.del_ip_data_received_callback(my_ip_data_received_callback)

[...]

	Example: Receive IP data with listener

	The XBee Python Library includes a sample application that demonstrates how to receive IP data using the listener. You can locate the example in the following path:

examples/communication/ip/ReceiveIPDataSample

Send and receive SMS messages

Another feature of the XBee Cellular module is the ability to send and receive
Short Message Service (SMS) transmissions. This allows you to send and receive
text messages to and from an SMS capable device such as a mobile phone.

For that purpose, these modules offer a special type of frame for sending and
receiving text messages, specifying the destination phone number and data.

Warning

Only Cellular protocol supports the transmission and reception of SMS. This
means you cannot send or receive text messages using a generic XBeeDevice
object; you must use the protocol-specific XBee device object
CellularDevice.

	Send SMS messages

	Receive SMS messages

Send SMS messages

SMS transmissions can be a synchronous or asynchronous operation, depending on
the method you use.

Synchronous operation

The synchronous SMS transmission is a blocking operation; that is, the method
waits until it either receives the transmit status response or it reaches the
default timeout.

The CellularDevice class includes the following method to send SMS messages
synchronously:

	Method

	Description

	send_sms(String, String)

	Specifies the the phone number to send the SMS to and the data to send as the body of the SMS message.

Send SMS message synchronously

[...]

Instantiate a Cellular device object.
xbee = CellularDevice("COM1", 9600)
xbee.open()

phone_number = "+34665963205"
data = "Hello XBee!"

Send SMS message.
xbee.send_sms(phone_number, data)

[...]

The send_sms method may fail for the following reasons:

	If the response is not received in the configured timeout, the method throws
a TimeoutException.

	If the phone number has an invalid format, the method throws a ValueError.

	Errors register as XBeeException:

	If the operating mode of the device is not API or ESCAPED_API_MODE
, the method throws an InvalidOperatingModeException.

	If there is an error writing to the XBee interface, the method throws a
generic XBeeException.

	Example: Send synchronous SMS

	The XBee Python Library includes a sample application that demonstrates how to send SMS messages. You can locate the example in the following path:

examples/communication/cellular/SendSMSSample

Asynchronous operation

Transmitting SMS messages asynchronously means that your application does not
block during the transmit process. However, you cannot verify the SMS was
successfully sent.

The CellularDevice class includes the following method to send SMS
asynchronously:

	Method

	Description

	send_sms_async(String, String)

	Specifies the the phone number to send the SMS to and the data to send as the body of the SMS message.

Send SMS message asynchronously

[...]

Instantiate a Cellular device object.
xbee = CellularDevice("COM1", 9600)
xbee.open()

phone_number = "+34665963205"
data = "Hello XBee!"

Send SMS message.
xbee.send_sms_async(phone_number, data)

[...]

The send_sms_async method may fail for the following reasons:

	If the phone number has an invalid format, the method throws a ValueError.

	Errors register as XBeeException:

	If the operating mode of the device is not API or ESCAPED_API_MODE
, the method throws an InvalidOperatingModeException.

	If there is an error writing to the XBee interface, the method throws a
generic XBeeException.

Receive SMS messages

Some applications developed with the XBee Python Library may require modules to
receive SMS messages.

SMS reception callback

You can be notified when a new SMS has been received if you are subscribed or
registered to the SMS reception service by using the add_sms_callback
method.

SMS reception registration

[...]

Instantiate a cellular device object.
device = CellularDevice("COM1", 9600)
device.open()

Define the callback.
def my_sms_callback(sms_message):
 print("Received SMS from %s: %s" % (sms_message.phone_number, sms_message.data))

Add the callback.
device.add_sms_callback(my_sms_callback)

[...]

When a new SMS message is received, your callback is executed providing an
SMSMessage object as paramater. This object contains the data and the
phone number that sent the message.

To stop listening to new SMS messages, use the del_sms_callback method to
unsubscribe the already-registered listener.

Deregister SMS reception

[...]

device = [...]

def my_sms_callback(sms_message):
 [...]

device.add_sms_callback(my_sms_callback)

[...]

Delete the SMS callback.
device.del_sms_callback(my_sms_callback)

[...]

	Example: Receive SMS messages

	The XBee Python Library includes a sample application that demonstrates how to subscribe to the SMS reception service in order to receive text messages. You can locate the example in the following path:

examples/communication/cellular/ReceiveSMSSample

Send and receive Bluetooth data

XBee3 modules have the ability to send and receive data from the Bluetooth Low
Energy interface of the local XBee device through User Data Relay frames. This
can be useful if your application wants to transmit or receive data from a
cellphone connected to it over BLE.

Warning

Only XBee3 modules support Bluetooth Low Energy. This means that you cannot
transmit or receive Bluetooth data if you don’t have one of these modules.

	Send Bluetooth data

	Receive Bluetooth data

Send Bluetooth data

The XBeeDevice class and its subclasses provide the following method to
send data to the Bluetooth Low Energy interface:

	Method

	Description

	send_bluetooth_data(Bytearray)

	Specifies the data to send to the Bluetooth Low Energy interface.

This method is asynchronous, which means that your application does not block
during the transmit process.

Send data to Bluetooth

[...]

Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

data = "Bluetooth, are you there?"

Send the data to the Bluetooth interface.
device.send_bluetooth_data(data.encode("utf8"))

[...]

The send_bluetooth_data method may fail for the following reasons:

	Errors register as XBeeException:

	If the operating mode of the device is not API or
ESCAPED_API_MODE, the method throws an
InvalidOperatingModeException.

	If there is an error writing to the XBee interface, the method throws a
generic XBeeException.

	Example: Send Bluetooth data

	The XBee Python Library includes a sample application that demonstrates how to send data to the Bluetooth interface. You can locate the example in the following path:

examples/communication/bluetooth/SendBluetoothDataSample

Receive Bluetooth data

You can be notified when new data from the Bluetooth Low Energy interface has
been received if you are subscribed or registered to the Bluetooth data
reception service by using the add_bluetooth_data_received_callback method.

Bluetooth data reception registration

[...]

Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

Define the callback.
def my_bluetooth_data_callback(data):
 print("Data received from the Bluetooth interface >> '%s'" % data.decode("utf-8"))

Add the callback.
device.add_bluetooth_data_received_callback(my_bluetooth_data_callback)

[...]

When a new data from the Bluetooth interface is received, your callback is
executed providing the data in byte array format as parameter.

To stop listening to new data messages from the Bluetooth interface, use the
del_bluetooth_data_received_callback method to unsubscribe the
already-registered listener.

Deregister Bluetooth data reception

[...]

device = [...]

def my_bluetooth_data_callback(data):
 [...]

device.add_bluetooth_data_received_callback(my_bluetooth_data_callback)

[...]

Delete the Bluetooth data callback.
device.del_bluetooth_data_received_callback(my_bluetooth_data_callback)

[...]

	Example: Receive Bluetooth data

	The XBee Python Library includes a sample application that demonstrates how to subscribe to the Bluetooth data reception service in order to receive data from the Bluetooth Low Energy interface. You can locate the example in the following path:

examples/communication/bluetooth/ReceiveBluetoothDataSample

Send and receive MicroPython data

XBee3 modules have the ability to send and receive data from the MicroPython
interface of the local XBee device through User Data Relay frames. This can be
useful if your application wants to transmit or receive data from a MicroPython
program running on the module.

Warning

Only XBee3 and XBee Cellular modules support MicroPython. This means that you
cannot transmit or receive MicroPython data if you don’t have one of these
modules.

	Send MicroPython data

	Receive MicroPython data

Send MicroPython data

The XBeeDevice class and its subclasses provide the following method to
send data to the MicroPython interface:

	Method

	Description

	send_micropython_data(Bytearray)

	Specifies the data to send to the MicroPython interface.

This method is asynchronous, which means that your application does not block
during the transmit process.

Send data to MicroPython

[...]

Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

data = "MicroPython, are you there?"

Send the data to the MicroPython interface.
device.send_micropython_data(data.encode("utf8"))

[...]

The send_micropython_data method may fail for the following reasons:

	Errors register as XBeeException:

	If the operating mode of the device is not API or
ESCAPED_API_MODE, the method throws an
InvalidOperatingModeException.

	If there is an error writing to the XBee interface, the method throws a
generic XBeeException.

	Example: Send MicroPython data

	The XBee Python Library includes a sample application that demonstrates how to send data to the MicroPython interface. You can locate the example in the following path:

examples/communication/micropython/SendMicroPythonDataSample

Receive MicroPython data

You can be notified when new data from the MicroPython interface has been
received if you are subscribed or registered to the MicroPython data reception
service by using the add_micropython_data_received_callback method.

MicroPython data reception registration

[...]

Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

Define the callback.
def my_micropython_data_callback(data):
 print("Data received from the MicroPython interface >> '%s'" % data.decode("utf-8"))

Add the callback.
device.add_micropython_data_received_callback(my_micropython_data_callback)

[...]

When a new data from the MicroPython interface is received, your callback is
executed providing the data in byte array format as parameter.

To stop listening to new data messages from the MicroPython interface, use the
del_micropython_data_received_callback method to unsubscribe the
already-registered listener.

Deregister MicroPython data reception

[...]

device = [...]

def my_micropython_data_callback(data):
 [...]

device.add_micropython_data_received_callback(my_micropython_data_callback)

[...]

Delete the MicroPython data callback.
device.del_micropython_data_received_callback(my_micropython_data_callback)

[...]

	Example: Receive MicroPython data

	The XBee Python Library includes a sample application that demonstrates how to subscribe to the MicroPython data reception service in order to receive data from the MicroPython interface. You can locate the example in the following path:

examples/communication/micropython/ReceiveMicroPythonDataSample

Receive modem status events

A local XBee device is able to determine when it connects to a network, when it
is disconnected, and when any kind of error or other events occur. The local
device generates these events, and they can be handled using the XBee Python
library via the modem status frames reception.

When a modem status frame is received, you are notified through the callback of
a custom listener so you can take the proper actions depending on the event
received.

For that purpose, you must subscribe or register to the modem status reception
service using a modem status listener as parameter with the method
add_modem_status_received_callback.

Subscribe to modem status reception service

[...]

Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

Define the callback.
def my_modem_status_callback(status):
 print("Modem status: %s" % status.description)

Add the callback.
device.add_modem_status_received_callback(my_modem_status_callback)

[...]

When a new modem status is received, your callback is executed providing as
parameter a ModemStatus object.

To stop listening to new modem statuses, use the
del_modem_status_received_callback method to unsubscribe the
already-registered listener.

Deregister modem status

[...]

device = [...]

def my_modem_status_callback(status):
 [...]

device.add_modem_status_received_callback(my_modem_status_callback)

[...]

Delete the modem status callback.
device.del_modem_status_received_callback(my_modem_status_callback)

[...]

	Example: Subscribe to modem status reception service

	The XBee Python Library includes a sample application that shows you how to subscribe to the modem status reception service to receive modem status events. The example is located in the following path:

examples/communication/ReceiveModemStatusSample

Communicate using XBee sockets

Starting from firmware versions *13, the XBee Cellular product line includes a
new set of frames to communicate with other Internet-connected devices using
sockets.

The XBee Python Library provides several methods that allow you to create,
connect, bind and close a socket, as well as send and receive data with it. You
can use this API where the existing methods listed in the
Send and receive IP data section limit the possibilities for an
application.

Warning

Only the Cellular protocol supports the use of XBee sockets. This means you
cannot use this API with a generic XBeeDevice object; you must use the
protocol-specific XBee device object CellularDevice.

The XBee socket API is available through the socket class of the
digi.xbee.xsocket module.

Create an XBee socket

Before working with an XBee socket to communicate with other devices, you have
to instantiate a socket object in order to create it. To do so, you need to
provide the following parameters:

	XBee Cellular device object used to work with the socket.

	IP protocol of the socket (optional). It can be IPProtocol.TCP (default),
IPProtocol.UDP or IPProtocol.TCP_SSL.

Create an XBee socket

from digi.xbee import xsocket
from digi.xbee.devices import CellularDevice
from digi.xbee.models.protocol import IPProtocol

Create and open an XBee Cellular device.
device = CellularDevice("COM1", 9600)
device.open()

Create a new XBee socket.
sock = xsocket.socket(device, IPProtocol.TCP)

Work with an XBee socket

Once the XBee socket is created, you can work with it to behave as a client
or a server. The API offers the following methods:

	Method

	Description

	connect(Tuple)

	Connects to a remote socket at the provided address. The address must be a pair (host, port), where host is the domain name or string representation of an IPv4 and port is the numeric port value.

	close()

	Closes the socket.

	bind(Tuple)

	Binds the socket to the provided address. The address must be a pair (host, port), where host is the local interface (not used) and port is the numeric port value. The socket must not already be bound.

	listen(Integer)

	Enables a server to accept connections.

	accept()

	Accepts a connection. The socket must be bound to an address and listening for connections. The return value is a pair (conn, address) where conn is a new socket object usable to send and receive data on the connection, and address is a pair (host, port) with the address bound to the socket on the other end of the connection.

	send(Bytearray)

	Sends the provided data to the socket. The socket must be connected to a remote socket.

	sendto(Bytearray, Tuple)

	Sends the provided data to the socket. The socket should not be connected to a remote socket, since the destination socket is specified by address (a pair (host, port)).

	recv(Integer)

	Receives data from the socket, specifying the maximum amount of data to be received at once. The return value is a bytearray object representing the data received.

	recvfrom(Integer)

	Receives data from the socket, specifying the maximum amount of data to be received at once. The return value is a pair (bytes, address) where bytes is a bytearray object representing the data received and address is the address of the socket sending the data(a pair (host, port)).

	getsockopt(SocketOption)

	Returns the value of the provided socket option.

	setsockopt(SocketOption, Bytearray)

	Sets the value of the provided socket option.

	gettimeout()

	Returns the configured socket timeout in seconds.

	settimeout(Integer)

	Sets the socket timeout in seconds.

	getblocking()

	Returns whether the socket is in blocking mode or not.

	setblocking(Boolean)

	Sets the socket in blocking or non-blocking mode. In blocking mode, operations block until complete or the system returns an error. In non-blocking mode, operations fail if they cannot be completed within the configured timeout.

	get_sock_info()

	Returns the information of the socket, including the socket ID, state, protocol, local port, remote port and remote address.

	add_socket_state_callback(Function)

	Adds the provided callback to be notified when a new socket state is received.

	del_socket_state_callback(Function)

	Deletes the provided socket state callback.

Client sockets

When the socket acts as a client, you just have to create and connect the
socket before sending or receiving data with a remote host.

Work with an XBee socket as client

[...]

HOST = "numbersapi.com"
PORT = "80"
REQUEST = "GET /random/trivia HTTP/1.1\r\nHost: numbersapi.com\r\n\r\n"

Create and open an XBee Cellular device.
device = CellularDevice("COM1", 9600)
device.open()

Create a new XBee socket.
with xsocket.socket(device, IPProtocol.TCP) as sock:
 # Connect the socket.
 sock.connect((HOST, PORT))

 # Send an HTTP request.
 sock.send(REQUEST.encode("utf8"))

 # Receive and print the response.
 data = sock.recv(1024)
 print(data.decode("utf8"))

	Example: Create a TCP client socket

	The XBee Python Library includes a sample application that shows you how to create a TCP client socket to send HTTP requests. The example is located in the following path:

examples/communication/socket/SocketTCPClientSample

Server sockets

When the socket acts as a server, you must create the socket and then perform
the sequence bind(), listen(), accept().

Work with an XBee socket as server

[...]

PORT = "1234"

Create and open an XBee Cellular device.
device = CellularDevice("COM1", 9600)
device.open()

Create a new XBee socket.
with xsocket.socket(device, IPProtocol.TCP) as sock:
 # Bind the socket to the local port.
 sock.bind((None, PORT))

 # Listen for new connections.
 sock.listen()

 # Accept new connections.
 conn, addr = sock.accept()

 with conn:
 print("Connected by %s", str(addr))
 while True:
 # Print the received data (if any).
 data = conn.recv(1024)
 if data:
 print(data.decode("utf8"))

	Example: Create a TCP server socket

	The XBee Python Library includes a sample application that shows you how to create a TCP server socket to receive data from incoming sockets. The example is located in the following path:

examples/communication/socket/SocketTCPServerSample

	Example: Create a UDP server/client socket

	The XBee Python Library includes a sample application that shows how to create a UDP socket to deliver messages to a server and listen for data coming from multiple peers. The example is located in the following path:

examples/communication/socket/SocketUDPServerClientSample

Handle analog and digital IO lines

All the XBee modules, regardless of the protocol they run, have a set of IO
lines (pins). You can use these pins to connect sensors or actuators and
configure them with specific behavior.

You can configure the IO lines of an XBee device to be digital input/output
(DIO), analog to digital converter (ADC), or pulse-width modulation output
(PWM). The configuration you provide to a line depends on the device where you
want to connect.

Note

All the IO management features displayed in this topic and sub-topics are
applicable for both local and remote XBee devices.

The XBee Python Library exposes an easy way to configure, read, and write the
IO lines of the local and remote XBee devices through the following
corresponding classes:

	XBeeDevice for local devices.

	RemoteXBeeDevice for remotes.

Configure the IO lines

All XBee device objects include a configuration method,
set_io_configuration(), where you can specify the IO line being configured
and the desired function being set.

For the IO line parameter, the API provides an enumerator called IOLine
that helps you specify the desired IO line easily by functional name. This
enumerator is used along all the IO related methods in the API.

The supported functions are also contained in an enumerator called IOMode.
You can choose between the following functions:

	DISABLED

	SPECIAL_FUNCTIONALITY (Shouldn’t be used to configure IOs)

	PWM

	ADC

	DIGITAL_IN

	DIGITAL_OUT_LOW

	DIGITAL_OUT_HIGH

Configure local or remote IO lines

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Instantiate a remote XBee device object.
remote_xbee = RemoteXBeeDevice(local_xbee, XBee64BitAddress.from_hex_string("0013A20012345678"))

Configure the DIO1_AD1 line of the local device to be Digital output (set high by default).
local_xbee.set_io_configuration(IOLine.DIO1_AD1, IOMode.DIGITAL_OUT_HIGH)

Configure the DIO2_AD2 line of the local device to be Digital input.
local_xbee.set_io_configuration(IOLine.DIO2_AD2, IOMode.DIGITAL_IN)

Configure the DIO3_AD3 line of the remote device to be Analog input (ADC).
remote_xbee.set_io_configuration(IOLine.DIO3_AD3, IOMode.ADC)

Configure the DIO10_PWM0 line of the remote device to be PWM output (PWM).
remote_xbee.set_io_configuration(IOLine.DIO10_PWM0, IOMode.PWM)

[...]

The set_io_configuration() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

You can read the current configuration of any IO line the same way an IO line
can be configured with a desired function using the corresponding getter,
get_io_configuration().

Get IO configuration

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Get the configuration mode of the DIO1_AD1 line.
io_mode = local_xbee.get_io_configuration(IOLine.DIO1_AD1)

[...]

The get_io_configuration() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

Digital Input/Output

If your IO line is configured as digital output, you can set its state
(high/low) easily. All the XBee device classes provide the method,
set_dio_value(), with the desired IOLine as the first parameter and an
IOValue as the second. The IOValue enumerator includes HIGH and
LOW as possible values.

Set digital output values

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Set the DIO2_AD2 line low.
local_xbee.set_dio_value(IOLine.DIO2_AD2, IOValue.LOW)

Set the DIO2_AD2 line high.
local_xbee.set_dio_value(IOLine.DIO2_AD2, IOValue.HIGH)

[...]

The set_dio_value() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

You can also read the current status of the pin (high/low) by issuing the
method get_dio_value(). The parameter of the method must be the IO line to
be read.

Read digital input values

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Get the value of the DIO2_AD2.
value = local_xbee.get_dio_value(IOLine.DIO2_AD2)

[...]

The get_dio_value() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	If the received response does not contain the value for the given IO
line, throwing an OperationNotSupportedException. This can happen (for
example) if you try to read the DIO value of an IO line that is not
configured as DIO.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

	Example: Handle DIO IO lines

	The XBee Python Library includes two sample applications that demonstrate how to handle DIO lines in your local and remote XBee Devices. The examples are located in the following path:

examples/io/LocalDIOSample/LocalDIOSample.py

examples/io/RemoteDIOSample/RemoteDIOSample.py

ADC

When you configure an IO line as analog to digital converter (ADC), you can
only read its value (counts) with get_adc_value(). In this case, the method
used to read ADCs is different than the digital I/O method, but the parameter
provided is the same: the IO line to read the value from.

Read ADC values

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

Get the value of the DIO 3 (analog to digital converter).
value = local_xbee.get_adc_value(IOLine.DIO3_AD3)

[...]

The get_adc_value() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	If the received response does not contain the value for the given IO
line, throwing an OperationNotSupportedException. This can happen (for
example) if you try to read the ADC value of an IO line that is not
configured as ADC.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

	Example: Handle ADC IO lines

	The XBee Python Library includes two sample applications that demonstrate how to handle ADC lines in your local and remote XBee devices. The examples are located in the following path:

examples/io/LocalADCSample/LocalADCSample.py

examples/io/RemoteADCSample/RemoteADCSample.py

PWM

Not all the XBee protocols support pulse-width modulation (PWM) output
handling, but the XBee Python Library provides functionality to manage them.
When you configure an IO line as PWM output, you must use specific methods to
set and read the duty cycle of the PWM.

For the set case, use the method set_pwm_duty_cycle() and provide the IO
line configured as PWM and the value of the duty cycle in % of the PWM. The
duty cycle is the proportion of ‘ON’ time to the regular interval or ‘period’
of time. A high duty cycle corresponds to high power, because the power is ON
for most of the time. The percentage parameter of the set duty cycle method is
a double, which allows you to be more precise in the configuration.

Set the duty cycle of an IO line configure as PWM

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

Set a duty cycle of 75% to the DIO10_PWM0 line (PWM output).
local_xbee.set_pwm_duty_cycle(IOLine.DIO10_PWM0, 75)

[...]

The set_pwm_duty_cycle() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

The get_pwm_duty_cycle(IOLine) method of a PWM line returns a double value
with the current duty cycle percentage of the PWM.

Get the duty cycle of an IO line configured as PWM

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

Get the duty cycle of the DIO10_PWM0 line (PWM output).
duty_cycle = local_xbee.get_pwm_duty_cycle(IOLine.DIO10_PWM0);

[...]

Note

In both cases (get and set), the IO line provided must be PWM capable and must
be configured as PWM output.

Read IO samples

XBee modules can monitor and sample the analog and digital IO
lines. You can read IO samples locally or transmitted to a remote device to
provide an indication of the current IO line states.

There are three ways to obtain IO samples on a local or remote device:

	Queried sampling

	Periodic sampling

	Change detection sampling

The XBee Python Library represents an IO sample by the IOSample class, which
contains:

	Digital and analog channel masks that indicate which lines have sampling
enabled.

	Values of those enabled lines.

You must configure the IO lines you want to receive in the IO samples before
enabling sampling.

Queried sampling

The XBee Python Library provides a method to read an IO sample that contains
all enabled digital IO and analog input channels, read_io_sample(). The
method returns an IOSample object.

Read an IO sample and getting the DIO value

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

Read an IO sample from the device.
io_sample = local_xbee.read_io_sample()

Select the desired IO line.
io_line = IOLine.DIO3_AD3

Check if the IO sample contains the expected IO line and value.
if io_sample.has_digital_value(io_line):
 print("DIO3 value: %s" % io_sample.get_digital_value(ioLine))

[...]

The read_io_sample() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

Periodic sampling

Periodic sampling allows an XBee module to take an IO sample and transmit it
to a remote device at a periodic rate. That remote device is defined in the
destination address through the set_dest_address() method. The XBee Python
Library provides the set_io_sampling_rate() method to configure the periodic
sampling.

The XBee module samples and transmits all enabled digital IO and analog inputs
to the remote device every X seconds. A sample rate of 0 s disables this
feature.

Set the IO sampling rate

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

Set the destination address.
local_xbee.set_dest_address(XBee64BitAddress.from_hex_string("0013A20040XXXXXX"))

Set the IO sampling rate.
local_xbee.set_io_sampling_rate(5) # 5 seconds.

[...]

The set_io_sampling_rate() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

You can also read this value using the get_io_sampling_rate() method. This
method returns the IO sampling rate in milliseconds and ‘0’ when the feature
is disabled.

Get the IO sampling rate

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

Get the IO sampling rate.
value = local_xbee.get_io_sampling_rate()

[...]

The get_io_sampling_rate() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

Change detection sampling

You can configure modules to transmit a data sample immediately whenever a
monitored digital IO pin changes state. The set_dio_change_detection()
method establishes the set of digital IO lines that are monitored for change
detection. A None set disables the change detection sampling.

As in the periodic sampling, change detection samples are transmitted to the
configured destination address.

Note

This feature only monitors and samples digital IOs, so it is not valid for
analog lines.

Set the DIO change detection

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

Set the destination address.
local_xbee.set_dest_address(XBee64BitAddress.from_hex_string("0013A20040XXXXXX"))

Create a set of IO lines to be monitored.
lines = [IOLine.DIO3_AD3, IOLine.DIO4_AD4]

Enable the DIO change detection sampling.
local_xbee.set_dio_change_detection(lines)

[...]

The set_dio_change_detection() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

You can also get the lines that are monitored using the
get_dio_change_detection() method. A None value indicates that this
feature is disabled.

Get the DIO change detection

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

Get the set of lines that are monitored.
lines = local_xbee.get_dio_change_detection()

[...]

The get_dio_change_detection() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	
	Other errors caught as XBeeException:

	
	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

Register an IO sample listener

In addition to configuring an XBee device to monitor and sample the analog and
digital IO lines, you must register a callback in the local device where you
want to receive the IO samples. You are then notified when the device receives
a new IO sample.

You must subscribe to the IO samples reception service by using the method
add_io_sample_received_callback() with an IO sample reception callback
function as parameter.

Add an IO sample callback

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

Define the IO sample receive callback.
def io_sample_callback(io_sample, remote_xbee, send_time):
 print("IO sample received at time %s." % str(send_time))
 print("IO sample:")
 print(str(io_sample))

Subscribe to IO samples reception.
local_xbee.add_io_sample_received_callback(io_sample_callback)

[...]

This callback function will receive three parameters when an IO sample receive
event is raised:

	The received IO sample as an IOSample object.

	The remote XBee device that sent the IO sample as a RemoteXBeeDevice
object.

	The time in which the IO sample was received as an Float (calculated
with Python standard time.time()).

To stop receiving notifications of new IO samples, remove the added callback
using the del_io_sample_received_callback() method.

Remove an IO sample callback

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

Define the IO sample receive callback.
def io_sample_callback(io_sample, remote_xbee, send_time):
 print("IO sample received at time %s." % str(send_time))
 print("IO sample:")
 print(str(io_sample))

Subscribe to IO samples reception by adding the callback.
local_xbee.add_io_sample_received_callback(io_sample_callback)

[...]

Unsubscribe from IO samples reception by removing the callback.
local_xbee.del_io_sample_received_callback(io_sample_callback)

[...]

The del_io_sample_received_callback() method will raise a ValueError if
you try to delete a callback that you have not added yet.

	Example: Receive IO samples

	The XBee Python Library includes a sample application that demonstrates how to configure a remote device to monitor IO lines and receive the IO samples in the local device. The example is located in the following path:

examples/io/IOSamplingSample/IOSamplingSample.py

Update the XBee

To keep your XBee devices up to date, the XBee Python Library provides several
methods to update the device software including firmware, file system and XBee
profiles:

	Update the XBee firmware

	Update the XBee file system

	Apply an XBee profile

Warning

	At the moment, update features are only supported in:

	
	
	XBee 3:

	
	Local and remote firmware updates

	Local and remote file system updates

	Local and remote profile updates

	
	XBee SX 868/900 MHz

	
	Local and remote firmware updates

	Local and remote profile updates

	
	XBee S2C

	
	Remote firmware updates

	Remote profile updates

Update the XBee firmware

You may need to update the running firmware of your XBee devices to, for
example, change their XBee protocol, fix issues and security risks, or access to
new features and functionality.

The XBee Python Library provides methods to perform firmware updates in local
and remote devices:

	Update the firmware of a local XBee

	Update the firmware of a remote XBee

Warning

	At the moment, firmware update is only supported in:

	
	XBee 3: Local and remote firmware updates

	XBee SX 868/900 MHz: Local and remote firmware updates

	XBee S2C: Remote firmware updates

Update the firmware of a local XBee

The firmware update process of a local XBee device is performed over the serial
connection. For this operation, you need the following components:

	The XBee device object instance or the serial port name where the device is
attached to.

	The new firmware XML descriptor file.

	The new firmware binary file (*.gbl)

	Optionally, the new bootloader binary file (*.gbl) required by the new
firmware.

Warning

Firmware update will fail if the firmware requires a new bootloader and it is
not provided.

Warning

At the moment, local firmware update is only supported in XBee 3 and
XBee SX 868/900 MHz devices.

	Example: Local Firmware Update

	The XBee Python Library includes a sample application that displays how to perform a local firmware update. It can be located in the following path:

examples/firmware/LocalFirmwareUpdateSample/LocalFirmwareUpdateSample.py

Update the local firmware using an XBee device object

If you have an object instance of your local XBee device, you have to call
the update_firmware method of the XBeeDevice class providing the
required parameters:

	Method

	Description

	update_firmware(String, String,
String, Integer, Function)

	Performs a firmware update operation of the device.

	xml_firmware_file (String): path of the XML file that describes the firmware to upload.

	xbee_firmware_file (String, optional): location of the XBee binary firmware file (*.gbl).

	bootloader_firmware_file (String, optional): location of the bootloader binary firmware file (*.gbl).

	timeout (Integer, optional): the maximum amount of seconds to wait for target read operations during the update process.

	progress_callback (Function, optional): function to execute to receive progress information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

The update_firmware method may fail for the following reasons:

	The device does not support the firmware update operation, throwing a
OperationNotSupportedException.

	There is an error during the firmware update operation, throwing a
FirmwareUpdateException.

	Other errors caught as XBeeException:

	The device is not open, throwing a generic XBeeException.

	The operating mode of the local XBee device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

Update local XBee device firmware using an XBee device object

[...]

XML_FIRMWARE_FILE = "my_path/my_firmware.xml"
XBEE_FIRMWARE_FILE = "my_path/my_firmware.gbl"
BOOTLOADER_FIRMWARE_FILE = "my_path/my_bootloader.gbl"

[...]

Instantiate an XBee device object.
xbee = XBeeDevice(...)

[...]

Update the XBee device firmware.
device.update_firmware(XML_FIRMWARE_FILE,
 xbee_firmware_file=XBEE_FIRMWARE_FILE,
 bootloader_firmware_file=BOOTLOADER_FIRMWARE_FILE,
 progress_callback=progress_callback,)

[...]

Update the local firmware using a serial port

If you do not know the XBee serial communication parameters or you cannot
instantiate the XBee device object (for example if the device must be
recovered), you can perform the firmware update process by providing the serial
port identifier where the XBee is attached to.

In this scenario, use the update_local_firmware method of the
XBee firmware module providing the required parameters. The library
forces the XBee to reboot into bootloader mode, using the recovery mechanism,
and performs the firmware update from that point.

	Method

	Description

	update_local_firmware(String or XBeeDevice,
String, String, String, Integer, Function)

	Performs a local firmware update operation in the given target.

	target (String or :class:`.XBeeDevice`): target of the firmware upload operation.
* String: serial port identifier.
* :class:`.AbstractXBeeDevice`: the XBee device to upload its firmware.

	xml_firmware_file (String): path of the XML file that describes the firmware to upload.

	xbee_firmware_file (String, optional): location of the XBee binary firmware file (*.gbl).

	bootloader_firmware_file (String, optional): location of the bootloader binary firmware file.

	timeout (Integer, optional): the maximum amount of seconds to wait for target read operations during the update process.

	progress_callback (Function, optional): function to execute to receive progress information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

The update_local_firmware method may fail for the following reasons:

	There is an error during the firmware update operation, throwing a
FirmwareUpdateException.

Update local XBee device firmware using a serial port

import digi.xbee.firmware

[...]

SERIAL_PORT = "COM1"

XML_FIRMWARE_FILE = "my_path/my_firmware.xml"
XBEE_FIRMWARE_FILE = "my_path/my_firmware.gbl"
BOOTLOADER_FIRMWARE_FILE = "my_path/my_bootloader.gbl"

[...]

Update the XBee device firmware using the serial port name.
firmware.update_local_firmware(SERIAL_PORT,
 XML_FIRMWARE_FILE,
 xbee_firmware_file=XBEE_FIRMWARE_FILE,
 bootloader_firmware_file=BOOTLOADER_FIRMWARE_FILE,
 progress_callback=progress_callback,)

[...]

Update the firmware of a remote XBee

The firmware update process for remote XBee devices is performed over the air
using special XBee frames. For this operation, you need the following
components:

	The remote XBee device object instance.

	The new firmware XML descriptor file.

	The new firmware binary file (*.ota)

	Optionally, the new firmware binary file with the bootloader embedded (*.otb)

Warning

Firmware update fails if the firmware requires a new bootloader and the
*.otb file is not provided.

Warning

At the moment, remote firmware update is only supported in XBee 3,
XBee SX 868/900 MHz, and XBee S2C devices.

To perform the remote firmware update, call the
update_firmware method of the RemoteXBeeDevice class providing the
required parameters:

	Method

	Description

	update_firmware(String, String,
String, Integer, Function)

	Performs a remote firmware update operation of the device.

	xml_firmware_file (String): path of the XML file that describes the firmware to upload.

	xbee_firmware_file (String, optional): location of the XBee binary firmware file (*.ota).

	bootloader_firmware_file (String, optional): location of the XBee binary firmware file with bootloader embedded (*.otb).

	timeout (Integer, optional): the maximum amount of seconds to wait for target read operations during the update process.

	progress_callback (Function, optional): function to execute to receive progress information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

The update_firmware method may fail for the following reasons:

	The remote device does not support the firmware update operation, throwing a
OperationNotSupportedException.

	There is an error during the firmware update operation, throwing a
FirmwareUpdateException.

	Other errors caught as XBeeException:

	The local device is not open, throwing a generic XBeeException.

	The operating mode of the local device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

Update remote XBee device firmware

[...]

XML_FIRMWARE_FILE = "my_path/my_firmware.xml"
OTA_FIRMWARE_FILE = "my_path/my_firmware.ota"
OTB_FIRMWARE_FILE = "my_path/my_firmware.otb"

REMOTE_DEVICE_NAME = "REMOTE"

[...]

Instantiate an XBee device object.
xbee = XBeeDevice(...)

Get the network.
xnet = xbee.get_network()

Get the remote device.
remote = xnet.discover_device(REMOTE_DEVICE_NAME)

Update the remote XBee device firmware.
remote.update_firmware(SERIAL_PORT,
 XML_FIRMWARE_FILE,
 xbee_firmware_file=OTA_FIRMWARE_FILE,
 bootloader_firmware_file=OTB_FIRMWARE_FILE,
 progress_callback=progress_callback,)

[...]

	Example: Remote Firmware Update

	The XBee Python Library includes a sample application that displays how to perform a remote firmware update. It can be located in the following path:

examples/firmware/RemoteFirmwareUpdateSample/RemoteFirmwareUpdateSample.py

Update the XBee file system

XBee 3 devices feature file system capabilities, meaning that they are able to
persistently store files and folders in flash. The XBee Python Library provides
classes and methods to manage these files.

	Create file system manager

	File system operations

Warning

At the moment file system capabilities are only supported in XBee 3
devices.

Create file system manager

A LocalXBeeFileSystemManager object is required to work with local devices
file system. You can instantiate this class by providing the local XBee device
object. Once you have the object instance, you must call the connect
method to open the file system connection and leave it ready to work.

Warning

File system operations take ownership of the serial port, meaning that you will
stop receiving messages from the device until file system connection is closed.
For this reason it is highly recommended to call the disconnect method of
the file system manager as soon as you finish working with it.

	Method

	Description

	connect()

	Connects the file system manager.

	disconnect()

	Disconnects the file system manager and restores the device connection.

The connect method may fail for the following reasons:

	The device does not support the file system capabilities, throwing a
FileSystemNotSupportedException.

	There is an error during the connect operation, throwing a
FileSystemException.

Create a local file system manager

from digi.xbee.filesystem import LocalXBeeFileSystemManager

[...]

Instantiate an XBee device object.
xbee = XBeeDevice(...)

[...]

Create the file system manager and connect it.
filesystem_manager = LocalXBeeFileSystemManager(xbee)
filesystem_manager.connect()

[...]

filesystem_manager.disconnect()

[...]

File system operations

The file system manager provides several methods to navigate through the device
file system and operate with the different files and folders:

	Method

	Description

	get_current_directory()

	Returns the current device directory.

	change_directory(String)

	Changes the current device working directory to the given one.

	directory (String): the new directory to change to.

	make_directory(String)

	Creates the provided directory.

	directory (String): the new directory to create.

	list_directory(String)

	Lists the contents of the given directory.

	directory (String, optional): the directory to list its contents. Optional. If not provided, the current directory contents are listed.

	remove_element(String)

	Removes the given file system element path.

	element_path (String): path of the file system element to remove.

	move_element(String, String)

	Moves the given source element to the given destination path.

	source_path (String): source path of the element to move.

	dest_path (String): destination path of the element to move.

	put_file(String, String,
Boolean, Function)

	Transfers the given file in the specified destination path of the XBee device.

	source_path (String): the path of the file to transfer.

	dest_path (String): the destination path to put the file in.

	secure (Boolean, optional): True if the file should be stored securely, False otherwise. Defaults to False.

	progress_callback (Function, optional): function to execute to receive progress information. Takes the following arguments:

	The progress percentage as integer.

	put_dir(String, String, Function)

	Uploads the given source directory contents into the given destination directory in the device.

	source_dir (String): the local directory to upload its contents.

	dest_dir (String, optional): the remote directory to upload the contents to. Defaults to current directory.

	progress_callback (Function, optional): function to execute to receive progress information. Takes the following arguments:

	The file being uploaded as string.

	The progress percentage as integer.

	get_file(String, String,
Function)

	Downloads the given XBee device file in the specified destination path.

	source_path (String): the path of the XBee device file to download.

	dest_path (String): the destination path to store the file in.

	progress_callback (Function, optional): function to execute to receive progress information. Takes the following arguments:

	The progress percentage as integer.

	format_filesystem()

	Formats the device file system.

	get_usage_information()

	Returns the file system usage information.

	get_file_hash(String)

	Returns the SHA256 hash of the given file path.

	file_path (String): path of the file to get its hash.

The methods above may fail for the following reasons:

	There is an error executing the requested operation, throwing a
FileSystemException.

	Example: Format file system

	The XBee Python Library includes a sample application that displays how to format the device file system. It can be located in the following path:

examples/filesystem/FormatFilesystemSample/FormatFilesystemSample.py

	Example: List directory

	The XBee Python Library includes a sample application that displays how to list the contents of a device directory. It can be located in the following path:

examples/filesystem/ListDirectorySample/ListDirectorySample.py

	Example: Upload/download file

	The XBee Python Library includes a sample application that displays how to upload/download a file from the device. It can be located in the following path:

examples/filesystem/UploadDownloadFileSample/UploadDownloadFileSample.py

Apply an XBee profile

An XBee profile is a snapshot of a specific XBee configuration, including
firmware, settings, and file system contents. The XBee Python API includes a
set of classes and methods to work with XBee profiles and apply them to local
and remote devices.

	Read an XBee profile

	Apply an XBee profile to a local device

	Apply an XBee profile to a remote device

To configure individual settings see Configure the XBee device.

Note

Use XCTU [http://www.digi.com/xctu] to create configuration profiles.

Warning

	At the moment, firmware update is only supported in:

	
	XBee 3: Local and remote profile updates

	XBee SX 868/900 MHz: Local and remote profile updates

	XBee S2C: Remote profile updates

Read an XBee profile

The library provides a class called XBeeProfile that is used to read and
extract information of an existing XBee profile file.

To create an XBeeProfile object, provide the location of the profile file
in the class constructor.

Instantiate a profile

from digi.xbee.profile import XBeeProfile

[...]

PROFILE_PATH = "/home/user/my_profile.xpro"

[...]

Create the XBee profile object.
xbee_profile = XBeeProfile(PROFILE_PATH)

[...]

The creation of the XBee profile object may fail for the following reasons:

	The provided profile file is not valid, throwing a ValueError.

	There is any error reading the profile file, throwing a
ProfileReadException.

Once the XBee profile object is created, you can extract some profile
information by accessing each of the exposed properties:

	Property

	Description

	profile_file

	Returns the profile file.

	version

	Returns the profile version.

	flash_firmware_option

	Returns the profile flash firmware option.

	description

	Returns the profile description.

	reset_settings

	Returns whether the settings of the XBee device are reset before applying the profile ones.

	has_firmware_files

	Returns whether the profile has firmware binaries (local or remote)

	has_local_firmware_files

	Returns whether the profile has local firmware binaries.

	has_remote_firmware_files

	Returns whether the profile has remote firmware binaries.

	has_filesystem

	Returns whether the profile has filesystem information (local or remote)

	has_local_filesystem

	Returns whether the profile has local filesystem information.

	has_remote_filesystem

	Returns whether the profile has remote filesystem information.

	profile_settings

	Returns all the firmware settings that the profile configures.

	firmware_version

	Returns the compatible firmware version of the profile.

	hardware_version

	Returns the compatible hardware version of the profile.

	compatibility_number

	Returns the compatibility number of the profile.

	region_lock

	Returns the region lock of the profile.

To access to the files inside, use open method. Once done with it, use
close method.

Open/close a profile

xbee_profile = XBeeProfile(PROFILE_PATH)

xbee_profile.open()

[...]

xbee_profile.close()

[...]

An opened profile also offers the following properties:

	Property

	Description

	profile_description_file

	Returns the path of the profile description file.

	firmware_description_file

	Returns the path of the profile firmware description file.

	file_system_path

	Returns the profile file system path.

	remote_file_system_image

	Returns the path of the remote OTA file system image.

	bootloader_file

	Returns the profile bootloader file path.

Read a profile

from digi.xbee.profile import XBeeProfile

[...]

PROFILE_PATH = "/home/user/my_profile.xpro"

[...]

Create the XBee profile object.
xbee_profile = XBeeProfile(PROFILE_PATH)

Print profile compatible hardware and software versions
print(" - Firmware version: %s" % xbee_profile.firmware_version)
print(" - Hardware version: %s" % xbee_profile.hardware_version)

[...]

	Example: Read an XBee profile

	The XBee Python Library includes a sample application that displays how to read an XBee profile. It can be located in the following path:

examples/profile/ReadXBeeProfileSample/ReadXBeeProfileSample.py

Apply an XBee profile to a local device

Applying a profile to a local XBee device requires the following components:

	The local XBee device object instance.

	The profile file to apply (*.xpro).

Note

Use XCTU [http://www.digi.com/xctu] to create configuration profiles.

Warning

At the moment, local profile update is only supported in XBee 3 and
XBee SX 868/900 MHz devices.

To apply the XBee profile to a local XBee, you have to call the
apply_profile method of the XBeeDevice class providing the required
parameters:

	Method

	Description

	apply_profile(String, timeout, Function)

	Applies the given XBee profile to the XBee device.

	profile_path (String): path of the XBee profile file to apply.

	timeout (Integer, optional): maximum time to wait for read operations during the apply profile.

	progress_callback (Function, optional): function to execute to receive progress information. Receives two arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

The apply_profile method may fail for the following reasons:

	The local device does not support the apply profile operation, throwing a
OperationNotSupportedException.

	There is an error while applying the XBee profile, throwing a
UpdateProfileException.

	Other errors caught as XBeeException:

	The local device is not open, throwing a generic XBeeException.

	The operating mode of the local device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

Apply an XBee profile to a local device

[...]

PROFILE_PATH = "/home/user/my_profile.xpro"

[...]

Instantiate an XBee device object.
xbee = XBeeDevice(...)

[...]

Apply the XBee device profile.
device.apply_profile(PROFILE_PATH, progress_callback=progress_callback)

[...]

	Example: Apply local XBee profile

	The XBee Python Library includes a sample application that displays how to apply an XBee profile to a local device. It can be located in the following path:

examples/profile/ApplyXBeeProfileSample/ApplyXBeeProfileSample.py

Apply an XBee profile to a remote device

Applying a profile to a remote XBee requires the following components:

	The remote XBee device object instance.

	The profile file to apply (*.xpro).

Note

Use XCTU [http://www.digi.com/xctu] to create configuration profiles.

Warning

At the moment, remote profile update is only supported in XBee 3,
XBee SX 868/900 MHz, and XBee S2C devices.

To apply the XBee profile to a remote XBee device, you have to call the
apply_profile method of the RemoteXBeeDevice class providing the
required parameters:

	Method

	Description

	apply_profile(String, timeout, Function)

	Applies the given XBee profile to the remote XBee device.

	profile_path (String): path of the XBee profile file to apply.

	timeout (Integer, optional): maximum time to wait for read operations during the apply profile.

	progress_callback (Function, optional): function to execute to receive progress information. Receives two arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

The apply_profile method may fail for the following reasons:

	The remote device does not support the apply profile operation, throwing a
OperationNotSupportedException.

	There is an error while applying the XBee profile, throwing a
UpdateProfileException.

	Other errors caught as XBeeException:

	The local device is not open, throwing a generic XBeeException.

	The operating mode of the local device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

Apply an XBee profile to a remote device

[...]

PROFILE_PATH = "/home/user/my_profile.xpro"
REMOTE_DEVICE_NAME = "REMOTE"

[...]

Instantiate an XBee device object.
xbee = XBeeDevice(...)

Get the network.
xnet = xbee.get_network()

Get the remote device.
remote = xnet.discover_device(REMOTE_DEVICE_NAME)

[...]

Apply the XBee device profile.
remote.apply_profile(PROFILE_PATH, progress_callback=progress_callback)

[...]

	Example: Apply remote XBee profile

	The XBee Python Library includes a sample application that displays how to apply an XBee profile to a remote device. It can be located in the following path:

examples/profile/ApplyXBeeProfileRemoteSample/ApplyXBeeProfileRemoteSample.py

Log events

Logging is a fundamental part of applications, and every application includes
this feature. A well-designed logging system is a useful utility for system
administrators, developers, and the support team and can save valuable time in
sorting through the cause of issues. As users execute programs on the front end,
the system invisibly builds a vault of event information (log entries).

The XBee Python Library uses the Python standard logging module for
registering logging events. The logger works at module level; that is, each
module has a logger with a unique name.

The modules that have logging integrated are devices and reader. By
default, all loggers are disabled so you will not see any logging message
in the console if you do not activate them.

In the XBee Python Library, you need three things to enable the logger:

	The logger itself.

	A handler. This will determine if the messages will be displayed in the
console, written in a file, sent through a socket, etc.

	A formatter. This will determine the message format. For example, a format
could be:

	Timestamp with the current date - logger name - level (debug, info,
warning…) - data.

To retrieve the logger, use the get_logger() method of the
logging module, providing the name of the logger that you want to get as
parameter. In the XBee Python Library all loggers have the name of the module
they belong to. For example, the name of the logger of the devices module
is digi.xbee.devices. You can get a module name with the special attribute
__name__.

Retrieve a module name and its logger

import logging

[...]

Get the logger of the devices module.
dev_logger = logging.getLogger(digi.xbee.devices.__name__)

Get the logger of the devices module providing the name.
dev_logger = logging.getLogger("digi.xbee.devices")

[...]

To retrieve a handler, you can use the default Python handler or create your
own one. Depending on which type of handler you use, the messages created by
the logger will be printed in the console, in a file, etc. You can have more
than one handler per logger, this means that you can enable the default XBee
Python Library handler and add your own handlers.

Retrieve a handler and add it to a logger

import logging

[...]

Get the logger of the devices module.
dev_logger = logging.getLogger(digi.xbee.devices.__name__)

Get a handler and add it to the logger.
handler = logging.StreamHandler()
dev_logger.addHandler(handler)

[...]

The previous code snippet shows how to add a handler to a logger, but the
logical way is to add a formatter to a handler, and then add the handler to the
logger.

When you create a formatter, you must specify which information will be printed
and in which format. This guide shows you how to create a formatter with a
simple format. If you want to create more complex formatters or handlers, see
the Python documentation.

Create a formatter and add it to a handler

import logging

[...]

Get a handler.
handler = (...)

Instantiate a formatter so the log entries are represented as defined here.
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - '
 '%(message)s')

Configure the formatter in the handler.
handler.setFormatter(formatter)

[...]

Enable a logger for the devices module

import logging

[...]

Get the logger of the devices module providing the name.
dev_logger = logging.getLogger("digi.xbee.devices")

Get a handler and configure a formatter for it.
handler = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - '
 '%(message)s')
handler.setFormatter(formatter)

Add the handler to the logger.
dev_logger.addHandler(handler)

[...]

Logging level

The XBee Python Library also provides a method in the utils module,
enable_logger(), to enable the logger with the default settings. These
settings are:

	Handler: StreamHandler

	Format: timestamp - logger name - level - message

	Method

	Description

	enable_logger(name, level=logging.DEBUG)

	Enables the logger.

	name: the name of the module whose logger you want to activate.

	level: default DEBUG. The level you want to see.

Enable a logger

import logging

[...]

Enable the logger in the digi.xbee.devices module with INFO level.
dev_logger = enable_logger(digi.xbee.devices.__name__, logging.INFO)

This is a valid method to do the same.
dev_logger = enable_logger("digi.xbee.devices", logging.INFO)

[...]

Enable the logger in the digi.xbee.devices module with the default level
(DEBUG).
dev_logger = enable_logger("digi.xbee.devices")

This is a valid method to do the same.
dev_logger = enable_logger("digi.xbee.devices", logging.DEBUG)

[...]

Note

For further information about the Python logging module, see the
Python logging module official documentation [https://docs.python.org/3/library/logging.html]
or the Python logging cookbook [https://docs.python.org/3/howto/logging-cookbook.html].

XBee Python samples

The XBee Python Library includes several samples to demonstrate how to do the
following:

	Communicate with your modules

	Configure your modules

	Read the IO lines

	Update device’s firmware

	Work with device’s file system

	Apply XBee profiles

	Perform other common operations

All of the sample applications are contained in the examples folder, organized
by category. Every sample includes the source code and a readme.txt file
to clarify the purpose and the required setup to launch the application.

Examples are split by categories:

	Configuration samples

	Network samples

	Communication samples

	IO samples

	Firmware samples

	File system samples

	Profile samples

Configuration samples

Manage common parameters

This sample application shows how to get and set common parameters of the XBee
device. Common parameters are split in cached and non-cached parameters. For
that reason, the application refreshes the cached parameters before reading and
displaying them. The application then configures, reads, and displays the value
of non-cached parameters.

The application uses the specific setters and getters provided by the XBee
device object to configure and read the different parameters.

You can locate the example in the following path:
examples/configuration/ManageCommonParametersSample

Note

For more information about how to manage common parameters, see
Read and set common parameters.

Set and get parameters

This sample application shows how to set and get parameters of a local or
remote XBee device. Use this method when you need to set or get the value of a
parameter that does not have its own getter and setter within the XBee device
object.

The application sets the value of four parameters with different value types:

	String

	Byte

	Array

	Integer

The application then reads the parameters from the device to verify that the
read values are the same as the values that were set.

You can locate the example in the following path:
examples/configuration/SetAndGetParametersSample

Note

For more information about how to get and set other parameters, see
Read, set and execute other parameters.

Reset module

This sample application shows how to perform a software reset on the local XBee
module.

You can locate the example in the following path:
examples/configuration/ResetModuleSample

Note

For more information about how to reset a module, see
Reset the device.

Recover XBee serial connection

This sample application shows how to recover the serial settings of a local XBee.

You can locate the example at the following path:
examples/configuration/RecoverSerialConnection

Note

For more information about this, see Open the XBee device connection.

Connect to access point (Wi-Fi)

This sample application shows how to configure a Wi-Fi module to connect to a
specific access point and read its addressing settings.

You can locate the example at the following path:
examples/configuration/ConnectToAccessPoint

Note

For more information about connecting to an access point, see
Configure Wi-Fi settings.

Network samples

Discover devices

This sample application demonstrates how to obtain the XBee network object
from a local XBee device and discover the remote XBee devices that compose the
network. The example adds a discovery listener, so the callbacks provided by
the listener object receive the events.

The remote XBee devices are printed out as soon as they are found during
discovery.

You can locate the example in the following path:
examples/network/DiscoverDevicesSample

Note

For more information about how to perform a network discovery, see
Discover the network.

Network modifications sample

This sample application demonstrates how to listen to network modification
events. The example adds a modifications network callback, so modifications
events are received and printed out.

A network is modified when:

	a new node is added by discovering, manually, or because data is
received from it

	an existing node is removed from the network

	an existing node is updated with new information

	it is fully cleared

You can locate the example in the following path:
examples/network/NetworkModificationsSample

Note

For more information about how to listen to network modifications, see
Listen to network modification events.

Communication samples

Send data

This sample application shows how to send data from the XBee device to another
remote device on the same network using the XBee Python Library. In this
example, the application sends data using a reliable transmission method. The
application blocks during the transmission request, but you are notified if
there is any error during the process.

The application sends data to a remote XBee device on the network with a
specific node identifier (name).

You can locate the example in the following path:
examples/communication/SendDataSample

Note

For more information about how to send data, see
Send data.

Send data asynchronously

This sample application shows how to send data asynchronously from the XBee
device to another remote device on the same network using the XBee Python
Library. Transmitting data asynchronously means the execution is not blocked
during the transmit request, but you cannot determine if the data was
successfully sent.

The application sends data asynchronously to a remote XBee device on the
network with a specific node identifier (name).

You can locate the example in the following path:
examples/communication/SendDataAsyncSample

Note

For more information about how to send data, see
Send data.

Send broadcast data

This sample application shows how to send data from the local XBee device to
all remote devices on the same network (broadcast) using the XBee Python
Library. The application blocks during the transmission request, but you are
notified if there is any error during the process.

You can locate the example in the following path:
examples/communication/SendBroadcastDataSample

Note

For more information about how to send broadcast data, see
Send data to all devices of the network.

Send explicit data

This sample application shows how to send data in the application layer
(explicit) format to a remote Zigbee device using the XBee Python Library.
In this example, the XBee module sends explicit data using a reliable
transmission method. The application blocks during the transmission request,
but you are notified if there is any error during the process.

You can locate the example in the following path:
examples/communication/explicit/SendExplicitDataSample

Note

For more information about how to send explicit data, see
Send explicit data.

Send explicit data asynchronously

This sample application shows how to send data in the application layer
(explicit) format asynchronously to a remote Zigbee device using the XBee
Python Library. Transmitting data asynchronously means the execution is not
blocked during the transmit request, but you cannot determine if the data was
successfully sent.

You can locate the example in the following path:
examples/communication/explicit/SendExplicitDataAsyncSample

Note

For more information about how to send explicit data, see
Send explicit data.

Send broadcast explicit data

This sample application shows how to send data in the application layer
(explicit) format to all remote devices on the network (broadcast) using the
XBee Python Library. The application blocks during the transmission request,
but you are notified if there is any error during the process.

You can locate the example in the following path:
examples/communication/explicit/SendBroadcastExplicitDataSample

Note

For more information about how to send broadcast explicit data, see
Send explicit data to all devices in the network.

Send IP data (IP devices)

This sample application shows how to send IP data to another device specified
by its IP address and port number.

You can find the example at the following path:
examples/communication/ip/SendIPDataSample

Note

For more information about how to send IP data, see
Send IP data.

Send SMS (cellular devices)

This sample application shows how to send an SMS to a phone or cellular device.

You can find the example at the following path:
examples/communication/cellular/SendSMSSample

Note

For more information about how to send SMS messages, see
Send SMS messages.

Send UDP data (IP devices)

This sample application shows how to send UDP data to another device specified
by its IP address and port number.

You can find the example at the following path:
examples/communication/ip/SendUDPDataSample

Note

For more information about how to send IP data, see
Send IP data.

Send Bluetooth Data

This sample application shows how to send data to the XBee Bluetooth Low Energy
interface.

You can find the example at the following path:
examples/communication/bluetooth/SendBluetoothDataSample

Note

For more information about sending Bluetooth data, see
Send Bluetooth data.

Send MicroPython Data

This sample application shows how to send data to the XBee MicroPython
interface.

You can find the example at the following path:
examples/communication/micropython/SendMicroPythonDataSample

Note

For more information about sending MicroPython data, see
Send MicroPython data.

Send User Data Relay

This sample application shows how to send data to other XBee interface.

You can find the example at the following path:
examples/communication/relay/SendUserDataRelaySample

Note

For more information about sending User Data Relay messages, see
Send Bluetooth data or Send MicroPython data.

Receive data

This sample application shows how data packets are received from another XBee
device on the same network.

The application prints the received data to the standard output in ASCII and
hexadecimal formats after the sender address.

You can locate the example in the following path:
examples/communication/ReceiveDataSample

Note

For more information about how to receive data using a callback, see
Data reception callback.

Receive data polling

This sample application shows how data packets are received from another XBee
device on the same network using a polling mechanism.

The application prints the data that was received to the standard output in
ASCII and hexadecimal formats after the sender address.

You can locate the example in the following path:
examples/communication/ReceiveDataPollingSample

Note

For more information about how to receive data using a polling mechanism,
see Polling for data.

Receive explicit data

This sample application shows how a Zigbee device receives data in the
application layer (explicit) format using a callback executed every time new
data is received. Before receiving data in explicit format, the API output mode
of the Zigbee device is configured in explicit mode.

You can locate the example in the following path:
examples/communication/explicit/ReceiveExplicitDataSample

Note

For more information about how to receive explicit data using a callback,
see Explicit data reception callback.

Receive explicit data polling

This sample application shows how a Zigbee device receives data in the
application layer (explicit) format using a polling mechanism. Before receiving
data in explicit format, the API output mode of the Zigbee device is configured
in explicit mode.

You can locate the example in the following path:
examples/communication/explicit/ReceiveExplicitDataPollingSample

Note

For more information about how to receive explicit data using a polling
mechanism, see Polling for explicit data.

Receive IP data (IP devices)

This sample application shows how an IP device receives IP data using a
callback executed every time it receives new IP data.

You can find the example at the following path:
examples/communication/ip/ReceiveIPDataSample

Note

For more information about how to receive IP data using a polling mechanism,
see Receive IP data.

Receive SMS (cellular devices)

This sample application shows how to receive SMS messages configuring a
callback executed when new SMS is received.

You can find the example at the following path:
examples/communication/cellular/ReceiveSMSSample

Note

For more information about how to receive SMS messages, see
Receive SMS messages.

Receive Bluetooth data

This sample application shows how to receive data from the XBee Bluetooth Low
Energy interface.

You can find the example at the following path:
examples/communication/bluetooth/ReceiveBluetoothDataSample

Note

For more information about receiving Bluetooth data, see
Receive Bluetooth data.

Receive Bluetooth file

This sample application shows how to receive a file from the XBee Bluetooth Low
Energy interface.

You can find the example at the following path:
examples/communication/bluetooth/ReceiveBluetoothFileSample

Note

For more information about receiving Bluetooth data, see
Receive Bluetooth data.

Receive MicroPython data

This sample application shows how to receive data from the XBee MicroPython
interface.

You can find the example at the following path:
examples/communication/micropython/ReceiveMicroPythonDataSample

Note

For more information about receiving MicroPython data, see
Receive MicroPython data.

Receive User Data Relay

This sample application shows how to receive data from other XBee interface.

You can find the example at the following path:
examples/communication/relay/ReceiveUserDataRelaySample

Note

For more information about receiving User Data Relay messages, see
Receive Bluetooth data or
Receive MicroPython data.

Receive modem status

This sample application shows how modem status packets (events related to the
device and the network) are handled using the API.

The application prints the modem status events to the standard output when
received.

You can locate the example in the following path:
examples/communication/ReceiveModemStatusSample

Note

For more information about how to receive modem status events, see
Receive modem status events.

Connect to echo server (IP devices)

This sample application shows how IP devices can connect to an echo server,
send data to it and reads the echoed data.

You can find the example at the following path:
examples/communication/ip/ConnectToEchoServerSample

Note

For more information about how to send and receive IP data, see
Send IP data and Receive IP data.

Create a TCP client socket (cellular devices)

This sample application shows how to create a TCP client socket to send HTTP
requests.

You can find the example at the following path:
examples/communication/socket/SocketTCPClientSample

Note

For more information about how to use the XBee socket API, see
Communicate using XBee sockets.

Create a TCP server socket (cellular devices)

This sample application shows how to create a TCP server socket to receive data
from incoming sockets.

You can find the example at the following path:
examples/communication/socket/SocketTCPServerSample

Note

For more information about how to use the XBee socket API, see
Communicate using XBee sockets.

Create a UDP server/client socket (cellular devices)

This sample application shows how to create a UDP socket to deliver messages to
a server and listen for data coming from multiple peers.

You can find the example at the following path:
examples/communication/socket/SocketUDPServerClientSample

Note

For more information about how to use the XBee socket API, see
Communicate using XBee sockets.

IO samples

Local DIO

This sample application shows how to set and read XBee digital lines of the
device attached to the serial/USB port of your PC.

The application configures two IO lines of the XBee device: one as a digital
input (button) and the other as a digital output (LED). The application reads
the status of the input line periodically and updates the output to follow the
input.

The LED lights up while you press the button.

You can locate the example in the following path:
examples/io/LocalDIOSample

Note

For more information about how to set and read digital lines, see
Digital Input/Output.

Local ADC

This sample application shows how to read XBee analog inputs of the device
attached to the serial/USB port of your PC.

The application configures an IO line of the XBee device as ADC. It
periodically reads its value and prints it in the output console.

You can locate the example in the following path:
examples/io/LocalADCSample

Note

For more information about how to read analog lines, see
ADC.

Remote DIO

This sample application shows how to set and read XBee digital lines of remote
devices.

The application configures two IO lines of the XBee devices: one in the remote
device as a digital input (button) and the other in the local device as a
digital output (LED). The application reads the status of the input line
periodically and updates the output to follow the input.

The LED lights up while you press the button.

You can locate the example in the following path:
examples/io/RemoteDIOSample

Note

For more information about how to set and read digital lines, see
Digital Input/Output.

Remote ADC

This sample application shows how to read XBee analog inputs of remote XBee
devices.

The application configures an IO line of the remote XBee device as ADC. It
periodically reads its value and prints it in the output console.

You can locate the example in the following path:
examples/io/RemoteADCSample

Note

For more information about how to read analog lines, see
ADC.

IO sampling

This sample application shows how to configure a remote device to send
automatic IO samples and how to read them from the local module.

The application configures two IO lines of the remote XBee device: one as
digital input (button) and the other as ADC, and enables periodic sampling and
change detection. The device sends a sample every five seconds containing the
values of the two monitored lines. The device sends another sample every time
the button is pressed or released, which only contains the value of this
digital line.

The application registers a listener in the local device to receive and handle
all IO samples sent by the remote XBee module.

You can locate the example in the following path:
examples/io/IOSamplingSample

Note

For more information about how to read IO samples, see
Read IO samples.

Firmware samples

Update local firmware

This sample Python application shows how to update the firmware of a local
XBee device.

The application provides the required hardware files to the update method
as well as a callback function to be notified of progress.

You can locate the example in the following path:
examples/firmware/LocalFirmwareUpdateSample

Update remote firmware

This sample Python application shows how to update the firmware of a remote
XBee device.

The application provides the required hardware files to the update method
as well as a callback function to be notified of progress.

You can locate the example in the following path:
examples/firmware/RemotelFirmwareUpdateSample

File system samples

Format file system

This sample Python application shows how to format the filesystem of a
local XBee device and retrieve usage information.

The application uses the LocalXBeeFileSystemManager to access the device
filesystem and execute the required actions.

You can locate the example in the following path:
examples/filesystem/FormatFilesystemSample

List directory contents

This sample Python application shows how to list the contents of an XBee
device filesystem directory.

The application uses the LocalXBeeFileSystemManager to access the device
filesystem and executes the required actions.

You can locate the example in the following path:
examples/filesystem/ListDirectorySample

Upload/download file

This sample Python application shows how to upload and download a file from
a local XBee device filesystem.

The application uses the LocalXBeeFileSystemManager to access the device
filesystem and provides the local file and the necessary paths to the
upload/download methods as well as callback functions to be notified of
progress.

You can locate the example in the following path:
examples/filesystem/UploadDownloadFileSample

Profile samples

Apply local profile

This sample Python application shows how to apply an existing XBee profile
to a XBee device.

The application provides the profile file to the update method as well as a
callback function to be notified of progress.

You can locate the example in the following path:
examples/profile/ApplyXBeeProfileSample

Apply remote profile

This sample Python application shows how to apply an existing XBee profile
to a remote XBee device.

The application provides the profile file to the update method as well as a
callback function to be notified of progress.

You can locate the example in the following path:
examples/profile/ApplyXBeeProfileRemoteSample

Read profile

This sample Python application shows how to read an existing XBee profile
and extract its properties.

The application creates an XBee profile object from an existing XBee profile
file and prints all the accessible settings and properties.

You can locate the example in the following path:
examples/profile/ReadXBeeProfileSample

Frequently Asked Questions (FAQs)

The FAQ section contains answers to general questions related to the XBee
Python Library.

What is XCTU and how do I download it?

XCTU is a free multi-platform application designed to enable developers to
interact with Digi RF modules through a simple-to-use graphical interface. You
can download it at www.digi.com/xctu [http://www.digi.com/xctu].

How do I find the serial port and baud rate of my module?

Open the XCTU application, and click the Discover radio modules connected to your
machine button.

Select all ports to be scanned, click Next and then Finish. Once the
discovery process has finished, a new window notifies you how many devices have
been found and their details. The serial port and the baud rate are shown in
the Port label.

[image: Get port and baudrate]

Note

Note In UNIX systems, the complete name of the serial port contains the
/dev/ prefix.

Can I use the XBee Python Library with modules in AT operating mode?

No, the XBee Python Library only supports API and API Escaped operating
modes.

I get the Python error ImportError: No module named 'serial'

This error means that Python cannot find the serial module, which is used by
the library for the serial communication with the XBee devices.

You can install PySerial running this command in your terminal application:

$ pip install pyserial

For further information about the installation of PySerial, refer to the
PySerial installation guide [http://pythonhosted.org/pyserial/pyserial.html#installation].

I get the Python error ImportError: No module named 'srp'

This error means that Python cannot find the srp module, which is used by
the library to authenticate with XBee devices over Bluetooth Low Energy.

You can install SRP running this command in your terminal application:

$ pip install srp

Changelog

v1.4.0 - 03/18/2021

	Deep node discovery for Zigbee, DigiMesh, and 802.15.4.

	Get route from local XBee to a remote XBee:

	New method to register a callback to listen for new received routes
(add_route_received_callback())

	New blocking method to ask for the route to the remote node
(get_route_to_node())

	Allow to recover a local node from a profile not only from firmware.

	Support to be notified when new frames are received from a specific node
(add_packet_received_from_callback()).

	Update network information from sent/received AT Command frames.

	New optional argument for parameter value in execute_command().

	New optional argument to apply pending settings in get_parameter(),
set_parameter(), and execute_command().

	XBee 3:

	Support to update remote file system OTA images.

	XBee SX 900/868:

	Firmware update for local and remote XBee devices.

	Profile update for local and remote XBee devices.

	XBee S2C:

	OTA firmware/profile update support for remote nodes.

	Zigbee:

	Methods to get nodes routing and neighbor tables: get_routes() and
get_neighbors().

	Methods to get/set many-to-one broadcasting time:
get_many_to_one_broadcasting_time() and
set_many_to_one_broadcasting_time().

	Support for source route creation: create_source_route().

	New frames:
* ‘Route Record Indicator’ (0xA1)
* ‘Create Source Route Packet’ (0x21)

	DigiMesh:

	Method to get node neighbors: get_neighbors().

	Method to build aggregate route: build_aggregate_routes().

	New frames:
* ‘Route Information Packet’ (0x8D)

	Documentation update

	Bug fixing:

	Captured possible exception while determining the XBee role (#103)

	Memory leak: empty list of last discovered nodes using ND (#172)

	Fix Python 3.9 syntax error (#204)

	Use least significant nibble of status field in local/remote AT Command
Responses (XCTUNG-376)

	Do not lose already registered socket callbacks when closing a local XBee.

	Reload node information after firmware/profile update (XBPL-348)

	OTA firmware update:

	Fix sequence number in ZCL responses during fw update (XCTUNG-1975)

	Immediate update after transferring the OTA file (XBPL-350)

	Use requested file offset and size instead of fixed chunks (XBPL-344)

	Mechanism to calculate the proper block size based on the maximum size
received by the client and the maximum payload size (XBPL-346)

	For asyncronous sleeping nodes (Zigbee, DigiMesh, 802.15.4) and
synchronous sleeping networks (DigiMesh), configure a minimum sleep time
before update and restore settings at the end.
For DigiMesh synchronous sleeping network, the local XBee must be a
non-sleeping node but synchronized with the network (SM=7)

	Profile application:

	Do not uncompress profile when reading its information. This change avoids
extra processing time and required space when retrieving profile info.

	Remove profile extracted files. A profile is opened to access to its
contents, and must be closed when done with it.

	Fixed the application of XBee profiles with ‘AP’ setting changes
(XBPL-340)

	Fixed bootloader update from profile due to bootloader image path
mismatch (XBPL-338)

	Fix bootloader update operation by waiting some time until the new
bootloader is running (XBPL-339)

	Fixed application of profile with filesystem from Windows(XBPL-341)

	Read firmware version as an hexadecimal value (#177)

	Several minor bug fixes.

v1.3.0 - 11/05/2019

	Zigbee: Support to register joining devices to a trust center.

	Cellular: XBee TCP/UDP socket support.

	XBee 3:

	Firmware update for local and remote XBee devices.

	Profile update for local and remote XBee devices.

	File system management for local XBee devices.

	New recover serial connection functionality to force the XBee serial
connection settings.

	Support for notification of network cache modifications events (new node
added, removed of existing node, network clear, …)

	Deprecate get_api_output_mode and set_api_output_mode methods to
use new get_api_output_mode_value and set_api_output_mode_value
with APIOutputModeBit enumeration.

	Role as one of the cached parameters.

	Report an error on ‘finished discovery’ callback if node discovery fails.

	Several minor bug fixes.

v1.2.0 - 04/05/2019

	Add new methods to send and receive data from other XBee interfaces through
User Data Relay frames.

	Add new methods to manage the Bluetooth interface.

	Add support to set AT parameters without applying them with the AT Command
Queue packet.

	Improve the callbacks mechanism:

	Callbacks are now executed in parallel.

	Internal callbacks are now defined when needed to avoid issues when more
than one callback of the same type is defined.

	Add missing ‘Transmit Status’, ‘Modem Status’ and ‘Cellular Association
Indication Status’ values to cover all XBee Cellular/XBee3 Cellular features.

	Bug Fixing:

	Fix some bugs related to package spec data.

	Log an error when processing a wrong frame instead of stopping the reader.

	Fix an issue parsing Explicit RX Indicator packets.

	Fix a couple of leaks with StreamHandlers.

v1.1.1 - 04/25/2018

	Add support for DigiMesh and 802.15.4 protocols on XBee3 modules.

	Return an unknown XBee packet when the received packet is not supported by
the library instead of raising an exception.

	Change logging handler to log messages in the console.

	Bug Fixing:

	Fix a problem when closing the device connection in the reader.

	Fix how is determined whether the module has entered in AT command mode
or not.

	Fix the string encoding and decoding in some API packets.

	Fix the message displayed when the XBee device protocol is not correct one.

v1.1.0 - 01/19/2018

	Add support for new hardware variants:

	XB8X

	Add missing ‘Modem Status’ values for Remote Manager connect and disconnect
events.

	Bug Fixing:

	Fix timeouts on Unix platforms.

	Fix the return source endpoint method from the ‘ExplicitRXIndicatorPacket’
class.

	Perform general bug fixing when working in API escaped mode.

v1.0.0 - 10/02/2017

Initial release of XBee Python library. The main features of the library
include:

	Support for ZigBee, 802.15.4, DigiMesh, Point-to-Multipoint, Wi-Fi,
Cellular and NB-IoT devices.

	Support for API and API escaped operating modes.

	Management of local (attached to the PC) and remote XBee device objects.

	Discovery of remote XBee devices associated with the same network as the
local device.

	Configuration of local and remote XBee devices:

	Configure common parameters with specific setters and getters.

	Configure any other parameter with generic methods.

	Execute AT commands.

	Apply configuration changes.

	Write configuration changes.

	Reset the device.

	Transmission of data to all the XBee devices on the network or to a
specific device.

	Reception of data from remote XBee devices:

	Data polling.

	Data reception callback.

	Transmission and reception of IP and SMS messages.

	Reception of network status changes related to the local XBee device.

	IO lines management:

	Configure IO lines.

	Set IO line value.

	Read IO line value.

	Receive IO data samples from any remote XBee device on the network.

	Support for explicit frames and application layer fields (Source endpoint,
Destination endpoint, Profile ID, and Cluster ID).

	Multiple examples that show how to use the available APIs.

API reference

Following is API reference material on major parts of XBee Python library.

	digi package
	Subpackages
	digi.xbee package
	Subpackages
	digi.xbee.models package

	digi.xbee.packets package

	digi.xbee.util package

	Submodules
	digi.xbee.comm_interface module

	digi.xbee.devices module

	digi.xbee.exception module

	digi.xbee.filesystem module

	digi.xbee.firmware module

	digi.xbee.io module

	digi.xbee.profile module

	digi.xbee.reader module

	digi.xbee.recovery module

	digi.xbee.sender module

	digi.xbee.serial module

	digi.xbee.xsocket module

digi package

Subpackages

	digi.xbee package
	Subpackages
	digi.xbee.models package
	Submodules
	digi.xbee.models.accesspoint module

	digi.xbee.models.atcomm module

	digi.xbee.models.filesystem module

	digi.xbee.models.hw module

	digi.xbee.models.info module

	digi.xbee.models.mode module

	digi.xbee.models.address module

	digi.xbee.models.message module

	digi.xbee.models.options module

	digi.xbee.models.protocol module

	digi.xbee.models.status module

	digi.xbee.models.zdo package

	digi.xbee.packets package
	Submodules
	digi.xbee.packets.aft module

	digi.xbee.packets.base module

	digi.xbee.packets.cellular module

	digi.xbee.packets.common module

	digi.xbee.packets.devicecloud module

	digi.xbee.packets.digimesh module

	digi.xbee.packets.filesystem module

	digi.xbee.packets.network module

	digi.xbee.packets.raw module

	digi.xbee.packets.relay module

	digi.xbee.packets.socket module

	digi.xbee.packets.wifi module

	digi.xbee.packets.zigbee module

	digi.xbee.packets.factory module

	digi.xbee.util package
	Submodules
	digi.xbee.util.utils module

	digi.xbee.util.xmodem module

	Submodules
	digi.xbee.comm_interface module

	digi.xbee.devices module

	digi.xbee.exception module

	digi.xbee.filesystem module

	digi.xbee.firmware module

	digi.xbee.io module

	digi.xbee.profile module

	digi.xbee.reader module

	digi.xbee.recovery module

	digi.xbee.sender module

	digi.xbee.serial module

	digi.xbee.xsocket module

digi.xbee package

Subpackages

	digi.xbee.models package
	Submodules
	digi.xbee.models.accesspoint module

	digi.xbee.models.atcomm module

	digi.xbee.models.filesystem module

	digi.xbee.models.hw module

	digi.xbee.models.info module

	digi.xbee.models.mode module

	digi.xbee.models.address module

	digi.xbee.models.message module

	digi.xbee.models.options module

	digi.xbee.models.protocol module

	digi.xbee.models.status module

	digi.xbee.models.zdo package

	digi.xbee.packets package
	Submodules
	digi.xbee.packets.aft module

	digi.xbee.packets.base module

	digi.xbee.packets.cellular module

	digi.xbee.packets.common module

	digi.xbee.packets.devicecloud module

	digi.xbee.packets.digimesh module

	digi.xbee.packets.filesystem module

	digi.xbee.packets.network module

	digi.xbee.packets.raw module

	digi.xbee.packets.relay module

	digi.xbee.packets.socket module

	digi.xbee.packets.wifi module

	digi.xbee.packets.zigbee module

	digi.xbee.packets.factory module

	digi.xbee.util package
	Submodules
	digi.xbee.util.utils module

	digi.xbee.util.xmodem module

Submodules

	digi.xbee.comm_interface module

	digi.xbee.devices module

	digi.xbee.exception module

	digi.xbee.filesystem module

	digi.xbee.firmware module

	digi.xbee.io module

	digi.xbee.profile module

	digi.xbee.reader module

	digi.xbee.recovery module

	digi.xbee.sender module

	digi.xbee.serial module

	digi.xbee.xsocket module

digi.xbee.models package

Submodules

	digi.xbee.models.accesspoint module

	digi.xbee.models.atcomm module

	digi.xbee.models.filesystem module

	digi.xbee.models.hw module

	digi.xbee.models.info module

	digi.xbee.models.mode module

	digi.xbee.models.address module

	digi.xbee.models.message module

	digi.xbee.models.options module

	digi.xbee.models.protocol module

	digi.xbee.models.status module

	digi.xbee.models.zdo package

digi.xbee.models.accesspoint module

	
class digi.xbee.models.accesspoint.AccessPoint(ssid, encryption_type, channel=0, signal_quality=0)[source]

	Bases: object

This class represents an Access Point for the Wi-Fi protocol. It contains
SSID, the encryption type and the link quality between the Wi-Fi module and
the access point.

This class is used within the library to list the access points
and connect to a specific one in the Wi-Fi protocol.

See also

WiFiEncryptionType

Class constructor. Instantiates a new AccessPoint object
with the provided parameters.

	Parameters

	
	ssid (String) – the SSID of the access point.

	encryption_type (WiFiEncryptionType) – the encryption type
configured in the access point.

	channel (Integer, optional) – operating channel of the access point.

	signal_quality (Integer, optional) – signal quality with the access
point in %.

	Raises

	
	ValueError – if length of ssid is 0.

	ValueError – if channel is less than 0.

	ValueError – if signal_quality is less than 0 or greater than 100.

See also

WiFiEncryptionType

	
ssid

	Returns the SSID of the access point.

	Returns

	the SSID of the access point.

	Return type

	String

	
encryption_type

	Returns the encryption type of the access point.

	Returns

	the encryption type of the access point.

	Return type

	WiFiEncryptionType

See also

WiFiEncryptionType

	
channel

	Returns the channel of the access point.

	Returns

	the channel of the access point.

	Return type

	Integer

See also

AccessPoint.set_channel()

	
signal_quality

	Returns the signal quality with the access point in %.

	Returns

	the signal quality with the access point in %.

	Return type

	Integer

See also

AccessPoint.__set_signal_quality()

	
class digi.xbee.models.accesspoint.WiFiEncryptionType(code, description)[source]

	Bases: enum.Enum

Enumerates the different Wi-Fi encryption types.

Values:

WiFiEncryptionType.NONE = (0, ‘No security’)

WiFiEncryptionType.WPA = (1, ‘WPA (TKIP) security’)

WiFiEncryptionType.WPA2 = (2, ‘WPA2 (AES) security’)

WiFiEncryptionType.WEP = (3, ‘WEP security’)

	
code

	Returns the code of the WiFiEncryptionType element.

	Returns

	the code of the WiFiEncryptionType element.

	Return type

	Integer

	
description

	Returns the description of the WiFiEncryptionType element.

	Returns

	the description of the WiFiEncryptionType element.

	Return type

	String

digi.xbee.models.atcomm module

	
class digi.xbee.models.atcomm.ATStringCommand(command, description)[source]

	Bases: enum.Enum

This class represents basic AT commands.

Inherited properties:

name (String): name (ID) of this ATStringCommand.

value (String): value of this ATStringCommand.

Values:

ATStringCommand.AC = (‘AC’, ‘Apply changes’)

ATStringCommand.AG = (‘AG’, ‘Aggregator support’)

ATStringCommand.AI = (‘AI’, ‘Association indication’)

ATStringCommand.AO = (‘AO’, ‘API options’)

ATStringCommand.AP = (‘AP’, ‘API enable’)

ATStringCommand.AR = (‘AR’, ‘Many-to-one route broadcast time’)

ATStringCommand.AS = (‘AS’, ‘Active scan’)

ATStringCommand.BD = (‘BD’, ‘UART baudrate’)

ATStringCommand.BI = (‘BI’, ‘Bluetooth identifier’)

ATStringCommand.BL = (‘BL’, ‘Bluetooth address’)

ATStringCommand.BP = (‘BP’, ‘Bluetooth advertisement power’)

ATStringCommand.BT = (‘BT’, ‘Bluetooth enable’)

ATStringCommand.BR = (‘BR’, ‘RF data rate’)

ATStringCommand.C0 = (‘C0’, ‘Source port’)

ATStringCommand.C8 = (‘C8’, ‘Compatibility mode’)

ATStringCommand.CC = (‘CC’, ‘Command sequence character’)

ATStringCommand.CE = (‘CE’, ‘Device role’)

ATStringCommand.CH = (‘CH’, ‘Channel’)

ATStringCommand.CK = (‘CK’, ‘Configuration checksum’)

ATStringCommand.CM = (‘CM’, ‘Channel mask’)

ATStringCommand.CN = (‘CN’, ‘Exit command mode’)

ATStringCommand.DA = (‘DA’, ‘Force Disassociation’)

ATStringCommand.DB = (‘DB’, ‘RSSI’)

ATStringCommand.DD = (‘DD’, ‘Device type’)

ATStringCommand.DH = (‘DH’, ‘Destination address high’)

ATStringCommand.DJ = (‘DJ’, ‘Disable joining’)

ATStringCommand.DL = (‘DL’, ‘Destination address low’)

ATStringCommand.DM = (‘DM’, ‘Disable device functionality’)

ATStringCommand.DO = (‘DO’, ‘Device options’)

ATStringCommand.D0 = (‘D0’, ‘DIO0 configuration’)

ATStringCommand.D1 = (‘D1’, ‘DIO1 configuration’)

ATStringCommand.D2 = (‘D2’, ‘DIO2 configuration’)

ATStringCommand.D3 = (‘D3’, ‘DIO3 configuration’)

ATStringCommand.D4 = (‘D4’, ‘DIO4 configuration’)

ATStringCommand.D5 = (‘D5’, ‘DIO5 configuration’)

ATStringCommand.D6 = (‘D6’, ‘RTS configuration’)

ATStringCommand.D7 = (‘D7’, ‘CTS configuration’)

ATStringCommand.D8 = (‘D8’, ‘DIO8 configuration’)

ATStringCommand.D9 = (‘D9’, ‘DIO9 configuration’)

ATStringCommand.EE = (‘EE’, ‘Encryption enable’)

ATStringCommand.EO = (‘EO’, ‘Encryption options’)

ATStringCommand.FN = (‘FN’, ‘Find neighbors’)

ATStringCommand.FR = (‘FR’, ‘Software reset’)

ATStringCommand.FS = (‘FS’, ‘File system’)

ATStringCommand.GW = (‘GW’, ‘Gateway address’)

ATStringCommand.GT = (‘GT’, ‘Guard times’)

ATStringCommand.HV = (‘HV’, ‘Hardware version’)

ATStringCommand.HP = (‘HP’, ‘Preamble ID’)

ATStringCommand.IC = (‘IC’, ‘Digital change detection’)

ATStringCommand.ID = (‘ID’, ‘Network PAN ID/Network ID/SSID’)

ATStringCommand.IR = (‘IR’, ‘I/O sample rate’)

ATStringCommand.IS = (‘IS’, ‘Force sample’)

ATStringCommand.JN = (‘JN’, ‘Join notification’)

ATStringCommand.JV = (‘JV’, ‘Join verification’)

ATStringCommand.KY = (‘KY’, ‘Link/Encryption key’)

ATStringCommand.MA = (‘MA’, ‘IP addressing mode’)

ATStringCommand.MK = (‘MK’, ‘IP address mask’)

ATStringCommand.MP = (‘MP’, ‘16-bit parent address’)

ATStringCommand.MY = (‘MY’, ‘16-bit address/IP address’)

ATStringCommand.M0 = (‘M0’, ‘PWM0 configuration’)

ATStringCommand.M1 = (‘M1’, ‘PWM1 configuration’)

ATStringCommand.NB = (‘NB’, ‘Parity’)

ATStringCommand.NI = (‘NI’, ‘Node identifier’)

ATStringCommand.ND = (‘ND’, ‘Node discover’)

ATStringCommand.NJ = (‘NJ’, ‘Join time’)

ATStringCommand.NK = (‘NK’, ‘Trust Center network key’)

ATStringCommand.NO = (‘NO’, ‘Node discover options’)

ATStringCommand.NR = (‘NR’, ‘Network reset’)

ATStringCommand.NS = (‘NS’, ‘DNS address’)

ATStringCommand.NP = (‘NP’, ‘Maximum number of transmission bytes’)

ATStringCommand.NT = (‘NT’, ‘Node discover back-off’)

ATStringCommand.N_QUESTION = (‘N?’, ‘Network discovery timeout’)

ATStringCommand.OP = (‘OP’, ‘Operating extended PAN ID’)

ATStringCommand.OS = (‘OS’, ‘Operating sleep time’)

ATStringCommand.OW = (‘OW’, ‘Operating wake time’)

ATStringCommand.PK = (‘PK’, ‘Passphrase’)

ATStringCommand.PL = (‘PL’, ‘TX power level’)

ATStringCommand.PP = (‘PP’, ‘Output power’)

ATStringCommand.PS = (‘PS’, ‘MicroPython auto start’)

ATStringCommand.P0 = (‘P0’, ‘DIO10 configuration’)

ATStringCommand.P1 = (‘P1’, ‘DIO11 configuration’)

ATStringCommand.P2 = (‘P2’, ‘DIO12 configuration’)

ATStringCommand.P3 = (‘P3’, ‘UART DOUT configuration’)

ATStringCommand.P4 = (‘P4’, ‘UART DIN configuration’)

ATStringCommand.P5 = (‘P5’, ‘DIO15 configuration’)

ATStringCommand.P6 = (‘P6’, ‘DIO16 configuration’)

ATStringCommand.P7 = (‘P7’, ‘DIO17 configuration’)

ATStringCommand.P8 = (‘P8’, ‘DIO18 configuration’)

ATStringCommand.P9 = (‘P9’, ‘DIO19 configuration’)

ATStringCommand.RE = (‘RE’, ‘Restore defaults’)

ATStringCommand.RR = (‘RR’, ‘XBee retries’)

ATStringCommand.R_QUESTION = (‘R?’, ‘Region lock’)

ATStringCommand.SB = (‘SB’, ‘Stop bits’)

ATStringCommand.SC = (‘SC’, ‘Scan channels’)

ATStringCommand.SD = (‘SD’, ‘Scan duration’)

ATStringCommand.SH = (‘SH’, ‘Serial number high’)

ATStringCommand.SI = (‘SI’, ‘Socket info’)

ATStringCommand.SL = (‘SL’, ‘Serial number low’)

ATStringCommand.SM = (‘SM’, ‘Sleep mode’)

ATStringCommand.SN = (‘SN’, ‘Sleep count’)

ATStringCommand.SO = (‘SO’, ‘Sleep options’)

ATStringCommand.SP = (‘SP’, ‘Sleep time’)

ATStringCommand.SS = (‘SS’, ‘Sleep status’)

ATStringCommand.ST = (‘ST’, ‘Wake time’)

ATStringCommand.TP = (‘TP’, ‘Temperature’)

ATStringCommand.VH = (‘VH’, ‘Bootloader version’)

ATStringCommand.VR = (‘VR’, ‘Firmware version’)

ATStringCommand.WR = (‘WR’, ‘Write’)

ATStringCommand.DOLLAR_S = (‘$S’, ‘SRP salt’)

ATStringCommand.DOLLAR_V = (‘$V’, ‘SRP salt verifier’)

ATStringCommand.DOLLAR_W = (‘$W’, ‘SRP salt verifier’)

ATStringCommand.DOLLAR_X = (‘$X’, ‘SRP salt verifier’)

ATStringCommand.DOLLAR_Y = (‘$Y’, ‘SRP salt verifier’)

ATStringCommand.PERCENT_C = (‘%C’, ‘Hardware/software compatibility’)

ATStringCommand.PERCENT_P = (‘%P’, ‘Invoke bootloader’)

ATStringCommand.PERCENT_U = (‘%U’, ‘Recover’)

ATStringCommand.PERCENT_V = (‘%V’, ‘Supply voltage’)

	
command

	AT command alias

	Returns

	The AT command alias.

	Return type

	String

	
description

	AT command description.

	Returns

	The AT command description.

	Return type

	String

	
class digi.xbee.models.atcomm.SpecialByte(code)[source]

	Bases: enum.Enum

Enumerates all the special bytes of the XBee protocol that must be escaped
when working on API 2 mode.

Inherited properties:

name (String): name (ID) of this SpecialByte.

value (String): the value of this SpecialByte.

Values:

SpecialByte.ESCAPE_BYTE = 125

SpecialByte.HEADER_BYTE = 126

SpecialByte.XON_BYTE = 17

SpecialByte.XOFF_BYTE = 19

	
code

	Returns the code of the SpecialByte element.

	Returns

	the code of the SpecialByte element.

	Return type

	Integer

	
class digi.xbee.models.atcomm.ATCommand(command, parameter=None)[source]

	Bases: object

This class represents an AT command used to read or set different
properties of the XBee device.

AT commands can be sent directly to the connected device or to remote
devices and may have parameters.

After executing an AT Command, an AT Response is received from the device.

Class constructor. Instantiates a new ATCommand object with
the provided parameters.

	Parameters

	
	command (String) – AT Command, must have length 2.

	parameter (String or Bytearray, optional) – The AT parameter value.
Defaults to None. Optional.

	Raises

	ValueError – if command length is not 2.

	
command

	Returns the AT command.

	Returns

	the AT command.

	Return type

	String

	
get_parameter_string()[source]

	Returns this ATCommand parameter as a String.

	Returns

	this ATCommand parameter. None if there is no parameter.

	Return type

	String

	
parameter

	Returns the AT command parameter.

	Returns

	
	the AT command parameter.

	None if there is no parameter.

	Return type

	Bytearray

	
class digi.xbee.models.atcomm.ATCommandResponse(command, response=None, status=<ATCommandStatus.OK: (0, 'Status OK')>)[source]

	Bases: object

This class represents the response of an AT Command sent by the connected
XBee device or by a remote device after executing an AT Command.

Class constructor.

	Parameters

	
	command (ATCommand) – The AT command that generated the
response.

	response (bytearray, optional) – The command response.
Default to None.

	status (ATCommandStatus, optional) – The AT command
status. Default to ATCommandStatus.OK

	
command

	Returns the AT command.

	Returns

	the AT command.

	Return type

	ATCommand

	
response

	Returns the AT command response.

	Returns

	the AT command response.

	Return type

	Bytearray

	
status

	Returns the AT command response status.

	Returns

	The AT command response status.

	Return type

	ATCommandStatus

digi.xbee.models.filesystem module

	
class digi.xbee.models.filesystem.FSCmdType(code, description)[source]

	Bases: enum.Enum

This enumeration lists all the available file system commands.

Inherited properties:

name (String): Name (id) of this FSCmdType.

value (String): Value of this FSCmdType.

Values:

Open/create file (1) = (1, ‘Open/create file’)

Close file (2) = (2, ‘Close file’)

Read file (3) = (3, ‘Read file’)

Write file (4) = (4, ‘Write file’)

File hash (8) = (8, ‘File hash’)

Create directory (16) = (16, ‘Create directory’)

Open directory (17) = (17, ‘Open directory’)

Close directory (18) = (18, ‘Close directory’)

Read directory (19) = (19, ‘Read directory’)

Get directory path ID (28) = (28, ‘Get directory path ID’)

Rename (33) = (33, ‘Rename’)

Delete (47) = (47, ‘Delete’)

Stat filesystem (64) = (64, ‘Stat filesystem’)

Format filesystem (79) = (79, ‘Format filesystem’)

	
code

	Returns the code of the file system command element.

	Returns

	Code of the file system command element.

	Return type

	Integer

	
description

	Returns the description of the file system command element.

	Returns

	Description of the file system command element.

	Return type

	Integer

	
class digi.xbee.models.filesystem.FSCmd(cmd_type, direction=0, status=None)[source]

	Bases: object

This class represents a file system command.

Class constructor. Instantiates a new FSCmd object with
the provided parameters.

	Parameters

	
	cmd_type (FSCmdType or Integer) – The command type.

	direction (Integer, optional, default=0) – If this command is a
request (0) or a response (1).

	status (FSCommandStatus or Integer) – Status of the file
system command execution. Only for response commands.

	Raises

	
	ValueError – If cmd_type is not an integer or a FSCmdType.

	ValueError – If cmd_type is invalid.

See also

FSCmdType

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
output()[source]

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
to_dict()[source]

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
classmethod create_cmd(raw, direction=0)[source]

	Creates a file system command with the given parameters.
This method ensures that the FSCmd returned is valid and is well
built (if not exceptions are raised).

	Parameters

	
	raw (Bytearray) – Bytearray to create the command.

	direction (Integer, optional, default=0) – If this command is a
request (0) or a response (1).

	Returns

	The file system command created.

	Return type

	FSCmd

	Raises

	InvalidPacketException – If something is wrong with raw and the
command cannot be built.

	
class digi.xbee.models.filesystem.UnknownFSCmd(raw, direction=0)[source]

	Bases: digi.xbee.models.filesystem.FSCmd

This class represents an unknown file system command.

Class constructor. Instantiates a new UnknownFSCmd object
with the provided parameters.

	Parameters

	
	raw (Bytearray) – Data of the unknown command.

	direction (Integer, optional, default=0) – If this command is a
request (0) or a response (1).

	Raises

	ValueError – If data is not a bytearray, its length is less
than 3, or the command type is a known one.

See also

FSCmd

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	Integer

	
classmethod create_cmd(raw, direction=0)[source]

	Override method.

	Returns

	UnknownFSCmd.

	Raises

	
	InvalidPacketException – If raw is not a bytearray.

	InvalidPacketException – If raw length is less than 3, or the
command type is a known one.

See also

FSCmd.create_cmd()

	
output()[source]

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
to_dict()[source]

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
class digi.xbee.models.filesystem.FileIdCmd(cmd_type, fid, direction=0, status=None)[source]

	Bases: digi.xbee.models.filesystem.FSCmd

This class represents a file system command request or response that
includes a file or path id.

Class constructor. Instantiates a new FileIdCmd object with
the provided parameters.

	Parameters

	
	cmd_type (FSCmdType or Integer) – The command type.

	fid (Integer) – Id of the file/path to operate with. A file id expires
and becomes invalid if not referenced for over 2 minutes.
Set to 0x0000 for the root directory (/).

	direction (Integer, optional, default=0) – If this command is a
request (0) or a response (1).

	status (FSCommandStatus or Integer) – Status of the file
system command execution. Only for response commands.

	Raises

	ValueError – If fid is invalid.

See also

FSCmd

FSCommandStatus

	
fs_id

	Returns the file/path identifier.

	Returns

	The file/path id value.

	Return type

	Integer

	
classmethod create_cmd(raw, direction=0)[source]

	Override method.

	Returns

	FileIdCmd.

	Raises

	InvalidPacketException – If the bytearray length is less than the
minimum required.

See also

FSCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.FileIdNameCmd(cmd_type, fid, name, direction=0, status=None)[source]

	Bases: digi.xbee.models.filesystem.FileIdCmd

This class represents a file system command request or response that
includes a file or path id and a name.

The file/path id is the next byte after the command type in the frame,
and name are the following bytes until the end of the frame.

Class constructor. Instantiates a new FileIdNameCmd object
with the provided parameters.

	Parameters

	
	cmd_type (FSCmdType or Integer) – The command type.

	fid (Integer) – Id of the file/path to operate with. Set to 0x0000
for the root directory (/).

	name (String or bytearray) – The path name of the file to operate
with. Its maximum length is 252 characters.

	direction (Integer, optional, default=0) – If this command is a
request (0) or a response (1).

	status (FSCommandStatus or Integer) – Status of the file
system command execution. Only for response commands.

	Raises

	ValueError – If fid or name are invalid.

See also

FSCmd

	
name

	Returns the path name of the file.

	Returns

	The file path name.

	Return type

	String

	
classmethod create_cmd(raw, direction=0)[source]

	Override method.
Direction must be 0.

	Returns

	FileIdNameCmd.

	Raises

	InvalidPacketException – If the bytearray length is less than the
minimum required.

See also

FSCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
fs_id

	Returns the file/path identifier.

	Returns

	The file/path id value.

	Return type

	Integer

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.OpenFileCmdRequest(path_id, name, flags)[source]

	Bases: digi.xbee.models.filesystem.FileIdNameCmd

This class represents a file open/create file system command request.
Open a file for reading and/or writing. Use FileOpenRequestOption.SECURE
bitmask to upload a write-only file (one that cannot be downloaded or
viewed), useful for protecting MicroPython source code on the device.

Command response is received as a OpenFileCmdResponse.

Class constructor. Instantiates a new OpenFileCmdRequest
object with the provided parameters.

	Parameters

	
	path_id (Integer) – Directory path id. Set to 0x0000 for the root
directory (/).

	name (String or bytearray) – The path name of the file to open/create,
relative to path_id. Its maximum length is 251 chars.

	flags (FileOpenRequestOption) – Bitfield of supported flags.
Use FileOpenRequestOption to compose its value.

	Raises

	ValueError – If any of the parameters is invalid.

See also

FileIdNameCmd

FileOpenRequestOption

	
options

	Returns the options to open the file.

	Returns

	The options to open the file.

	Return type

	FileOpenRequestOption

	
classmethod create_cmd(raw, direction=0)[source]

	Override method.
Direction must be 0.

	Returns

	OpenFileCmdRequest.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 5.
(cmd id + path id (2 bytes) + flags (1 byte)
+ name (at least 1 byte) = 5 bytes).

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 0.

See also

FileIdNameCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
fs_id

	Returns the file/path identifier.

	Returns

	The file/path id value.

	Return type

	Integer

	
name

	Returns the path name of the file.

	Returns

	The file path name.

	Return type

	String

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.OpenFileCmdResponse(status, fid=None, size=None)[source]

	Bases: digi.xbee.models.filesystem.FileIdCmd

This class represents a file open/create file system command response.

This is received in response of an OpenFileCmdRequest.

Class constructor. Instantiates a new OpenFileCmdResponse
object with the provided parameters.

	Parameters

	
	status (FSCommandStatus or Integer) – Status of the file
system command execution.

	fid (Integer, optional, default=`None`) – Id of the file that has
been opened. It expires and becomes invalid if not referenced
for over 2 minutes.

	size (Integer, optional, default=`None`) – Size in bytes of the file.
0xFFFFFFFF if unknown.

	Raises

	ValueError – If any of the parameters is invalid.

See also

FileIdCmd

	
size

	Returns the size of the opened file. 0xFFFFFFFF if unknown.

	Returns

	Size in bytes of the opened file.

	Return type

	Integer

	
classmethod create_cmd(raw, direction=1)[source]

	Override method.
Direction must be 1.

	Returns

	OpenFileCmdResponse.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 8.
(cmd id + status + file id (2 bytes) + size (4 bytes) = 8).

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 1.

See also

FileIdCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
fs_id

	Returns the file/path identifier.

	Returns

	The file/path id value.

	Return type

	Integer

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.CloseFileCmdRequest(fid)[source]

	Bases: digi.xbee.models.filesystem.FileIdCmd

This class represents a file close file system command request.
Close an open file and release its File Handle.

Command response is received as a CloseFileCmdResponse.

Class constructor. Instantiates a new CloseFileCmdRequest
object with the provided parameters.

	Parameters

	fid (Integer) – Id of the file to close returned in Open File Response.
It expires and becomes invalid if not referenced for over 2 minutes.

	Raises

	ValueError – If any of the parameters is invalid.

See also

FileIdCmd

	
classmethod create_cmd(raw, direction=0)[source]

	Override method.
Direction must be 0.

	Returns

	CloseFileCmdRequest.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 3.
(cmd id + file_id (2 bytes) = 3 bytes).

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 0.

See also

FileIdCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
fs_id

	Returns the file/path identifier.

	Returns

	The file/path id value.

	Return type

	Integer

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.CloseFileCmdResponse(status)[source]

	Bases: digi.xbee.models.filesystem.FSCmd

This class represents a file close file system command response.

Command response is received as a CloseFileCmdRequest.

Class constructor. Instantiates a new CloseFileCmdResponse
object with the provided parameters.

	Parameters

	status (FSCommandStatus or Integer) – Status of the file
system command execution.

See also

FSCmd

	
classmethod create_cmd(raw, direction=1)[source]

	Override method.
Direction must be 1.

	Returns

	OpenFileCmdResponse.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 1.
(cmd id = 1 byte).

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 1.

See also

FSCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.ReadFileCmdRequest(fid, offset, size)[source]

	Bases: digi.xbee.models.filesystem.FileIdCmd

This class represents a read file system command request.

Command response is received as a ReadFileCmdResponse.

Class constructor. Instantiates a new ReadFileCmdRequest
object with the provided parameters.

	Parameters

	
	fid (Integer) – Id of the file to read returned in Open File Response.
It expires and becomes invalid if not referenced for over 2 minutes.

	offset (Integer) – The file offset to start reading. 0xFFFFFFFF to
use current position (ReadFileCmdRequest.USE_CURRENT_OFFSET)

	size (Integer) – The number of bytes to read. 0xFFFF
(ReadFileCmdRequest.READ_AS_MANY) to read as many as possible
(limited by file size or maximum response frame size)

	Raises

	ValueError – If any of the parameters is invalid.

See also

FileIdCmd

	
USE_CURRENT_OFFSET = 4294967295

	Use current file position to start reading.

	
READ_AS_MANY = 65535

	Read as many bytes as possible (limited by file size or maximum response
frame size)

	
offset

	Returns the file offset to start reading. 0xFFFFFFFF to use current
position (ReadFileCmdRequest.0xFFFFFFFF)

	Returns

	The file offset.

	Return type

	Integer

	
size

	Returns the number of bytes to read. 0xFFFF
(ReadFileCmdRequest.READ_AS_MANY) to read as many as possible
(limited by file size or maximum response frame size)

	Returns

	The number of bytes to read.

	Return type

	Integer

	
classmethod create_cmd(raw, direction=0)[source]

	Override method.
Direction must be 0.

	Returns

	ReadFileCmdRequest.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 9.
(cmd id + file_id (2 bytes) + offset (4 bytes)
+ size (2 bytes) = 9 bytes).

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 0.

See also

FileIdCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
fs_id

	Returns the file/path identifier.

	Returns

	The file/path id value.

	Return type

	Integer

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.ReadFileCmdResponse(status, fid=None, offset=None, data=None)[source]

	Bases: digi.xbee.models.filesystem.FileIdCmd

This class represents a read file system command response.

Command response is received as a ReadFileCmdRequest.

Class constructor. Instantiates a new ReadFileCmdResponse
object with the provided parameters.

	Parameters

	
	status (FSCommandStatus or Integer) – Status of the file
system command execution.

	fid (Integer, optional, default=`None`) – Id of the read file.

	offset (Integer, optional, default=`None`) – The offset of the read
data.

	data (Bytearray, optional, default=`None`) – The file read data.

	Raises

	ValueError – If any of the parameters is invalid.

See also

FileIdCmd

	
offset

	Returns the offset of the read data.

	Returns

	The data offset.

	Return type

	Integer

	
data

	Returns the read data from the file.

	Returns

	Read data.

	Return type

	Bytearray

	
classmethod create_cmd(raw, direction=1)[source]

	Override method.
Direction must be 1.

	Returns

	ReadFileCmdResponse.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 8.
(cmd id + status + file_id (2 bytes) + offset (4 bytes) + data = 8)

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 1.

See also

FileIdCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
fs_id

	Returns the file/path identifier.

	Returns

	The file/path id value.

	Return type

	Integer

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.WriteFileCmdRequest(fid, offset, data=None)[source]

	Bases: digi.xbee.models.filesystem.FileIdCmd

This class represents a write file system command request.

Command response is received as a WriteFileCmdResponse.

Class constructor. Instantiates a new WriteFileCmdRequest
object with the provided parameters.

	Parameters

	
	fid (Integer) – Id of the file to write returned in Open File Response.
It expires and becomes invalid if not referenced for over 2 minutes.

	offset (Integer) – The file offset to start writing. 0xFFFFFFFF to
use current position (ReadFileCmdRequest.USE_CURRENT_OFFSET)

	data (Bytearray, optional, default=`None`) – The data to write.
If empty, frame just refreshes the File Handle timeout to keep
the file open.

	Raises

	ValueError – If any of the parameters is invalid.

See also

FileIdCmd

	
USE_CURRENT_OFFSET = 4294967295

	Use current file position to start writing.

	
offset

	Returns the file offset to start writing.

	Returns

	The file offset.

	Return type

	Integer

	
data

	Returns the data to write. If empty, frame just refreshes the File
Handle timeout to keep the file open.

	Returns

	The data to write.

	Return type

	Bytearray

	
classmethod create_cmd(raw, direction=0)[source]

	Override method.
Direction must be 0.

	Returns

	WriteFileCmdRequest.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 7.
(cmd id + file_id (2 bytes) + offset (4 bytes) = 7 bytes).

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 0.

See also

FileIdCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
fs_id

	Returns the file/path identifier.

	Returns

	The file/path id value.

	Return type

	Integer

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.WriteFileCmdResponse(status, fid=None, actual_offset=None)[source]

	Bases: digi.xbee.models.filesystem.FileIdCmd

This class represents a write file system command response.

Command response is received as a WriteFileCmdRequest.

Class constructor. Instantiates a new WriteFileCmdResponse
object with the provided parameters.

	Parameters

	
	status (FSCommandStatus or Integer) – Status of the file
system command execution.

	fid (Integer, optional, default=`None`) – Id of the written file.

	actual_offset (Integer, optional, default=`None`) – The current file
offset after writing.

	Raises

	ValueError – If any of the parameters is invalid.

See also

FileIdCmd

	
actual_offset

	Returns the file offset after writing.

	Returns

	The file offset.

	Return type

	Integer

	
classmethod create_cmd(raw, direction=1)[source]

	Override method.
Direction must be 1.

	Returns

	WriteFileCmdResponse.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 8.
(cmd id + status + file_id (2 bytes) + offset (4 bytes) = 8)

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 1.

See also

FileIdCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
fs_id

	Returns the file/path identifier.

	Returns

	The file/path id value.

	Return type

	Integer

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.HashFileCmdRequest(path_id, name)[source]

	Bases: digi.xbee.models.filesystem.FileIdNameCmd

This class represents a file hash command request.
Use this command to get a sha256 hash to verify a file’s contents without
downloading the entire file (something not even possible for secure files).
On XBee Cellular modules, there is a response delay in order to calculate
the hash of a non-secure file.
Secure files on XBee Cellular and all files on XBee 3 802.15.4, DigiMesh,
and Zigbee have a cached hash.

Command response is received as a HashFileCmdResponse.

Class constructor. Instantiates a new HashFileCmdRequest
object with the provided parameters.

	Parameters

	
	path_id (Integer) – Directory path id. Set to 0x0000 for the root
directory (/).

	name (String or bytearray) – The path name of the file to hash,
relative to path_id. Its maximum length is 252 chars.

	Raises

	ValueError – If any of the parameters is invalid.

See also

FileIdNameCmd

	
classmethod create_cmd(raw, direction=0)[source]

	Override method.
Direction must be 0.

	Returns

	HashFileCmdRequest.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 4.
(cmd id + path id (2 bytes) + name (at least 1 byte) = 4 bytes).

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 0.

See also

FileIdNameCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
fs_id

	Returns the file/path identifier.

	Returns

	The file/path id value.

	Return type

	Integer

	
name

	Returns the path name of the file.

	Returns

	The file path name.

	Return type

	String

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.HashFileCmdResponse(status, file_hash=None)[source]

	Bases: digi.xbee.models.filesystem.FSCmd

This class represents a file hash command response.

This is received in response of an HashFileCmdRequest.

Class constructor. Instantiates a new HashFileCmdResponse
object with the provided parameters.

	Parameters

	
	status (FSCommandStatus or Integer) – Status of the file
system command execution.

	file_hash (Bytearray, optional, default=`None`) – The hash value.

	Raises

	ValueError – If any of the parameters is invalid.

See also

FSCmd

	
file_hash

	Returns the hash of the file.

	Returns

	The hash of the file.

	Return type

	Bytearray

	
classmethod create_cmd(raw, direction=1)[source]

	Override method.
Direction must be 1.

	Returns

	HashFileCmdResponse.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 34.
(cmd id + status + hash (32 bytes) = 34).

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 1.

See also

FSCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.CreateDirCmdRequest(path_id, name)[source]

	Bases: digi.xbee.models.filesystem.FileIdNameCmd

This class represents a create directory file system command request.
Parent directories of the one to be created must exist. Separate request
must be dane to make intermediate directories.

Command response is received as a CreateDirCmdResponse.

Class constructor. Instantiates a new CreateDirCmdRequest
object with the provided parameters.

	Parameters

	
	path_id (Integer) – Directory path id. Set to 0x0000 for the root
directory (/).

	name (String or bytearray) – The path name of the directory to
create, relative to path_id. Its maximum length is 252 chars.

	Raises

	ValueError – If any of the parameters is invalid.

See also

FileIdNameCmd

	
classmethod create_cmd(raw, direction=0)[source]

	Override method.
Direction must be 0.

	Returns

	CreateDirCmdRequest.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 4.
(cmd id + path id (2 bytes) + name (at least 1 byte) = 4 bytes).

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 0.

See also

FileIdNameCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
fs_id

	Returns the file/path identifier.

	Returns

	The file/path id value.

	Return type

	Integer

	
name

	Returns the path name of the file.

	Returns

	The file path name.

	Return type

	String

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.CreateDirCmdResponse(status)[source]

	Bases: digi.xbee.models.filesystem.FSCmd

This class represents a create directory file system command response.

Command response is received as a CreateDirCmdRequest.

Class constructor. Instantiates a new CreateDirCmdResponse
object with the provided parameters.

	Parameters

	status (FSCommandStatus or Integer) – Status of the file
system command execution.

See also

FSCmd

	
classmethod create_cmd(raw, direction=1)[source]

	Override method.
Direction must be 1.

	Returns

	CreateDirCmdResponse.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 2.
(cmd id + status = 2).

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 1.

See also

FSCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.OpenDirCmdRequest(path_id, name)[source]

	Bases: digi.xbee.models.filesystem.FileIdNameCmd

This class represents an open directory file system command request.

Command response is received as a OpenDirCmdResponse.

Class constructor. Instantiates a new OpenDirCmdRequest
object with the provided parameters.

	Parameters

	
	path_id (Integer) – Directory path id. Set to 0x0000 for the root
directory (/).

	name (String or bytearray) – Path name of the directory to open,
relative to path_id. An empty name is equivalent to ‘.’, both
refer to the current directory path id. Its maximum length is
252 chars.

	Raises

	ValueError – If any of the parameters is invalid.

See also

FileIdNameCmd

	
classmethod create_cmd(raw, direction=0)[source]

	Override method.
Direction must be 0.

	Returns

	OpenDirCmdRequest.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 4.
(cmd id + path id (2 bytes) + name (at least 1 byte) = 4 bytes).

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 0.

See also

FileIdNameCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
fs_id

	Returns the file/path identifier.

	Returns

	The file/path id value.

	Return type

	Integer

	
name

	Returns the path name of the file.

	Returns

	The file path name.

	Return type

	String

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.OpenDirCmdResponse(status, did=None, fs_entries=None)[source]

	Bases: digi.xbee.models.filesystem.FileIdCmd

This class represents an open directory file system command response.
If the final file system element does not have
DirResponseFlag.ENTRY_IS_LAST set, send a Directory Read Request to get
additional entries.
A response ending with an DirResponseFlag.ENTRY_IS_LAST flag automatically
closes the Directory Handle.
An empty directory returns a single entry with just the
DirResponseFlag.ENTRY_IS_LAST flag set, and a 0-byte name.

This is received in response of an OpenDirCmdRequest.

Class constructor. Instantiates a new OpenFileCmdResponse
object with the provided parameters.

	Parameters

	
	status (FSCommandStatus or Integer) – Status of the file
system command execution.

	did (Integer, optional, default=`None`) – Id of the directory that
has been opened. It expires and becomes invalid if not
referenced for over 2 minutes.

	fs_entries (List, optional, default=`None`) – List of bytearrays with
the info and name of the entries inside the opened directory.

	Raises

	ValueError – If any of the parameters is invalid.

See also

FileIdCmd

	
is_last

	Returns whether there are more elements not included in this response.

	Returns

	
	True if there are no more elements to list, False

	otherwise.

	Return type

	Boolean

	
fs_entries

	Returns the list of entries inside the opened directory.

	Returns

	List of :class: .`FileSystemElement` inside the directory.

	Return type

	List

	
classmethod create_cmd(raw, direction=1)[source]

	Override method.
Direction must be 1.

	Returns

	OpenDirCmdResponse.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 8.
(cmd id + status + dir id (2 bytes) + filesize_and_flags (4 bytes) = 8).

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 1.

See also

FileIdCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
fs_id

	Returns the file/path identifier.

	Returns

	The file/path id value.

	Return type

	Integer

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.CloseDirCmdRequest(did)[source]

	Bases: digi.xbee.models.filesystem.FileIdCmd

This class represents a directory close file system command request.

Command response is received as a CloseDirCmdResponse.

Class constructor. Instantiates a new CloseDirCmdRequest
object with the provided parameters.

	Parameters

	did (Integer) – Id of the directory to close. It expires and becomes
invalid if not referenced for over 2 minutes.

	Raises

	ValueError – If any of the parameters is invalid.

See also

FileIdCmd

	
classmethod create_cmd(raw, direction=0)[source]

	Override method.
Direction must be 0.

	Returns

	CloseDirCmdRequest.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 3.
(cmd id + dir_id (2 bytes) = 3 bytes).

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 0.

See also

FileIdCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
fs_id

	Returns the file/path identifier.

	Returns

	The file/path id value.

	Return type

	Integer

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.CloseDirCmdResponse(status)[source]

	Bases: digi.xbee.models.filesystem.FSCmd

This class represents a directory close file system command response.
Send this command to indicate that it is done reading the directory and no
longer needs the Directory Handle. Typical usage scenario is to use a
Directory Open Request and additional Directory Read Requests until the
Response includes an entry with the DirResponseFlag.ENTRY_IS_LAST flag set.

Command response is received as a CloseDirCmdRequest.

Class constructor. Instantiates a new CloseDirCmdResponse
object with the provided parameters.

	Parameters

	status (FSCommandStatus or Integer) – Status of the file
system command execution.

See also

FSCmd

	
classmethod create_cmd(raw, direction=1)[source]

	Override method.
Direction must be 1.

	Returns

	CloseDirCmdResponse.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 2.
(cmd id + status = 2).

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 1.

See also

FSCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.ReadDirCmdRequest(did)[source]

	Bases: digi.xbee.models.filesystem.FileIdCmd

This class represents a directory read file system command request.

Command response is received as a ReadDirCmdResponse.

Class constructor. Instantiates a new ReadDirCmdRequest
object with the provided parameters.

	Parameters

	did (Integer) – Id of the directory to close. It expires and becomes
invalid if not referenced for over 2 minutes.

	Raises

	ValueError – If any of the parameters is invalid.

See also

FileIdCmd

	
classmethod create_cmd(raw, direction=0)[source]

	Override method.
Direction must be 0.

	Returns

	ReadDirCmdRequest.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 3.
(cmd id + dir_id (2 bytes) = 3 bytes).

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 0.

See also

FileIdCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
fs_id

	Returns the file/path identifier.

	Returns

	The file/path id value.

	Return type

	Integer

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.ReadDirCmdResponse(status, did=None, fs_entries=None)[source]

	Bases: digi.xbee.models.filesystem.OpenDirCmdResponse

This class represents a read directory file system command response.
If the final file system element does not have
DirResponseFlag.ENTRY_IS_LAST set, send another Directory Read Request
to get additional entries.
A response ending with an DirResponseFlag.ENTRY_IS_LAST flag automatically
closes the Directory Handle.

This is received in response of an ReadDirCmdRequest.

Class constructor. Instantiates a new ReadDirCmdResponse
object with the provided parameters.

	Parameters

	
	status (FSCommandStatus or Integer) – Status of the file
system command execution.

	did (Integer, optional, default=`None`) – Id of the directory that
has been read.

	fs_entries (List, optional, default=`None`) – List of bytearrays
with the info and name of the entries inside the directory.

	Raises

	ValueError – If any of the parameters is invalid.

See also

FileIdCmd

DirResponseFlag

	
classmethod create_cmd(raw, direction=1)[source]

	Override method.
Direction must be 1.

	Returns

	ReadDirCmdResponse.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 4.
(cmd id + status + dir id (2 bytes) = 4).

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 1.

See also

FileIdCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
fs_entries

	Returns the list of entries inside the opened directory.

	Returns

	List of :class: .`FileSystemElement` inside the directory.

	Return type

	List

	
fs_id

	Returns the file/path identifier.

	Returns

	The file/path id value.

	Return type

	Integer

	
is_last

	Returns whether there are more elements not included in this response.

	Returns

	
	True if there are no more elements to list, False

	otherwise.

	Return type

	Boolean

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.GetPathIdCmdRequest(path_id, name)[source]

	Bases: digi.xbee.models.filesystem.FileIdNameCmd

This class represents a get path id file system command request.
A directory path id (path_id) of 0x0000 in any command, means path names
are relative to the root directory of the filesystem (/).

	‘/’ as path separator

	‘..’ to refer to the parent directory

	‘.’ to refer to the current path directory

Use this command to get a shortcut to a subdirectory of the file system to
allow the use of shorter path names in the frame:

	If the PATH ID field of this command is 0x0000, the XBee allocates a
new PATH ID for use in later requests.

	If the PATH ID field of this command is non-zero, the XBee updates
the directory path of that ID.

	To release a PATH ID when no longer needed:

	
	Send a request with that ID and a single slash (“/”) as the pathname.
Any Change Directory Request that resolves to the root directory
releases the PATH ID and return a 0x0000 ID.

	Wait for a timeout (2 minutes)

Any file system id expires after 2 minutes if not referenced. Refresh this
timeout by sending a Change Directory request with an empty or a single
period (‘.’) as the pathname.

Command response is received as a GetPathIdCmdResponse.

Class constructor. Instantiates a new GetPathIdCmdRequest
object with the provided parameters.

	Parameters

	
	path_id (Integer) – Directory path id. Set to 0x0000 for the root
directory (/).

	name (String or bytearray) – The path name of the directory to
change, relative to path_id. An empty name is equivalent to
‘.’, both refer to the current directory path id. Its maximum
length is 252 chars.

	Raises

	ValueError – If any of the parameters is invalid.

See also

FileIdNameCmd

	
classmethod create_cmd(raw, direction=0)[source]

	Override method.
Direction must be 0.

	Returns

	GetPathIdCmdRequest.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 4.
(cmd id + path id (2 bytes) + name (at least 1 byte) = 4 bytes).

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 0.

See also

FileIdNameCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
fs_id

	Returns the file/path identifier.

	Returns

	The file/path id value.

	Return type

	Integer

	
name

	Returns the path name of the file.

	Returns

	The file path name.

	Return type

	String

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.GetPathIdCmdResponse(status, path_id=None, full_path=None)[source]

	Bases: digi.xbee.models.filesystem.FileIdCmd

This class represents a get path id file system command response.
The full path of the new current directory is included if can fit.

This is received in response of an GetPathIdCmdRequest.

Class constructor. Instantiates a new GetPathIdCmdResponse
object with the provided parameters.

	Parameters

	
	status (FSCommandStatus or Integer) – Status of the file
system command execution.

	path_id (Integer, optional, default=`None`) – New directory path id.

	full_path (String or bytearray, optional, default=`None`) – If short
enough, the full path of the current directory , relative to
path_id. Deep subdirectories may return an empty field
instead of their full path name. The maximum full path length
is 255 characters.

	Raises

	ValueError – If any of the parameters is invalid.

See also

FileIdCmd

	
full_path

	Returns the full path of the current directory.

	Returns

	The directory full path.

	Return type

	String

	
classmethod create_cmd(raw, direction=1)[source]

	Override method.
Direction must be 1.

	Returns

	GetPathIdCmdResponse.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 4.
(cmd id + status + path id (2 bytes) = 4).

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 1.

See also

FileIdNameCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
fs_id

	Returns the file/path identifier.

	Returns

	The file/path id value.

	Return type

	Integer

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.RenameCmdRequest(path_id, name, new_name)[source]

	Bases: digi.xbee.models.filesystem.FileIdNameCmd

This class represents a file/directory rename file system command request.
Current firmware for XBee 3 802.15.4, DigiMesh, and Zigbee do not support
renaming files. Contact Digi International to request it as a feature in a
future release.

Command response is received as a RenameCmdResponse.

Class constructor. Instantiates a new RenameCmdRequest
object with the provided parameters.

	Parameters

	
	path_id (Integer) – Directory path id. Set to 0x0000 for the root
directory (/).

	name (String or bytearray) – The current path name of the
file/directory to rename relative to path_id. Its maximum
length is 255 chars.

	new_name (String or bytearray) – The new name of the file/directory
relative to path_id. Its maximum length is 255 chars.

	Raises

	ValueError – If any of the parameters is invalid.

See also

FileIdNameCmd

	
new_name

	Returns the new name of the file or directory.

	Returns

	The new name.

	Return type

	String

	
classmethod create_cmd(raw, direction=0)[source]

	Override method.
Direction must be 0.

	Returns

	RenameCmdRequest.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 6.
(cmd id + path id (2 bytes) + name (1 byte at least) + ‘,’
+ new name (at least 1 byte) = 6 bytes).

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 0.

See also

FileIdNameCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
fs_id

	Returns the file/path identifier.

	Returns

	The file/path id value.

	Return type

	Integer

	
name

	Returns the path name of the file.

	Returns

	The file path name.

	Return type

	String

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.RenameCmdResponse(status)[source]

	Bases: digi.xbee.models.filesystem.FSCmd

This class represents a rename file system command response.

Command response is received as a RenameCmdRequest.

Class constructor. Instantiates a new RenameCmdResponse
object with the provided parameters.

	Parameters

	status (FSCommandStatus or Integer) – Status of the file
system command execution.

See also

FSCmd

	
classmethod create_cmd(raw, direction=1)[source]

	Override method.
Direction must be 1.

	Returns

	RenameCmdResponse.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 2.
(cmd id + status = 2).

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 1.

See also

FSCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.DeleteCmdRequest(path_id, name)[source]

	Bases: digi.xbee.models.filesystem.FileIdNameCmd

This class represents a delete file system command request.
All files in a directory must be deleted before removing the directory.
On XBee 3 802.15.4, DigiMesh, and Zigbee, deleted files are marked as
as unusable space unless they are at the “end” of the file system
(most-recently created). On these products, deleting a file triggers
recovery of any deleted file space at the end of the file system, and can
lead to a delayed response.

Command response is received as a DeleteCmdResponse.

Class constructor. Instantiates a new DeleteCmdRequest
object with the provided parameters.

	Parameters

	
	path_id (Integer) – Directory path id. Set to 0x0000 for the root
directory (/).

	name (String or bytearray) – The name of the file/directory to
delete relative to path_id. Its maximum length is 252 chars.

	Raises

	ValueError – If any of the parameters is invalid.

See also

FileIdNameCmd

	
classmethod create_cmd(raw, direction=0)[source]

	Override method.
Direction must be 0.

	Returns

	DeleteCmdRequest.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 4.
(cmd id + path id (2 bytes) + name (at least 1 byte) = 4 bytes).

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 0.

See also

FileIdNameCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
fs_id

	Returns the file/path identifier.

	Returns

	The file/path id value.

	Return type

	Integer

	
name

	Returns the path name of the file.

	Returns

	The file path name.

	Return type

	String

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.DeleteCmdResponse(status)[source]

	Bases: digi.xbee.models.filesystem.FSCmd

This class represents a delete file system command response.

Command response is received as a DeleteCmdRequest.

Class constructor. Instantiates a new DeleteCmdResponse
object with the provided parameters.

	Parameters

	status (FSCommandStatus or Integer) – Status of the file
system command execution.

See also

FSCmd

	
classmethod create_cmd(raw, direction=1)[source]

	Override method.
Direction must be 1.

	Returns

	DeleteCmdResponse.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 2.
(cmd id + status = 2).

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 1.

See also

FSCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.VolStatCmdRequest(name)[source]

	Bases: digi.xbee.models.filesystem.FSCmd

This class represents a volume stat file system command request.
Formatting the file system takes time, and any other requests fails until
it completes and sends a response.

Command response is received as a VolStatCmdResponse.

Class constructor. Instantiates a new VolStatCmdRequest
object with the provided parameters.

	Parameters

	name (String or bytearray) – The name of the volume. Its maximum
length is 254 characters.

	Raises

	ValueError – If name is invalid.

See also

FSCmd

	
name

	Returns the name of the volume.

	Returns

	The volume name.

	Return type

	String

	
classmethod create_cmd(raw, direction=0)[source]

	Override method.
Direction must be 0.

	Returns

	VolStatCmdRequest.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 2.
(cmd id + name (at least 1 byte) = 2 bytes).

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 0.

See also

FSCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.VolStatCmdResponse(status, bytes_used=None, bytes_free=None, bytes_bad=None)[source]

	Bases: digi.xbee.models.filesystem.FSCmd

This class represents a stat file system command response.

Command response is received as a VolStatCmdRequest.

Class constructor. Instantiates a new VolStatCmdResponse
object with the provided parameters.

	Parameters

	
	status (FSCommandStatus or Integer) – Status of the file
system command execution.

	bytes_used (Integer, optional, default=`None`) – Number of used bytes.

	bytes_free (Integer, optional, default=`None`) – Number of free bytes.

	bytes_bad (Integer, optional, default=`None`) – Number of bad bytes.
For XBee 3 802.15.4, DigiMesh, and Zigbee, this represents
space used by deleted files.

	Raises

	ValueError – If any of the parameters is invalid.

See also

FSCmd

	
bytes_used

	Returns the used space on volume.

	Returns

	Number of used bytes.

	Return type

	Integer

	
bytes_free

	Returns the available space on volume.

	Returns

	Number of free bytes.

	Return type

	Integer

	
bytes_bad

	Returns “bad” bytes on volume. For XBee 3 802.15.4, DigiMesh,
and Zigbee, this represents space used by deleted files.

	Returns

	Number of bad bytes.

	Return type

	Integer

	
classmethod create_cmd(raw, direction=1)[source]

	Override method.
Direction must be 1.

	Returns

	VolStatCmdResponse.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 14.
(cmd id + status + used (4 bytes) + free (4 bytes) + bad (4 bytes) = 14)

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 1.

See also

FileIdCmd.create_cmd()

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
class digi.xbee.models.filesystem.VolFormatCmdRequest(name)[source]

	Bases: digi.xbee.models.filesystem.VolStatCmdRequest

This class represents a volume format file system command request.

Command response is received as a VolFormatCmdResponse.

Class constructor. Instantiates a new VolFormatCmdRequest
object with the provided parameters.

	Parameters

	name (String or bytearray) – The name of the volume. Its maximum
length is 254 chars.

	Raises

	ValueError – If name is invalid.

See also

FSCmd

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
name

	Returns the name of the volume.

	Returns

	The volume name.

	Return type

	String

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
classmethod create_cmd(raw, direction=0)[source]

	Override method.
Direction must be 0.

	Returns

	VolFormatCmdRequest.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 2.
(cmd id + name (at least 1 byte) = 2 bytes).

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 0.

See also

FSCmd.create_cmd()

	
class digi.xbee.models.filesystem.VolFormatCmdResponse(status, bytes_used=None, bytes_free=None, bytes_bad=None)[source]

	Bases: digi.xbee.models.filesystem.VolStatCmdResponse

This class represents a format file system command response.

Command response is received as a VolStatCmdRequest.

Class constructor. Instantiates a new VolFormatCmdResponse
object with the provided parameters.

	Parameters

	
	status (FSCommandStatus or Integer) – Status of the file
system command execution.

	bytes_used (Integer, optional, default=`None`) – Number of used bytes.

	bytes_free (Integer, optional, default=`None`) – Number of free bytes.

	bytes_bad (Integer, optional, default=`None`) – Number of bad bytes.

	Raises

	ValueError – If any of the parameters is invalid.

See also

FSCmd

	
bytes_bad

	Returns “bad” bytes on volume. For XBee 3 802.15.4, DigiMesh,
and Zigbee, this represents space used by deleted files.

	Returns

	Number of bad bytes.

	Return type

	Integer

	
bytes_free

	Returns the available space on volume.

	Returns

	Number of free bytes.

	Return type

	Integer

	
bytes_used

	Returns the used space on volume.

	Returns

	Number of used bytes.

	Return type

	Integer

	
direction

	Returns the command direction.

	Returns

	0 for request, 1 for response.

	Return type

	Integer

	
output()

	Returns the raw bytearray of this command.

	Returns

	Raw bytearray of the command.

	Return type

	Bytearray

	
status

	Returns the file system command response status.

	Returns

	File system command response status.

	Return type

	FSCommandStatus

See also

FSCommandStatus

FSCmd.status_value()

	
status_value

	Returns the file system command response status of the packet.

	Returns

	File system command response status.

	Return type

	Integer

See also

FSCmd.status()

	
to_dict()

	Returns a dictionary with all information of the command fields.

	Returns

	Dictionary with all info of the command fields.

	Return type

	Dictionary

	
type

	Returns the command type.

	Returns

	The command type.

	Return type

	FSCmdType

	
classmethod create_cmd(raw, direction=1)[source]

	Override method.
Direction must be 1.

	Returns

	VolFormatCmdResponse.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 14.
(cmd id + status + used (4 bytes) + free (4 bytes) + bad (4 bytes) = 14)

	InvalidPacketException – If the command type is not
FSCmdType or direction is not 1.

See also

FileIdCmd.create_cmd()

digi.xbee.models.hw module

	
class digi.xbee.models.hw.HardwareVersion(code, description)[source]

	Bases: enum.Enum

This class lists all hardware versions.

Inherited properties:

name (String): The name of this HardwareVersion.

value (Integer): The ID of this HardwareVersion.

Values:

HardwareVersion.X09_009 = (1, ‘X09-009’)

HardwareVersion.X09_019 = (2, ‘X09-019’)

HardwareVersion.XH9_009 = (3, ‘XH9-009’)

HardwareVersion.XH9_019 = (4, ‘XH9-019’)

HardwareVersion.X24_009 = (5, ‘X24-009’)

HardwareVersion.X24_019 = (6, ‘X24-019’)

HardwareVersion.X09_001 = (7, ‘X09-001’)

HardwareVersion.XH9_001 = (8, ‘XH9-001’)

HardwareVersion.X08_004 = (9, ‘X08-004’)

HardwareVersion.XC09_009 = (10, ‘XC09-009’)

HardwareVersion.XC09_038 = (11, ‘XC09-038’)

HardwareVersion.X24_038 = (12, ‘X24-038’)

HardwareVersion.X09_009_TX = (13, ‘X09-009-TX’)

HardwareVersion.X09_019_TX = (14, ‘X09-019-TX’)

HardwareVersion.XH9_009_TX = (15, ‘XH9-009-TX’)

HardwareVersion.XH9_019_TX = (16, ‘XH9-019-TX’)

HardwareVersion.X09_001_TX = (17, ‘X09-001-TX’)

HardwareVersion.XH9_001_TX = (18, ‘XH9-001-TX’)

HardwareVersion.XT09B_XXX = (19, ‘XT09B-xxx (Attenuator version)’)

HardwareVersion.XT09_XXX = (20, ‘XT09-xxx’)

HardwareVersion.XC08_009 = (21, ‘XC08-009’)

HardwareVersion.XC08_038 = (22, ‘XC08-038’)

HardwareVersion.XB24_AXX_XX = (23, ‘XB24-Axx-xx’)

HardwareVersion.XBP24_AXX_XX = (24, ‘XBP24-Axx-xx’)

HardwareVersion.XB24_BXIX_XXX = (25, ‘XB24-BxIx-xxx and XB24-Z7xx-xxx’)

HardwareVersion.XBP24_BXIX_XXX = (26, ‘XBP24-BxIx-xxx and XBP24-Z7xx-xxx’)

HardwareVersion.XBP09_DXIX_XXX = (27, ‘XBP09-DxIx-xxx Digi Mesh’)

HardwareVersion.XBP09_XCXX_XXX = (28, ‘XBP09-XCxx-xxx: S3 XSC Compatibility’)

HardwareVersion.XBP08_DXXX_XXX = (29, ‘XBP08-Dxx-xxx 868MHz’)

HardwareVersion.XBP24B = (30, ‘XBP24B: Low cost ZB PRO and PLUS S2B’)

HardwareVersion.XB24_WF = (31, ‘XB24-WF: XBee 802.11 (Redpine module)’)

HardwareVersion.AMBER_MBUS = (32, ‘??????: M-Bus module made by Amber’)

HardwareVersion.XBP24C = (33, ‘XBP24C: XBee PRO SMT Ember 357 S2C PRO’)

HardwareVersion.XB24C = (34, ‘XB24C: XBee SMT Ember 357 S2C’)

HardwareVersion.XSC_GEN3 = (35, ‘XSC_GEN3: XBP9 XSC 24 dBm’)

HardwareVersion.SRD_868_GEN3 = (36, ‘SDR_868_GEN3: XB8 12 dBm’)

HardwareVersion.ABANDONATED = (37, ‘Abandonated’)

HardwareVersion.SMT_900LP = (38, “900LP (SMT): 900LP on ‘S8 HW’”)

HardwareVersion.WIFI_ATHEROS = (39, ‘WiFi Atheros (TH-DIP) XB2S-WF’)

HardwareVersion.SMT_WIFI_ATHEROS = (40, ‘WiFi Atheros (SMT) XB2B-WF’)

HardwareVersion.SMT_475LP = (41, ‘475LP (SMT): Beta 475MHz’)

HardwareVersion.XBEE_CELL_TH = (42, ‘XBee-Cell (TH): XBee Cellular’)

HardwareVersion.XLR_MODULE = (43, ‘XLR Module’)

HardwareVersion.XB900HP_NZ = (44, ‘XB900HP (New Zealand): XB9 NZ HW/SW’)

HardwareVersion.XBP24C_TH_DIP = (45, ‘XBP24C (TH-DIP): XBee PRO DIP’)

HardwareVersion.XB24C_TH_DIP = (46, ‘XB24C (TH-DIP): XBee DIP’)

HardwareVersion.XLR_BASEBOARD = (47, ‘XLR Baseboard’)

HardwareVersion.XBP24C_S2C_SMT = (48, ‘XBee PRO SMT’)

HardwareVersion.SX_PRO = (49, ‘SX Pro’)

HardwareVersion.S2D_SMT_PRO = (50, ‘XBP24D: S2D SMT PRO’)

HardwareVersion.S2D_SMT_REG = (51, ‘XB24D: S2D SMT Reg’)

HardwareVersion.S2D_TH_PRO = (52, ‘XBP24D: S2D TH PRO’)

HardwareVersion.S2D_TH_REG = (53, ‘XB24D: S2D TH Reg’)

HardwareVersion.SX = (62, ‘SX’)

HardwareVersion.XTR = (63, ‘XTR’)

HardwareVersion.CELLULAR_CAT1_LTE_VERIZON = (64, ‘XBee Cellular Cat 1 LTE Verizon’)

HardwareVersion.XBEE3_SMT = (65, ‘XBee 3 Micro and SMT’)

HardwareVersion.XBEE3_TH = (66, ‘XBee 3 TH’)

HardwareVersion.XBEE3 = (67, ‘XBee 3 Reserved’)

HardwareVersion.CELLULAR_3G = (68, ‘XBee Cellular 3G’)

HardwareVersion.XB8X = (69, ‘XB8X’)

HardwareVersion.CELLULAR_LTE_VERIZON = (70, ‘XBee Cellular LTE-M Verizon’)

HardwareVersion.CELLULAR_LTE_ATT = (71, ‘XBee Cellular LTE-M AT&T’)

HardwareVersion.CELLULAR_NBIOT_EUROPE = (72, ‘XBee Cellular NBIoT Europe’)

HardwareVersion.CELLULAR_3_CAT1_LTE_ATT = (73, ‘XBee Cellular 3 Cat 1 LTE AT&T’)

HardwareVersion.CELLULAR_3_LTE_M_VERIZON = (74, ‘XBee Cellular 3 LTE-M Verizon’)

HardwareVersion.CELLULAR_3_LTE_M_ATT = (75, ‘XBee Cellular 3 LTE-M AT&T’)

HardwareVersion.CELLULAR_3_CAT1_LTE_VERIZON = (77, ‘XBee Cellular 3 Cat 1 LTE Verizon’)

	
code

	Returns the code of the HardwareVersion element.

	Returns

	the code of the HardwareVersion element.

	Return type

	Integer

	
description

	Returns the description of the HardwareVersion element.

	Returns

	the description of the HardwareVersion element.

	Return type

	String

	
class digi.xbee.models.hw.LegacyHardwareVersion(code, letter)[source]

	Bases: enum.Enum

This class lists all legacy hardware versions.

Inherited properties:

name (String): The name of this LegacyHardwareVersion.

value (Integer): The ID of this LegacyHardwareVersion.

Values:

LegacyHardwareVersion.A = (1, ‘A’)

LegacyHardwareVersion.B = (2, ‘B’)

LegacyHardwareVersion.C = (3, ‘C’)

LegacyHardwareVersion.D = (4, ‘D’)

LegacyHardwareVersion.E = (5, ‘E’)

LegacyHardwareVersion.F = (6, ‘F’)

LegacyHardwareVersion.G = (7, ‘G’)

LegacyHardwareVersion.H = (8, ‘H’)

LegacyHardwareVersion.I = (9, ‘I’)

LegacyHardwareVersion.J = (10, ‘J’)

LegacyHardwareVersion.K = (11, ‘K’)

LegacyHardwareVersion.L = (12, ‘L’)

LegacyHardwareVersion.M = (13, ‘M’)

LegacyHardwareVersion.N = (14, ‘N’)

LegacyHardwareVersion.O = (15, ‘O’)

LegacyHardwareVersion.P = (16, ‘P’)

LegacyHardwareVersion.Q = (17, ‘Q’)

LegacyHardwareVersion.R = (18, ‘R’)

LegacyHardwareVersion.S = (19, ‘S’)

LegacyHardwareVersion.T = (20, ‘T’)

LegacyHardwareVersion.U = (21, ‘U’)

LegacyHardwareVersion.V = (22, ‘V’)

LegacyHardwareVersion.W = (23, ‘W’)

LegacyHardwareVersion.X = (24, ‘X’)

LegacyHardwareVersion.Y = (25, ‘Y’)

LegacyHardwareVersion.Z = (26, ‘Z’)

	
code

	Returns the code of the LegacyHardwareVersion element.

	Returns

	the code of the LegacyHardwareVersion element.

	Return type

	Integer

	
letter

	Returns the letter of the LegacyHardwareVersion element.

	Returns

	the letter of the LegacyHardwareVersion element.

	Return type

	String

digi.xbee.models.info module

	
class digi.xbee.models.info.SocketInfo(socket_id, state, protocol, local_port, remote_port, remote_address)[source]

	Bases: object

This class represents the information of an XBee socket:

	Socket ID.

	State.

	Protocol.

	Local port.

	Remote port.

	Remote address.

Class constructor. Instantiates a SocketInfo object with the given
parameters.

	Parameters

	
	socket_id (Integer) – The ID of the socket.

	state (SocketInfoState) – The state of the socket.

	protocol (IPProtocol) – The protocol of the socket.

	local_port (Integer) – The local port of the socket.

	remote_port (Integer) – The remote port of the socket.

	remote_address (String) – The remote IPv4 address of the socket.

	
static create_socket_info(raw)[source]

	Parses the given bytearray data and returns a SocketInfo object.

	Parameters

	raw (Bytearray) – received data from the SI command with a socket
ID as argument.

	Returns

	
	The socket information, or None if the

	provided data is invalid.

	Return type

	SocketInfo

	
static parse_socket_list(raw)[source]

	Parses the given bytearray data and returns a list with the active
socket IDs.

	Parameters

	raw (Bytearray) – received data from the SI command.

	Returns

	
	list with the IDs of all active (open) sockets, or empty list

	if there is not any active socket.

	Return type

	List

	
socket_id

	Returns the ID of the socket.

	Returns

	the ID of the socket.

	Return type

	Integer

	
state

	Returns the state of the socket.

	Returns

	the state of the socket.

	Return type

	SocketInfoState

	
protocol

	Returns the protocol of the socket.

	Returns

	the protocol of the socket.

	Return type

	IPProtocol

	
local_port

	Returns the local port of the socket.
This is 0 unless the socket is explicitly bound to a port.

	Returns

	the local port of the socket.

	Return type

	Integer

	
remote_port

	Returns the remote port of the socket.

	Returns

	the remote port of the socket.

	Return type

	Integer

	
remote_address

	Returns the remote IPv4 address of the socket.
This is 0.0.0.0 for an unconnected socket.

	Returns

	the remote IPv4 address of the socket.

	Return type

	String

digi.xbee.models.mode module

	
class digi.xbee.models.mode.OperatingMode(code, description)[source]

	Bases: enum.Enum

This class represents all operating modes available.

Inherited properties:

name (String): the name (id) of this OperatingMode.

value (String): the value of this OperatingMode.

Values:

OperatingMode.AT_MODE = (0, ‘AT mode’)

OperatingMode.API_MODE = (1, ‘API mode’)

OperatingMode.ESCAPED_API_MODE = (2, ‘API mode with escaped characters’)

OperatingMode.MICROPYTHON_MODE = (4, ‘MicroPython REPL’)

OperatingMode.BYPASS_MODE = (5, ‘Bypass mode’)

OperatingMode.UNKNOWN = (99, ‘Unknown’)

	
code

	Returns the code of the OperatingMode element.

	Returns

	the code of the OperatingMode element.

	Return type

	String

	
description

	Returns the description of the OperatingMode element.

	Returns

	the description of the OperatingMode element.

	Return type

	String

	
class digi.xbee.models.mode.APIOutputMode(code, description)[source]

	Bases: enum.Enum

Enumerates the different API output modes. The API output mode establishes
the way data will be output through the serial interface of an XBee device.

Inherited properties:

name (String): the name (id) of this OperatingMode.

value (String): the value of this OperatingMode.

Values:

APIOutputMode.NATIVE = (0, ‘Native’)

APIOutputMode.EXPLICIT = (1, ‘Explicit’)

APIOutputMode.EXPLICIT_ZDO_PASSTHRU = (3, ‘Explicit with ZDO Passthru’)

	
code

	Returns the code of the APIOutputMode element.

	Returns

	the code of the APIOutputMode element.

	Return type

	String

	
description

	Returns the description of the APIOutputMode element.

	Returns

	the description of the APIOutputMode element.

	Return type

	String

	
class digi.xbee.models.mode.APIOutputModeBit(code, description)[source]

	Bases: enum.Enum

Enumerates the different API output mode bit options. The API output mode
establishes the way data will be output through the serial interface of an XBee.

Inherited properties:

name (String): the name (id) of this APIOutputModeBit.

value (String): the value of this APIOutputModeBit.

Values:

APIOutputModeBit.EXPLICIT = (1, ‘Output in Native/Explicit API format’)

APIOutputModeBit.SUPPORTED_ZDO_PASSTHRU = (2, ‘Zigbee: Supported ZDO request pass-throughn802.15.4/DigiMesh: Legacy API Indicator’)

APIOutputModeBit.UNSUPPORTED_ZDO_PASSTHRU = (4, ‘Unsupported ZDO request pass-through. Only Zigbee’)

APIOutputModeBit.BINDING_PASSTHRU = (8, ‘Binding request pass-through. Only Zigbee’)

APIOutputModeBit.ECHO_RCV_SUPPORTED_ZDO = (16, ‘Echo received supported ZDO requests out the serial port. Only Zigbee’)

APIOutputModeBit.SUPPRESS_ALL_ZDO_MSG = (32, ‘Suppress all ZDO messages from being sent out the serial port and disable pass-through. Only Zigbee’)

	
code

	Returns the code of the APIOutputModeBit element.

	Returns

	the code of the APIOutputModeBit element.

	Return type

	Integer

	
description

	Returns the description of the APIOutputModeBit element.

	Returns

	the description of the APIOutputModeBit element.

	Return type

	String

	
class digi.xbee.models.mode.IPAddressingMode(code, description)[source]

	Bases: enum.Enum

Enumerates the different IP addressing modes.

Values:

IPAddressingMode.DHCP = (0, ‘DHCP’)

IPAddressingMode.STATIC = (1, ‘Static’)

	
code

	Returns the code of the IPAddressingMode element.

	Returns

	the code of the IPAddressingMode element.

	Return type

	String

	
description

	Returns the description of the IPAddressingMode element.

	Returns

	the description of the IPAddressingMode element.

	Return type

	String

	
class digi.xbee.models.mode.NeighborDiscoveryMode(code, description)[source]

	Bases: enum.Enum

Enumerates the different neighbor discovery modes. This mode establishes
the way the network discovery process is performed.

Inherited properties:

name (String): the name (id) of this OperatingMode.

value (String): the value of this OperatingMode.

Values:

NeighborDiscoveryMode.CASCADE = (0, ‘Cascade’)

NeighborDiscoveryMode.FLOOD = (1, ‘Flood’)

	
CASCADE = (0, 'Cascade')

	The discovery of a node neighbors is requested once the previous request
finishes.
This means that just one discovery process is running at the same time.

This mode is recommended for large networks, it might be a slower method
but it generates less traffic than ‘Flood’.

	
FLOOD = (1, 'Flood')

	The discovery of a node neighbors is requested when the node is found in
the network. This means that several discovery processes might be running
at the same time.

	
code

	Returns the code of the NeighborDiscoveryMode element.

	Returns

	the code of the NeighborDiscoveryMode element.

	Return type

	String

	
description

	Returns the description of the NeighborDiscoveryMode element.

	Returns

	the description of the NeighborDiscoveryMode element.

	Return type

	String

digi.xbee.models.address module

	
class digi.xbee.models.address.XBee16BitAddress(address)[source]

	Bases: object

This class represent a 16-bit network address.

This address is only applicable for:

	802.15.4

	Zigbee

	ZNet 2.5

	XTend (Legacy)

DigiMesh and Point-to-multipoint does not support 16-bit addressing.

Each device has its own 16-bit address which is unique in the network.
It is automatically assigned when the radio joins the network for Zigbee
and Znet 2.5, and manually configured in 802.15.4 radios.

Attributes:

COORDINATOR_ADDRESS (XBee16BitAddress): 16-bit address reserved for the coordinator.

BROADCAST_ADDRESS (XBee16BitAddress): 16-bit broadcast address.

UNKNOWN_ADDRESS (XBee16BitAddress): 16-bit unknown address.

PATTERN (String): Pattern for the 16-bit address string: (0[xX])?[0-9a-fA-F]{1,4}

Class constructor. Instantiates a new XBee16BitAddress
object with the provided parameters.

	Parameters

	address (Bytearray) – address as byte array. Must be 1-2 digits.

	Raises

	
	TypeError – if address is None.

	ValueError – if address is None or has less than 1 byte or more than 2.

	
PATTERN = '^(0[xX])?[0-9a-fA-F]{1,4}$'

	16-bit address string pattern.

	
COORDINATOR_ADDRESS = <digi.xbee.models.address.XBee16BitAddress object>

	0000).

	Type

	16-bit address reserved for the coordinator (value

	
BROADCAST_ADDRESS = <digi.xbee.models.address.XBee16BitAddress object>

	FFFF).

	Type

	16-bit broadcast address (value

	
UNKNOWN_ADDRESS = <digi.xbee.models.address.XBee16BitAddress object>

	FFFE).

	Type

	16-bit unknown address (value

	
classmethod from_hex_string(address)[source]

	Class constructor. Instantiates a new :.XBee16BitAddress object from
the provided hex string.

	Parameters

	address (String) – String containing the address. Must be made by
hex. digits without blanks. Minimum 1 character, maximum 4 (16-bit).

	Raises

	
	ValueError – if address has less than 1 character.

	ValueError – if address contains non-hexadecimal characters.

	
classmethod from_bytes(hsb, lsb)[source]

	Class constructor. Instantiates a new :.XBee16BitAddress object from
the provided high significant byte and low significant byte.

	Parameters

	
	hsb (Integer) – high significant byte of the address.

	lsb (Integer) – low significant byte of the address.

	Raises

	
	ValueError – if lsb is less than 0 or greater than 255.

	ValueError – if hsb is less than 0 or greater than 255.

	
classmethod is_valid(address)[source]

	Checks if the provided hex string is a valid 16-bit address.

	Parameters

	address (String or Bytearray, or XBee16BitAddress) – String: String with the address only with hex digits without
blanks. Minimum 1 character, maximum 4 (16-bit).
Bytearray: Address as byte array. Must be 1-2 digits.

	Returns

	True for a valid 16-bit address, False otherwise.

	Return type

	Boolean

	
classmethod is_known_node_addr(address)[source]

	Checks if a provided address is a known value. That is, if it is a
valid 16-bit address and it is not the unknown or the broadcast address.

	Parameters

	address (String, Bytearray, or XBee16BitAddress) – The 16-bit
address to check as a string, bytearray or
XBee16BitAddress.

	Returns

	True for a known node 16-bit address, False otherwise.

	Return type

	Boolean

	
get_hsb()[source]

	Returns the high part of the bytearray (component 0).

	Returns

	high part of the bytearray.

	Return type

	Integer

	
get_lsb()[source]

	Returns the low part of the bytearray (component 1).

	Returns

	low part of the bytearray.

	Return type

	Integer

	
address

	Returns a bytearray representation of this XBee16BitAddress.

	Returns

	bytearray representation of this XBee16BitAddress.

	Return type

	Bytearray

	
class digi.xbee.models.address.XBee64BitAddress(address)[source]

	Bases: object

This class represents a 64-bit address (also known as MAC address).

The 64-bit address is a unique device address assigned during manufacturing.
This address is unique to each physical device.

Class constructor. Instantiates a new XBee64BitAddress object
with the provided parameters.

	Parameters

	address (Bytearray) – the XBee 64-bit address as byte array.

	Raise:

	ValueError: if address is None or its length less than 1 or greater than 8.

	
PATTERN = '^(0[xX])?[0-9a-fA-F]{1,16}$'

	64-bit address string pattern.

	
COORDINATOR_ADDRESS = <digi.xbee.models.address.XBee64BitAddress object>

	0000000000000000).

	Type

	64-bit address reserved for the coordinator (value

	
BROADCAST_ADDRESS = <digi.xbee.models.address.XBee64BitAddress object>

	000000000000FFFF).

	Type

	64-bit broadcast address (value

	
UNKNOWN_ADDRESS = <digi.xbee.models.address.XBee64BitAddress object>

	FFFFFFFFFFFFFFFF).

	Type

	64-bit unknown address (value

	
classmethod from_hex_string(address)[source]

	Class constructor. Instantiates a new XBee64BitAddress
object from the provided hex string.

	Parameters

	address (String) – The XBee 64-bit address as a string.

	Raises

	ValueError – if the address’ length is less than 1 or does not match
with the pattern: (0[xX])?[0-9a-fA-F]{1,16}.

	
classmethod from_bytes(*args)[source]

	Class constructor. Instantiates a new XBee64BitAddress
object from the provided bytes.

	Parameters

	args (8 Integers) – 8 integers that represent the bytes 1 to 8 of
this XBee64BitAddress.

	Raises

	ValueError – if the amount of arguments is not 8 or if any of the
arguments is not between 0 and 255.

	
classmethod is_valid(address)[source]

	Checks if the provided hex string is a valid 64-bit address.

	Parameters

	address (String, Bytearray, or XBee64BitAddress) – String: String with the address only with hex digits without
blanks. Minimum 1 character, maximum 16 (64-bit).
Bytearray: Address as byte array. Must be 1-8 digits.

	Returns

	Boolean: True for a valid 64-bit address, False otherwise.

	
classmethod is_known_node_addr(address)[source]

	Checks if a provided address is a known value. That is, if it is a
valid 64-bit address and it is not the unknown or the broadcast address.

	Parameters

	address (String, Bytearray, or XBee64BitAddress) – The 64-bit
address to check as a string, bytearray or
XBee64BitAddress.

	Returns

	True for a known node 64-bit address, False otherwise.

	Return type

	Boolean

	
address

	Returns a bytearray representation of this XBee64BitAddress.

	Returns

	bytearray representation of this XBee64BitAddress.

	Return type

	Bytearray

	
class digi.xbee.models.address.XBeeIMEIAddress(address)[source]

	Bases: object

This class represents an IMEI address used by cellular devices.

This address is only applicable for Cellular protocol.

Class constructor. Instantiates a new :.XBeeIMEIAddress object with
the provided parameters.

	Parameters

	address (Bytearray) – The XBee IMEI address as byte array.

	Raises

	
	ValueError – if address is None.

	ValueError – if length of address greater than 8.

	
PATTERN = '^\\d{0,15}$'

	IMEI address string pattern.

	
classmethod from_string(address)[source]

	Class constructor. Instantiates a new :.XBeeIMEIAddress object from the provided string.

	Parameters

	address (String) – The XBee IMEI address as a string.

	Raises

	
	ValueError – if address is None.

	ValueError – if address does not match the pattern: ^d{0,15}$.

	
classmethod is_valid(address)[source]

	Checks if the provided hex string is a valid IMEI.

	Parameters

	address (String or Bytearray) – The XBee IMEI address as a string or bytearray.

	Returns

	True for a valid IMEI, False otherwise.

	Return type

	Boolean

	
address

	Returns a string representation of this XBeeIMEIAddress.

	Returns

	the IMEI address in string format.

	Return type

	String

digi.xbee.models.message module

	
class digi.xbee.models.message.XBeeMessage(data, remote_node, timestamp, broadcast=False)[source]

	Bases: object

This class represents a XBee message, which is formed by a RemoteXBeeDevice
(the sender) and some data (the data sent) as a bytearray.

Class constructor.

	Parameters

	
	data (Bytearray) – the data sent.

	remote_node (RemoteXBeeDevice) – the sender.

	broadcast (Boolean, optional, default=`False`) – flag indicating whether the message is
broadcast (True) or not (False). Optional.

	timestamp – instant of time when the message was received.

	
data

	Returns a bytearray containing the data of the message.

	Returns

	the data of the message.

	Return type

	Bytearray

	
remote_device

	Returns the device which has sent the message.

	Returns

	the device which has sent the message.

	Return type

	RemoteXBeeDevice

	
is_broadcast

	Returns whether the message is broadcast or not.

	Returns

	True if the message is broadcast, False otherwise.

	Return type

	Boolean

	
timestamp

	Returns the moment when the message was received as a time.time()
function returned value.

	Returns

	
	the returned value of using time.time() function

	when the message was received.

	Return type

	Float

	
to_dict()[source]

	Returns the message information as a dictionary.

	
class digi.xbee.models.message.ExplicitXBeeMessage(data, remote_node, timestamp, src_endpoint, dest_endpoint, cluster_id, profile_id, broadcast=False)[source]

	Bases: digi.xbee.models.message.XBeeMessage

This class represents an Explicit XBee message, which is formed by all
parameters of a common XBee message and: Source endpoint, destination
endpoint, cluster ID, profile ID.

Class constructor.

	Parameters

	
	data (Bytearray) – the data sent.

	remote_node (RemoteXBeeDevice) – the sender device.

	timestamp – instant of time when the message was received.

	src_endpoint (Integer) – source endpoint of the message. 1 byte.

	dest_endpoint (Integer) – destination endpoint of the message. 1 byte.

	cluster_id (Integer) – cluster id of the message. 2 bytes.

	profile_id (Integer) – profile id of the message. 2 bytes.

	broadcast (Boolean, optional, default=`False`) – flag indicating whether the message is
broadcast (True) or not (False). Optional.

	
source_endpoint

	Returns the source endpoint of the message.

	Returns

	the source endpoint of the message. 1 byte.

	Return type

	Integer

	
dest_endpoint

	Returns the destination endpoint of the message.

	Returns

	the destination endpoint of the message. 1 byte.

	Return type

	Integer

	
cluster_id

	Returns the cluster ID of the message.

	Returns

	the cluster ID of the message. 2 bytes.

	Return type

	Integer

	
profile_id

	Returns the profile ID of the message.

	Returns

	the profile ID of the message. 2 bytes.

	Return type

	Integer

	
to_dict()[source]

	Returns the message information as a dictionary.

	
data

	Returns a bytearray containing the data of the message.

	Returns

	the data of the message.

	Return type

	Bytearray

	
is_broadcast

	Returns whether the message is broadcast or not.

	Returns

	True if the message is broadcast, False otherwise.

	Return type

	Boolean

	
remote_device

	Returns the device which has sent the message.

	Returns

	the device which has sent the message.

	Return type

	RemoteXBeeDevice

	
timestamp

	Returns the moment when the message was received as a time.time()
function returned value.

	Returns

	
	the returned value of using time.time() function

	when the message was received.

	Return type

	Float

	
class digi.xbee.models.message.IPMessage(ip_addr, src_port, dest_port, protocol, data)[source]

	Bases: object

This class represents an IP message containing the IP address the message
belongs to, the source and destination ports, the IP protocol, and the
content (data) of the message.

Class constructor.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address the message comes from.

	src_port (Integer) – TCP or UDP source port of the transmission.

	dest_port (Integer) – TCP or UDP destination port of the transmission.

	protocol (IPProtocol) – IP protocol used in the transmission.

	data (Bytearray) – the data sent.

	Raises

	
	ValueError – if ip_addr is None.

	ValueError – if protocol is None.

	ValueError – if data is None.

	ValueError – if source_port is less than 0 or greater than 65535.

	ValueError – if dest_port is less than 0 or greater than 65535.

	
ip_addr

	Returns the IPv4 address this message is associated to.

	Returns

	The IPv4 address this message is associated to.

	Return type

	ipaddress.IPv4Address

	
source_port

	Returns the source port of the transmission.

	Returns

	The source port of the transmission.

	Return type

	Integer

	
dest_port

	Returns the destination port of the transmission.

	Returns

	The destination port of the transmission.

	Return type

	Integer

	
protocol

	Returns the protocol used in the transmission.

	Returns

	The protocol used in the transmission.

	Return type

	IPProtocol

	
data

	Returns a bytearray containing the data of the message.

	Returns

	the data of the message.

	Return type

	Bytearray

	
to_dict()[source]

	Returns the message information as a dictionary.

	
class digi.xbee.models.message.SMSMessage(phone_number, data)[source]

	Bases: object

This class represents an SMS message containing the phone number that sent
the message and the content (data) of the message.

This class is used within the library to read SMS sent to Cellular devices.

Class constructor. Instantiates a new SMSMessage object with
the provided parameters.

	Parameters

	
	phone_number (String) – The phone number that sent the message.

	data (String) – The message text.

	Raises

	
	ValueError – if phone_number is None.

	ValueError – if data is None.

	ValueError – if phone_number is not a valid phone number.

	
phone_number

	Returns the phone number that sent the message.

	Returns

	The phone number that sent the message.

	Return type

	String

	
data

	Returns the data of the message.

	Returns

	The data of the message.

	Return type

	String

	
to_dict()[source]

	Returns the message information as a dictionary.

	
class digi.xbee.models.message.UserDataRelayMessage(local_iface, data)[source]

	Bases: object

This class represents a user data relay message containing the source
interface and the content (data) of the message.

See also

XBeeLocalInterface

Class constructor. Instantiates a new UserDataRelayMessage
object with the provided parameters.

	Parameters

	
	local_iface (XBeeLocalInterface) – The source XBee local interface.

	data (Bytearray) – Byte array containing the data of the message.

	Raises

	ValueError – if relay_interface is None.

See also

XBeeLocalInterface

	
local_interface

	Returns the source interface that sent the message.

	Returns

	The source interface that sent the message.

	Return type

	XBeeLocalInterface

	
data

	Returns the data of the message.

	Returns

	The data of the message.

	Return type

	Bytearray

	
to_dict()[source]

	Returns the message information as a dictionary.

digi.xbee.models.options module

	
class digi.xbee.models.options.ReceiveOptions[source]

	Bases: enum.Enum

This class lists all the possible options that have been set while
receiving an XBee packet.

The receive options are usually set as a bitfield meaning that the
options can be combined using the ‘|’ operand.

Values:

ReceiveOptions.NONE = 0

ReceiveOptions.PACKET_ACKNOWLEDGED = 1

ReceiveOptions.BROADCAST_PACKET = 2

ReceiveOptions.BROADCAST_PANS_PACKET = 4

ReceiveOptions.SECURE_SESSION_ENC = 16

ReceiveOptions.APS_ENCRYPTED = 32

ReceiveOptions.SENT_FROM_END_DEVICE = 64

ReceiveOptions.REPEATER_MODE = 128

ReceiveOptions.DIGIMESH_MODE = 192

	
NONE = 0

	No special receive options.

	
PACKET_ACKNOWLEDGED = 1

	Packet was acknowledged.

Not valid for WiFi protocol.

	
BROADCAST_PACKET = 2

	Packet was sent as a broadcast.

Not valid for WiFi protocol.

	
BROADCAST_PANS_PACKET = 4

	Packet was broadcast accros all PANs.

Only for 802.15.4 protocol.

	
SECURE_SESSION_ENC = 16

	Packet sent across a Secure Session.

Only for XBee 3.

	
APS_ENCRYPTED = 32

	Packet encrypted with APS encryption.

Only valid for Zigbee protocol.

	
SENT_FROM_END_DEVICE = 64

	Packet was sent from an end device (if known).

Only valid for Zigbee protocol.

	
POINT_MULTIPOINT_MODE = 64

	Transmission is performed using point-to-Multipoint mode.

Only valid for DigiMesh 868/900 and Point-to-Multipoint 868/900
protocols.

	
REPEATER_MODE = 128

	Transmission is performed using repeater mode.

Only valid for DigiMesh 868/900 and Point-to-Multipoint 868/900
protocols.

	
DIGIMESH_MODE = 192

	Transmission is performed using DigiMesh mode.

Only valid for DigiMesh 868/900 and Point-to-Multipoint 868/900
protocols.

	
class digi.xbee.models.options.TransmitOptions[source]

	Bases: enum.Enum

This class lists all the possible options that can be set while
transmitting an XBee packet.

The transmit options are usually set as a bitfield meaning that the options
can be combined using the ‘|’ operand.

Not all options are available for all cases, that’s why there are different
names with same values. In each moment, you must be sure that the option
your are going to use, is a valid option in your context.

Values:

TransmitOptions.NONE = 0

TransmitOptions.DISABLE_ACK = 1

TransmitOptions.DONT_ATTEMPT_RD = 2

TransmitOptions.USE_BROADCAST_PAN_ID = 4

TransmitOptions.ENABLE_MULTICAST = 8

TransmitOptions.SECURE_SESSION_ENC = 16

TransmitOptions.ENABLE_APS_ENCRYPTION = 32

TransmitOptions.USE_EXTENDED_TIMEOUT = 64

TransmitOptions.REPEATER_MODE = 128

TransmitOptions.DIGIMESH_MODE = 192

	
NONE = 0

	No special transmit options.

	
DISABLE_ACK = 1

	Disables acknowledgments on all unicasts.

Only valid for Zigbee, DigiMesh, 802.15.4, and Point-to-multipoint
protocols.

	
DISABLE_RETRIES_AND_REPAIR = 1

	Disables the retries and router repair in the frame.

Only valid for Zigbee protocol.

	
DONT_ATTEMPT_RD = 2

	Doesn’t attempt Route Discovery.

Disables Route Discovery on all DigiMesh unicasts.

Only valid for DigiMesh protocol.

	
BROADCAST_PAN = 2

	Sends packet with broadcast {@code PAN ID}. Packet will be sent to all
PANs.

Only valid for 802.15.4 XBee 3 protocol.

	
USE_BROADCAST_PAN_ID = 4

	Sends packet with broadcast {@code PAN ID}. Packet will be sent to all
devices in the same channel ignoring the {@code PAN ID}.

It cannot be combined with other options.

Only valid for 802.15.4 XBee protocol.

	
ENABLE_UNICAST_NACK = 4

	Enables unicast NACK messages.

NACK message is enabled on the packet.

Only valid for DigiMesh 868/900 protocol, and XBee 3 DigiMesh.

	
ENABLE_UNICAST_TRACE_ROUTE = 4

	Enables unicast trace route messages.

Trace route is enabled on the packets.

Only valid for DigiMesh 868/900 protocol.

	
INDIRECT_TRANSMISSION = 4

	Used for binding transmissions.

Only valid for Zigbee protocol.

	
ENABLE_MULTICAST = 8

	Enables multicast transmission request.

Only valid for Zigbee XBee protocol.

	
ENABLE_TRACE_ROUTE = 8

	Enable a unicast Trace Route on DigiMesh transmissions
When set, the transmission will generate a Route Information - 0x8D frame.

Only valid for DigiMesh XBee protocol.

	
SECURE_SESSION_ENC = 16

	Encrypt payload for transmission across a Secure Session.
Reduces maximum payload size by 4 bytes.

Only for XBee 3.

	
ENABLE_APS_ENCRYPTION = 32

	Enables APS encryption, only if {@code EE=1}.

Enabling APS encryption decreases the maximum number of RF payload
bytes by 4 (below the value reported by {@code NP}).

Only valid for Zigbee XBee protocol.

	
USE_EXTENDED_TIMEOUT = 64

	Uses the extended transmission timeout.

Setting the extended timeout bit causes the stack to set the
extended transmission timeout for the destination address.

Only valid for Zigbee XBee protocol.

	
POINT_MULTIPOINT_MODE = 64

	Transmission is performed using point-to-Multipoint mode.

Only valid for DigiMesh 868/900 and Point-to-Multipoint 868/900
protocols.

	
REPEATER_MODE = 128

	Transmission is performed using repeater mode.

Only valid for DigiMesh 868/900 and Point-to-Multipoint 868/900
protocols.

	
DIGIMESH_MODE = 192

	Transmission is performed using DigiMesh mode.

Only valid for DigiMesh 868/900 and Point-to-Multipoint 868/900
protocols.

	
class digi.xbee.models.options.RemoteATCmdOptions[source]

	Bases: enum.Enum

This class lists all the possible options that can be set while
transmitting a remote AT Command.

These options are usually set as a bitfield meaning that the options
can be combined using the ‘|’ operand.

Values:

RemoteATCmdOptions.NONE = 0

RemoteATCmdOptions.DISABLE_ACK = 1

RemoteATCmdOptions.APPLY_CHANGES = 2

RemoteATCmdOptions.SECURE_SESSION_ENC = 16

RemoteATCmdOptions.EXTENDED_TIMEOUT = 64

	
NONE = 0

	No special transmit options

	
DISABLE_ACK = 1

	Disables ACK

	
APPLY_CHANGES = 2

	Applies changes in the remote device.

If this option is not set, AC command must be sent before changes
will take effect.

	
SECURE_SESSION_ENC = 16

	Send the remote command securely.
Requires a Secure Session be established with the destination.

Only for XBee 3.

	
EXTENDED_TIMEOUT = 64

	Uses the extended transmission timeout.

Setting the extended timeout bit causes the stack to set the extended
transmission timeout for the destination address.

Only valid for ZigBee XBee protocol.

	
class digi.xbee.models.options.SendDataRequestOptions(code, description)[source]

	Bases: enum.Enum

Enumerates the different options for the SendDataRequestPacket.

Values:

SendDataRequestOptions.OVERWRITE = (0, ‘Overwrite’)

SendDataRequestOptions.ARCHIVE = (1, ‘Archive’)

SendDataRequestOptions.APPEND = (2, ‘Append’)

SendDataRequestOptions.TRANSIENT = (3, ‘Transient data (do not store)’)

	
code

	Returns the code of the SendDataRequestOptions element.

	Returns

	the code of the SendDataRequestOptions element.

	Return type

	Integer

	
description

	Returns the description of the SendDataRequestOptions element.

	Returns

	the description of the SendDataRequestOptions element.

	Return type

	String

	
class digi.xbee.models.options.DiscoveryOptions(code, description)[source]

	Bases: enum.Enum

Enumerates the different options used in the discovery process.

Values:

DiscoveryOptions.APPEND_DD = (1, ‘Append device type identifier (DD)’)

DiscoveryOptions.DISCOVER_MYSELF = (2, ‘Local device sends response frame’)

DiscoveryOptions.APPEND_RSSI = (4, ‘Append RSSI (of the last hop)’)

	
APPEND_DD = (1, 'Append device type identifier (DD)')

	Append device type identifier (DD) to the discovery response.

	Valid for the following protocols:

	
	DigiMesh

	Point-to-multipoint (Digi Point)

	Zigbee

	
DISCOVER_MYSELF = (2, 'Local device sends response frame')

	Local device sends response frame when discovery is issued.

	Valid for the following protocols:

	
	DigiMesh

	Point-to-multipoint (Digi Point)

	Zigbee

	802.15.4

	
APPEND_RSSI = (4, 'Append RSSI (of the last hop)')

	Append RSSI of the last hop to the discovery response.

	Valid for the following protocols:

	
	DigiMesh

	Point-to-multipoint (Digi Point)

	
code

	Returns the code of the DiscoveryOptions element.

	Returns

	the code of the DiscoveryOptions element.

	Return type

	Integer

	
description

	Returns the description of the DiscoveryOptions element.

	Returns

	the description of the DiscoveryOptions element.

	Return type

	String

	
class digi.xbee.models.options.XBeeLocalInterface(code, description)[source]

	Bases: enum.Enum

Enumerates the different interfaces for the UserDataRelayPacket
and UserDataRelayOutputPacket.

Inherited properties:

name (String): the name (id) of the XBee local interface.

value (String): the value of the XBee local interface.

Values:

XBeeLocalInterface.SERIAL = (0, ‘Serial port (UART when in API mode, or SPI interface)’)

XBeeLocalInterface.BLUETOOTH = (1, ‘BLE API interface (on XBee devices which support BLE)’)

XBeeLocalInterface.MICROPYTHON = (2, ‘MicroPython’)

XBeeLocalInterface.UNKNOWN = (255, ‘Unknown interface’)

	
code

	Returns the code of the XBeeLocalInterface element.

	Returns

	the code of the XBeeLocalInterface element.

	Return type

	Integer

	
description

	Returns the description of the XBeeLocalInterface element.

	Returns

	the description of the XBeeLocalInterface element.

	Return type

	String

	
class digi.xbee.models.options.RegisterKeyOptions(code, description)[source]

	Bases: enum.Enum

This class lists all the possible options that have been set while
receiving an XBee packet.

The receive options are usually set as a bitfield meaning that the
options can be combined using the ‘|’ operand.

Values:

RegisterKeyOptions.LINK_KEY = (0, ‘Key is a Link Key (KY on joining node)’)

RegisterKeyOptions.INSTALL_CODE = (1, ‘Key is an Install Code (I? on joining node,DC must be set to 1 on joiner)’)

RegisterKeyOptions.UNKNOWN = (255, ‘Unknown key option’)

	
code

	Returns the code of the RegisterKeyOptions element.

	Returns

	the code of the RegisterKeyOptions element.

	Return type

	Integer

	
description

	Returns the description of the RegisterKeyOptions element.

	Returns

	the description of the RegisterKeyOptions element.

	Return type

	String

	
class digi.xbee.models.options.SocketOption(code, description)[source]

	Bases: enum.Enum

Enumerates the different Socket Options.

Values:

SocketOption.TLS_PROFILE = (0, ‘TLS Profile’)

SocketOption.UNKNOWN = (255, ‘Unknown’)

	
code

	Returns the code of the SocketOption element.

	Returns

	the code of the SocketOption element.

	Return type

	Integer

	
description

	Returns the description of the SocketOption element.

	Returns

	the description of the SocketOption element.

	Return type

	String

	
class digi.xbee.models.options.FileOpenRequestOption[source]

	Bases: enum.IntFlag

This enumeration lists all the available options for FSCmdType.FILE_OPEN
command requests.

Inherited properties:

name (String): Name (id) of this FileOpenRequestOption.

value (String): Value of this FileOpenRequestOption.

Values:

FileOpenRequestOption.CREATE = 1

FileOpenRequestOption.EXCLUSIVE = 2

FileOpenRequestOption.READ = 4

FileOpenRequestOption.WRITE = 8

FileOpenRequestOption.TRUNCATE = 16

FileOpenRequestOption.APPEND = 32

FileOpenRequestOption.SECURE = 128

	
CREATE = 1

	Create if file does not exist.

	
EXCLUSIVE = 2

	Error out if file exists.

	
READ = 4

	Open file for reading.

	
WRITE = 8

	Open file for writing.

	
TRUNCATE = 16

	Truncate file to 0 bytes.

	
APPEND = 32

	Append to end of file.

	
SECURE = 128

	Create a secure write-only file.

	
class digi.xbee.models.options.DirResponseFlag[source]

	Bases: enum.IntFlag

This enumeration lists all the available flags for FSCmdType.DIR_OPEN and
FSCmdType.DIR_READ command responses.

Inherited properties:

name (String): Name (id) of this DirResponseFlag.

value (String): Value of this DirResponseFlag.

Values:

DirResponseFlag.IS_DIR = 128

DirResponseFlag.IS_SECURE = 64

DirResponseFlag.IS_LAST = 1

	
IS_DIR = 128

	Entry is a directory.

	
IS_SECURE = 64

	Entry is stored securely.

	
IS_LAST = 1

	Entry is the last.

digi.xbee.models.protocol module

	
class digi.xbee.models.protocol.XBeeProtocol(code, description)[source]

	Bases: enum.Enum

Enumerates the available XBee protocols. The XBee protocol is determined
by the combination of hardware and firmware of an XBee device.

Inherited properties:

name (String): the name (id) of this XBeeProtocol.

value (String): the value of this XBeeProtocol.

Values:

XBeeProtocol.ZIGBEE = (0, ‘Zigbee’)

XBeeProtocol.RAW_802_15_4 = (1, ‘802.15.4’)

XBeeProtocol.XBEE_WIFI = (2, ‘Wi-Fi’)

XBeeProtocol.DIGI_MESH = (3, ‘DigiMesh’)

XBeeProtocol.XCITE = (4, ‘XCite’)

XBeeProtocol.XTEND = (5, ‘XTend (Legacy)’)

XBeeProtocol.XTEND_DM = (6, ‘XTend (DigiMesh)’)

XBeeProtocol.SMART_ENERGY = (7, ‘Smart Energy’)

XBeeProtocol.DIGI_POINT = (8, ‘Point-to-multipoint’)

XBeeProtocol.ZNET = (9, ‘ZNet 2.5’)

XBeeProtocol.XC = (10, ‘XSC’)

XBeeProtocol.XLR = (11, ‘XLR’)

XBeeProtocol.XLR_DM = (12, ‘XLR’)

XBeeProtocol.SX = (13, ‘XBee SX’)

XBeeProtocol.XLR_MODULE = (14, ‘XLR Module’)

XBeeProtocol.CELLULAR = (15, ‘Cellular’)

XBeeProtocol.CELLULAR_NBIOT = (16, ‘Cellular NB-IoT’)

XBeeProtocol.UNKNOWN = (99, ‘Unknown’)

	
code

	Returns the code of the XBeeProtocol element.

	Returns

	the code of the XBeeProtocol element.

	Return type

	Integer

	
description

	Returns the description of the XBeeProtocol element.

	Returns

	the description of the XBeeProtocol element.

	Return type

	String

	
class digi.xbee.models.protocol.IPProtocol(code, description)[source]

	Bases: enum.Enum

Enumerates the available network protocols.

Inherited properties:

name (String): the name (id) of this IPProtocol.

value (String): the value of this IPProtocol.

Values:

IPProtocol.UDP = (0, ‘UDP’)

IPProtocol.TCP = (1, ‘TCP’)

IPProtocol.TCP_SSL = (4, ‘TLS’)

	
code

	Returns the code of the IP protocol.

	Returns

	code of the IP protocol.

	Return type

	Integer

	
description

	Returns the description of the IP protocol.

	Returns

	description of the IP protocol.

	Return type

	String

	
class digi.xbee.models.protocol.Role(identifier, description)[source]

	Bases: enum.Enum

Enumerates the available roles for an XBee.

Inherited properties:

name (String): the name (id) of this Role.

value (String): the value of this Role.

Values:

Role.COORDINATOR = (0, ‘Coordinator’)

Role.ROUTER = (1, ‘Router’)

Role.END_DEVICE = (2, ‘End device’)

Role.UNKNOWN = (3, ‘Unknown’)

	
id

	Gets the identifier of the role.

	Returns

	the role identifier.

	Return type

	Integer

	
description

	Gets the description of the role.

	Returns

	the role description.

	Return type

	String

digi.xbee.models.status module

	
class digi.xbee.models.status.ATCommandStatus(code, description)[source]

	Bases: enum.Enum

This class lists all the possible states of an AT command after execution.

Inherited properties:

name (String): the name (id) of the ATCommandStatus.

value (String): the value of the ATCommandStatus.

Values:

ATCommandStatus.OK = (0, ‘Status OK’)

ATCommandStatus.ERROR = (1, ‘Status Error’)

ATCommandStatus.INVALID_COMMAND = (2, ‘Invalid command’)

ATCommandStatus.INVALID_PARAMETER = (3, ‘Invalid parameter’)

ATCommandStatus.TX_FAILURE = (4, ‘TX failure’)

ATCommandStatus.NO_SECURE_SESSION = (11, ‘No secure session: Remote command access requires a secure session be established first’)

ATCommandStatus.ENC_ERROR = (12, ‘Encryption error’)

ATCommandStatus.CMD_SENT_INSECURELY = (13, ‘Command sent insecurely: A secure session exists, but the request needs to have the appropriate command option set (bit 4)’)

ATCommandStatus.UNKNOWN = (255, ‘Unknown status’)

	
code

	Returns the code of the ATCommandStatus element.

	Returns

	the code of the ATCommandStatus element.

	Return type

	Integer

	
description

	Returns the description of the ATCommandStatus element.

	Returns

	the description of the ATCommandStatus element.

	Return type

	String

	
class digi.xbee.models.status.DiscoveryStatus(code, description)[source]

	Bases: enum.Enum

This class lists all the possible states of the discovery process.

Inherited properties:

name (String): The name of the DiscoveryStatus.

value (Integer): The ID of the DiscoveryStatus.

Values:

DiscoveryStatus.NO_DISCOVERY_OVERHEAD = (0, ‘No discovery overhead’)

DiscoveryStatus.ADDRESS_DISCOVERY = (1, ‘Address discovery’)

DiscoveryStatus.ROUTE_DISCOVERY = (2, ‘Route discovery’)

DiscoveryStatus.ADDRESS_AND_ROUTE = (3, ‘Address and route’)

DiscoveryStatus.EXTENDED_TIMEOUT_DISCOVERY = (64, ‘Extended timeout discovery’)

DiscoveryStatus.UNKNOWN = (255, ‘Unknown’)

	
code

	Returns the code of the DiscoveryStatus element.

	Returns

	the code of the DiscoveryStatus element.

	Return type

	Integer

	
description

	Returns the description of the DiscoveryStatus element.

	Returns

	The description of the DiscoveryStatus element.

	Return type

	String

	
class digi.xbee.models.status.TransmitStatus(code, description)[source]

	Bases: enum.Enum

This class represents all available transmit status.

Inherited properties:

name (String): the name (id) of ths TransmitStatus.

value (String): the value of ths TransmitStatus.

Values:

TransmitStatus.SUCCESS = (0, ‘Success’)

TransmitStatus.NO_ACK = (1, ‘No acknowledgement received’)

TransmitStatus.CCA_FAILURE = (2, ‘CCA failure’)

TransmitStatus.PURGED = (3, ‘Transmission purged, it was attempted before stack was up’)

TransmitStatus.WIFI_PHYSICAL_ERROR = (4, ‘Transceiver was unable to complete the transmission’)

TransmitStatus.INVALID_DESTINATION = (21, ‘Invalid destination endpoint’)

TransmitStatus.NO_BUFFERS = (24, ‘No buffers’)

TransmitStatus.NETWORK_ACK_FAILURE = (33, ‘Network ACK Failure’)

TransmitStatus.NOT_JOINED_NETWORK = (34, ‘Not joined to network’)

TransmitStatus.SELF_ADDRESSED = (35, ‘Self-addressed’)

TransmitStatus.ADDRESS_NOT_FOUND = (36, ‘Address not found’)

TransmitStatus.ROUTE_NOT_FOUND = (37, ‘Route not found’)

TransmitStatus.BROADCAST_FAILED = (38, ‘Broadcast source failed to hear a neighbor relay the message’)

TransmitStatus.INVALID_BINDING_TABLE_INDEX = (43, ‘Invalid binding table index’)

TransmitStatus.INVALID_ENDPOINT = (44, ‘Invalid endpoint’)

TransmitStatus.BROADCAST_ERROR_APS = (45, ‘Attempted broadcast with APS transmission’)

TransmitStatus.BROADCAST_ERROR_APS_EE0 = (46, ‘Attempted broadcast with APS transmission, but EE=0’)

TransmitStatus.SOFTWARE_ERROR = (49, ‘A software error occurred’)

TransmitStatus.RESOURCE_ERROR = (50, ‘Resource error lack of free buffers, timers, etc’)

TransmitStatus.NO_SECURE_SESSION = (52, ‘No Secure session connection’)

TransmitStatus.ENC_FAILURE = (53, ‘Encryption failure’)

TransmitStatus.PAYLOAD_TOO_LARGE = (116, ‘Data payload too large’)

TransmitStatus.INDIRECT_MESSAGE_UNREQUESTED = (117, ‘Indirect message unrequested’)

TransmitStatus.SOCKET_CREATION_FAILED = (118, ‘Attempt to create a client socket failed’)

TransmitStatus.IP_PORT_NOT_EXIST = (119, ‘TCP connection to given IP address and port does not exist. Source port is non-zero, so a new connection is not attempted’)

TransmitStatus.UDP_SRC_PORT_NOT_MATCH_LISTENING_PORT = (120, ‘Source port on a UDP transmission does not match a listening port on the transmitting module’)

TransmitStatus.TCP_SRC_PORT_NOT_MATCH_LISTENING_PORT = (121, ‘Source port on a TCP transmission does not match a listening port on the transmitting module’)

TransmitStatus.INVALID_IP_ADDRESS = (122, ‘Destination IPv4 address is invalid’)

TransmitStatus.INVALID_IP_PROTOCOL = (123, ‘Protocol on an IPv4 transmission is invalid’)

TransmitStatus.RELAY_INTERFACE_INVALID = (124, ‘Destination interface on a User Data Relay Frame does not exist’)

TransmitStatus.RELAY_INTERFACE_REJECTED = (125, ‘Destination interface on a User Data Relay Frame exists, but the interface is not accepting data’)

TransmitStatus.MODEM_UPDATE_IN_PROGRESS = (126, ‘Modem update in progress. Try again after update completion.’)

TransmitStatus.SOCKET_CONNECTION_REFUSED = (128, ‘Destination server refused the connection’)

TransmitStatus.SOCKET_CONNECTION_LOST = (129, ‘The existing connection was lost before the data was sent’)

TransmitStatus.SOCKET_ERROR_NO_SERVER = (130, ‘No server’)

TransmitStatus.SOCKET_ERROR_CLOSED = (131, ‘The existing connection was closed’)

TransmitStatus.SOCKET_ERROR_UNKNOWN_SERVER = (132, ‘The server could not be found’)

TransmitStatus.SOCKET_ERROR_UNKNOWN_ERROR = (133, ‘An unknown error occurred’)

TransmitStatus.INVALID_TLS_CONFIGURATION = (134, ‘TLS Profile on a 0x23 API request does not exist, or one or more certificates is invalid’)

TransmitStatus.SOCKET_NOT_CONNECTED = (135, ‘Socket not connected’)

TransmitStatus.SOCKET_NOT_BOUND = (136, ‘Socket not bound’)

TransmitStatus.KEY_NOT_AUTHORIZED = (187, ‘Key not authorized’)

TransmitStatus.UNKNOWN = (255, ‘Unknown’)

	
code

	Returns the code of the TransmitStatus element.

	Returns

	the code of the TransmitStatus element.

	Return type

	Integer

	
description

	Returns the description of the TransmitStatus element.

	Returns

	the description of the TransmitStatus element.

	Return type

	String

	
class digi.xbee.models.status.ModemStatus(code, description)[source]

	Bases: enum.Enum

Enumerates the different modem status events. This enumeration list is
intended to be used within the ModemStatusPacket packet.

Values:

ModemStatus.HARDWARE_RESET = (0, ‘Device was reset’)

ModemStatus.WATCHDOG_TIMER_RESET = (1, ‘Watchdog timer was reset’)

ModemStatus.JOINED_NETWORK = (2, ‘Device joined to network’)

ModemStatus.DISASSOCIATED = (3, ‘Device disassociated’)

ModemStatus.ERROR_SYNCHRONIZATION_LOST = (4, ‘Configuration error/synchronization lost’)

ModemStatus.COORDINATOR_REALIGNMENT = (5, ‘Coordinator realignment’)

ModemStatus.COORDINATOR_STARTED = (6, ‘The coordinator started’)

ModemStatus.NETWORK_SECURITY_KEY_UPDATED = (7, ‘Network security key was updated’)

ModemStatus.NETWORK_WOKE_UP = (11, ‘Network woke up’)

ModemStatus.NETWORK_WENT_TO_SLEEP = (12, ‘Network went to sleep’)

ModemStatus.VOLTAGE_SUPPLY_LIMIT_EXCEEDED = (13, ‘Voltage supply limit exceeded’)

ModemStatus.REMOTE_MANAGER_CONNECTED = (14, ‘Remote Manager connected’)

ModemStatus.REMOTE_MANAGER_DISCONNECTED = (15, ‘Remote Manager disconnected’)

ModemStatus.MODEM_CONFIG_CHANGED_WHILE_JOINING = (17, ‘Modem configuration changed while joining’)

ModemStatus.ACCESS_FAULT = (18, ‘Access fault’)

ModemStatus.FATAL_ERROR = (19, ‘Fatal error’)

ModemStatus.BLUETOOTH_CONNECTED = (50, ‘A Bluetooth connection has been made and API mode has been unlocked’)

ModemStatus.BLUETOOTH_DISCONNECTED = (51, ‘An unlocked Bluetooth connection has been disconnected’)

ModemStatus.BANDMASK_CONFIGURATION_ERROR = (52, ‘LTE-M/NB-IoT bandmask configuration has failed’)

ModemStatus.CELLULAR_UPDATE_START = (53, ‘Cellular component update started’)

ModemStatus.CELLULAR_UPDATE_FAILED = (54, ‘Cellular component update failed’)

ModemStatus.CELLULAR_UPDATE_SUCCESS = (55, ‘Cellular component update completed’)

ModemStatus.FIRMWARE_UPDATE_START = (56, ‘XBee firmware update started’)

ModemStatus.FIRMWARE_UPDATE_FAILED = (57, ‘XBee firmware update failed’)

ModemStatus.FIRMWARE_UPDATE_APPLYING = (58, ‘XBee firmware update applying’)

ModemStatus.SEC_SESSION_ESTABLISHED = (59, ‘Secure session successfully established’)

ModemStatus.SEC_SESSION_END = (60, ‘Secure session ended’)

ModemStatus.SEC_SESSION_AUTH_FAILED = (61, ‘Secure session authentication failed’)

ModemStatus.COORD_PAN_ID_CONFLICT = (62, ‘Coordinator detected a PAN ID conflict but took no action because CR=0’)

ModemStatus.COORD_CHANGE_PAN_ID = (63, ‘Coordinator changed PAN ID due to a conflict’)

ModemStatus.ROUTER_PAN_ID_CHANGED = (64, ‘Router PAN ID was changed by coordinator due to a conflict’)

ModemStatus.NET_WATCHDOG_EXPIRED = (66, ‘Network watchdog timeout expired’)

ModemStatus.ERROR_STACK = (128, ‘Stack error’)

ModemStatus.ERROR_AP_NOT_CONNECTED = (130, ‘Send/join command issued without connecting from AP’)

ModemStatus.ERROR_AP_NOT_FOUND = (131, ‘Access point not found’)

ModemStatus.ERROR_PSK_NOT_CONFIGURED = (132, ‘PSK not configured’)

ModemStatus.ERROR_SSID_NOT_FOUND = (135, ‘SSID not found’)

ModemStatus.ERROR_FAILED_JOIN_SECURITY = (136, ‘Failed to join with security enabled’)

ModemStatus.ERROR_INVALID_CHANNEL = (138, ‘Invalid channel’)

ModemStatus.ERROR_FAILED_JOIN_AP = (142, ‘Failed to join access point’)

ModemStatus.UNKNOWN = (255, ‘UNKNOWN’)

	
code

	Returns the code of the ModemStatus element.

	Returns

	the code of the ModemStatus element.

	Return type

	Integer

	
description

	Returns the description of the ModemStatus element.

	Returns

	the description of the ModemStatus element.

	Return type

	String

	
class digi.xbee.models.status.PowerLevel(code, description)[source]

	Bases: enum.Enum

Enumerates the different power levels. The power level indicates the output
power value of a radio when transmitting data.

Values:

PowerLevel.LEVEL_LOWEST = (0, ‘Lowest’)

PowerLevel.LEVEL_LOW = (1, ‘Low’)

PowerLevel.LEVEL_MEDIUM = (2, ‘Medium’)

PowerLevel.LEVEL_HIGH = (3, ‘High’)

PowerLevel.LEVEL_HIGHEST = (4, ‘Highest’)

PowerLevel.LEVEL_UNKNOWN = (255, ‘Unknown’)

	
code

	Returns the code of the PowerLevel element.

	Returns

	the code of the PowerLevel element.

	Return type

	Integer

	
description

	Returns the description of the PowerLevel element.

	Returns

	the description of the PowerLevel element.

	Return type

	String

	
class digi.xbee.models.status.AssociationIndicationStatus(code, description)[source]

	Bases: enum.Enum

Enumerates the different association indication statuses.

Values:

AssociationIndicationStatus.SUCCESSFULLY_JOINED = (0, ‘Successfully formed or joined a network’)

AssociationIndicationStatus.AS_TIMEOUT = (1, ‘Active Scan Timeout’)

AssociationIndicationStatus.AS_NO_PANS_FOUND = (2, ‘Active Scan found no PANs’)

AssociationIndicationStatus.AS_ASSOCIATION_NOT_ALLOWED = (3, ‘Active Scan found PAN, but the CoordinatorAllowAssociation bit is not set’)

AssociationIndicationStatus.AS_BEACONS_NOT_SUPPORTED = (4, ‘Active Scan found PAN, but Coordinator and End Device are not onfigured to support beacons’)

AssociationIndicationStatus.AS_ID_DOESNT_MATCH = (5, ‘Active Scan found PAN, but the Coordinator ID parameter does not match the ID parameter of the End Device’)

AssociationIndicationStatus.AS_CHANNEL_DOESNT_MATCH = (6, ‘Active Scan found PAN, but the Coordinator CH parameter does not match the CH parameter of the End Device’)

AssociationIndicationStatus.ENERGY_SCAN_TIMEOUT = (7, ‘Energy Scan Timeout’)

AssociationIndicationStatus.COORDINATOR_START_REQUEST_FAILED = (8, ‘Coordinator start request failed’)

AssociationIndicationStatus.COORDINATOR_INVALID_PARAMETER = (9, ‘Coordinator could not start due to invalid parameter’)

AssociationIndicationStatus.COORDINATOR_REALIGNMENT = (10, ‘Coordinator Realignment is in progress’)

AssociationIndicationStatus.AR_NOT_SENT = (11, ‘Association Request not sent’)

AssociationIndicationStatus.AR_TIMED_OUT = (12, ‘Association Request timed out - no reply was received’)

AssociationIndicationStatus.AR_INVALID_PARAMETER = (13, ‘Association Request had an Invalid Parameter’)

AssociationIndicationStatus.AR_CHANNEL_ACCESS_FAILURE = (14, ‘Association Request Channel Access Failure. Request was not transmitted - CCA failure’)

AssociationIndicationStatus.AR_COORDINATOR_ACK_WASNT_RECEIVED = (15, ‘Remote Coordinator did not send an ACK after Association Request was sent’)

AssociationIndicationStatus.AR_COORDINATOR_DIDNT_REPLY = (16, ‘Remote Coordinator did not reply to the Association Request, but an ACK was received after sending the request’)

AssociationIndicationStatus.SYNCHRONIZATION_LOST = (18, ‘Sync-Loss - Lost synchronization with a Beaconing Coordinator’)

AssociationIndicationStatus.DISASSOCIATED = (19, ‘ Disassociated - No longer associated to Coordinator’)

AssociationIndicationStatus.NO_PANS_FOUND = (33, ‘Scan found no PANs.’)

AssociationIndicationStatus.NO_PANS_WITH_ID_FOUND = (34, ‘Scan found no valid PANs based on current SC and ID settings’)

AssociationIndicationStatus.NJ_EXPIRED = (35, ‘Valid Coordinator or Routers found, but they are not allowing joining (NJ expired)’)

AssociationIndicationStatus.NO_JOINABLE_BEACONS_FOUND = (36, ‘No joinable beacons were found’)

AssociationIndicationStatus.UNEXPECTED_STATE = (37, ‘Unexpected state, node should not be attempting to join at this time’)

AssociationIndicationStatus.JOIN_FAILED = (39, ‘Node Joining attempt failed (typically due to incompatible security settings)’)

AssociationIndicationStatus.COORDINATOR_START_FAILED = (42, ‘Coordinator Start attempt failed’)

AssociationIndicationStatus.CHECKING_FOR_COORDINATOR = (43, ‘Checking for an existing coordinator’)

AssociationIndicationStatus.NETWORK_LEAVE_FAILED = (44, ‘Attempt to leave the network failed’)

AssociationIndicationStatus.DEVICE_DIDNT_RESPOND = (171, ‘Attempted to join a device that did not respond’)

AssociationIndicationStatus.UNSECURED_KEY_RECEIVED = (172, ‘Secure join error - network security key received unsecured’)

AssociationIndicationStatus.KEY_NOT_RECEIVED = (173, ‘Secure join error - network security key not received’)

AssociationIndicationStatus.INVALID_SECURITY_KEY = (175, ‘Secure join error - joining device does not have the right preconfigured link key’)

AssociationIndicationStatus.SCANNING_NETWORK = (255, ‘Scanning for a network/Attempting to associate’)

	
code

	Returns the code of the AssociationIndicationStatus element.

	Returns

	the code of the AssociationIndicationStatus element.

	Return type

	Integer

	
description

	Returns the description of the AssociationIndicationStatus element.

	Returns

	
	the description of the AssociationIndicationStatus

	element.

	Return type

	String

	
class digi.xbee.models.status.CellularAssociationIndicationStatus(code, description)[source]

	Bases: enum.Enum

Enumerates the different association indication statuses for the Cellular
protocol.

Values:

CellularAssociationIndicationStatus.SUCCESSFULLY_CONNECTED = (0, ‘Connected to the Internet’)

CellularAssociationIndicationStatus.REGISTERING_CELLULAR_NETWORK = (34, ‘Registering to cellular network’)

CellularAssociationIndicationStatus.CONNECTING_INTERNET = (35, ‘Connecting to the Internet’)

CellularAssociationIndicationStatus.MODEM_FIRMWARE_CORRUPT = (36, ‘The cellular component requires a new firmware image’)

CellularAssociationIndicationStatus.REGISTRATION_DENIED = (37, ‘Cellular network registration was denied’)

CellularAssociationIndicationStatus.AIRPLANE_MODE = (42, ‘Airplane mode is active’)

CellularAssociationIndicationStatus.USB_DIRECT = (43, ‘USB Direct mode is active’)

CellularAssociationIndicationStatus.PSM_LOW_POWER = (44, ‘The cellular component is in the PSM low-power state’)

CellularAssociationIndicationStatus.BYPASS_MODE = (47, ‘Bypass mode active’)

CellularAssociationIndicationStatus.INITIALIZING = (255, ‘Initializing’)

	
code

	Returns the code of the CellularAssociationIndicationStatus element.

	Returns

	
	the code of the CellularAssociationIndicationStatus

	element.

	Return type

	Integer

	
description

	
	Returns the description of the CellularAssociationIndicationStatus

	element.

	Returns

	
	the description of the CellularAssociationIndicationStatus

	element.

	Return type

	String

	
class digi.xbee.models.status.DeviceCloudStatus(code, description)[source]

	Bases: enum.Enum

Enumerates the different Device Cloud statuses.

Values:

DeviceCloudStatus.SUCCESS = (0, ‘Success’)

DeviceCloudStatus.BAD_REQUEST = (1, ‘Bad request’)

DeviceCloudStatus.RESPONSE_UNAVAILABLE = (2, ‘Response unavailable’)

DeviceCloudStatus.DEVICE_CLOUD_ERROR = (3, ‘Device Cloud error’)

DeviceCloudStatus.CANCELED = (32, ‘Device Request canceled by user’)

DeviceCloudStatus.TIME_OUT = (33, ‘Session timed out’)

DeviceCloudStatus.UNKNOWN_ERROR = (64, ‘Unknown error’)

	
code

	Returns the code of the DeviceCloudStatus element.

	Returns

	the code of the DeviceCloudStatus element.

	Return type

	Integer

	
description

	Returns the description of the DeviceCloudStatus element.

	Returns

	the description of the DeviceCloudStatus element.

	Return type

	String

	
class digi.xbee.models.status.FrameError(code, description)[source]

	Bases: enum.Enum

Enumerates the different frame errors.

Values:

FrameError.INVALID_TYPE = (2, ‘Invalid frame type’)

FrameError.INVALID_LENGTH = (3, ‘Invalid frame length’)

FrameError.INVALID_CHECKSUM = (4, ‘Erroneous checksum on last frame’)

FrameError.PAYLOAD_TOO_BIG = (5, ‘Payload of last API frame was too big to fit into a buffer’)

FrameError.STRING_ENTRY_TOO_BIG = (6, ‘String entry was too big on last API frame sent’)

FrameError.WRONG_STATE = (7, ‘Wrong state to receive frame’)

FrameError.WRONG_REQUEST_ID = (8, ‘Device request ID of device response do not match the number in the request’)

	
code

	Returns the code of the FrameError element.

	Returns

	the code of the FrameError element.

	Return type

	Integer

	
description

	Returns the description of the FrameError element.

	Returns

	the description of the FrameError element.

	Return type

	String

	
class digi.xbee.models.status.WiFiAssociationIndicationStatus(code, description)[source]

	Bases: enum.Enum

Enumerates the different Wi-Fi association indication statuses.

Values:

WiFiAssociationIndicationStatus.SUCCESSFULLY_JOINED = (0, ‘Successfully joined to access point’)

WiFiAssociationIndicationStatus.INITIALIZING = (1, ‘Initialization in progress’)

WiFiAssociationIndicationStatus.INITIALIZED = (2, ‘Initialized, but not yet scanning’)

WiFiAssociationIndicationStatus.DISCONNECTING = (19, ‘Disconnecting from access point’)

WiFiAssociationIndicationStatus.SSID_NOT_CONFIGURED = (35, ‘SSID not configured’)

WiFiAssociationIndicationStatus.INVALID_KEY = (36, ‘Encryption key invalid (NULL or invalid length)’)

WiFiAssociationIndicationStatus.JOIN_FAILED = (39, ‘SSID found, but join failed’)

WiFiAssociationIndicationStatus.WAITING_FOR_AUTH = (64, ‘Waiting for WPA or WPA2 authentication’)

WiFiAssociationIndicationStatus.WAITING_FOR_IP = (65, ‘Joined to a network and waiting for IP address’)

WiFiAssociationIndicationStatus.SETTING_UP_SOCKETS = (66, ‘Joined to a network and IP configured. Setting up listening sockets’)

WiFiAssociationIndicationStatus.SCANNING_FOR_SSID = (255, ‘Scanning for the configured SSID’)

	
code

	Returns the code of the WiFiAssociationIndicationStatus element.

	Returns

	the code of the WiFiAssociationIndicationStatus element.

	Return type

	Integer

	
description

	Returns the description of the WiFiAssociationIndicationStatus element.

	Returns

	the description of the WiFiAssociationIndicationStatus element.

	Return type

	String

	
class digi.xbee.models.status.NetworkDiscoveryStatus(code, description)[source]

	Bases: enum.Enum

Enumerates the different statuses of the network discovery process.

Values:

NetworkDiscoveryStatus.SUCCESS = (0, ‘Success’)

NetworkDiscoveryStatus.ERROR_READ_TIMEOUT = (1, ‘Read timeout error’)

NetworkDiscoveryStatus.ERROR_NET_DISCOVER = (2, ‘Error executing node discovery’)

NetworkDiscoveryStatus.ERROR_GENERAL = (3, ‘Error while discovering network’)

NetworkDiscoveryStatus.CANCEL = (4, ‘Discovery process cancelled’)

	
code

	Returns the code of the NetworkDiscoveryStatus element.

	Returns

	the code of the NetworkDiscoveryStatus element.

	Return type

	Integer

	
description

	Returns the description of the NetworkDiscoveryStatus element.

	Returns

	the description of the NetworkDiscoveryStatus element.

	Return type

	String

	
class digi.xbee.models.status.ZigbeeRegisterStatus(code, description)[source]

	Bases: enum.Enum

Enumerates the different statuses of the Zigbee Device Register process.

Values:

ZigbeeRegisterStatus.SUCCESS = (0, ‘Success’)

ZigbeeRegisterStatus.KEY_TOO_LONG = (1, ‘Key too long’)

ZigbeeRegisterStatus.ADDRESS_NOT_FOUND = (177, ‘Address not found in the key table’)

ZigbeeRegisterStatus.INVALID_KEY = (178, ‘Key is invalid (00 and FF are reserved)’)

ZigbeeRegisterStatus.INVALID_ADDRESS = (179, ‘Invalid address’)

ZigbeeRegisterStatus.KEY_TABLE_FULL = (180, ‘Key table is full’)

ZigbeeRegisterStatus.KEY_NOT_FOUND = (255, ‘Key not found’)

ZigbeeRegisterStatus.UNKNOWN = (238, ‘Unknown’)

	
code

	Returns the code of the ZigbeeRegisterStatus element.

	Returns

	the code of the ZigbeeRegisterStatus element.

	Return type

	Integer

	
description

	Returns the description of the ZigbeeRegisterStatus element.

	Returns

	the description of the ZigbeeRegisterStatus element.

	Return type

	String

	
class digi.xbee.models.status.EmberBootloaderMessageType(code, description)[source]

	Bases: enum.Enum

Enumerates the different types of the Ember bootloader messages.

Values:

EmberBootloaderMessageType.ACK = (6, ‘ACK message’)

EmberBootloaderMessageType.NACK = (21, ‘NACK message’)

EmberBootloaderMessageType.NO_MAC_ACK = (64, ‘No MAC ACK message’)

EmberBootloaderMessageType.QUERY = (81, ‘Query message’)

EmberBootloaderMessageType.QUERY_RESPONSE = (82, ‘Query response message’)

EmberBootloaderMessageType.UNKNOWN = (255, ‘Unknown’)

	
code

	Returns the code of the EmberBootloaderMessageType element.

	Returns

	the code of the EmberBootloaderMessageType element.

	Return type

	Integer

	
description

	Returns the description of the EmberBootloaderMessageType element.

	Returns

	the description of the EmberBootloaderMessageType element.

	Return type

	String

	
class digi.xbee.models.status.SocketStatus(code, description)[source]

	Bases: enum.Enum

Enumerates the different Socket statuses.

Values:

SocketStatus.SUCCESS = (0, ‘Operation successful’)

SocketStatus.INVALID_PARAM = (1, ‘Invalid parameters’)

SocketStatus.FAILED_TO_READ = (2, ‘Failed to retrieve option value’)

SocketStatus.CONNECTION_IN_PROGRESS = (3, ‘Connection already in progress’)

SocketStatus.ALREADY_CONNECTED = (4, ‘Already connected/bound/listening’)

SocketStatus.UNKNOWN_ERROR = (5, ‘Unknown error’)

SocketStatus.BAD_SOCKET = (32, ‘Bad socket ID’)

SocketStatus.NOT_REGISTERED = (34, ‘Not registered to cell network’)

SocketStatus.INTERNAL_ERROR = (49, ‘Internal error’)

SocketStatus.RESOURCE_ERROR = (50, ‘Resource error: retry the operation later’)

SocketStatus.INVALID_PROTOCOL = (123, ‘Invalid protocol’)

SocketStatus.UNKNOWN = (255, ‘Unknown’)

	
code

	Returns the code of the SocketStatus element.

	Returns

	the code of the SocketStatus element.

	Return type

	Integer

	
description

	Returns the description of the SocketStatus element.

	Returns

	the description of the SocketStatus element.

	Return type

	String

	
class digi.xbee.models.status.SocketState(code, description)[source]

	Bases: enum.Enum

Enumerates the different Socket states.

Values:

SocketState.CONNECTED = (0, ‘Connected’)

SocketState.FAILED_DNS = (1, ‘Failed DNS lookup’)

SocketState.CONNECTION_REFUSED = (2, ‘Connection refused’)

SocketState.TRANSPORT_CLOSED = (3, ‘Transport closed’)

SocketState.TIMED_OUT = (4, ‘Timed out’)

SocketState.INTERNAL_ERROR = (5, ‘Internal error’)

SocketState.HOST_UNREACHABLE = (6, ‘Host unreachable’)

SocketState.CONNECTION_LOST = (7, ‘Connection lost’)

SocketState.UNKNOWN_ERROR = (8, ‘Unknown error’)

SocketState.UNKNOWN_SERVER = (9, ‘Unknown server’)

SocketState.RESOURCE_ERROR = (10, ‘Resource error’)

SocketState.LISTENER_CLOSED = (11, ‘Listener closed’)

SocketState.UNKNOWN = (255, ‘Unknown’)

	
code

	Returns the code of the SocketState element.

	Returns

	the code of the SocketState element.

	Return type

	Integer

	
description

	Returns the description of the SocketState element.

	Returns

	the description of the SocketState element.

	Return type

	String

	
class digi.xbee.models.status.SocketInfoState(code, description)[source]

	Bases: enum.Enum

Enumerates the different Socket info states.

Values:

SocketInfoState.ALLOCATED = (0, ‘Allocated’)

SocketInfoState.CONNECTING = (1, ‘Connecting’)

SocketInfoState.CONNECTED = (2, ‘Connected’)

SocketInfoState.LISTENING = (3, ‘Listening’)

SocketInfoState.BOUND = (4, ‘Bound’)

SocketInfoState.CLOSING = (5, ‘Closing’)

SocketInfoState.UNKNOWN = (255, ‘Unknown’)

	
code

	Returns the code of the SocketInfoState element.

	Returns

	the code of the SocketInfoState element.

	Return type

	Integer

	
description

	Returns the description of the SocketInfoState element.

	Returns

	the description of the SocketInfoState element.

	Return type

	String

	
class digi.xbee.models.status.FSCommandStatus(code, description)[source]

	Bases: enum.Enum

This class lists all the possible states of an file system command after
execution.

Inherited properties:

name (String): Name (id) of the FSCommandStatus.

value (String): Value of the FSCommandStatus.

Values:

Success (0x00) = (0, ‘Success’)

Error (0x01) = (1, ‘Error’)

Invalid file system command (0x02) = (2, ‘Invalid file system command’)

Invalid command parameter (0x03) = (3, ‘Invalid command parameter’)

Access denied (0x50) = (80, ‘Access denied’)

File or directory already exists (0x51) = (81, ‘File or directory already exists’)

File or directory does not exist (0x52) = (82, ‘File or directory does not exist’)

Invalid file or directory name (0x53) = (83, ‘Invalid file or directory name’)

File operation on directory (0x54) = (84, ‘File operation on directory’)

Directory is not empty (0x55) = (85, ‘Directory is not empty’)

Attempt to read past EOF (end of file) (0x56) = (86, ‘Attempt to read past EOF (end of file)’)

Hardware failure (0x57) = (87, ‘Hardware failure’)

Volume offline / format required (0x58) = (88, ‘Volume offline / format required’)

Volume full (0x59) = (89, ‘Volume full’)

Operation timed out (0x5A) = (90, ‘Operation timed out’)

Busy with prior operation (0x5B) = (91, ‘Busy with prior operation’)

Resource failure (memory allocation failed, try again) (0x5C) = (92, ‘Resource failure (memory allocation failed, try again)’)

	
code

	Returns the code of the FSCommandStatus element.

	Returns

	Code of the FSCommandStatus element.

	Return type

	Integer

	
description

	Returns the description of the FSCommandStatus element.

	Returns

	Description of the FSCommandStatus element.

	Return type

	String

digi.xbee.models.zdo package

	
class digi.xbee.models.zdo.NodeDescriptorReader(xbee, configure_ao=True, timeout=20)[source]

	Bases: digi.xbee.models.zdo._ZDOCommand

This class performs a node descriptor read of the given XBee using a ZDO command.

The node descriptor read works only with Zigbee devices in API mode.

Class constructor. Instantiates a new NodeDescriptorReader
object with the provided parameters.

	Parameters

	
	(class (xbee) – .XBeeDevice or class:.RemoteXBeeDevice): XBee to
send the command.

	configure_ao (Boolean, optional, default=`True`) – True to set
AO value before and after executing, False otherwise.

	timeout (Float, optional, default=`.__DEFAULT_TIMEOUT`) – The ZDO
command timeout in seconds.

	Raises

	
	ValueError – If xbee is None.

	ValueError – If cluster_id, receive_cluster_id, or timeout
are less than 0.

	TypeError – If the xbee is not a .XBeeDevice or a
RemoteXBeeDevice.

	
get_node_descriptor()[source]

	Returns the descriptor of the node.

	Returns

	The node descriptor.

	Return type

	NodeDescriptor

	
error

	Returns the error string if any.

	Returns

	The error string.

	Return type

	String

	
running

	Returns if this ZDO command is running.

	Returns

	True if it is running, False otherwise.

	Return type

	Boolean

	
stop()

	Stops the ZDO command process if it is running.

	
class digi.xbee.models.zdo.NodeDescriptor(role, complex_desc_supported, user_desc_supported, freq_band, mac_capabilities, manufacturer_code, max_buffer_size, max_in_transfer_size, max_out_transfer_size, desc_capabilities)[source]

	Bases: object

This class represents a node descriptor of an XBee.

Class constructor. Instantiates a new NodeDescriptor object
with the provided parameters.

	Parameters

	
	role (Role) – The device role.

	complex_desc_supported (Boolean) – True if the complex descriptor
is supported.

	user_desc_supported (Boolean) – True if the user descriptor is
supported.

	freq_band (List) – Byte array with the frequency bands.

	mac_capabilities (List) – Byte array with MAC capabilities.

	manufacturer_code (Integer) – The manufacturer’s code assigned by
the Zigbee Alliance.

	max_buffer_size (Integer) – Maximum size in bytes of a data
transmission.

	max_in_transfer_size (Integer) – Maximum number of bytes that can be
received by the node.

	max_out_transfer_size (Integer) – Maximum number of bytes that can
be transmitted by the node.

	desc_capabilities (List) – Byte array with descriptor capabilities.

	
role

	Gets the role in this node descriptor.

	Returns

	The role of the node descriptor.

	Return type

	Role

See also

Role

	
complex_desc_supported

	Gets if the complex descriptor is supported.

	Returns

	True if supported, False otherwise.

	Return type

	Boolean

	
user_desc_supported

	Gets if the user descriptor is supported.

	Returns

	True if supported, False otherwise.

	Return type

	Boolean

	
freq_band

	868 MHz
* Bit1: Reserved
* Bit2: 900 MHz
* Bit3: 2.4 GHz
* Bit4: Reserved

	Returns

	List of integers with the frequency bands bits.

	Return type

	List

	Type

	Gets the frequency bands (LSB - bit0- index 0, MSB - bit4 - index 4)

	Type

	
	Bit0

	
mac_capabilities

	Alternate PAN coordinator
* Bit1: Device Type
* Bit2: Power source
* Bit3: Receiver on when idle
* Bit4-5: Reserved
* Bit6: Security capability
* Bit7: Allocate address

	Returns

	List of integers with MAC capabilities bits.

	Return type

	List

	Type

	Gets the MAC capabilities (LSB - bit0- index 0, MSB - bit7 - index 7)

	Type

	
	Bit0

	
manufacturer_code

	Gets the manufacturer’s code assigned by the Zigbee Alliance.

	Returns

	The manufacturer’s code.

	Return type

	Integer

	
max_buffer_size

	Gets the maximum size in bytes of a data transmission (including APS bytes).

	Returns

	Maximum size in bytes.

	Return type

	Integer

	
max_in_transfer_size

	Gets the maximum number of bytes that can be received by the node.

	Returns

	Maximum number of bytes that can be received by the node.

	Return type

	Integer

	
max_out_transfer_size

	Gets the maximum number of bytes that can be transmitted by the node,
including fragmentation.

	Returns

	Maximum number of bytes that can be transmitted by the node.

	Return type

	Integer

	
desc_capabilities

	Extended active endpoint list available
* Bit1: Extended simple descriptor list available

	Returns

	List of integers with descriptor capabilities bits.

	Return type

	List

	Type

	Gets the descriptor capabilities (LSB - bit0- index 0, MSB - bit1 - index 1)

	Type

	
	Bit0

	
class digi.xbee.models.zdo.RouteTableReader(xbee, configure_ao=True, timeout=20)[source]

	Bases: digi.xbee.models.zdo._ZDOCommand

This class performs a route table read of the given XBee using a ZDO command.

The node descriptor read works only with Zigbee devices in API mode.

Class constructor. Instantiates a new RouteTableReader object
with the provided parameters.

	Parameters

	
	(class (xbee) – .XBeeDevice or class:.RemoteXBeeDevice): XBee to
send the command.

	configure_ao (Boolean, optional, default=`True`) – True to set
AO value before and after executing, False otherwise.

	timeout (Float, optional, default=`.DEFAULT_TIMEOUT`) – The ZDO
command timeout in seconds.

	Raises

	
	ValueError – If xbee is None.

	ValueError – If cluster_id, receive_cluster_id, or timeout are
less than 0.

	TypeError – If the xbee is not a .XBeeDevice or a
.RemoteXBeeDevice.

	
get_route_table(route_cb=None, finished_cb=None)[source]

	Returns the routes of the XBee. If route_cb is not defined, the
process blocks until the complete routing table is read.

	Parameters

	
	route_cb (Function, optional, default=`None`) – Method called when
a new route is received. Receives two arguments:

	The XBee that owns this new route.

	The new route.

	finished_cb (Function, optional, default=`None`) – Method to execute
when the process finishes. Receives three arguments:

	The XBee that executed the ZDO command.

	A list with the discovered routes.

	An error message if something went wrong.

	Returns

	
	List of Route when route_cb is not defined,

	None otherwise (in this case routes are received in the
callback).

	Return type

	List

See also

Route

	
error

	Returns the error string if any.

	Returns

	The error string.

	Return type

	String

	
running

	Returns if this ZDO command is running.

	Returns

	True if it is running, False otherwise.

	Return type

	Boolean

	
stop()

	Stops the ZDO command process if it is running.

	
class digi.xbee.models.zdo.RouteStatus(identifier, name)[source]

	Bases: enum.Enum

Enumerates the available route status.

	
id

	Returns the identifier of the RouteStatus.

	Returns

	RouteStatus identifier.

	Return type

	Integer

	
class digi.xbee.models.zdo.Route(destination, next_hop, status, is_low_memory, is_many_to_one, is_route_record_required)[source]

	Bases: object

This class represents a Zigbee route read from the route table of an XBee.

Class constructor. Instantiates a new Route object with the
provided parameters.

	Parameters

	
	destination (XBee16BitAddress) – 16-bit destination
address of the route.

	next_hop (XBee16BitAddress) – 16-bit address of the
next hop.

	status (RouteStatus) – Status of the route.

	is_low_memory (Boolean) – True to indicate if the device is a
low-memory concentrator.

	is_many_to_one (Boolean) – True to indicate the destination is a
concentrator.

	is_route_record_required (Boolean) – True to indicate a route
record message should be sent prior to the next data
transmission.

See also

RouteStatus

XBee16BitAddress

	
destination

	Gets the 16-bit address of this route destination.

	Returns

	16-bit address of the destination.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
next_hop

	Gets the 16-bit address of this route next hop.

	Returns

	16-bit address of the next hop.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
status

	Gets this route status.

	Returns

	The route status.

	Return type

	RouteStatus

See also

RouteStatus

	
is_low_memory

	Gets whether the device is a low-memory concentrator.

	Returns

	True if the device is a low-memory concentrator, False otherwise.

	Return type

	Boolean

	
is_many_to_one

	Gets whether the destination is a concentrator.

	Returns

	True if destination is a concentrator, False otherwise.

	Return type

	Boolean

	
is_route_record_required

	Gets whether a route record message should be sent prior the next data
transmission.

	Returns

	True if a route record message should be sent, False otherwise.

	Return type

	Boolean

	
class digi.xbee.models.zdo.NeighborTableReader(xbee, configure_ao=True, timeout=20)[source]

	Bases: digi.xbee.models.zdo._ZDOCommand

This class performs a neighbor table read of the given XBee using a ZDO
command.

The node descriptor read works only with Zigbee devices in API mode.

Class constructor. Instantiates a new NeighborTableReader
object with the provided parameters.

	Parameters

	
	(class (xbee) – .XBeeDevice or class:.RemoteXBeeDevice): XBee to
send the command.

	configure_ao (Boolean, optional, default=`True`) – True to set
AO value before and after executing, False otherwise.

	timeout (Float, optional, default=`.DEFAULT_TIMEOUT`) – The ZDO
command timeout in seconds.

	Raises

	
	ValueError – If xbee is None.

	ValueError – If cluster_id, receive_cluster_id, or timeout are
less than 0.

	TypeError – If the xbee is not a .XBeeDevice or a
.RemoteXBeeDevice.

	
get_neighbor_table(neighbor_cb=None, finished_cb=None)[source]

	Returns the neighbors of the XBee. If neighbor_cb is not defined,
the process blocks until the complete neighbor table is read.

	Parameters

	
	neighbor_cb (Function, optional, default=`None`) – Method called
when a new neighbor is received. Receives two arguments:

	The XBee that owns this new neighbor.

	The new neighbor.

	finished_cb (Function, optional, default=`None`) – Method to execute
when the process finishes. Receives three arguments:

	The XBee that executed the ZDO command.

	A list with the discovered neighbors.

	An error message if something went wrong.

	Returns

	
	List of Neighbor when neighbor_cb is not defined,

	None otherwise (in this case neighbors are received in the callback)

	Return type

	List

See also

Neighbor

	
error

	Returns the error string if any.

	Returns

	The error string.

	Return type

	String

	
running

	Returns if this ZDO command is running.

	Returns

	True if it is running, False otherwise.

	Return type

	Boolean

	
stop()

	Stops the ZDO command process if it is running.

	
class digi.xbee.models.zdo.NeighborRelationship(identifier, name)[source]

	Bases: enum.Enum

Enumerates the available relationships between two nodes of the same network.

	
id

	Returns the identifier of the NeighborRelationship.

	Returns

	NeighborRelationship identifier.

	Return type

	Integer

	
class digi.xbee.models.zdo.Neighbor(node, relationship, depth, lq)[source]

	Bases: object

This class represents a Zigbee or DigiMesh neighbor.

This information is read from the neighbor table of a Zigbee XBee, or
provided by the ‘FN’ command in a Digimesh XBee.

Class constructor. Instantiates a new Neighbor object with
the provided parameters.

	Parameters

	
	node (RemoteXBeeDevice) – The neighbor node.

	relationship (NeighborRelationship) – The relationship of
this neighbor with the node.

	depth (Integer) – The tree depth of the neighbor. A value of 0
indicates the device is a Zigbee coordinator for the network.
-1 means this is unknown.

	lq (Integer) – The estimated link quality (LQI or RSSI) of data
transmission from this neighbor.

See also

NeighborRelationship

RemoteXBeeDevice

	
node

	Gets the neighbor node.

	Returns

	The node itself.

	Return type

	RemoteXBeeDevice

See also

RemoteXBeeDevice

	
relationship

	Gets the neighbor node.

	Returns

	The neighbor relationship.

	Return type

	NeighborRelationship

See also

NeighborRelationship

	
depth

	Gets the tree depth of the neighbor.

	Returns

	The tree depth of the neighbor.

	Return type

	Integer

	
lq

	Gets the estimated link quality (LQI or RSSI) of data transmission
from this neighbor.

	Returns

	The estimated link quality of data transmission from this neighbor.

	Return type

	Integer

	
class digi.xbee.models.zdo.NeighborFinder(xbee, timeout=20)[source]

	Bases: object

This class performs a find neighbors (FN) of an XBee. This action requires
an XBee and optionally a find timeout.

The process works only in DigiMesh.

Class constructor. Instantiates a new NeighborFinder object
with the provided parameters.

	Parameters

	
	(class (xbee) – .XBeeDevice or class:.RemoteXBeeDevice): The XBee
to get neighbors from.

	timeout (Float) – The timeout for the process in seconds.

	Raises

	
	OperationNotSupportedException – If the process is not supported in the XBee.

	TypeError – If the xbee is not a .AbstractXBeeDevice.

	ValueError – If xbee is None.

	ValueError – If timeout is less than 0.

	
running

	Returns whether this find neighbors process is running.

	Returns

	True if it is running, False otherwise.

	Return type

	Boolean

	
error

	Returns the error string if any.

	Returns

	The error string.

	Return type

	String

	
stop()[source]

	Stops the find neighbors process if it is running.

	
get_neighbors(neighbor_cb=None, finished_cb=None)[source]

	Returns the neighbors of the XBee. If neighbor_cb is not defined,
the process blocks until the complete neighbor table is read.

	Parameters

	
	neighbor_cb (Function, optional, default=`None`) – Method called
when a new neighbor is received. Receives two arguments:

	The XBee that owns this new neighbor.

	The new neighbor.

	finished_cb (Function, optional, default=`None`) – Method to execute
when the process finishes. Receives three arguments:

	The XBee that executed the FN command.

	A list with the discovered neighbors.

	An error message if something went wrong.

	Returns

	
	List of Neighbor when neighbor_cb is not defined,

	None otherwise (in this case neighbors are received in the callback)

	Return type

	List

See also

Neighbor

digi.xbee.packets package

Submodules

	digi.xbee.packets.aft module

	digi.xbee.packets.base module

	digi.xbee.packets.cellular module

	digi.xbee.packets.common module

	digi.xbee.packets.devicecloud module

	digi.xbee.packets.digimesh module

	digi.xbee.packets.filesystem module

	digi.xbee.packets.network module

	digi.xbee.packets.raw module

	digi.xbee.packets.relay module

	digi.xbee.packets.socket module

	digi.xbee.packets.wifi module

	digi.xbee.packets.zigbee module

	digi.xbee.packets.factory module

digi.xbee.packets.aft module

	
class digi.xbee.packets.aft.ApiFrameType(code, description)[source]

	Bases: enum.Enum

This enumeration lists all the available frame types used in any XBee
protocol.

Inherited properties:

name (String): the name (id) of this ApiFrameType.

value (String): the value of this ApiFrameType.

Values:

ApiFrameType.TX_64 = (0, ‘TX (Transmit) Request 64-bit address’)

ApiFrameType.TX_16 = (1, ‘TX (Transmit) Request 16-bit address’)

ApiFrameType.REMOTE_AT_COMMAND_REQUEST_WIFI = (7, ‘Remote AT Command Request (Wi-Fi)’)

ApiFrameType.AT_COMMAND = (8, ‘AT Command’)

ApiFrameType.AT_COMMAND_QUEUE = (9, ‘AT Command Queue’)

ApiFrameType.TRANSMIT_REQUEST = (16, ‘Transmit Request’)

ApiFrameType.EXPLICIT_ADDRESSING = (17, ‘Explicit Addressing Command Frame’)

ApiFrameType.REMOTE_AT_COMMAND_REQUEST = (23, ‘Remote AT Command Request’)

ApiFrameType.TX_SMS = (31, ‘TX SMS’)

ApiFrameType.TX_IPV4 = (32, ‘TX IPv4’)

ApiFrameType.CREATE_SOURCE_ROUTE = (33, ‘Create Source Route’)

ApiFrameType.REGISTER_JOINING_DEVICE = (36, ‘Register Joining Device’)

ApiFrameType.SEND_DATA_REQUEST = (40, ‘Send Data Request’)

ApiFrameType.DEVICE_RESPONSE = (42, ‘Device Response’)

ApiFrameType.USER_DATA_RELAY_REQUEST = (45, ‘User Data Relay Request’)

ApiFrameType.FILE_SYSTEM_REQUEST = (59, ‘File System Request’)

ApiFrameType.REMOTE_FILE_SYSTEM_REQUEST = (60, ‘Remote File System Request’)

ApiFrameType.SOCKET_CREATE = (64, ‘Socket Create’)

ApiFrameType.SOCKET_OPTION_REQUEST = (65, ‘Socket Option Request’)

ApiFrameType.SOCKET_CONNECT = (66, ‘Socket Connect’)

ApiFrameType.SOCKET_CLOSE = (67, ‘Socket Close’)

ApiFrameType.SOCKET_SEND = (68, ‘Socket Send (Transmit)’)

ApiFrameType.SOCKET_SENDTO = (69, ‘Socket SendTo (Transmit Explicit Data): IPv4’)

ApiFrameType.SOCKET_BIND = (70, ‘Socket Bind/Listen’)

ApiFrameType.RX_64 = (128, ‘RX (Receive) Packet 64-bit Address’)

ApiFrameType.RX_16 = (129, ‘RX (Receive) Packet 16-bit Address’)

ApiFrameType.RX_IO_64 = (130, ‘IO Data Sample RX 64-bit Address Indicator’)

ApiFrameType.RX_IO_16 = (131, ‘IO Data Sample RX 16-bit Address Indicator’)

ApiFrameType.REMOTE_AT_COMMAND_RESPONSE_WIFI = (135, ‘Remote AT Command Response (Wi-Fi)’)

ApiFrameType.AT_COMMAND_RESPONSE = (136, ‘AT Command Response’)

ApiFrameType.TX_STATUS = (137, ‘TX (Transmit) Status’)

ApiFrameType.MODEM_STATUS = (138, ‘Modem Status’)

ApiFrameType.TRANSMIT_STATUS = (139, ‘Transmit Status’)

ApiFrameType.DIGIMESH_ROUTE_INFORMATION = (141, ‘Route Information’)

ApiFrameType.IO_DATA_SAMPLE_RX_INDICATOR_WIFI = (143, ‘IO Data Sample RX Indicator (Wi-Fi)’)

ApiFrameType.RECEIVE_PACKET = (144, ‘Receive Packet’)

ApiFrameType.EXPLICIT_RX_INDICATOR = (145, ‘Explicit RX Indicator’)

ApiFrameType.IO_DATA_SAMPLE_RX_INDICATOR = (146, ‘IO Data Sample RX Indicator’)

ApiFrameType.REMOTE_AT_COMMAND_RESPONSE = (151, ‘Remote Command Response’)

ApiFrameType.RX_SMS = (159, ‘RX SMS’)

ApiFrameType.OTA_FIRMWARE_UPDATE_STATUS = (160, ‘OTA Firmware Update Status’)

ApiFrameType.ROUTE_RECORD_INDICATOR = (161, ‘Route Record Indicator’)

ApiFrameType.REGISTER_JOINING_DEVICE_STATUS = (164, ‘Register Joining Device Status’)

ApiFrameType.USER_DATA_RELAY_OUTPUT = (173, ‘User Data Relay Output’)

ApiFrameType.RX_IPV4 = (176, ‘RX IPv4’)

ApiFrameType.SEND_DATA_RESPONSE = (184, ‘Send Data Response’)

ApiFrameType.DEVICE_REQUEST = (185, ‘Device Request’)

ApiFrameType.DEVICE_RESPONSE_STATUS = (186, ‘Device Response Status’)

ApiFrameType.FILE_SYSTEM_RESPONSE = (187, ‘File System Response’)

ApiFrameType.REMOTE_FILE_SYSTEM_RESPONSE = (188, ‘Remote File System Response’)

ApiFrameType.SOCKET_CREATE_RESPONSE = (192, ‘Socket Create Response’)

ApiFrameType.SOCKET_OPTION_RESPONSE = (193, ‘Socket Option Response’)

ApiFrameType.SOCKET_CONNECT_RESPONSE = (194, ‘Socket Connect Response’)

ApiFrameType.SOCKET_CLOSE_RESPONSE = (195, ‘Socket Close Response’)

ApiFrameType.SOCKET_LISTEN_RESPONSE = (198, ‘Socket Listen Response’)

ApiFrameType.SOCKET_NEW_IPV4_CLIENT = (204, ‘Socket New IPv4 Client’)

ApiFrameType.SOCKET_RECEIVE = (205, ‘Socket Receive’)

ApiFrameType.SOCKET_RECEIVE_FROM = (206, ‘Socket Receive From’)

ApiFrameType.SOCKET_STATE = (207, ‘Socket State’)

ApiFrameType.FRAME_ERROR = (254, ‘Frame Error’)

ApiFrameType.GENERIC = (255, ‘Generic’)

ApiFrameType.UNKNOWN = (-1, ‘Unknown Packet’)

	
code

	Returns the code of the ApiFrameType element.

	Returns

	the code of the ApiFrameType element.

	Return type

	Integer

	
description

	Returns the description of the ApiFrameType element.

	Returns

	the description of the ApiFrameType element.

	Return type

	Integer

digi.xbee.packets.base module

	
class digi.xbee.packets.base.DictKeys[source]

	Bases: enum.Enum

This enumeration contains all keys used in dictionaries returned by
to_dict() method of XBeePacket.

	
class digi.xbee.packets.base.XBeePacket(op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: object

This abstract class represents the basic structure of an XBee packet.
Derived classes should implement their own payload generation depending on
their type.

Generic actions like checksum compute or packet length calculation is
performed here.

Class constructor. Instantiates a new XBeePacket object.

	Parameters

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
get_checksum()[source]

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
output(escaped=False)[source]

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()[source]

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static create_packet(raw, operating_mode)[source]

	Abstract method. Creates a full XBeePacket with the given parameters.
This function ensures that the XBeePacket returned is valid and is well
built (if not exceptions are raised).

If _OPERATING_MODE is API2 (API escaped) this method des-escape ‘raw’
and build the XBeePacket. Then, you can use XBeePacket.output()
to get the escaped bytearray or not escaped.

	Parameters

	
	raw (Bytearray) – bytearray with which the frame will be built.
Must be a full frame represented by a bytearray.

	operating_mode (OperatingMode) – The mode in which the
frame (‘byteArray’) was captured.

	Returns

	the XBee packet created.

	Return type

	XBeePacket

	Raises

	InvalidPacketException – if something is wrong with raw and the
packet cannot be built well.

	
get_frame_spec_data()[source]

	Returns the data between the length field and the checksum field as
bytearray. This data is never escaped.

	Returns

	
	the data between the length field and the checksum field

	as bytearray.

	Return type

	Bytearray

See also

factory

	
static unescape_data(data)[source]

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.base.XBeeAPIPacket(api_frame_type, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeePacket

This abstract class provides the basic structure of a API frame.
Derived classes should implement their own methods to generate the API
data and frame ID in case they support it.

Basic operations such as frame type retrieval are performed in this class.

See also

XBeePacket

Class constructor. Instantiates a new XBeeAPIPacket object
with the provided parameters.

	Parameters

	
	api_frame_type (ApiFrameType or Integer) – The API frame
type.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

See also

ApiFrameType

XBeePacket

	
get_frame_spec_data()[source]

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()[source]

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()[source]

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()[source]

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
needs_id()[source]

	Returns whether the packet requires frame ID or not.

	Returns

	True if the packet needs frame ID, False otherwise.

	Return type

	Boolean

	
static create_packet(raw, operating_mode)

	Abstract method. Creates a full XBeePacket with the given parameters.
This function ensures that the XBeePacket returned is valid and is well
built (if not exceptions are raised).

If _OPERATING_MODE is API2 (API escaped) this method des-escape ‘raw’
and build the XBeePacket. Then, you can use XBeePacket.output()
to get the escaped bytearray or not escaped.

	Parameters

	
	raw (Bytearray) – bytearray with which the frame will be built.
Must be a full frame represented by a bytearray.

	operating_mode (OperatingMode) – The mode in which the
frame (‘byteArray’) was captured.

	Returns

	the XBee packet created.

	Return type

	XBeePacket

	Raises

	InvalidPacketException – if something is wrong with raw and the
packet cannot be built well.

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.base.GenericXBeePacket(data, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a basic and Generic XBee packet.

See also

XBeeAPIPacket

Class constructor. Instantiates a GenericXBeePacket object
with the provided parameters.

	Parameters

	
	data (bytearray) – the frame specific data without frame type and
frame ID.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

See also

factory

XBeeAPIPacket

	
static create_packet(raw, operating_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Override method.

	Returns

	the GenericXBeePacket generated.

	Return type

	GenericXBeePacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 5.
(start delim. + length (2 bytes) + frame type + checksum = 5 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is different from
ApiFrameType.GENERIC.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.base.UnknownXBeePacket(api_frame, data, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an unknown XBee packet.

See also

XBeeAPIPacket

Class constructor. Instantiates a UnknownXBeePacket object
with the provided parameters.

	Parameters

	
	api_frame (Integer) – the API frame integer value of this packet.

	data (bytearray) – the frame specific data without frame type and frame ID.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

See also

factory

XBeeAPIPacket

	
static create_packet(raw, operating_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Override method.

	Returns

	the UnknownXBeePacket generated.

	Return type

	UnknownXBeePacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 5.
(start delim. + length (2 bytes) + frame type + checksum = 5 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

digi.xbee.packets.cellular module

	
digi.xbee.packets.cellular.PATTERN_PHONE_NUMBER = '^\\+?\\d+$'

	Pattern used to validate the phone number parameter of SMS packets.

	
class digi.xbee.packets.cellular.RXSMSPacket(phone_number, data, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an RX (Receive) SMS packet. Packet is built
using the parameters of the constructor or providing a valid byte array.

See also

TXSMSPacket

XBeeAPIPacket

Class constructor. Instantiates a new RXSMSPacket object with
the provided parameters.

	Parameters

	
	phone_number (String) – Phone number of the device that sent the SMS.

	data (String or bytearray) – Packet data (text of the SMS).

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – if length of phone_number is greater than 20.

	ValueError – if phone_number is not a valid phone number.

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	RXSMSPacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 25.
(start delim + length (2 bytes) + frame type
+ phone number (20 bytes) + checksum = 25 bytes)

	InvalidPacketException – if the length field of raw is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of raw is not the
header byte. See SPECIAL_BYTE.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is different than
ApiFrameType.RX_SMS.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
get_phone_number_byte_array()[source]

	Returns the phone number byte array.

	Returns

	phone number of the device that sent the SMS.

	Return type

	Bytearray

	
phone_number

	Returns the phone number of the device that sent the SMS.

	Returns

	phone number of the device that sent the SMS.

	Return type

	String

	
data

	Returns the data of the packet (SMS text).

	Returns

	the data of the packet.

	Return type

	String

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.cellular.TXSMSPacket(frame_id, phone_number, data, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a TX (Transmit) SMS packet. Packet is built
using the parameters of the constructor or providing a valid byte array.

See also

RXSMSPacket

XBeeAPIPacket

Class constructor. Instantiates a new TXSMSPacket object with
the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID. Must be between 0 and 255.

	phone_number (String) – the phone number.

	data (String or bytearray) – this packet’s data.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – if frame_id is not between 0 and 255.

	ValueError – if length of phone_number is greater than 20.

	ValueError – if phone_number is not a valid phone number.

See also

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	TXSMSPacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 27.
(start delim, length (2 bytes), frame type, frame id,
transmit options, phone number (20 bytes), checksum)

	InvalidPacketException – if the length field of raw is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of raw is not the
header byte. See SPECIAL_BYTE.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is different than
ApiFrameType.TX_SMS.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
get_phone_number_byte_array()[source]

	Returns the phone number byte array.

	Returns

	phone number of the device that sent the SMS.

	Return type

	Bytearray

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
phone_number

	Returns the phone number of the transmitter device.

	Returns

	the phone number of the transmitter device.

	Return type

	String

	
data

	Returns the data of the packet (SMS text).

	Returns

	packet’s data.

	Return type

	Bytearray

digi.xbee.packets.common module

	
class digi.xbee.packets.common.ATCommPacket(frame_id, command, parameter=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an AT command packet.

Used to query or set module parameters on the local device. This API
command applies changes after executing the command. (Changes made to
module parameters take effect once changes are applied.).

Command response is received as an ATCommResponsePacket.

See also

ATCommResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new ATCommPacket object
with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	command (String or bytearray) – AT command of the packet.

	parameter (Bytearray, optional) – the AT command parameter.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if length of command is different from 2.

See also

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	ATCommPacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 8.
(start delim. + length (2 bytes) + frame type
+ frame id + command (2 bytes) + checksum = 8 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is different from
ApiFrameType.AT_COMMAND.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
command

	Returns the AT command of the packet.

	Returns

	the AT command of the packet.

	Return type

	String

	
parameter

	Returns the parameter of the packet.

	Returns

	the parameter of the packet.

	Return type

	Bytearray

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.common.ATCommQueuePacket(frame_id, command, parameter=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an AT command Queue packet.

Used to query or set module parameters on the local device.

In contrast to the ATCommPacket API packet, new parameter
values are queued and not applied until either an ATCommPacket
is sent or the applyChanges() method of the XBeeDevice
class is issued.

Command response is received as an ATCommResponsePacket.

See also

ATCommResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new ATCommQueuePacket
object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	command (String or bytearray) – the AT command of the packet.

	parameter (Bytearray, optional) – the AT command parameter. Optional.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if length of command is different from 2.

See also

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	ATCommQueuePacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 8.
(start delim. + length (2 bytes) + frame type
+ frame id + command + checksum = 8 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is different from
ApiFrameType.AT_COMMAND_QUEUE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
command

	Returns the AT command of the packet.

	Returns

	the AT command of the packet.

	Return type

	String

	
parameter

	Returns the parameter of the packet.

	Returns

	the parameter of the packet.

	Return type

	Bytearray

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.common.ATCommResponsePacket(frame_id, command, response_status=<ATCommandStatus.OK: (0, 'Status OK')>, comm_value=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an AT command response packet.

In response to an AT command message, the module will send an AT command
response message. Some commands will send back multiple frames (for example,
the ND - Node Discover command).

This packet is received in response of an ATCommPacket.

Response also includes an ATCommandStatus object with the status
of the AT command.

See also

ATCommPacket

ATCommandStatus

XBeeAPIPacket

Class constructor. Instantiates a new ATCommResponsePacket
object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet. Must be between 0 and 255.

	command (String or bytearray) – the AT command of the packet.

	response_status (ATCommandStatus or Integer) – the status of the AT command.

	comm_value (Bytearray, optional) – the AT command response value.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if length of command is different from 2.

See also

ATCommandStatus

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	ATCommResponsePacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 9.
(start delim. + length (2 bytes) + frame type + frame id
+ at command (2 bytes) + command status + checksum = 9 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is different from
ApiFrameType.AT_COMMAND_RESPONSE.

	InvalidPacketException – if the command status field is not a valid
value. See ATCommandStatus.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
command

	Returns the AT command of the packet.

	Returns

	the AT command of the packet.

	Return type

	String

	
command_value

	Returns the AT command response value.

	Returns

	the AT command response value.

	Return type

	Bytearray

	
real_status

	Returns the AT command response status of the packet.

	Returns

	the AT command response status of the packet.

	Return type

	Integer

	
status

	Returns the AT command response status of the packet.

	Returns

	the AT command response status of the packet.

	Return type

	ATCommandStatus

See also

ATCommandStatus

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.common.ReceivePacket(x64bit_addr, x16bit_addr, rx_options, rf_data=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a receive packet. Packet is built using the parameters
of the constructor or providing a valid byte array.

When the module receives an RF packet, it is sent out the UART using this
message type.

This packet is received when external devices send transmit request
packets to this module.

Among received data, some options can also be received indicating
transmission parameters.

See also

TransmitPacket

ReceiveOptions

XBeeAPIPacket

Class constructor. Instantiates a new ReceivePacket object
with the provided parameters.

	Parameters

	
	x64bit_addr (XBee64BitAddress) – the 64-bit source address.

	x16bit_addr (XBee16BitAddress) – the 16-bit source address.

	rx_options (Integer) – bitfield indicating the receive options.

	rf_data (Bytearray, optional) – received RF data.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

See also

ReceiveOptions

XBee16BitAddress

XBee64BitAddress

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	ATCommResponsePacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 16.
(start delim. + length (2 bytes) + frame type + 64bit addr.
+ 16bit addr. + Receive options + checksum = 16 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.RECEIVE_PACKET.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
is_broadcast()[source]

	Override method.

See also

XBeeAPIPacket.is_broadcast()

	
x64bit_source_addr

	Returns the 64-bit source address.

	Returns

	the 64-bit source address.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
x16bit_source_addr

	Returns the 16-bit source address.

	Returns

	the 16-bit source address.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
receive_options

	Returns the receive options bitfield.

	Returns

	the receive options bitfield.

	Return type

	Integer

See also

ReceiveOptions

	
rf_data

	Returns the received RF data.

	Returns

	the received RF data.

	Return type

	Bytearray

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.common.RemoteATCommandPacket(frame_id, x64bit_addr, x16bit_addr, tx_options, command, parameter=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Remote AT command Request packet. Packet is built
using the parameters of the constructor or providing a valid byte array.

Used to query or set module parameters on a remote device. For parameter
changes on the remote device to take effect, changes must be applied, either
by setting the apply changes options bit, or by sending an AC command
to the remote node.

Remote command options are set as a bitfield.

If configured, command response is received as a RemoteATCommandResponsePacket.

See also

RemoteATCommandResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new RemoteATCommandPacket
object with the provided parameters.

	Parameters

	
	frame_id (integer) – the frame ID of the packet.

	x64bit_addr (XBee64BitAddress) – the 64-bit destination address.

	x16bit_addr (XBee16BitAddress) – the 16-bit destination address.

	tx_options (Integer) – bitfield of supported transmission options.

	command (String or bytearray) – AT command to send.

	parameter (Bytearray, optional) – AT command parameter.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if length of command is different from 2.

See also

RemoteATCmdOptions

XBee16BitAddress

XBee64BitAddress

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	RemoteATCommandPacket

	Raises

	
	InvalidPacketException – if the Bytearray length is less than 19.
(start delim. + length (2 bytes) + frame type + frame id
+ 64bit addr. + 16bit addr. + transmit options
+ command (2 bytes) + checksum = 19 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.REMOTE_AT_COMMAND_REQUEST.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
x64bit_dest_addr

	Returns the 64-bit destination address.

	Returns

	the 64-bit destination address.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
x16bit_dest_addr

	Returns the 16-bit destination address.

	Returns

	the 16-bit destination address.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
transmit_options

	Returns the transmit options bitfield.

	Returns

	the transmit options bitfield.

	Return type

	Integer

See also

RemoteATCmdOptions

	
parameter

	Returns the AT command parameter.

	Returns

	the AT command parameter.

	Return type

	Bytearray

	
command

	Returns the AT command.

	Returns

	the AT command.

	Return type

	String

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.common.RemoteATCommandResponsePacket(frame_id, x64bit_addr, x16bit_addr, command, resp_status, comm_value=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a remote AT command response packet. Packet is built
using the parameters of the constructor or providing a valid byte array.

If a module receives a remote command response RF data frame in response
to a remote AT command request, the module will send a remote AT command
response message out the UART. Some commands may send back multiple frames,
for example, Node Discover (ND) command.

This packet is received in response of a RemoteATCommandPacket.

Response also includes an object with the status of the AT command.

See also

RemoteATCommandPacket

ATCommandStatus

XBeeAPIPacket

Class constructor. Instantiates a new
RemoteATCommandResponsePacket object with the provided
parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	x64bit_addr (XBee64BitAddress) – the 64-bit source address

	x16bit_addr (XBee16BitAddress) – the 16-bit source address.

	command (String or bytearray) – the AT command of the packet.

	resp_status (ATCommandStatus or Integer) – the status of the AT command.

	comm_value (Bytearray, optional) – the AT command response value. Optional.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if length of command is different from 2.

See also

ATCommandStatus

XBee16BitAddress

XBee64BitAddress

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	RemoteATCommandResponsePacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 19.
(start delim. + length (2 bytes) + frame type + frame id
+ 64bit addr. + 16bit addr. + receive options
+ command (2 bytes) + checksum = 19 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.REMOTE_AT_COMMAND_RESPONSE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
command

	Returns the AT command of the packet.

	Returns

	the AT command of the packet.

	Return type

	String

	
command_value

	Returns the AT command response value.

	Returns

	the AT command response value.

	Return type

	Bytearray

	
real_status

	Returns the AT command response status of the packet.

	Returns

	the AT command response status of the packet.

	Return type

	Integer

	
status

	Returns the AT command response status of the packet.

	Returns

	the AT command response status of the packet.

	Return type

	ATCommandStatus

See also

ATCommandStatus

	
x64bit_source_addr

	Returns the 64-bit source address.

	Returns

	the 64-bit source address.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
x16bit_source_addr

	Returns the 16-bit source address.

	Returns

	the 16-bit source address.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.common.TransmitPacket(frame_id, x64bit_addr, x16bit_addr, broadcast_radius, tx_options, rf_data=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a transmit request packet. Packet is built using the
parameters of the constructor or providing a valid API byte array.

A transmit request API frame causes the module to send data as an RF
packet to the specified destination.

The 64-bit destination address should be set to 0x000000000000FFFF
for a broadcast transmission (to all devices).

The coordinator can be addressed by either setting the 64-bit address to
0x0000000000000000 and the 16-bit address to 0xFFFE, OR by setting the
64-bit address to the coordinator’s 64-bit address and the 16-bit address
to 0x0000.

For all other transmissions, setting the 16-bit address to the correct
16-bit address can help improve performance when transmitting to multiple
destinations.

If a 16-bit address is not known, this field should be set to
0xFFFE (unknown).

The transmit status frame (ApiFrameType.TRANSMIT_STATUS) will
indicate the discovered 16-bit address, if successful (see TransmitStatusPacket).

The broadcast radius can be set from 0 up to NH. If set to 0, the
value of NH specifies the broadcast radius (recommended). This parameter
is only used for broadcast transmissions.

The maximum number of payload bytes can be read with the NP command.

Several transmit options can be set using the transmit options bitfield.

See also

TransmitOptions

XBee16BitAddress.COORDINATOR_ADDRESS

XBee16BitAddress.UNKNOWN_ADDRESS

XBee64BitAddress.BROADCAST_ADDRESS

XBee64BitAddress.COORDINATOR_ADDRESS

XBeeAPIPacket

Class constructor. Instantiates a new TransmitPacket object
with the provided parameters.

	Parameters

	
	frame_id (integer) – the frame ID of the packet.

	x64bit_addr (XBee64BitAddress) – the 64-bit destination address.

	x16bit_addr (XBee16BitAddress) – the 16-bit destination address.

	broadcast_radius (Integer) – maximum number of hops a broadcast transmission can occur.

	tx_options (Integer) – bitfield of supported transmission options.

	rf_data (Bytearray, optional) – RF data that is sent to the destination device.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

See also

TransmitOptions

XBee16BitAddress

XBee64BitAddress

XBeeAPIPacket

	Raises

	ValueError – if frame_id is less than 0 or greater than 255.

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	TransmitPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 18.
(start delim. + length (2 bytes) + frame type + frame id
+ 64bit addr. + 16bit addr. + broadcast radius
+ Transmit options + checksum = 18 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.TRANSMIT_REQUEST.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
rf_data

	Returns the RF data to send.

	Returns

	the RF data to send.

	Return type

	Bytearray

	
transmit_options

	Returns the transmit options bitfield.

	Returns

	the transmit options bitfield.

	Return type

	Integer

See also

TransmitOptions

	
broadcast_radius

	Returns the broadcast radius. Broadcast radius is the maximum number of
hops a broadcast transmission.

	Returns

	the broadcast radius.

	Return type

	Integer

	
x64bit_dest_addr

	Returns the 64-bit destination address.

	Returns

	the 64-bit destination address.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
x16bit_dest_addr

	Returns the 16-bit destination address.

	Returns

	the 16-bit destination address.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.common.TransmitStatusPacket(frame_id, x16bit_addr, tx_retry_count, transmit_status=<TransmitStatus.SUCCESS: (0, 'Success')>, discovery_status=<DiscoveryStatus.NO_DISCOVERY_OVERHEAD: (0, 'No discovery overhead')>, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a transmit status packet. Packet is built using the
parameters of the constructor or providing a valid raw byte array.

When a Transmit Request is completed, the module sends a transmit status
message. This message will indicate if the packet was transmitted
successfully or if there was a failure.

This packet is the response to standard and explicit transmit requests.

See also

TransmitPacket

Class constructor. Instantiates a new TransmitStatusPacket
object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	x16bit_addr (XBee16BitAddress) – 16-bit network address
the packet was delivered to.

	tx_retry_count (Integer) – the number of application
transmission retries that took place.

	transmit_status (TransmitStatus, optional) – transmit
status. Default: SUCCESS.

	discovery_status (DiscoveryStatus, optional) – discovery status.
Default: NO_DISCOVERY_OVERHEAD.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	ValueError – if frame_id is less than 0 or greater than 255.

See also

DiscoveryStatus

TransmitStatus

XBee16BitAddress

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	TransmitStatusPacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 11.
(start delim. + length (2 bytes) + frame type + frame id
+ 16bit addr. + transmit retry count + delivery status
+ discovery status + checksum = 11 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.TRANSMIT_STATUS.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
x16bit_dest_addr

	Returns the 16-bit destination address.

	Returns

	the 16-bit destination address.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
transmit_status

	Returns the transmit status.

	Returns

	the transmit status.

	Return type

	TransmitStatus

See also

TransmitStatus

	
transmit_retry_count

	Returns the transmit retry count.

	Returns

	the transmit retry count.

	Return type

	Integer

	
discovery_status

	Returns the discovery status.

	Returns

	the discovery status.

	Return type

	DiscoveryStatus

See also

DiscoveryStatus

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.common.ModemStatusPacket(modem_status, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a modem status packet. Packet is built using the
parameters of the constructor or providing a valid API raw byte array.

RF module status messages are sent from the module in response to specific
conditions and indicates the state of the modem in that moment.

See also

XBeeAPIPacket

Class constructor. Instantiates a new ModemStatusPacket
object with the provided parameters.

	Parameters

	
	modem_status (ModemStatus) – the modem status event.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

See also

ModemStatus

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	ModemStatusPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 6.
(start delim. + length (2 bytes) + frame type
+ modem status + checksum = 6 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.MODEM_STATUS.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
modem_status

	Returns the modem status event.

	Returns

	The modem status event.

	Return type

	ModemStatus

See also

ModemStatus

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.common.IODataSampleRxIndicatorPacket(x64bit_addr, x16bit_addr, rx_options, rf_data=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an IO data sample RX indicator packet. Packet is built
using the parameters of the constructor or providing a valid API byte array.

When the module receives an IO sample frame from a remote device, it sends
the sample out the UART using this frame type (when AO=0). Only modules
running API firmware will send IO samples out the UART.

Among received data, some options can also be received indicating
transmission parameters.

See also

XBeeAPIPacket

ReceiveOptions

Class constructor. Instantiates a new
IODataSampleRxIndicatorPacket object with the provided parameters.

	Parameters

	
	x64bit_addr (XBee64BitAddress) – the 64-bit source address.

	x16bit_addr (XBee16BitAddress) – the 16-bit source address.

	rx_options (Integer) – bitfield indicating the receive options.

	rf_data (Bytearray, optional) – received RF data.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	ValueError – if rf_data is not None and it’s not valid for
create an IOSample.

See also

IOSample

ReceiveOptions

XBee16BitAddress

XBee64BitAddress

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	IODataSampleRxIndicatorPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 20.
(start delim. + length (2 bytes) + frame type + 64bit addr.
+ 16bit addr. + rf data (5 bytes) + checksum = 20 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.IO_DATA_SAMPLE_RX_INDICATOR.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
is_broadcast()[source]

	Override method.

See also

XBeeAPIPacket.is_broadcast()

	
x64bit_source_addr

	Returns the 64-bit source address.

	Returns

	the 64-bit source address.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
x16bit_source_addr

	Returns the 16-bit source address.

	Returns

	the 16-bit source address.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
receive_options

	Returns the receive options bitfield.

	Returns

	the receive options bitfield.

	Return type

	Integer

See also

ReceiveOptions

	
rf_data

	Returns the received RF data.

	Returns

	the received RF data.

	Return type

	Bytearray

	
io_sample

	Returns the IO sample corresponding to the data contained in the packet.

	Returns

	
	the IO sample of the packet, None if the

	packet has not any data or if the sample could not be generated
correctly.

	Return type

	IOSample

See also

IOSample

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.common.ExplicitAddressingPacket(frame_id, x64bit_addr, x16bit_addr, src_endpoint, dest_endpoint, cluster_id, profile_id, broadcast_radius=0, transmit_options=0, rf_data=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an explicit addressing command packet. Packet is
built using the parameters of the constructor or providing a valid API
payload.

Allows application layer fields (endpoint and cluster ID) to be
specified for a data transmission. Similar to the transmit request, but
also requires application layer addressing fields to be specified
(endpoints, cluster ID, profile ID). An explicit addressing request API
frame causes the module to send data as an RF packet to the specified
destination, using the specified source and destination endpoints, cluster
ID, and profile ID.

The 64-bit destination address should be set to 0x000000000000FFF for
a broadcast transmission (to all devices).

The coordinator can be addressed by either setting the 64-bit address to
0x000000000000000 and the 16-bit address to 0xFFFE, OR by setting the
64-bit address to the coordinator’s 64-bit address and the 16-bit address
to 0x0000.

For all other transmissions, setting the 16-bit address to the right 16-bit
address can help improve performance when transmitting to multiple destinations.

If a 16-bit address is not known, this field should be set to
0xFFFE (unknown).

The transmit status frame (ApiFrameType.TRANSMIT_STATUS) will
indicate the discovered 16-bit address, if successful
(see TransmitStatusPacket)).

The broadcast radius can be set from 0 up to NH. If set to 0, the
value of NH specifies the broadcast radius (recommended). This parameter
is only used for broadcast transmissions.

The maximum number of payload bytes can be read with the NP command.
Note: if source routing is used, the RF payload will be reduced by two
bytes per intermediate hop in the source route.

Several transmit options can be set using the transmit options bitfield.

See also

TransmitOptions

XBee16BitAddress.COORDINATOR_ADDRESS

XBee16BitAddress.UNKNOWN_ADDRESS

XBee64BitAddress.BROADCAST_ADDRESS

XBee64BitAddress.COORDINATOR_ADDRESS

ExplicitRXIndicatorPacket

XBeeAPIPacket

Class constructor. . Instantiates a new ExplicitAddressingPacket
object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	x64bit_addr (XBee64BitAddress) – the 64-bit address.

	x16bit_addr (XBee16BitAddress) – the 16-bit address.

	src_endpoint (Integer) – source endpoint. 1 byte.

	dest_endpoint (Integer) – destination endpoint. 1 byte.

	cluster_id (Integer) – cluster id. Must be between 0 and 0xFFFF.

	profile_id (Integer) – profile id. Must be between 0 and 0xFFFF.

	broadcast_radius (Integer) – maximum number of hops a broadcast transmission can occur.

	transmit_options (Integer) – bitfield of supported transmission options.

	rf_data (Bytearray, optional) – RF data that is sent to the destination device.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – if frame_id, src_endpoint or dst_endpoint are less
than 0 or greater than 255.

	ValueError – if lengths of cluster_id or profile_id (respectively)
are less than 0 or greater than 0xFFFF.

See also

XBee16BitAddress

XBee64BitAddress

TransmitOptions

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	ExplicitAddressingPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 24.
(start delim. + length (2 bytes) + frame type + frame ID
+ 64bit addr. + 16bit addr. + source endpoint + dest. endpoint
+ cluster ID (2 bytes) + profile ID (2 bytes)
+ broadcast radius + transmit options + checksum = 24 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is different from
ApiFrameType.EXPLICIT_ADDRESSING.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
source_endpoint

	Returns the source endpoint of the transmission.

	Returns

	the source endpoint of the transmission.

	Return type

	Integer

	
dest_endpoint

	Returns the destination endpoint of the transmission.

	Returns

	the destination endpoint of the transmission.

	Return type

	Integer

	
cluster_id

	Returns the cluster ID of the transmission.

	Returns

	the cluster ID of the transmission.

	Return type

	Integer

	
profile_id

	Returns the profile ID of the transmission.

	Returns

	Integer: the profile ID of the transmission.

	
rf_data

	Returns the RF data to send.

	Returns

	the RF data to send.

	Return type

	Bytearray

	
transmit_options

	Returns the transmit options bitfield.

	Returns

	the transmit options bitfield.

	Return type

	Integer

See also

TransmitOptions

	
broadcast_radius

	Returns the broadcast radius. Broadcast radius is the maximum number
of hops a broadcast transmission.

	Returns

	the broadcast radius.

	Return type

	Integer

	
x64bit_dest_addr

	Returns the 64-bit destination address.

	Returns

	the 64-bit destination address.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
x16bit_dest_addr

	Returns the 16-bit destination address.

	Returns

	the 16-bit destination address.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
class digi.xbee.packets.common.ExplicitRXIndicatorPacket(x64bit_addr, x16bit_addr, src_endpoint, dest_endpoint, cluster_id, profile_id, rx_options, rf_data=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an explicit RX indicator packet. Packet is
built using the parameters of the constructor or providing a valid API
payload.

When the modem receives an RF packet it is sent out the UART using this
message type (when AO=1).

This packet is received when external devices send explicit addressing
packets to this module.

Among received data, some options can also be received indicating
transmission parameters.

See also

ReceiveOptions

ExplicitAddressingPacket

XBeeAPIPacket

Class constructor. Instantiates a new ExplicitRXIndicatorPacket
object with the provided parameters.

	Parameters

	
	x64bit_addr (XBee64BitAddress) – the 64-bit source address.

	x16bit_addr (XBee16BitAddress) – the 16-bit source address.

	src_endpoint (Integer) – source endpoint. 1 byte.

	dest_endpoint (Integer) – destination endpoint. 1 byte.

	cluster_id (Integer) – cluster ID. Must be between 0 and 0xFFFF.

	profile_id (Integer) – profile ID. Must be between 0 and 0xFFFF.

	rx_options (Integer) – bitfield indicating the receive options.

	rf_data (Bytearray, optional) – received RF data.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – if src_endpoint or dst_endpoint are less than 0 or greater than 255.

	ValueError – if lengths of cluster_id or profile_id (respectively)
are different from 2.

See also

XBee16BitAddress

XBee64BitAddress

ReceiveOptions

XBeeAPIPacket

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	ExplicitRXIndicatorPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 22.
(start delim. + length (2 bytes) + frame type + 64bit addr.
+ 16bit addr. + source endpoint + dest. endpoint
+ cluster ID (2 bytes) + profile ID (2 bytes) + receive options
+ checksum = 22 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is different from
ApiFrameType.EXPLICIT_RX_INDICATOR.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
is_broadcast()[source]

	Override method.

See also

XBeeAPIPacket.is_broadcast()

	
x64bit_source_addr

	Returns the 64-bit source address.

	Returns

	the 64-bit source address.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
x16bit_source_addr

	Returns the 16-bit source address.

	Returns

	the 16-bit source address.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
source_endpoint

	Returns the source endpoint of the transmission.

	Returns

	the source endpoint of the transmission.

	Return type

	Integer

	
dest_endpoint

	Returns the destination endpoint of the transmission.

	Returns

	the destination endpoint of the transmission.

	Return type

	Integer

	
cluster_id

	Returns the cluster ID of the transmission.

	Returns

	the cluster ID of the transmission.

	Return type

	Integer

	
profile_id

	Returns the profile ID of the transmission.

	Returns

	Integer: the profile ID of the transmission.

	
receive_options

	Returns the receive options bitfield.

	Returns

	the receive options bitfield.

	Return type

	Integer

See also

ReceiveOptions

	
rf_data

	Returns the received RF data.

	Returns

	the received RF data.

	Return type

	Bytearray

digi.xbee.packets.devicecloud module

	
class digi.xbee.packets.devicecloud.DeviceRequestPacket(request_id, target=None, request_data=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a device request packet. Packet is built
using the parameters of the constructor or providing a valid API payload.

This frame type is sent out the serial port when the XBee module receives
a valid device request from Device Cloud.

See also

DeviceResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new DeviceRequestPacket
object with the provided parameters.

	Parameters

	
	request_id (Integer) – number that identifies the device request.
(0 has no special meaning)

	target (String) – device request target.

	request_data (Bytearray, optional) – data of the request.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – if request_id is less than 0 or greater than 255.

	ValueError – if length of target is greater than 255.

See also

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	DeviceRequestPacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 9.
(start delim. + length (2 bytes) + frame type + request id
+ transport + flags + target length + checksum = 9 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is different from
ApiFrameType.DEVICE_REQUEST.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
request_id

	Returns the request ID of the packet.

	Returns

	the request ID of the packet.

	Return type

	Integer

	
transport

	Returns the transport of the packet.

	Returns

	the transport of the packet.

	Return type

	Integer

	
flags

	Returns the flags of the packet.

	Returns

	the flags of the packet.

	Return type

	Integer

	
target

	Returns the device request target of the packet.

	Returns

	the device request target of the packet.

	Return type

	String

	
request_data

	Returns the data of the device request.

	Returns

	the data of the device request.

	Return type

	Bytearray

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.devicecloud.DeviceResponsePacket(frame_id, request_id, response_data=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a device response packet. Packet is built
using the parameters of the constructor or providing a valid API payload.

This frame type is sent to the serial port by the host in response to the
DeviceRequestPacket. It should be sent within five seconds to avoid
a timeout error.

See also

DeviceRequestPacket

XBeeAPIPacket

Class constructor. Instantiates a new DeviceResponsePacket
object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	request_id (Integer) – device Request ID. This number should match
the device request ID in the device request. Otherwise, an
error will occur. (0 has no special meaning)

	response_data (Bytearray, optional) – data of the response.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if request_id is less than 0 or greater than 255.

See also

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	DeviceResponsePacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 8.
(start delim. + length (2 bytes) + frame type + frame id
+ request id + reserved + checksum = 8 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is different from
ApiFrameType.DEVICE_RESPONSE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
request_id

	Returns the request ID of the packet.

	Returns

	the request ID of the packet.

	Return type

	Integer

	
request_data

	Returns the data of the device response.

	Returns

	the data of the device response.

	Return type

	Bytearray

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.devicecloud.DeviceResponseStatusPacket(frame_id, status, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a device response status packet. Packet is built
using the parameters of the constructor or providing a valid API payload.

This frame type is sent to the serial port after the serial port sends a
DeviceResponsePacket.

See also

DeviceResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new DeviceResponseStatusPacket
object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	status (DeviceCloudStatus) – device response status.

	Raises

	ValueError – if frame_id is less than 0 or greater than 255.

See also

DeviceCloudStatus

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	DeviceResponseStatusPacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 7.
(start delim. + length (2 bytes) + frame type + frame id
+ device response status + checksum = 7 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is different
from ApiFrameType.DEVICE_RESPONSE_STATUS.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
status

	Returns the status of the device response packet.

	Returns

	the status of the device response packet.

	Return type

	DeviceCloudStatus

See also

DeviceCloudStatus

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.devicecloud.FrameErrorPacket(frame_error, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a frame error packet. Packet is built
using the parameters of the constructor or providing a valid API payload.

This frame type is sent to the serial port for any type of frame error.

See also

FrameError

XBeeAPIPacket

Class constructor. Instantiates a new FrameErrorPacket object
with the provided parameters.

	Parameters

	
	frame_error (FrameError) – the frame error.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

See also

FrameError

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	FrameErrorPacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 6.
(start delim. + length (2 bytes) + frame type + frame error
+ checksum = 6 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is different from
ApiFrameType.FRAME_ERROR.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
error

	Returns the frame error of the packet.

	Returns

	the frame error of the packet.

	Return type

	FrameError

See also

FrameError

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.devicecloud.SendDataRequestPacket(frame_id, path, content_type, options, file_data=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a send data request packet. Packet is built
using the parameters of the constructor or providing a valid API payload.

This frame type is used to send a file of the given name and type to
Device Cloud.

If the frame ID is non-zero, a SendDataResponsePacket will be
received.

See also

SendDataResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new SendDataRequestPacket
object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	path (String) – path of the file to upload to Device Cloud.

	content_type (String) – content type of the file to upload.

	options (SendDataRequestOptions) – the action when uploading a file.

	file_data (Bytearray, optional) – data of the file to upload.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	ValueError – if frame_id is less than 0 or greater than 255.

See also

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	SendDataRequestPacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 10.
(start delim. + length (2 bytes) + frame type + frame id
+ path length + content type length + transport + options
+ checksum = 10 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is different from
ApiFrameType.SEND_DATA_REQUEST.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
path

	Returns the path of the file to upload to Device Cloud.

	Returns

	the path of the file to upload to Device Cloud.

	Return type

	String

	
content_type

	Returns the content type of the file to upload.

	Returns

	the content type of the file to upload.

	Return type

	String

	
options

	Returns the file upload operation options.

	Returns

	the file upload operation options.

	Return type

	SendDataRequestOptions

See also

SendDataRequestOptions

	
file_data

	Returns the data of the file to upload.

	Returns

	the data of the file to upload.

	Return type

	Bytearray

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.devicecloud.SendDataResponsePacket(frame_id, status, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a send data response packet. Packet is built
using the parameters of the constructor or providing a valid API payload.

This frame type is sent out the serial port in response to the
SendDataRequestPacket, providing its frame ID is non-zero.

See also

SendDataRequestPacket

XBeeAPIPacket

Class constructor. Instantiates a new SendDataResponsePacket
object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	status (DeviceCloudStatus) – the file upload status.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	ValueError – if frame_id is less than 0 or greater than 255.

See also

DeviceCloudStatus

XBeeAPIPacket

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	SendDataResponsePacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 10.
(start delim. + length (2 bytes) + frame type + frame id
+ status + checksum = 7 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is different from
ApiFrameType.SEND_DATA_RESPONSE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
status

	Returns the file upload status.

	Returns

	the file upload status.

	Return type

	DeviceCloudStatus

See also

DeviceCloudStatus

digi.xbee.packets.digimesh module

	
class digi.xbee.packets.digimesh.RouteInformationPacket(src_event, timestamp, ack_timeout_count, tx_block_count, dst_addr, src_addr, responder_addr, successor_addr, additional_data=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a DigiMesh Route Information packet. Packet is built
using the parameters of the constructor or providing a valid API
payload.

A Route Information Packet can be output for DigiMesh unicast transmissions
on which the NACK enable or the Trace Route enable TX option is enabled.

See also

XBeeAPIPacket

Class constructor. Instantiates a new
RouteInformationPacket object with the provided
parameters.

	Parameters

	
	src_event (Integer) – Source event identifier.
0x11=NACK, 0x12=Trace route

	timestamp (Integer) – System timer value on the node generating the
this packet. The timestamp is in microseconds.

	ack_timeout_count (Integer) – The number of MAC ACK timeouts.

	tx_block_count (Integer) – The number of times the transmission was
blocked due to reception in progress.

	dst_addr (XBee64BitAddress) – The 64-bit address of the
final destination node of this network-level transmission.

	src_addr (XBee64BitAddress) – The 64-bit address of the
source node of this network-level transmission.

	responder_addr (XBee64BitAddress) – The 64-bit address of
the node that generates this packet after it sends (or attempts
to send) the packet to the next hop (successor node).

	successor_addr (XBee64BitAddress) – The 64-bit address of
the next node after the responder in the route towards the
destination, whether or not the packet arrived successfully at
the successor node.

	additional_data (Bytearray, optional, default=`None`) – Additional
data of the packet.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – if src_event is not 0x11 or 0x12.

	ValueError – if timestamp is not between 0 and 0xFFFFFFFF.

	ValueError – if ack_timeout_count or tx_block_count are not
between 0 and 255.

See also

XBee64BitAddress

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	RouteInformationPacket.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 46.
(start delim. + length (2 bytes) + frame type + src_event
+ length + timestamp (4 bytes) + ack timeout count
+ tx blocked count + reserved + dest addr (8 bytes)
+ src addr (8 bytes) + responder addr (8 bytes)
+ successor addr (8 bytes) + checksum = 46 bytes).

	InvalidPacketException – If the length field of raw is different
from its real length. (length field: bytes 1 and 3)

	InvalidPacketException – If the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – If the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – If the frame type is not
ApiFrameType.DIGIMESH_ROUTE_INFORMATION.

	InvalidPacketException – If the internal length byte of the rest
of the frame (without the checksum) is different from its real
length.

	InvalidOperatingModeException – If operating_mode is not
supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
src_event

	Returns the source event.

	Returns

	The source event.

	Return type

	Integer

	
length

	Returns the number of bytes that follow, excluding the checksum.

	Returns

	Data length.

	Return type

	Integer

	
timestamp

	Returns the system timer value on the node generating this package.
The timestamp is in microseconds.

	Returns

	The system timer value in microseconds.

	Return type

	Integer

	
ack_timeout_count

	Returns the number of MAC ACK timeouts that occur.

	Returns

	The number of MAC ACK timeouts that occur.

	Return type

	Integer

	
tx_block_count

	Returns the number of times the transmission was blocked due to reception
in progress.

	Returns

	
	The number of times the transmission was blocked due to

	reception in progress.

	Return type

	Integer

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
dst_addr

	Returns the 64-bit source address.

	Returns

	
	The 64-bit address of the final

	destination node.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
src_addr

	Returns the 64-bit address of the source node of this network-level
transmission.

	Returns

	The 64-bit address of the source node.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
responder_addr

	Returns the 64-bit address of the node that generates this packet after
it sends (or attempts to send) the packet to the next hop (successor node).

	Returns

	The 64-bit address of the responder node.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
successor_addr

	Returns the 64-bit address of the next node after the responder in the
route towards the destination, whether or not the packet arrived
successfully at the successor node.

	Returns

	The 64-bit address of the successor node.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

digi.xbee.packets.filesystem module

	
class digi.xbee.packets.filesystem.FSRequestPacket(frame_id, command, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a File System Request. Packet is built using the
parameters of the constructor or providing a valid API payload.

A File System Request allows to access the filesystem and perform
different operations.

Command response is received as an FSResponsePacket.

See also

XBeeAPIPacket

Class constructor. Instantiates a new FSRequestPacket
object with the provided parameters.

	Parameters

	
	frame_id (Integer) – Frame ID of the packet.

	command (FSCmd or bytearray) – File system command to
execute.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – If frame_id is less than 0 or greater than 255.

	TypeError – If command is not a FSCmd or a bytearray.

See also

FSCmd

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	FSRequestPacket

	Raises

	
	InvalidPacketException – If the bytearray length is less than 7 +
the minimum length of the command.
(start delim. + length (2 bytes) + frame type + frame id
+ fs cmd id + checksum + cmd data = 7 bytes + cmd data).

	InvalidPacketException – If the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – If the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – If the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – If the frame type is different from
ApiFrameType.FILE_SYSTEM_REQUEST.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
command

	Returns the file system command of the packet.

	Returns

	File system command of the packet.

	Return type

	String

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.filesystem.FSResponsePacket(frame_id, command, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a File System Response. Packet is built using the
parameters of the constructor or providing a valid API payload.

This packet is received in response of an FSRequestPacket.

See also

XBeeAPIPacket

Class constructor. Instantiates a new FSResponsePacket
object with the provided parameters.

	Parameters

	
	frame_id (Integer) – The frame ID of the packet.

	command (FSCmd or bytearray) – File system command to
execute.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – If frame_id is less than 0 or greater than 255.

	TypeError – If command is not a FSCmd or a bytearray.

See also

FSCmd

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	FSResponsePacket

	Raises

	
	InvalidPacketException – If the bytearray length is less than 8 +
the minimum length of the command.
(start delim. + length (2 bytes) + frame type + frame id
+ fs cmd id + status + checksum + cmd data = 8 bytes + cmd data).

	InvalidPacketException – If the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – If the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – If the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – If the frame type is different from
ApiFrameType.FILE_SYSTEM_RESPONSE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
command

	Returns the file system command of the packet.

	Returns

	File system command of the packet.

	Return type

	String

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.filesystem.RemoteFSRequestPacket(frame_id, x64bit_addr, command, transmit_options=0, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a remote File System Request. Packet is built using
the parameters of the constructor or providing a valid API payload.

Used to access the filesystem on a remote device and perform different
operations.

Remote command options are set as a bitfield.

If configured, command response is received as a
RemoteFSResponsePacket.

See also

RemoteFSResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new RemoteFSRequestPacket
object with the provided parameters.

	Parameters

	
	frame_id (Integer) – Frame ID of the packet.

	x64bit_addr (XBee64BitAddress) – 64-bit destination address.

	command (FSCmd or bytearray) – File system command to
execute.

	transmit_options (Integer, optional, default=`TransmitOptions.NONE.value`) – Bitfield of
supported transmission options.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – If frame_id is less than 0 or greater than 255.

	TypeError – If command is not a FSCmd or a bytearray.

See also

FSCmd

TransmitOptions

XBee64BitAddress

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	RemoteFSRequestPacket

	Raises

	
	InvalidPacketException – If the bytearray length is less than 7 +
the minimum length of the command.
(start delim. + length (2 bytes) + frame type + frame id
+ 64bit addr. + transmit options + fs cmd id + checksum
+ cmd data = 16 bytes + cmd data).

	InvalidPacketException – If the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – If the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – If the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – If the frame type is different from
ApiFrameType.REMOTE_FILE_SYSTEM_REQUEST.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
x64bit_dest_addr

	Returns the 64-bit destination address.

	Returns

	64-bit destination address.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
command

	Returns the file system command of the packet.

	Returns

	File system command of the packet.

	Return type

	String

	
transmit_options

	Returns the transmit options bitfield.

	Returns

	Transmit options bitfield.

	Return type

	Integer

See also

TransmitOptions

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.filesystem.RemoteFSResponsePacket(frame_id, x64bit_addr, command, rx_options, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Remote File System Response. Packet is built using
the parameters of the constructor or providing a valid API payload.

This packet is received in response of an RemoteFSRequestPacket.

See also

RemoteFSRequestPacket

XBeeAPIPacket

Class constructor. Instantiates a new RemoteFSResponsePacket
object with the provided parameters.

	Parameters

	
	frame_id (Integer) – The frame ID of the packet.

	x64bit_addr (XBee64BitAddress) – 64-bit source address.

	command (FSCmd or bytearray) – File system command to
execute.

	rx_options (Integer) – Bitfield indicating the receive options.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – If frame_id is less than 0 or greater than 255.

	TypeError – If command is not a FSCmd or a bytearray.

See also

FSCmd

ReceiveOptions

XBeeAPIPacket

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	RemoteFSResponsePacket

	Raises

	
	InvalidPacketException – If the bytearray length is less than 8 +
the minimum length of the command.
(start delim. + length (2 bytes) + frame type + frame id
+ 64bit addr. + receive options + fs cmd id + status
+ checksum + cmd data = 17 bytes + cmd data).

	InvalidPacketException – If the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – If the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – If the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – If the frame type is different from
ApiFrameType.REMOTE_FILE_SYSTEM_RESPONSE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
x64bit_source_addr

	Returns the 64-bit source address.

	Returns

	64-bit source address.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
command

	Returns the file system command of the packet.

	Returns

	File system command of the packet.

	Return type

	String

	
receive_options

	Returns the receive options bitfield.

	Returns

	Receive options bitfield.

	Return type

	Integer

See also

ReceiveOptions

	
digi.xbee.packets.filesystem.build_fs_command(cmd_bytearray, direction=0)[source]

	Creates a file system command from raw data.

	Parameters

	
	cmd_bytearray (Bytearray) – Raw data of the packet to build.

	direction (Integer, optional, default=0) – If this command is a request
(0) or a response (1).

	Raises

	InvalidPacketException – If cmd_bytearray is not a bytearray or its
length is less than 1 for requests 2 for responses.

See also

FSCmd

digi.xbee.packets.network module

	
class digi.xbee.packets.network.RXIPv4Packet(src_address, dest_port, src_port, ip_protocol, data=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an RX (Receive) IPv4 packet. Packet is built
using the parameters of the constructor or providing a valid byte array.

See also

TXIPv4Packet

XBeeAPIPacket

Class constructor. Instantiates a new RXIPv4Packet object
with the provided parameters.

	Parameters

	
	src_address (IPv4Address) – IPv4 address of the source device.

	dest_port (Integer) – destination port number.

	src_port (Integer) – source port number.

	ip_protocol (IPProtocol) – IP protocol used for transmitted data.

	data (Bytearray, optional) – data that is sent to the destination device.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – if dest_port is less than 0 or greater than 65535 or

	ValueError – if source_port is less than 0 or greater than 65535.

See also

IPProtocol

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	class: .RXIPv4Packet.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 15.
(start delim + length (2 bytes) + frame type
+ source address(4 bytes) + dest port (2 bytes)
+ source port (2 bytes) + network protocol + status
+ checksum = 15 bytes)

	InvalidPacketException – if the length field of raw is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of raw is not the
header byte. See SPECIAL_BYTE.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.RX_IPV4.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
source_address

	Returns the IPv4 address of the source device.

	Returns

	the IPv4 address of the source device.

	Return type

	ipaddress.IPv4Address

	
dest_port

	Returns the destination port.

	Returns

	the destination port.

	Return type

	Integer

	
source_port

	Returns the source port.

	Returns

	the source port.

	Return type

	Integer

	
ip_protocol

	Returns the IP protocol used for transmitted data.

	Returns

	the IP protocol used for transmitted data.

	Return type

	IPProtocol

	
data

	Returns the data of the packet.

	Returns

	the data of the packet.

	Return type

	Bytearray

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.network.TXIPv4Packet(frame_id, dest_address, dest_port, src_port, ip_protocol, tx_opts, data=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an TX (Transmit) IPv4 packet. Packet is built
using the parameters of the constructor or providing a valid byte array.

See also

RXIPv4Packet

XBeeAPIPacket

Class constructor. Instantiates a new TXIPv4Packet object
with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID. Must be between 0 and 255.

	dest_address (IPv4Address) – IPv4 address of the destination device.

	dest_port (Integer) – destination port number.

	src_port (Integer) – source port number.

	ip_protocol (IPProtocol) – IP protocol used for transmitted data.

	tx_opts (Integer) – the transmit options of the packet.

	data (Bytearray, optional) – data that is sent to the destination device.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if dest_port is less than 0 or greater than 65535.

	ValueError – if source_port is less than 0 or greater than 65535.

See also

IPProtocol

	
OPTIONS_CLOSE_SOCKET = 2

	This option will close the socket after the transmission.

	
OPTIONS_LEAVE_SOCKET_OPEN = 0

	This option will leave socket open after the transmission.

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	TXIPv4Packet.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 16.
(start delim + length (2 bytes) + frame type + frame id
+ dest address (4 bytes) + dest port (2 bytes)
+ source port (2 bytes) + network protocol + transmit options
+ checksum = 16 bytes)

	InvalidPacketException – if the length field of raw is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of raw is not the
header byte. See SPECIAL_BYTE.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.TX_IPV4.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
dest_address

	Returns the IPv4 address of the destination device.

	Returns

	the IPv4 address of the destination device.

	Return type

	ipaddress.IPv4Address

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
dest_port

	Returns the destination port.

	Returns

	the destination port.

	Return type

	Integer

	
source_port

	Returns the source port.

	Returns

	the source port.

	Return type

	Integer

	
ip_protocol

	Returns the IP protocol used for transmitted data.

	Returns

	the IP protocol used for transmitted data.

	Return type

	IPProtocol

	
transmit_options

	Returns the transmit options of the packet.

	Returns

	the transmit options of the packet.

	Return type

	Integer

	
data

	Returns the data of the packet.

	Returns

	the data of the packet.

	Return type

	Bytearray

digi.xbee.packets.raw module

	
class digi.xbee.packets.raw.TX64Packet(frame_id, x64bit_addr, tx_opts, rf_data=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a TX (Transmit) 64 Request packet. Packet is built
using the parameters of the constructor or providing a valid byte array.

A TX Request message will cause the module to transmit data as an RF
Packet.

See also

XBeeAPIPacket

Class constructor. Instantiates a new TX64Packet object with
the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	x64bit_addr (XBee64BitAddress) – the 64-bit destination address.

	tx_opts (Integer) – bitfield of supported transmission options.

	rf_data (Bytearray, optional) – RF data that is sent to the destination device.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

See also

TransmitOptions

XBee64BitAddress

XBeeAPIPacket

	Raises

	ValueError – if frame_id is less than 0 or greater than 255.

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	TX64Packet.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 15.
(start delim. + length (2 bytes) + frame type + frame id
+ 64bit addr. + transmit options + checksum = 15 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is different from
ApiFrameType.TX_64.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
x64bit_dest_addr

	Returns the 64-bit destination address.

	Returns

	the 64-bit destination address.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
transmit_options

	Returns the transmit options bitfield.

	Returns

	the transmit options bitfield.

	Return type

	Integer

See also

TransmitOptions

	
rf_data

	Returns the RF data to send.

	Returns

	the RF data to send.

	Return type

	Bytearray

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.raw.TX16Packet(frame_id, x16bit_addr, tx_opts, rf_data=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a TX (Transmit) 16 Request packet. Packet is built
using the parameters of the constructor or providing a valid byte array.

A TX request message will cause the module to transmit data as an RF
packet.

See also

XBeeAPIPacket

Class constructor. Instantiates a new TX16Packet object with
the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	x16bit_addr (XBee16BitAddress) – the 16-bit destination address.

	tx_opts (Integer) – bitfield of supported transmission options.

	rf_data (Bytearray, optional) – RF data that is sent to the destination device.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

See also

TransmitOptions

XBee16BitAddress

XBeeAPIPacket

	Raises

	ValueError – if frame_id is less than 0 or greater than 255.

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	TX16Packet.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 9.
(start delim. + length (2 bytes) + frame type + frame id
+ 16bit addr. + transmit options + checksum = 9 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is different from
ApiFrameType.TX_16.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
x16bit_dest_addr

	Returns the 16-bit destination address.

	Returns

	the 16-bit destination address.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
transmit_options

	Returns the transmit options bitfield.

	Returns

	the transmit options bitfield.

	Return type

	Integer

See also

TransmitOptions

	
rf_data

	Returns the RF data to send.

	Returns

	the RF data to send.

	Return type

	Bytearray

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.raw.TXStatusPacket(frame_id, tx_status, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a TX (Transmit) status packet. Packet is built using
the parameters of the constructor or providing a valid API payload.

When a TX request is completed, the module sends a TX status message.
This message will indicate if the packet was transmitted successfully or if
there was a failure.

See also

TX16Packet

TX64Packet

XBeeAPIPacket

Class constructor. Instantiates a new TXStatusPacket object
with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	tx_status (TransmitStatus) – transmit status.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	ValueError – if frame_id is less than 0 or greater than 255.

See also

TransmitStatus

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	TXStatusPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 7.
(start delim. + length (2 bytes) + frame type + frame id
+ transmit status + checksum = 7 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is different from
ApiFrameType.TX_16.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
transmit_status

	Returns the transmit status.

	Returns

	the transmit status.

	Return type

	TransmitStatus

See also

TransmitStatus

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.raw.RX64Packet(x64bit_addr, rssi, rx_opts, rf_data=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an RX (Receive) 64 request packet. Packet is built
using the parameters of the constructor or providing a valid API byte array.

When the module receives an RF packet, it is sent out the UART using
this message type.

This packet is the response to TX (transmit) 64 request packets.

See also

ReceiveOptions

TX64Packet

XBeeAPIPacket

Class constructor. Instantiates a RX64Packet object with the
provided parameters.

	Parameters

	
	x64bit_addr (XBee64BitAddress) – the 64-bit source address.

	rssi (Integer) – received signal strength indicator.

	rx_opts (Integer) – bitfield indicating the receive options.

	rf_data (Bytearray, optional) – received RF data.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

See also

ReceiveOptions

XBee64BitAddress

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	RX64Packet

	Raises

	
	InvalidPacketException – if the bytearray length is less than 15.
(start delim. + length (2 bytes) + frame type + 64bit addr.
+ rssi + receive options + checksum = 15 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is different from
ApiFrameType.RX_64.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
is_broadcast()[source]

	Override method.

See also

XBeeAPIPacket.is_broadcast()

	
x64bit_source_addr

	Returns the 64-bit source address.

	Returns

	the 64-bit source address.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
rssi

	Returns the received Signal Strength Indicator (RSSI).

	Returns

	the received Signal Strength Indicator (RSSI).

	Return type

	Integer

	
receive_options

	Returns the receive options bitfield.

	Returns

	the receive options bitfield.

	Return type

	Integer

See also

ReceiveOptions

	
rf_data

	Returns the received RF data.

	Returns

	the received RF data.

	Return type

	Bytearray

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.raw.RX16Packet(x16bit_addr, rssi, rx_opts, rf_data=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an RX (Receive) 16 Request packet. Packet is built
using the parameters of the constructor or providing a valid API byte array.

When the module receives an RF packet, it is sent out the UART using this
message type

This packet is the response to TX (Transmit) 16 Request packets.

See also

ReceiveOptions

TX16Packet

XBeeAPIPacket

Class constructor. Instantiates a RX16Packet object with the
provided parameters.

	Parameters

	
	x16bit_addr (XBee16BitAddress) – the 16-bit source address.

	rssi (Integer) – received signal strength indicator.

	rx_opts (Integer) – bitfield indicating the receive options.

	rf_data (Bytearray, optional) – received RF data.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

See also

ReceiveOptions

XBee16BitAddress

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	RX16Packet.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 9.

	(start delim. + length (2 bytes) + frame type + 16bit addr. + rssi – + receive options + checksum = 9 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is different from
ApiFrameType.RX_16.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
is_broadcast()[source]

	Override method.

See also

XBeeAPIPacket.is_broadcast()

	
x16bit_source_addr

	Returns the 16-bit source address.

	Returns

	the 16-bit source address.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
rssi

	Returns the received Signal Strength Indicator (RSSI).

	Returns

	the received Signal Strength Indicator (RSSI).

	Return type

	Integer

	
receive_options

	Returns the receive options bitfield.

	Returns

	the receive options bitfield.

	Return type

	Integer

See also

ReceiveOptions

	
rf_data

	Returns the received RF data.

	Returns

	the received RF data.

	Return type

	Bytearray

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.raw.RX64IOPacket(x64bit_addr, rssi, rx_opts, data, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an RX64 address IO packet. Packet is built using the
parameters of the constructor or providing a valid API payload.

I/O data is sent out the UART using an API frame.

See also

XBeeAPIPacket

Class constructor. Instantiates an RX64IOPacket object with
the provided parameters.

	Parameters

	
	x64bit_addr (XBee64BitAddress) – the 64-bit source address.

	rssi (Integer) – received signal strength indicator.

	rx_opts (Integer) – bitfield indicating the receive options.

	data (Bytearray) – received RF data.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

See also

ReceiveOptions

XBee64BitAddress

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	RX64IOPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 20.
(start delim. + length (2 bytes) + frame type + 64bit addr.
+ rssi + receive options + rf data (5 bytes) + checksum = 20 bytes)

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is different from
ApiFrameType.RX_IO_64.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
is_broadcast()[source]

	Override method.

See also

XBeeAPIPacket.is_broadcast()

	
x64bit_source_addr

	Returns the 64-bit source address.

	Returns

	the 64-bit source address.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
rssi

	Returns the received Signal Strength Indicator (RSSI).

	Returns

	the received Signal Strength Indicator (RSSI).

	Return type

	Integer

	
receive_options

	Returns the receive options bitfield.

	Returns

	the receive options bitfield.

	Return type

	Integer

See also

ReceiveOptions

	
rf_data

	Returns the received RF data.

	Returns

	the received RF data.

	Return type

	Bytearray

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
io_sample

	Returns the IO sample corresponding to the data contained in the packet.

	Returns

	
	the IO sample of the packet, None if the

	packet has not any data or if the sample could not be generated
correctly.

	Return type

	IOSample

See also

IOSample

	
class digi.xbee.packets.raw.RX16IOPacket(x16bit_addr, rssi, rx_opts, data, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an RX16 address IO packet. Packet is built using the
parameters of the constructor or providing a valid byte array.

I/O data is sent out the UART using an API frame.

See also

XBeeAPIPacket

Class constructor. Instantiates an RX16IOPacket object with
the provided parameters.

	Parameters

	
	x16bit_addr (XBee16BitAddress) – the 16-bit source address.

	rssi (Integer) – received signal strength indicator.

	rx_opts (Integer) – bitfield indicating the receive options.

	data (Bytearray) – received RF data.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

See also

ReceiveOptions

XBee16BitAddress

XBeeAPIPacket

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	RX16IOPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 14.
(start delim. + length (2 bytes) + frame type + 16bit addr.
+ rssi + receive options + rf data (5 bytes) + checksum = 14 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is different from
ApiFrameType.RX_IO_16.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
is_broadcast()[source]

	Override method.

See also

XBeeAPIPacket.is_broadcast()

	
x16bit_source_addr

	Returns the 16-bit source address.

	Returns

	the 16-bit source address.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
rssi

	Returns the received Signal Strength Indicator (RSSI).

	Returns

	the received Signal Strength Indicator (RSSI).

	Return type

	Integer

	
receive_options

	Returns the receive options bitfield.

	Returns

	the receive options bitfield.

	Return type

	Integer

See also

ReceiveOptions

	
rf_data

	Returns the received RF data.

	Returns

	the received RF data.

	Return type

	Bytearray

	
io_sample

	Returns the IO sample corresponding to the data contained in the packet.

	Returns

	
	the IO sample of the packet, None if the

	packet has not any data or if the sample could not be generated
correctly.

	Return type

	IOSample

See also

IOSample

digi.xbee.packets.relay module

	
class digi.xbee.packets.relay.UserDataRelayPacket(frame_id, local_iface, data=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a User Data Relay packet. Packet is built using the
parameters of the constructor.

The User Data Relay packet allows for data to come in on an interface with
a designation of the target interface for the data to be output on.

The destination interface must be one of the interfaces found in the
corresponding enumerator (see XBeeLocalInterface).

See also

UserDataRelayOutputPacket

XBeeAPIPacket

XBeeLocalInterface

Class constructor. Instantiates a new UserDataRelayPacket
object with the provided parameters.

	Parameters

	
	frame_id (integer) – the frame ID of the packet.

	local_iface (XBeeLocalInterface) – the destination interface.

	data (Bytearray, optional) – Data to send to the destination interface.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

See also

XBeeAPIPacket

XBeeLocalInterface

	Raises

	
	ValueError – if local_interface is None.

	ValueError – if frame_id is less than 0 or greater than 255.

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	UserDataRelayPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 7.
(start delim. + length (2 bytes) + frame type + frame id
+ relay interface + checksum = 7 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.USER_DATA_RELAY_REQUEST.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
data

	Returns the data to send.

	Returns

	the data to send.

	Return type

	Bytearray

	
dest_interface

	Returns the the destination interface.

	Returns

	the destination interface.

	Return type

	XBeeLocalInterface

See also

XBeeLocalInterface

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.relay.UserDataRelayOutputPacket(local_iface, data=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a User Data Relay Output packet. Packet is built
using the parameters of the constructor.

The User Data Relay Output packet can be received from any relay interface.

The source interface must be one of the interfaces found in the
corresponding enumerator (see XBeeLocalInterface).

See also

UserDataRelayPacket

XBeeAPIPacket

XBeeLocalInterface

Class constructor. Instantiates a new
UserDataRelayOutputPacket object with the provided
parameters.

	Parameters

	
	local_iface (XBeeLocalInterface) – the source interface.

	data (Bytearray, optional) – Data received from the source interface.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	ValueError – if local_interface is None.

See also

XBeeAPIPacket

XBeeLocalInterface

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	UserDataRelayOutputPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 6.
(start delim. + length (2 bytes) + frame type + relay interface
+ checksum = 6 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.USER_DATA_RELAY_OUTPUT.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
data

	Returns the received data.

	Returns

	the received data.

	Return type

	Bytearray

	
src_interface

	Returns the the source interface.

	Returns

	the source interface.

	Return type

	XBeeLocalInterface

See also

XBeeLocalInterface

digi.xbee.packets.socket module

	
class digi.xbee.packets.socket.SocketCreatePacket(frame_id, protocol, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Create packet. Packet is built using the
parameters of the constructor.

Use this frame to create a new socket with the following protocols: TCP,
UDP, or TLS.

See also

SocketCreateResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketCreatePacket
object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	protocol (IPProtocol) – the protocol used to create the socket.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

See also

XBeeAPIPacket

IPProtocol

	Raises

	ValueError – if frame_id is less than 0 or greater than 255.

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	SocketCreatePacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 7.
(start delim. + length (2 bytes) + frame type + frame id
+ protocol + checksum = 7 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.SOCKET_CREATE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
protocol

	Returns the communication protocol.

	Returns

	the communication protocol.

	Return type

	IPProtocol

See also

IPProtocol

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketCreateResponsePacket(frame_id, socket_id, status, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Create Response packet. Packet is built using
the parameters of the constructor.

The device sends this frame in response to a Socket Create (0x40) frame. It
contains a socket ID that should be used for future transactions with the
socket and a status field.

If the status field is non-zero, which indicates an error, the socket ID
will be set to 0xFF and the socket will not be opened.

See also

SocketCreatePacket

XBeeAPIPacket

Class constructor. Instantiates a new
SocketCreateResponsePacket object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	socket_id (Integer) – the unique socket ID to address the socket.

	status (SocketStatus) – the socket create status.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

See also

XBeeAPIPacket

SocketStatus

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if socket_id is less than 0 or greater than 255.

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	SocketCreateResponsePacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 8.
(start delim. + length (2 bytes) + frame type + frame id
+ socket id + status + checksum = 8 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.SOCKET_CREATE_RESPONSE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Returns the the socket ID.

	Returns

	the socket ID.

	Return type

	Integer

	
status

	Returns the socket create status.

	Returns

	the status.

	Return type

	SocketStatus

See also

SocketStatus

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketOptionRequestPacket(frame_id, socket_id, option, option_data=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Option Request packet. Packet is built using
the parameters of the constructor.

Use this frame to modify the behavior of sockets to be different from the
normal default behavior.

If the Option Data field is zero-length, the Socket Option Response Packet
(0xC1) reports the current effective value.

See also

SocketOptionResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketOptionRequestPacket
object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	socket_id (Integer) – the socket ID to modify.

	option (SocketOption) – the socket option of the parameter to change.

	option_data (Bytearray, optional) – the option data.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

See also

XBeeAPIPacket

SocketOption

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if socket_id is less than 0 or greater than 255.

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	SocketOptionRequestPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 8.
(start delim. + length (2 bytes) + frame type + frame id
+ socket id + option + checksum = 8 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: byte 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.SOCKET_OPTION_REQUEST.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Returns the the socket ID.

	Returns

	the socket ID.

	Return type

	Integer

	
option

	Returns the socket option.

	Returns

	the socket option.

	Return type

	SocketOption

See also

SocketOption

	
option_data

	Returns the socket option data.

	Returns

	the socket option data.

	Return type

	Bytearray

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketOptionResponsePacket(frame_id, socket_id, option, status, option_data=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Option Response packet. Packet is built using
the parameters of the constructor.

Reports the status of requests made with the Socket Option Request (0x41)
packet.

See also

SocketOptionRequestPacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketOptionResponsePacket
object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	socket_id (Integer) – the socket ID for which modification was requested.

	option (SocketOption) – the socket option of the parameter requested.

	status (SocketStatus) – the socket option status of the parameter requested.

	option_data (Bytearray, optional) – the option data.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

See also

XBeeAPIPacket

SocketOption

SocketStatus

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if socket_id is less than 0 or greater than 255.

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	SocketOptionResponsePacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 9.
(start delim. + length (2 bytes) + frame type + frame id
+ socket id + option + status + checksum = 9 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.SOCKET_OPTION_RESPONSE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Returns the the socket ID.

	Returns

	the socket ID.

	Return type

	Integer

	
option

	Returns the socket option.

	Returns

	the socket option.

	Return type

	SocketOption

See also

SocketOption

	
status

	Returns the socket option status.

	Returns

	the socket option status.

	Return type

	SocketStatus

See also

SocketStatus

	
option_data

	Returns the socket option data.

	Returns

	the socket option data.

	Return type

	Bytearray

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketConnectPacket(frame_id, socket_id, dest_port, dest_address_type, dest_address, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Connect packet. Packet is built using the
parameters of the constructor.

Use this frame to create a socket connect message that causes the device to
connect a socket to the given address and port.

For a UDP socket, this filters out any received responses that are not from
the specified remote address and port.

Two frames occur in response:

	Socket Connect Response frame (SocketConnectResponsePacket):
Arrives immediately and confirms the request.

	Socket Status frame (SocketStatePacket): Indicates if the
connection was successful.

See also

SocketConnectResponsePacket

SocketStatePacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketConnectPacket
object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	socket_id (Integer) – the ID of the socket to connect.

	dest_port (Integer) – the destination port number.

	dest_address_type (Integer) – the destination address type. One of
SocketConnectPacket.DEST_ADDRESS_BINARY or
SocketConnectPacket.DEST_ADDRESS_STRING.

	dest_address (Bytearray or String) – the destination address.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

See also

SocketConnectPacket.DEST_ADDRESS_BINARY

SocketConnectPacket.DEST_ADDRESS_STRING

XBeeAPIPacket

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if socket_id is less than 0 or greater than 255.

	ValueError – if dest_port is less than 0 or greater than 65535.

	ValueError – if dest_address_type is different than
SocketConnectPacket.DEST_ADDRESS_BINARY and
SocketConnectPacket.DEST_ADDRESS_STRING.

	ValueError – if dest_address is None or does not follow the
format specified in the configured type.

	
DEST_ADDRESS_BINARY = 0

	Indicates the destination address field is a binary IPv4 address in network byte order.

	
DEST_ADDRESS_STRING = 1

	Indicates the destination address field is a string containing either a
dotted quad value or a domain name to be resolved.

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	SocketConnectPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 11.
(start delim. + length (2 bytes) + frame type + frame id
+ socket id + dest port (2 bytes) + dest address type
+ dest_address + checksum = 11 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.SOCKET_CONNECT.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Returns the the socket ID.

	Returns

	the socket ID.

	Return type

	Integer

	
dest_port

	Returns the destination port.

	Returns

	the destination port.

	Return type

	Integer

	
dest_address_type

	Returns the destination address type.

	Returns

	the destination address type.

	Return type

	Integer

	
dest_address

	Returns the destination address.

	Returns

	the destination address.

	Return type

	Bytearray or String

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketConnectResponsePacket(frame_id, socket_id, status, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Connect Response packet. Packet is built
using the parameters of the constructor.

The device sends this frame in response to a Socket Connect (0x42) frame.
The frame contains a status regarding the initiation of the connect.

See also

SocketConnectPacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketConnectPacket
object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	socket_id (Integer) – the ID of the socket to connect.

	status (SocketStatus) – the socket connect status.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

See also

XBeeAPIPacket

SocketStatus

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if socket_id is less than 0 or greater than 255.

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	SocketConnectResponsePacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 8.
(start delim. + length (2 bytes) + frame type + frame id
+ socket id + status + checksum = 8 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.SOCKET_CONNECT_RESPONSE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Returns the the socket ID.

	Returns

	the socket ID.

	Return type

	Integer

	
status

	Returns the socket connect status.

	Returns

	the socket connect status.

	Return type

	SocketStatus

See also

SocketStatus

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketClosePacket(frame_id, socket_id, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Close packet. Packet is built using the
parameters of the constructor.

Use this frame to close a socket when given an identifier.

See also

SocketCloseResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketClosePacket
object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	socket_id (Integer) – the ID of the socket to close.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

See also

XBeeAPIPacket

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if socket_id is less than 0 or greater than 255.

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	SocketClosePacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 7.
(start delim. + length (2 bytes) + frame
type + frame id + socket id + checksum = 7 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.SOCKET_CLOSE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Returns the socket ID.

	Returns

	the socket ID.

	Return type

	Integer

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketCloseResponsePacket(frame_id, socket_id, status, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Close Response packet. Packet is built using
the parameters of the constructor.

The device sends this frame in response to a Socket Close (0x43) frame.
Since a close will always succeed for a socket that exists, the status can
be only one of two values:

	Success.

	Bad socket ID.

See also

SocketClosePacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketCloseResponsePacket
object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	socket_id (Integer) – the ID of the socket to close.

	status (SocketStatus) – the socket close status.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

See also

XBeeAPIPacket

SocketStatus

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if socket_id is less than 0 or greater than 255.

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	SocketCloseResponsePacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 8.
(start delim. + length (2 bytes) + frame type + frame id
+ socket id + status + checksum = 8 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.SOCKET_CLOSE_RESPONSE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Returns the the socket ID.

	Returns

	the socket ID.

	Return type

	Integer

	
status

	Returns the socket close status.

	Returns

	the socket close status.

	Return type

	SocketStatus

See also

SocketStatus

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketSendPacket(frame_id, socket_id, payload=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Send packet. Packet is built using the
parameters of the constructor.

A Socket Send message causes the device to transmit data using the
current connection. For a nonzero frame ID, this will elicit a Transmit
(TX) Status - 0x89 frame (TransmitStatusPacket).

This frame requires a successful Socket Connect - 0x42 frame first
(SocketConnectPacket). For a socket that is not connected, the
device responds with a Transmit (TX) Status - 0x89 frame with an
error.

See also

TransmitStatusPacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketSendPacket object
with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	socket_id (Integer) – the socket identifier.

	payload (Bytearray, optional) – data that is sent.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if socket_id is less than 0 or greater than 255.

See also

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	SocketSendPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 7.
(start delim. + length (2 bytes) + frame type + frame id
+ socket ID + checksum = 7 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.SOCKET_SEND.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Returns the socket ID.

	Returns

	the socket ID.

	Return type

	Integer

	
payload

	Returns the payload to send.

	Returns

	the payload to send.

	Return type

	Bytearray

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketSendToPacket(frame_id, socket_id, dest_address, dest_port, payload=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Send packet. Packet is built using the
parameters of the constructor.

A Socket SendTo (Transmit Explicit Data) message causes the device to
transmit data using an IPv4 address and port. For a non-zero frame ID,
this will elicit a Transmit (TX) Status - 0x89 frame
(TransmitStatusPacket).

If this frame is used with a TCP, SSL, or a connected UDP socket, the
address and port fields are ignored.

See also

TransmitStatusPacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketSendToPacket
object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	socket_id (Integer) – the socket identifier.

	dest_address (IPv4Address) – IPv4 address of the destination device.

	dest_port (Integer) – destination port number.

	payload (Bytearray, optional) – data that is sent.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if socket_id is less than 0 or greater than 255.

	ValueError – if dest_port is less than 0 or greater than 65535.

See also

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	SocketSendToPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 14.
(start delim. + length (2 bytes) + frame type + frame id
+ socket ID + dest address (4 bytes) + dest port (2 bytes)
+ transmit options + checksum = 14 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.SOCKET_SENDTO.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Returns the socket ID.

	Returns

	the socket ID.

	Return type

	Integer

	
dest_address

	Returns the IPv4 address of the destination device.

	Returns

	the IPv4 address of the destination device.

	Return type

	ipaddress.IPv4Address

	
dest_port

	Returns the destination port.

	Returns

	the destination port.

	Return type

	Integer

	
payload

	Returns the payload to send.

	Returns

	the payload to send.

	Return type

	Bytearray

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketBindListenPacket(frame_id, socket_id, src_port, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Bind/Listen packet. Packet is built using the
parameters of the constructor.

Opens a listener socket that listens for incoming connections.

When there is an incoming connection on the listener socket, a Socket New
IPv4 Client - 0xCC frame (SocketNewIPv4ClientPacket) is sent,
indicating the socket ID for the new connection along with the remote
address information.

For a UDP socket, this frame binds the socket to a given port. A bound
UDP socket can receive data with a Socket Receive From: IPv4 - 0xCE frame
(SocketReceiveFromIPv4Packet).

See also

SocketNewIPv4ClientPacket

SocketReceiveFromIPv4Packet

XBeeAPIPacket

Class constructor. Instantiates a new SocketBindListenPacket
object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	socket_id (Integer) – socket ID to listen on.

	src_port (Integer) – the port to listen on.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if socket_id is less than 0 or greater than 255.

	ValueError – if source_port is less than 0 or greater than 65535.

See also

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	SocketBindListenPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 9.
(start delim. + length (2 bytes) + frame type + frame id
+ socket ID + source port (2 bytes) + checksum = 9 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.SOCKET_BIND.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Returns the socket ID.

	Returns

	the socket ID.

	Return type

	Integer

	
source_port

	Returns the source port.

	Returns

	the source port.

	Return type

	Integer

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketListenResponsePacket(frame_id, socket_id, status, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Listen Response packet. Packet is built using
the parameters of the constructor.

The device sends this frame in response to a Socket Bind/Listen (0x46)
frame (SocketBindListenPacket).

See also

SocketBindListenPacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketListenResponsePacket
object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	socket_id (Integer) – socket ID.

	status (SocketStatus) – socket listen status.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if socket_id is less than 0 or greater than 255.

See also

XBeeAPIPacket

SocketStatus

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	SocketListenResponsePacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 8.
(start delim. + length (2 bytes) + frame type + frame id
+ socket ID + status + checksum = 8 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.SOCKET_LISTEN_RESPONSE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Returns the socket ID.

	Returns

	the socket ID.

	Return type

	Integer

	
status

	Returns the socket listen status.

	Returns

	The socket listen status.

	Return type

	SocketStatus

See also

SocketStatus

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketNewIPv4ClientPacket(socket_id, client_socket_id, remote_address, remote_port, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket New IPv4 Client packet. Packet is built using
the parameters of the constructor.

XBee Cellular modem uses this frame when an incoming connection is
accepted on a listener socket.

This frame contains the original listener’s socket ID and a new socket ID
of the incoming connection, along with the connection’s remote address
information.

See also

XBeeAPIPacket

Class constructor. Instantiates a new SocketNewIPv4ClientPacket
object with the provided parameters.

	Parameters

	
	socket_id (Integer) – the socket ID of the listener socket.

	client_socket_id (Integer) – the socket ID of the new connection.

	remote_address (IPv4Address) – the remote IPv4 address.

	remote_port (Integer) – the remote port number.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – if socket_id is less than 0 or greater than 255.

	ValueError – if client_socket_id is less than 0 or greater than 255.

	ValueError – if remote_port is less than 0 or greater than 65535.

See also

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	SocketNewIPv4ClientPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 13.
(start delim. + length (2 bytes) + frame type + socket ID
+ client socket ID + remote address (4 bytes)
+ remote port (2 bytes) + checksum = 13 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.SOCKET_NEW_IPV4_CLIENT.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Returns the socket ID.

	Returns

	the socket ID.

	Return type

	Integer

	
client_socket_id

	Returns the client socket ID.

	Returns

	the client socket ID.

	Return type

	Integer

	
remote_address

	Returns the remote IPv4 address.

	Returns

	the remote IPv4 address.

	Return type

	ipaddress.IPv4Address

	
remote_port

	Returns the remote port.

	Returns

	the remote port.

	Return type

	Integer

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketReceivePacket(frame_id, socket_id, payload=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Receive packet. Packet is built using
the parameters of the constructor.

XBee Cellular modem uses this frame when it receives RF data on the
specified socket.

See also

XBeeAPIPacket

Class constructor. Instantiates a new SocketReceivePacket
object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	socket_id (Integer) – the ID of the socket the data has been received on.

	payload (Bytearray, optional) – data that is received.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if socket_id is less than 0 or greater than 255.

See also

XBeeAPIPacket

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	SocketReceivePacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 7.
(start delim. + length (2 bytes) + frame type + frame id
+ socket ID + checksum = 7 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.SOCKET_RECEIVE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Returns the socket ID.

	Returns

	the socket ID.

	Return type

	Integer

	
payload

	Returns the payload that was received.

	Returns

	the payload that was received.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketReceiveFromPacket(frame_id, socket_id, src_address, src_port, payload=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Receive From packet. Packet is built using
the parameters of the constructor.

XBee Cellular modem uses this frame when it receives RF data on the
specified socket. The frame also contains addressing information about
the source.

See also

XBeeAPIPacket

Class constructor. Instantiates a new SocketReceiveFromPacket
object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	socket_id (Integer) – the ID of the socket the data has been received on.

	src_address (IPv4Address) – IPv4 address of the source device.

	src_port (Integer) – source port number.

	payload (Bytearray, optional) – data that is received.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if socket_id is less than 0 or greater than 255.

	ValueError – if source_port is less than 0 or greater than 65535.

See also

XBeeAPIPacket

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	SocketReceiveFromPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 13.
(start delim. + length (2 bytes) + frame type + frame id
+ socket ID + source address (4 bytes) + source port (2 bytes)
+ status + Checksum = 14 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.SOCKET_RECEIVE_FROM.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Returns the socket ID.

	Returns

	the socket ID.

	Return type

	Integer

	
source_address

	Returns the IPv4 address of the source device.

	Returns

	the IPv4 address of the source device.

	Return type

	ipaddress.IPv4Address

	
source_port

	Returns the source port.

	Returns

	the source port.

	Return type

	Integer

	
payload

	Returns the payload to send.

	Returns

	the payload that has been received.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketStatePacket(socket_id, state, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket State packet. Packet is built using the
parameters of the constructor.

This frame is sent out the device’s serial port to indicate the state
related to the socket.

See also

XBeeAPIPacket

Class constructor. Instantiates a new SocketStatePacket
object with the provided parameters.

	Parameters

	
	socket_id (Integer) – the socket identifier.

	state (SocketState) – socket status.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	ValueError – if socket_id is less than 0 or greater than 255.

See also

SockeState

XBeeAPIPacket

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	SocketStatePacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 7.
(start delim. + length (2 bytes) + frame type + socket ID
+ state + checksum = 7 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.SOCKET_STATUS.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Returns the socket ID.

	Returns

	the socket ID.

	Return type

	Integer

	
state

	Returns the socket state.

	Returns

	The socket state.

	Return type

	SocketState

See also

SocketState

digi.xbee.packets.wifi module

	
class digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket(src_address, rssi, rx_options, rf_data=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a IO data sample RX indicator (Wi-Fi) packet. Packet
is built using the parameters of the constructor or providing a valid API
payload.

When the module receives an IO sample frame from a remote device, it sends
the sample out the UART or SPI using this frame type. Only modules running
API mode will be able to receive IO samples.

Among received data, some options can also be received indicating
transmission parameters.

See also

XBeeAPIPacket

Class constructor. Instantiates a new
IODataSampleRxIndicatorWifiPacket object with the
provided parameters.

	Parameters

	
	src_address (ipaddress.IPv4Address) – the 64-bit source address.

	rssi (Integer) – received signal strength indicator.

	rx_options (Integer) – bitfield indicating the receive options.

	rf_data (Bytearray, optional) – received RF data.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	ValueError – if rf_data is not None and it’s not valid for
create an IOSample.

See also

IOSample

ipaddress.IPv4Address

ReceiveOptions

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	IODataSampleRxIndicatorWifiPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 16.
(start delim. + length (2 bytes) + frame type
+ source addr. (4 bytes) + rssi + receive options
+ rf data (5 bytes) + checksum = 16 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.IO_DATA_SAMPLE_RX_INDICATOR_WIFI.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
source_address

	Returns the IPv4 address of the source device.

	Returns

	the IPv4 address of the source device.

	Return type

	ipaddress.IPv4Address

See also

ipaddress.IPv4Address

	
rssi

	Returns the received Signal Strength Indicator (RSSI).

	Returns

	the received Signal Strength Indicator (RSSI).

	Return type

	Integer

	
receive_options

	Returns the receive options bitfield.

	Returns

	the receive options bitfield.

	Return type

	Integer

See also

ReceiveOptions

	
rf_data

	Returns the received RF data.

	Returns

	the received RF data.

	Return type

	Bytearray

	
io_sample

	Returns the IO sample corresponding to the data contained in the packet.

	Returns

	
	the IO sample of the packet, None if the

	packet has not any data or if the sample could not be
generated correctly.

	Return type

	IOSample

See also

IOSample

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.wifi.RemoteATCommandWifiPacket(frame_id, dest_address, tx_options, command, parameter=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a remote AT command request (Wi-Fi) packet. Packet is
built using the parameters of the constructor or providing a valid API
payload.

Used to query or set module parameters on a remote device. For parameter
changes on the remote device to take effect, changes must be applied, either
by setting the apply changes options bit, or by sending an AC command
to the remote node.

Remote command options are set as a bitfield.

If configured, command response is received as a RemoteATCommandResponseWifiPacket.

See also

RemoteATCommandResponseWifiPacket

XBeeAPIPacket

Class constructor. Instantiates a new RemoteATCommandWifiPacket
object with the provided parameters.

	Parameters

	
	frame_id (integer) – the frame ID of the packet.

	dest_address (ipaddress.IPv4Address) – the IPv4 address of
the destination device.

	tx_options (Integer) – bitfield of supported transmission options.

	command (String) – AT command to send.

	parameter (Bytearray, optional) – AT command parameter.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if length of command is different than 2.

See also

ipaddress.IPv4Address

RemoteATCmdOptions

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	RemoteATCommandWifiPacket

	Raises

	
	InvalidPacketException – if the Bytearray length is less than 17.
(start delim. + length (2 bytes) + frame type + frame id
+ dest. addr. (8 bytes) + transmit options
+ command (2 bytes) + checksum = 17 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.REMOTE_AT_COMMAND_REQUEST_WIFI.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
dest_address

	Returns the IPv4 address of the destination device.

	Returns

	the IPv4 address of the destination device.

	Return type

	ipaddress.IPv4Address

See also

ipaddress.IPv4Address

	
transmit_options

	Returns the transmit options bitfield.

	Returns

	the transmit options bitfield.

	Return type

	Integer

See also

RemoteATCmdOptions

	
command

	Returns the AT command.

	Returns

	the AT command.

	Return type

	String

	
parameter

	Returns the AT command parameter.

	Returns

	the AT command parameter.

	Return type

	Bytearray

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket(frame_id, src_address, command, resp_status, comm_value=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a remote AT command response (Wi-Fi) packet. Packet
is built using the parameters of the constructor or providing a valid API
payload.

If a module receives a remote command response RF data frame in response
to a Remote AT Command Request, the module will send a Remote AT Command
Response message out the UART. Some commands may send back multiple frames
for example, Node Discover (ND) command.

This packet is received in response of a RemoteATCommandPacket.

Response also includes an ATCommandStatus object with the status
of the AT command.

See also

RemoteATCommandWifiPacket

ATCommandStatus

XBeeAPIPacket

Class constructor. Instantiates a new
RemoteATCommandResponseWifiPacket object with the
provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	src_address (ipaddress.IPv4Address) – the IPv4 address of the source device.

	command (String) – the AT command of the packet. Must be a string.

	resp_status (ATCommandStatus) – the status of the AT command.

	comm_value (Bytearray, optional) – the AT command response value.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if length of command is different than 2.

See also

ATCommandStatus

ipaddress.IPv4Address

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	RemoteATCommandResponseWifiPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 17.
(start delim. + length (2 bytes) + frame type + frame id
+ source addr. (8 bytes) + command (2 bytes) + receive options
+ checksum = 17 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.REMOTE_AT_COMMAND_RESPONSE_WIFI.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
source_address

	Returns the IPv4 address of the source device.

	Returns

	the IPv4 address of the source device.

	Return type

	ipaddress.IPv4Address

See also

ipaddress.IPv4Address

	
command

	Returns the AT command of the packet.

	Returns

	the AT command of the packet.

	Return type

	String

	
status

	Returns the AT command response status of the packet.

	Returns

	the AT command response status of the packet.

	Return type

	ATCommandStatus

See also

ATCommandStatus

	
command_value

	Returns the AT command response value.

	Returns

	the AT command response value.

	Return type

	Bytearray

digi.xbee.packets.zigbee module

	
class digi.xbee.packets.zigbee.RegisterJoiningDevicePacket(frame_id, registrant_address, options, key, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Register Joining Device packet. Packet is built
using the parameters of the constructor or providing a valid API
payload.

Use this frame to securely register a joining device to a trust center.
Registration is the process by which a node is authorized to join the
network using a preconfigured link key or installation code that is
conveyed to the trust center out-of-band (using a physical interface and
not over-the-air).

If registering a device with a centralized trust center (EO = 2), then the
key entry will only persist for KT seconds before expiring.

Registering devices in a distributed trust center (EO = 0) is persistent
and the key entry will never expire unless explicitly removed.

To remove a key entry on a distributed trust center, this frame should be
issued with a null (None) key. In a centralized trust center you cannot
use this method to explicitly remove the key entries.

See also

XBeeAPIPacket

Class constructor. Instantiates a new
RegisterJoiningDevicePacket object with the
provided parameters.

	Parameters

	
	frame_id (integer) – the frame ID of the packet.

	registrant_address (XBee64BitAddress) – the 64-bit address
of the destination device.

	options (RegisterKeyOptions) – the register options
indicating the key source.

	key (Bytearray) – key of the device to register. Up to 16 bytes if
entering a Link Key or up to 18 bytes
(16-byte code + 2 byte CRC) if entering an Install Code.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	ValueError – if frame_id is less than 0 or greater than 255.

See also

XBee64BitAddress

XBeeAPIPacket

RegisterKeyOptions

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	RegisterJoiningDevicePacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 17.
(start delim. + length (2 bytes) + frame type + frame id
+ 64-bit registrant addr. (8 bytes)
+ 16-bit registrant addr. (2 bytes) + options
+ checksum = 17 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.REGISTER_JOINING_DEVICE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
registrant_address

	Returns the 64-bit registrant address.

	Returns

	the 64-bit registrant address.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
options

	Returns the register options value.

	Returns

	the register options indicating the key source.

	Return type

	RegisterKeyOptions

See also

RegisterKeyOptions

	
key

	Returns the register key.

	Returns

	the register key.

	Return type

	Bytearray

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.zigbee.RegisterDeviceStatusPacket(frame_id, status, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Register Device Status packet. Packet is built
using the parameters of the constructor or providing a valid API
payload.

This frame is sent out of the UART of the trust center as a response to
a 0x24 Register Device frame, indicating whether the registration was
successful or not.

See also

RegisterJoiningDevicePacket

XBeeAPIPacket

Class constructor. Instantiates a new
RegisterDeviceStatusPacket object with the
provided parameters.

	Parameters

	
	frame_id (integer) – the frame ID of the packet.

	status (ZigbeeRegisterStatus) – status of the register
device operation.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

	Raises

	ValueError – if frame_id is less than 0 or greater than 255.

See also

XBeeAPIPacket

ZigbeeRegisterStatus

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	RegisterDeviceStatusPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 17.
(start delim. + length (2 bytes) + frame type + frame id
+ status + checksum = 7 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 1 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.REGISTER_JOINING_DEVICE_STATUS.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
status

	Returns the register device status.

	Returns

	the register device status.

	Return type

	ZigbeeRegisterStatus

See also

ZigbeeRegisterStatus

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.zigbee.RouteRecordIndicatorPacket(x64bit_addr, x16bit_addr, rx_opts, hops=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Zigbee Route Record Indicator packet. Packet is
built using the parameters of the constructor or providing a valid API
payload.

The route record indicator is received whenever a device sends a Zigbee
route record command. This is used with many-to-one routing to create
source routes for devices in a network.

Among received data, some options can also be received indicating
transmission parameters.

See also

ReceiveOptions

XBeeAPIPacket

Class constructor. Instantiates a new
RouteRecordIndicatorPacket object with the provided
parameters.

	Parameters

	
	x64bit_addr (XBee64BitAddress) – The 64-bit source address.

	x16bit_addr (XBee16BitAddress) – The 16-bit source address.

	rx_opts (Integer) – Bitfield indicating the receive options.

	hops (List, optional, default=`None`) – List of 16-bit address of
intermediate hops in the source route (excluding source and
destination).

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

See also

ReceiveOptions

XBee16BitAddress

XBee64BitAddress

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	RouteRecordIndicatorPacket.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 17.
(start delim. + length (2 bytes) + frame type + 64bit addr. +
16bit addr. + Receive options + num of addrs + checksum
= 17 bytes).

	InvalidPacketException – If the length field of raw is different
from its real length. (length field: bytes 1 and 3)

	InvalidPacketException – If the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – If the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – If the frame type is not
ApiFrameType.ROUTE_RECORD_INDICATOR.

	InvalidPacketException – If the number of hops does not match with
the number of 16-bit addresses.

	InvalidOperatingModeException – If operating_mode is not
supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
is_broadcast()[source]

	Override method.

See also

XBeeAPIPacket.is_broadcast()

	
x64bit_source_addr

	Returns the 64-bit source address.

	Returns

	The 64-bit source address.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
x16bit_source_addr

	Returns the 16-bit source address.

	Returns

	The 16-bit source address.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
receive_options

	Returns the receive options bitfield.

	Returns

	The receive options bitfield.

	Return type

	Integer

See also

ReceiveOptions

	
number_of_hops

	Returns the number of intermediate hops in the source route (excluding
source and destination).

	Returns

	The number of addresses.

	Return type

	Integer

	
hops

	Returns the list of intermediate hops starting from the closest to
destination hop and finishing with the closest to the source (excluding
source and destination).

	Returns

	The list of 16-bit addresses of intermediate hops.

	Return type

	List

See also

XBee16BitAddress

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.zigbee.CreateSourceRoutePacket(frame_id, x64bit_addr, x16bit_addr, route_options=0, hops=None, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Zigbee Create Source Route packet. This packet is
built using the parameters of the constructor or providing a valid API
payload.

This frame creates a source route in the node. A source route specifies the
complete route a packet should travese to get from source to destination.
Source routing should be used with many-to-one routing for best results.

Note: Both, 64-bit and 16-bit destination addresses are required when
creating a source route. These are obtained when a Route Record Indicator
(0xA1) frame is received.

See also

RouteRecordIndicatorPacket

XBeeAPIPacket

Class constructor. Instantiates a new CreateSourceRoutePacket
object with the provided parameters.

	Parameters

	
	frame_id (integer) – the frame ID of the packet.

	x64bit_addr (XBee64BitAddress) – The 64-bit destination address.

	x16bit_addr (XBee16BitAddress) – The 16-bit destination address.

	route_options (Integer) – Route command options.

	hops (List, optional, default=`None`) – List of 16-bit addresses of
intermediate hops in the source route (excluding source and
destination).

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

See also

XBee16BitAddress

XBee64BitAddress

XBeeAPIPacket

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	CreateSourceRoutePacket.

	Raises

	
	InvalidPacketException – If the bytearray length is less than 18.
(start delim. + length (2 bytes) + frame type + frame id +
64-bit addr. + 16-bit addr. + Route command options
+ num of addrs + hops 16-bit addrs + checksum = 18 bytes).

	InvalidPacketException – If the length field of raw is different
from its real length. (length field: bytes 1 and 3)

	InvalidPacketException – If the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – If the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – If the frame type is not
ApiFrameType.CREATE_SOURCE_ROUTE.

	InvalidPacketException – If the number of hops does not match with
the number of 16-bit addresses.

	InvalidOperatingModeException – If operating_mode is not
supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
x64bit_dest_addr

	Returns the 64-bit destination address.

	Returns

	The 64-bit destination address.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
x16bit_dest_addr

	Returns the 16-bit destination address.

	Returns

	The 16-bit destination address.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
route_cmd_options

	Returns the route command options bitfield.

	Returns

	The route command options bitfield.

	Return type

	Integer

	
number_of_hops

	Returns the number of intermediate hops in the source route (excluding
source and destination).

	Returns

	The number of intermediate hops.

	Return type

	Integer

	
hops

	Returns the list of intermediate hops starting from the closest to
destination hop and finishing with the closest to the source (excluding
source and destination).

	Returns

	The list of 16-bit addresses of intermediate hops.

	Return type

	List

See also

XBee16BitAddress

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket(src_address_64, updater_address_16, rx_options, msg_type, block_number, target_address_64, op_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a an Over The Air Firmware Update Status packet.
Packet is built using the parameters of the constructor or providing
a valid API payload.

This frame provides a status indication of a firmware update
transmission.

If a query request returns a 0x15 (NACK) status, the target is likely
waiting for a firmware update image. If no messages are sent to it for
about 75 seconds, the target will timeout and accept new query messages.

If a query status returns a 0x51 (QUERY) status, then the target’s
bootloader is not active and will not respond to query messages.

See also

EmberBootloaderMessageType

XBeeAPIPacket

Class constructor. Instantiates a new
OTAFirmwareUpdateStatusPacket object with the
provided parameters.

	Parameters

	
	src_address_64 (XBee64BitAddress) – the 64-bit address
of the device returning this answer.

	updater_address_16 (XBee16BitAddress) – the 16-bit address
of the updater device.

	rx_options (Integer) – bitfield indicating the receive options.

	msg_type (EmberBootloaderMessageType) – Ember bootloader message type

	block_number (Integer) – block number used in the update request.

	target_address_64 (XBee64BitAddress) – the 64-bit address
of the device that is being updated.

	op_mode (OperatingMode, optional, default=`OperatingMode.API_MODE`) – The mode in which the frame was captured.

See also

XBeeAPIPacket

XBee16BitAddress

XBee64BitAddress

ReceiveOptions

EmberBootloaderMessageType

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.
The checksum is the last 8 bits of the sum of the bytes between the
length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
op_mode

	Retrieves the operating mode in which this packet was read.

	Returns

	The operating mode.

	Return type

	OperatingMode

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the
serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray must be escaped.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all info of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
static create_packet(raw, operating_mode)[source]

	Override method.

	Returns

	OTAFirmwareUpdateStatusPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 17.
(start delim. + length (2 bytes) + frame type
+ source 64bit addr. (8 bytes) + updater 16bit addr. (2 bytes)
+ receive options + bootloader message type + block number
+ source 64bit addr. (8 bytes) + checksum = 27 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different
from its real length. (length field: bytes 1 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the
header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different
from the checksum field value (last byte).

	InvalidPacketException – if the frame type is not
ApiFrameType.OTA_FIRMWARE_UPDATE_STATUS.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()[source]

	Override method.

See also

XBeeAPIPacket.needs_id()

	
x64bit_source_addr

	Returns the 64-bit source address.

	Returns

	the 64-bit source address.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
x16bit_updater_addr

	Returns the 16-bit updater address.

	Returns

	the 16-bit updater address.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
receive_options

	Returns the receive options bitfield.

	Returns

	the receive options bitfield.

	Return type

	Integer

See also

ReceiveOptions

	
bootloader_msg_type

	Returns the bootloader message type.

	Returns

	the bootloader message type.

	Return type

	EmberBootloaderMessageType

See also

EmberBootloaderMessageType

	
block_number

	Returns the block number of the request.

	Returns

	the block number of the request.

	Return type

	Integer

	
x64bit_target_addr

	Returns the 64-bit target address.

	Returns

	the 64-bit target address.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

digi.xbee.packets.factory module

This module provides functionality to build XBee packets from
bytearray returning the appropriate XBeePacket subclass.

All the API and API2 logic is already included so all packet reads are
independent of the XBee operating mode.

Two API modes are supported and both can be enabled using the AP
(API Enable) command:

API1 - API Without Escapes
The data frame structure is defined as follows:

 Start Delimiter Length Frame Data Checksum
 (Byte 1) (Bytes 2-3) (Bytes 4-n) (Byte n + 1)
+----------------+ +-------------------+ +--------------------------- + +----------------+
| 0x7E | | MSB | LSB | | API-specific Structure | | 1 Byte |
+----------------+ +-------------------+ +----------------------------+ +----------------+
 MSB = Most Significant Byte, LSB = Least Significant Byte

API2 - API With Escapes
The data frame structure is defined as follows:

 Start Delimiter Length Frame Data Checksum
 (Byte 1) (Bytes 2-3) (Bytes 4-n) (Byte n + 1)
+----------------+ +-------------------+ +--------------------------- + +----------------+
| 0x7E | | MSB | LSB | | API-specific Structure | | 1 Byte |
+----------------+ +-------------------+ +----------------------------+ +----------------+
 ___________________________________ _________________________________/
 \/
 Characters Escaped If Needed

 MSB = Most Significant Byte, LSB = Least Significant Byte

When sending or receiving an API2 frame, specific data values must be
escaped (flagged) so they do not interfere with the data frame sequencing.
To escape an interfering data byte, the byte 0x7D is inserted before
the byte to be escaped XOR’d with 0x20.

The data bytes that need to be escaped:

	0x7E - Frame Delimiter - SpecialByte.

	0x7D - Escape

	0x11 - XON

	0x13 - XOFF

The length field has a two-byte value that specifies the number of
bytes that will be contained in the frame data field. It does not include the
checksum field.

The frame data forms an API-specific structure as follows:

 Start Delimiter Length Frame Data Checksum
 (Byte 1) (Bytes 2-3) (Bytes 4-n) (Byte n + 1)
+----------------+ +-------------------+ +--------------------------- + +----------------+
| 0x7E | | MSB | LSB | | API-specific Structure | | 1 Byte |
+----------------+ +-------------------+ +----------------------------+ +----------------+
 / \
 / API Identifier Identifier specific data \
 +------------------+ +------------------------------+
 | cmdID | | cmdData |
 +------------------+ +------------------------------+

The cmdID frame (API-identifier) indicates which API messages
will be contained in the cmdData frame (Identifier-specific data).

To unit_test data integrity, a checksum is calculated and verified on
non-escaped data.

See also

XBeePacket

OperatingMode

	
digi.xbee.packets.factory.build_frame(packet_bytearray, operating_mode=<OperatingMode.API_MODE: (1, 'API mode')>)[source]

	Creates a packet from raw data.

	Parameters

	
	packet_bytearray (Bytearray) – the raw data of the packet to build.

	operating_mode (OperatingMode) – the operating mode in which
the raw data has been captured.

See also

OperatingMode

digi.xbee.util package

Submodules

	digi.xbee.util.utils module

	digi.xbee.util.xmodem module

digi.xbee.util.utils module

	
digi.xbee.util.utils.is_bit_enabled(number, position)[source]

	Returns whether the bit located at position within number is enabled.

	Parameters

	
	number (Integer) – the number to check if a bit is enabled.

	position (Integer) – the position of the bit to check if is enabled in
number.

	Returns

	
	True if the bit located at position within number is

	enabled, False otherwise.

	Return type

	Boolean

	
digi.xbee.util.utils.get_int_from_byte(number, offset, length)[source]

	Reads an integer value from the given byte using the provived bit offset
and length.

	Parameters

	
	number (Integer) – Byte to read the integer from.

	offset (Integer) – Bit offset inside the byte to start reading
(LSB = 0, MSB = 7).

	length (Integer) – Number of bits to read.

	Returns

	The integer value read.

	Return type

	Integer

	Raises

	ValueError – If number is lower than 0 or higher than 255.
If `offset is lower than 0 or higher than 7.
If length is lower than 0 or higher than 8.
If offset + length is higher than 8.

	
digi.xbee.util.utils.hex_string_to_bytes(hex_string)[source]

	Converts a String (composed by hex. digits) into a bytearray with same digits.

	Parameters

	hex_string (String) – String (made by hex. digits) with “0x” header or not.

	Returns

	bytearray containing the numeric value of the hexadecimal digits.

	Return type

	Bytearray

	Raises

	ValueError – if invalid literal for int() with base 16 is provided.

Example

>>> a = "0xFFFE"
>>> for i in hex_string_to_bytes(a): print(i)
255
254
>>> print(type(hex_string_to_bytes(a)))
<type 'bytearray'>

>>> b = "FFFE"
>>> for i in hex_string_to_bytes(b): print(i)
255
254
>>> print(type(hex_string_to_bytes(b)))
<type 'bytearray'>

	
digi.xbee.util.utils.int_to_bytes(number, num_bytes=None)[source]

	Converts the provided integer into a bytearray.

If number has less bytes than num_bytes, the resultant bytearray
is filled with zeros (0x00) starting at the beginning.

If number has more bytes than num_bytes, the resultant bytearray
is returned without changes.

	Parameters

	
	number (Integer) – the number to convert to a bytearray.

	num_bytes (Integer) – the number of bytes that the resultant bytearray will have.

	Returns

	the bytearray corresponding to the provided number.

	Return type

	Bytearray

Example

>>> a=0xFFFE
>>> print([i for i in int_to_bytes(a)])
[255,254]
>>> print(type(int_to_bytes(a)))
<type 'bytearray'>

	
digi.xbee.util.utils.length_to_int(byte_array)[source]

	Calculates the length value for the given length field of a packet.
Length field are bytes 1 and 2 of any packet.

	Parameters

	byte_array (Bytearray) – length field of a packet.

	Returns

	the length value.

	Return type

	Integer

	Raises

	ValueError – if byte_array is not a valid length field (it has length distinct than 0).

Example

>>> b = bytearray([13,14])
>>> c = length_to_int(b)
>>> print("0x%02X" % c)
0x1314
>>> print(c)
4884

	
digi.xbee.util.utils.bytes_to_int(byte_array)[source]

	Converts the provided bytearray in an Integer.
This integer is result of concatenate all components of byte_array
and convert that hex number to a decimal number.

	Parameters

	byte_array (Bytearray) – bytearray to convert in integer.

	Returns

	the integer corresponding to the provided bytearray.

	Return type

	Integer

Example

>>> x = bytearray([0xA,0x0A,0x0A]) #this is 0xA0A0A
>>> print(bytes_to_int(x))
657930
>>> b = bytearray([0x0A,0xAA]) #this is 0xAAA
>>> print(bytes_to_int(b))
2730

	
digi.xbee.util.utils.ascii_to_int(array)[source]

	Converts a bytearray containing the ASCII code of each number digit in an
Integer. This integer is result of the number formed by all ASCII codes of
the bytearray.

	Parameters

	array (Bytearray) – bytearray to convert in integer.

Example

>>> x = bytearray([0x31,0x30,0x30]) #0x31 => ASCII code for number 1.
 #0x31,0x30,0x30 <==> 1,0,0
>>> print(ascii_to_int(x))
100

	
digi.xbee.util.utils.int_to_ascii(number)[source]

	Converts an integer number to a bytearray. Each element of the bytearray is
the ASCII code that corresponds to the digit of its position.

	Parameters

	number (Integer) – the number to convert to an ASCII bytearray.

	Returns

	the bytearray containing the ASCII value of each digit of the number.

	Return type

	Bytearray

Example

>>> x = int_to_ascii(100)
>>> print(x)
100
>>> print([i for i in x])
[49, 48, 48]

	
digi.xbee.util.utils.int_to_length(number)[source]

	Converts an integer into a bytearray of 2 bytes corresponding to the
length field of a packet. If this bytearray has length 1, a byte with value
0 is added at the beginning.

	Parameters

	number (Integer) – the number to convert to a length field.

	Returns

	The bytearray.

	Return type

	Bytearray

	Raises

	ValueError – if number is less than 0 or greater than 0xFFFF.

Example

>>> a = 0
>>> print(hex_to_string(int_to_length(a)))
00 00

>>> a = 8
>>> print(hex_to_string(int_to_length(a)))
00 08

>>> a = 200
>>> print(hex_to_string(int_to_length(a)))
00 C8

>>> a = 0xFF00
>>> print(hex_to_string(int_to_length(a)))
FF 00

>>> a = 0xFF
>>> print(hex_to_string(int_to_length(a)))
00 FF

	
digi.xbee.util.utils.hex_to_string(byte_array, pretty=True)[source]

	Returns the provided bytearray in a pretty string format. All bytes are
separated by blank spaces and printed in hex format.

	Parameters

	
	byte_array (Bytearray) – the bytearray to print in pretty string.

	pretty (Boolean, optional) – True for pretty string format, False
for plain string format. Default to True.

	Returns

	the bytearray formatted in a string format.

	Return type

	String

	
digi.xbee.util.utils.doc_enum(enum_class, descriptions=None)[source]

	Returns a string with the description of each value of an enumeration.

	Parameters

	
	enum_class (Enumeration) – the Enumeration to get its values documentation.

	descriptions (dictionary) – each enumeration’s item description. The key
is the enumeration element name and the value is the description.

	Returns

	the string listing all the enumeration values and their descriptions.

	Return type

	String

	
digi.xbee.util.utils.enable_logger(name, level=10)[source]

	Enables a logger with the given name and level.

	Parameters

	
	name (String) – name of the logger to enable.

	level (Integer) – logging level value.

Assigns a default formatter and a default handler (for console).

	
digi.xbee.util.utils.disable_logger(name)[source]

	Disables the logger with the give name.

	Parameters

	name (String) – the name of the logger to disable.

	
digi.xbee.util.utils.deprecated(version, details='None')[source]

	Decorates a method to mark as deprecated.
This adds a deprecation note to the method docstring and also raises a
warning.DeprecationWarning.

	Parameters

	
	version (String) – Version that deprecates this feature.

	details (String, optional, default=`None`) – Extra details to be added
to the method docstring and warning.

digi.xbee.util.xmodem module

	
exception digi.xbee.util.xmodem.XModemException[source]

	Bases: Exception

This exception will be thrown when any problem related with the
XModem/YModem transfer occurs.

All functionality of this class is the inherited from Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.util.xmodem.XModemCancelException[source]

	Bases: digi.xbee.util.xmodem.XModemException

This exception will be thrown when the XModem/YModem transfer is cancelled
by the remote end.

All functionality of this class is the inherited from Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
digi.xbee.util.xmodem.send_file_xmodem(src_path, write_cb, read_cb, progress_cb=None, log=None)[source]

	Sends a file using the XModem protocol to a remote end.

	Parameters

	
	src_path (String) – absolute path of the file to transfer.

	write_cb (Function) – function to execute in order to write data to the
remote end. Takes the following arguments:

	The data to write as byte array.

The function returns the following:

Boolean: True if the write succeeded, False otherwise.

	read_cb (Function) – function to execute in order to read data from the
remote end. Takes the following arguments:

	The size of the data to read.

	The timeout to wait for data. (seconds)

The function returns the following:

Bytearray: the read data, None if data could not be read

	progress_cb (Function, optional) – function to execute in order to
receive progress information. Takes the following arguments:

	The progress percentage as integer.

	log (Logger, optional) – logger used to log transfer debug messages

	Raises

	
	ValueError – if any input value is not valid.

	XModemCancelException – if the transfer is cancelled by the remote end.

	XModemException – if there is any error during the file transfer.

	
digi.xbee.util.xmodem.send_file_ymodem(src_path, write_cb, read_cb, progress_cb=None, log=None)[source]

	Sends a file using the YModem protocol to a remote end.

	Parameters

	
	src_path (String) – absolute path of the file to transfer.

	write_cb (Function) – function to execute in order to write data to the
remote end. Takes the following arguments:

	The data to write as byte array.

The function returns the following:

Boolean: True if the write succeeded, False otherwise

	read_cb (Function) – function to execute in order to read data from the
remote end. Takes the following arguments:

	The size of the data to read.

	The timeout to wait for data. (seconds)

The function returns the following:

Bytearray: the read data, None if data could not be read

	progress_cb (Function, optional) – function to execute in order to
receive progress information. Takes the following arguments:

	The progress percentage as integer.

	log (Logger, optional) – logger used to log transfer debug messages

	Raises

	
	ValueError – if any input value is not valid.

	XModemCancelException – if the transfer is cancelled by the remote end.

	XModemException – if there is any error during the file transfer.

	
digi.xbee.util.xmodem.get_file_ymodem(dest_path, write_cb, read_cb, crc=True, progress_cb=None, log=None)[source]

	Retrieves a file using the YModem protocol from a remote end.

	Parameters

	
	dest_path (String) – absolute path to store downloaded file in.

	write_cb (Function) – function to execute in order to write data to the
remote end. Takes the following arguments:

	The data to write as byte array.

The function returns the following:

Boolean: True if the write succeeded, False otherwise

	read_cb (Function) – function to execute in order to read data from the
remote end. Takes the following arguments:

	The size of the data to read.

	The timeout to wait for data. (seconds)

The function returns the following:

Bytearray: the read data, None if data could not be read

	crc (Boolean, optional) – True to use 16-bit CRC verification, False
for standard 1 byte checksum. Defaults to True.

	progress_cb (Function, optional) – function to execute in order to
receive progress information. Takes the following arguments:

	The progress percentage as integer.

	log (Logger, optional) – logger used to log download debug messages

	Raises

	
	ValueError – if any input value is not valid.

	XModemCancelException – if the file download is cancelled by the remote end.

	XModemException – if there is any error during the file download process.

digi.xbee.comm_interface module

	
class digi.xbee.comm_interface.XBeeCommunicationInterface[source]

	Bases: object

This class represents the way the communication with the local XBee is
established.

	
open()[source]

	Establishes the underlying hardware communication interface.

Subclasses may throw specific exceptions to signal implementation
specific errors.

	
close()[source]

	Terminates the underlying hardware communication interface.

Subclasses may throw specific exceptions to signal implementation
specific hardware errors.

	
is_interface_open

	Returns whether the underlying hardware communication interface is
active or not.

	Returns

	True if the interface is active, False otherwise.

	Return type

	Boolean

	
wait_for_frame(operating_mode)[source]

	Reads the next API frame packet.

	This method blocks until:

	
	A complete frame is read, in which case returns it.

	The configured timeout goes by, in which case returns None.

	Another thread calls quit_reading, in which case returns None.

This method is not thread-safe, so no more than one thread should
invoke it at the same time.

Subclasses may throw specific exceptions to signal implementation
specific hardware errors.

	Parameters

	operating_mode (OperatingMode) – The operating mode of the
XBee connected to this hardware interface.
Note: If this parameter does not match the connected XBee
configuration, the behavior is undefined.

	Returns

	
	The read packet as bytearray if a packet is read,

	None otherwise.

	Return type

	Bytearray

	
quit_reading()[source]

	Makes the thread (if any) blocking on wait_for_frame return.

If a thread was blocked on wait_for_frame, this method blocks (for a
maximum of ‘timeout’ seconds) until the blocked thread is resumed.

	
write_frame(frame)[source]

	Writes an XBee frame to the underlying hardware interface.

Subclasses may throw specific exceptions to signal implementation
specific hardware errors.

	Parameters

	frame (Bytearray) – The XBee API frame packet to write.
If the bytearray does not correctly represent an XBee frame,
the behaviour is undefined.

	
get_network(local_xbee)[source]

	Returns the XBeeNetwork object associated to the XBeeDevice associated
to this XBeeCommunicationInterface.

Some XBeeCommunicationInterface implementations may need to handle the
`XBeeNetwork associated to the XBeeDevice themselves. If that is the
case, a implementation-specific XBeeNetwork object that complains to
the generic XBeeNetwork class will be returned. Otherwise, this
method returns None and the associated XBeeNetwork is handled as
for a serial-connected XBeeDevice.

	Parameters

	local_xbee (XBeeDevice) – The local XBee device.

	Returns

	
	class: .XBeeNetwork: None if the XBeeNetwork should handled as

	usual, otherwise a XBeeNetwork object.

	
get_local_xbee_info()[source]

	Returns a tuple with the local XBee information.

This is used when opening the local XBee. If this information is
provided, it is used as internal XBee data, if not provided, the data
is requested to the XBee.

	Returns

	
	Tuple with local XBee information: operation mode (int),

	hardware version (int), firmware version (int),
64-bit address (string), 16-bit address (string),
node identifier (string), and role (int).

	Return type

	Tuple

	
supports_update_firmware()[source]

	Returns if the interface supports the firmware update feature.

	Returns

	True if it is supported, False otherwise.

	Return type

	Boolean

	
update_firmware(xbee, xml_fw_file, xbee_fw_file=None, bootloader_fw_file=None, timeout=None, progress_callback=None)[source]

	Performs a firmware update operation of the provided XBee.

	Parameters

	
	xbee (AbstractXBeeDevice) – Local or remote XBee node to
be updated.

	xml_fw_file (String) – Path of the XML file that describes the
firmware to upload.

	xbee_fw_file (String, optional) – Location of the XBee binary
firmware file.

	bootloader_fw_file (String, optional) – Location of the bootloader
binary firmware file.

	timeout (Integer, optional) – Maximum time to wait for target read
operations during the update process.

	progress_callback (Function, optional) – Function to execute to
receive progress information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – If the local XBee is not open.

	InvalidOperatingModeException – If the local XBee operating mode is
invalid.

	OperationNotSupportedException – If the firmware update is not
supported in the XBee.

	FirmwareUpdateException – If there is any error performing the
firmware update.

	
supports_apply_profile()[source]

	Returns if the interface supports the apply profile feature.

	Returns

	True if it is supported, False otherwise.

	Return type

	Boolean

	
apply_profile(xbee, profile_path, timeout=None, progress_callback=None)[source]

	Applies the given XBee profile to the XBee device.

	Parameters

	
	xbee (AbstractXBeeDevice) – Local or remote XBee node to
be updated.

	profile_path (String) – Path of the XBee profile file to apply.

	timeout (Integer, optional) – Maximum time to wait for target read
operations during the apply profile.

	progress_callback (Function, optional) – Function to execute to
receive progress information. Receives two arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – If the local XBee is not open.

	InvalidOperatingModeException – If the local XBee operating mode is
invalid.

	UpdateProfileException – If there is any error applying the XBee
profile.

	OperationNotSupportedException – If XBee profiles are not supported
in the XBee.

	
timeout

	Returns the read timeout.

	Returns

	Read timeout in seconds.

	Return type

	Integer

digi.xbee.devices module

	
class digi.xbee.devices.AbstractXBeeDevice(local_xbee_device=None, serial_port=None, sync_ops_timeout=4, comm_iface=None)[source]

	Bases: object

This class provides common functionality for all XBee devices.

Class constructor. Instantiates a new AbstractXBeeDevice
object with the provided parameters.

	Parameters

	
	local_xbee_device (XBeeDevice, optional, default=`None`) – Only
necessary if XBee is remote. The local XBee to be the connection
interface to communicate with the remote XBee one.

	serial_port (XBeeSerialPort, optional, default=`None`) – Only
necessary if the XBee device is local. The serial port to
communicate with this XBee.

	(Integer, optional, default (sync_ops_timeout) – AbstractXBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS):
Timeout (in seconds) for all synchronous operations.

	comm_iface (XBeeCommunicationInterface, optional, default=`None`) – Only necessary if the XBee is local. The hardware interface to
communicate with this XBee.

See also

XBeeDevice

XBeeSerialPort

	
update_device_data_from(device)[source]

	Updates the current node information with provided data. This is only
for internal use.

	Parameters

	device (AbstractXBeeDevice) – XBee to get the data from.

	Returns

	True if the node data has been updated, False otherwise.

	Return type

	Boolean

	
get_parameter(parameter, parameter_value=None, apply=None)[source]

	Returns the value of the provided parameter via an AT Command.

	Parameters

	
	(String or (parameter) – class: .ATStringCommand): Parameter to get.

	parameter_value (Bytearray, optional, default=`None`) – Value of the
parameter to execute (if any).

	apply (Boolean, optional, default=`None`) – True to apply changes
in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

	Returns

	Parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.execute_command()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

	
set_parameter(parameter, value, apply=None)[source]

	Sets the value of a parameter via an AT Command.

Any parameter changes are applied automatically, if apply is True or
if it is None and apply flag is enabled (is_apply_changes_enabled())

You can set this flag via the method
AbstractXBeeDevice.enable_apply_changes().

This only applies modified values in the XBee configuration, to save
changed parameters permanently (between resets), use
AbstractXBeeDevice.write_changes().

	Parameters

	
	(String or (parameter) – class: .ATStringCommand): Parameter to set.

	value (Bytearray) – Value of the parameter.

	apply (Boolean, optional, default=`None`) – True to apply changes,
False otherwise, None to use is_apply_changes_enabled()
returned value.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If parameter is None or value is None.

See also

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.execute_command()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

	
execute_command(parameter, value=None, apply=None)[source]

	Executes the provided command.

	Parameters

	
	(String or (parameter) – class: .ATStringCommand): AT command to execute.

	value (bytearray, optional, default=`None`) – Command value (if any).

	apply (Boolean, optional, default=`None`) – True to apply changes
in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

	
apply_changes()[source]

	Applies changes via ‘AC’ command.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
write_changes()[source]

	Writes configurable parameter values to the non-volatile memory of the
XBee so that parameter modifications persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them, the XBee reverts back to
previously saved parameters the next time the module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_changes_enabled() to get its status and
enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
reset()[source]

	Performs a software reset on this XBee and blocks until the process is
completed.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
read_device_info(init=True, fire_event=True)[source]

	Updates all instance parameters reading them from the XBee.

	Parameters

	
	init (Boolean, optional, default=`True`) – If False only not
initialized parameters are read, all if True.

	fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.is_device_info_complete()

	
determine_protocol(hardware_version, firmware_version)[source]

	Determines the XBee protocol based on the given hardware and firmware
versions.

	Parameters

	
	hardware_version (Integer) – Hardware version to get its protocol.

	firmware_version (Bytearray) – Firmware version to get its protocol.

	Returns

	
	XBee protocol corresponding to the given

	hardware and firmware versions.

	Return type

	XBeeProtocol

	
is_device_info_complete()[source]

	Returns whether XBee node information is complete.

	Returns

	True if node information is complete, False otherwise.

	Return type

	Boolean

See also

AbstractXBeeDevice.read_device_info()

	
get_node_id()[source]

	Returns the node identifier (‘NI’) value of the XBee.

	Returns

	Node identifier (‘NI’) of the XBee.

	Return type

	String

	
set_node_id(node_id)[source]

	Sets the node identifier (‘NI`) value of the XBee.

	Parameters

	node_id (String) – New node identifier (‘NI’) of the XBee.

	Raises

	
	ValueError – If node_id is None or its length is greater than 20.

	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_hardware_version()[source]

	Returns the hardware version of the XBee.

	Returns

	Hardware version of the XBee.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_firmware_version()[source]

	Returns the firmware version of the XBee.

	Returns

	Firmware version of the XBee.

	Return type

	Bytearray

	
get_protocol()[source]

	Returns the current protocol of the XBee.

	Returns

	Current protocol of the XBee.

	Return type

	XBeeProtocol

See also

XBeeProtocol

	
get_16bit_addr()[source]

	Returns the 16-bit address of the XBee.

	Returns

	16-bit address of the XBee.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
set_16bit_addr(value)[source]

	Sets the 16-bit address of the XBee.

	Parameters

	value (XBee16BitAddress) – New 16-bit address of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If the protocol is not 802.15.4.

	
get_64bit_addr()[source]

	Returns the 64-bit address of the XBee.

	Returns

	64-bit address of the XBee.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
get_role()[source]

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	Role

See also

Role

	
get_current_frame_id()[source]

	Returns the last used frame ID.

	Returns

	Last used frame ID.

	Return type

	Integer

	
enable_apply_changes(value)[source]

	Sets apply changes flag.

	Parameters

	value (Boolean) – True to enable apply changes flag, False to
disable it.

	
is_apply_changes_enabled()[source]

	Returns whether apply changes flag is enabled.

	Returns

	True if apply changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_remote()[source]

	Determines whether XBee is remote.

	Returns

	True if the XBee is remote, False otherwise.

	Return type

	Boolean

	
set_sync_ops_timeout(sync_ops_timeout)[source]

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – Read timeout in seconds.

	
get_sync_ops_timeout()[source]

	Returns the serial port read timeout.

	Returns

	Serial port read timeout in seconds.

	Return type

	Integer

	
get_dest_address()[source]

	Returns the 64-bit address of the XBee that is data destination.

	Returns

	64-bit address of destination XBee.

	Return type

	XBee64BitAddress

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

XBee64BitAddress

set_dest_address()

	
set_dest_address(addr)[source]

	Sets the 64-bit address of the XBee that is data destination.

	Parameters

	addr (XBee64BitAddress or RemoteXBeeDevice) – Address itself or remote XBee to be data destination.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If addr is None.

See also

XBee64BitAddress

get_dest_address()

	
get_pan_id()[source]

	Returns the operating PAN ID of the XBee.

	Returns

	Operating PAN ID of the XBee.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

set_pan_id()

	
set_pan_id(value)[source]

	Sets the operating PAN ID of the XBee.

	Parameters

	value (Bytearray) – New operating PAN ID of the XBee. Must have only
1 or 2 bytes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

get_pan_id()

	
get_power_level()[source]

	Returns the power level of the XBee.

	Returns

	Power level of the XBee.

	Return type

	PowerLevel

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

PowerLevel

set_power_level()

	
set_power_level(power_level)[source]

	Sets the power level of the XBee.

	Parameters

	power_level (PowerLevel) – New power level of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

PowerLevel

get_power_level()

	
set_io_configuration(io_line, io_mode)[source]

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – IO line to configure.

	io_mode (IOMode) – IO mode to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

get_io_configuration()

	
get_io_configuration(io_line)[source]

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its configuration.

	Returns

	IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

set_io_configuration()

	
get_io_sampling_rate()[source]

	Returns the IO sampling rate of the XBee.

	Returns

	IO sampling rate of XBee.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

set_io_sampling_rate()

	
set_io_sampling_rate(rate)[source]

	Sets the IO sampling rate of the XBee in seconds. A sample rate of 0
means the IO sampling feature is disabled.

	Parameters

	rate (Integer) – New IO sampling rate of the XBee in seconds.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

get_io_sampling_rate()

	
read_io_sample()[source]

	Returns an IO sample from the XBee containing the value of all enabled
digital IO and analog input channels.

	Returns

	IO sample read from the XBee.

	Return type

	IOSample

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOSample

	
get_adc_value(io_line)[source]

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – IO line to get its ADC value.

	Returns

	Analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

set_io_configuration()

	
set_pwm_duty_cycle(io_line, cycle)[source]

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – IO Line to be assigned.

	cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If the given IO line does not have PWM capability or
cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
get_pwm_duty_cycle(io_line)[source]

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its PWM duty cycle.

	Returns

	PWM duty cycle of the given IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If io_line has no PWM capability.

See also

IOLine

	
get_dio_value(io_line)[source]

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

IOValue

set_io_configuration()

	
set_dio_value(io_line, io_value)[source]

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – Digital IO line to sets its value.

	io_value (IOValue) – IO value to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOValue

	
set_dio_change_detection(io_lines_set)[source]

	Sets the digital IO lines to be monitored and sampled whenever their
status changes. A None set of lines disables this feature.

	Parameters

	io_lines_set – Set of IOLine.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

	
get_api_output_mode()[source]

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the
serial interface of the XBee.

	Returns

	API output mode of the XBee.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()[source]

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
set_api_output_mode(api_output_mode)[source]

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

	Parameters

	api_output_mode (APIOutputMode) – New API output mode.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)[source]

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – New API output mode options.
Calculate this value using the method
APIOutputModeBit.calculate_api_output_mode_value()
with a set of APIOutputModeBit.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputModeBit

	
enable_bluetooth()[source]

	Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth
password if not done previously. Use method
AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
disable_bluetooth()[source]

	Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_bluetooth_mac_addr()[source]

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee
following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
update_bluetooth_password(new_password)[source]

	Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)[source]

	Performs a firmware update operation of the XBee.

	Parameters

	
	xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

	xbee_firmware_file (String, optional, default=`None`) – Location of
the XBee binary firmware file.

	bootloader_firmware_file (String, optional, default=`None`) – Location
of the bootloader binary firmware file.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the update process (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
to receive progress information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	OperationNotSupportedException – If XBee does not support firmware update.

	FirmwareUpdateException – If there is any error during the firmware update.

	
apply_profile(profile_path, timeout=None, progress_callback=None)[source]

	Applies the given XBee profile to the XBee.

	Parameters

	
	profile_path (String) – Path of the XBee profile file to apply.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the apply profile (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
receive progress information. Receives two arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	UpdateProfileException – If there is any error applying the XBee profile.

	
get_file_manager()[source]

	Returns the file system manager for the XBee.

	Returns

	The file system manager.

	Return type

	FileSystemManager

	Raises

	FileSystemNotSupportedException – If the XBee does not support
filesystem.

	
reachable

	Returns whether the XBee is reachable.

	Returns

	True if the device is reachable, False otherwise.

	Return type

	Boolean

	
scan_counter

	Returns the scan counter for this node.

	Returns

	The scan counter for this node.

	Return type

	Integer

	
log

	Returns the XBee logger.

	Returns

	The XBee device logger.

	Return type

	Logger

	
class digi.xbee.devices.XBeeDevice(port=None, baud_rate=None, data_bits=<sphinx.ext.autodoc.importer._MockObject object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject object>, parity=<sphinx.ext.autodoc.importer._MockObject object>, flow_control=<FlowControl.NONE: None>, _sync_ops_timeout=4, comm_iface=None)[source]

	Bases: digi.xbee.devices.AbstractXBeeDevice

This class represents a non-remote generic XBee.

This class has fields that are events. Its recommended to use only the
append() and remove() method on them, or -= and += operators.
If you do something more with them, it’s for your own risk.

Class constructor. Instantiates a new XBeeDevice with the
provided parameters.

	Parameters

	
	port (String) – Serial port identifier. Depends on operating system.
e.g. ‘/dev/ttyUSB0’ on ‘GNU/Linux’ or ‘COM3’ on Windows.

	baud_rate (Integer, optional, default=`None`) – Serial port baud rate.

	(Integer, default (_sync_ops_timeout) – serial.EIGHTBITS): Port bitsize.

	(Integer, default – serial.STOPBITS_ONE): Port stop bits.

	(Character, default (parity) – serial.PARITY_NONE): Port parity.

	(Integer, default – FlowControl.NONE): Port flow control.

	(Integer, default – 4): Read timeout (in seconds).

	comm_iface (XBeeCommunicationInterface) – Communication interface.

	Raises

	All exceptions raised by PySerial’s Serial class constructor.

See also

PySerial documentation: http://pyserial.sourceforge.net

	
TIMEOUT_READ_PACKET = 3

	Timeout to read packets.

	
classmethod create_xbee_device(comm_port_data)[source]

	Creates and returns an XBeeDevice from data of the port to
which is connected.

	Parameters

	
	comm_port_data (Dictionary) – Dictionary with all comm port data needed.

	dictionary keys are (The) –
“baudRate” –> Baud rate.

”port” –> Port number.

”bitSize” –> Bit size.

”stopBits” –> Stop bits.

”parity” –> Parity.

”flowControl” –> Flow control.

”timeout” for –> Timeout for synchronous operations (in seconds).

	Returns

	XBee object created.

	Return type

	XBeeDevice

	Raises

	SerialException – If the port to open does not exist or is already opened.

See also

XBeeDevice

	
open(force_settings=False)[source]

	Opens the communication with the XBee and loads information about it.

	Parameters

	force_settings (Boolean, optional, default=`False`) – True to open
the device ensuring/forcing that the specified serial settings
are applied even if the current configuration is different,
False to open the device with the current configuration.

	Raises

	
	TimeoutException – If there is any problem with the communication.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee is already opened.

	
close()[source]

	Closes the communication with the XBee.

This method guarantees that all threads running are stopped and the
serial port is closed.

	
serial_port

	Returns the serial port associated to the XBee, if any.

	Returns

	
	Serial port of the XBee. None if the

	local XBee does not use serial communication.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
comm_iface

	Returns the hardware interface associated to the XBee.

	Returns

	Hardware interface of the XBee.

	Return type

	XBeeCommunicationInterface

See also

XBeeCommunicationInterface

	
operating_mode

	Returns the operating mode of this XBee.

	Returns

	OperatingMode. This XBee operating mode.

	
get_parameter(parameter, parameter_value=None, apply=None)[source]

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
set_parameter(parameter, value, apply=None)[source]

	Override.

	See:

	AbstractXBeeDevice.set_parameter()

	
send_data(remote_xbee, data, transmit_options=0)[source]

	Blocking method. This method sends data to a remote XBee synchronously.

This method will wait for the packet response. The default timeout is
XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS.

	Parameters

	
	remote_xbee (RemoteXBeeDevice) – Remote XBee to send data to.

	data (String or Bytearray) – Raw data to send.

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Returns

	The response.

	Return type

	XBeePacket

	Raises

	
	ValueError – If remote_xbee is None.

	TimeoutException – If response is not received before the read
timeout expires.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TransmitException – If the status of the response received is not OK.

	XBeeException – If the XBee’s communication interface is closed.

See also

RemoteXBeeDevice

XBeePacket

	
send_data_async(remote_xbee, data, transmit_options=0)[source]

	Non-blocking method. This method sends data to a remote XBee.

This method does not wait for a response.

	Parameters

	
	remote_xbee (RemoteXBeeDevice) – the remote XBee to send data to.

	data (String or Bytearray) – Raw data to send.

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Raises

	
	ValueError – If remote_xbee is None.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

RemoteXBeeDevice

	
send_data_broadcast(data, transmit_options=0)[source]

	Sends the provided data to all the XBee nodes of the network (broadcast).

This method blocks until a success or error transmit status arrives or
the configured receive timeout expires.

The received timeout is configured using method
AbstractXBeeDevice.set_sync_ops_timeout() and can be consulted
with AbstractXBeeDevice.get_sync_ops_timeout() method.

	Parameters

	
	data (String or Bytearray) – Data to send.

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TransmitException – If the status of the response received is not OK.

	XBeeException – If the XBee’s communication interface is closed.

	
send_user_data_relay(local_interface, data)[source]

	Sends the given data to the given XBee local interface.

	Parameters

	
	local_interface (XBeeLocalInterface) – Destination XBee
local interface.

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ValueError – If local_interface is None.

	XBeeException – If there is any problem sending the User Data Relay.

See also

XBeeLocalInterface

	
send_bluetooth_data(data)[source]

	Sends the given data to the Bluetooth interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If there is any problem sending the data.

See also

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

	
send_micropython_data(data)[source]

	Sends the given data to the MicroPython interface using a User Data
Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If there is any problem sending the data.

See also

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

	
read_data(timeout=None)[source]

	Reads new data received by this XBee.

If timeout is specified, this method blocks until new data is received
or the timeout expires, throwing a TimeoutException in this case.

	Parameters

	timeout (Integer, optional) – Read timeout in seconds. If None,
this method is non-blocking and returns None if no data is available.

	Returns

	
	Read message or None if this XBee did not

	receive new data.

	Return type

	XBeeMessage

	Raises

	
	ValueError – If a timeout is specified and is less than 0.

	TimeoutException – If a timeout is specified and no data was
received during that time.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBeeMessage

	
read_data_from(remote_xbee, timeout=None)[source]

	Reads new data received from the given remote XBee.

If timeout is specified, this method blocks until new data is received
or the timeout expires, throwing a TimeoutException in this case.

	Parameters

	
	remote_xbee (RemoteXBeeDevice) – Remote XBee that sent the data.

	timeout (Integer, optional) – Read timeout in seconds. If None,
this method is non-blocking and returns None if no data is available.

	Returns

	
	Read message sent by remote_xbee or None

	if this XBee did not receive new data.

	Return type

	XBeeMessage

	Raises

	
	ValueError – If a timeout is specified and is less than 0.

	TimeoutException – If a timeout is specified and no data was received
during that time.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBeeMessage

RemoteXBeeDevice

	
has_packets()[source]

	Returns if there are pending packets to read. This does not include
explicit packets.

	Returns

	True if there are pending packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_explicit_packets()

	
has_explicit_packets()[source]

	Returns if there are pending explicit packets to read. This does not
include non-explicit packets.

	Returns

	True if there are pending packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_packets()

	
flush_queues()[source]

	Flushes the packets queue.

	
reset()[source]

	Override method.

See also

AbstractXBeeDevice.reset()

	
add_packet_received_callback(callback)[source]

	Adds a callback for the event PacketReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The received packet as a XBeeAPIPacket.

	
add_data_received_callback(callback)[source]

	Adds a callback for the event DataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The data received as an XBeeMessage.

	
add_modem_status_received_callback(callback)[source]

	Adds a callback for the event ModemStatusReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The modem status as a ModemStatus.

	
add_io_sample_received_callback(callback)[source]

	Adds a callback for the event IOSampleReceived.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	The received IO sample as an IOSample.

	The remote XBee which sent the packet as a RemoteXBeeDevice.

	The time in which the packet was received as an Integer.

	
add_expl_data_received_callback(callback)[source]

	Adds a callback for the event ExplicitDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The explicit data received as a ExplicitXBeeMessage.

	
add_user_data_relay_received_callback(callback)[source]

	Adds a callback for the event RelayDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The relay data as a UserDataRelayMessage.

	
add_bluetooth_data_received_callback(callback)[source]

	Adds a callback for the event BluetoothDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The Bluetooth data as a Bytearray.

	
add_micropython_data_received_callback(callback)[source]

	Adds a callback for the event MicroPythonDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The MicroPython data as a Bytearray.

	
add_socket_state_received_callback(callback)[source]

	Adds a callback for the event SocketStateReceived.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	The socket ID as an Integer.

	The state received as a SocketState.

	
add_socket_data_received_callback(callback)[source]

	Adds a callback for the event SocketDataReceived.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	The socket ID as an Integer.

	The data received as Bytearray.

	
add_socket_data_received_from_callback(callback)[source]

	Adds a callback for the event SocketDataReceivedFrom.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	The socket ID as an Integer.

	
	Source address pair (host, port) where host is a string

	representing an IPv4 address like ‘100.50.200.5’, and port
is an integer.

	The data received as Bytearray.

	
add_fs_frame_received_callback(callback)[source]

	Adds a callback for the event FileSystemFrameReceived.

	Parameters

	callback (Function) – The callback. Receives four arguments.

	Source (AbstractXBeeDevice): The node that sent the
file system frame.

	Frame id (Integer): The received frame id.

	Command (FSCmd): The file system command.

	Receive options (Integer): Bitfield indicating receive options.

See also

AbstractXBeeDevice

FSCmd

ReceiveOptions

	
del_packet_received_callback(callback)[source]

	Deletes a callback for the callback list of PacketReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_data_received_callback(callback)[source]

	Deletes a callback for the callback list of DataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_modem_status_received_callback(callback)[source]

	Deletes a callback for the callback list of ModemStatusReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_io_sample_received_callback(callback)[source]

	Deletes a callback for the callback list of IOSampleReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_expl_data_received_callback(callback)[source]

	Deletes a callback for the callback list of ExplicitDataReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_user_data_relay_received_callback(callback)[source]

	Deletes a callback for the callback list of RelayDataReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_bluetooth_data_received_callback(callback)[source]

	Deletes a callback for the callback list of
BluetoothDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_micropython_data_received_callback(callback)[source]

	Deletes a callback for the callback list of
MicroPythonDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_socket_state_received_callback(callback)[source]

	Deletes a callback for the callback list of
SocketStateReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_socket_data_received_callback(callback)[source]

	Deletes a callback for the callback list of
SocketDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_socket_data_received_from_callback(callback)[source]

	Deletes a callback for the callback list of
SocketDataReceivedFrom event.

	Parameters

	callback (Function) – The callback to delete.

	
del_fs_frame_received_callback(callback)[source]

	Deletes a callback for the callback list of
FileSystemFrameReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
get_xbee_device_callbacks()[source]

	Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee
to get its callbacks. These callbacks are executed before user callbacks.

	Returns

	PacketReceived

	
is_open()[source]

	Returns whether this XBee is open.

	Returns

	Boolean. True if this XBee is open, False otherwise.

	
is_remote()[source]

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
get_network()[source]

	Returns the network of this XBee.

	Returns

	The XBee network.

	Return type

	XBeeNetwork

	
send_packet_sync_and_get_response(packet_to_send, timeout=None)[source]

	Sends the packet and waits for its corresponding response.

	Parameters

	
	packet_to_send (XBeePacket) – The packet to transmit.

	timeout (Integer, optional, default=`None`) – Number of seconds to
wait. -1 to wait indefinitely.

	Returns

	Received response packet.

	Return type

	XBeePacket

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TimeoutException – If response is not received in the configured
timeout.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBeePacket

	
send_packet(packet, sync=False)[source]

	Sends the packet and waits for the response. The packet to send is
escaped depending on the current operating mode.

This method can be synchronous or asynchronous.

If synchronous, this method discards all response packets until it finds
the one that has the appropriate frame ID, that is, the sent packet’s
frame ID.

If asynchronous, this method does not wait for any response and returns
None.

	Parameters

	
	packet (XBeePacket) – The packet to send.

	sync (Boolean) – True to wait for the response of the sent packet
and return it, False otherwise.

	Returns

	
	Response packet if sync is True, None

	otherwise.

	Return type

	XBeePacket

	Raises

	
	TimeoutException – If sync is True and the response packet for
the sent one cannot be read.

	InvalidOperatingModeException – If the XBee operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the packet listener is not running or the XBee’s
communication interface is closed.

See also

XBeePacket

	
get_next_frame_id()[source]

	Returns the next frame ID of the XBee.

	Returns

	The next frame ID of the XBee.

	Return type

	Integer

	
add_route_received_callback(callback)[source]

	Adds a callback for the event RouteReceived.
This works for Zigbee and Digimesh devices.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	source (XBeeDevice): The source node.

	destination (RemoteXBeeDevice): The destination node.

	
	hops (List): List of intermediate hops from closest to source

	to closest to destination (RemoteXBeeDevice).

See also

XBeeDevice.del_route_received_callback()

	
del_route_received_callback(callback)[source]

	Deletes a callback for the callback list of RouteReceived event.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeDevice.add_route_received_callback()

	
get_route_to_node(remote, timeout=10, force=True)[source]

	Gets the route from this XBee to the given remote node.

	For Zigbee:

	
	‘AR’ parameter of the local node must be configured with a value
different from ‘FF’.

	Set force to True to force the Zigbee remote node to return
its route independently of the local node configuration as high
or low RAM concentrator (‘DO’ of the local value)

	Parameters

	
	remote (RemoteXBeeDevice) – The remote node.

	timeout (Float, optional, default=10) – Maximum number of seconds to
wait for the route.

	force (Boolean) – True to force asking for the route, False
otherwise. Only for Zigbee.

	Returns

	
	Tuple containing route data:

	
	status (TransmitStatus): The transmit status.

	Tuple with route data (None if the route was not read in the
provided timeout):

	source (RemoteXBeeDevice): The source node of the
route.

	destination (RemoteXBeeDevice): The destination node
of the route.

	hops (List): List of intermediate nodes
(RemoteXBeeDevice) ordered from closest to source
to closest to destination node (source and destination not
included).

	Return type

	Tuple

	
apply_changes()

	Applies changes via ‘AC’ command.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
apply_profile(profile_path, timeout=None, progress_callback=None)

	Applies the given XBee profile to the XBee.

	Parameters

	
	profile_path (String) – Path of the XBee profile file to apply.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the apply profile (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
receive progress information. Receives two arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	UpdateProfileException – If there is any error applying the XBee profile.

	
determine_protocol(hardware_version, firmware_version)

	Determines the XBee protocol based on the given hardware and firmware
versions.

	Parameters

	
	hardware_version (Integer) – Hardware version to get its protocol.

	firmware_version (Bytearray) – Firmware version to get its protocol.

	Returns

	
	XBee protocol corresponding to the given

	hardware and firmware versions.

	Return type

	XBeeProtocol

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
enable_apply_changes(value)

	Sets apply changes flag.

	Parameters

	value (Boolean) – True to enable apply changes flag, False to
disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth
password if not done previously. Use method
AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
execute_command(parameter, value=None, apply=None)

	Executes the provided command.

	Parameters

	
	(String or (parameter) – class: .ATStringCommand): AT command to execute.

	value (bytearray, optional, default=`None`) – Command value (if any).

	apply (Boolean, optional, default=`None`) – True to apply changes
in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

	
get_16bit_addr()

	Returns the 16-bit address of the XBee.

	Returns

	16-bit address of the XBee.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
get_64bit_addr()

	Returns the 64-bit address of the XBee.

	Returns

	64-bit address of the XBee.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – IO line to get its ADC value.

	Returns

	Analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

set_io_configuration()

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the
serial interface of the XBee.

	Returns

	API output mode of the XBee.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee
following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	Last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Returns the 64-bit address of the XBee that is data destination.

	Returns

	64-bit address of destination XBee.

	Return type

	XBee64BitAddress

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

XBee64BitAddress

set_dest_address()

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

IOValue

set_io_configuration()

	
get_file_manager()

	Returns the file system manager for the XBee.

	Returns

	The file system manager.

	Return type

	FileSystemManager

	Raises

	FileSystemNotSupportedException – If the XBee does not support
filesystem.

	
get_firmware_version()

	Returns the firmware version of the XBee.

	Returns

	Firmware version of the XBee.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee.

	Returns

	Hardware version of the XBee.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its configuration.

	Returns

	IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

set_io_configuration()

	
get_io_sampling_rate()

	Returns the IO sampling rate of the XBee.

	Returns

	IO sampling rate of XBee.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

set_io_sampling_rate()

	
get_node_id()

	Returns the node identifier (‘NI’) value of the XBee.

	Returns

	Node identifier (‘NI’) of the XBee.

	Return type

	String

	
get_pan_id()

	Returns the operating PAN ID of the XBee.

	Returns

	Operating PAN ID of the XBee.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

set_pan_id()

	
get_power_level()

	Returns the power level of the XBee.

	Returns

	Power level of the XBee.

	Return type

	PowerLevel

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

PowerLevel

set_power_level()

	
get_protocol()

	Returns the current protocol of the XBee.

	Returns

	Current protocol of the XBee.

	Return type

	XBeeProtocol

See also

XBeeProtocol

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its PWM duty cycle.

	Returns

	PWM duty cycle of the given IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If io_line has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	Role

See also

Role

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	Serial port read timeout in seconds.

	Return type

	Integer

	
is_apply_changes_enabled()

	Returns whether apply changes flag is enabled.

	Returns

	True if apply changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_device_info_complete()

	Returns whether XBee node information is complete.

	Returns

	True if node information is complete, False otherwise.

	Return type

	Boolean

See also

AbstractXBeeDevice.read_device_info()

	
log

	Returns the XBee logger.

	Returns

	The XBee device logger.

	Return type

	Logger

	
reachable

	Returns whether the XBee is reachable.

	Returns

	True if the device is reachable, False otherwise.

	Return type

	Boolean

	
read_device_info(init=True, fire_event=True)

	Updates all instance parameters reading them from the XBee.

	Parameters

	
	init (Boolean, optional, default=`True`) – If False only not
initialized parameters are read, all if True.

	fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.is_device_info_complete()

	
read_io_sample()

	Returns an IO sample from the XBee containing the value of all enabled
digital IO and analog input channels.

	Returns

	IO sample read from the XBee.

	Return type

	IOSample

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOSample

	
scan_counter

	Returns the scan counter for this node.

	Returns

	The scan counter for this node.

	Return type

	Integer

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee.

	Parameters

	value (XBee16BitAddress) – New 16-bit address of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If the protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

	Parameters

	api_output_mode (APIOutputMode) – New API output mode.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – New API output mode options.
Calculate this value using the method
APIOutputModeBit.calculate_api_output_mode_value()
with a set of APIOutputModeBit.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputModeBit

	
set_dest_address(addr)

	Sets the 64-bit address of the XBee that is data destination.

	Parameters

	addr (XBee64BitAddress or RemoteXBeeDevice) – Address itself or remote XBee to be data destination.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If addr is None.

See also

XBee64BitAddress

get_dest_address()

	
set_dio_change_detection(io_lines_set)

	Sets the digital IO lines to be monitored and sampled whenever their
status changes. A None set of lines disables this feature.

	Parameters

	io_lines_set – Set of IOLine.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – Digital IO line to sets its value.

	io_value (IOValue) – IO value to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – IO line to configure.

	io_mode (IOMode) – IO mode to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

get_io_configuration()

	
set_io_sampling_rate(rate)

	Sets the IO sampling rate of the XBee in seconds. A sample rate of 0
means the IO sampling feature is disabled.

	Parameters

	rate (Integer) – New IO sampling rate of the XBee in seconds.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

get_io_sampling_rate()

	
set_node_id(node_id)

	Sets the node identifier (‘NI`) value of the XBee.

	Parameters

	node_id (String) – New node identifier (‘NI’) of the XBee.

	Raises

	
	ValueError – If node_id is None or its length is greater than 20.

	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
set_pan_id(value)

	Sets the operating PAN ID of the XBee.

	Parameters

	value (Bytearray) – New operating PAN ID of the XBee. Must have only
1 or 2 bytes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

get_pan_id()

	
set_power_level(power_level)

	Sets the power level of the XBee.

	Parameters

	power_level (PowerLevel) – New power level of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

PowerLevel

get_power_level()

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – IO Line to be assigned.

	cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If the given IO line does not have PWM capability or
cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – Read timeout in seconds.

	
update_bluetooth_password(new_password)

	Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
update_device_data_from(device)

	Updates the current node information with provided data. This is only
for internal use.

	Parameters

	device (AbstractXBeeDevice) – XBee to get the data from.

	Returns

	True if the node data has been updated, False otherwise.

	Return type

	Boolean

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the XBee.

	Parameters

	
	xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

	xbee_firmware_file (String, optional, default=`None`) – Location of
the XBee binary firmware file.

	bootloader_firmware_file (String, optional, default=`None`) – Location
of the bootloader binary firmware file.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the update process (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
to receive progress information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	OperationNotSupportedException – If XBee does not support firmware update.

	FirmwareUpdateException – If there is any error during the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee so that parameter modifications persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them, the XBee reverts back to
previously saved parameters the next time the module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_changes_enabled() to get its status and
enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
class digi.xbee.devices.Raw802Device(port=None, baud_rate=None, data_bits=<sphinx.ext.autodoc.importer._MockObject object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject object>, parity=<sphinx.ext.autodoc.importer._MockObject object>, flow_control=<FlowControl.NONE: None>, _sync_ops_timeout=4, comm_iface=None)[source]

	Bases: digi.xbee.devices.XBeeDevice

This class represents a local 802.15.4 XBee.

Class constructor. Instantiates a new Raw802Device with the
provided parameters.

	Parameters

	
	port (String) – Serial port identifier. Depends on operating system.
e.g. ‘/dev/ttyUSB0’ on ‘GNU/Linux’ or ‘COM3’ on Windows.

	baud_rate (Integer) – Serial port baud rate.

	(Integer, default (flow_control) – serial.EIGHTBITS): Port bitsize.

	(Integer, default – serial.STOPBITS_ONE): Port stop bits.

	(Character, default (parity) – serial.PARITY_NONE): Port parity.

	(Integer, default – FlowControl.NONE): Port flow control.

	_sync_ops_timeout (Integer, default: 3): Read timeout (in seconds).

	comm_iface (XBeeCommunicationInterface): Communication interface.

	Raises

	All exceptions raised by XBeeDevice.__init__() constructor.

See also

XBeeDevice

XBeeDevice.__init__()

	
open(force_settings=False)[source]

	Override.

See also

XBeeDevice.open()

	
get_protocol()[source]

	Override.

See also

XBeeDevice.get_protocol()

	
get_ai_status()[source]

	Returns the current association status of this XBee. It indicates
occurrences of errors during the modem initialization and connection.

	Returns

	
	The XBee association

	indication status.

	Return type

	AssociationIndicationStatus

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
send_data_64(x64addr, data, transmit_options=0)[source]

	Blocking method. This method sends data to a remote XBee with the given
64-bit address.

This method waits for the packet response. The default timeout is
XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS.

	Parameters

	
	x64addr (XBee64BitAddress) – 64-bit address of the
destination XBee.

	data (String or Bytearray) – Raw data to send.

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Returns

	The response.

	Return type

	XBeePacket

	Raises

	
	ValueError – If x64addr or data is None.

	TimeoutException – If response is not received before the read
timeout expires.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TransmitException – If the status of the response received is not OK.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBee64BitAddress

XBeePacket

	
send_data_async_64(x64addr, data, transmit_options=0)[source]

	Non-blocking method. This method sends data to a remote XBee with the
given 64-bit address.

This method does not wait for a response.

	Parameters

	
	x64addr (XBee64BitAddress) – 64-bit address of the
destination XBee.

	data (String or Bytearray) – Raw data to send.

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Raises

	
	ValueError – If x64addr or data is None.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBee64BitAddress

XBeePacket

	
send_data_16(x16addr, data, transmit_options=0)[source]

	Blocking method. This method sends data to a remote XBee with the given
16-bit address.

This method will wait for the packet response. The default timeout is
XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS.

	Parameters

	
	x16addr (XBee16BitAddress) – 16-bit address of the
destination XBee.

	data (String or Bytearray) – Raw data to send.

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Returns

	The response.

	Return type

	XBeePacket

	Raises

	
	ValueError – If x16addr or data is None.

	TimeoutException – If response is not received before the read
timeout expires.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TransmitException – If the status of the response received is not OK.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBee16BitAddress

XBeePacket

	
send_data_async_16(x16addr, data, transmit_options=0)[source]

	Non-blocking method. This method sends data to a remote XBee with the
given 16-bit address.

This method does not wait for a response.

	Parameters

	
	x16addr (XBee16BitAddress) – 16-bit address of the
destination XBee.

	data (String or Bytearray) – Raw data to send.

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Raises

	
	ValueError – If x16addr or data is None.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBee16BitAddress

XBeePacket

	
add_bluetooth_data_received_callback(callback)

	Adds a callback for the event BluetoothDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The Bluetooth data as a Bytearray.

	
add_data_received_callback(callback)

	Adds a callback for the event DataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The data received as an XBeeMessage.

	
add_expl_data_received_callback(callback)

	Adds a callback for the event ExplicitDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The explicit data received as a ExplicitXBeeMessage.

	
add_fs_frame_received_callback(callback)

	Adds a callback for the event FileSystemFrameReceived.

	Parameters

	callback (Function) – The callback. Receives four arguments.

	Source (AbstractXBeeDevice): The node that sent the
file system frame.

	Frame id (Integer): The received frame id.

	Command (FSCmd): The file system command.

	Receive options (Integer): Bitfield indicating receive options.

See also

AbstractXBeeDevice

FSCmd

ReceiveOptions

	
add_io_sample_received_callback(callback)

	Adds a callback for the event IOSampleReceived.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	The received IO sample as an IOSample.

	The remote XBee which sent the packet as a RemoteXBeeDevice.

	The time in which the packet was received as an Integer.

	
add_micropython_data_received_callback(callback)

	Adds a callback for the event MicroPythonDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The MicroPython data as a Bytearray.

	
add_modem_status_received_callback(callback)

	Adds a callback for the event ModemStatusReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The modem status as a ModemStatus.

	
add_packet_received_callback(callback)

	Adds a callback for the event PacketReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The received packet as a XBeeAPIPacket.

	
add_route_received_callback(callback)

	Adds a callback for the event RouteReceived.
This works for Zigbee and Digimesh devices.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	source (XBeeDevice): The source node.

	destination (RemoteXBeeDevice): The destination node.

	
	hops (List): List of intermediate hops from closest to source

	to closest to destination (RemoteXBeeDevice).

See also

XBeeDevice.del_route_received_callback()

	
add_socket_data_received_callback(callback)

	Adds a callback for the event SocketDataReceived.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	The socket ID as an Integer.

	The data received as Bytearray.

	
add_socket_data_received_from_callback(callback)

	Adds a callback for the event SocketDataReceivedFrom.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	The socket ID as an Integer.

	
	Source address pair (host, port) where host is a string

	representing an IPv4 address like ‘100.50.200.5’, and port
is an integer.

	The data received as Bytearray.

	
add_socket_state_received_callback(callback)

	Adds a callback for the event SocketStateReceived.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	The socket ID as an Integer.

	The state received as a SocketState.

	
add_user_data_relay_received_callback(callback)

	Adds a callback for the event RelayDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The relay data as a UserDataRelayMessage.

	
apply_changes()

	Applies changes via ‘AC’ command.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
apply_profile(profile_path, timeout=None, progress_callback=None)

	Applies the given XBee profile to the XBee.

	Parameters

	
	profile_path (String) – Path of the XBee profile file to apply.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the apply profile (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
receive progress information. Receives two arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	UpdateProfileException – If there is any error applying the XBee profile.

	
close()

	Closes the communication with the XBee.

This method guarantees that all threads running are stopped and the
serial port is closed.

	
comm_iface

	Returns the hardware interface associated to the XBee.

	Returns

	Hardware interface of the XBee.

	Return type

	XBeeCommunicationInterface

See also

XBeeCommunicationInterface

	
classmethod create_xbee_device(comm_port_data)

	Creates and returns an XBeeDevice from data of the port to
which is connected.

	Parameters

	
	comm_port_data (Dictionary) – Dictionary with all comm port data needed.

	dictionary keys are (The) –
“baudRate” –> Baud rate.

”port” –> Port number.

”bitSize” –> Bit size.

”stopBits” –> Stop bits.

”parity” –> Parity.

”flowControl” –> Flow control.

”timeout” for –> Timeout for synchronous operations (in seconds).

	Returns

	XBee object created.

	Return type

	XBeeDevice

	Raises

	SerialException – If the port to open does not exist or is already opened.

See also

XBeeDevice

	
del_bluetooth_data_received_callback(callback)

	Deletes a callback for the callback list of
BluetoothDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_data_received_callback(callback)

	Deletes a callback for the callback list of DataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_expl_data_received_callback(callback)

	Deletes a callback for the callback list of ExplicitDataReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_fs_frame_received_callback(callback)

	Deletes a callback for the callback list of
FileSystemFrameReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_io_sample_received_callback(callback)

	Deletes a callback for the callback list of IOSampleReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_micropython_data_received_callback(callback)

	Deletes a callback for the callback list of
MicroPythonDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_modem_status_received_callback(callback)

	Deletes a callback for the callback list of ModemStatusReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_packet_received_callback(callback)

	Deletes a callback for the callback list of PacketReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_route_received_callback(callback)

	Deletes a callback for the callback list of RouteReceived event.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeDevice.add_route_received_callback()

	
del_socket_data_received_callback(callback)

	Deletes a callback for the callback list of
SocketDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_socket_data_received_from_callback(callback)

	Deletes a callback for the callback list of
SocketDataReceivedFrom event.

	Parameters

	callback (Function) – The callback to delete.

	
del_socket_state_received_callback(callback)

	Deletes a callback for the callback list of
SocketStateReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_user_data_relay_received_callback(callback)

	Deletes a callback for the callback list of RelayDataReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
determine_protocol(hardware_version, firmware_version)

	Determines the XBee protocol based on the given hardware and firmware
versions.

	Parameters

	
	hardware_version (Integer) – Hardware version to get its protocol.

	firmware_version (Bytearray) – Firmware version to get its protocol.

	Returns

	
	XBee protocol corresponding to the given

	hardware and firmware versions.

	Return type

	XBeeProtocol

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
enable_apply_changes(value)

	Sets apply changes flag.

	Parameters

	value (Boolean) – True to enable apply changes flag, False to
disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth
password if not done previously. Use method
AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
execute_command(parameter, value=None, apply=None)

	Executes the provided command.

	Parameters

	
	(String or (parameter) – class: .ATStringCommand): AT command to execute.

	value (bytearray, optional, default=`None`) – Command value (if any).

	apply (Boolean, optional, default=`None`) – True to apply changes
in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

	
flush_queues()

	Flushes the packets queue.

	
get_16bit_addr()

	Returns the 16-bit address of the XBee.

	Returns

	16-bit address of the XBee.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
get_64bit_addr()

	Returns the 64-bit address of the XBee.

	Returns

	64-bit address of the XBee.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – IO line to get its ADC value.

	Returns

	Analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

set_io_configuration()

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the
serial interface of the XBee.

	Returns

	API output mode of the XBee.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee
following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	Last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Returns the 64-bit address of the XBee that is data destination.

	Returns

	64-bit address of destination XBee.

	Return type

	XBee64BitAddress

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

XBee64BitAddress

set_dest_address()

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

IOValue

set_io_configuration()

	
get_file_manager()

	Returns the file system manager for the XBee.

	Returns

	The file system manager.

	Return type

	FileSystemManager

	Raises

	FileSystemNotSupportedException – If the XBee does not support
filesystem.

	
get_firmware_version()

	Returns the firmware version of the XBee.

	Returns

	Firmware version of the XBee.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee.

	Returns

	Hardware version of the XBee.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its configuration.

	Returns

	IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

set_io_configuration()

	
get_io_sampling_rate()

	Returns the IO sampling rate of the XBee.

	Returns

	IO sampling rate of XBee.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

set_io_sampling_rate()

	
get_network()

	Returns the network of this XBee.

	Returns

	The XBee network.

	Return type

	XBeeNetwork

	
get_next_frame_id()

	Returns the next frame ID of the XBee.

	Returns

	The next frame ID of the XBee.

	Return type

	Integer

	
get_node_id()

	Returns the node identifier (‘NI’) value of the XBee.

	Returns

	Node identifier (‘NI’) of the XBee.

	Return type

	String

	
get_pan_id()

	Returns the operating PAN ID of the XBee.

	Returns

	Operating PAN ID of the XBee.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

set_pan_id()

	
get_parameter(parameter, parameter_value=None, apply=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
get_power_level()

	Returns the power level of the XBee.

	Returns

	Power level of the XBee.

	Return type

	PowerLevel

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

PowerLevel

set_power_level()

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its PWM duty cycle.

	Returns

	PWM duty cycle of the given IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If io_line has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	Role

See also

Role

	
get_route_to_node(remote, timeout=10, force=True)

	Gets the route from this XBee to the given remote node.

	For Zigbee:

	
	‘AR’ parameter of the local node must be configured with a value
different from ‘FF’.

	Set force to True to force the Zigbee remote node to return
its route independently of the local node configuration as high
or low RAM concentrator (‘DO’ of the local value)

	Parameters

	
	remote (RemoteXBeeDevice) – The remote node.

	timeout (Float, optional, default=10) – Maximum number of seconds to
wait for the route.

	force (Boolean) – True to force asking for the route, False
otherwise. Only for Zigbee.

	Returns

	
	Tuple containing route data:

	
	status (TransmitStatus): The transmit status.

	Tuple with route data (None if the route was not read in the
provided timeout):

	source (RemoteXBeeDevice): The source node of the
route.

	destination (RemoteXBeeDevice): The destination node
of the route.

	hops (List): List of intermediate nodes
(RemoteXBeeDevice) ordered from closest to source
to closest to destination node (source and destination not
included).

	Return type

	Tuple

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	Serial port read timeout in seconds.

	Return type

	Integer

	
get_xbee_device_callbacks()

	Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee
to get its callbacks. These callbacks are executed before user callbacks.

	Returns

	PacketReceived

	
has_explicit_packets()

	Returns if there are pending explicit packets to read. This does not
include non-explicit packets.

	Returns

	True if there are pending packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_packets()

	
has_packets()

	Returns if there are pending packets to read. This does not include
explicit packets.

	Returns

	True if there are pending packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_explicit_packets()

	
is_apply_changes_enabled()

	Returns whether apply changes flag is enabled.

	Returns

	True if apply changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_device_info_complete()

	Returns whether XBee node information is complete.

	Returns

	True if node information is complete, False otherwise.

	Return type

	Boolean

See also

AbstractXBeeDevice.read_device_info()

	
is_open()

	Returns whether this XBee is open.

	Returns

	Boolean. True if this XBee is open, False otherwise.

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
log

	Returns the XBee logger.

	Returns

	The XBee device logger.

	Return type

	Logger

	
operating_mode

	Returns the operating mode of this XBee.

	Returns

	OperatingMode. This XBee operating mode.

	
reachable

	Returns whether the XBee is reachable.

	Returns

	True if the device is reachable, False otherwise.

	Return type

	Boolean

	
read_data(timeout=None)

	Reads new data received by this XBee.

If timeout is specified, this method blocks until new data is received
or the timeout expires, throwing a TimeoutException in this case.

	Parameters

	timeout (Integer, optional) – Read timeout in seconds. If None,
this method is non-blocking and returns None if no data is available.

	Returns

	
	Read message or None if this XBee did not

	receive new data.

	Return type

	XBeeMessage

	Raises

	
	ValueError – If a timeout is specified and is less than 0.

	TimeoutException – If a timeout is specified and no data was
received during that time.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBeeMessage

	
read_data_from(remote_xbee, timeout=None)

	Reads new data received from the given remote XBee.

If timeout is specified, this method blocks until new data is received
or the timeout expires, throwing a TimeoutException in this case.

	Parameters

	
	remote_xbee (RemoteXBeeDevice) – Remote XBee that sent the data.

	timeout (Integer, optional) – Read timeout in seconds. If None,
this method is non-blocking and returns None if no data is available.

	Returns

	
	Read message sent by remote_xbee or None

	if this XBee did not receive new data.

	Return type

	XBeeMessage

	Raises

	
	ValueError – If a timeout is specified and is less than 0.

	TimeoutException – If a timeout is specified and no data was received
during that time.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBeeMessage

RemoteXBeeDevice

	
read_device_info(init=True, fire_event=True)

	Updates all instance parameters reading them from the XBee.

	Parameters

	
	init (Boolean, optional, default=`True`) – If False only not
initialized parameters are read, all if True.

	fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.is_device_info_complete()

	
read_io_sample()

	Returns an IO sample from the XBee containing the value of all enabled
digital IO and analog input channels.

	Returns

	IO sample read from the XBee.

	Return type

	IOSample

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOSample

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
scan_counter

	Returns the scan counter for this node.

	Returns

	The scan counter for this node.

	Return type

	Integer

	
send_bluetooth_data(data)

	Sends the given data to the Bluetooth interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If there is any problem sending the data.

See also

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

	
send_data(remote_xbee, data, transmit_options=0)

	Blocking method. This method sends data to a remote XBee synchronously.

This method will wait for the packet response. The default timeout is
XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS.

	Parameters

	
	remote_xbee (RemoteXBeeDevice) – Remote XBee to send data to.

	data (String or Bytearray) – Raw data to send.

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Returns

	The response.

	Return type

	XBeePacket

	Raises

	
	ValueError – If remote_xbee is None.

	TimeoutException – If response is not received before the read
timeout expires.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TransmitException – If the status of the response received is not OK.

	XBeeException – If the XBee’s communication interface is closed.

See also

RemoteXBeeDevice

XBeePacket

	
send_data_async(remote_xbee, data, transmit_options=0)

	Non-blocking method. This method sends data to a remote XBee.

This method does not wait for a response.

	Parameters

	
	remote_xbee (RemoteXBeeDevice) – the remote XBee to send data to.

	data (String or Bytearray) – Raw data to send.

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Raises

	
	ValueError – If remote_xbee is None.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

RemoteXBeeDevice

	
send_data_broadcast(data, transmit_options=0)

	Sends the provided data to all the XBee nodes of the network (broadcast).

This method blocks until a success or error transmit status arrives or
the configured receive timeout expires.

The received timeout is configured using method
AbstractXBeeDevice.set_sync_ops_timeout() and can be consulted
with AbstractXBeeDevice.get_sync_ops_timeout() method.

	Parameters

	
	data (String or Bytearray) – Data to send.

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TransmitException – If the status of the response received is not OK.

	XBeeException – If the XBee’s communication interface is closed.

	
send_micropython_data(data)

	Sends the given data to the MicroPython interface using a User Data
Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If there is any problem sending the data.

See also

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

	
send_packet(packet, sync=False)

	Sends the packet and waits for the response. The packet to send is
escaped depending on the current operating mode.

This method can be synchronous or asynchronous.

If synchronous, this method discards all response packets until it finds
the one that has the appropriate frame ID, that is, the sent packet’s
frame ID.

If asynchronous, this method does not wait for any response and returns
None.

	Parameters

	
	packet (XBeePacket) – The packet to send.

	sync (Boolean) – True to wait for the response of the sent packet
and return it, False otherwise.

	Returns

	
	Response packet if sync is True, None

	otherwise.

	Return type

	XBeePacket

	Raises

	
	TimeoutException – If sync is True and the response packet for
the sent one cannot be read.

	InvalidOperatingModeException – If the XBee operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the packet listener is not running or the XBee’s
communication interface is closed.

See also

XBeePacket

	
send_packet_sync_and_get_response(packet_to_send, timeout=None)

	Sends the packet and waits for its corresponding response.

	Parameters

	
	packet_to_send (XBeePacket) – The packet to transmit.

	timeout (Integer, optional, default=`None`) – Number of seconds to
wait. -1 to wait indefinitely.

	Returns

	Received response packet.

	Return type

	XBeePacket

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TimeoutException – If response is not received in the configured
timeout.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBeePacket

	
send_user_data_relay(local_interface, data)

	Sends the given data to the given XBee local interface.

	Parameters

	
	local_interface (XBeeLocalInterface) – Destination XBee
local interface.

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ValueError – If local_interface is None.

	XBeeException – If there is any problem sending the User Data Relay.

See also

XBeeLocalInterface

	
serial_port

	Returns the serial port associated to the XBee, if any.

	Returns

	
	Serial port of the XBee. None if the

	local XBee does not use serial communication.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee.

	Parameters

	value (XBee16BitAddress) – New 16-bit address of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If the protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

	Parameters

	api_output_mode (APIOutputMode) – New API output mode.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – New API output mode options.
Calculate this value using the method
APIOutputModeBit.calculate_api_output_mode_value()
with a set of APIOutputModeBit.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputModeBit

	
set_dest_address(addr)

	Sets the 64-bit address of the XBee that is data destination.

	Parameters

	addr (XBee64BitAddress or RemoteXBeeDevice) – Address itself or remote XBee to be data destination.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If addr is None.

See also

XBee64BitAddress

get_dest_address()

	
set_dio_change_detection(io_lines_set)

	Sets the digital IO lines to be monitored and sampled whenever their
status changes. A None set of lines disables this feature.

	Parameters

	io_lines_set – Set of IOLine.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – Digital IO line to sets its value.

	io_value (IOValue) – IO value to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – IO line to configure.

	io_mode (IOMode) – IO mode to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

get_io_configuration()

	
set_io_sampling_rate(rate)

	Sets the IO sampling rate of the XBee in seconds. A sample rate of 0
means the IO sampling feature is disabled.

	Parameters

	rate (Integer) – New IO sampling rate of the XBee in seconds.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

get_io_sampling_rate()

	
set_node_id(node_id)

	Sets the node identifier (‘NI`) value of the XBee.

	Parameters

	node_id (String) – New node identifier (‘NI’) of the XBee.

	Raises

	
	ValueError – If node_id is None or its length is greater than 20.

	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
set_pan_id(value)

	Sets the operating PAN ID of the XBee.

	Parameters

	value (Bytearray) – New operating PAN ID of the XBee. Must have only
1 or 2 bytes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

get_pan_id()

	
set_parameter(parameter, value, apply=None)

	Override.

	See:

	AbstractXBeeDevice.set_parameter()

	
set_power_level(power_level)

	Sets the power level of the XBee.

	Parameters

	power_level (PowerLevel) – New power level of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

PowerLevel

get_power_level()

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – IO Line to be assigned.

	cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If the given IO line does not have PWM capability or
cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – Read timeout in seconds.

	
update_bluetooth_password(new_password)

	Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
update_device_data_from(device)

	Updates the current node information with provided data. This is only
for internal use.

	Parameters

	device (AbstractXBeeDevice) – XBee to get the data from.

	Returns

	True if the node data has been updated, False otherwise.

	Return type

	Boolean

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the XBee.

	Parameters

	
	xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

	xbee_firmware_file (String, optional, default=`None`) – Location of
the XBee binary firmware file.

	bootloader_firmware_file (String, optional, default=`None`) – Location
of the bootloader binary firmware file.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the update process (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
to receive progress information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	OperationNotSupportedException – If XBee does not support firmware update.

	FirmwareUpdateException – If there is any error during the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee so that parameter modifications persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them, the XBee reverts back to
previously saved parameters the next time the module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_changes_enabled() to get its status and
enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
class digi.xbee.devices.DigiMeshDevice(port=None, baud_rate=None, data_bits=<sphinx.ext.autodoc.importer._MockObject object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject object>, parity=<sphinx.ext.autodoc.importer._MockObject object>, flow_control=<FlowControl.NONE: None>, _sync_ops_timeout=4, comm_iface=None)[source]

	Bases: digi.xbee.devices.XBeeDevice

This class represents a local DigiMesh XBee.

Class constructor. Instantiates a new DigiMeshDevice with the
provided parameters.

	Parameters

	
	port (String) – serial port identifier. Depends on operating system.
e.g. ‘/dev/ttyUSB0’ on ‘GNU/Linux’ or ‘COM3’ on Windows.

	baud_rate (Integer) – Serial port baud rate.

	(Integer, default (flow_control) – serial.EIGHTBITS): Port bitsize.

	(Integer, default – serial.STOPBITS_ONE): Port stop bits.

	(Character, default (parity) – serial.PARITY_NONE): Port parity.

	(Integer, default – FlowControl.NONE): port flow control.

	_sync_ops_timeout (Integer, default: 3): Read timeout (in seconds).

	comm_iface (XBeeCommunicationInterface): Communication interface.

	Raises

	All exceptions raised by XBeeDevice.__init__() constructor.

See also

XBeeDevice

XBeeDevice.__init__()

	
open(force_settings=False)[source]

	Override.

See also

XBeeDevice.open()

	
get_protocol()[source]

	Override.

See also

XBeeDevice.get_protocol()

	
build_aggregate_routes()[source]

	Forces all nodes in the network to automatically build routes to this
node. The receiving node establishes a route back to this node.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
send_data_64(x64addr, data, transmit_options=0)[source]

	Blocking method. This method sends data to a remote XBee with the given
64-bit address.

This method waits for the packet response. The default timeout is
XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS.

	Parameters

	
	x64addr (XBee64BitAddress) – 64-bit address of the
destination XBee.

	data (String or Bytearray) – Raw data to send.

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Returns

	The response.

	Return type

	XBeePacket

	Raises

	
	ValueError – If x64addr or data is None.

	TimeoutException – If response is not received before the read
timeout expires.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TransmitException – If the status of the response received is not OK.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBee64BitAddress

XBeePacket

	
send_data_async_64(x64addr, data, transmit_options=0)[source]

	Non-blocking method. This method sends data to a remote XBee with the
given 64-bit address.

This method does not wait for a response.

	Parameters

	
	x64addr (XBee64BitAddress) – 64-bit address of the
destination XBee.

	data (String or Bytearray) – Raw data to send.

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Raises

	
	ValueError – If x64addr or data is None.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBee64BitAddress

XBeePacket

	
read_expl_data(timeout=None)[source]

	Reads new explicit data received by this XBee.

If timeout is specified, this method blocks until new data is received
or the timeout expires, throwing a TimeoutException in this case.

	Parameters

	timeout (Integer, optional) – Read timeout in seconds. If None,
this method is non-blocking and returns None if there is no
explicit data available.

	Returns

	
	Read message or None if this XBee

	did not receive new explicit data.

	Return type

	ExplicitXBeeMessage

	Raises

	
	ValueError – If a timeout is specified and is less than 0.

	TimeoutException – If a timeout is specified and no explicit data was
received during that time.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

ExplicitXBeeMessage

	
read_expl_data_from(remote_xbee, timeout=None)[source]

	Reads new explicit data received from the given remote XBee.

If timeout is specified, this method blocks until new data is received
or the timeout expires, throwing a TimeoutException in this case.

	Parameters

	
	remote_xbee (RemoteXBeeDevice) – Remote XBee that sent the explicit data.

	timeout (Integer, optional) – Read timeout in seconds. If None,
this method is non-blocking and returns None if there is no
data available.

	Returns

	
	Read message sent by remote_xbee

	or None if this XBee did not receive new data from that node.

	Return type

	ExplicitXBeeMessage

	Raises

	
	ValueError – If a timeout is specified and is less than 0.

	TimeoutException – If a timeout is specified and no explicit data was
received during that time.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

ExplicitXBeeMessage

RemoteXBeeDevice

	
send_expl_data(remote_xbee, data, src_endpoint, dest_endpoint, cluster_id, profile_id, transmit_options=0)[source]

	Blocking method. Sends the provided explicit data to the given XBee,
source and destination end points, cluster and profile ids.

This method blocks until a success or error response arrives or the
configured receive timeout expires. The default timeout is
XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS.

	Parameters

	
	remote_xbee (RemoteXBeeDevice) – Remote XBee to send data to.

	data (String or Bytearray) – Raw data to send.

	src_endpoint (Integer) – Source endpoint of the transmission. 1 byte.

	dest_endpoint (Integer) – Destination endpoint of the transmission. 1 byte.

	cluster_id (Integer) – Cluster ID of the transmission (between 0x0 and 0xFFFF)

	profile_id (Integer) – Profile ID of the transmission (between 0x0 and 0xFFFF)

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Returns

	Response packet obtained after sending data.

	Return type

	XBeePacket

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TransmitException – If the status of the response received is not OK.

	XBeeException – If the XBee’s communication interface is closed.

	ValueError – if cluster_id or profile_id is less than 0x0 or
greater than 0xFFFF.

See also

RemoteXBeeDevice

XBeePacket

	
send_expl_data_broadcast(data, src_endpoint, dest_endpoint, cluster_id, profile_id, transmit_options=0)[source]

	Sends the provided explicit data to all the XBee nodes of the network
(broadcast) using provided source and destination end points, cluster
and profile ids.

This method blocks until a success or error transmit status arrives or
the configured receive timeout expires. The received timeout is
configured using the AbstractXBeeDevice.set_sync_ops_timeout()
method and can be consulted with method
AbstractXBeeDevice.get_sync_ops_timeout().

	Parameters

	
	data (String or Bytearray) – Raw data to send.

	src_endpoint (Integer) – Source endpoint of the transmission. 1 byte.

	dest_endpoint (Integer) – Destination endpoint of the transmission. 1 byte.

	cluster_id (Integer) – Cluster ID of the transmission (between 0x0 and 0xFFFF)

	profile_id (Integer) – Profile ID of the transmission (between 0x0 and 0xFFFF)

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TransmitException – If the status of the response received is not OK.

	XBeeException – If the XBee’s communication interface is closed.

	ValueError – if cluster_id or profile_id is less than 0x0 or
greater than 0xFFFF.

See also

XBeeDevice._send_expl_data()

	
send_expl_data_async(remote_xbee, data, src_endpoint, dest_endpoint, cluster_id, profile_id, transmit_options=0)[source]

	Non-blocking method. Sends the provided explicit data to the given XBee,
source and destination end points, cluster and profile ids.

	Parameters

	
	remote_xbee (RemoteXBeeDevice) – Remote XBee to send data to.

	data (String or Bytearray) – Raw data to send.

	src_endpoint (Integer) – Source endpoint of the transmission. 1 byte.

	dest_endpoint (Integer) – Destination endpoint of the transmission. 1 byte.

	cluster_id (Integer) – Cluster ID of the transmission (between 0x0 and 0xFFFF)

	profile_id (Integer) – Profile ID of the transmission (between 0x0 and 0xFFFF)

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

	ValueError – if cluster_id or profile_id is less than 0x0 or
greater than 0xFFFF.

See also

RemoteXBeeDevice

	
get_neighbors(neighbor_cb=None, finished_cb=None, timeout=None)[source]

	Returns the neighbors of this XBee. If neighbor_cb is not
defined, the process blocks during the specified timeout.

	Parameters

	
	neighbor_cb (Function, optional, default=`None`) – Method called
when a new neighbor is received. Receives two arguments:

	The XBee that owns this new neighbor.

	The new neighbor.

	finished_cb (Function, optional, default=`None`) – Method to execute
when the process finishes. Receives two arguments:

	The XBee that is searching for its neighbors.

	A list with the discovered neighbors.

	An error message if something went wrong.

	timeout (Float, optional, default=`NeighborFinder.DEFAULT_TIMEOUT`) – The timeout
in seconds.

	Returns

	
	List of Neighbor when neighbor_cb is not defined,

	None otherwise (in this case neighbors are received in the callback).

	Return type

	List

	Raises

	OperationNotSupportedException – If XBee protocol is not DigiMesh.

See also

com.digi.models.zdo.Neighbor

	
add_bluetooth_data_received_callback(callback)

	Adds a callback for the event BluetoothDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The Bluetooth data as a Bytearray.

	
add_data_received_callback(callback)

	Adds a callback for the event DataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The data received as an XBeeMessage.

	
add_expl_data_received_callback(callback)

	Adds a callback for the event ExplicitDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The explicit data received as a ExplicitXBeeMessage.

	
add_fs_frame_received_callback(callback)

	Adds a callback for the event FileSystemFrameReceived.

	Parameters

	callback (Function) – The callback. Receives four arguments.

	Source (AbstractXBeeDevice): The node that sent the
file system frame.

	Frame id (Integer): The received frame id.

	Command (FSCmd): The file system command.

	Receive options (Integer): Bitfield indicating receive options.

See also

AbstractXBeeDevice

FSCmd

ReceiveOptions

	
add_io_sample_received_callback(callback)

	Adds a callback for the event IOSampleReceived.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	The received IO sample as an IOSample.

	The remote XBee which sent the packet as a RemoteXBeeDevice.

	The time in which the packet was received as an Integer.

	
add_micropython_data_received_callback(callback)

	Adds a callback for the event MicroPythonDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The MicroPython data as a Bytearray.

	
add_modem_status_received_callback(callback)

	Adds a callback for the event ModemStatusReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The modem status as a ModemStatus.

	
add_packet_received_callback(callback)

	Adds a callback for the event PacketReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The received packet as a XBeeAPIPacket.

	
add_route_received_callback(callback)

	Adds a callback for the event RouteReceived.
This works for Zigbee and Digimesh devices.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	source (XBeeDevice): The source node.

	destination (RemoteXBeeDevice): The destination node.

	
	hops (List): List of intermediate hops from closest to source

	to closest to destination (RemoteXBeeDevice).

See also

XBeeDevice.del_route_received_callback()

	
add_socket_data_received_callback(callback)

	Adds a callback for the event SocketDataReceived.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	The socket ID as an Integer.

	The data received as Bytearray.

	
add_socket_data_received_from_callback(callback)

	Adds a callback for the event SocketDataReceivedFrom.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	The socket ID as an Integer.

	
	Source address pair (host, port) where host is a string

	representing an IPv4 address like ‘100.50.200.5’, and port
is an integer.

	The data received as Bytearray.

	
add_socket_state_received_callback(callback)

	Adds a callback for the event SocketStateReceived.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	The socket ID as an Integer.

	The state received as a SocketState.

	
add_user_data_relay_received_callback(callback)

	Adds a callback for the event RelayDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The relay data as a UserDataRelayMessage.

	
apply_changes()

	Applies changes via ‘AC’ command.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
apply_profile(profile_path, timeout=None, progress_callback=None)

	Applies the given XBee profile to the XBee.

	Parameters

	
	profile_path (String) – Path of the XBee profile file to apply.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the apply profile (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
receive progress information. Receives two arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	UpdateProfileException – If there is any error applying the XBee profile.

	
close()

	Closes the communication with the XBee.

This method guarantees that all threads running are stopped and the
serial port is closed.

	
comm_iface

	Returns the hardware interface associated to the XBee.

	Returns

	Hardware interface of the XBee.

	Return type

	XBeeCommunicationInterface

See also

XBeeCommunicationInterface

	
classmethod create_xbee_device(comm_port_data)

	Creates and returns an XBeeDevice from data of the port to
which is connected.

	Parameters

	
	comm_port_data (Dictionary) – Dictionary with all comm port data needed.

	dictionary keys are (The) –
“baudRate” –> Baud rate.

”port” –> Port number.

”bitSize” –> Bit size.

”stopBits” –> Stop bits.

”parity” –> Parity.

”flowControl” –> Flow control.

”timeout” for –> Timeout for synchronous operations (in seconds).

	Returns

	XBee object created.

	Return type

	XBeeDevice

	Raises

	SerialException – If the port to open does not exist or is already opened.

See also

XBeeDevice

	
del_bluetooth_data_received_callback(callback)

	Deletes a callback for the callback list of
BluetoothDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_data_received_callback(callback)

	Deletes a callback for the callback list of DataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_expl_data_received_callback(callback)

	Deletes a callback for the callback list of ExplicitDataReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_fs_frame_received_callback(callback)

	Deletes a callback for the callback list of
FileSystemFrameReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_io_sample_received_callback(callback)

	Deletes a callback for the callback list of IOSampleReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_micropython_data_received_callback(callback)

	Deletes a callback for the callback list of
MicroPythonDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_modem_status_received_callback(callback)

	Deletes a callback for the callback list of ModemStatusReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_packet_received_callback(callback)

	Deletes a callback for the callback list of PacketReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_route_received_callback(callback)

	Deletes a callback for the callback list of RouteReceived event.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeDevice.add_route_received_callback()

	
del_socket_data_received_callback(callback)

	Deletes a callback for the callback list of
SocketDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_socket_data_received_from_callback(callback)

	Deletes a callback for the callback list of
SocketDataReceivedFrom event.

	Parameters

	callback (Function) – The callback to delete.

	
del_socket_state_received_callback(callback)

	Deletes a callback for the callback list of
SocketStateReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_user_data_relay_received_callback(callback)

	Deletes a callback for the callback list of RelayDataReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
determine_protocol(hardware_version, firmware_version)

	Determines the XBee protocol based on the given hardware and firmware
versions.

	Parameters

	
	hardware_version (Integer) – Hardware version to get its protocol.

	firmware_version (Bytearray) – Firmware version to get its protocol.

	Returns

	
	XBee protocol corresponding to the given

	hardware and firmware versions.

	Return type

	XBeeProtocol

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
enable_apply_changes(value)

	Sets apply changes flag.

	Parameters

	value (Boolean) – True to enable apply changes flag, False to
disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth
password if not done previously. Use method
AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
execute_command(parameter, value=None, apply=None)

	Executes the provided command.

	Parameters

	
	(String or (parameter) – class: .ATStringCommand): AT command to execute.

	value (bytearray, optional, default=`None`) – Command value (if any).

	apply (Boolean, optional, default=`None`) – True to apply changes
in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

	
flush_queues()

	Flushes the packets queue.

	
get_16bit_addr()

	Returns the 16-bit address of the XBee.

	Returns

	16-bit address of the XBee.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
get_64bit_addr()

	Returns the 64-bit address of the XBee.

	Returns

	64-bit address of the XBee.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – IO line to get its ADC value.

	Returns

	Analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

set_io_configuration()

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the
serial interface of the XBee.

	Returns

	API output mode of the XBee.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee
following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	Last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Returns the 64-bit address of the XBee that is data destination.

	Returns

	64-bit address of destination XBee.

	Return type

	XBee64BitAddress

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

XBee64BitAddress

set_dest_address()

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

IOValue

set_io_configuration()

	
get_file_manager()

	Returns the file system manager for the XBee.

	Returns

	The file system manager.

	Return type

	FileSystemManager

	Raises

	FileSystemNotSupportedException – If the XBee does not support
filesystem.

	
get_firmware_version()

	Returns the firmware version of the XBee.

	Returns

	Firmware version of the XBee.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee.

	Returns

	Hardware version of the XBee.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its configuration.

	Returns

	IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

set_io_configuration()

	
get_io_sampling_rate()

	Returns the IO sampling rate of the XBee.

	Returns

	IO sampling rate of XBee.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

set_io_sampling_rate()

	
get_network()

	Returns the network of this XBee.

	Returns

	The XBee network.

	Return type

	XBeeNetwork

	
get_next_frame_id()

	Returns the next frame ID of the XBee.

	Returns

	The next frame ID of the XBee.

	Return type

	Integer

	
get_node_id()

	Returns the node identifier (‘NI’) value of the XBee.

	Returns

	Node identifier (‘NI’) of the XBee.

	Return type

	String

	
get_pan_id()

	Returns the operating PAN ID of the XBee.

	Returns

	Operating PAN ID of the XBee.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

set_pan_id()

	
get_parameter(parameter, parameter_value=None, apply=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
get_power_level()

	Returns the power level of the XBee.

	Returns

	Power level of the XBee.

	Return type

	PowerLevel

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

PowerLevel

set_power_level()

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its PWM duty cycle.

	Returns

	PWM duty cycle of the given IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If io_line has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	Role

See also

Role

	
get_route_to_node(remote, timeout=10, force=True)

	Gets the route from this XBee to the given remote node.

	For Zigbee:

	
	‘AR’ parameter of the local node must be configured with a value
different from ‘FF’.

	Set force to True to force the Zigbee remote node to return
its route independently of the local node configuration as high
or low RAM concentrator (‘DO’ of the local value)

	Parameters

	
	remote (RemoteXBeeDevice) – The remote node.

	timeout (Float, optional, default=10) – Maximum number of seconds to
wait for the route.

	force (Boolean) – True to force asking for the route, False
otherwise. Only for Zigbee.

	Returns

	
	Tuple containing route data:

	
	status (TransmitStatus): The transmit status.

	Tuple with route data (None if the route was not read in the
provided timeout):

	source (RemoteXBeeDevice): The source node of the
route.

	destination (RemoteXBeeDevice): The destination node
of the route.

	hops (List): List of intermediate nodes
(RemoteXBeeDevice) ordered from closest to source
to closest to destination node (source and destination not
included).

	Return type

	Tuple

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	Serial port read timeout in seconds.

	Return type

	Integer

	
get_xbee_device_callbacks()

	Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee
to get its callbacks. These callbacks are executed before user callbacks.

	Returns

	PacketReceived

	
has_explicit_packets()

	Returns if there are pending explicit packets to read. This does not
include non-explicit packets.

	Returns

	True if there are pending packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_packets()

	
has_packets()

	Returns if there are pending packets to read. This does not include
explicit packets.

	Returns

	True if there are pending packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_explicit_packets()

	
is_apply_changes_enabled()

	Returns whether apply changes flag is enabled.

	Returns

	True if apply changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_device_info_complete()

	Returns whether XBee node information is complete.

	Returns

	True if node information is complete, False otherwise.

	Return type

	Boolean

See also

AbstractXBeeDevice.read_device_info()

	
is_open()

	Returns whether this XBee is open.

	Returns

	Boolean. True if this XBee is open, False otherwise.

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
log

	Returns the XBee logger.

	Returns

	The XBee device logger.

	Return type

	Logger

	
operating_mode

	Returns the operating mode of this XBee.

	Returns

	OperatingMode. This XBee operating mode.

	
reachable

	Returns whether the XBee is reachable.

	Returns

	True if the device is reachable, False otherwise.

	Return type

	Boolean

	
read_data(timeout=None)

	Reads new data received by this XBee.

If timeout is specified, this method blocks until new data is received
or the timeout expires, throwing a TimeoutException in this case.

	Parameters

	timeout (Integer, optional) – Read timeout in seconds. If None,
this method is non-blocking and returns None if no data is available.

	Returns

	
	Read message or None if this XBee did not

	receive new data.

	Return type

	XBeeMessage

	Raises

	
	ValueError – If a timeout is specified and is less than 0.

	TimeoutException – If a timeout is specified and no data was
received during that time.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBeeMessage

	
read_data_from(remote_xbee, timeout=None)

	Reads new data received from the given remote XBee.

If timeout is specified, this method blocks until new data is received
or the timeout expires, throwing a TimeoutException in this case.

	Parameters

	
	remote_xbee (RemoteXBeeDevice) – Remote XBee that sent the data.

	timeout (Integer, optional) – Read timeout in seconds. If None,
this method is non-blocking and returns None if no data is available.

	Returns

	
	Read message sent by remote_xbee or None

	if this XBee did not receive new data.

	Return type

	XBeeMessage

	Raises

	
	ValueError – If a timeout is specified and is less than 0.

	TimeoutException – If a timeout is specified and no data was received
during that time.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBeeMessage

RemoteXBeeDevice

	
read_device_info(init=True, fire_event=True)

	Updates all instance parameters reading them from the XBee.

	Parameters

	
	init (Boolean, optional, default=`True`) – If False only not
initialized parameters are read, all if True.

	fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.is_device_info_complete()

	
read_io_sample()

	Returns an IO sample from the XBee containing the value of all enabled
digital IO and analog input channels.

	Returns

	IO sample read from the XBee.

	Return type

	IOSample

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOSample

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
scan_counter

	Returns the scan counter for this node.

	Returns

	The scan counter for this node.

	Return type

	Integer

	
send_bluetooth_data(data)

	Sends the given data to the Bluetooth interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If there is any problem sending the data.

See also

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

	
send_data(remote_xbee, data, transmit_options=0)

	Blocking method. This method sends data to a remote XBee synchronously.

This method will wait for the packet response. The default timeout is
XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS.

	Parameters

	
	remote_xbee (RemoteXBeeDevice) – Remote XBee to send data to.

	data (String or Bytearray) – Raw data to send.

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Returns

	The response.

	Return type

	XBeePacket

	Raises

	
	ValueError – If remote_xbee is None.

	TimeoutException – If response is not received before the read
timeout expires.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TransmitException – If the status of the response received is not OK.

	XBeeException – If the XBee’s communication interface is closed.

See also

RemoteXBeeDevice

XBeePacket

	
send_data_async(remote_xbee, data, transmit_options=0)

	Non-blocking method. This method sends data to a remote XBee.

This method does not wait for a response.

	Parameters

	
	remote_xbee (RemoteXBeeDevice) – the remote XBee to send data to.

	data (String or Bytearray) – Raw data to send.

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Raises

	
	ValueError – If remote_xbee is None.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

RemoteXBeeDevice

	
send_data_broadcast(data, transmit_options=0)

	Sends the provided data to all the XBee nodes of the network (broadcast).

This method blocks until a success or error transmit status arrives or
the configured receive timeout expires.

The received timeout is configured using method
AbstractXBeeDevice.set_sync_ops_timeout() and can be consulted
with AbstractXBeeDevice.get_sync_ops_timeout() method.

	Parameters

	
	data (String or Bytearray) – Data to send.

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TransmitException – If the status of the response received is not OK.

	XBeeException – If the XBee’s communication interface is closed.

	
send_micropython_data(data)

	Sends the given data to the MicroPython interface using a User Data
Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If there is any problem sending the data.

See also

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

	
send_packet(packet, sync=False)

	Sends the packet and waits for the response. The packet to send is
escaped depending on the current operating mode.

This method can be synchronous or asynchronous.

If synchronous, this method discards all response packets until it finds
the one that has the appropriate frame ID, that is, the sent packet’s
frame ID.

If asynchronous, this method does not wait for any response and returns
None.

	Parameters

	
	packet (XBeePacket) – The packet to send.

	sync (Boolean) – True to wait for the response of the sent packet
and return it, False otherwise.

	Returns

	
	Response packet if sync is True, None

	otherwise.

	Return type

	XBeePacket

	Raises

	
	TimeoutException – If sync is True and the response packet for
the sent one cannot be read.

	InvalidOperatingModeException – If the XBee operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the packet listener is not running or the XBee’s
communication interface is closed.

See also

XBeePacket

	
send_packet_sync_and_get_response(packet_to_send, timeout=None)

	Sends the packet and waits for its corresponding response.

	Parameters

	
	packet_to_send (XBeePacket) – The packet to transmit.

	timeout (Integer, optional, default=`None`) – Number of seconds to
wait. -1 to wait indefinitely.

	Returns

	Received response packet.

	Return type

	XBeePacket

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TimeoutException – If response is not received in the configured
timeout.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBeePacket

	
send_user_data_relay(local_interface, data)

	Sends the given data to the given XBee local interface.

	Parameters

	
	local_interface (XBeeLocalInterface) – Destination XBee
local interface.

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ValueError – If local_interface is None.

	XBeeException – If there is any problem sending the User Data Relay.

See also

XBeeLocalInterface

	
serial_port

	Returns the serial port associated to the XBee, if any.

	Returns

	
	Serial port of the XBee. None if the

	local XBee does not use serial communication.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee.

	Parameters

	value (XBee16BitAddress) – New 16-bit address of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If the protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

	Parameters

	api_output_mode (APIOutputMode) – New API output mode.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – New API output mode options.
Calculate this value using the method
APIOutputModeBit.calculate_api_output_mode_value()
with a set of APIOutputModeBit.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputModeBit

	
set_dest_address(addr)

	Sets the 64-bit address of the XBee that is data destination.

	Parameters

	addr (XBee64BitAddress or RemoteXBeeDevice) – Address itself or remote XBee to be data destination.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If addr is None.

See also

XBee64BitAddress

get_dest_address()

	
set_dio_change_detection(io_lines_set)

	Sets the digital IO lines to be monitored and sampled whenever their
status changes. A None set of lines disables this feature.

	Parameters

	io_lines_set – Set of IOLine.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – Digital IO line to sets its value.

	io_value (IOValue) – IO value to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – IO line to configure.

	io_mode (IOMode) – IO mode to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

get_io_configuration()

	
set_io_sampling_rate(rate)

	Sets the IO sampling rate of the XBee in seconds. A sample rate of 0
means the IO sampling feature is disabled.

	Parameters

	rate (Integer) – New IO sampling rate of the XBee in seconds.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

get_io_sampling_rate()

	
set_node_id(node_id)

	Sets the node identifier (‘NI`) value of the XBee.

	Parameters

	node_id (String) – New node identifier (‘NI’) of the XBee.

	Raises

	
	ValueError – If node_id is None or its length is greater than 20.

	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
set_pan_id(value)

	Sets the operating PAN ID of the XBee.

	Parameters

	value (Bytearray) – New operating PAN ID of the XBee. Must have only
1 or 2 bytes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

get_pan_id()

	
set_parameter(parameter, value, apply=None)

	Override.

	See:

	AbstractXBeeDevice.set_parameter()

	
set_power_level(power_level)

	Sets the power level of the XBee.

	Parameters

	power_level (PowerLevel) – New power level of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

PowerLevel

get_power_level()

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – IO Line to be assigned.

	cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If the given IO line does not have PWM capability or
cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – Read timeout in seconds.

	
update_bluetooth_password(new_password)

	Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
update_device_data_from(device)

	Updates the current node information with provided data. This is only
for internal use.

	Parameters

	device (AbstractXBeeDevice) – XBee to get the data from.

	Returns

	True if the node data has been updated, False otherwise.

	Return type

	Boolean

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the XBee.

	Parameters

	
	xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

	xbee_firmware_file (String, optional, default=`None`) – Location of
the XBee binary firmware file.

	bootloader_firmware_file (String, optional, default=`None`) – Location
of the bootloader binary firmware file.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the update process (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
to receive progress information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	OperationNotSupportedException – If XBee does not support firmware update.

	FirmwareUpdateException – If there is any error during the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee so that parameter modifications persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them, the XBee reverts back to
previously saved parameters the next time the module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_changes_enabled() to get its status and
enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
class digi.xbee.devices.DigiPointDevice(port=None, baud_rate=None, data_bits=<sphinx.ext.autodoc.importer._MockObject object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject object>, parity=<sphinx.ext.autodoc.importer._MockObject object>, flow_control=<FlowControl.NONE: None>, _sync_ops_timeout=4, comm_iface=None)[source]

	Bases: digi.xbee.devices.XBeeDevice

This class represents a local DigiPoint XBee.

Class constructor. Instantiates a new DigiPointDevice with
the provided parameters.

	Parameters

	
	port (String) – Serial port identifier. Depends on operating system.
e.g. ‘/dev/ttyUSB0’ on ‘GNU/Linux’ or ‘COM3’ on Windows.

	baud_rate (Integer) – Serial port baud rate.

	(Integer, default (_sync_ops_timeout) – serial.EIGHTBITS): Port bitsize.

	(Integer, default – serial.STOPBITS_ONE): Port stop bits.

	(Character, default (parity) – serial.PARITY_NONE): Port parity.

	(Integer, default – FlowControl.NONE): Port flow control.

	(Integer, default – 3): Read timeout (in seconds).

	comm_iface (XBeeCommunicationInterface) – Communication interface.

	Raises

	All exceptions raised by XBeeDevice.__init__() constructor.

See also

XBeeDevice

XBeeDevice.__init__()

	
open(force_settings=False)[source]

	Override.

See also

XBeeDevice.open()

	
get_protocol()[source]

	Override.

See also

XBeeDevice.get_protocol()

	
send_data_64_16(x64addr, x16addr, data, transmit_options=0)[source]

	Blocking method. This method sends data to the remote XBee with the
given 64-bit/16-bit address.

This method waits for the packet response. The default timeout is
XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS.

	Parameters

	
	x64addr (XBee64BitAddress) – 64-bit address of the
destination XBee.

	x16addr (XBee16BitAddress) – 16-bit address of the
destination XBee, XBee16BitAddress.UNKNOWN_ADDRESS if unknown.

	data (String or Bytearray) – Raw data to send.

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Returns

	The response.

	Return type

	XBeePacket

	Raises

	
	ValueError – If x64addr, x16addr or data is None.

	TimeoutException – If response is not received before the read
timeout expires.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TransmitException – If the status of the response received is not OK.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBee64BitAddress

XBee16BitAddress

XBeePacket

	
send_data_async_64_16(x64addr, x16addr, data, transmit_options=0)[source]

	Non-blocking method. This method sends data to a remote XBee with the
given 64-bit/16-bit address.

This method does not wait for a response.

	Parameters

	
	x64addr (XBee64BitAddress) – 64-bit address of the
destination XBee.

	x16addr (XBee16BitAddress) – 16-bit address of the
destination XBee, XBee16BitAddress.UNKNOWN_ADDRESS if unknown.

	data (String or Bytearray) – Raw data to send.

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Raises

	
	ValueError – If x64addr, x16addr or data is None.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBee64BitAddress

XBee16BitAddress

XBeePacket

	
read_expl_data(timeout=None)[source]

	Reads new explicit data received by this XBee.

If timeout is specified, this method blocks until new data is received
or the timeout expires, throwing a TimeoutException in this case.

	Parameters

	timeout (Integer, optional) – Read timeout in seconds. If None,
this method is non-blocking and returns None if there is no
explicit data available.

	Returns

	
	Read message or None if this XBee

	did not receive new explicit data.

	Return type

	ExplicitXBeeMessage

	Raises

	
	ValueError – If a timeout is specified and is less than 0.

	TimeoutException – If a timeout is specified and no explicit data was
received during that time.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

ExplicitXBeeMessage

	
read_expl_data_from(remote_xbee, timeout=None)[source]

	Reads new explicit data received from the given remote XBee.

If timeout is specified, this method blocks until new data is received
or the timeout expires, throwing a TimeoutException in this case.

	Parameters

	
	remote_xbee (RemoteXBeeDevice) – Remote XBee that sent the explicit data.

	timeout (Integer, optional) – Read timeout in seconds. If None,
this method is non-blocking and returns None if there is no
data available.

	Returns

	
	Read message sent by remote_xbee

	or None if this XBee did not receive new data from that node.

	Return type

	ExplicitXBeeMessage

	Raises

	
	ValueError – If a timeout is specified and is less than 0.

	TimeoutException – If a timeout is specified and no explicit data was
received during that time.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

ExplicitXBeeMessage

RemoteXBeeDevice

	
send_expl_data(remote_xbee, data, src_endpoint, dest_endpoint, cluster_id, profile_id, transmit_options=0)[source]

	Blocking method. Sends the provided explicit data to the given XBee,
source and destination end points, cluster and profile ids.

This method blocks until a success or error response arrives or the
configured receive timeout expires. The default timeout is
XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS.

	Parameters

	
	remote_xbee (RemoteXBeeDevice) – Remote XBee to send data to.

	data (String or Bytearray) – Raw data to send.

	src_endpoint (Integer) – Source endpoint of the transmission. 1 byte.

	dest_endpoint (Integer) – Destination endpoint of the transmission. 1 byte.

	cluster_id (Integer) – Cluster ID of the transmission (between 0x0 and 0xFFFF)

	profile_id (Integer) – Profile ID of the transmission (between 0x0 and 0xFFFF)

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Returns

	Response packet obtained after sending data.

	Return type

	XBeePacket

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TransmitException – If the status of the response received is not OK.

	XBeeException – If the XBee’s communication interface is closed.

	ValueError – if cluster_id or profile_id is less than 0x0 or
greater than 0xFFFF.

See also

RemoteXBeeDevice

XBeePacket

	
send_expl_data_broadcast(data, src_endpoint, dest_endpoint, cluster_id, profile_id, transmit_options=0)[source]

	Sends the provided explicit data to all the XBee nodes of the network
(broadcast) using provided source and destination end points, cluster
and profile ids.

This method blocks until a success or error transmit status arrives or
the configured receive timeout expires. The received timeout is
configured using the AbstractXBeeDevice.set_sync_ops_timeout()
method and can be consulted with method
AbstractXBeeDevice.get_sync_ops_timeout().

	Parameters

	
	data (String or Bytearray) – Raw data to send.

	src_endpoint (Integer) – Source endpoint of the transmission. 1 byte.

	dest_endpoint (Integer) – Destination endpoint of the transmission. 1 byte.

	cluster_id (Integer) – Cluster ID of the transmission (between 0x0 and 0xFFFF)

	profile_id (Integer) – Profile ID of the transmission (between 0x0 and 0xFFFF)

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TransmitException – If the status of the response received is not OK.

	XBeeException – If the XBee’s communication interface is closed.

	ValueError – if cluster_id or profile_id is less than 0x0 or
greater than 0xFFFF.

See also

XBeeDevice._send_expl_data()

	
send_expl_data_async(remote_xbee, data, src_endpoint, dest_endpoint, cluster_id, profile_id, transmit_options=0)[source]

	Non-blocking method. Sends the provided explicit data to the given XBee,
source and destination end points, cluster and profile ids.

	Parameters

	
	remote_xbee (RemoteXBeeDevice) – Remote XBee to send data to.

	data (String or Bytearray) – Raw data to send.

	src_endpoint (Integer) – Source endpoint of the transmission. 1 byte.

	dest_endpoint (Integer) – Destination endpoint of the transmission. 1 byte.

	cluster_id (Integer) – Cluster ID of the transmission (between 0x0 and 0xFFFF)

	profile_id (Integer) – Profile ID of the transmission (between 0x0 and 0xFFFF)

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

	ValueError – if cluster_id or profile_id is less than 0x0 or
greater than 0xFFFF.

See also

RemoteXBeeDevice

	
add_bluetooth_data_received_callback(callback)

	Adds a callback for the event BluetoothDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The Bluetooth data as a Bytearray.

	
add_data_received_callback(callback)

	Adds a callback for the event DataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The data received as an XBeeMessage.

	
add_expl_data_received_callback(callback)

	Adds a callback for the event ExplicitDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The explicit data received as a ExplicitXBeeMessage.

	
add_fs_frame_received_callback(callback)

	Adds a callback for the event FileSystemFrameReceived.

	Parameters

	callback (Function) – The callback. Receives four arguments.

	Source (AbstractXBeeDevice): The node that sent the
file system frame.

	Frame id (Integer): The received frame id.

	Command (FSCmd): The file system command.

	Receive options (Integer): Bitfield indicating receive options.

See also

AbstractXBeeDevice

FSCmd

ReceiveOptions

	
add_io_sample_received_callback(callback)

	Adds a callback for the event IOSampleReceived.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	The received IO sample as an IOSample.

	The remote XBee which sent the packet as a RemoteXBeeDevice.

	The time in which the packet was received as an Integer.

	
add_micropython_data_received_callback(callback)

	Adds a callback for the event MicroPythonDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The MicroPython data as a Bytearray.

	
add_modem_status_received_callback(callback)

	Adds a callback for the event ModemStatusReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The modem status as a ModemStatus.

	
add_packet_received_callback(callback)

	Adds a callback for the event PacketReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The received packet as a XBeeAPIPacket.

	
add_route_received_callback(callback)

	Adds a callback for the event RouteReceived.
This works for Zigbee and Digimesh devices.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	source (XBeeDevice): The source node.

	destination (RemoteXBeeDevice): The destination node.

	
	hops (List): List of intermediate hops from closest to source

	to closest to destination (RemoteXBeeDevice).

See also

XBeeDevice.del_route_received_callback()

	
add_socket_data_received_callback(callback)

	Adds a callback for the event SocketDataReceived.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	The socket ID as an Integer.

	The data received as Bytearray.

	
add_socket_data_received_from_callback(callback)

	Adds a callback for the event SocketDataReceivedFrom.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	The socket ID as an Integer.

	
	Source address pair (host, port) where host is a string

	representing an IPv4 address like ‘100.50.200.5’, and port
is an integer.

	The data received as Bytearray.

	
add_socket_state_received_callback(callback)

	Adds a callback for the event SocketStateReceived.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	The socket ID as an Integer.

	The state received as a SocketState.

	
add_user_data_relay_received_callback(callback)

	Adds a callback for the event RelayDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The relay data as a UserDataRelayMessage.

	
apply_changes()

	Applies changes via ‘AC’ command.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
apply_profile(profile_path, timeout=None, progress_callback=None)

	Applies the given XBee profile to the XBee.

	Parameters

	
	profile_path (String) – Path of the XBee profile file to apply.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the apply profile (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
receive progress information. Receives two arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	UpdateProfileException – If there is any error applying the XBee profile.

	
close()

	Closes the communication with the XBee.

This method guarantees that all threads running are stopped and the
serial port is closed.

	
comm_iface

	Returns the hardware interface associated to the XBee.

	Returns

	Hardware interface of the XBee.

	Return type

	XBeeCommunicationInterface

See also

XBeeCommunicationInterface

	
classmethod create_xbee_device(comm_port_data)

	Creates and returns an XBeeDevice from data of the port to
which is connected.

	Parameters

	
	comm_port_data (Dictionary) – Dictionary with all comm port data needed.

	dictionary keys are (The) –
“baudRate” –> Baud rate.

”port” –> Port number.

”bitSize” –> Bit size.

”stopBits” –> Stop bits.

”parity” –> Parity.

”flowControl” –> Flow control.

”timeout” for –> Timeout for synchronous operations (in seconds).

	Returns

	XBee object created.

	Return type

	XBeeDevice

	Raises

	SerialException – If the port to open does not exist or is already opened.

See also

XBeeDevice

	
del_bluetooth_data_received_callback(callback)

	Deletes a callback for the callback list of
BluetoothDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_data_received_callback(callback)

	Deletes a callback for the callback list of DataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_expl_data_received_callback(callback)

	Deletes a callback for the callback list of ExplicitDataReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_fs_frame_received_callback(callback)

	Deletes a callback for the callback list of
FileSystemFrameReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_io_sample_received_callback(callback)

	Deletes a callback for the callback list of IOSampleReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_micropython_data_received_callback(callback)

	Deletes a callback for the callback list of
MicroPythonDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_modem_status_received_callback(callback)

	Deletes a callback for the callback list of ModemStatusReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_packet_received_callback(callback)

	Deletes a callback for the callback list of PacketReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_route_received_callback(callback)

	Deletes a callback for the callback list of RouteReceived event.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeDevice.add_route_received_callback()

	
del_socket_data_received_callback(callback)

	Deletes a callback for the callback list of
SocketDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_socket_data_received_from_callback(callback)

	Deletes a callback for the callback list of
SocketDataReceivedFrom event.

	Parameters

	callback (Function) – The callback to delete.

	
del_socket_state_received_callback(callback)

	Deletes a callback for the callback list of
SocketStateReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_user_data_relay_received_callback(callback)

	Deletes a callback for the callback list of RelayDataReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
determine_protocol(hardware_version, firmware_version)

	Determines the XBee protocol based on the given hardware and firmware
versions.

	Parameters

	
	hardware_version (Integer) – Hardware version to get its protocol.

	firmware_version (Bytearray) – Firmware version to get its protocol.

	Returns

	
	XBee protocol corresponding to the given

	hardware and firmware versions.

	Return type

	XBeeProtocol

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
enable_apply_changes(value)

	Sets apply changes flag.

	Parameters

	value (Boolean) – True to enable apply changes flag, False to
disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth
password if not done previously. Use method
AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
execute_command(parameter, value=None, apply=None)

	Executes the provided command.

	Parameters

	
	(String or (parameter) – class: .ATStringCommand): AT command to execute.

	value (bytearray, optional, default=`None`) – Command value (if any).

	apply (Boolean, optional, default=`None`) – True to apply changes
in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

	
flush_queues()

	Flushes the packets queue.

	
get_16bit_addr()

	Returns the 16-bit address of the XBee.

	Returns

	16-bit address of the XBee.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
get_64bit_addr()

	Returns the 64-bit address of the XBee.

	Returns

	64-bit address of the XBee.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – IO line to get its ADC value.

	Returns

	Analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

set_io_configuration()

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the
serial interface of the XBee.

	Returns

	API output mode of the XBee.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee
following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	Last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Returns the 64-bit address of the XBee that is data destination.

	Returns

	64-bit address of destination XBee.

	Return type

	XBee64BitAddress

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

XBee64BitAddress

set_dest_address()

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

IOValue

set_io_configuration()

	
get_file_manager()

	Returns the file system manager for the XBee.

	Returns

	The file system manager.

	Return type

	FileSystemManager

	Raises

	FileSystemNotSupportedException – If the XBee does not support
filesystem.

	
get_firmware_version()

	Returns the firmware version of the XBee.

	Returns

	Firmware version of the XBee.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee.

	Returns

	Hardware version of the XBee.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its configuration.

	Returns

	IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

set_io_configuration()

	
get_io_sampling_rate()

	Returns the IO sampling rate of the XBee.

	Returns

	IO sampling rate of XBee.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

set_io_sampling_rate()

	
get_network()

	Returns the network of this XBee.

	Returns

	The XBee network.

	Return type

	XBeeNetwork

	
get_next_frame_id()

	Returns the next frame ID of the XBee.

	Returns

	The next frame ID of the XBee.

	Return type

	Integer

	
get_node_id()

	Returns the node identifier (‘NI’) value of the XBee.

	Returns

	Node identifier (‘NI’) of the XBee.

	Return type

	String

	
get_pan_id()

	Returns the operating PAN ID of the XBee.

	Returns

	Operating PAN ID of the XBee.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

set_pan_id()

	
get_parameter(parameter, parameter_value=None, apply=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
get_power_level()

	Returns the power level of the XBee.

	Returns

	Power level of the XBee.

	Return type

	PowerLevel

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

PowerLevel

set_power_level()

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its PWM duty cycle.

	Returns

	PWM duty cycle of the given IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If io_line has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	Role

See also

Role

	
get_route_to_node(remote, timeout=10, force=True)

	Gets the route from this XBee to the given remote node.

	For Zigbee:

	
	‘AR’ parameter of the local node must be configured with a value
different from ‘FF’.

	Set force to True to force the Zigbee remote node to return
its route independently of the local node configuration as high
or low RAM concentrator (‘DO’ of the local value)

	Parameters

	
	remote (RemoteXBeeDevice) – The remote node.

	timeout (Float, optional, default=10) – Maximum number of seconds to
wait for the route.

	force (Boolean) – True to force asking for the route, False
otherwise. Only for Zigbee.

	Returns

	
	Tuple containing route data:

	
	status (TransmitStatus): The transmit status.

	Tuple with route data (None if the route was not read in the
provided timeout):

	source (RemoteXBeeDevice): The source node of the
route.

	destination (RemoteXBeeDevice): The destination node
of the route.

	hops (List): List of intermediate nodes
(RemoteXBeeDevice) ordered from closest to source
to closest to destination node (source and destination not
included).

	Return type

	Tuple

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	Serial port read timeout in seconds.

	Return type

	Integer

	
get_xbee_device_callbacks()

	Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee
to get its callbacks. These callbacks are executed before user callbacks.

	Returns

	PacketReceived

	
has_explicit_packets()

	Returns if there are pending explicit packets to read. This does not
include non-explicit packets.

	Returns

	True if there are pending packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_packets()

	
has_packets()

	Returns if there are pending packets to read. This does not include
explicit packets.

	Returns

	True if there are pending packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_explicit_packets()

	
is_apply_changes_enabled()

	Returns whether apply changes flag is enabled.

	Returns

	True if apply changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_device_info_complete()

	Returns whether XBee node information is complete.

	Returns

	True if node information is complete, False otherwise.

	Return type

	Boolean

See also

AbstractXBeeDevice.read_device_info()

	
is_open()

	Returns whether this XBee is open.

	Returns

	Boolean. True if this XBee is open, False otherwise.

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
log

	Returns the XBee logger.

	Returns

	The XBee device logger.

	Return type

	Logger

	
operating_mode

	Returns the operating mode of this XBee.

	Returns

	OperatingMode. This XBee operating mode.

	
reachable

	Returns whether the XBee is reachable.

	Returns

	True if the device is reachable, False otherwise.

	Return type

	Boolean

	
read_data(timeout=None)

	Reads new data received by this XBee.

If timeout is specified, this method blocks until new data is received
or the timeout expires, throwing a TimeoutException in this case.

	Parameters

	timeout (Integer, optional) – Read timeout in seconds. If None,
this method is non-blocking and returns None if no data is available.

	Returns

	
	Read message or None if this XBee did not

	receive new data.

	Return type

	XBeeMessage

	Raises

	
	ValueError – If a timeout is specified and is less than 0.

	TimeoutException – If a timeout is specified and no data was
received during that time.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBeeMessage

	
read_data_from(remote_xbee, timeout=None)

	Reads new data received from the given remote XBee.

If timeout is specified, this method blocks until new data is received
or the timeout expires, throwing a TimeoutException in this case.

	Parameters

	
	remote_xbee (RemoteXBeeDevice) – Remote XBee that sent the data.

	timeout (Integer, optional) – Read timeout in seconds. If None,
this method is non-blocking and returns None if no data is available.

	Returns

	
	Read message sent by remote_xbee or None

	if this XBee did not receive new data.

	Return type

	XBeeMessage

	Raises

	
	ValueError – If a timeout is specified and is less than 0.

	TimeoutException – If a timeout is specified and no data was received
during that time.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBeeMessage

RemoteXBeeDevice

	
read_device_info(init=True, fire_event=True)

	Updates all instance parameters reading them from the XBee.

	Parameters

	
	init (Boolean, optional, default=`True`) – If False only not
initialized parameters are read, all if True.

	fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.is_device_info_complete()

	
read_io_sample()

	Returns an IO sample from the XBee containing the value of all enabled
digital IO and analog input channels.

	Returns

	IO sample read from the XBee.

	Return type

	IOSample

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOSample

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
scan_counter

	Returns the scan counter for this node.

	Returns

	The scan counter for this node.

	Return type

	Integer

	
send_bluetooth_data(data)

	Sends the given data to the Bluetooth interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If there is any problem sending the data.

See also

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

	
send_data(remote_xbee, data, transmit_options=0)

	Blocking method. This method sends data to a remote XBee synchronously.

This method will wait for the packet response. The default timeout is
XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS.

	Parameters

	
	remote_xbee (RemoteXBeeDevice) – Remote XBee to send data to.

	data (String or Bytearray) – Raw data to send.

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Returns

	The response.

	Return type

	XBeePacket

	Raises

	
	ValueError – If remote_xbee is None.

	TimeoutException – If response is not received before the read
timeout expires.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TransmitException – If the status of the response received is not OK.

	XBeeException – If the XBee’s communication interface is closed.

See also

RemoteXBeeDevice

XBeePacket

	
send_data_async(remote_xbee, data, transmit_options=0)

	Non-blocking method. This method sends data to a remote XBee.

This method does not wait for a response.

	Parameters

	
	remote_xbee (RemoteXBeeDevice) – the remote XBee to send data to.

	data (String or Bytearray) – Raw data to send.

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Raises

	
	ValueError – If remote_xbee is None.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

RemoteXBeeDevice

	
send_data_broadcast(data, transmit_options=0)

	Sends the provided data to all the XBee nodes of the network (broadcast).

This method blocks until a success or error transmit status arrives or
the configured receive timeout expires.

The received timeout is configured using method
AbstractXBeeDevice.set_sync_ops_timeout() and can be consulted
with AbstractXBeeDevice.get_sync_ops_timeout() method.

	Parameters

	
	data (String or Bytearray) – Data to send.

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TransmitException – If the status of the response received is not OK.

	XBeeException – If the XBee’s communication interface is closed.

	
send_micropython_data(data)

	Sends the given data to the MicroPython interface using a User Data
Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If there is any problem sending the data.

See also

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

	
send_packet(packet, sync=False)

	Sends the packet and waits for the response. The packet to send is
escaped depending on the current operating mode.

This method can be synchronous or asynchronous.

If synchronous, this method discards all response packets until it finds
the one that has the appropriate frame ID, that is, the sent packet’s
frame ID.

If asynchronous, this method does not wait for any response and returns
None.

	Parameters

	
	packet (XBeePacket) – The packet to send.

	sync (Boolean) – True to wait for the response of the sent packet
and return it, False otherwise.

	Returns

	
	Response packet if sync is True, None

	otherwise.

	Return type

	XBeePacket

	Raises

	
	TimeoutException – If sync is True and the response packet for
the sent one cannot be read.

	InvalidOperatingModeException – If the XBee operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the packet listener is not running or the XBee’s
communication interface is closed.

See also

XBeePacket

	
send_packet_sync_and_get_response(packet_to_send, timeout=None)

	Sends the packet and waits for its corresponding response.

	Parameters

	
	packet_to_send (XBeePacket) – The packet to transmit.

	timeout (Integer, optional, default=`None`) – Number of seconds to
wait. -1 to wait indefinitely.

	Returns

	Received response packet.

	Return type

	XBeePacket

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TimeoutException – If response is not received in the configured
timeout.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBeePacket

	
send_user_data_relay(local_interface, data)

	Sends the given data to the given XBee local interface.

	Parameters

	
	local_interface (XBeeLocalInterface) – Destination XBee
local interface.

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ValueError – If local_interface is None.

	XBeeException – If there is any problem sending the User Data Relay.

See also

XBeeLocalInterface

	
serial_port

	Returns the serial port associated to the XBee, if any.

	Returns

	
	Serial port of the XBee. None if the

	local XBee does not use serial communication.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee.

	Parameters

	value (XBee16BitAddress) – New 16-bit address of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If the protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

	Parameters

	api_output_mode (APIOutputMode) – New API output mode.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – New API output mode options.
Calculate this value using the method
APIOutputModeBit.calculate_api_output_mode_value()
with a set of APIOutputModeBit.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputModeBit

	
set_dest_address(addr)

	Sets the 64-bit address of the XBee that is data destination.

	Parameters

	addr (XBee64BitAddress or RemoteXBeeDevice) – Address itself or remote XBee to be data destination.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If addr is None.

See also

XBee64BitAddress

get_dest_address()

	
set_dio_change_detection(io_lines_set)

	Sets the digital IO lines to be monitored and sampled whenever their
status changes. A None set of lines disables this feature.

	Parameters

	io_lines_set – Set of IOLine.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – Digital IO line to sets its value.

	io_value (IOValue) – IO value to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – IO line to configure.

	io_mode (IOMode) – IO mode to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

get_io_configuration()

	
set_io_sampling_rate(rate)

	Sets the IO sampling rate of the XBee in seconds. A sample rate of 0
means the IO sampling feature is disabled.

	Parameters

	rate (Integer) – New IO sampling rate of the XBee in seconds.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

get_io_sampling_rate()

	
set_node_id(node_id)

	Sets the node identifier (‘NI`) value of the XBee.

	Parameters

	node_id (String) – New node identifier (‘NI’) of the XBee.

	Raises

	
	ValueError – If node_id is None or its length is greater than 20.

	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
set_pan_id(value)

	Sets the operating PAN ID of the XBee.

	Parameters

	value (Bytearray) – New operating PAN ID of the XBee. Must have only
1 or 2 bytes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

get_pan_id()

	
set_parameter(parameter, value, apply=None)

	Override.

	See:

	AbstractXBeeDevice.set_parameter()

	
set_power_level(power_level)

	Sets the power level of the XBee.

	Parameters

	power_level (PowerLevel) – New power level of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

PowerLevel

get_power_level()

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – IO Line to be assigned.

	cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If the given IO line does not have PWM capability or
cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – Read timeout in seconds.

	
update_bluetooth_password(new_password)

	Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
update_device_data_from(device)

	Updates the current node information with provided data. This is only
for internal use.

	Parameters

	device (AbstractXBeeDevice) – XBee to get the data from.

	Returns

	True if the node data has been updated, False otherwise.

	Return type

	Boolean

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the XBee.

	Parameters

	
	xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

	xbee_firmware_file (String, optional, default=`None`) – Location of
the XBee binary firmware file.

	bootloader_firmware_file (String, optional, default=`None`) – Location
of the bootloader binary firmware file.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the update process (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
to receive progress information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	OperationNotSupportedException – If XBee does not support firmware update.

	FirmwareUpdateException – If there is any error during the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee so that parameter modifications persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them, the XBee reverts back to
previously saved parameters the next time the module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_changes_enabled() to get its status and
enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
class digi.xbee.devices.ZigBeeDevice(port=None, baud_rate=None, data_bits=<sphinx.ext.autodoc.importer._MockObject object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject object>, parity=<sphinx.ext.autodoc.importer._MockObject object>, flow_control=<FlowControl.NONE: None>, _sync_ops_timeout=4, comm_iface=None)[source]

	Bases: digi.xbee.devices.XBeeDevice

This class represents a local Zigbee XBee.

Class constructor. Instantiates a new ZigBeeDevice with the
provided parameters.

	Parameters

	
	port (String) – Serial port identifier. Depends on operating system.
e.g. ‘/dev/ttyUSB0’ on ‘GNU/Linux’ or ‘COM3’ on Windows.

	baud_rate (Integer) – Serial port baud rate.

	(Integer, default (flow_control) – serial.EIGHTBITS): Port bitsize.

	(Integer, default – serial.STOPBITS_ONE): Port stop bits.

	(Character, default (parity) – serial.PARITY_NONE): Port parity.

	(Integer, default – FlowControl.NONE): Port flow control.

	_sync_ops_timeout (Integer, default: 3): Read timeout (in seconds).

	comm_iface (XBeeCommunicationInterface): Communication interface.

	Raises

	All exceptions raised by XBeeDevice.__init__() constructor.

See also

XBeeDevice

XBeeDevice.__init__()

	
open(force_settings=False)[source]

	Override.

See also

XBeeDevice.open()

	
get_protocol()[source]

	Override.

See also

XBeeDevice.get_protocol()

	
get_ai_status()[source]

	Returns the current association status of this XBee. It indicates
occurrences of errors during the modem initialization and connection.

	Returns

	
	The XBee association

	indication status.

	Return type

	AssociationIndicationStatus

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
force_disassociate()[source]

	Forces this XBee to immediately disassociate from the network and
re-attempt to associate.

Only valid for End Devices.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_many_to_one_broadcasting_time()[source]

	Returns the time between aggregation route broadcast in tenths of a
second.

	Returns

	
	The number of tenths of a second between aggregation route

	broadcasts. -1 if it is disabled.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
set_many_to_one_broadcasting_time(tenths_second)[source]

	Configures the time between aggregation route broadcast in tenths of a
second.

	Parameters

	tenths_second (Integer) – The number of tenths of a second between
aggregation route broadcasts. -1 to disable. 0 to only send one
broadcast.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If tenths_second is None or is lower than -1, or
bigger than 254.

	
send_data_64_16(x64addr, x16addr, data, transmit_options=0)[source]

	Blocking method. This method sends data to the remote XBee with the
given 64-bit/16-bit address.

This method waits for the packet response. The default timeout is
XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS.

	Parameters

	
	x64addr (XBee64BitAddress) – 64-bit address of the
destination XBee.

	x16addr (XBee16BitAddress) – 16-bit address of the
destination XBee, XBee16BitAddress.UNKNOWN_ADDRESS if unknown.

	data (String or Bytearray) – Raw data to send.

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Returns

	The response.

	Return type

	XBeePacket

	Raises

	
	ValueError – If x64addr, x16addr or data is None.

	TimeoutException – If response is not received before the read
timeout expires.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TransmitException – If the status of the response received is not OK.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBee64BitAddress

XBee16BitAddress

XBeePacket

	
send_data_async_64_16(x64addr, x16addr, data, transmit_options=0)[source]

	Non-blocking method. This method sends data to a remote XBee with the
given 64-bit/16-bit address.

This method does not wait for a response.

	Parameters

	
	x64addr (XBee64BitAddress) – 64-bit address of the
destination XBee.

	x16addr (XBee16BitAddress) – 16-bit address of the
destination XBee, XBee16BitAddress.UNKNOWN_ADDRESS if unknown.

	data (String or Bytearray) – Raw data to send.

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Raises

	
	ValueError – If x64addr, x16addr or data is None.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBee64BitAddress

XBee16BitAddress

XBeePacket

	
read_expl_data(timeout=None)[source]

	Reads new explicit data received by this XBee.

If timeout is specified, this method blocks until new data is received
or the timeout expires, throwing a TimeoutException in this case.

	Parameters

	timeout (Integer, optional) – Read timeout in seconds. If None,
this method is non-blocking and returns None if there is no
explicit data available.

	Returns

	
	Read message or None if this XBee

	did not receive new explicit data.

	Return type

	ExplicitXBeeMessage

	Raises

	
	ValueError – If a timeout is specified and is less than 0.

	TimeoutException – If a timeout is specified and no explicit data was
received during that time.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

ExplicitXBeeMessage

	
read_expl_data_from(remote_xbee, timeout=None)[source]

	Reads new explicit data received from the given remote XBee.

If timeout is specified, this method blocks until new data is received
or the timeout expires, throwing a TimeoutException in this case.

	Parameters

	
	remote_xbee (RemoteXBeeDevice) – Remote XBee that sent the explicit data.

	timeout (Integer, optional) – Read timeout in seconds. If None,
this method is non-blocking and returns None if there is no
data available.

	Returns

	
	Read message sent by remote_xbee

	or None if this XBee did not receive new data from that node.

	Return type

	ExplicitXBeeMessage

	Raises

	
	ValueError – If a timeout is specified and is less than 0.

	TimeoutException – If a timeout is specified and no explicit data was
received during that time.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

ExplicitXBeeMessage

RemoteXBeeDevice

	
send_expl_data(remote_xbee, data, src_endpoint, dest_endpoint, cluster_id, profile_id, transmit_options=0)[source]

	Blocking method. Sends the provided explicit data to the given XBee,
source and destination end points, cluster and profile ids.

This method blocks until a success or error response arrives or the
configured receive timeout expires. The default timeout is
XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS.

	Parameters

	
	remote_xbee (RemoteXBeeDevice) – Remote XBee to send data to.

	data (String or Bytearray) – Raw data to send.

	src_endpoint (Integer) – Source endpoint of the transmission. 1 byte.

	dest_endpoint (Integer) – Destination endpoint of the transmission. 1 byte.

	cluster_id (Integer) – Cluster ID of the transmission (between 0x0 and 0xFFFF)

	profile_id (Integer) – Profile ID of the transmission (between 0x0 and 0xFFFF)

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Returns

	Response packet obtained after sending data.

	Return type

	XBeePacket

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TransmitException – If the status of the response received is not OK.

	XBeeException – If the XBee’s communication interface is closed.

	ValueError – if cluster_id or profile_id is less than 0x0 or
greater than 0xFFFF.

See also

RemoteXBeeDevice

XBeePacket

	
send_expl_data_broadcast(data, src_endpoint, dest_endpoint, cluster_id, profile_id, transmit_options=0)[source]

	Sends the provided explicit data to all the XBee nodes of the network
(broadcast) using provided source and destination end points, cluster
and profile ids.

This method blocks until a success or error transmit status arrives or
the configured receive timeout expires. The received timeout is
configured using the AbstractXBeeDevice.set_sync_ops_timeout()
method and can be consulted with method
AbstractXBeeDevice.get_sync_ops_timeout().

	Parameters

	
	data (String or Bytearray) – Raw data to send.

	src_endpoint (Integer) – Source endpoint of the transmission. 1 byte.

	dest_endpoint (Integer) – Destination endpoint of the transmission. 1 byte.

	cluster_id (Integer) – Cluster ID of the transmission (between 0x0 and 0xFFFF)

	profile_id (Integer) – Profile ID of the transmission (between 0x0 and 0xFFFF)

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TransmitException – If the status of the response received is not OK.

	XBeeException – If the XBee’s communication interface is closed.

	ValueError – if cluster_id or profile_id is less than 0x0 or
greater than 0xFFFF.

See also

XBeeDevice._send_expl_data()

	
send_expl_data_async(remote_xbee, data, src_endpoint, dest_endpoint, cluster_id, profile_id, transmit_options=0)[source]

	Non-blocking method. Sends the provided explicit data to the given XBee,
source and destination end points, cluster and profile ids.

	Parameters

	
	remote_xbee (RemoteXBeeDevice) – Remote XBee to send data to.

	data (String or Bytearray) – Raw data to send.

	src_endpoint (Integer) – Source endpoint of the transmission. 1 byte.

	dest_endpoint (Integer) – Destination endpoint of the transmission. 1 byte.

	cluster_id (Integer) – Cluster ID of the transmission (between 0x0 and 0xFFFF)

	profile_id (Integer) – Profile ID of the transmission (between 0x0 and 0xFFFF)

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

	ValueError – if cluster_id or profile_id is less than 0x0 or
greater than 0xFFFF.

See also

RemoteXBeeDevice

	
send_multicast_data(group_id, data, src_endpoint, dest_endpoint, cluster_id, profile_id)[source]

	Blocking method. This method sends multicast data to the provided group
ID synchronously.

This method will wait for the packet response. The default timeout for
this method is XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS.

	Parameters

	
	group_id (XBee16BitAddress) – 16-bit address of the
multicast group.

	data (Bytearray) – Raw data to send.

	src_endpoint (Integer) – Source endpoint of the transmission. 1 byte.

	dest_endpoint (Integer) – Destination endpoint of the transmission. 1 byte.

	cluster_id (Integer) – Cluster ID of the transmission (between 0x0 and 0xFFFF)

	profile_id (Integer) – Profile ID of the transmission (between 0x0 and 0xFFFF)

	Returns

	the response packet.

	Return type

	XBeePacket

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBee16BitAddress

XBeePacket

	
send_multicast_data_async(group_id, data, src_endpoint, dest_endpoint, cluster_id, profile_id)[source]

	Non-blocking method. This method sends multicast data to the provided
group ID.

This method does not wait for a response.

	Parameters

	
	group_id (XBee16BitAddress) – 16-bit address of the
multicast group.

	data (Bytearray) – Raw data to send.

	src_endpoint (Integer) – Source endpoint of the transmission. 1 byte.

	dest_endpoint (Integer) – Destination endpoint of the transmission. 1 byte.

	cluster_id (Integer) – Cluster ID of the transmission (between 0x0 and 0xFFFF)

	profile_id (Integer) – Profile ID of the transmission (between 0x0 and 0xFFFF)

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBee16BitAddress

	
register_joining_device(registrant_address, options, key)[source]

	Securely registers a joining device to a trust center. Registration is
the process by which a node is authorized to join the network using a
preconfigured link key or installation code that is conveyed to the
trust center out-of-band (using a physical interface and not over-the-air).

This method is synchronous, it sends the register joining device request
and waits for the answer of the operation. Then, returns the
corresponding status.

	Parameters

	
	registrant_address (XBee64BitAddress) – 64-bit address of
the device to register.

	options (RegisterKeyOptions) – Register options indicating the key source.

	key (Bytearray) – Key of the device to register.

	Returns

	
	Register device operation status or

	None if the answer is not a RegisterDeviceStatusPacket.

	Return type

	ZigbeeRegisterStatus

	Raises

	
	TimeoutException – If the answer is not received in the configured timeout.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

	ValueError – If registrant_address or options is None.

See also

RegisterKeyOptions

XBee64BitAddress

ZigbeeRegisterStatus

	
register_joining_device_async(registrant_address, options, key)[source]

	Securely registers a joining device to a trust center. Registration is
the process by which a node is authorized to join the network using a
preconfigured link key or installation code that is conveyed to the
trust center out-of-band (using a physical interface and not over-the-air).

This method is asynchronous, which means that it does not wait for an
answer after sending the request.

	Parameters

	
	registrant_address (XBee64BitAddress) – 64-bit address of
the device to register.

	options (RegisterKeyOptions) – Register options indicating the key source.

	key (Bytearray) – Key of the device to register.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

	ValueError – if registrant_address or options is None.

See also

RegisterKeyOptions

XBee64BitAddress

	
unregister_joining_device(unregistrant_address)[source]

	Unregisters a joining device from a trust center.

This method is synchronous, it sends the unregister joining device
request and waits for the answer of the operation. Then, returns the
corresponding status.

	Parameters

	unregistrant_address (XBee64BitAddress) – 64-bit address of
the device to unregister.

	Returns

	
	Unregister device operation status

	or None if the answer is not a RegisterDeviceStatusPacket.

	Return type

	ZigbeeRegisterStatus

	Raises

	
	TimeoutException – If the answer is not received in the configured timeout.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

	ValueError – If registrant_address is None.

See also

XBee64BitAddress

ZigbeeRegisterStatus

	
unregister_joining_device_async(unregistrant_address)[source]

	Unregisters a joining device from a trust center.

This method is asynchronous, which means that it will not wait for an
answer after sending the unregister request.

	Parameters

	unregistrant_address (XBee64BitAddress) – 64-bit address of
the device to unregister.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

	ValueError – If registrant_address is None.

See also

XBee64BitAddress

	
get_routes(route_cb=None, finished_cb=None, timeout=None)[source]

	Returns the routes of this XBee. If route_cb is not defined,
the process blocks until the complete routing table is read.

	Parameters

	
	route_cb (Function, optional, default=`None`) – Method called
when a new route is received. Receives two arguments:

	The XBee that owns this new route.

	The new route.

	finished_cb (Function, optional, default=`None`) – Method to execute
when the process finishes. Receives three arguments:

	The XBee that executed the ZDO command.

	A list with the discovered routes.

	An error message if something went wrong.

	timeout (Float, optional, default=`RouteTableReader.DEFAULT_TIMEOUT`) – The
ZDO command timeout in seconds.

	Returns

	
	List of Route when route_cb is not defined,

	None otherwise (in this case routes are received in the callback).

	Return type

	List

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	OperationNotSupportedException – If XBee is not Zigbee or Smart Energy.

	XBeeException – If the XBee’s communication interface is closed.

See also

com.digi.models.zdo.Route

	
get_neighbors(neighbor_cb=None, finished_cb=None, timeout=None)[source]

	Returns the neighbors of this XBee. If neighbor_cb is not
defined, the process blocks until the complete neighbor table is read.

	Parameters

	
	neighbor_cb (Function, optional, default=`None`) – Method called
when a new neighbor is received. Receives two arguments:

	The XBee that owns this new neighbor.

	The new neighbor.

	finished_cb (Function, optional, default=`None`) – Method to execute
when the process finishes. Receives three arguments:

	The XBee that executed the ZDO command.

	A list with the discovered neighbors.

	An error message if something went wrong.

	timeout (Float, optional, default=`NeighborTableReader.DEFAULT_TIMEOUT`) – The ZDO
command timeout in seconds.

	Returns

	
	List of Neighbor when neighbor_cb is not defined,

	None otherwise (in this case neighbors are received in the callback).

	Return type

	List

	Raises

	OperationNotSupportedException – If XBee is not Zigbee or Smart Energy.

See also

com.digi.models.zdo.Neighbor

	
create_source_route(dest_node, hops)[source]

	Creates a source route for the provided destination node. A source route
specifies the complete route a packet traverses to get from source to
destination.

For best results, use source routing with many-to-one routing.

	Parameters

	
	dest_node (RemoteXBeeDevice) – The destination node.

	hops (List) – List of intermediate nodes (RemoteXBeeDevice)
ordered from closest to source to closest to destination node
(source and destination excluded).

	Raises

	
	ValueError – If dest_node is None, or if it is a local node, or
if its protocol is not Zigbee based, or if its 64-bit address or
16-bit address is None, unknown, or invalid.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the packet listener is not running or the XBee’s
communication interface is closed.

	
add_bluetooth_data_received_callback(callback)

	Adds a callback for the event BluetoothDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The Bluetooth data as a Bytearray.

	
add_data_received_callback(callback)

	Adds a callback for the event DataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The data received as an XBeeMessage.

	
add_expl_data_received_callback(callback)

	Adds a callback for the event ExplicitDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The explicit data received as a ExplicitXBeeMessage.

	
add_fs_frame_received_callback(callback)

	Adds a callback for the event FileSystemFrameReceived.

	Parameters

	callback (Function) – The callback. Receives four arguments.

	Source (AbstractXBeeDevice): The node that sent the
file system frame.

	Frame id (Integer): The received frame id.

	Command (FSCmd): The file system command.

	Receive options (Integer): Bitfield indicating receive options.

See also

AbstractXBeeDevice

FSCmd

ReceiveOptions

	
add_io_sample_received_callback(callback)

	Adds a callback for the event IOSampleReceived.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	The received IO sample as an IOSample.

	The remote XBee which sent the packet as a RemoteXBeeDevice.

	The time in which the packet was received as an Integer.

	
add_micropython_data_received_callback(callback)

	Adds a callback for the event MicroPythonDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The MicroPython data as a Bytearray.

	
add_modem_status_received_callback(callback)

	Adds a callback for the event ModemStatusReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The modem status as a ModemStatus.

	
add_packet_received_callback(callback)

	Adds a callback for the event PacketReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The received packet as a XBeeAPIPacket.

	
add_route_received_callback(callback)

	Adds a callback for the event RouteReceived.
This works for Zigbee and Digimesh devices.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	source (XBeeDevice): The source node.

	destination (RemoteXBeeDevice): The destination node.

	
	hops (List): List of intermediate hops from closest to source

	to closest to destination (RemoteXBeeDevice).

See also

XBeeDevice.del_route_received_callback()

	
add_socket_data_received_callback(callback)

	Adds a callback for the event SocketDataReceived.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	The socket ID as an Integer.

	The data received as Bytearray.

	
add_socket_data_received_from_callback(callback)

	Adds a callback for the event SocketDataReceivedFrom.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	The socket ID as an Integer.

	
	Source address pair (host, port) where host is a string

	representing an IPv4 address like ‘100.50.200.5’, and port
is an integer.

	The data received as Bytearray.

	
add_socket_state_received_callback(callback)

	Adds a callback for the event SocketStateReceived.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	The socket ID as an Integer.

	The state received as a SocketState.

	
add_user_data_relay_received_callback(callback)

	Adds a callback for the event RelayDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The relay data as a UserDataRelayMessage.

	
apply_changes()

	Applies changes via ‘AC’ command.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
apply_profile(profile_path, timeout=None, progress_callback=None)

	Applies the given XBee profile to the XBee.

	Parameters

	
	profile_path (String) – Path of the XBee profile file to apply.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the apply profile (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
receive progress information. Receives two arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	UpdateProfileException – If there is any error applying the XBee profile.

	
close()

	Closes the communication with the XBee.

This method guarantees that all threads running are stopped and the
serial port is closed.

	
comm_iface

	Returns the hardware interface associated to the XBee.

	Returns

	Hardware interface of the XBee.

	Return type

	XBeeCommunicationInterface

See also

XBeeCommunicationInterface

	
classmethod create_xbee_device(comm_port_data)

	Creates and returns an XBeeDevice from data of the port to
which is connected.

	Parameters

	
	comm_port_data (Dictionary) – Dictionary with all comm port data needed.

	dictionary keys are (The) –
“baudRate” –> Baud rate.

”port” –> Port number.

”bitSize” –> Bit size.

”stopBits” –> Stop bits.

”parity” –> Parity.

”flowControl” –> Flow control.

”timeout” for –> Timeout for synchronous operations (in seconds).

	Returns

	XBee object created.

	Return type

	XBeeDevice

	Raises

	SerialException – If the port to open does not exist or is already opened.

See also

XBeeDevice

	
del_bluetooth_data_received_callback(callback)

	Deletes a callback for the callback list of
BluetoothDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_data_received_callback(callback)

	Deletes a callback for the callback list of DataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_expl_data_received_callback(callback)

	Deletes a callback for the callback list of ExplicitDataReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_fs_frame_received_callback(callback)

	Deletes a callback for the callback list of
FileSystemFrameReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_io_sample_received_callback(callback)

	Deletes a callback for the callback list of IOSampleReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_micropython_data_received_callback(callback)

	Deletes a callback for the callback list of
MicroPythonDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_modem_status_received_callback(callback)

	Deletes a callback for the callback list of ModemStatusReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_packet_received_callback(callback)

	Deletes a callback for the callback list of PacketReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_route_received_callback(callback)

	Deletes a callback for the callback list of RouteReceived event.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeDevice.add_route_received_callback()

	
del_socket_data_received_callback(callback)

	Deletes a callback for the callback list of
SocketDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_socket_data_received_from_callback(callback)

	Deletes a callback for the callback list of
SocketDataReceivedFrom event.

	Parameters

	callback (Function) – The callback to delete.

	
del_socket_state_received_callback(callback)

	Deletes a callback for the callback list of
SocketStateReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_user_data_relay_received_callback(callback)

	Deletes a callback for the callback list of RelayDataReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
determine_protocol(hardware_version, firmware_version)

	Determines the XBee protocol based on the given hardware and firmware
versions.

	Parameters

	
	hardware_version (Integer) – Hardware version to get its protocol.

	firmware_version (Bytearray) – Firmware version to get its protocol.

	Returns

	
	XBee protocol corresponding to the given

	hardware and firmware versions.

	Return type

	XBeeProtocol

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
enable_apply_changes(value)

	Sets apply changes flag.

	Parameters

	value (Boolean) – True to enable apply changes flag, False to
disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth
password if not done previously. Use method
AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
execute_command(parameter, value=None, apply=None)

	Executes the provided command.

	Parameters

	
	(String or (parameter) – class: .ATStringCommand): AT command to execute.

	value (bytearray, optional, default=`None`) – Command value (if any).

	apply (Boolean, optional, default=`None`) – True to apply changes
in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

	
flush_queues()

	Flushes the packets queue.

	
get_16bit_addr()

	Returns the 16-bit address of the XBee.

	Returns

	16-bit address of the XBee.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
get_64bit_addr()

	Returns the 64-bit address of the XBee.

	Returns

	64-bit address of the XBee.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – IO line to get its ADC value.

	Returns

	Analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

set_io_configuration()

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the
serial interface of the XBee.

	Returns

	API output mode of the XBee.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee
following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	Last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Returns the 64-bit address of the XBee that is data destination.

	Returns

	64-bit address of destination XBee.

	Return type

	XBee64BitAddress

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

XBee64BitAddress

set_dest_address()

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

IOValue

set_io_configuration()

	
get_file_manager()

	Returns the file system manager for the XBee.

	Returns

	The file system manager.

	Return type

	FileSystemManager

	Raises

	FileSystemNotSupportedException – If the XBee does not support
filesystem.

	
get_firmware_version()

	Returns the firmware version of the XBee.

	Returns

	Firmware version of the XBee.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee.

	Returns

	Hardware version of the XBee.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its configuration.

	Returns

	IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

set_io_configuration()

	
get_io_sampling_rate()

	Returns the IO sampling rate of the XBee.

	Returns

	IO sampling rate of XBee.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

set_io_sampling_rate()

	
get_network()

	Returns the network of this XBee.

	Returns

	The XBee network.

	Return type

	XBeeNetwork

	
get_next_frame_id()

	Returns the next frame ID of the XBee.

	Returns

	The next frame ID of the XBee.

	Return type

	Integer

	
get_node_id()

	Returns the node identifier (‘NI’) value of the XBee.

	Returns

	Node identifier (‘NI’) of the XBee.

	Return type

	String

	
get_pan_id()

	Returns the operating PAN ID of the XBee.

	Returns

	Operating PAN ID of the XBee.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

set_pan_id()

	
get_parameter(parameter, parameter_value=None, apply=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
get_power_level()

	Returns the power level of the XBee.

	Returns

	Power level of the XBee.

	Return type

	PowerLevel

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

PowerLevel

set_power_level()

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its PWM duty cycle.

	Returns

	PWM duty cycle of the given IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If io_line has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	Role

See also

Role

	
get_route_to_node(remote, timeout=10, force=True)

	Gets the route from this XBee to the given remote node.

	For Zigbee:

	
	‘AR’ parameter of the local node must be configured with a value
different from ‘FF’.

	Set force to True to force the Zigbee remote node to return
its route independently of the local node configuration as high
or low RAM concentrator (‘DO’ of the local value)

	Parameters

	
	remote (RemoteXBeeDevice) – The remote node.

	timeout (Float, optional, default=10) – Maximum number of seconds to
wait for the route.

	force (Boolean) – True to force asking for the route, False
otherwise. Only for Zigbee.

	Returns

	
	Tuple containing route data:

	
	status (TransmitStatus): The transmit status.

	Tuple with route data (None if the route was not read in the
provided timeout):

	source (RemoteXBeeDevice): The source node of the
route.

	destination (RemoteXBeeDevice): The destination node
of the route.

	hops (List): List of intermediate nodes
(RemoteXBeeDevice) ordered from closest to source
to closest to destination node (source and destination not
included).

	Return type

	Tuple

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	Serial port read timeout in seconds.

	Return type

	Integer

	
get_xbee_device_callbacks()

	Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee
to get its callbacks. These callbacks are executed before user callbacks.

	Returns

	PacketReceived

	
has_explicit_packets()

	Returns if there are pending explicit packets to read. This does not
include non-explicit packets.

	Returns

	True if there are pending packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_packets()

	
has_packets()

	Returns if there are pending packets to read. This does not include
explicit packets.

	Returns

	True if there are pending packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_explicit_packets()

	
is_apply_changes_enabled()

	Returns whether apply changes flag is enabled.

	Returns

	True if apply changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_device_info_complete()

	Returns whether XBee node information is complete.

	Returns

	True if node information is complete, False otherwise.

	Return type

	Boolean

See also

AbstractXBeeDevice.read_device_info()

	
is_open()

	Returns whether this XBee is open.

	Returns

	Boolean. True if this XBee is open, False otherwise.

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
log

	Returns the XBee logger.

	Returns

	The XBee device logger.

	Return type

	Logger

	
operating_mode

	Returns the operating mode of this XBee.

	Returns

	OperatingMode. This XBee operating mode.

	
reachable

	Returns whether the XBee is reachable.

	Returns

	True if the device is reachable, False otherwise.

	Return type

	Boolean

	
read_data(timeout=None)

	Reads new data received by this XBee.

If timeout is specified, this method blocks until new data is received
or the timeout expires, throwing a TimeoutException in this case.

	Parameters

	timeout (Integer, optional) – Read timeout in seconds. If None,
this method is non-blocking and returns None if no data is available.

	Returns

	
	Read message or None if this XBee did not

	receive new data.

	Return type

	XBeeMessage

	Raises

	
	ValueError – If a timeout is specified and is less than 0.

	TimeoutException – If a timeout is specified and no data was
received during that time.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBeeMessage

	
read_data_from(remote_xbee, timeout=None)

	Reads new data received from the given remote XBee.

If timeout is specified, this method blocks until new data is received
or the timeout expires, throwing a TimeoutException in this case.

	Parameters

	
	remote_xbee (RemoteXBeeDevice) – Remote XBee that sent the data.

	timeout (Integer, optional) – Read timeout in seconds. If None,
this method is non-blocking and returns None if no data is available.

	Returns

	
	Read message sent by remote_xbee or None

	if this XBee did not receive new data.

	Return type

	XBeeMessage

	Raises

	
	ValueError – If a timeout is specified and is less than 0.

	TimeoutException – If a timeout is specified and no data was received
during that time.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBeeMessage

RemoteXBeeDevice

	
read_device_info(init=True, fire_event=True)

	Updates all instance parameters reading them from the XBee.

	Parameters

	
	init (Boolean, optional, default=`True`) – If False only not
initialized parameters are read, all if True.

	fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.is_device_info_complete()

	
read_io_sample()

	Returns an IO sample from the XBee containing the value of all enabled
digital IO and analog input channels.

	Returns

	IO sample read from the XBee.

	Return type

	IOSample

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOSample

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
scan_counter

	Returns the scan counter for this node.

	Returns

	The scan counter for this node.

	Return type

	Integer

	
send_bluetooth_data(data)

	Sends the given data to the Bluetooth interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If there is any problem sending the data.

See also

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

	
send_data(remote_xbee, data, transmit_options=0)

	Blocking method. This method sends data to a remote XBee synchronously.

This method will wait for the packet response. The default timeout is
XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS.

	Parameters

	
	remote_xbee (RemoteXBeeDevice) – Remote XBee to send data to.

	data (String or Bytearray) – Raw data to send.

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Returns

	The response.

	Return type

	XBeePacket

	Raises

	
	ValueError – If remote_xbee is None.

	TimeoutException – If response is not received before the read
timeout expires.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TransmitException – If the status of the response received is not OK.

	XBeeException – If the XBee’s communication interface is closed.

See also

RemoteXBeeDevice

XBeePacket

	
send_data_async(remote_xbee, data, transmit_options=0)

	Non-blocking method. This method sends data to a remote XBee.

This method does not wait for a response.

	Parameters

	
	remote_xbee (RemoteXBeeDevice) – the remote XBee to send data to.

	data (String or Bytearray) – Raw data to send.

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Raises

	
	ValueError – If remote_xbee is None.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee’s communication interface is closed.

See also

RemoteXBeeDevice

	
send_data_broadcast(data, transmit_options=0)

	Sends the provided data to all the XBee nodes of the network (broadcast).

This method blocks until a success or error transmit status arrives or
the configured receive timeout expires.

The received timeout is configured using method
AbstractXBeeDevice.set_sync_ops_timeout() and can be consulted
with AbstractXBeeDevice.get_sync_ops_timeout() method.

	Parameters

	
	data (String or Bytearray) – Data to send.

	transmit_options (Integer, optional) – Transmit options, bitfield of
TransmitOptions. Default to TransmitOptions.NONE.value.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TransmitException – If the status of the response received is not OK.

	XBeeException – If the XBee’s communication interface is closed.

	
send_micropython_data(data)

	Sends the given data to the MicroPython interface using a User Data
Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If there is any problem sending the data.

See also

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

	
send_packet(packet, sync=False)

	Sends the packet and waits for the response. The packet to send is
escaped depending on the current operating mode.

This method can be synchronous or asynchronous.

If synchronous, this method discards all response packets until it finds
the one that has the appropriate frame ID, that is, the sent packet’s
frame ID.

If asynchronous, this method does not wait for any response and returns
None.

	Parameters

	
	packet (XBeePacket) – The packet to send.

	sync (Boolean) – True to wait for the response of the sent packet
and return it, False otherwise.

	Returns

	
	Response packet if sync is True, None

	otherwise.

	Return type

	XBeePacket

	Raises

	
	TimeoutException – If sync is True and the response packet for
the sent one cannot be read.

	InvalidOperatingModeException – If the XBee operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the packet listener is not running or the XBee’s
communication interface is closed.

See also

XBeePacket

	
send_packet_sync_and_get_response(packet_to_send, timeout=None)

	Sends the packet and waits for its corresponding response.

	Parameters

	
	packet_to_send (XBeePacket) – The packet to transmit.

	timeout (Integer, optional, default=`None`) – Number of seconds to
wait. -1 to wait indefinitely.

	Returns

	Received response packet.

	Return type

	XBeePacket

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TimeoutException – If response is not received in the configured
timeout.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBeePacket

	
send_user_data_relay(local_interface, data)

	Sends the given data to the given XBee local interface.

	Parameters

	
	local_interface (XBeeLocalInterface) – Destination XBee
local interface.

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ValueError – If local_interface is None.

	XBeeException – If there is any problem sending the User Data Relay.

See also

XBeeLocalInterface

	
serial_port

	Returns the serial port associated to the XBee, if any.

	Returns

	
	Serial port of the XBee. None if the

	local XBee does not use serial communication.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee.

	Parameters

	value (XBee16BitAddress) – New 16-bit address of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If the protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

	Parameters

	api_output_mode (APIOutputMode) – New API output mode.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – New API output mode options.
Calculate this value using the method
APIOutputModeBit.calculate_api_output_mode_value()
with a set of APIOutputModeBit.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputModeBit

	
set_dest_address(addr)

	Sets the 64-bit address of the XBee that is data destination.

	Parameters

	addr (XBee64BitAddress or RemoteXBeeDevice) – Address itself or remote XBee to be data destination.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If addr is None.

See also

XBee64BitAddress

get_dest_address()

	
set_dio_change_detection(io_lines_set)

	Sets the digital IO lines to be monitored and sampled whenever their
status changes. A None set of lines disables this feature.

	Parameters

	io_lines_set – Set of IOLine.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – Digital IO line to sets its value.

	io_value (IOValue) – IO value to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – IO line to configure.

	io_mode (IOMode) – IO mode to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

get_io_configuration()

	
set_io_sampling_rate(rate)

	Sets the IO sampling rate of the XBee in seconds. A sample rate of 0
means the IO sampling feature is disabled.

	Parameters

	rate (Integer) – New IO sampling rate of the XBee in seconds.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

get_io_sampling_rate()

	
set_node_id(node_id)

	Sets the node identifier (‘NI`) value of the XBee.

	Parameters

	node_id (String) – New node identifier (‘NI’) of the XBee.

	Raises

	
	ValueError – If node_id is None or its length is greater than 20.

	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
set_pan_id(value)

	Sets the operating PAN ID of the XBee.

	Parameters

	value (Bytearray) – New operating PAN ID of the XBee. Must have only
1 or 2 bytes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

get_pan_id()

	
set_parameter(parameter, value, apply=None)

	Override.

	See:

	AbstractXBeeDevice.set_parameter()

	
set_power_level(power_level)

	Sets the power level of the XBee.

	Parameters

	power_level (PowerLevel) – New power level of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

PowerLevel

get_power_level()

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – IO Line to be assigned.

	cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If the given IO line does not have PWM capability or
cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – Read timeout in seconds.

	
update_bluetooth_password(new_password)

	Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
update_device_data_from(device)

	Updates the current node information with provided data. This is only
for internal use.

	Parameters

	device (AbstractXBeeDevice) – XBee to get the data from.

	Returns

	True if the node data has been updated, False otherwise.

	Return type

	Boolean

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the XBee.

	Parameters

	
	xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

	xbee_firmware_file (String, optional, default=`None`) – Location of
the XBee binary firmware file.

	bootloader_firmware_file (String, optional, default=`None`) – Location
of the bootloader binary firmware file.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the update process (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
to receive progress information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	OperationNotSupportedException – If XBee does not support firmware update.

	FirmwareUpdateException – If there is any error during the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee so that parameter modifications persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them, the XBee reverts back to
previously saved parameters the next time the module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_changes_enabled() to get its status and
enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
class digi.xbee.devices.IPDevice(port=None, baud_rate=None, data_bits=<sphinx.ext.autodoc.importer._MockObject object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject object>, parity=<sphinx.ext.autodoc.importer._MockObject object>, flow_control=<FlowControl.NONE: None>, _sync_ops_timeout=4, comm_iface=None)[source]

	Bases: digi.xbee.devices.XBeeDevice

This class provides common functionality for XBee IP devices.

Class constructor. Instantiates a new IPDevice with the
provided parameters.

	Parameters

	
	port (String) – Serial port identifier. Depends on operating system.
e.g. ‘/dev/ttyUSB0’ on ‘GNU/Linux’ or ‘COM3’ on Windows.

	baud_rate (Integer) – Serial port baud rate.

	(Integer, default (_sync_ops_timeout) – serial.EIGHTBITS): Port bitsize.

	(Integer, default – serial.STOPBITS_ONE): Port stop bits.

	(Character, default (parity) – serial.PARITY_NONE): Port parity.

	(Integer, default – FlowControl.NONE): Port flow control.

	(Integer, default – 3): Read timeout (in seconds).

	comm_iface (XBeeCommunicationInterface) – Communication interface.

	Raises

	All exceptions raised by XBeeDevice.__init__() constructor.

See also

XBeeDevice

XBeeDevice.__init__()

	
is_device_info_complete()[source]

	Override.

See also

AbstractXBeeDevice.is_device_info_complete()

	
get_ip_addr()[source]

	Returns the IP address of this IP XBee.

To refresh this value use the method IPDevice.read_device_info().

	Returns

	The IP address of this IP device.

	Return type

	ipaddress.IPv4Address

See also

ipaddress.IPv4Address

	
set_dest_ip_addr(address)[source]

	Sets the destination IP address.

	Parameters

	address (ipaddress.IPv4Address) – Destination IP address.

	Raises

	
	ValueError – If address is None.

	TimeoutException – If there is a timeout setting the destination IP address.

	XBeeException – If there is any other XBee related exception.

See also

ipaddress.IPv4Address

	
get_dest_ip_addr()[source]

	Returns the destination IP address.

	Returns

	Configured destination IP address.

	Return type

	ipaddress.IPv4Address

	Raises

	
	TimeoutException – If there is a timeout getting the destination IP address.

	XBeeException – If there is any other XBee related exception.

See also

ipaddress.IPv4Address

	
add_ip_data_received_callback(callback)[source]

	Adds a callback for the event IPDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The data received as an IPMessage

	
del_ip_data_received_callback(callback)[source]

	Deletes a callback for the callback list of IPDataReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
start_listening(src_port)[source]

	Starts listening for incoming IP transmissions in the provided port.

	Parameters

	src_port (Integer) – Port to listen for incoming transmissions.

	Raises

	
	ValueError – If source_port is less than 0 or greater than 65535.

	TimeoutException – If there is a timeout setting the source port.

	XBeeException – If there is any other XBee related exception.

	
stop_listening()[source]

	Stops listening for incoming IP transmissions.

	Raises

	
	TimeoutException – If there is a timeout processing the operation.

	XBeeException – If there is any other XBee related exception.

	
send_ip_data(ip_addr, dest_port, protocol, data, close_socket=False)[source]

	Sends the provided IP data to the given IP address and port using the
specified IP protocol. For TCP and TCP SSL protocols, you can also
indicate if the socket should be closed when data is sent.

This method blocks until a success or error response arrives or the
configured receive timeout expires.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

	dest_port (Integer) – The destination port of the transmission.

	protocol (IPProtocol) – The IP protocol used for the transmission.

	data (String or Bytearray) – The IP data to be sent.

	close_socket (Boolean, optional, default=`False`) – True to close
the socket just after the transmission. False to keep it open.

	Raises

	
	ValueError – If ip_addr or protocol or data is None or
dest_port is less than 0 or greater than 65535.

	OperationNotSupportedException – If the XBee is remote.

	TimeoutException – If there is a timeout sending the data.

	XBeeException – If there is any other XBee related exception.

	
send_ip_data_async(ip_addr, dest_port, protocol, data, close_socket=False)[source]

	Sends the provided IP data to the given IP address and port
asynchronously using the specified IP protocol. For TCP and TCP SSL
protocols, you can also indicate if the socket should be closed when
data is sent.

Asynchronous transmissions do not wait for answer from the remote
device or for transmit status packet.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

	dest_port (Integer) – The destination port of the transmission.

	protocol (IPProtocol) – The IP protocol used for the transmission.

	data (String or Bytearray) – The IP data to be sent.

	close_socket (Boolean, optional, default=`False`) – True to close
the socket just after the transmission. False to keep it open.

	Raises

	
	ValueError – If ip_addr or protocol or data is None or
dest_port is less than 0 or greater than 65535.

	OperationNotSupportedException – If the XBee is remote.

	XBeeException – If there is any other XBee related exception.

	
send_ip_data_broadcast(dest_port, data)[source]

	Sends the provided IP data to all clients.

This method blocks until a success or error transmit status arrives or
the configured receive timeout expires.

	Parameters

	
	dest_port (Integer) – The destination port of the transmission.

	data (String or Bytearray) – The IP data to be sent.

	Raises

	
	ValueError – If data is None or dest_port is less than 0 or
greater than 65535.

	TimeoutException – If there is a timeout sending the data.

	XBeeException – If there is any other XBee related exception.

	
read_ip_data(timeout=3)[source]

	Reads new IP data received by this XBee during the provided timeout.

This method blocks until new IP data is received or the provided
timeout expires.

For non-blocking operations, register a callback and use the method
IPDevice.add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming IP data
at a specific port. Use the method IPDevice.start_listening() for
that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

	Parameters

	timeout (Integer, optional) – The time to wait for new IP data in seconds.

	Returns

	IP message, None if this device did not receive new data.

	Return type

	IPMessage

	Raises

	ValueError – If timeout is less than 0.

	
read_ip_data_from(ip_addr, timeout=3)[source]

	Reads new IP data received from the given IP address during the
provided timeout.

This method blocks until new IP data from the provided IP address is
received or the given timeout expires.

For non-blocking operations, register a callback and use the method
IPDevice.add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming IP data
at a specific port. Use the method IPDevice.start_listening() for
that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to read data from.

	timeout (Integer, optional) – The time to wait for new IP data in seconds.

	Returns

	
	IP message, None if this device did not

	receive new data from the provided IP address.

	Return type

	IPMessage

	Raises

	ValueError – If timeout is less than 0.

	
get_network()[source]

	Deprecated.

This protocol does not support the network functionality.

	
get_16bit_addr()[source]

	Deprecated.

This protocol does not have an associated 16-bit address.

	
get_dest_address()[source]

	Deprecated.

Operation not supported in this protocol. Use
IPDevice.get_dest_ip_addr() instead. This method raises an
AttributeError.

	
set_dest_address(addr)[source]

	Deprecated.

Operation not supported in this protocol. Use
IPDevice.set_dest_ip_addr() instead. This method raises an
AttributeError.

	
get_pan_id()[source]

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
set_pan_id(value)[source]

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
add_data_received_callback(callback)[source]

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
del_data_received_callback(callback)[source]

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
add_expl_data_received_callback(callback)[source]

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
del_expl_data_received_callback(callback)[source]

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
read_data(timeout=None)[source]

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
read_data_from(remote_xbee, timeout=None)[source]

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
send_data_broadcast(data, transmit_options=0)[source]

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
send_data(remote_xbee, data, transmit_options=0)[source]

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
send_data_async(remote_xbee, data, transmit_options=0)[source]

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
add_bluetooth_data_received_callback(callback)

	Adds a callback for the event BluetoothDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The Bluetooth data as a Bytearray.

	
add_fs_frame_received_callback(callback)

	Adds a callback for the event FileSystemFrameReceived.

	Parameters

	callback (Function) – The callback. Receives four arguments.

	Source (AbstractXBeeDevice): The node that sent the
file system frame.

	Frame id (Integer): The received frame id.

	Command (FSCmd): The file system command.

	Receive options (Integer): Bitfield indicating receive options.

See also

AbstractXBeeDevice

FSCmd

ReceiveOptions

	
add_io_sample_received_callback(callback)

	Adds a callback for the event IOSampleReceived.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	The received IO sample as an IOSample.

	The remote XBee which sent the packet as a RemoteXBeeDevice.

	The time in which the packet was received as an Integer.

	
add_micropython_data_received_callback(callback)

	Adds a callback for the event MicroPythonDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The MicroPython data as a Bytearray.

	
add_modem_status_received_callback(callback)

	Adds a callback for the event ModemStatusReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The modem status as a ModemStatus.

	
add_packet_received_callback(callback)

	Adds a callback for the event PacketReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The received packet as a XBeeAPIPacket.

	
add_route_received_callback(callback)

	Adds a callback for the event RouteReceived.
This works for Zigbee and Digimesh devices.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	source (XBeeDevice): The source node.

	destination (RemoteXBeeDevice): The destination node.

	
	hops (List): List of intermediate hops from closest to source

	to closest to destination (RemoteXBeeDevice).

See also

XBeeDevice.del_route_received_callback()

	
add_socket_data_received_callback(callback)

	Adds a callback for the event SocketDataReceived.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	The socket ID as an Integer.

	The data received as Bytearray.

	
add_socket_data_received_from_callback(callback)

	Adds a callback for the event SocketDataReceivedFrom.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	The socket ID as an Integer.

	
	Source address pair (host, port) where host is a string

	representing an IPv4 address like ‘100.50.200.5’, and port
is an integer.

	The data received as Bytearray.

	
add_socket_state_received_callback(callback)

	Adds a callback for the event SocketStateReceived.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	The socket ID as an Integer.

	The state received as a SocketState.

	
add_user_data_relay_received_callback(callback)

	Adds a callback for the event RelayDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The relay data as a UserDataRelayMessage.

	
apply_changes()

	Applies changes via ‘AC’ command.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
apply_profile(profile_path, timeout=None, progress_callback=None)

	Applies the given XBee profile to the XBee.

	Parameters

	
	profile_path (String) – Path of the XBee profile file to apply.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the apply profile (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
receive progress information. Receives two arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	UpdateProfileException – If there is any error applying the XBee profile.

	
close()

	Closes the communication with the XBee.

This method guarantees that all threads running are stopped and the
serial port is closed.

	
comm_iface

	Returns the hardware interface associated to the XBee.

	Returns

	Hardware interface of the XBee.

	Return type

	XBeeCommunicationInterface

See also

XBeeCommunicationInterface

	
classmethod create_xbee_device(comm_port_data)

	Creates and returns an XBeeDevice from data of the port to
which is connected.

	Parameters

	
	comm_port_data (Dictionary) – Dictionary with all comm port data needed.

	dictionary keys are (The) –
“baudRate” –> Baud rate.

”port” –> Port number.

”bitSize” –> Bit size.

”stopBits” –> Stop bits.

”parity” –> Parity.

”flowControl” –> Flow control.

”timeout” for –> Timeout for synchronous operations (in seconds).

	Returns

	XBee object created.

	Return type

	XBeeDevice

	Raises

	SerialException – If the port to open does not exist or is already opened.

See also

XBeeDevice

	
del_bluetooth_data_received_callback(callback)

	Deletes a callback for the callback list of
BluetoothDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_fs_frame_received_callback(callback)

	Deletes a callback for the callback list of
FileSystemFrameReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_io_sample_received_callback(callback)

	Deletes a callback for the callback list of IOSampleReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_micropython_data_received_callback(callback)

	Deletes a callback for the callback list of
MicroPythonDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_modem_status_received_callback(callback)

	Deletes a callback for the callback list of ModemStatusReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_packet_received_callback(callback)

	Deletes a callback for the callback list of PacketReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_route_received_callback(callback)

	Deletes a callback for the callback list of RouteReceived event.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeDevice.add_route_received_callback()

	
del_socket_data_received_callback(callback)

	Deletes a callback for the callback list of
SocketDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_socket_data_received_from_callback(callback)

	Deletes a callback for the callback list of
SocketDataReceivedFrom event.

	Parameters

	callback (Function) – The callback to delete.

	
del_socket_state_received_callback(callback)

	Deletes a callback for the callback list of
SocketStateReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_user_data_relay_received_callback(callback)

	Deletes a callback for the callback list of RelayDataReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
determine_protocol(hardware_version, firmware_version)

	Determines the XBee protocol based on the given hardware and firmware
versions.

	Parameters

	
	hardware_version (Integer) – Hardware version to get its protocol.

	firmware_version (Bytearray) – Firmware version to get its protocol.

	Returns

	
	XBee protocol corresponding to the given

	hardware and firmware versions.

	Return type

	XBeeProtocol

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
enable_apply_changes(value)

	Sets apply changes flag.

	Parameters

	value (Boolean) – True to enable apply changes flag, False to
disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth
password if not done previously. Use method
AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
execute_command(parameter, value=None, apply=None)

	Executes the provided command.

	Parameters

	
	(String or (parameter) – class: .ATStringCommand): AT command to execute.

	value (bytearray, optional, default=`None`) – Command value (if any).

	apply (Boolean, optional, default=`None`) – True to apply changes
in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

	
flush_queues()

	Flushes the packets queue.

	
get_64bit_addr()

	Returns the 64-bit address of the XBee.

	Returns

	64-bit address of the XBee.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – IO line to get its ADC value.

	Returns

	Analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

set_io_configuration()

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the
serial interface of the XBee.

	Returns

	API output mode of the XBee.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee
following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	Last used frame ID.

	Return type

	Integer

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

IOValue

set_io_configuration()

	
get_file_manager()

	Returns the file system manager for the XBee.

	Returns

	The file system manager.

	Return type

	FileSystemManager

	Raises

	FileSystemNotSupportedException – If the XBee does not support
filesystem.

	
get_firmware_version()

	Returns the firmware version of the XBee.

	Returns

	Firmware version of the XBee.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee.

	Returns

	Hardware version of the XBee.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its configuration.

	Returns

	IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

set_io_configuration()

	
get_io_sampling_rate()

	Returns the IO sampling rate of the XBee.

	Returns

	IO sampling rate of XBee.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

set_io_sampling_rate()

	
get_next_frame_id()

	Returns the next frame ID of the XBee.

	Returns

	The next frame ID of the XBee.

	Return type

	Integer

	
get_node_id()

	Returns the node identifier (‘NI’) value of the XBee.

	Returns

	Node identifier (‘NI’) of the XBee.

	Return type

	String

	
get_parameter(parameter, parameter_value=None, apply=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
get_power_level()

	Returns the power level of the XBee.

	Returns

	Power level of the XBee.

	Return type

	PowerLevel

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

PowerLevel

set_power_level()

	
get_protocol()

	Returns the current protocol of the XBee.

	Returns

	Current protocol of the XBee.

	Return type

	XBeeProtocol

See also

XBeeProtocol

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its PWM duty cycle.

	Returns

	PWM duty cycle of the given IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If io_line has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	Role

See also

Role

	
get_route_to_node(remote, timeout=10, force=True)

	Gets the route from this XBee to the given remote node.

	For Zigbee:

	
	‘AR’ parameter of the local node must be configured with a value
different from ‘FF’.

	Set force to True to force the Zigbee remote node to return
its route independently of the local node configuration as high
or low RAM concentrator (‘DO’ of the local value)

	Parameters

	
	remote (RemoteXBeeDevice) – The remote node.

	timeout (Float, optional, default=10) – Maximum number of seconds to
wait for the route.

	force (Boolean) – True to force asking for the route, False
otherwise. Only for Zigbee.

	Returns

	
	Tuple containing route data:

	
	status (TransmitStatus): The transmit status.

	Tuple with route data (None if the route was not read in the
provided timeout):

	source (RemoteXBeeDevice): The source node of the
route.

	destination (RemoteXBeeDevice): The destination node
of the route.

	hops (List): List of intermediate nodes
(RemoteXBeeDevice) ordered from closest to source
to closest to destination node (source and destination not
included).

	Return type

	Tuple

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	Serial port read timeout in seconds.

	Return type

	Integer

	
get_xbee_device_callbacks()

	Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee
to get its callbacks. These callbacks are executed before user callbacks.

	Returns

	PacketReceived

	
has_explicit_packets()

	Returns if there are pending explicit packets to read. This does not
include non-explicit packets.

	Returns

	True if there are pending packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_packets()

	
has_packets()

	Returns if there are pending packets to read. This does not include
explicit packets.

	Returns

	True if there are pending packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_explicit_packets()

	
is_apply_changes_enabled()

	Returns whether apply changes flag is enabled.

	Returns

	True if apply changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_open()

	Returns whether this XBee is open.

	Returns

	Boolean. True if this XBee is open, False otherwise.

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
log

	Returns the XBee logger.

	Returns

	The XBee device logger.

	Return type

	Logger

	
open(force_settings=False)

	Opens the communication with the XBee and loads information about it.

	Parameters

	force_settings (Boolean, optional, default=`False`) – True to open
the device ensuring/forcing that the specified serial settings
are applied even if the current configuration is different,
False to open the device with the current configuration.

	Raises

	
	TimeoutException – If there is any problem with the communication.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the XBee is already opened.

	
operating_mode

	Returns the operating mode of this XBee.

	Returns

	OperatingMode. This XBee operating mode.

	
reachable

	Returns whether the XBee is reachable.

	Returns

	True if the device is reachable, False otherwise.

	Return type

	Boolean

	
read_device_info(init=True, fire_event=True)

	Updates all instance parameters reading them from the XBee.

	Parameters

	
	init (Boolean, optional, default=`True`) – If False only not
initialized parameters are read, all if True.

	fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.is_device_info_complete()

	
read_io_sample()

	Returns an IO sample from the XBee containing the value of all enabled
digital IO and analog input channels.

	Returns

	IO sample read from the XBee.

	Return type

	IOSample

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOSample

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
scan_counter

	Returns the scan counter for this node.

	Returns

	The scan counter for this node.

	Return type

	Integer

	
send_bluetooth_data(data)

	Sends the given data to the Bluetooth interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If there is any problem sending the data.

See also

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

	
send_micropython_data(data)

	Sends the given data to the MicroPython interface using a User Data
Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If there is any problem sending the data.

See also

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

	
send_packet(packet, sync=False)

	Sends the packet and waits for the response. The packet to send is
escaped depending on the current operating mode.

This method can be synchronous or asynchronous.

If synchronous, this method discards all response packets until it finds
the one that has the appropriate frame ID, that is, the sent packet’s
frame ID.

If asynchronous, this method does not wait for any response and returns
None.

	Parameters

	
	packet (XBeePacket) – The packet to send.

	sync (Boolean) – True to wait for the response of the sent packet
and return it, False otherwise.

	Returns

	
	Response packet if sync is True, None

	otherwise.

	Return type

	XBeePacket

	Raises

	
	TimeoutException – If sync is True and the response packet for
the sent one cannot be read.

	InvalidOperatingModeException – If the XBee operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the packet listener is not running or the XBee’s
communication interface is closed.

See also

XBeePacket

	
send_packet_sync_and_get_response(packet_to_send, timeout=None)

	Sends the packet and waits for its corresponding response.

	Parameters

	
	packet_to_send (XBeePacket) – The packet to transmit.

	timeout (Integer, optional, default=`None`) – Number of seconds to
wait. -1 to wait indefinitely.

	Returns

	Received response packet.

	Return type

	XBeePacket

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TimeoutException – If response is not received in the configured
timeout.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBeePacket

	
send_user_data_relay(local_interface, data)

	Sends the given data to the given XBee local interface.

	Parameters

	
	local_interface (XBeeLocalInterface) – Destination XBee
local interface.

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ValueError – If local_interface is None.

	XBeeException – If there is any problem sending the User Data Relay.

See also

XBeeLocalInterface

	
serial_port

	Returns the serial port associated to the XBee, if any.

	Returns

	
	Serial port of the XBee. None if the

	local XBee does not use serial communication.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee.

	Parameters

	value (XBee16BitAddress) – New 16-bit address of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If the protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

	Parameters

	api_output_mode (APIOutputMode) – New API output mode.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – New API output mode options.
Calculate this value using the method
APIOutputModeBit.calculate_api_output_mode_value()
with a set of APIOutputModeBit.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputModeBit

	
set_dio_change_detection(io_lines_set)

	Sets the digital IO lines to be monitored and sampled whenever their
status changes. A None set of lines disables this feature.

	Parameters

	io_lines_set – Set of IOLine.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – Digital IO line to sets its value.

	io_value (IOValue) – IO value to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – IO line to configure.

	io_mode (IOMode) – IO mode to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

get_io_configuration()

	
set_io_sampling_rate(rate)

	Sets the IO sampling rate of the XBee in seconds. A sample rate of 0
means the IO sampling feature is disabled.

	Parameters

	rate (Integer) – New IO sampling rate of the XBee in seconds.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

get_io_sampling_rate()

	
set_node_id(node_id)

	Sets the node identifier (‘NI`) value of the XBee.

	Parameters

	node_id (String) – New node identifier (‘NI’) of the XBee.

	Raises

	
	ValueError – If node_id is None or its length is greater than 20.

	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
set_parameter(parameter, value, apply=None)

	Override.

	See:

	AbstractXBeeDevice.set_parameter()

	
set_power_level(power_level)

	Sets the power level of the XBee.

	Parameters

	power_level (PowerLevel) – New power level of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

PowerLevel

get_power_level()

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – IO Line to be assigned.

	cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If the given IO line does not have PWM capability or
cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – Read timeout in seconds.

	
update_bluetooth_password(new_password)

	Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
update_device_data_from(device)

	Updates the current node information with provided data. This is only
for internal use.

	Parameters

	device (AbstractXBeeDevice) – XBee to get the data from.

	Returns

	True if the node data has been updated, False otherwise.

	Return type

	Boolean

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the XBee.

	Parameters

	
	xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

	xbee_firmware_file (String, optional, default=`None`) – Location of
the XBee binary firmware file.

	bootloader_firmware_file (String, optional, default=`None`) – Location
of the bootloader binary firmware file.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the update process (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
to receive progress information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	OperationNotSupportedException – If XBee does not support firmware update.

	FirmwareUpdateException – If there is any error during the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee so that parameter modifications persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them, the XBee reverts back to
previously saved parameters the next time the module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_changes_enabled() to get its status and
enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
class digi.xbee.devices.CellularDevice(port=None, baud_rate=None, data_bits=<sphinx.ext.autodoc.importer._MockObject object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject object>, parity=<sphinx.ext.autodoc.importer._MockObject object>, flow_control=<FlowControl.NONE: None>, _sync_ops_timeout=4, comm_iface=None)[source]

	Bases: digi.xbee.devices.IPDevice

This class represents a local Cellular device.

Class constructor. Instantiates a new CellularDevice with the
provided parameters.

	Parameters

	
	port (String) – Serial port identifier. Depends on operating system.
e.g. ‘/dev/ttyUSB0’ on ‘GNU/Linux’ or ‘COM3’ on Windows.

	baud_rate (Integer) – Serial port baud rate.

	(Integer, default (_sync_ops_timeout) – serial.EIGHTBITS): Port bitsize.

	(Integer, default – serial.STOPBITS_ONE): Port stop bits.

	(Character, default (parity) – serial.PARITY_NONE): Port parity.

	(Integer, default – FlowControl.NONE): Port flow control.

	(Integer, default – 3): Read timeout (in seconds).

	comm_iface (XBeeCommunicationInterface) – Communication interface.

	Raises

	All exceptions raised by XBeeDevice.__init__() constructor.

See also

XBeeDevice

XBeeDevice.__init__()

	
open(force_settings=False)[source]

	Override.

See also

XBeeDevice.open()

	
get_protocol()[source]

	Override.

See also

XBeeDevice.get_protocol()

	
is_device_info_complete()[source]

	Override.

See also

AbstractXBeeDevice.is_device_info_complete()

	
is_connected()[source]

	Returns whether the device is connected to the Internet.

	Returns

	True if connected to the Internet, False otherwise.

	Return type

	Boolean

	Raises

	
	TimeoutException – If there is a timeout getting the association
indication status.

	XBeeException – If there is any other XBee related exception.

	
get_cellular_ai_status()[source]

	Returns the current association status of this Cellular device.

It indicates occurrences of errors during the modem initialization
and connection.

	Returns

	
	The association

	indication status of the Cellular device.

	Return type

	CellularAssociationIndicationStatus

	Raises

	
	TimeoutException – If there is a timeout getting the association
indication status.

	XBeeException – If there is any other XBee related exception.

	
add_sms_callback(callback)[source]

	Adds a callback for the event SMSReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The data received as an SMSMessage

	
del_sms_callback(callback)[source]

	Deletes a callback for the callback list of SMSReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
get_imei_addr()[source]

	Returns the IMEI address of this Cellular device.

To refresh this value use the method CellularDevice.read_device_info().

	Returns

	The IMEI address of this Cellular device.

	Return type

	XBeeIMEIAddress

	
send_sms(phone_number, data)[source]

	Sends the provided SMS message to the given phone number.

This method blocks until a success or error response arrives or the
configured receive timeout expires.

For non-blocking operations use the method CellularDevice.send_sms_async().

	Parameters

	
	phone_number (String) – The phone number to send the SMS to.

	data (String) – Text of the SMS.

	Raises

	
	ValueError – If phone_number or data is None.

	OperationNotSupportedException – If the device is remote.

	TimeoutException – If there is a timeout sending the SMS.

	XBeeException – If there is any other XBee related exception.

	
send_sms_async(phone_number, data)[source]

	Sends asynchronously the provided SMS to the given phone number.

Asynchronous transmissions do not wait for answer or for transmit
status packet.

	Parameters

	
	phone_number (String) – The phone number to send the SMS to.

	data (String) – Text of the SMS.

	Raises

	
	ValueError – If phone_number or data is None.

	OperationNotSupportedException – If the device is remote.

	XBeeException – If there is any other XBee related exception.

	
get_sockets_list()[source]

	Returns a list with the IDs of all active (open) sockets.

	Returns

	
	list with the IDs of all active (open) sockets, or empty list

	if there is not any active socket.

	Return type

	List

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TimeoutException – If the response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	
get_socket_info(socket_id)[source]

	Returns the information of the socket with the given socket ID.

	Parameters

	socket_id (Integer) – ID of the socket.

	Returns

	
	The socket information, or None if the

	socket with that ID does not exist.

	Return type

	SocketInfo

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TimeoutException – If the response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

See also

SocketInfo

	
get_64bit_addr()[source]

	Deprecated.

Cellular protocol does not have an associated 64-bit address.

	
add_io_sample_received_callback(callback)[source]

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
del_io_sample_received_callback(callback)[source]

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
set_dio_change_detection(io_lines_set)[source]

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
get_io_sampling_rate()[source]

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
set_io_sampling_rate(rate)[source]

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
get_node_id()[source]

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
set_node_id(node_id)[source]

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
get_power_level()[source]

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
set_power_level(power_level)[source]

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
add_bluetooth_data_received_callback(callback)

	Adds a callback for the event BluetoothDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The Bluetooth data as a Bytearray.

	
add_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
add_expl_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
add_fs_frame_received_callback(callback)

	Adds a callback for the event FileSystemFrameReceived.

	Parameters

	callback (Function) – The callback. Receives four arguments.

	Source (AbstractXBeeDevice): The node that sent the
file system frame.

	Frame id (Integer): The received frame id.

	Command (FSCmd): The file system command.

	Receive options (Integer): Bitfield indicating receive options.

See also

AbstractXBeeDevice

FSCmd

ReceiveOptions

	
add_ip_data_received_callback(callback)

	Adds a callback for the event IPDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The data received as an IPMessage

	
add_micropython_data_received_callback(callback)

	Adds a callback for the event MicroPythonDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The MicroPython data as a Bytearray.

	
add_modem_status_received_callback(callback)

	Adds a callback for the event ModemStatusReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The modem status as a ModemStatus.

	
add_packet_received_callback(callback)

	Adds a callback for the event PacketReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The received packet as a XBeeAPIPacket.

	
add_route_received_callback(callback)

	Adds a callback for the event RouteReceived.
This works for Zigbee and Digimesh devices.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	source (XBeeDevice): The source node.

	destination (RemoteXBeeDevice): The destination node.

	
	hops (List): List of intermediate hops from closest to source

	to closest to destination (RemoteXBeeDevice).

See also

XBeeDevice.del_route_received_callback()

	
add_socket_data_received_callback(callback)

	Adds a callback for the event SocketDataReceived.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	The socket ID as an Integer.

	The data received as Bytearray.

	
add_socket_data_received_from_callback(callback)

	Adds a callback for the event SocketDataReceivedFrom.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	The socket ID as an Integer.

	
	Source address pair (host, port) where host is a string

	representing an IPv4 address like ‘100.50.200.5’, and port
is an integer.

	The data received as Bytearray.

	
add_socket_state_received_callback(callback)

	Adds a callback for the event SocketStateReceived.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	The socket ID as an Integer.

	The state received as a SocketState.

	
add_user_data_relay_received_callback(callback)

	Adds a callback for the event RelayDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The relay data as a UserDataRelayMessage.

	
apply_changes()

	Applies changes via ‘AC’ command.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
apply_profile(profile_path, timeout=None, progress_callback=None)

	Applies the given XBee profile to the XBee.

	Parameters

	
	profile_path (String) – Path of the XBee profile file to apply.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the apply profile (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
receive progress information. Receives two arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	UpdateProfileException – If there is any error applying the XBee profile.

	
close()

	Closes the communication with the XBee.

This method guarantees that all threads running are stopped and the
serial port is closed.

	
comm_iface

	Returns the hardware interface associated to the XBee.

	Returns

	Hardware interface of the XBee.

	Return type

	XBeeCommunicationInterface

See also

XBeeCommunicationInterface

	
classmethod create_xbee_device(comm_port_data)

	Creates and returns an XBeeDevice from data of the port to
which is connected.

	Parameters

	
	comm_port_data (Dictionary) – Dictionary with all comm port data needed.

	dictionary keys are (The) –
“baudRate” –> Baud rate.

”port” –> Port number.

”bitSize” –> Bit size.

”stopBits” –> Stop bits.

”parity” –> Parity.

”flowControl” –> Flow control.

”timeout” for –> Timeout for synchronous operations (in seconds).

	Returns

	XBee object created.

	Return type

	XBeeDevice

	Raises

	SerialException – If the port to open does not exist or is already opened.

See also

XBeeDevice

	
del_bluetooth_data_received_callback(callback)

	Deletes a callback for the callback list of
BluetoothDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
del_expl_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
del_fs_frame_received_callback(callback)

	Deletes a callback for the callback list of
FileSystemFrameReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_ip_data_received_callback(callback)

	Deletes a callback for the callback list of IPDataReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_micropython_data_received_callback(callback)

	Deletes a callback for the callback list of
MicroPythonDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_modem_status_received_callback(callback)

	Deletes a callback for the callback list of ModemStatusReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_packet_received_callback(callback)

	Deletes a callback for the callback list of PacketReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_route_received_callback(callback)

	Deletes a callback for the callback list of RouteReceived event.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeDevice.add_route_received_callback()

	
del_socket_data_received_callback(callback)

	Deletes a callback for the callback list of
SocketDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_socket_data_received_from_callback(callback)

	Deletes a callback for the callback list of
SocketDataReceivedFrom event.

	Parameters

	callback (Function) – The callback to delete.

	
del_socket_state_received_callback(callback)

	Deletes a callback for the callback list of
SocketStateReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_user_data_relay_received_callback(callback)

	Deletes a callback for the callback list of RelayDataReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
determine_protocol(hardware_version, firmware_version)

	Determines the XBee protocol based on the given hardware and firmware
versions.

	Parameters

	
	hardware_version (Integer) – Hardware version to get its protocol.

	firmware_version (Bytearray) – Firmware version to get its protocol.

	Returns

	
	XBee protocol corresponding to the given

	hardware and firmware versions.

	Return type

	XBeeProtocol

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
enable_apply_changes(value)

	Sets apply changes flag.

	Parameters

	value (Boolean) – True to enable apply changes flag, False to
disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth
password if not done previously. Use method
AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
execute_command(parameter, value=None, apply=None)

	Executes the provided command.

	Parameters

	
	(String or (parameter) – class: .ATStringCommand): AT command to execute.

	value (bytearray, optional, default=`None`) – Command value (if any).

	apply (Boolean, optional, default=`None`) – True to apply changes
in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

	
flush_queues()

	Flushes the packets queue.

	
get_16bit_addr()

	Deprecated.

This protocol does not have an associated 16-bit address.

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – IO line to get its ADC value.

	Returns

	Analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

set_io_configuration()

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the
serial interface of the XBee.

	Returns

	API output mode of the XBee.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee
following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	Last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Deprecated.

Operation not supported in this protocol. Use
IPDevice.get_dest_ip_addr() instead. This method raises an
AttributeError.

	
get_dest_ip_addr()

	Returns the destination IP address.

	Returns

	Configured destination IP address.

	Return type

	ipaddress.IPv4Address

	Raises

	
	TimeoutException – If there is a timeout getting the destination IP address.

	XBeeException – If there is any other XBee related exception.

See also

ipaddress.IPv4Address

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

IOValue

set_io_configuration()

	
get_file_manager()

	Returns the file system manager for the XBee.

	Returns

	The file system manager.

	Return type

	FileSystemManager

	Raises

	FileSystemNotSupportedException – If the XBee does not support
filesystem.

	
get_firmware_version()

	Returns the firmware version of the XBee.

	Returns

	Firmware version of the XBee.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee.

	Returns

	Hardware version of the XBee.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its configuration.

	Returns

	IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

set_io_configuration()

	
get_ip_addr()

	Returns the IP address of this IP XBee.

To refresh this value use the method IPDevice.read_device_info().

	Returns

	The IP address of this IP device.

	Return type

	ipaddress.IPv4Address

See also

ipaddress.IPv4Address

	
get_network()

	Deprecated.

This protocol does not support the network functionality.

	
get_next_frame_id()

	Returns the next frame ID of the XBee.

	Returns

	The next frame ID of the XBee.

	Return type

	Integer

	
get_pan_id()

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
get_parameter(parameter, parameter_value=None, apply=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its PWM duty cycle.

	Returns

	PWM duty cycle of the given IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If io_line has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	Role

See also

Role

	
get_route_to_node(remote, timeout=10, force=True)

	Gets the route from this XBee to the given remote node.

	For Zigbee:

	
	‘AR’ parameter of the local node must be configured with a value
different from ‘FF’.

	Set force to True to force the Zigbee remote node to return
its route independently of the local node configuration as high
or low RAM concentrator (‘DO’ of the local value)

	Parameters

	
	remote (RemoteXBeeDevice) – The remote node.

	timeout (Float, optional, default=10) – Maximum number of seconds to
wait for the route.

	force (Boolean) – True to force asking for the route, False
otherwise. Only for Zigbee.

	Returns

	
	Tuple containing route data:

	
	status (TransmitStatus): The transmit status.

	Tuple with route data (None if the route was not read in the
provided timeout):

	source (RemoteXBeeDevice): The source node of the
route.

	destination (RemoteXBeeDevice): The destination node
of the route.

	hops (List): List of intermediate nodes
(RemoteXBeeDevice) ordered from closest to source
to closest to destination node (source and destination not
included).

	Return type

	Tuple

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	Serial port read timeout in seconds.

	Return type

	Integer

	
get_xbee_device_callbacks()

	Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee
to get its callbacks. These callbacks are executed before user callbacks.

	Returns

	PacketReceived

	
has_explicit_packets()

	Returns if there are pending explicit packets to read. This does not
include non-explicit packets.

	Returns

	True if there are pending packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_packets()

	
has_packets()

	Returns if there are pending packets to read. This does not include
explicit packets.

	Returns

	True if there are pending packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_explicit_packets()

	
is_apply_changes_enabled()

	Returns whether apply changes flag is enabled.

	Returns

	True if apply changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_open()

	Returns whether this XBee is open.

	Returns

	Boolean. True if this XBee is open, False otherwise.

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
log

	Returns the XBee logger.

	Returns

	The XBee device logger.

	Return type

	Logger

	
operating_mode

	Returns the operating mode of this XBee.

	Returns

	OperatingMode. This XBee operating mode.

	
reachable

	Returns whether the XBee is reachable.

	Returns

	True if the device is reachable, False otherwise.

	Return type

	Boolean

	
read_data(timeout=None)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
read_data_from(remote_xbee, timeout=None)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
read_device_info(init=True, fire_event=True)

	Updates all instance parameters reading them from the XBee.

	Parameters

	
	init (Boolean, optional, default=`True`) – If False only not
initialized parameters are read, all if True.

	fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.is_device_info_complete()

	
read_io_sample()

	Returns an IO sample from the XBee containing the value of all enabled
digital IO and analog input channels.

	Returns

	IO sample read from the XBee.

	Return type

	IOSample

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOSample

	
read_ip_data(timeout=3)

	Reads new IP data received by this XBee during the provided timeout.

This method blocks until new IP data is received or the provided
timeout expires.

For non-blocking operations, register a callback and use the method
IPDevice.add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming IP data
at a specific port. Use the method IPDevice.start_listening() for
that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

	Parameters

	timeout (Integer, optional) – The time to wait for new IP data in seconds.

	Returns

	IP message, None if this device did not receive new data.

	Return type

	IPMessage

	Raises

	ValueError – If timeout is less than 0.

	
read_ip_data_from(ip_addr, timeout=3)

	Reads new IP data received from the given IP address during the
provided timeout.

This method blocks until new IP data from the provided IP address is
received or the given timeout expires.

For non-blocking operations, register a callback and use the method
IPDevice.add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming IP data
at a specific port. Use the method IPDevice.start_listening() for
that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to read data from.

	timeout (Integer, optional) – The time to wait for new IP data in seconds.

	Returns

	
	IP message, None if this device did not

	receive new data from the provided IP address.

	Return type

	IPMessage

	Raises

	ValueError – If timeout is less than 0.

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
scan_counter

	Returns the scan counter for this node.

	Returns

	The scan counter for this node.

	Return type

	Integer

	
send_bluetooth_data(data)

	Sends the given data to the Bluetooth interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If there is any problem sending the data.

See also

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

	
send_data(remote_xbee, data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
send_data_async(remote_xbee, data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
send_data_broadcast(data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
send_ip_data(ip_addr, dest_port, protocol, data, close_socket=False)

	Sends the provided IP data to the given IP address and port using the
specified IP protocol. For TCP and TCP SSL protocols, you can also
indicate if the socket should be closed when data is sent.

This method blocks until a success or error response arrives or the
configured receive timeout expires.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

	dest_port (Integer) – The destination port of the transmission.

	protocol (IPProtocol) – The IP protocol used for the transmission.

	data (String or Bytearray) – The IP data to be sent.

	close_socket (Boolean, optional, default=`False`) – True to close
the socket just after the transmission. False to keep it open.

	Raises

	
	ValueError – If ip_addr or protocol or data is None or
dest_port is less than 0 or greater than 65535.

	OperationNotSupportedException – If the XBee is remote.

	TimeoutException – If there is a timeout sending the data.

	XBeeException – If there is any other XBee related exception.

	
send_ip_data_async(ip_addr, dest_port, protocol, data, close_socket=False)

	Sends the provided IP data to the given IP address and port
asynchronously using the specified IP protocol. For TCP and TCP SSL
protocols, you can also indicate if the socket should be closed when
data is sent.

Asynchronous transmissions do not wait for answer from the remote
device or for transmit status packet.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

	dest_port (Integer) – The destination port of the transmission.

	protocol (IPProtocol) – The IP protocol used for the transmission.

	data (String or Bytearray) – The IP data to be sent.

	close_socket (Boolean, optional, default=`False`) – True to close
the socket just after the transmission. False to keep it open.

	Raises

	
	ValueError – If ip_addr or protocol or data is None or
dest_port is less than 0 or greater than 65535.

	OperationNotSupportedException – If the XBee is remote.

	XBeeException – If there is any other XBee related exception.

	
send_ip_data_broadcast(dest_port, data)

	Sends the provided IP data to all clients.

This method blocks until a success or error transmit status arrives or
the configured receive timeout expires.

	Parameters

	
	dest_port (Integer) – The destination port of the transmission.

	data (String or Bytearray) – The IP data to be sent.

	Raises

	
	ValueError – If data is None or dest_port is less than 0 or
greater than 65535.

	TimeoutException – If there is a timeout sending the data.

	XBeeException – If there is any other XBee related exception.

	
send_micropython_data(data)

	Sends the given data to the MicroPython interface using a User Data
Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If there is any problem sending the data.

See also

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

	
send_packet(packet, sync=False)

	Sends the packet and waits for the response. The packet to send is
escaped depending on the current operating mode.

This method can be synchronous or asynchronous.

If synchronous, this method discards all response packets until it finds
the one that has the appropriate frame ID, that is, the sent packet’s
frame ID.

If asynchronous, this method does not wait for any response and returns
None.

	Parameters

	
	packet (XBeePacket) – The packet to send.

	sync (Boolean) – True to wait for the response of the sent packet
and return it, False otherwise.

	Returns

	
	Response packet if sync is True, None

	otherwise.

	Return type

	XBeePacket

	Raises

	
	TimeoutException – If sync is True and the response packet for
the sent one cannot be read.

	InvalidOperatingModeException – If the XBee operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the packet listener is not running or the XBee’s
communication interface is closed.

See also

XBeePacket

	
send_packet_sync_and_get_response(packet_to_send, timeout=None)

	Sends the packet and waits for its corresponding response.

	Parameters

	
	packet_to_send (XBeePacket) – The packet to transmit.

	timeout (Integer, optional, default=`None`) – Number of seconds to
wait. -1 to wait indefinitely.

	Returns

	Received response packet.

	Return type

	XBeePacket

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TimeoutException – If response is not received in the configured
timeout.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBeePacket

	
send_user_data_relay(local_interface, data)

	Sends the given data to the given XBee local interface.

	Parameters

	
	local_interface (XBeeLocalInterface) – Destination XBee
local interface.

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ValueError – If local_interface is None.

	XBeeException – If there is any problem sending the User Data Relay.

See also

XBeeLocalInterface

	
serial_port

	Returns the serial port associated to the XBee, if any.

	Returns

	
	Serial port of the XBee. None if the

	local XBee does not use serial communication.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee.

	Parameters

	value (XBee16BitAddress) – New 16-bit address of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If the protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

	Parameters

	api_output_mode (APIOutputMode) – New API output mode.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – New API output mode options.
Calculate this value using the method
APIOutputModeBit.calculate_api_output_mode_value()
with a set of APIOutputModeBit.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputModeBit

	
set_dest_address(addr)

	Deprecated.

Operation not supported in this protocol. Use
IPDevice.set_dest_ip_addr() instead. This method raises an
AttributeError.

	
set_dest_ip_addr(address)

	Sets the destination IP address.

	Parameters

	address (ipaddress.IPv4Address) – Destination IP address.

	Raises

	
	ValueError – If address is None.

	TimeoutException – If there is a timeout setting the destination IP address.

	XBeeException – If there is any other XBee related exception.

See also

ipaddress.IPv4Address

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – Digital IO line to sets its value.

	io_value (IOValue) – IO value to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – IO line to configure.

	io_mode (IOMode) – IO mode to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

get_io_configuration()

	
set_pan_id(value)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
set_parameter(parameter, value, apply=None)

	Override.

	See:

	AbstractXBeeDevice.set_parameter()

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – IO Line to be assigned.

	cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If the given IO line does not have PWM capability or
cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – Read timeout in seconds.

	
start_listening(src_port)

	Starts listening for incoming IP transmissions in the provided port.

	Parameters

	src_port (Integer) – Port to listen for incoming transmissions.

	Raises

	
	ValueError – If source_port is less than 0 or greater than 65535.

	TimeoutException – If there is a timeout setting the source port.

	XBeeException – If there is any other XBee related exception.

	
stop_listening()

	Stops listening for incoming IP transmissions.

	Raises

	
	TimeoutException – If there is a timeout processing the operation.

	XBeeException – If there is any other XBee related exception.

	
update_bluetooth_password(new_password)

	Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
update_device_data_from(device)

	Updates the current node information with provided data. This is only
for internal use.

	Parameters

	device (AbstractXBeeDevice) – XBee to get the data from.

	Returns

	True if the node data has been updated, False otherwise.

	Return type

	Boolean

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the XBee.

	Parameters

	
	xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

	xbee_firmware_file (String, optional, default=`None`) – Location of
the XBee binary firmware file.

	bootloader_firmware_file (String, optional, default=`None`) – Location
of the bootloader binary firmware file.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the update process (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
to receive progress information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	OperationNotSupportedException – If XBee does not support firmware update.

	FirmwareUpdateException – If there is any error during the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee so that parameter modifications persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them, the XBee reverts back to
previously saved parameters the next time the module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_changes_enabled() to get its status and
enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
class digi.xbee.devices.LPWANDevice(port=None, baud_rate=None, data_bits=<sphinx.ext.autodoc.importer._MockObject object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject object>, parity=<sphinx.ext.autodoc.importer._MockObject object>, flow_control=<FlowControl.NONE: None>, _sync_ops_timeout=4, comm_iface=None)[source]

	Bases: digi.xbee.devices.CellularDevice

This class provides common functionality for XBee Low-Power Wide-Area Network
devices.

Class constructor. Instantiates a new LPWANDevice with the
provided parameters.

	Parameters

	
	port (String) – Serial port identifier. Depends on operating system.
e.g. ‘/dev/ttyUSB0’ on ‘GNU/Linux’ or ‘COM3’ on Windows.

	baud_rate (Integer) – Serial port baud rate.

	(Integer, default (_sync_ops_timeout) – serial.EIGHTBITS): Port bitsize.

	(Integer, default – serial.STOPBITS_ONE): Port stop bits.

	(Character, default (parity) – serial.PARITY_NONE): Port parity.

	(Integer, default – FlowControl.NONE): Port flow control.

	(Integer, default – 3): Read timeout (in seconds).

	comm_iface (XBeeCommunicationInterface) – Communication interface.

	Raises

	All exceptions raised by XBeeDevice.__init__() constructor.

See also

CellularDevice

CellularDevice.__init__()

	
send_ip_data(ip_addr, dest_port, protocol, data, close_socket=False)[source]

	Sends the provided IP data to the given IP address and port using
the specified IP protocol.

This method blocks until a success or error response arrives or the
configured receive timeout expires.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

	dest_port (Integer) – The destination port of the transmission.

	protocol (IPProtocol) – The IP protocol used for the transmission.

	data (String or Bytearray) – The IP data to be sent.

	close_socket (Boolean, optional) – Must be False.

	Raises

	ValueError – If protocol is not UDP.

	
send_ip_data_async(ip_addr, dest_port, protocol, data, close_socket=False)[source]

	Sends the provided IP data to the given IP address and port
asynchronously using the specified IP protocol.

Asynchronous transmissions do not wait for answer from the remote
device or for transmit status packet.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

	dest_port (Integer) – The destination port of the transmission.

	protocol (IPProtocol) – The IP protocol used for the transmission.

	data (String or Bytearray) – The IP data to be sent.

	close_socket (Boolean, optional) – Must be False.

	Raises

	ValueError – If protocol is not UDP.

	
add_sms_callback(callback)[source]

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
del_sms_callback(callback)[source]

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
send_sms(phone_number, data)[source]

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
send_sms_async(phone_number, data)[source]

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
add_bluetooth_data_received_callback(callback)

	Adds a callback for the event BluetoothDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The Bluetooth data as a Bytearray.

	
add_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
add_expl_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
add_fs_frame_received_callback(callback)

	Adds a callback for the event FileSystemFrameReceived.

	Parameters

	callback (Function) – The callback. Receives four arguments.

	Source (AbstractXBeeDevice): The node that sent the
file system frame.

	Frame id (Integer): The received frame id.

	Command (FSCmd): The file system command.

	Receive options (Integer): Bitfield indicating receive options.

See also

AbstractXBeeDevice

FSCmd

ReceiveOptions

	
add_io_sample_received_callback(callback)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
add_ip_data_received_callback(callback)

	Adds a callback for the event IPDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The data received as an IPMessage

	
add_micropython_data_received_callback(callback)

	Adds a callback for the event MicroPythonDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The MicroPython data as a Bytearray.

	
add_modem_status_received_callback(callback)

	Adds a callback for the event ModemStatusReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The modem status as a ModemStatus.

	
add_packet_received_callback(callback)

	Adds a callback for the event PacketReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The received packet as a XBeeAPIPacket.

	
add_route_received_callback(callback)

	Adds a callback for the event RouteReceived.
This works for Zigbee and Digimesh devices.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	source (XBeeDevice): The source node.

	destination (RemoteXBeeDevice): The destination node.

	
	hops (List): List of intermediate hops from closest to source

	to closest to destination (RemoteXBeeDevice).

See also

XBeeDevice.del_route_received_callback()

	
add_socket_data_received_callback(callback)

	Adds a callback for the event SocketDataReceived.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	The socket ID as an Integer.

	The data received as Bytearray.

	
add_socket_data_received_from_callback(callback)

	Adds a callback for the event SocketDataReceivedFrom.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	The socket ID as an Integer.

	
	Source address pair (host, port) where host is a string

	representing an IPv4 address like ‘100.50.200.5’, and port
is an integer.

	The data received as Bytearray.

	
add_socket_state_received_callback(callback)

	Adds a callback for the event SocketStateReceived.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	The socket ID as an Integer.

	The state received as a SocketState.

	
add_user_data_relay_received_callback(callback)

	Adds a callback for the event RelayDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The relay data as a UserDataRelayMessage.

	
apply_changes()

	Applies changes via ‘AC’ command.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
apply_profile(profile_path, timeout=None, progress_callback=None)

	Applies the given XBee profile to the XBee.

	Parameters

	
	profile_path (String) – Path of the XBee profile file to apply.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the apply profile (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
receive progress information. Receives two arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	UpdateProfileException – If there is any error applying the XBee profile.

	
close()

	Closes the communication with the XBee.

This method guarantees that all threads running are stopped and the
serial port is closed.

	
comm_iface

	Returns the hardware interface associated to the XBee.

	Returns

	Hardware interface of the XBee.

	Return type

	XBeeCommunicationInterface

See also

XBeeCommunicationInterface

	
classmethod create_xbee_device(comm_port_data)

	Creates and returns an XBeeDevice from data of the port to
which is connected.

	Parameters

	
	comm_port_data (Dictionary) – Dictionary with all comm port data needed.

	dictionary keys are (The) –
“baudRate” –> Baud rate.

”port” –> Port number.

”bitSize” –> Bit size.

”stopBits” –> Stop bits.

”parity” –> Parity.

”flowControl” –> Flow control.

”timeout” for –> Timeout for synchronous operations (in seconds).

	Returns

	XBee object created.

	Return type

	XBeeDevice

	Raises

	SerialException – If the port to open does not exist or is already opened.

See also

XBeeDevice

	
del_bluetooth_data_received_callback(callback)

	Deletes a callback for the callback list of
BluetoothDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
del_expl_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
del_fs_frame_received_callback(callback)

	Deletes a callback for the callback list of
FileSystemFrameReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_io_sample_received_callback(callback)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
del_ip_data_received_callback(callback)

	Deletes a callback for the callback list of IPDataReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_micropython_data_received_callback(callback)

	Deletes a callback for the callback list of
MicroPythonDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_modem_status_received_callback(callback)

	Deletes a callback for the callback list of ModemStatusReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_packet_received_callback(callback)

	Deletes a callback for the callback list of PacketReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_route_received_callback(callback)

	Deletes a callback for the callback list of RouteReceived event.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeDevice.add_route_received_callback()

	
del_socket_data_received_callback(callback)

	Deletes a callback for the callback list of
SocketDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_socket_data_received_from_callback(callback)

	Deletes a callback for the callback list of
SocketDataReceivedFrom event.

	Parameters

	callback (Function) – The callback to delete.

	
del_socket_state_received_callback(callback)

	Deletes a callback for the callback list of
SocketStateReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_user_data_relay_received_callback(callback)

	Deletes a callback for the callback list of RelayDataReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
determine_protocol(hardware_version, firmware_version)

	Determines the XBee protocol based on the given hardware and firmware
versions.

	Parameters

	
	hardware_version (Integer) – Hardware version to get its protocol.

	firmware_version (Bytearray) – Firmware version to get its protocol.

	Returns

	
	XBee protocol corresponding to the given

	hardware and firmware versions.

	Return type

	XBeeProtocol

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
enable_apply_changes(value)

	Sets apply changes flag.

	Parameters

	value (Boolean) – True to enable apply changes flag, False to
disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth
password if not done previously. Use method
AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
execute_command(parameter, value=None, apply=None)

	Executes the provided command.

	Parameters

	
	(String or (parameter) – class: .ATStringCommand): AT command to execute.

	value (bytearray, optional, default=`None`) – Command value (if any).

	apply (Boolean, optional, default=`None`) – True to apply changes
in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

	
flush_queues()

	Flushes the packets queue.

	
get_16bit_addr()

	Deprecated.

This protocol does not have an associated 16-bit address.

	
get_64bit_addr()

	Deprecated.

Cellular protocol does not have an associated 64-bit address.

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – IO line to get its ADC value.

	Returns

	Analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

set_io_configuration()

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the
serial interface of the XBee.

	Returns

	API output mode of the XBee.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee
following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_cellular_ai_status()

	Returns the current association status of this Cellular device.

It indicates occurrences of errors during the modem initialization
and connection.

	Returns

	
	The association

	indication status of the Cellular device.

	Return type

	CellularAssociationIndicationStatus

	Raises

	
	TimeoutException – If there is a timeout getting the association
indication status.

	XBeeException – If there is any other XBee related exception.

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	Last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Deprecated.

Operation not supported in this protocol. Use
IPDevice.get_dest_ip_addr() instead. This method raises an
AttributeError.

	
get_dest_ip_addr()

	Returns the destination IP address.

	Returns

	Configured destination IP address.

	Return type

	ipaddress.IPv4Address

	Raises

	
	TimeoutException – If there is a timeout getting the destination IP address.

	XBeeException – If there is any other XBee related exception.

See also

ipaddress.IPv4Address

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

IOValue

set_io_configuration()

	
get_file_manager()

	Returns the file system manager for the XBee.

	Returns

	The file system manager.

	Return type

	FileSystemManager

	Raises

	FileSystemNotSupportedException – If the XBee does not support
filesystem.

	
get_firmware_version()

	Returns the firmware version of the XBee.

	Returns

	Firmware version of the XBee.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee.

	Returns

	Hardware version of the XBee.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_imei_addr()

	Returns the IMEI address of this Cellular device.

To refresh this value use the method CellularDevice.read_device_info().

	Returns

	The IMEI address of this Cellular device.

	Return type

	XBeeIMEIAddress

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its configuration.

	Returns

	IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

set_io_configuration()

	
get_io_sampling_rate()

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
get_ip_addr()

	Returns the IP address of this IP XBee.

To refresh this value use the method IPDevice.read_device_info().

	Returns

	The IP address of this IP device.

	Return type

	ipaddress.IPv4Address

See also

ipaddress.IPv4Address

	
get_network()

	Deprecated.

This protocol does not support the network functionality.

	
get_next_frame_id()

	Returns the next frame ID of the XBee.

	Returns

	The next frame ID of the XBee.

	Return type

	Integer

	
get_node_id()

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
get_pan_id()

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
get_parameter(parameter, parameter_value=None, apply=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
get_power_level()

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
get_protocol()

	Override.

See also

XBeeDevice.get_protocol()

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its PWM duty cycle.

	Returns

	PWM duty cycle of the given IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If io_line has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	Role

See also

Role

	
get_route_to_node(remote, timeout=10, force=True)

	Gets the route from this XBee to the given remote node.

	For Zigbee:

	
	‘AR’ parameter of the local node must be configured with a value
different from ‘FF’.

	Set force to True to force the Zigbee remote node to return
its route independently of the local node configuration as high
or low RAM concentrator (‘DO’ of the local value)

	Parameters

	
	remote (RemoteXBeeDevice) – The remote node.

	timeout (Float, optional, default=10) – Maximum number of seconds to
wait for the route.

	force (Boolean) – True to force asking for the route, False
otherwise. Only for Zigbee.

	Returns

	
	Tuple containing route data:

	
	status (TransmitStatus): The transmit status.

	Tuple with route data (None if the route was not read in the
provided timeout):

	source (RemoteXBeeDevice): The source node of the
route.

	destination (RemoteXBeeDevice): The destination node
of the route.

	hops (List): List of intermediate nodes
(RemoteXBeeDevice) ordered from closest to source
to closest to destination node (source and destination not
included).

	Return type

	Tuple

	
get_socket_info(socket_id)

	Returns the information of the socket with the given socket ID.

	Parameters

	socket_id (Integer) – ID of the socket.

	Returns

	
	The socket information, or None if the

	socket with that ID does not exist.

	Return type

	SocketInfo

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TimeoutException – If the response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

See also

SocketInfo

	
get_sockets_list()

	Returns a list with the IDs of all active (open) sockets.

	Returns

	
	list with the IDs of all active (open) sockets, or empty list

	if there is not any active socket.

	Return type

	List

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TimeoutException – If the response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	Serial port read timeout in seconds.

	Return type

	Integer

	
get_xbee_device_callbacks()

	Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee
to get its callbacks. These callbacks are executed before user callbacks.

	Returns

	PacketReceived

	
has_explicit_packets()

	Returns if there are pending explicit packets to read. This does not
include non-explicit packets.

	Returns

	True if there are pending packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_packets()

	
has_packets()

	Returns if there are pending packets to read. This does not include
explicit packets.

	Returns

	True if there are pending packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_explicit_packets()

	
is_apply_changes_enabled()

	Returns whether apply changes flag is enabled.

	Returns

	True if apply changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_connected()

	Returns whether the device is connected to the Internet.

	Returns

	True if connected to the Internet, False otherwise.

	Return type

	Boolean

	Raises

	
	TimeoutException – If there is a timeout getting the association
indication status.

	XBeeException – If there is any other XBee related exception.

	
is_device_info_complete()

	Override.

See also

AbstractXBeeDevice.is_device_info_complete()

	
is_open()

	Returns whether this XBee is open.

	Returns

	Boolean. True if this XBee is open, False otherwise.

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
log

	Returns the XBee logger.

	Returns

	The XBee device logger.

	Return type

	Logger

	
open(force_settings=False)

	Override.

See also

XBeeDevice.open()

	
operating_mode

	Returns the operating mode of this XBee.

	Returns

	OperatingMode. This XBee operating mode.

	
reachable

	Returns whether the XBee is reachable.

	Returns

	True if the device is reachable, False otherwise.

	Return type

	Boolean

	
read_data(timeout=None)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
read_data_from(remote_xbee, timeout=None)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
read_device_info(init=True, fire_event=True)

	Updates all instance parameters reading them from the XBee.

	Parameters

	
	init (Boolean, optional, default=`True`) – If False only not
initialized parameters are read, all if True.

	fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.is_device_info_complete()

	
read_io_sample()

	Returns an IO sample from the XBee containing the value of all enabled
digital IO and analog input channels.

	Returns

	IO sample read from the XBee.

	Return type

	IOSample

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOSample

	
read_ip_data(timeout=3)

	Reads new IP data received by this XBee during the provided timeout.

This method blocks until new IP data is received or the provided
timeout expires.

For non-blocking operations, register a callback and use the method
IPDevice.add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming IP data
at a specific port. Use the method IPDevice.start_listening() for
that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

	Parameters

	timeout (Integer, optional) – The time to wait for new IP data in seconds.

	Returns

	IP message, None if this device did not receive new data.

	Return type

	IPMessage

	Raises

	ValueError – If timeout is less than 0.

	
read_ip_data_from(ip_addr, timeout=3)

	Reads new IP data received from the given IP address during the
provided timeout.

This method blocks until new IP data from the provided IP address is
received or the given timeout expires.

For non-blocking operations, register a callback and use the method
IPDevice.add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming IP data
at a specific port. Use the method IPDevice.start_listening() for
that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to read data from.

	timeout (Integer, optional) – The time to wait for new IP data in seconds.

	Returns

	
	IP message, None if this device did not

	receive new data from the provided IP address.

	Return type

	IPMessage

	Raises

	ValueError – If timeout is less than 0.

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
scan_counter

	Returns the scan counter for this node.

	Returns

	The scan counter for this node.

	Return type

	Integer

	
send_bluetooth_data(data)

	Sends the given data to the Bluetooth interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If there is any problem sending the data.

See also

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

	
send_data(remote_xbee, data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
send_data_async(remote_xbee, data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
send_data_broadcast(data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
send_ip_data_broadcast(dest_port, data)

	Sends the provided IP data to all clients.

This method blocks until a success or error transmit status arrives or
the configured receive timeout expires.

	Parameters

	
	dest_port (Integer) – The destination port of the transmission.

	data (String or Bytearray) – The IP data to be sent.

	Raises

	
	ValueError – If data is None or dest_port is less than 0 or
greater than 65535.

	TimeoutException – If there is a timeout sending the data.

	XBeeException – If there is any other XBee related exception.

	
send_micropython_data(data)

	Sends the given data to the MicroPython interface using a User Data
Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If there is any problem sending the data.

See also

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

	
send_packet(packet, sync=False)

	Sends the packet and waits for the response. The packet to send is
escaped depending on the current operating mode.

This method can be synchronous or asynchronous.

If synchronous, this method discards all response packets until it finds
the one that has the appropriate frame ID, that is, the sent packet’s
frame ID.

If asynchronous, this method does not wait for any response and returns
None.

	Parameters

	
	packet (XBeePacket) – The packet to send.

	sync (Boolean) – True to wait for the response of the sent packet
and return it, False otherwise.

	Returns

	
	Response packet if sync is True, None

	otherwise.

	Return type

	XBeePacket

	Raises

	
	TimeoutException – If sync is True and the response packet for
the sent one cannot be read.

	InvalidOperatingModeException – If the XBee operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the packet listener is not running or the XBee’s
communication interface is closed.

See also

XBeePacket

	
send_packet_sync_and_get_response(packet_to_send, timeout=None)

	Sends the packet and waits for its corresponding response.

	Parameters

	
	packet_to_send (XBeePacket) – The packet to transmit.

	timeout (Integer, optional, default=`None`) – Number of seconds to
wait. -1 to wait indefinitely.

	Returns

	Received response packet.

	Return type

	XBeePacket

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TimeoutException – If response is not received in the configured
timeout.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBeePacket

	
send_user_data_relay(local_interface, data)

	Sends the given data to the given XBee local interface.

	Parameters

	
	local_interface (XBeeLocalInterface) – Destination XBee
local interface.

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ValueError – If local_interface is None.

	XBeeException – If there is any problem sending the User Data Relay.

See also

XBeeLocalInterface

	
serial_port

	Returns the serial port associated to the XBee, if any.

	Returns

	
	Serial port of the XBee. None if the

	local XBee does not use serial communication.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee.

	Parameters

	value (XBee16BitAddress) – New 16-bit address of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If the protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

	Parameters

	api_output_mode (APIOutputMode) – New API output mode.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – New API output mode options.
Calculate this value using the method
APIOutputModeBit.calculate_api_output_mode_value()
with a set of APIOutputModeBit.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputModeBit

	
set_dest_address(addr)

	Deprecated.

Operation not supported in this protocol. Use
IPDevice.set_dest_ip_addr() instead. This method raises an
AttributeError.

	
set_dest_ip_addr(address)

	Sets the destination IP address.

	Parameters

	address (ipaddress.IPv4Address) – Destination IP address.

	Raises

	
	ValueError – If address is None.

	TimeoutException – If there is a timeout setting the destination IP address.

	XBeeException – If there is any other XBee related exception.

See also

ipaddress.IPv4Address

	
set_dio_change_detection(io_lines_set)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – Digital IO line to sets its value.

	io_value (IOValue) – IO value to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – IO line to configure.

	io_mode (IOMode) – IO mode to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

get_io_configuration()

	
set_io_sampling_rate(rate)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
set_node_id(node_id)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
set_pan_id(value)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
set_parameter(parameter, value, apply=None)

	Override.

	See:

	AbstractXBeeDevice.set_parameter()

	
set_power_level(power_level)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – IO Line to be assigned.

	cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If the given IO line does not have PWM capability or
cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – Read timeout in seconds.

	
start_listening(src_port)

	Starts listening for incoming IP transmissions in the provided port.

	Parameters

	src_port (Integer) – Port to listen for incoming transmissions.

	Raises

	
	ValueError – If source_port is less than 0 or greater than 65535.

	TimeoutException – If there is a timeout setting the source port.

	XBeeException – If there is any other XBee related exception.

	
stop_listening()

	Stops listening for incoming IP transmissions.

	Raises

	
	TimeoutException – If there is a timeout processing the operation.

	XBeeException – If there is any other XBee related exception.

	
update_bluetooth_password(new_password)

	Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
update_device_data_from(device)

	Updates the current node information with provided data. This is only
for internal use.

	Parameters

	device (AbstractXBeeDevice) – XBee to get the data from.

	Returns

	True if the node data has been updated, False otherwise.

	Return type

	Boolean

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the XBee.

	Parameters

	
	xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

	xbee_firmware_file (String, optional, default=`None`) – Location of
the XBee binary firmware file.

	bootloader_firmware_file (String, optional, default=`None`) – Location
of the bootloader binary firmware file.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the update process (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
to receive progress information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	OperationNotSupportedException – If XBee does not support firmware update.

	FirmwareUpdateException – If there is any error during the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee so that parameter modifications persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them, the XBee reverts back to
previously saved parameters the next time the module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_changes_enabled() to get its status and
enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
class digi.xbee.devices.NBIoTDevice(port=None, baud_rate=None, data_bits=<sphinx.ext.autodoc.importer._MockObject object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject object>, parity=<sphinx.ext.autodoc.importer._MockObject object>, flow_control=<FlowControl.NONE: None>, _sync_ops_timeout=4, comm_iface=None)[source]

	Bases: digi.xbee.devices.LPWANDevice

This class represents a local NB-IoT device.

Class constructor. Instantiates a new NBIoTDevice with the
provided parameters.

	Parameters

	
	port (String) – Serial port identifier. Depends on operating system.
e.g. ‘/dev/ttyUSB0’ on ‘GNU/Linux’ or ‘COM3’ on Windows.

	baud_rate (Integer) – Serial port baud rate.

	(Integer, default (_sync_ops_timeout) – serial.EIGHTBITS): Port bitsize.

	(Integer, default – serial.STOPBITS_ONE): Port stop bits.

	(Character, default (parity) – serial.PARITY_NONE): Port parity.

	(Integer, default – FlowControl.NONE): Port flow control.

	(Integer, default – 3): Read timeout (in seconds).

	comm_iface (XBeeCommunicationInterface) – Communication interface.

	Raises

	All exceptions raised by XBeeDevice.__init__() constructor.

See also

LPWANDevice

LPWANDevice.__init__()

	
open(force_settings=False)[source]

	Override.

See also

XBeeDevice.open()

	
get_protocol()[source]

	Override.

See also

XBeeDevice.get_protocol()

	
add_bluetooth_data_received_callback(callback)

	Adds a callback for the event BluetoothDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The Bluetooth data as a Bytearray.

	
add_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
add_expl_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
add_fs_frame_received_callback(callback)

	Adds a callback for the event FileSystemFrameReceived.

	Parameters

	callback (Function) – The callback. Receives four arguments.

	Source (AbstractXBeeDevice): The node that sent the
file system frame.

	Frame id (Integer): The received frame id.

	Command (FSCmd): The file system command.

	Receive options (Integer): Bitfield indicating receive options.

See also

AbstractXBeeDevice

FSCmd

ReceiveOptions

	
add_io_sample_received_callback(callback)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
add_ip_data_received_callback(callback)

	Adds a callback for the event IPDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The data received as an IPMessage

	
add_micropython_data_received_callback(callback)

	Adds a callback for the event MicroPythonDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The MicroPython data as a Bytearray.

	
add_modem_status_received_callback(callback)

	Adds a callback for the event ModemStatusReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The modem status as a ModemStatus.

	
add_packet_received_callback(callback)

	Adds a callback for the event PacketReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The received packet as a XBeeAPIPacket.

	
add_route_received_callback(callback)

	Adds a callback for the event RouteReceived.
This works for Zigbee and Digimesh devices.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	source (XBeeDevice): The source node.

	destination (RemoteXBeeDevice): The destination node.

	
	hops (List): List of intermediate hops from closest to source

	to closest to destination (RemoteXBeeDevice).

See also

XBeeDevice.del_route_received_callback()

	
add_sms_callback(callback)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
add_socket_data_received_callback(callback)

	Adds a callback for the event SocketDataReceived.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	The socket ID as an Integer.

	The data received as Bytearray.

	
add_socket_data_received_from_callback(callback)

	Adds a callback for the event SocketDataReceivedFrom.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	The socket ID as an Integer.

	
	Source address pair (host, port) where host is a string

	representing an IPv4 address like ‘100.50.200.5’, and port
is an integer.

	The data received as Bytearray.

	
add_socket_state_received_callback(callback)

	Adds a callback for the event SocketStateReceived.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	The socket ID as an Integer.

	The state received as a SocketState.

	
add_user_data_relay_received_callback(callback)

	Adds a callback for the event RelayDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The relay data as a UserDataRelayMessage.

	
apply_changes()

	Applies changes via ‘AC’ command.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
apply_profile(profile_path, timeout=None, progress_callback=None)

	Applies the given XBee profile to the XBee.

	Parameters

	
	profile_path (String) – Path of the XBee profile file to apply.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the apply profile (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
receive progress information. Receives two arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	UpdateProfileException – If there is any error applying the XBee profile.

	
close()

	Closes the communication with the XBee.

This method guarantees that all threads running are stopped and the
serial port is closed.

	
comm_iface

	Returns the hardware interface associated to the XBee.

	Returns

	Hardware interface of the XBee.

	Return type

	XBeeCommunicationInterface

See also

XBeeCommunicationInterface

	
classmethod create_xbee_device(comm_port_data)

	Creates and returns an XBeeDevice from data of the port to
which is connected.

	Parameters

	
	comm_port_data (Dictionary) – Dictionary with all comm port data needed.

	dictionary keys are (The) –
“baudRate” –> Baud rate.

”port” –> Port number.

”bitSize” –> Bit size.

”stopBits” –> Stop bits.

”parity” –> Parity.

”flowControl” –> Flow control.

”timeout” for –> Timeout for synchronous operations (in seconds).

	Returns

	XBee object created.

	Return type

	XBeeDevice

	Raises

	SerialException – If the port to open does not exist or is already opened.

See also

XBeeDevice

	
del_bluetooth_data_received_callback(callback)

	Deletes a callback for the callback list of
BluetoothDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
del_expl_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
del_fs_frame_received_callback(callback)

	Deletes a callback for the callback list of
FileSystemFrameReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_io_sample_received_callback(callback)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
del_ip_data_received_callback(callback)

	Deletes a callback for the callback list of IPDataReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_micropython_data_received_callback(callback)

	Deletes a callback for the callback list of
MicroPythonDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_modem_status_received_callback(callback)

	Deletes a callback for the callback list of ModemStatusReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_packet_received_callback(callback)

	Deletes a callback for the callback list of PacketReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_route_received_callback(callback)

	Deletes a callback for the callback list of RouteReceived event.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeDevice.add_route_received_callback()

	
del_sms_callback(callback)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
del_socket_data_received_callback(callback)

	Deletes a callback for the callback list of
SocketDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_socket_data_received_from_callback(callback)

	Deletes a callback for the callback list of
SocketDataReceivedFrom event.

	Parameters

	callback (Function) – The callback to delete.

	
del_socket_state_received_callback(callback)

	Deletes a callback for the callback list of
SocketStateReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_user_data_relay_received_callback(callback)

	Deletes a callback for the callback list of RelayDataReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
determine_protocol(hardware_version, firmware_version)

	Determines the XBee protocol based on the given hardware and firmware
versions.

	Parameters

	
	hardware_version (Integer) – Hardware version to get its protocol.

	firmware_version (Bytearray) – Firmware version to get its protocol.

	Returns

	
	XBee protocol corresponding to the given

	hardware and firmware versions.

	Return type

	XBeeProtocol

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
enable_apply_changes(value)

	Sets apply changes flag.

	Parameters

	value (Boolean) – True to enable apply changes flag, False to
disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth
password if not done previously. Use method
AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
execute_command(parameter, value=None, apply=None)

	Executes the provided command.

	Parameters

	
	(String or (parameter) – class: .ATStringCommand): AT command to execute.

	value (bytearray, optional, default=`None`) – Command value (if any).

	apply (Boolean, optional, default=`None`) – True to apply changes
in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

	
flush_queues()

	Flushes the packets queue.

	
get_16bit_addr()

	Deprecated.

This protocol does not have an associated 16-bit address.

	
get_64bit_addr()

	Deprecated.

Cellular protocol does not have an associated 64-bit address.

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – IO line to get its ADC value.

	Returns

	Analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

set_io_configuration()

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the
serial interface of the XBee.

	Returns

	API output mode of the XBee.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee
following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_cellular_ai_status()

	Returns the current association status of this Cellular device.

It indicates occurrences of errors during the modem initialization
and connection.

	Returns

	
	The association

	indication status of the Cellular device.

	Return type

	CellularAssociationIndicationStatus

	Raises

	
	TimeoutException – If there is a timeout getting the association
indication status.

	XBeeException – If there is any other XBee related exception.

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	Last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Deprecated.

Operation not supported in this protocol. Use
IPDevice.get_dest_ip_addr() instead. This method raises an
AttributeError.

	
get_dest_ip_addr()

	Returns the destination IP address.

	Returns

	Configured destination IP address.

	Return type

	ipaddress.IPv4Address

	Raises

	
	TimeoutException – If there is a timeout getting the destination IP address.

	XBeeException – If there is any other XBee related exception.

See also

ipaddress.IPv4Address

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

IOValue

set_io_configuration()

	
get_file_manager()

	Returns the file system manager for the XBee.

	Returns

	The file system manager.

	Return type

	FileSystemManager

	Raises

	FileSystemNotSupportedException – If the XBee does not support
filesystem.

	
get_firmware_version()

	Returns the firmware version of the XBee.

	Returns

	Firmware version of the XBee.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee.

	Returns

	Hardware version of the XBee.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_imei_addr()

	Returns the IMEI address of this Cellular device.

To refresh this value use the method CellularDevice.read_device_info().

	Returns

	The IMEI address of this Cellular device.

	Return type

	XBeeIMEIAddress

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its configuration.

	Returns

	IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

set_io_configuration()

	
get_io_sampling_rate()

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
get_ip_addr()

	Returns the IP address of this IP XBee.

To refresh this value use the method IPDevice.read_device_info().

	Returns

	The IP address of this IP device.

	Return type

	ipaddress.IPv4Address

See also

ipaddress.IPv4Address

	
get_network()

	Deprecated.

This protocol does not support the network functionality.

	
get_next_frame_id()

	Returns the next frame ID of the XBee.

	Returns

	The next frame ID of the XBee.

	Return type

	Integer

	
get_node_id()

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
get_pan_id()

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
get_parameter(parameter, parameter_value=None, apply=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
get_power_level()

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its PWM duty cycle.

	Returns

	PWM duty cycle of the given IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If io_line has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	Role

See also

Role

	
get_route_to_node(remote, timeout=10, force=True)

	Gets the route from this XBee to the given remote node.

	For Zigbee:

	
	‘AR’ parameter of the local node must be configured with a value
different from ‘FF’.

	Set force to True to force the Zigbee remote node to return
its route independently of the local node configuration as high
or low RAM concentrator (‘DO’ of the local value)

	Parameters

	
	remote (RemoteXBeeDevice) – The remote node.

	timeout (Float, optional, default=10) – Maximum number of seconds to
wait for the route.

	force (Boolean) – True to force asking for the route, False
otherwise. Only for Zigbee.

	Returns

	
	Tuple containing route data:

	
	status (TransmitStatus): The transmit status.

	Tuple with route data (None if the route was not read in the
provided timeout):

	source (RemoteXBeeDevice): The source node of the
route.

	destination (RemoteXBeeDevice): The destination node
of the route.

	hops (List): List of intermediate nodes
(RemoteXBeeDevice) ordered from closest to source
to closest to destination node (source and destination not
included).

	Return type

	Tuple

	
get_socket_info(socket_id)

	Returns the information of the socket with the given socket ID.

	Parameters

	socket_id (Integer) – ID of the socket.

	Returns

	
	The socket information, or None if the

	socket with that ID does not exist.

	Return type

	SocketInfo

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TimeoutException – If the response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

See also

SocketInfo

	
get_sockets_list()

	Returns a list with the IDs of all active (open) sockets.

	Returns

	
	list with the IDs of all active (open) sockets, or empty list

	if there is not any active socket.

	Return type

	List

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TimeoutException – If the response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	Serial port read timeout in seconds.

	Return type

	Integer

	
get_xbee_device_callbacks()

	Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee
to get its callbacks. These callbacks are executed before user callbacks.

	Returns

	PacketReceived

	
has_explicit_packets()

	Returns if there are pending explicit packets to read. This does not
include non-explicit packets.

	Returns

	True if there are pending packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_packets()

	
has_packets()

	Returns if there are pending packets to read. This does not include
explicit packets.

	Returns

	True if there are pending packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_explicit_packets()

	
is_apply_changes_enabled()

	Returns whether apply changes flag is enabled.

	Returns

	True if apply changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_connected()

	Returns whether the device is connected to the Internet.

	Returns

	True if connected to the Internet, False otherwise.

	Return type

	Boolean

	Raises

	
	TimeoutException – If there is a timeout getting the association
indication status.

	XBeeException – If there is any other XBee related exception.

	
is_device_info_complete()

	Override.

See also

AbstractXBeeDevice.is_device_info_complete()

	
is_open()

	Returns whether this XBee is open.

	Returns

	Boolean. True if this XBee is open, False otherwise.

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
log

	Returns the XBee logger.

	Returns

	The XBee device logger.

	Return type

	Logger

	
operating_mode

	Returns the operating mode of this XBee.

	Returns

	OperatingMode. This XBee operating mode.

	
reachable

	Returns whether the XBee is reachable.

	Returns

	True if the device is reachable, False otherwise.

	Return type

	Boolean

	
read_data(timeout=None)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
read_data_from(remote_xbee, timeout=None)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
read_device_info(init=True, fire_event=True)

	Updates all instance parameters reading them from the XBee.

	Parameters

	
	init (Boolean, optional, default=`True`) – If False only not
initialized parameters are read, all if True.

	fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.is_device_info_complete()

	
read_io_sample()

	Returns an IO sample from the XBee containing the value of all enabled
digital IO and analog input channels.

	Returns

	IO sample read from the XBee.

	Return type

	IOSample

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOSample

	
read_ip_data(timeout=3)

	Reads new IP data received by this XBee during the provided timeout.

This method blocks until new IP data is received or the provided
timeout expires.

For non-blocking operations, register a callback and use the method
IPDevice.add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming IP data
at a specific port. Use the method IPDevice.start_listening() for
that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

	Parameters

	timeout (Integer, optional) – The time to wait for new IP data in seconds.

	Returns

	IP message, None if this device did not receive new data.

	Return type

	IPMessage

	Raises

	ValueError – If timeout is less than 0.

	
read_ip_data_from(ip_addr, timeout=3)

	Reads new IP data received from the given IP address during the
provided timeout.

This method blocks until new IP data from the provided IP address is
received or the given timeout expires.

For non-blocking operations, register a callback and use the method
IPDevice.add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming IP data
at a specific port. Use the method IPDevice.start_listening() for
that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to read data from.

	timeout (Integer, optional) – The time to wait for new IP data in seconds.

	Returns

	
	IP message, None if this device did not

	receive new data from the provided IP address.

	Return type

	IPMessage

	Raises

	ValueError – If timeout is less than 0.

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
scan_counter

	Returns the scan counter for this node.

	Returns

	The scan counter for this node.

	Return type

	Integer

	
send_bluetooth_data(data)

	Sends the given data to the Bluetooth interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If there is any problem sending the data.

See also

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

	
send_data(remote_xbee, data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
send_data_async(remote_xbee, data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
send_data_broadcast(data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
send_ip_data(ip_addr, dest_port, protocol, data, close_socket=False)

	Sends the provided IP data to the given IP address and port using
the specified IP protocol.

This method blocks until a success or error response arrives or the
configured receive timeout expires.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

	dest_port (Integer) – The destination port of the transmission.

	protocol (IPProtocol) – The IP protocol used for the transmission.

	data (String or Bytearray) – The IP data to be sent.

	close_socket (Boolean, optional) – Must be False.

	Raises

	ValueError – If protocol is not UDP.

	
send_ip_data_async(ip_addr, dest_port, protocol, data, close_socket=False)

	Sends the provided IP data to the given IP address and port
asynchronously using the specified IP protocol.

Asynchronous transmissions do not wait for answer from the remote
device or for transmit status packet.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

	dest_port (Integer) – The destination port of the transmission.

	protocol (IPProtocol) – The IP protocol used for the transmission.

	data (String or Bytearray) – The IP data to be sent.

	close_socket (Boolean, optional) – Must be False.

	Raises

	ValueError – If protocol is not UDP.

	
send_ip_data_broadcast(dest_port, data)

	Sends the provided IP data to all clients.

This method blocks until a success or error transmit status arrives or
the configured receive timeout expires.

	Parameters

	
	dest_port (Integer) – The destination port of the transmission.

	data (String or Bytearray) – The IP data to be sent.

	Raises

	
	ValueError – If data is None or dest_port is less than 0 or
greater than 65535.

	TimeoutException – If there is a timeout sending the data.

	XBeeException – If there is any other XBee related exception.

	
send_micropython_data(data)

	Sends the given data to the MicroPython interface using a User Data
Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If there is any problem sending the data.

See also

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

	
send_packet(packet, sync=False)

	Sends the packet and waits for the response. The packet to send is
escaped depending on the current operating mode.

This method can be synchronous or asynchronous.

If synchronous, this method discards all response packets until it finds
the one that has the appropriate frame ID, that is, the sent packet’s
frame ID.

If asynchronous, this method does not wait for any response and returns
None.

	Parameters

	
	packet (XBeePacket) – The packet to send.

	sync (Boolean) – True to wait for the response of the sent packet
and return it, False otherwise.

	Returns

	
	Response packet if sync is True, None

	otherwise.

	Return type

	XBeePacket

	Raises

	
	TimeoutException – If sync is True and the response packet for
the sent one cannot be read.

	InvalidOperatingModeException – If the XBee operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the packet listener is not running or the XBee’s
communication interface is closed.

See also

XBeePacket

	
send_packet_sync_and_get_response(packet_to_send, timeout=None)

	Sends the packet and waits for its corresponding response.

	Parameters

	
	packet_to_send (XBeePacket) – The packet to transmit.

	timeout (Integer, optional, default=`None`) – Number of seconds to
wait. -1 to wait indefinitely.

	Returns

	Received response packet.

	Return type

	XBeePacket

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TimeoutException – If response is not received in the configured
timeout.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBeePacket

	
send_sms(phone_number, data)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
send_sms_async(phone_number, data)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
send_user_data_relay(local_interface, data)

	Sends the given data to the given XBee local interface.

	Parameters

	
	local_interface (XBeeLocalInterface) – Destination XBee
local interface.

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ValueError – If local_interface is None.

	XBeeException – If there is any problem sending the User Data Relay.

See also

XBeeLocalInterface

	
serial_port

	Returns the serial port associated to the XBee, if any.

	Returns

	
	Serial port of the XBee. None if the

	local XBee does not use serial communication.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee.

	Parameters

	value (XBee16BitAddress) – New 16-bit address of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If the protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

	Parameters

	api_output_mode (APIOutputMode) – New API output mode.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – New API output mode options.
Calculate this value using the method
APIOutputModeBit.calculate_api_output_mode_value()
with a set of APIOutputModeBit.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputModeBit

	
set_dest_address(addr)

	Deprecated.

Operation not supported in this protocol. Use
IPDevice.set_dest_ip_addr() instead. This method raises an
AttributeError.

	
set_dest_ip_addr(address)

	Sets the destination IP address.

	Parameters

	address (ipaddress.IPv4Address) – Destination IP address.

	Raises

	
	ValueError – If address is None.

	TimeoutException – If there is a timeout setting the destination IP address.

	XBeeException – If there is any other XBee related exception.

See also

ipaddress.IPv4Address

	
set_dio_change_detection(io_lines_set)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – Digital IO line to sets its value.

	io_value (IOValue) – IO value to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – IO line to configure.

	io_mode (IOMode) – IO mode to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

get_io_configuration()

	
set_io_sampling_rate(rate)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
set_node_id(node_id)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
set_pan_id(value)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
set_parameter(parameter, value, apply=None)

	Override.

	See:

	AbstractXBeeDevice.set_parameter()

	
set_power_level(power_level)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – IO Line to be assigned.

	cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If the given IO line does not have PWM capability or
cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – Read timeout in seconds.

	
start_listening(src_port)

	Starts listening for incoming IP transmissions in the provided port.

	Parameters

	src_port (Integer) – Port to listen for incoming transmissions.

	Raises

	
	ValueError – If source_port is less than 0 or greater than 65535.

	TimeoutException – If there is a timeout setting the source port.

	XBeeException – If there is any other XBee related exception.

	
stop_listening()

	Stops listening for incoming IP transmissions.

	Raises

	
	TimeoutException – If there is a timeout processing the operation.

	XBeeException – If there is any other XBee related exception.

	
update_bluetooth_password(new_password)

	Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
update_device_data_from(device)

	Updates the current node information with provided data. This is only
for internal use.

	Parameters

	device (AbstractXBeeDevice) – XBee to get the data from.

	Returns

	True if the node data has been updated, False otherwise.

	Return type

	Boolean

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the XBee.

	Parameters

	
	xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

	xbee_firmware_file (String, optional, default=`None`) – Location of
the XBee binary firmware file.

	bootloader_firmware_file (String, optional, default=`None`) – Location
of the bootloader binary firmware file.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the update process (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
to receive progress information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	OperationNotSupportedException – If XBee does not support firmware update.

	FirmwareUpdateException – If there is any error during the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee so that parameter modifications persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them, the XBee reverts back to
previously saved parameters the next time the module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_changes_enabled() to get its status and
enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
class digi.xbee.devices.WiFiDevice(port=None, baud_rate=None, data_bits=<sphinx.ext.autodoc.importer._MockObject object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject object>, parity=<sphinx.ext.autodoc.importer._MockObject object>, flow_control=<FlowControl.NONE: None>, _sync_ops_timeout=4, comm_iface=None)[source]

	Bases: digi.xbee.devices.IPDevice

This class represents a local Wi-Fi XBee.

Class constructor. Instantiates a new WiFiDevice with the
provided parameters.

	Parameters

	
	port (String) – Serial port identifier. Depends on operating system.
e.g. ‘/dev/ttyUSB0’ on ‘GNU/Linux’ or ‘COM3’ on Windows.

	baud_rate (Integer) – Serial port baud rate.

	(Integer, default (_sync_ops_timeout) – serial.EIGHTBITS): Port bitsize.

	(Integer, default – serial.STOPBITS_ONE): Port stop bits.

	(Character, default (parity) – serial.PARITY_NONE): Port parity.

	(Integer, default – FlowControl.NONE): Port flow control.

	(Integer, default – 3): Read timeout (in seconds).

	comm_iface (XBeeCommunicationInterface) – Communication interface.

	Raises

	All exceptions raised by XBeeDevice.__init__() constructor.

See also

IPDevice

v.__init__()

	
open(force_settings=False)[source]

	Override.

See also

XBeeDevice.open()

	
get_protocol()[source]

	Override.

See also

XBeeDevice.get_protocol()

	
get_wifi_ai_status()[source]

	Returns the current association status of the device.

	Returns

	
	Current association

	status of the device.

	Return type

	WiFiAssociationIndicationStatus

	Raises

	
	TimeoutException – If there is a timeout getting the association
indication status.

	XBeeException – If there is any other XBee related exception.

See also

WiFiAssociationIndicationStatus

	
get_access_point(ssid)[source]

	Finds and returns the access point that matches the supplied SSID.

	Parameters

	ssid (String) – SSID of the access point to get.

	Returns

	
	Discovered access point with the provided

	SID, or None if the timeout expires and the access point was
not found.

	Return type

	AccessPoint

	Raises

	
	TimeoutException – If there is a timeout getting the access point.

	XBeeException – If there is an error sending the discovery command.

See also

AccessPoint

	
scan_access_points()[source]

	Performs a scan to search for access points in the vicinity.

This method blocks until all the access points are discovered or the
configured access point timeout expires.

The access point timeout is configured using the
WiFiDevice.set_access_point_timeout() method and can be
consulted with WiFiDevice.get_access_point_timeout() method.

	Returns

	List of AccessPoint objects discovered.

	Return type

	List

	Raises

	
	TimeoutException – If there is a timeout scanning the access points.

	XBeeException – If there is any other XBee related exception.

See also

AccessPoint

	
connect_by_ap(access_point, password=None)[source]

	Connects to the provided access point.

This method blocks until the connection with the access point is
established or the configured access point timeout expires.

The access point timeout is configured using the
WiFiDevice.set_access_point_timeout() method and can be
consulted with WiFiDevice.get_access_point_timeout() method.

Once the module is connected to the access point, you can issue the
WiFiDevice.write_changes() method to save the connection
settings. This way the module will try to connect to the access point
every time it is powered on.

	Parameters

	
	access_point (AccessPoint) – The access point to connect to.

	password (String, optional) – The password for the access point,
None if it does not have any encryption enabled.

	Returns

	
	True if the module connected to the access point

	successfully, False otherwise.

	Return type

	Boolean

	Raises

	
	ValueError – If access_point is None.

	TimeoutException – If there is a timeout sending the connect commands.

	XBeeException – If there is any other XBee related exception.

See also

WiFiDevice.connect_by_ssid()

WiFiDevice.disconnect()

WiFiDevice.get_access_point()

WiFiDevice.get_access_point_timeout()

WiFiDevice.scan_access_points()

WiFiDevice.set_access_point_timeout()

	
connect_by_ssid(ssid, password=None)[source]

	Connects to the access point with provided SSID.

This method blocks until the connection with the access point is
established or the configured access point timeout expires.

The access point timeout is configured using the
WiFiDevice.set_access_point_timeout() method and can be
consulted with WiFiDevice.get_access_point_timeout() method.

Once the module is connected to the access point, you can issue the
WiFiDevice.write_changes() method to save the connection
settings. This way the module will try to connect to the access point
every time it is powered on.

	Parameters

	
	ssid (String) – SSID of the access point to connect to.

	password (String, optional) – The password for the access point,
None if it does not have any encryption enabled.

	Returns

	
	True if the module connected to the access point

	successfully, False otherwise.

	Return type

	Boolean

	Raises

	
	ValueError – If ssid is None.

	TimeoutException – If there is a timeout sending the connect commands.

	XBeeException – If the access point with the provided SSID cannot be found.

	XBeeException – If there is any other XBee related exception.

See also

WiFiDevice.connect_by_ap()

WiFiDevice.disconnect()

WiFiDevice.get_access_point()

WiFiDevice.get_access_point_timeout()

WiFiDevice.scan_access_points()

WiFiDevice.set_access_point_timeout()

	
disconnect()[source]

	Disconnects from the access point that the device is connected to.

This method blocks until the device disconnects totally from the
access point or the configured access point timeout expires.

The access point timeout is configured using the
WiFiDevice.set_access_point_timeout() method and can be
consulted with WiFiDevice.get_access_point_timeout() method.

	Returns

	
	True if the module disconnected from the access point

	successfully, False otherwise.

	Return type

	Boolean

	Raises

	
	TimeoutException – If there is a timeout sending the disconnect command.

	XBeeException – If there is any other XBee related exception.

See also

WiFiDevice.connect_by_ap()

WiFiDevice.connect_by_ssid()

WiFiDevice.get_access_point_timeout()

WiFiDevice.set_access_point_timeout()

	
is_connected()[source]

	Returns whether the device is connected to an access point or not.

	Returns

	
	True if the device is connected to an access point,

	False otherwise.

	Return type

	Boolean

	Raises

	TimeoutException – If there is a timeout getting the association
indication status.

See also

WiFiDevice.get_wifi_ai_status()

WiFiAssociationIndicationStatus

	
get_access_point_timeout()[source]

	Returns the configured access point timeout for connecting,
disconnecting and scanning access points.

	Returns

	The current access point timeout in milliseconds.

	Return type

	Integer

See also

WiFiDevice.set_access_point_timeout()

	
set_access_point_timeout(ap_timeout)[source]

	Configures the access point timeout in milliseconds for connecting,
disconnecting and scanning access points.

	Parameters

	ap_timeout (Integer) – The new access point timeout in milliseconds.

	Raises

	ValueError – If ap_timeout is less than 0.

See also

WiFiDevice.get_access_point_timeout()

	
get_ip_addressing_mode()[source]

	Returns the IP addressing mode of the device.

	Returns

	The IP addressing mode.

	Return type

	IPAddressingMode

	Raises

	TimeoutException – If there is a timeout reading the IP addressing mode.

See also

WiFiDevice.set_ip_addressing_mode()

IPAddressingMode

	
set_ip_addressing_mode(mode)[source]

	Sets the IP addressing mode of the device.

	Parameters

	mode (IPAddressingMode) – The new IP addressing mode to set.

	Raises

	TimeoutException – If there is a timeout setting the IP addressing mode.

See also

WiFiDevice.get_ip_addressing_mode()

IPAddressingMode

	
set_ip_address(ip_address)[source]

	Sets the IP address of the module.

This method can only be called if the module is configured
in IPAddressingMode.STATIC mode. Otherwise an XBeeException
will be thrown.

	Parameters

	ip_address (ipaddress.IPv4Address) – New IP address to set.

	Raises

	TimeoutException – If there is a timeout setting the IP address.

See also

WiFiDevice.get_mask_address()

ipaddress.IPv4Address

	
get_mask_address()[source]

	Returns the subnet mask IP address.

	Returns

	The subnet mask IP address.

	Return type

	ipaddress.IPv4Address

	Raises

	TimeoutException – If there is a timeout reading the subnet mask address.

See also

WiFiDevice.set_mask_address()

ipaddress.IPv4Address

	
set_mask_address(mask_address)[source]

	Sets the subnet mask IP address.

This method can only be called if the module is configured
in IPAddressingMode.STATIC mode. Otherwise an XBeeException
will be thrown.

	Parameters

	mask_address (ipaddress.IPv4Address) – New subnet mask address to set.

	Raises

	TimeoutException – If there is a timeout setting the subnet mask address.

See also

WiFiDevice.get_mask_address()

ipaddress.IPv4Address

	
get_gateway_address()[source]

	Returns the IP address of the gateway.

	Returns

	The IP address of the gateway.

	Return type

	ipaddress.IPv4Address

	Raises

	TimeoutException – If there is a timeout reading the gateway address.

See also

WiFiDevice.set_dns_address()

ipaddress.IPv4Address

	
set_gateway_address(gateway_address)[source]

	Sets the IP address of the gateway.

This method can only be called if the module is configured
in IPAddressingMode.STATIC mode. Otherwise an XBeeException
will be thrown.

	Parameters

	gateway_address (ipaddress.IPv4Address) – The new gateway address to set.

	Raises

	TimeoutException – If there is a timeout setting the gateway address.

See also

WiFiDevice.get_gateway_address()

ipaddress.IPv4Address

	
get_dns_address()[source]

	Returns the IP address of Domain Name Server (DNS).

	Returns

	The DNS address configured.

	Return type

	ipaddress.IPv4Address

	Raises

	TimeoutException – If there is a timeout reading the DNS address.

See also

WiFiDevice.set_dns_address()

ipaddress.IPv4Address

	
set_dns_address(dns_address)[source]

	Sets the IP address of Domain Name Server (DNS).

	Parameters

	dns_address (ipaddress.IPv4Address) – The new DNS address to set.

	Raises

	TimeoutException – If there is a timeout setting the DNS address.

See also

WiFiDevice.get_dns_address()

ipaddress.IPv4Address

	
add_bluetooth_data_received_callback(callback)

	Adds a callback for the event BluetoothDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The Bluetooth data as a Bytearray.

	
add_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
add_expl_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
add_fs_frame_received_callback(callback)

	Adds a callback for the event FileSystemFrameReceived.

	Parameters

	callback (Function) – The callback. Receives four arguments.

	Source (AbstractXBeeDevice): The node that sent the
file system frame.

	Frame id (Integer): The received frame id.

	Command (FSCmd): The file system command.

	Receive options (Integer): Bitfield indicating receive options.

See also

AbstractXBeeDevice

FSCmd

ReceiveOptions

	
add_io_sample_received_callback(callback)

	Adds a callback for the event IOSampleReceived.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	The received IO sample as an IOSample.

	The remote XBee which sent the packet as a RemoteXBeeDevice.

	The time in which the packet was received as an Integer.

	
add_ip_data_received_callback(callback)

	Adds a callback for the event IPDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The data received as an IPMessage

	
add_micropython_data_received_callback(callback)

	Adds a callback for the event MicroPythonDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The MicroPython data as a Bytearray.

	
add_modem_status_received_callback(callback)

	Adds a callback for the event ModemStatusReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The modem status as a ModemStatus.

	
add_packet_received_callback(callback)

	Adds a callback for the event PacketReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The received packet as a XBeeAPIPacket.

	
add_route_received_callback(callback)

	Adds a callback for the event RouteReceived.
This works for Zigbee and Digimesh devices.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	source (XBeeDevice): The source node.

	destination (RemoteXBeeDevice): The destination node.

	
	hops (List): List of intermediate hops from closest to source

	to closest to destination (RemoteXBeeDevice).

See also

XBeeDevice.del_route_received_callback()

	
add_socket_data_received_callback(callback)

	Adds a callback for the event SocketDataReceived.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	The socket ID as an Integer.

	The data received as Bytearray.

	
add_socket_data_received_from_callback(callback)

	Adds a callback for the event SocketDataReceivedFrom.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	The socket ID as an Integer.

	
	Source address pair (host, port) where host is a string

	representing an IPv4 address like ‘100.50.200.5’, and port
is an integer.

	The data received as Bytearray.

	
add_socket_state_received_callback(callback)

	Adds a callback for the event SocketStateReceived.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	The socket ID as an Integer.

	The state received as a SocketState.

	
add_user_data_relay_received_callback(callback)

	Adds a callback for the event RelayDataReceived.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The relay data as a UserDataRelayMessage.

	
apply_changes()

	Applies changes via ‘AC’ command.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
apply_profile(profile_path, timeout=None, progress_callback=None)

	Applies the given XBee profile to the XBee.

	Parameters

	
	profile_path (String) – Path of the XBee profile file to apply.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the apply profile (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
receive progress information. Receives two arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	UpdateProfileException – If there is any error applying the XBee profile.

	
close()

	Closes the communication with the XBee.

This method guarantees that all threads running are stopped and the
serial port is closed.

	
comm_iface

	Returns the hardware interface associated to the XBee.

	Returns

	Hardware interface of the XBee.

	Return type

	XBeeCommunicationInterface

See also

XBeeCommunicationInterface

	
classmethod create_xbee_device(comm_port_data)

	Creates and returns an XBeeDevice from data of the port to
which is connected.

	Parameters

	
	comm_port_data (Dictionary) – Dictionary with all comm port data needed.

	dictionary keys are (The) –
“baudRate” –> Baud rate.

”port” –> Port number.

”bitSize” –> Bit size.

”stopBits” –> Stop bits.

”parity” –> Parity.

”flowControl” –> Flow control.

”timeout” for –> Timeout for synchronous operations (in seconds).

	Returns

	XBee object created.

	Return type

	XBeeDevice

	Raises

	SerialException – If the port to open does not exist or is already opened.

See also

XBeeDevice

	
del_bluetooth_data_received_callback(callback)

	Deletes a callback for the callback list of
BluetoothDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
del_expl_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
del_fs_frame_received_callback(callback)

	Deletes a callback for the callback list of
FileSystemFrameReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_io_sample_received_callback(callback)

	Deletes a callback for the callback list of IOSampleReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_ip_data_received_callback(callback)

	Deletes a callback for the callback list of IPDataReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_micropython_data_received_callback(callback)

	Deletes a callback for the callback list of
MicroPythonDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_modem_status_received_callback(callback)

	Deletes a callback for the callback list of ModemStatusReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
del_packet_received_callback(callback)

	Deletes a callback for the callback list of PacketReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_route_received_callback(callback)

	Deletes a callback for the callback list of RouteReceived event.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeDevice.add_route_received_callback()

	
del_socket_data_received_callback(callback)

	Deletes a callback for the callback list of
SocketDataReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_socket_data_received_from_callback(callback)

	Deletes a callback for the callback list of
SocketDataReceivedFrom event.

	Parameters

	callback (Function) – The callback to delete.

	
del_socket_state_received_callback(callback)

	Deletes a callback for the callback list of
SocketStateReceived event.

	Parameters

	callback (Function) – The callback to delete.

	
del_user_data_relay_received_callback(callback)

	Deletes a callback for the callback list of RelayDataReceived
event.

	Parameters

	callback (Function) – The callback to delete.

	
determine_protocol(hardware_version, firmware_version)

	Determines the XBee protocol based on the given hardware and firmware
versions.

	Parameters

	
	hardware_version (Integer) – Hardware version to get its protocol.

	firmware_version (Bytearray) – Firmware version to get its protocol.

	Returns

	
	XBee protocol corresponding to the given

	hardware and firmware versions.

	Return type

	XBeeProtocol

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
enable_apply_changes(value)

	Sets apply changes flag.

	Parameters

	value (Boolean) – True to enable apply changes flag, False to
disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth
password if not done previously. Use method
AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
execute_command(parameter, value=None, apply=None)

	Executes the provided command.

	Parameters

	
	(String or (parameter) – class: .ATStringCommand): AT command to execute.

	value (bytearray, optional, default=`None`) – Command value (if any).

	apply (Boolean, optional, default=`None`) – True to apply changes
in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

	
flush_queues()

	Flushes the packets queue.

	
get_16bit_addr()

	Deprecated.

This protocol does not have an associated 16-bit address.

	
get_64bit_addr()

	Returns the 64-bit address of the XBee.

	Returns

	64-bit address of the XBee.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – IO line to get its ADC value.

	Returns

	Analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

set_io_configuration()

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the
serial interface of the XBee.

	Returns

	API output mode of the XBee.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee
following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	Last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Deprecated.

Operation not supported in this protocol. Use
IPDevice.get_dest_ip_addr() instead. This method raises an
AttributeError.

	
get_dest_ip_addr()

	Returns the destination IP address.

	Returns

	Configured destination IP address.

	Return type

	ipaddress.IPv4Address

	Raises

	
	TimeoutException – If there is a timeout getting the destination IP address.

	XBeeException – If there is any other XBee related exception.

See also

ipaddress.IPv4Address

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

IOValue

set_io_configuration()

	
get_file_manager()

	Returns the file system manager for the XBee.

	Returns

	The file system manager.

	Return type

	FileSystemManager

	Raises

	FileSystemNotSupportedException – If the XBee does not support
filesystem.

	
get_firmware_version()

	Returns the firmware version of the XBee.

	Returns

	Firmware version of the XBee.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee.

	Returns

	Hardware version of the XBee.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its configuration.

	Returns

	IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

set_io_configuration()

	
get_io_sampling_rate()

	Returns the IO sampling rate of the XBee.

	Returns

	IO sampling rate of XBee.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

set_io_sampling_rate()

	
get_ip_addr()

	Returns the IP address of this IP XBee.

To refresh this value use the method IPDevice.read_device_info().

	Returns

	The IP address of this IP device.

	Return type

	ipaddress.IPv4Address

See also

ipaddress.IPv4Address

	
get_network()

	Deprecated.

This protocol does not support the network functionality.

	
get_next_frame_id()

	Returns the next frame ID of the XBee.

	Returns

	The next frame ID of the XBee.

	Return type

	Integer

	
get_node_id()

	Returns the node identifier (‘NI’) value of the XBee.

	Returns

	Node identifier (‘NI’) of the XBee.

	Return type

	String

	
get_pan_id()

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
get_parameter(parameter, parameter_value=None, apply=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
get_power_level()

	Returns the power level of the XBee.

	Returns

	Power level of the XBee.

	Return type

	PowerLevel

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

PowerLevel

set_power_level()

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its PWM duty cycle.

	Returns

	PWM duty cycle of the given IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If io_line has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	Role

See also

Role

	
get_route_to_node(remote, timeout=10, force=True)

	Gets the route from this XBee to the given remote node.

	For Zigbee:

	
	‘AR’ parameter of the local node must be configured with a value
different from ‘FF’.

	Set force to True to force the Zigbee remote node to return
its route independently of the local node configuration as high
or low RAM concentrator (‘DO’ of the local value)

	Parameters

	
	remote (RemoteXBeeDevice) – The remote node.

	timeout (Float, optional, default=10) – Maximum number of seconds to
wait for the route.

	force (Boolean) – True to force asking for the route, False
otherwise. Only for Zigbee.

	Returns

	
	Tuple containing route data:

	
	status (TransmitStatus): The transmit status.

	Tuple with route data (None if the route was not read in the
provided timeout):

	source (RemoteXBeeDevice): The source node of the
route.

	destination (RemoteXBeeDevice): The destination node
of the route.

	hops (List): List of intermediate nodes
(RemoteXBeeDevice) ordered from closest to source
to closest to destination node (source and destination not
included).

	Return type

	Tuple

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	Serial port read timeout in seconds.

	Return type

	Integer

	
get_xbee_device_callbacks()

	Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee
to get its callbacks. These callbacks are executed before user callbacks.

	Returns

	PacketReceived

	
has_explicit_packets()

	Returns if there are pending explicit packets to read. This does not
include non-explicit packets.

	Returns

	True if there are pending packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_packets()

	
has_packets()

	Returns if there are pending packets to read. This does not include
explicit packets.

	Returns

	True if there are pending packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_explicit_packets()

	
is_apply_changes_enabled()

	Returns whether apply changes flag is enabled.

	Returns

	True if apply changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_device_info_complete()

	Override.

See also

AbstractXBeeDevice.is_device_info_complete()

	
is_open()

	Returns whether this XBee is open.

	Returns

	Boolean. True if this XBee is open, False otherwise.

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
log

	Returns the XBee logger.

	Returns

	The XBee device logger.

	Return type

	Logger

	
operating_mode

	Returns the operating mode of this XBee.

	Returns

	OperatingMode. This XBee operating mode.

	
reachable

	Returns whether the XBee is reachable.

	Returns

	True if the device is reachable, False otherwise.

	Return type

	Boolean

	
read_data(timeout=None)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
read_data_from(remote_xbee, timeout=None)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
read_device_info(init=True, fire_event=True)

	Updates all instance parameters reading them from the XBee.

	Parameters

	
	init (Boolean, optional, default=`True`) – If False only not
initialized parameters are read, all if True.

	fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.is_device_info_complete()

	
read_io_sample()

	Returns an IO sample from the XBee containing the value of all enabled
digital IO and analog input channels.

	Returns

	IO sample read from the XBee.

	Return type

	IOSample

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOSample

	
read_ip_data(timeout=3)

	Reads new IP data received by this XBee during the provided timeout.

This method blocks until new IP data is received or the provided
timeout expires.

For non-blocking operations, register a callback and use the method
IPDevice.add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming IP data
at a specific port. Use the method IPDevice.start_listening() for
that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

	Parameters

	timeout (Integer, optional) – The time to wait for new IP data in seconds.

	Returns

	IP message, None if this device did not receive new data.

	Return type

	IPMessage

	Raises

	ValueError – If timeout is less than 0.

	
read_ip_data_from(ip_addr, timeout=3)

	Reads new IP data received from the given IP address during the
provided timeout.

This method blocks until new IP data from the provided IP address is
received or the given timeout expires.

For non-blocking operations, register a callback and use the method
IPDevice.add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming IP data
at a specific port. Use the method IPDevice.start_listening() for
that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to read data from.

	timeout (Integer, optional) – The time to wait for new IP data in seconds.

	Returns

	
	IP message, None if this device did not

	receive new data from the provided IP address.

	Return type

	IPMessage

	Raises

	ValueError – If timeout is less than 0.

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
scan_counter

	Returns the scan counter for this node.

	Returns

	The scan counter for this node.

	Return type

	Integer

	
send_bluetooth_data(data)

	Sends the given data to the Bluetooth interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If there is any problem sending the data.

See also

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

	
send_data(remote_xbee, data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
send_data_async(remote_xbee, data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
send_data_broadcast(data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
send_ip_data(ip_addr, dest_port, protocol, data, close_socket=False)

	Sends the provided IP data to the given IP address and port using the
specified IP protocol. For TCP and TCP SSL protocols, you can also
indicate if the socket should be closed when data is sent.

This method blocks until a success or error response arrives or the
configured receive timeout expires.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

	dest_port (Integer) – The destination port of the transmission.

	protocol (IPProtocol) – The IP protocol used for the transmission.

	data (String or Bytearray) – The IP data to be sent.

	close_socket (Boolean, optional, default=`False`) – True to close
the socket just after the transmission. False to keep it open.

	Raises

	
	ValueError – If ip_addr or protocol or data is None or
dest_port is less than 0 or greater than 65535.

	OperationNotSupportedException – If the XBee is remote.

	TimeoutException – If there is a timeout sending the data.

	XBeeException – If there is any other XBee related exception.

	
send_ip_data_async(ip_addr, dest_port, protocol, data, close_socket=False)

	Sends the provided IP data to the given IP address and port
asynchronously using the specified IP protocol. For TCP and TCP SSL
protocols, you can also indicate if the socket should be closed when
data is sent.

Asynchronous transmissions do not wait for answer from the remote
device or for transmit status packet.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

	dest_port (Integer) – The destination port of the transmission.

	protocol (IPProtocol) – The IP protocol used for the transmission.

	data (String or Bytearray) – The IP data to be sent.

	close_socket (Boolean, optional, default=`False`) – True to close
the socket just after the transmission. False to keep it open.

	Raises

	
	ValueError – If ip_addr or protocol or data is None or
dest_port is less than 0 or greater than 65535.

	OperationNotSupportedException – If the XBee is remote.

	XBeeException – If there is any other XBee related exception.

	
send_ip_data_broadcast(dest_port, data)

	Sends the provided IP data to all clients.

This method blocks until a success or error transmit status arrives or
the configured receive timeout expires.

	Parameters

	
	dest_port (Integer) – The destination port of the transmission.

	data (String or Bytearray) – The IP data to be sent.

	Raises

	
	ValueError – If data is None or dest_port is less than 0 or
greater than 65535.

	TimeoutException – If there is a timeout sending the data.

	XBeeException – If there is any other XBee related exception.

	
send_micropython_data(data)

	Sends the given data to the MicroPython interface using a User Data
Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If there is any problem sending the data.

See also

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

	
send_packet(packet, sync=False)

	Sends the packet and waits for the response. The packet to send is
escaped depending on the current operating mode.

This method can be synchronous or asynchronous.

If synchronous, this method discards all response packets until it finds
the one that has the appropriate frame ID, that is, the sent packet’s
frame ID.

If asynchronous, this method does not wait for any response and returns
None.

	Parameters

	
	packet (XBeePacket) – The packet to send.

	sync (Boolean) – True to wait for the response of the sent packet
and return it, False otherwise.

	Returns

	
	Response packet if sync is True, None

	otherwise.

	Return type

	XBeePacket

	Raises

	
	TimeoutException – If sync is True and the response packet for
the sent one cannot be read.

	InvalidOperatingModeException – If the XBee operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	XBeeException – If the packet listener is not running or the XBee’s
communication interface is closed.

See also

XBeePacket

	
send_packet_sync_and_get_response(packet_to_send, timeout=None)

	Sends the packet and waits for its corresponding response.

	Parameters

	
	packet_to_send (XBeePacket) – The packet to transmit.

	timeout (Integer, optional, default=`None`) – Number of seconds to
wait. -1 to wait indefinitely.

	Returns

	Received response packet.

	Return type

	XBeePacket

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	TimeoutException – If response is not received in the configured
timeout.

	XBeeException – If the XBee’s communication interface is closed.

See also

XBeePacket

	
send_user_data_relay(local_interface, data)

	Sends the given data to the given XBee local interface.

	Parameters

	
	local_interface (XBeeLocalInterface) – Destination XBee
local interface.

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ValueError – If local_interface is None.

	XBeeException – If there is any problem sending the User Data Relay.

See also

XBeeLocalInterface

	
serial_port

	Returns the serial port associated to the XBee, if any.

	Returns

	
	Serial port of the XBee. None if the

	local XBee does not use serial communication.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee.

	Parameters

	value (XBee16BitAddress) – New 16-bit address of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If the protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

	Parameters

	api_output_mode (APIOutputMode) – New API output mode.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – New API output mode options.
Calculate this value using the method
APIOutputModeBit.calculate_api_output_mode_value()
with a set of APIOutputModeBit.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputModeBit

	
set_dest_address(addr)

	Deprecated.

Operation not supported in this protocol. Use
IPDevice.set_dest_ip_addr() instead. This method raises an
AttributeError.

	
set_dest_ip_addr(address)

	Sets the destination IP address.

	Parameters

	address (ipaddress.IPv4Address) – Destination IP address.

	Raises

	
	ValueError – If address is None.

	TimeoutException – If there is a timeout setting the destination IP address.

	XBeeException – If there is any other XBee related exception.

See also

ipaddress.IPv4Address

	
set_dio_change_detection(io_lines_set)

	Sets the digital IO lines to be monitored and sampled whenever their
status changes. A None set of lines disables this feature.

	Parameters

	io_lines_set – Set of IOLine.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – Digital IO line to sets its value.

	io_value (IOValue) – IO value to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – IO line to configure.

	io_mode (IOMode) – IO mode to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

get_io_configuration()

	
set_io_sampling_rate(rate)

	Sets the IO sampling rate of the XBee in seconds. A sample rate of 0
means the IO sampling feature is disabled.

	Parameters

	rate (Integer) – New IO sampling rate of the XBee in seconds.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

get_io_sampling_rate()

	
set_node_id(node_id)

	Sets the node identifier (‘NI`) value of the XBee.

	Parameters

	node_id (String) – New node identifier (‘NI’) of the XBee.

	Raises

	
	ValueError – If node_id is None or its length is greater than 20.

	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
set_pan_id(value)

	Deprecated.

Operation not supported in this protocol. This method raises an
AttributeError.

	
set_parameter(parameter, value, apply=None)

	Override.

	See:

	AbstractXBeeDevice.set_parameter()

	
set_power_level(power_level)

	Sets the power level of the XBee.

	Parameters

	power_level (PowerLevel) – New power level of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

PowerLevel

get_power_level()

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – IO Line to be assigned.

	cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If the given IO line does not have PWM capability or
cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – Read timeout in seconds.

	
start_listening(src_port)

	Starts listening for incoming IP transmissions in the provided port.

	Parameters

	src_port (Integer) – Port to listen for incoming transmissions.

	Raises

	
	ValueError – If source_port is less than 0 or greater than 65535.

	TimeoutException – If there is a timeout setting the source port.

	XBeeException – If there is any other XBee related exception.

	
stop_listening()

	Stops listening for incoming IP transmissions.

	Raises

	
	TimeoutException – If there is a timeout processing the operation.

	XBeeException – If there is any other XBee related exception.

	
update_bluetooth_password(new_password)

	Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
update_device_data_from(device)

	Updates the current node information with provided data. This is only
for internal use.

	Parameters

	device (AbstractXBeeDevice) – XBee to get the data from.

	Returns

	True if the node data has been updated, False otherwise.

	Return type

	Boolean

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the XBee.

	Parameters

	
	xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

	xbee_firmware_file (String, optional, default=`None`) – Location of
the XBee binary firmware file.

	bootloader_firmware_file (String, optional, default=`None`) – Location
of the bootloader binary firmware file.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the update process (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
to receive progress information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	OperationNotSupportedException – If XBee does not support firmware update.

	FirmwareUpdateException – If there is any error during the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee so that parameter modifications persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them, the XBee reverts back to
previously saved parameters the next time the module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_changes_enabled() to get its status and
enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
class digi.xbee.devices.RemoteXBeeDevice(local_xbee, x64bit_addr=<digi.xbee.models.address.XBee64BitAddress object>, x16bit_addr=<digi.xbee.models.address.XBee16BitAddress object>, node_id=None)[source]

	Bases: digi.xbee.devices.AbstractXBeeDevice

This class represents a remote XBee.

Class constructor. Instantiates a new RemoteXBeeDevice with
the provided parameters.

	Parameters

	
	local_xbee (XBeeDevice) – Local XBee associated with the remote one.

	x64bit_addr (XBee64BitAddress) – 64-bit address of the remote XBee.

	x16bit_addr (XBee16BitAddress) – 16-bit address of the remote XBee.

	node_id (String, optional) – Node identifier of the remote XBee.

See also

XBee16BitAddress

XBee64BitAddress

XBeeDevice

	
get_parameter(parameter, parameter_value=None, apply=None)[source]

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
set_parameter(parameter, value, apply=None)[source]

	Override.

See also

AbstractXBeeDevice.set_parameter()

	
is_remote()[source]

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
reset()[source]

	Override method.

See also

AbstractXBeeDevice.reset()

	
get_local_xbee_device()[source]

	Returns the local XBee associated to the remote one.

	Returns

	Local XBee.

	Return type

	XBeeDevice

	
set_local_xbee_device(local_xbee_device)[source]

	This methods associates a XBeeDevice to the remote XBee.

	Parameters

	local_xbee_device (XBeeDevice) – New local XBee associated
to the remote one.

See also

XBeeDevice

	
get_serial_port()[source]

	Returns the serial port of the local XBee associated to the remote one.

	Returns

	
	Serial port of the local XBee associated

	to the remote one.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
get_comm_iface()[source]

	Returns the communication interface of the local XBee associated to
the remote one.

	Returns

	
	Communication interface of the

	local XBee associated to the remote one.

	Return type

	XBeeCommunicationInterface

See also

XBeeCommunicationInterface

	
get_ota_max_block_size()[source]

	Returns the maximum number of bytes to send for ota updates.

	Returns

	Maximum ota block size to send.

	Return type

	Integer

	
set_ota_max_block_size(size)[source]

	Sets the maximum number of bytes to send for ota updates.

	Parameters

	size (Integer) – Maximum ota block size to send.

	Raises

	ValueError – If size is not between 0 and 255.

	
update_filesystem_image(ota_filesystem_file, timeout=None, progress_callback=None)[source]

	Performs a filesystem image update operation of the device.

	Parameters

	
	ota_filesystem_file (String) – Location of the OTA filesystem image file.

	timeout (Integer, optional) – Maximum time to wait for target read
operations during the update process.

	progress_callback (Function, optional) – Function to receive
progress information. Receives two arguments:

	The current update task as a String.

	The current update task percentage as an Integer.

	Raises

	
	XBeeException – If the device is not open.

	InvalidOperatingModeException – If the device operating mode is invalid.

	FileSystemNotSupportedException – If the filesystem update is not
supported in the XBee.

	FileSystemException – If there is any error performing the filesystem update.

	
apply_changes()

	Applies changes via ‘AC’ command.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
apply_profile(profile_path, timeout=None, progress_callback=None)

	Applies the given XBee profile to the XBee.

	Parameters

	
	profile_path (String) – Path of the XBee profile file to apply.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the apply profile (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
receive progress information. Receives two arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	UpdateProfileException – If there is any error applying the XBee profile.

	
determine_protocol(hardware_version, firmware_version)

	Determines the XBee protocol based on the given hardware and firmware
versions.

	Parameters

	
	hardware_version (Integer) – Hardware version to get its protocol.

	firmware_version (Bytearray) – Firmware version to get its protocol.

	Returns

	
	XBee protocol corresponding to the given

	hardware and firmware versions.

	Return type

	XBeeProtocol

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
enable_apply_changes(value)

	Sets apply changes flag.

	Parameters

	value (Boolean) – True to enable apply changes flag, False to
disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth
password if not done previously. Use method
AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
execute_command(parameter, value=None, apply=None)

	Executes the provided command.

	Parameters

	
	(String or (parameter) – class: .ATStringCommand): AT command to execute.

	value (bytearray, optional, default=`None`) – Command value (if any).

	apply (Boolean, optional, default=`None`) – True to apply changes
in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

	
get_16bit_addr()

	Returns the 16-bit address of the XBee.

	Returns

	16-bit address of the XBee.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
get_64bit_addr()

	Returns the 64-bit address of the XBee.

	Returns

	64-bit address of the XBee.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – IO line to get its ADC value.

	Returns

	Analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

set_io_configuration()

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the
serial interface of the XBee.

	Returns

	API output mode of the XBee.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee
following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	Last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Returns the 64-bit address of the XBee that is data destination.

	Returns

	64-bit address of destination XBee.

	Return type

	XBee64BitAddress

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

XBee64BitAddress

set_dest_address()

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

IOValue

set_io_configuration()

	
get_file_manager()

	Returns the file system manager for the XBee.

	Returns

	The file system manager.

	Return type

	FileSystemManager

	Raises

	FileSystemNotSupportedException – If the XBee does not support
filesystem.

	
get_firmware_version()

	Returns the firmware version of the XBee.

	Returns

	Firmware version of the XBee.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee.

	Returns

	Hardware version of the XBee.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its configuration.

	Returns

	IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

set_io_configuration()

	
get_io_sampling_rate()

	Returns the IO sampling rate of the XBee.

	Returns

	IO sampling rate of XBee.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

set_io_sampling_rate()

	
get_node_id()

	Returns the node identifier (‘NI’) value of the XBee.

	Returns

	Node identifier (‘NI’) of the XBee.

	Return type

	String

	
get_pan_id()

	Returns the operating PAN ID of the XBee.

	Returns

	Operating PAN ID of the XBee.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

set_pan_id()

	
get_power_level()

	Returns the power level of the XBee.

	Returns

	Power level of the XBee.

	Return type

	PowerLevel

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

PowerLevel

set_power_level()

	
get_protocol()

	Returns the current protocol of the XBee.

	Returns

	Current protocol of the XBee.

	Return type

	XBeeProtocol

See also

XBeeProtocol

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its PWM duty cycle.

	Returns

	PWM duty cycle of the given IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If io_line has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	Role

See also

Role

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	Serial port read timeout in seconds.

	Return type

	Integer

	
is_apply_changes_enabled()

	Returns whether apply changes flag is enabled.

	Returns

	True if apply changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_device_info_complete()

	Returns whether XBee node information is complete.

	Returns

	True if node information is complete, False otherwise.

	Return type

	Boolean

See also

AbstractXBeeDevice.read_device_info()

	
log

	Returns the XBee logger.

	Returns

	The XBee device logger.

	Return type

	Logger

	
reachable

	Returns whether the XBee is reachable.

	Returns

	True if the device is reachable, False otherwise.

	Return type

	Boolean

	
read_device_info(init=True, fire_event=True)

	Updates all instance parameters reading them from the XBee.

	Parameters

	
	init (Boolean, optional, default=`True`) – If False only not
initialized parameters are read, all if True.

	fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.is_device_info_complete()

	
read_io_sample()

	Returns an IO sample from the XBee containing the value of all enabled
digital IO and analog input channels.

	Returns

	IO sample read from the XBee.

	Return type

	IOSample

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOSample

	
scan_counter

	Returns the scan counter for this node.

	Returns

	The scan counter for this node.

	Return type

	Integer

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee.

	Parameters

	value (XBee16BitAddress) – New 16-bit address of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If the protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

	Parameters

	api_output_mode (APIOutputMode) – New API output mode.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – New API output mode options.
Calculate this value using the method
APIOutputModeBit.calculate_api_output_mode_value()
with a set of APIOutputModeBit.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputModeBit

	
set_dest_address(addr)

	Sets the 64-bit address of the XBee that is data destination.

	Parameters

	addr (XBee64BitAddress or RemoteXBeeDevice) – Address itself or remote XBee to be data destination.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If addr is None.

See also

XBee64BitAddress

get_dest_address()

	
set_dio_change_detection(io_lines_set)

	Sets the digital IO lines to be monitored and sampled whenever their
status changes. A None set of lines disables this feature.

	Parameters

	io_lines_set – Set of IOLine.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – Digital IO line to sets its value.

	io_value (IOValue) – IO value to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – IO line to configure.

	io_mode (IOMode) – IO mode to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

get_io_configuration()

	
set_io_sampling_rate(rate)

	Sets the IO sampling rate of the XBee in seconds. A sample rate of 0
means the IO sampling feature is disabled.

	Parameters

	rate (Integer) – New IO sampling rate of the XBee in seconds.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

get_io_sampling_rate()

	
set_node_id(node_id)

	Sets the node identifier (‘NI`) value of the XBee.

	Parameters

	node_id (String) – New node identifier (‘NI’) of the XBee.

	Raises

	
	ValueError – If node_id is None or its length is greater than 20.

	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
set_pan_id(value)

	Sets the operating PAN ID of the XBee.

	Parameters

	value (Bytearray) – New operating PAN ID of the XBee. Must have only
1 or 2 bytes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

get_pan_id()

	
set_power_level(power_level)

	Sets the power level of the XBee.

	Parameters

	power_level (PowerLevel) – New power level of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

PowerLevel

get_power_level()

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – IO Line to be assigned.

	cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If the given IO line does not have PWM capability or
cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – Read timeout in seconds.

	
update_bluetooth_password(new_password)

	Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
update_device_data_from(device)

	Updates the current node information with provided data. This is only
for internal use.

	Parameters

	device (AbstractXBeeDevice) – XBee to get the data from.

	Returns

	True if the node data has been updated, False otherwise.

	Return type

	Boolean

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the XBee.

	Parameters

	
	xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

	xbee_firmware_file (String, optional, default=`None`) – Location of
the XBee binary firmware file.

	bootloader_firmware_file (String, optional, default=`None`) – Location
of the bootloader binary firmware file.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the update process (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
to receive progress information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	OperationNotSupportedException – If XBee does not support firmware update.

	FirmwareUpdateException – If there is any error during the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee so that parameter modifications persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them, the XBee reverts back to
previously saved parameters the next time the module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_changes_enabled() to get its status and
enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
class digi.xbee.devices.RemoteRaw802Device(local_xbee, x64bit_addr=None, x16bit_addr=None, node_id=None)[source]

	Bases: digi.xbee.devices.RemoteXBeeDevice

This class represents a remote 802.15.4 XBee.

Class constructor. Instantiates a new RemoteXBeeDevice with
the provided parameters.

	Parameters

	
	local_xbee (XBeeDevice) – Local XBee associated with the remote one.

	x64bit_addr (XBee64BitAddress) – 64-bit address of the remote XBee.

	x16bit_addr (XBee16BitAddress) – 16-bit address of the remote XBee.

	node_id (String, optional) – Node identifier of the remote XBee.

	Raises

	XBeeException – If the protocol of local_xbee is invalid.

See also

RemoteXBeeDevice

XBee16BitAddress

XBee64BitAddress

XBeeDevice

	
get_protocol()[source]

	Override.

See also

RemoteXBeeDevice.get_protocol()

	
set_64bit_addr(address)[source]

	Sets the 64-bit address of this remote 802.15.4 device.

	Parameters

	address (XBee64BitAddress) – The 64-bit address to set.

	Raises

	ValueError – If address is None.

	
get_ai_status()[source]

	Returns the current association status of this XBee. It indicates
occurrences of errors during the modem initialization and connection.

	Returns

	
	The XBee association

	indication status.

	Return type

	AssociationIndicationStatus

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
apply_changes()

	Applies changes via ‘AC’ command.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
apply_profile(profile_path, timeout=None, progress_callback=None)

	Applies the given XBee profile to the XBee.

	Parameters

	
	profile_path (String) – Path of the XBee profile file to apply.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the apply profile (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
receive progress information. Receives two arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	UpdateProfileException – If there is any error applying the XBee profile.

	
determine_protocol(hardware_version, firmware_version)

	Determines the XBee protocol based on the given hardware and firmware
versions.

	Parameters

	
	hardware_version (Integer) – Hardware version to get its protocol.

	firmware_version (Bytearray) – Firmware version to get its protocol.

	Returns

	
	XBee protocol corresponding to the given

	hardware and firmware versions.

	Return type

	XBeeProtocol

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
enable_apply_changes(value)

	Sets apply changes flag.

	Parameters

	value (Boolean) – True to enable apply changes flag, False to
disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth
password if not done previously. Use method
AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
execute_command(parameter, value=None, apply=None)

	Executes the provided command.

	Parameters

	
	(String or (parameter) – class: .ATStringCommand): AT command to execute.

	value (bytearray, optional, default=`None`) – Command value (if any).

	apply (Boolean, optional, default=`None`) – True to apply changes
in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

	
get_16bit_addr()

	Returns the 16-bit address of the XBee.

	Returns

	16-bit address of the XBee.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
get_64bit_addr()

	Returns the 64-bit address of the XBee.

	Returns

	64-bit address of the XBee.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – IO line to get its ADC value.

	Returns

	Analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

set_io_configuration()

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the
serial interface of the XBee.

	Returns

	API output mode of the XBee.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee
following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_comm_iface()

	Returns the communication interface of the local XBee associated to
the remote one.

	Returns

	
	Communication interface of the

	local XBee associated to the remote one.

	Return type

	XBeeCommunicationInterface

See also

XBeeCommunicationInterface

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	Last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Returns the 64-bit address of the XBee that is data destination.

	Returns

	64-bit address of destination XBee.

	Return type

	XBee64BitAddress

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

XBee64BitAddress

set_dest_address()

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

IOValue

set_io_configuration()

	
get_file_manager()

	Returns the file system manager for the XBee.

	Returns

	The file system manager.

	Return type

	FileSystemManager

	Raises

	FileSystemNotSupportedException – If the XBee does not support
filesystem.

	
get_firmware_version()

	Returns the firmware version of the XBee.

	Returns

	Firmware version of the XBee.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee.

	Returns

	Hardware version of the XBee.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its configuration.

	Returns

	IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

set_io_configuration()

	
get_io_sampling_rate()

	Returns the IO sampling rate of the XBee.

	Returns

	IO sampling rate of XBee.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

set_io_sampling_rate()

	
get_local_xbee_device()

	Returns the local XBee associated to the remote one.

	Returns

	Local XBee.

	Return type

	XBeeDevice

	
get_node_id()

	Returns the node identifier (‘NI’) value of the XBee.

	Returns

	Node identifier (‘NI’) of the XBee.

	Return type

	String

	
get_ota_max_block_size()

	Returns the maximum number of bytes to send for ota updates.

	Returns

	Maximum ota block size to send.

	Return type

	Integer

	
get_pan_id()

	Returns the operating PAN ID of the XBee.

	Returns

	Operating PAN ID of the XBee.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

set_pan_id()

	
get_parameter(parameter, parameter_value=None, apply=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
get_power_level()

	Returns the power level of the XBee.

	Returns

	Power level of the XBee.

	Return type

	PowerLevel

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

PowerLevel

set_power_level()

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its PWM duty cycle.

	Returns

	PWM duty cycle of the given IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If io_line has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	Role

See also

Role

	
get_serial_port()

	Returns the serial port of the local XBee associated to the remote one.

	Returns

	
	Serial port of the local XBee associated

	to the remote one.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	Serial port read timeout in seconds.

	Return type

	Integer

	
is_apply_changes_enabled()

	Returns whether apply changes flag is enabled.

	Returns

	True if apply changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_device_info_complete()

	Returns whether XBee node information is complete.

	Returns

	True if node information is complete, False otherwise.

	Return type

	Boolean

See also

AbstractXBeeDevice.read_device_info()

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
log

	Returns the XBee logger.

	Returns

	The XBee device logger.

	Return type

	Logger

	
reachable

	Returns whether the XBee is reachable.

	Returns

	True if the device is reachable, False otherwise.

	Return type

	Boolean

	
read_device_info(init=True, fire_event=True)

	Updates all instance parameters reading them from the XBee.

	Parameters

	
	init (Boolean, optional, default=`True`) – If False only not
initialized parameters are read, all if True.

	fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.is_device_info_complete()

	
read_io_sample()

	Returns an IO sample from the XBee containing the value of all enabled
digital IO and analog input channels.

	Returns

	IO sample read from the XBee.

	Return type

	IOSample

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOSample

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
scan_counter

	Returns the scan counter for this node.

	Returns

	The scan counter for this node.

	Return type

	Integer

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee.

	Parameters

	value (XBee16BitAddress) – New 16-bit address of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If the protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

	Parameters

	api_output_mode (APIOutputMode) – New API output mode.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – New API output mode options.
Calculate this value using the method
APIOutputModeBit.calculate_api_output_mode_value()
with a set of APIOutputModeBit.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputModeBit

	
set_dest_address(addr)

	Sets the 64-bit address of the XBee that is data destination.

	Parameters

	addr (XBee64BitAddress or RemoteXBeeDevice) – Address itself or remote XBee to be data destination.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If addr is None.

See also

XBee64BitAddress

get_dest_address()

	
set_dio_change_detection(io_lines_set)

	Sets the digital IO lines to be monitored and sampled whenever their
status changes. A None set of lines disables this feature.

	Parameters

	io_lines_set – Set of IOLine.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – Digital IO line to sets its value.

	io_value (IOValue) – IO value to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – IO line to configure.

	io_mode (IOMode) – IO mode to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

get_io_configuration()

	
set_io_sampling_rate(rate)

	Sets the IO sampling rate of the XBee in seconds. A sample rate of 0
means the IO sampling feature is disabled.

	Parameters

	rate (Integer) – New IO sampling rate of the XBee in seconds.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

get_io_sampling_rate()

	
set_local_xbee_device(local_xbee_device)

	This methods associates a XBeeDevice to the remote XBee.

	Parameters

	local_xbee_device (XBeeDevice) – New local XBee associated
to the remote one.

See also

XBeeDevice

	
set_node_id(node_id)

	Sets the node identifier (‘NI`) value of the XBee.

	Parameters

	node_id (String) – New node identifier (‘NI’) of the XBee.

	Raises

	
	ValueError – If node_id is None or its length is greater than 20.

	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
set_ota_max_block_size(size)

	Sets the maximum number of bytes to send for ota updates.

	Parameters

	size (Integer) – Maximum ota block size to send.

	Raises

	ValueError – If size is not between 0 and 255.

	
set_pan_id(value)

	Sets the operating PAN ID of the XBee.

	Parameters

	value (Bytearray) – New operating PAN ID of the XBee. Must have only
1 or 2 bytes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

get_pan_id()

	
set_parameter(parameter, value, apply=None)

	Override.

See also

AbstractXBeeDevice.set_parameter()

	
set_power_level(power_level)

	Sets the power level of the XBee.

	Parameters

	power_level (PowerLevel) – New power level of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

PowerLevel

get_power_level()

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – IO Line to be assigned.

	cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If the given IO line does not have PWM capability or
cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – Read timeout in seconds.

	
update_bluetooth_password(new_password)

	Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
update_device_data_from(device)

	Updates the current node information with provided data. This is only
for internal use.

	Parameters

	device (AbstractXBeeDevice) – XBee to get the data from.

	Returns

	True if the node data has been updated, False otherwise.

	Return type

	Boolean

	
update_filesystem_image(ota_filesystem_file, timeout=None, progress_callback=None)

	Performs a filesystem image update operation of the device.

	Parameters

	
	ota_filesystem_file (String) – Location of the OTA filesystem image file.

	timeout (Integer, optional) – Maximum time to wait for target read
operations during the update process.

	progress_callback (Function, optional) – Function to receive
progress information. Receives two arguments:

	The current update task as a String.

	The current update task percentage as an Integer.

	Raises

	
	XBeeException – If the device is not open.

	InvalidOperatingModeException – If the device operating mode is invalid.

	FileSystemNotSupportedException – If the filesystem update is not
supported in the XBee.

	FileSystemException – If there is any error performing the filesystem update.

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the XBee.

	Parameters

	
	xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

	xbee_firmware_file (String, optional, default=`None`) – Location of
the XBee binary firmware file.

	bootloader_firmware_file (String, optional, default=`None`) – Location
of the bootloader binary firmware file.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the update process (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
to receive progress information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	OperationNotSupportedException – If XBee does not support firmware update.

	FirmwareUpdateException – If there is any error during the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee so that parameter modifications persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them, the XBee reverts back to
previously saved parameters the next time the module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_changes_enabled() to get its status and
enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
class digi.xbee.devices.RemoteDigiMeshDevice(local_xbee, x64bit_addr=None, node_id=None)[source]

	Bases: digi.xbee.devices.RemoteXBeeDevice

This class represents a remote DigiMesh XBee device.

Class constructor. Instantiates a new RemoteDigiMeshDevice
with the provided parameters.

	Parameters

	
	local_xbee (XBeeDevice) – Local XBee associated with the remote one.

	x64bit_addr (XBee64BitAddress) – 64-bit address of the remote XBee.

	node_id (String, optional) – Node identifier of the remote XBee.

	Raises

	XBeeException – If the protocol of local_xbee is invalid.

See also

RemoteXBeeDevice

XBee64BitAddress

XBeeDevice

	
get_protocol()[source]

	Override.

See also

RemoteXBeeDevice.get_protocol()

	
get_neighbors(neighbor_cb=None, finished_cb=None, timeout=None)[source]

	Returns the neighbors of this XBee. If neighbor_cb is not
defined, the process blocks during the specified timeout.

	Parameters

	
	neighbor_cb (Function, optional, default=`None`) – Method called
when a new neighbor is received. Receives two arguments:

	The XBee that owns this new neighbor.

	The new neighbor.

	finished_cb (Function, optional, default=`None`) – Method to execute
when the process finishes. Receives three arguments:

	The XBee that is searching for its neighbors.

	A list with the discovered neighbors.

	An error message if something went wrong.

	timeout (Float, optional, default=`NeighborFinder.DEFAULT_TIMEOUT`) – The timeout
in seconds.

	Returns

	
	List of Neighbor when neighbor_cb is not defined,

	None otherwise (in this case neighbors are received in the callback).

	Return type

	List

	Raises

	OperationNotSupportedException – If XBee protocol is not DigiMesh.

See also

com.digi.models.zdo.Neighbor

	
apply_changes()

	Applies changes via ‘AC’ command.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
apply_profile(profile_path, timeout=None, progress_callback=None)

	Applies the given XBee profile to the XBee.

	Parameters

	
	profile_path (String) – Path of the XBee profile file to apply.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the apply profile (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
receive progress information. Receives two arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	UpdateProfileException – If there is any error applying the XBee profile.

	
determine_protocol(hardware_version, firmware_version)

	Determines the XBee protocol based on the given hardware and firmware
versions.

	Parameters

	
	hardware_version (Integer) – Hardware version to get its protocol.

	firmware_version (Bytearray) – Firmware version to get its protocol.

	Returns

	
	XBee protocol corresponding to the given

	hardware and firmware versions.

	Return type

	XBeeProtocol

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
enable_apply_changes(value)

	Sets apply changes flag.

	Parameters

	value (Boolean) – True to enable apply changes flag, False to
disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth
password if not done previously. Use method
AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
execute_command(parameter, value=None, apply=None)

	Executes the provided command.

	Parameters

	
	(String or (parameter) – class: .ATStringCommand): AT command to execute.

	value (bytearray, optional, default=`None`) – Command value (if any).

	apply (Boolean, optional, default=`None`) – True to apply changes
in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

	
get_16bit_addr()

	Returns the 16-bit address of the XBee.

	Returns

	16-bit address of the XBee.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
get_64bit_addr()

	Returns the 64-bit address of the XBee.

	Returns

	64-bit address of the XBee.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – IO line to get its ADC value.

	Returns

	Analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

set_io_configuration()

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the
serial interface of the XBee.

	Returns

	API output mode of the XBee.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee
following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_comm_iface()

	Returns the communication interface of the local XBee associated to
the remote one.

	Returns

	
	Communication interface of the

	local XBee associated to the remote one.

	Return type

	XBeeCommunicationInterface

See also

XBeeCommunicationInterface

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	Last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Returns the 64-bit address of the XBee that is data destination.

	Returns

	64-bit address of destination XBee.

	Return type

	XBee64BitAddress

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

XBee64BitAddress

set_dest_address()

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

IOValue

set_io_configuration()

	
get_file_manager()

	Returns the file system manager for the XBee.

	Returns

	The file system manager.

	Return type

	FileSystemManager

	Raises

	FileSystemNotSupportedException – If the XBee does not support
filesystem.

	
get_firmware_version()

	Returns the firmware version of the XBee.

	Returns

	Firmware version of the XBee.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee.

	Returns

	Hardware version of the XBee.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its configuration.

	Returns

	IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

set_io_configuration()

	
get_io_sampling_rate()

	Returns the IO sampling rate of the XBee.

	Returns

	IO sampling rate of XBee.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

set_io_sampling_rate()

	
get_local_xbee_device()

	Returns the local XBee associated to the remote one.

	Returns

	Local XBee.

	Return type

	XBeeDevice

	
get_node_id()

	Returns the node identifier (‘NI’) value of the XBee.

	Returns

	Node identifier (‘NI’) of the XBee.

	Return type

	String

	
get_ota_max_block_size()

	Returns the maximum number of bytes to send for ota updates.

	Returns

	Maximum ota block size to send.

	Return type

	Integer

	
get_pan_id()

	Returns the operating PAN ID of the XBee.

	Returns

	Operating PAN ID of the XBee.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

set_pan_id()

	
get_parameter(parameter, parameter_value=None, apply=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
get_power_level()

	Returns the power level of the XBee.

	Returns

	Power level of the XBee.

	Return type

	PowerLevel

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

PowerLevel

set_power_level()

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its PWM duty cycle.

	Returns

	PWM duty cycle of the given IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If io_line has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	Role

See also

Role

	
get_serial_port()

	Returns the serial port of the local XBee associated to the remote one.

	Returns

	
	Serial port of the local XBee associated

	to the remote one.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	Serial port read timeout in seconds.

	Return type

	Integer

	
is_apply_changes_enabled()

	Returns whether apply changes flag is enabled.

	Returns

	True if apply changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_device_info_complete()

	Returns whether XBee node information is complete.

	Returns

	True if node information is complete, False otherwise.

	Return type

	Boolean

See also

AbstractXBeeDevice.read_device_info()

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
log

	Returns the XBee logger.

	Returns

	The XBee device logger.

	Return type

	Logger

	
reachable

	Returns whether the XBee is reachable.

	Returns

	True if the device is reachable, False otherwise.

	Return type

	Boolean

	
read_device_info(init=True, fire_event=True)

	Updates all instance parameters reading them from the XBee.

	Parameters

	
	init (Boolean, optional, default=`True`) – If False only not
initialized parameters are read, all if True.

	fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.is_device_info_complete()

	
read_io_sample()

	Returns an IO sample from the XBee containing the value of all enabled
digital IO and analog input channels.

	Returns

	IO sample read from the XBee.

	Return type

	IOSample

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOSample

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
scan_counter

	Returns the scan counter for this node.

	Returns

	The scan counter for this node.

	Return type

	Integer

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee.

	Parameters

	value (XBee16BitAddress) – New 16-bit address of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If the protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

	Parameters

	api_output_mode (APIOutputMode) – New API output mode.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – New API output mode options.
Calculate this value using the method
APIOutputModeBit.calculate_api_output_mode_value()
with a set of APIOutputModeBit.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputModeBit

	
set_dest_address(addr)

	Sets the 64-bit address of the XBee that is data destination.

	Parameters

	addr (XBee64BitAddress or RemoteXBeeDevice) – Address itself or remote XBee to be data destination.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If addr is None.

See also

XBee64BitAddress

get_dest_address()

	
set_dio_change_detection(io_lines_set)

	Sets the digital IO lines to be monitored and sampled whenever their
status changes. A None set of lines disables this feature.

	Parameters

	io_lines_set – Set of IOLine.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – Digital IO line to sets its value.

	io_value (IOValue) – IO value to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – IO line to configure.

	io_mode (IOMode) – IO mode to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

get_io_configuration()

	
set_io_sampling_rate(rate)

	Sets the IO sampling rate of the XBee in seconds. A sample rate of 0
means the IO sampling feature is disabled.

	Parameters

	rate (Integer) – New IO sampling rate of the XBee in seconds.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

get_io_sampling_rate()

	
set_local_xbee_device(local_xbee_device)

	This methods associates a XBeeDevice to the remote XBee.

	Parameters

	local_xbee_device (XBeeDevice) – New local XBee associated
to the remote one.

See also

XBeeDevice

	
set_node_id(node_id)

	Sets the node identifier (‘NI`) value of the XBee.

	Parameters

	node_id (String) – New node identifier (‘NI’) of the XBee.

	Raises

	
	ValueError – If node_id is None or its length is greater than 20.

	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
set_ota_max_block_size(size)

	Sets the maximum number of bytes to send for ota updates.

	Parameters

	size (Integer) – Maximum ota block size to send.

	Raises

	ValueError – If size is not between 0 and 255.

	
set_pan_id(value)

	Sets the operating PAN ID of the XBee.

	Parameters

	value (Bytearray) – New operating PAN ID of the XBee. Must have only
1 or 2 bytes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

get_pan_id()

	
set_parameter(parameter, value, apply=None)

	Override.

See also

AbstractXBeeDevice.set_parameter()

	
set_power_level(power_level)

	Sets the power level of the XBee.

	Parameters

	power_level (PowerLevel) – New power level of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

PowerLevel

get_power_level()

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – IO Line to be assigned.

	cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If the given IO line does not have PWM capability or
cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – Read timeout in seconds.

	
update_bluetooth_password(new_password)

	Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
update_device_data_from(device)

	Updates the current node information with provided data. This is only
for internal use.

	Parameters

	device (AbstractXBeeDevice) – XBee to get the data from.

	Returns

	True if the node data has been updated, False otherwise.

	Return type

	Boolean

	
update_filesystem_image(ota_filesystem_file, timeout=None, progress_callback=None)

	Performs a filesystem image update operation of the device.

	Parameters

	
	ota_filesystem_file (String) – Location of the OTA filesystem image file.

	timeout (Integer, optional) – Maximum time to wait for target read
operations during the update process.

	progress_callback (Function, optional) – Function to receive
progress information. Receives two arguments:

	The current update task as a String.

	The current update task percentage as an Integer.

	Raises

	
	XBeeException – If the device is not open.

	InvalidOperatingModeException – If the device operating mode is invalid.

	FileSystemNotSupportedException – If the filesystem update is not
supported in the XBee.

	FileSystemException – If there is any error performing the filesystem update.

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the XBee.

	Parameters

	
	xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

	xbee_firmware_file (String, optional, default=`None`) – Location of
the XBee binary firmware file.

	bootloader_firmware_file (String, optional, default=`None`) – Location
of the bootloader binary firmware file.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the update process (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
to receive progress information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	OperationNotSupportedException – If XBee does not support firmware update.

	FirmwareUpdateException – If there is any error during the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee so that parameter modifications persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them, the XBee reverts back to
previously saved parameters the next time the module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_changes_enabled() to get its status and
enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
class digi.xbee.devices.RemoteDigiPointDevice(local_xbee, x64bit_addr=None, node_id=None)[source]

	Bases: digi.xbee.devices.RemoteXBeeDevice

This class represents a remote DigiPoint XBee.

Class constructor. Instantiates a new RemoteDigiMeshDevice
with the provided parameters.

	Parameters

	
	local_xbee (XBeeDevice) – Local XBee associated with the remote one.

	x64bit_addr (XBee64BitAddress) – 64-bit address of the remote XBee.

	node_id (String, optional) – Node identifier of the remote XBee.

	Raises

	XBeeException – If the protocol of local_xbee is invalid.

See also

RemoteXBeeDevice

XBee64BitAddress

XBeeDevice

	
get_protocol()[source]

	Override.

See also

RemoteXBeeDevice.get_protocol()

	
apply_changes()

	Applies changes via ‘AC’ command.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
apply_profile(profile_path, timeout=None, progress_callback=None)

	Applies the given XBee profile to the XBee.

	Parameters

	
	profile_path (String) – Path of the XBee profile file to apply.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the apply profile (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
receive progress information. Receives two arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	UpdateProfileException – If there is any error applying the XBee profile.

	
determine_protocol(hardware_version, firmware_version)

	Determines the XBee protocol based on the given hardware and firmware
versions.

	Parameters

	
	hardware_version (Integer) – Hardware version to get its protocol.

	firmware_version (Bytearray) – Firmware version to get its protocol.

	Returns

	
	XBee protocol corresponding to the given

	hardware and firmware versions.

	Return type

	XBeeProtocol

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
enable_apply_changes(value)

	Sets apply changes flag.

	Parameters

	value (Boolean) – True to enable apply changes flag, False to
disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth
password if not done previously. Use method
AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
execute_command(parameter, value=None, apply=None)

	Executes the provided command.

	Parameters

	
	(String or (parameter) – class: .ATStringCommand): AT command to execute.

	value (bytearray, optional, default=`None`) – Command value (if any).

	apply (Boolean, optional, default=`None`) – True to apply changes
in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

	
get_16bit_addr()

	Returns the 16-bit address of the XBee.

	Returns

	16-bit address of the XBee.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
get_64bit_addr()

	Returns the 64-bit address of the XBee.

	Returns

	64-bit address of the XBee.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – IO line to get its ADC value.

	Returns

	Analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

set_io_configuration()

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the
serial interface of the XBee.

	Returns

	API output mode of the XBee.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee
following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_comm_iface()

	Returns the communication interface of the local XBee associated to
the remote one.

	Returns

	
	Communication interface of the

	local XBee associated to the remote one.

	Return type

	XBeeCommunicationInterface

See also

XBeeCommunicationInterface

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	Last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Returns the 64-bit address of the XBee that is data destination.

	Returns

	64-bit address of destination XBee.

	Return type

	XBee64BitAddress

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

XBee64BitAddress

set_dest_address()

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

IOValue

set_io_configuration()

	
get_file_manager()

	Returns the file system manager for the XBee.

	Returns

	The file system manager.

	Return type

	FileSystemManager

	Raises

	FileSystemNotSupportedException – If the XBee does not support
filesystem.

	
get_firmware_version()

	Returns the firmware version of the XBee.

	Returns

	Firmware version of the XBee.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee.

	Returns

	Hardware version of the XBee.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its configuration.

	Returns

	IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

set_io_configuration()

	
get_io_sampling_rate()

	Returns the IO sampling rate of the XBee.

	Returns

	IO sampling rate of XBee.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

set_io_sampling_rate()

	
get_local_xbee_device()

	Returns the local XBee associated to the remote one.

	Returns

	Local XBee.

	Return type

	XBeeDevice

	
get_node_id()

	Returns the node identifier (‘NI’) value of the XBee.

	Returns

	Node identifier (‘NI’) of the XBee.

	Return type

	String

	
get_ota_max_block_size()

	Returns the maximum number of bytes to send for ota updates.

	Returns

	Maximum ota block size to send.

	Return type

	Integer

	
get_pan_id()

	Returns the operating PAN ID of the XBee.

	Returns

	Operating PAN ID of the XBee.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

set_pan_id()

	
get_parameter(parameter, parameter_value=None, apply=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
get_power_level()

	Returns the power level of the XBee.

	Returns

	Power level of the XBee.

	Return type

	PowerLevel

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

PowerLevel

set_power_level()

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its PWM duty cycle.

	Returns

	PWM duty cycle of the given IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If io_line has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	Role

See also

Role

	
get_serial_port()

	Returns the serial port of the local XBee associated to the remote one.

	Returns

	
	Serial port of the local XBee associated

	to the remote one.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	Serial port read timeout in seconds.

	Return type

	Integer

	
is_apply_changes_enabled()

	Returns whether apply changes flag is enabled.

	Returns

	True if apply changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_device_info_complete()

	Returns whether XBee node information is complete.

	Returns

	True if node information is complete, False otherwise.

	Return type

	Boolean

See also

AbstractXBeeDevice.read_device_info()

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
log

	Returns the XBee logger.

	Returns

	The XBee device logger.

	Return type

	Logger

	
reachable

	Returns whether the XBee is reachable.

	Returns

	True if the device is reachable, False otherwise.

	Return type

	Boolean

	
read_device_info(init=True, fire_event=True)

	Updates all instance parameters reading them from the XBee.

	Parameters

	
	init (Boolean, optional, default=`True`) – If False only not
initialized parameters are read, all if True.

	fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.is_device_info_complete()

	
read_io_sample()

	Returns an IO sample from the XBee containing the value of all enabled
digital IO and analog input channels.

	Returns

	IO sample read from the XBee.

	Return type

	IOSample

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOSample

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
scan_counter

	Returns the scan counter for this node.

	Returns

	The scan counter for this node.

	Return type

	Integer

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee.

	Parameters

	value (XBee16BitAddress) – New 16-bit address of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If the protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

	Parameters

	api_output_mode (APIOutputMode) – New API output mode.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – New API output mode options.
Calculate this value using the method
APIOutputModeBit.calculate_api_output_mode_value()
with a set of APIOutputModeBit.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputModeBit

	
set_dest_address(addr)

	Sets the 64-bit address of the XBee that is data destination.

	Parameters

	addr (XBee64BitAddress or RemoteXBeeDevice) – Address itself or remote XBee to be data destination.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If addr is None.

See also

XBee64BitAddress

get_dest_address()

	
set_dio_change_detection(io_lines_set)

	Sets the digital IO lines to be monitored and sampled whenever their
status changes. A None set of lines disables this feature.

	Parameters

	io_lines_set – Set of IOLine.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – Digital IO line to sets its value.

	io_value (IOValue) – IO value to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – IO line to configure.

	io_mode (IOMode) – IO mode to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

get_io_configuration()

	
set_io_sampling_rate(rate)

	Sets the IO sampling rate of the XBee in seconds. A sample rate of 0
means the IO sampling feature is disabled.

	Parameters

	rate (Integer) – New IO sampling rate of the XBee in seconds.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

get_io_sampling_rate()

	
set_local_xbee_device(local_xbee_device)

	This methods associates a XBeeDevice to the remote XBee.

	Parameters

	local_xbee_device (XBeeDevice) – New local XBee associated
to the remote one.

See also

XBeeDevice

	
set_node_id(node_id)

	Sets the node identifier (‘NI`) value of the XBee.

	Parameters

	node_id (String) – New node identifier (‘NI’) of the XBee.

	Raises

	
	ValueError – If node_id is None or its length is greater than 20.

	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
set_ota_max_block_size(size)

	Sets the maximum number of bytes to send for ota updates.

	Parameters

	size (Integer) – Maximum ota block size to send.

	Raises

	ValueError – If size is not between 0 and 255.

	
set_pan_id(value)

	Sets the operating PAN ID of the XBee.

	Parameters

	value (Bytearray) – New operating PAN ID of the XBee. Must have only
1 or 2 bytes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

get_pan_id()

	
set_parameter(parameter, value, apply=None)

	Override.

See also

AbstractXBeeDevice.set_parameter()

	
set_power_level(power_level)

	Sets the power level of the XBee.

	Parameters

	power_level (PowerLevel) – New power level of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

PowerLevel

get_power_level()

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – IO Line to be assigned.

	cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If the given IO line does not have PWM capability or
cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – Read timeout in seconds.

	
update_bluetooth_password(new_password)

	Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
update_device_data_from(device)

	Updates the current node information with provided data. This is only
for internal use.

	Parameters

	device (AbstractXBeeDevice) – XBee to get the data from.

	Returns

	True if the node data has been updated, False otherwise.

	Return type

	Boolean

	
update_filesystem_image(ota_filesystem_file, timeout=None, progress_callback=None)

	Performs a filesystem image update operation of the device.

	Parameters

	
	ota_filesystem_file (String) – Location of the OTA filesystem image file.

	timeout (Integer, optional) – Maximum time to wait for target read
operations during the update process.

	progress_callback (Function, optional) – Function to receive
progress information. Receives two arguments:

	The current update task as a String.

	The current update task percentage as an Integer.

	Raises

	
	XBeeException – If the device is not open.

	InvalidOperatingModeException – If the device operating mode is invalid.

	FileSystemNotSupportedException – If the filesystem update is not
supported in the XBee.

	FileSystemException – If there is any error performing the filesystem update.

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the XBee.

	Parameters

	
	xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

	xbee_firmware_file (String, optional, default=`None`) – Location of
the XBee binary firmware file.

	bootloader_firmware_file (String, optional, default=`None`) – Location
of the bootloader binary firmware file.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the update process (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
to receive progress information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	OperationNotSupportedException – If XBee does not support firmware update.

	FirmwareUpdateException – If there is any error during the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee so that parameter modifications persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them, the XBee reverts back to
previously saved parameters the next time the module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_changes_enabled() to get its status and
enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
class digi.xbee.devices.RemoteZigBeeDevice(local_xbee, x64bit_addr=None, x16bit_addr=None, node_id=None)[source]

	Bases: digi.xbee.devices.RemoteXBeeDevice

This class represents a remote Zigbee XBee.

Class constructor. Instantiates a new RemoteDigiMeshDevice
with the provided parameters.

	Parameters

	
	local_xbee (XBeeDevice) – Local XBee associated with the remote one.

	x64bit_addr (XBee64BitAddress) – 64-bit address of the remote XBee.

	x16bit_addr (XBee16BitAddress) – 16-bit address of the remote XBee.

	node_id (String, optional) – Node identifier of the remote XBee.

	Raises

	XBeeException – If the protocol of local_xbee is invalid.

See also

RemoteXBeeDevice

XBee16BitAddress

XBee64BitAddress

XBeeDevice

	
parent

	Returns the parent of the XBee if it is an end device.

	Returns

	
	The parent of the node for end

	devices, None if unknown or if it is not an end device.

	Return type

	AbstractXBeeDevice

	
get_protocol()[source]

	Override.

See also

RemoteXBeeDevice.get_protocol()

	
is_device_info_complete()[source]

	Override.

See also

AbstractXBeeDevice.is_device_info_complete()

	
get_ai_status()[source]

	Returns the current association status of this XBee. It indicates
occurrences of errors during the modem initialization and connection.

	Returns

	
	The XBee association

	indication status.

	Return type

	AssociationIndicationStatus

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
force_disassociate()[source]

	Forces this XBee to immediately disassociate from the network and
re-attempt to associate.

Only valid for End Devices.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_routes(route_cb=None, finished_cb=None, timeout=None)[source]

	Returns the routes of this XBee. If route_cb is not defined, the
process blocks until the complete routing table is read.

	Parameters

	
	route_cb (Function, optional, default=`None`) – Method called when a
new route is received. Receives two arguments:

	The XBee that owns this new route.

	The new route.

	finished_cb (Function, optional, default=`None`) – Method to execute
when the process finishes. Receives three arguments:

	The XBee that executed the ZDO command.

	A list with the discovered routes.

	An error message if something went wrong.

	timeout (Float, optional, default=`RouteTableReader.DEFAULT_TIMEOUT`) – The ZDO command
timeout in seconds.

	Returns

	
	List of Route when route_cb is not defined,

	None otherwise (in this case routes are received in the callback).

	Return type

	List

	Raises

	OperationNotSupportedException – If XBee protocol is not Zigbee or Smart Energy.

See also

com.digi.models.zdo.Route

	
get_neighbors(neighbor_cb=None, finished_cb=None, timeout=None)[source]

	Returns the neighbors of this XBee. If neighbor_cb is not
defined, the process blocks until the complete neighbor table is read.

	Parameters

	
	neighbor_cb (Function, optional, default=`None`) – Method called
when a new neighbor is received. Receives two arguments:

	The XBee that owns this new neighbor.

	The new neighbor.

	finished_cb (Function, optional, default=`None`) – Method to execute
when the process finishes. Receives three arguments:

	The XBee that executed the ZDO command.

	A list with the discovered neighbors.

	An error message if something went wrong.

	timeout (Float, optional, default=`NeighborTableReader.DEFAULT_TIMEOUT`) – The ZDO
command timeout in seconds.

	Returns

	
	List of Neighbor when neighbor_cb is not defined,

	None otherwise (in this case neighbors are received in the callback).

	Return type

	List

	Raises

	OperationNotSupportedException – If XBee protocol is not Zigbee or Smart Energy.

See also

com.digi.models.zdo.Neighbor

	
apply_changes()

	Applies changes via ‘AC’ command.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
apply_profile(profile_path, timeout=None, progress_callback=None)

	Applies the given XBee profile to the XBee.

	Parameters

	
	profile_path (String) – Path of the XBee profile file to apply.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the apply profile (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
receive progress information. Receives two arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	UpdateProfileException – If there is any error applying the XBee profile.

	
determine_protocol(hardware_version, firmware_version)

	Determines the XBee protocol based on the given hardware and firmware
versions.

	Parameters

	
	hardware_version (Integer) – Hardware version to get its protocol.

	firmware_version (Bytearray) – Firmware version to get its protocol.

	Returns

	
	XBee protocol corresponding to the given

	hardware and firmware versions.

	Return type

	XBeeProtocol

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee.

Note that your device must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
enable_apply_changes(value)

	Sets apply changes flag.

	Parameters

	value (Boolean) – True to enable apply changes flag, False to
disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee.

To work with this interface, you must also configure the Bluetooth
password if not done previously. Use method
AbstractXBeeDevice.update_bluetooth_password().

Note that your XBee must include Bluetooth Low Energy support.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
execute_command(parameter, value=None, apply=None)

	Executes the provided command.

	Parameters

	
	(String or (parameter) – class: .ATStringCommand): AT command to execute.

	value (bytearray, optional, default=`None`) – Command value (if any).

	apply (Boolean, optional, default=`None`) – True to apply changes
in XBee configuration, False not to apply them, None to use
is_apply_changes_enabled() returned value.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.get_parameter()

AbstractXBeeDevice.set_parameter()

AbstractXBeeDevice.apply_changes()

AbstractXBeeDevice.write_changes()

AbstractXBeeDevice.is_apply_changes_enabled()

AbstractXBeeDevice.enable_apply_changes()

	
get_16bit_addr()

	Returns the 16-bit address of the XBee.

	Returns

	16-bit address of the XBee.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
get_64bit_addr()

	Returns the 64-bit address of the XBee.

	Returns

	64-bit address of the XBee.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – IO line to get its ADC value.

	Returns

	Analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

set_io_configuration()

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee.

The API output mode determines the format of the data through the
serial interface of the XBee.

	Returns

	API output mode of the XBee.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee
following the format 00112233AABB.

Note that your device must include Bluetooth Low Energy support.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_comm_iface()

	Returns the communication interface of the local XBee associated to
the remote one.

	Returns

	
	Communication interface of the

	local XBee associated to the remote one.

	Return type

	XBeeCommunicationInterface

See also

XBeeCommunicationInterface

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	Last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Returns the 64-bit address of the XBee that is data destination.

	Returns

	64-bit address of destination XBee.

	Return type

	XBee64BitAddress

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

XBee64BitAddress

set_dest_address()

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If response does not contain the
value for the given IO line.

See also

IOLine

IOValue

set_io_configuration()

	
get_file_manager()

	Returns the file system manager for the XBee.

	Returns

	The file system manager.

	Return type

	FileSystemManager

	Raises

	FileSystemNotSupportedException – If the XBee does not support
filesystem.

	
get_firmware_version()

	Returns the firmware version of the XBee.

	Returns

	Firmware version of the XBee.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee.

	Returns

	Hardware version of the XBee.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its configuration.

	Returns

	IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

set_io_configuration()

	
get_io_sampling_rate()

	Returns the IO sampling rate of the XBee.

	Returns

	IO sampling rate of XBee.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

set_io_sampling_rate()

	
get_local_xbee_device()

	Returns the local XBee associated to the remote one.

	Returns

	Local XBee.

	Return type

	XBeeDevice

	
get_node_id()

	Returns the node identifier (‘NI’) value of the XBee.

	Returns

	Node identifier (‘NI’) of the XBee.

	Return type

	String

	
get_ota_max_block_size()

	Returns the maximum number of bytes to send for ota updates.

	Returns

	Maximum ota block size to send.

	Return type

	Integer

	
get_pan_id()

	Returns the operating PAN ID of the XBee.

	Returns

	Operating PAN ID of the XBee.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

set_pan_id()

	
get_parameter(parameter, parameter_value=None, apply=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
get_power_level()

	Returns the power level of the XBee.

	Returns

	Power level of the XBee.

	Return type

	PowerLevel

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

PowerLevel

set_power_level()

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – IO line to get its PWM duty cycle.

	Returns

	PWM duty cycle of the given IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If io_line has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	Role

See also

Role

	
get_serial_port()

	Returns the serial port of the local XBee associated to the remote one.

	Returns

	
	Serial port of the local XBee associated

	to the remote one.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	Serial port read timeout in seconds.

	Return type

	Integer

	
is_apply_changes_enabled()

	Returns whether apply changes flag is enabled.

	Returns

	True if apply changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
log

	Returns the XBee logger.

	Returns

	The XBee device logger.

	Return type

	Logger

	
reachable

	Returns whether the XBee is reachable.

	Returns

	True if the device is reachable, False otherwise.

	Return type

	Boolean

	
read_device_info(init=True, fire_event=True)

	Updates all instance parameters reading them from the XBee.

	Parameters

	
	init (Boolean, optional, default=`True`) – If False only not
initialized parameters are read, all if True.

	fire_event (Boolean, optional, default=`True`) – True to throw
and update event if any parameter changed, False otherwise.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

AbstractXBeeDevice.is_device_info_complete()

	
read_io_sample()

	Returns an IO sample from the XBee containing the value of all enabled
digital IO and analog input channels.

	Returns

	IO sample read from the XBee.

	Return type

	IOSample

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOSample

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
scan_counter

	Returns the scan counter for this node.

	Returns

	The scan counter for this node.

	Return type

	Integer

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee.

	Parameters

	value (XBee16BitAddress) – New 16-bit address of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If the protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee.

	Parameters

	api_output_mode (APIOutputMode) – New API output mode.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – New API output mode options.
Calculate this value using the method
APIOutputModeBit.calculate_api_output_mode_value()
with a set of APIOutputModeBit.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	OperationNotSupportedException – If it is not supported by the
current protocol.

See also

APIOutputModeBit

	
set_dest_address(addr)

	Sets the 64-bit address of the XBee that is data destination.

	Parameters

	addr (XBee64BitAddress or RemoteXBeeDevice) – Address itself or remote XBee to be data destination.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If addr is None.

See also

XBee64BitAddress

get_dest_address()

	
set_dio_change_detection(io_lines_set)

	Sets the digital IO lines to be monitored and sampled whenever their
status changes. A None set of lines disables this feature.

	Parameters

	io_lines_set – Set of IOLine.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – Digital IO line to sets its value.

	io_value (IOValue) – IO value to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – IO line to configure.

	io_mode (IOMode) – IO mode to set to the IO line.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

IOLine

IOMode

get_io_configuration()

	
set_io_sampling_rate(rate)

	Sets the IO sampling rate of the XBee in seconds. A sample rate of 0
means the IO sampling feature is disabled.

	Parameters

	rate (Integer) – New IO sampling rate of the XBee in seconds.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

get_io_sampling_rate()

	
set_local_xbee_device(local_xbee_device)

	This methods associates a XBeeDevice to the remote XBee.

	Parameters

	local_xbee_device (XBeeDevice) – New local XBee associated
to the remote one.

See also

XBeeDevice

	
set_node_id(node_id)

	Sets the node identifier (‘NI`) value of the XBee.

	Parameters

	node_id (String) – New node identifier (‘NI’) of the XBee.

	Raises

	
	ValueError – If node_id is None or its length is greater than 20.

	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
set_ota_max_block_size(size)

	Sets the maximum number of bytes to send for ota updates.

	Parameters

	size (Integer) – Maximum ota block size to send.

	Raises

	ValueError – If size is not between 0 and 255.

	
set_pan_id(value)

	Sets the operating PAN ID of the XBee.

	Parameters

	value (Bytearray) – New operating PAN ID of the XBee. Must have only
1 or 2 bytes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

get_pan_id()

	
set_parameter(parameter, value, apply=None)

	Override.

See also

AbstractXBeeDevice.set_parameter()

	
set_power_level(power_level)

	Sets the power level of the XBee.

	Parameters

	power_level (PowerLevel) – New power level of the XBee.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

PowerLevel

get_power_level()

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – IO Line to be assigned.

	cycle (Integer) – Duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	ValueError – If the given IO line does not have PWM capability or
cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – Read timeout in seconds.

	
update_bluetooth_password(new_password)

	Changes the Bluetooth password of this XBee with the new one provided.

Note that your device must include Bluetooth Low Energy support.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
update_device_data_from(device)

	Updates the current node information with provided data. This is only
for internal use.

	Parameters

	device (AbstractXBeeDevice) – XBee to get the data from.

	Returns

	True if the node data has been updated, False otherwise.

	Return type

	Boolean

	
update_filesystem_image(ota_filesystem_file, timeout=None, progress_callback=None)

	Performs a filesystem image update operation of the device.

	Parameters

	
	ota_filesystem_file (String) – Location of the OTA filesystem image file.

	timeout (Integer, optional) – Maximum time to wait for target read
operations during the update process.

	progress_callback (Function, optional) – Function to receive
progress information. Receives two arguments:

	The current update task as a String.

	The current update task percentage as an Integer.

	Raises

	
	XBeeException – If the device is not open.

	InvalidOperatingModeException – If the device operating mode is invalid.

	FileSystemNotSupportedException – If the filesystem update is not
supported in the XBee.

	FileSystemException – If there is any error performing the filesystem update.

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the XBee.

	Parameters

	
	xml_firmware_file (String) – Path of the XML file that describes the
firmware to upload.

	xbee_firmware_file (String, optional, default=`None`) – Location of
the XBee binary firmware file.

	bootloader_firmware_file (String, optional, default=`None`) – Location
of the bootloader binary firmware file.

	timeout (Integer, optional, default=`None`) – Maximum time to wait
for target read operations during the update process (seconds).

	progress_callback (Function, optional, default=`None`) – Function to
to receive progress information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	OperationNotSupportedException – If XBee does not support firmware update.

	FirmwareUpdateException – If there is any error during the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee so that parameter modifications persist through subsequent resets.

Parameters values remain in the device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them, the XBee reverts back to
previously saved parameters the next time the module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_changes_enabled() to get its status and
enable_apply_changes() to enable/disable the option. Method
apply_changes() can be used in order to manually apply the changes.

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
class digi.xbee.devices.XBeeNetwork(xbee_device)[source]

	Bases: object

This class represents an XBee Network.

The network allows the discovery of remote devices in the same network
as the local one and stores them.

Class constructor. Instantiates a new XBeeNetwork.

	Parameters

	xbee_device (XBeeDevice) – Local XBee to get the network from.

	Raises

	ValueError – If xbee_device is None.

	
ND_PACKET_FINISH = 1

	Flag that indicates a “discovery process finish” packet.

	
ND_PACKET_REMOTE = 2

	Flag that indicates a discovery process packet with info about a remote XBee.

	
DEFAULT_TIME_BETWEEN_SCANS = 10

	Default time (in seconds) to wait before starting a new scan.

	
MIN_TIME_BETWEEN_SCANS = 0

	Low limit for the time (in seconds) to wait before starting a new scan.

	
MAX_TIME_BETWEEN_SCANS = 259200

	High limit for the time (in seconds) to wait before starting a new scan.

	
DEFAULT_TIME_BETWEEN_REQUESTS = 5

	Default time (in seconds) to wait between node neighbors requests.

	
MIN_TIME_BETWEEN_REQUESTS = 0

	Low limit for the time (in seconds) to wait between node neighbors requests.

	
MAX_TIME_BETWEEN_REQUESTS = 600

	High limit for the time (in seconds) to wait between node neighbors requests.

	
SCAN_TIL_CANCEL = 0

	The neighbor discovery process continues until is manually stopped.

	
scan_counter

	Returns the scan counter.

	Returns

	The scan counter.

	Return type

	Integer

	
start_discovery_process(deep=False, n_deep_scans=1)[source]

	Starts the discovery process. This method is not blocking.

This process can discover node neighbors and connections, or only nodes:

	Deep discovery: Network nodes and connections between them
(including quality) are discovered.

The discovery process will be running the number of scans
configured in n_deep_scans. A scan is considered the process of
discovering the full network. If there are more than one number of
scans configured, after finishing one another is started, until
n_deep_scans is satisfied.

See set_deep_discovery_options() to establish
the way the network discovery process is performed.

	No deep discovery: Only network nodes are discovered.

The discovery process will be running until the configured timeout
expires or, in case of 802.15.4, until the ‘end’ packet is read.

It may occur that, after timeout expiration, there are nodes that
continue sending discovery responses to the local XBee. In this
case, these nodes will not be added to the network.

In 802.15.4, both (deep and no deep discovery) are the same and none
discover the node connections or their quality. The difference is the
possibility of running more than one scan using a deep discovery.

	Parameters

	
	deep (Boolean, optional, default=`False`) – True for a deep
network scan, looking for neighbors and their connections,
False otherwise.

	n_deep_scans (Integer, optional, default=1) – Number of scans to
perform before automatically stopping the discovery process.
SCAN_TIL_CANCEL means the process will not be
automatically stopped. Only applicable if deep=True.

See also

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.del_discovery_process_finished_callback()

XBeeNetwork.get_deep_discovery_options()

XBeeNetwork.set_deep_discovery_options()

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

	
stop_discovery_process()[source]

	Stops the discovery process if it is running.

Note that some DigiMesh/DigiPoint devices are blocked until the discovery
time configured (‘NT’ parameter) has elapsed, so, when trying to get/set
any parameter during the discovery process, a TimeoutException is raised.

	
discover_device(node_id)[source]

	Blocking method. Discovers and reports the first remote XBee that
matches the supplied identifier.

	Parameters

	node_id (String) – Node identifier of the node to discover.

	Returns

	
	Discovered remote XBee, None if the

	timeout expires and the node was not found.

	Return type

	RemoteXBeeDevice

See also

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

	
discover_devices(device_id_list)[source]

	Blocking method. Attempts to discover a list of nodes and add them to
the current network.

This method does not guarantee that all nodes of device_id_list will
be found, even if they exist physically. This depends on the node
discovery operation and timeout.

	Parameters

	device_id_list (List) – List of device IDs to discover.

	Returns

	
	List with the discovered nodes. It may not contain all nodes

	specified in device_id_list.

	Return type

	List

See also

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

	
is_discovery_running()[source]

	Returns whether the discovery process is running.

	Returns

	True if the discovery process is running, False otherwise.

	Return type

	Boolean

	
get_devices()[source]

	Returns a copy of the XBee devices list of the network.

If a new XBee node is added to the list after the execution of this
method, this new XBee is not added to the list returned by this method.

	Returns

	A copy of the XBee devices list of the network.

	Return type

	List

	
has_devices()[source]

	Returns whether there is any device in the network.

	Returns

	
	True if there is at least one node in the network,

	False otherwise.

	Return type

	Boolean

	
get_number_devices()[source]

	Returns the number of nodes in the network.

	Returns

	Number of nodes in the network.

	Return type

	Integer

	
export(dir_path=None, name=None, desc=None)[source]

	Exports this network to the given file path.

If the provided path already exists the file is removed.

	Params:

	
	dir_path (String, optional, default=`None`): Absolute path of the

	directory to export the network. It should not include the file
name. If not defined home directory is used.

name (String, optional, default=`None`): Network human readable name.
desc (String, optional, default=`None`): Network description.

	Returns

	
	Tuple with result (0: success, 1: failure)

	and string (exported file path if success, error string otherwise).

	Return type

	Tuple (Integer, String)

	
add_network_modified_callback(callback)[source]

	Adds a callback for the event NetworkModified.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	The event type as a NetworkEventType.

	The reason of the event as a NetworkEventReason.

	The node added, updated or removed from the network as a
XBeeDevice or RemoteXBeeDevice.

See also

XBeeNetwork.del_network_modified_callback()

	
add_device_discovered_callback(callback)[source]

	Adds a callback for the event DeviceDiscovered.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The discovered remote XBee as a RemoteXBeeDevice.

See also

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

	
add_init_discovery_scan_callback(callback)[source]

	Adds a callback for the event InitDiscoveryScan.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	Number of scan to start (starting with 1).

	Total number of scans.

See also

XBeeNetwork.del_init_discovery_scan_callback()

	
add_end_discovery_scan_callback(callback)[source]

	Adds a callback for the event EndDiscoveryScan.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	Number of scan that has finished (starting with 1).

	Total number of scans.

See also

XBeeNetwork.del_end_discovery_scan_callback()

	
add_discovery_process_finished_callback(callback)[source]

	Adds a callback for the event DiscoveryProcessFinished.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	The event code as an NetworkDiscoveryStatus.

	(Optional) A description of the discovery process as a string.

See also

XBeeNetwork.del_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

	
add_packet_received_from_callback(node, callback)[source]

	Adds a callback to listen to any received packet from the provided node.

	Parameters

	
	node (RemoteXBeeDevice) – The node to listen for frames.

	callback (Function) – The callback. Receives two arguments.

	The received packet as a XBeeAPIPacket.

	The remote XBee who sent the packet as a
RemoteXBeeDevice.

See also

XBeeNetwork.del_packet_received_from_callback()

	
del_network_modified_callback(callback)[source]

	Deletes a callback for the callback list of NetworkModified.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeNetwork.add_network_modified_callback()

	
del_device_discovered_callback(callback)[source]

	Deletes a callback for the callback list of DeviceDiscovered event.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

	
del_init_discovery_scan_callback(callback)[source]

	Deletes a callback for the callback list of InitDiscoveryScan.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeNetwork.add_init_discovery_scan_callback()

	
del_end_discovery_scan_callback(callback)[source]

	Deletes a callback for the callback list of EndDiscoveryScan.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeNetwork.add_end_discovery_scan_callback()

	
del_discovery_process_finished_callback(callback)[source]

	Deletes a callback for the callback list of
DiscoveryProcessFinished event.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

	
del_packet_received_from_callback(node, callb=None)[source]

	Deletes a received packet callback from the provided node.

	Parameters

	
	node (RemoteXBeeDevice) – The node to listen for frames.

	callb (Function, optional, default=`None`) – The callback to delete,
None to delete all.

See also

XBeeNetwork.add_packet_received_from_callback()

	
clear()[source]

	Removes all remote XBee nodes from the network.

	
get_discovery_options()[source]

	Returns the network discovery process options.

	Returns

	Discovery options value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
set_discovery_options(options)[source]

	Configures the discovery options (NO parameter) with the given value.

	Parameters

	options (Set of DiscoveryOptions) – New discovery options,
empty set to clear the options.

	Raises

	
	ValueError – If options is None.

	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

DiscoveryOptions

	
get_deep_discovery_options()[source]

	Returns the deep discovery process options.

	Returns

	
	(NeighborDiscoveryMode, Boolean): Tuple containing:

	
	
	mode (NeighborDiscoveryMode): Neighbor discovery

	mode, the way to perform the network discovery process.

	
	remove_nodes (Boolean): True to remove nodes from the

	network if they were not discovered in the last scan,
False otherwise.

	Return type

	Tuple

See also

digi.xbee.models.mode.NeighborDiscoveryMode

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

	
set_deep_discovery_options(deep_mode=<NeighborDiscoveryMode.CASCADE: (0, 'Cascade')>, del_not_discovered_nodes_in_last_scan=False)[source]

	Configures the deep discovery options with the given values.
These options are only applicable for “deep” discovery
(see start_discovery_process())

	Parameters

	
	deep_mode (NeighborDiscoveryMode, optional, default=`NeighborDiscoveryMode.CASCADE`) – Neighbor
discovery mode, the way to perform the network discovery process.

	del_not_discovered_nodes_in_last_scan (Boolean, optional, default=`False`) – True to
remove nodes from the network if they were not discovered in the last scan.

See also

digi.xbee.models.mode.NeighborDiscoveryMode

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

	
get_discovery_timeout()[source]

	Returns the network discovery timeout.

	Returns

	Network discovery timeout.

	Return type

	Float

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
set_discovery_timeout(discovery_timeout)[source]

	Sets the discovery network timeout.

	Parameters

	discovery_timeout (Float) – Timeout in seconds.

	Raises

	
	ValueError – If discovery_timeout is not between the allowed
minimum and maximum values.

	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_deep_discovery_timeouts()[source]

	Gets deep discovery network timeouts.
These timeouts are only applicable for “deep” discovery
(see start_discovery_process())

	Returns

	
	Tuple containing:

	
	
	node_timeout (Float): Maximum duration in seconds of the

	discovery process per node. This is used to find neighbors
of a node. This timeout is highly dependent on the nature of
the network:

	
	It should be greater than the highest ‘NT’ (Node
Discovery Timeout) of your network.

	And include enough time to let the message propagate
depending on the sleep cycle of your network nodes.

	
	time_bw_nodes (Float): Time to wait between node neighbors

	requests. Use this setting not to saturate your network:

	
	For ‘Cascade’, the number of seconds to wait after
completion of the neighbor discovery process of the
previous node.

	For ‘Flood’, the minimum time to wait between each
node’s neighbor requests.

	
	time_bw_scans (Float): Time to wait before starting a new

	network scan.

	Return type

	Tuple (Float, Float, Float)

See also

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

	
set_deep_discovery_timeouts(node_timeout=None, time_bw_requests=None, time_bw_scans=None)[source]

	Sets deep discovery network timeouts.
These timeouts are only applicable for “deep” discovery
(see start_discovery_process())

	node_timeout (Float, optional, default=`None`):

	Maximum duration in seconds of the discovery process used to find
neighbors of a node. If None already configured timeouts are used.

	time_bw_requests (Float, optional, default=`DEFAULT_TIME_BETWEEN_REQUESTS`): Time to wait

	between node neighbors requests.
It must be between MIN_TIME_BETWEEN_REQUESTS and
MAX_TIME_BETWEEN_REQUESTS seconds inclusive. Use this
setting not to saturate your network:

	
	For ‘Cascade’, the number of seconds to wait after
completion of the neighbor discovery process of the
previous node.

	For ‘Flood’, the minimum time to wait between each node’s
neighbor requests.

	time_bw_scans (Float, optional, default=`DEFAULT_TIME_BETWEEN_SCANS`): Time to wait

	before starting a new network scan.
It must be between MIN_TIME_BETWEEN_SCANS and
MAX_TIME_BETWEEN_SCANS seconds inclusive.

	Raises

	ValueError – if node_timeout, time_bw_requests or
time_bw_scans are not between their corresponding limits.

See also

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

	
classmethod get_nt_limits(protocol)[source]

	Returns a tuple with the minimum and maximum values for the ‘NT’
value depending on the protocol.

	Returns

	
	Minimum value in seconds, maximum value in

	seconds.

	Return type

	Tuple (Float, Float)

	
is_node_in_network(node)[source]

	Checks if the provided node is in the network or if it is the local XBee.

	Parameters

	node (AbstractXBeeDevice) – The node to check.

	Returns

	True if the node is in the network, False otherwise.

	Return type

	Boolean

	Raises

	ValueError – If node is None.

	
get_device_by_64(x64bit_addr)[source]

	Returns the XBee in the network whose 64-bit address matches the given one.

	Parameters

	x64bit_addr (XBee64BitAddress) – 64-bit address of the
node to retrieve.

	Returns

	XBee in the network or None if not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – If x64bit_addr is None or unknown.

	
get_device_by_16(x16bit_addr)[source]

	Returns the XBee in the network whose 16-bit address matches the given one.

	Parameters

	x16bit_addr (XBee16BitAddress) – 16-bit address of the node
to retrieve.

	Returns

	XBee in the network or Non if not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – If x16bit_addr is None or unknown.

	
get_device_by_node_id(node_id)[source]

	Returns the XBee in the network whose node identifier matches the given one.

	Parameters

	node_id (String) – Node identifier of the node to retrieve.

	Returns

	XBee in the network or None if not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – If node_id is None.

	
add_if_not_exist(x64bit_addr=None, x16bit_addr=None, node_id=None)[source]

	Adds an XBee with the provided information if it does not exist in the
current network.

If the XBee already exists, its data is updated with the provided
information.

If no valid address is provided (x64bit_addr, x16bit_addr), None
is returned.

	Parameters

	
	x64bit_addr (XBee64BitAddress, optional, default=`None`) – 64-bit address.

	x16bit_addr (XBee16BitAddress, optional, default=`None`) – 16-bit address.

	node_id (String, optional, default=`None`) – Node identifier.

	Returns

	
	the remote XBee with the updated

	information. If the XBee was not in the list yet, this method
returns the given XBee without changes.

	Return type

	AbstractXBeeDevice

	
add_remote(remote_xbee)[source]

	Adds the provided remote XBee to the network if it is not in yet.

If the XBee is already in the network, its data is updated with the
information of the provided XBee that are not None.

	Parameters

	remote_xbee (RemoteXBeeDevice) – Remote XBee to add.

	Returns

	
	Provided XBee with updated data. If

	the XBee was not in the list, it returns it without changes.

	Return type

	RemoteXBeeDevice

	
add_remotes(remote_xbees)[source]

	Adds a list of remote XBee nodes to the network.

If any node in the list is already in the network, its data is updated
with the information of the corresponding XBee in the list.

	Parameters

	remote_xbees (List) – List of RemoteXBeeDevice to add.

	
remove_device(remote_xbee)[source]

	Removes the provided remote XBee from the network.

	Parameters

	remote_xbee (RemoteXBeeDevice) – Remote XBee to remove.

	Raises

	ValueError – If the provided remote_xbee is not in the network.

	
get_discovery_callbacks()[source]

	Returns the API callbacks that are used in the device discovery process.

This callbacks notify the user callbacks for each XBee discovered.

	Returns

	
	Callback for generic devices discovery

	process, callback for discovery specific XBee ops.

	Return type

	Tuple (Function, Function)

	
get_connections()[source]

	Returns a copy of the XBee network connections.

A deep discover must be performed to get the connections between
network nodes.

If a new connection is added to the list after the execution of this
method, this new connection is not added to the list returned by this
method.

	Returns

	A copy of the list of Connection for the network.

	Return type

	List

See also

XBeeNetwork.get_node_connections()

XBeeNetwork.start_discovery_process()

	
get_node_connections(node)[source]

	Returns the network connections with one of their ends node.

A deep discover must be performed to get the connections between
network nodes.

If a new connection is added to the list after the execution of this
method, this new connection is not added to the list returned by this
method.

	Parameters

	node (AbstractXBeeDevice) – The node to get its connections.

	Returns

	List of Connection with node end.

	Return type

	List

See also

XBeeNetwork.get_connections()

XBeeNetwork.start_discovery_process()

	
class digi.xbee.devices.ZigBeeNetwork(device)[source]

	Bases: digi.xbee.devices.XBeeNetwork

This class represents a Zigbee network.

The network allows the discovery of remote nodes in the same network as the
local one and stores them.

Class constructor. Instantiates a new ZigBeeNetwork.

	Parameters

	device (ZigBeeDevice) – Local Zigbee node to get the
network from.

	Raises

	ValueError – If device is None.

	
add_device_discovered_callback(callback)

	Adds a callback for the event DeviceDiscovered.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The discovered remote XBee as a RemoteXBeeDevice.

See also

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

	
add_discovery_process_finished_callback(callback)

	Adds a callback for the event DiscoveryProcessFinished.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	The event code as an NetworkDiscoveryStatus.

	(Optional) A description of the discovery process as a string.

See also

XBeeNetwork.del_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

	
add_end_discovery_scan_callback(callback)

	Adds a callback for the event EndDiscoveryScan.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	Number of scan that has finished (starting with 1).

	Total number of scans.

See also

XBeeNetwork.del_end_discovery_scan_callback()

	
add_if_not_exist(x64bit_addr=None, x16bit_addr=None, node_id=None)

	Adds an XBee with the provided information if it does not exist in the
current network.

If the XBee already exists, its data is updated with the provided
information.

If no valid address is provided (x64bit_addr, x16bit_addr), None
is returned.

	Parameters

	
	x64bit_addr (XBee64BitAddress, optional, default=`None`) – 64-bit address.

	x16bit_addr (XBee16BitAddress, optional, default=`None`) – 16-bit address.

	node_id (String, optional, default=`None`) – Node identifier.

	Returns

	
	the remote XBee with the updated

	information. If the XBee was not in the list yet, this method
returns the given XBee without changes.

	Return type

	AbstractXBeeDevice

	
add_init_discovery_scan_callback(callback)

	Adds a callback for the event InitDiscoveryScan.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	Number of scan to start (starting with 1).

	Total number of scans.

See also

XBeeNetwork.del_init_discovery_scan_callback()

	
add_network_modified_callback(callback)

	Adds a callback for the event NetworkModified.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	The event type as a NetworkEventType.

	The reason of the event as a NetworkEventReason.

	The node added, updated or removed from the network as a
XBeeDevice or RemoteXBeeDevice.

See also

XBeeNetwork.del_network_modified_callback()

	
add_packet_received_from_callback(node, callback)

	Adds a callback to listen to any received packet from the provided node.

	Parameters

	
	node (RemoteXBeeDevice) – The node to listen for frames.

	callback (Function) – The callback. Receives two arguments.

	The received packet as a XBeeAPIPacket.

	The remote XBee who sent the packet as a
RemoteXBeeDevice.

See also

XBeeNetwork.del_packet_received_from_callback()

	
add_remote(remote_xbee)

	Adds the provided remote XBee to the network if it is not in yet.

If the XBee is already in the network, its data is updated with the
information of the provided XBee that are not None.

	Parameters

	remote_xbee (RemoteXBeeDevice) – Remote XBee to add.

	Returns

	
	Provided XBee with updated data. If

	the XBee was not in the list, it returns it without changes.

	Return type

	RemoteXBeeDevice

	
add_remotes(remote_xbees)

	Adds a list of remote XBee nodes to the network.

If any node in the list is already in the network, its data is updated
with the information of the corresponding XBee in the list.

	Parameters

	remote_xbees (List) – List of RemoteXBeeDevice to add.

	
clear()

	Removes all remote XBee nodes from the network.

	
del_device_discovered_callback(callback)

	Deletes a callback for the callback list of DeviceDiscovered event.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

	
del_discovery_process_finished_callback(callback)

	Deletes a callback for the callback list of
DiscoveryProcessFinished event.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

	
del_end_discovery_scan_callback(callback)

	Deletes a callback for the callback list of EndDiscoveryScan.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeNetwork.add_end_discovery_scan_callback()

	
del_init_discovery_scan_callback(callback)

	Deletes a callback for the callback list of InitDiscoveryScan.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeNetwork.add_init_discovery_scan_callback()

	
del_network_modified_callback(callback)

	Deletes a callback for the callback list of NetworkModified.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeNetwork.add_network_modified_callback()

	
del_packet_received_from_callback(node, callb=None)

	Deletes a received packet callback from the provided node.

	Parameters

	
	node (RemoteXBeeDevice) – The node to listen for frames.

	callb (Function, optional, default=`None`) – The callback to delete,
None to delete all.

See also

XBeeNetwork.add_packet_received_from_callback()

	
discover_device(node_id)

	Blocking method. Discovers and reports the first remote XBee that
matches the supplied identifier.

	Parameters

	node_id (String) – Node identifier of the node to discover.

	Returns

	
	Discovered remote XBee, None if the

	timeout expires and the node was not found.

	Return type

	RemoteXBeeDevice

See also

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

	
discover_devices(device_id_list)

	Blocking method. Attempts to discover a list of nodes and add them to
the current network.

This method does not guarantee that all nodes of device_id_list will
be found, even if they exist physically. This depends on the node
discovery operation and timeout.

	Parameters

	device_id_list (List) – List of device IDs to discover.

	Returns

	
	List with the discovered nodes. It may not contain all nodes

	specified in device_id_list.

	Return type

	List

See also

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

	
export(dir_path=None, name=None, desc=None)

	Exports this network to the given file path.

If the provided path already exists the file is removed.

	Params:

	
	dir_path (String, optional, default=`None`): Absolute path of the

	directory to export the network. It should not include the file
name. If not defined home directory is used.

name (String, optional, default=`None`): Network human readable name.
desc (String, optional, default=`None`): Network description.

	Returns

	
	Tuple with result (0: success, 1: failure)

	and string (exported file path if success, error string otherwise).

	Return type

	Tuple (Integer, String)

	
get_connections()

	Returns a copy of the XBee network connections.

A deep discover must be performed to get the connections between
network nodes.

If a new connection is added to the list after the execution of this
method, this new connection is not added to the list returned by this
method.

	Returns

	A copy of the list of Connection for the network.

	Return type

	List

See also

XBeeNetwork.get_node_connections()

XBeeNetwork.start_discovery_process()

	
get_deep_discovery_options()

	Returns the deep discovery process options.

	Returns

	
	(NeighborDiscoveryMode, Boolean): Tuple containing:

	
	
	mode (NeighborDiscoveryMode): Neighbor discovery

	mode, the way to perform the network discovery process.

	
	remove_nodes (Boolean): True to remove nodes from the

	network if they were not discovered in the last scan,
False otherwise.

	Return type

	Tuple

See also

digi.xbee.models.mode.NeighborDiscoveryMode

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

	
get_deep_discovery_timeouts()

	Gets deep discovery network timeouts.
These timeouts are only applicable for “deep” discovery
(see start_discovery_process())

	Returns

	
	Tuple containing:

	
	
	node_timeout (Float): Maximum duration in seconds of the

	discovery process per node. This is used to find neighbors
of a node. This timeout is highly dependent on the nature of
the network:

	
	It should be greater than the highest ‘NT’ (Node
Discovery Timeout) of your network.

	And include enough time to let the message propagate
depending on the sleep cycle of your network nodes.

	
	time_bw_nodes (Float): Time to wait between node neighbors

	requests. Use this setting not to saturate your network:

	
	For ‘Cascade’, the number of seconds to wait after
completion of the neighbor discovery process of the
previous node.

	For ‘Flood’, the minimum time to wait between each
node’s neighbor requests.

	
	time_bw_scans (Float): Time to wait before starting a new

	network scan.

	Return type

	Tuple (Float, Float, Float)

See also

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

	
get_device_by_16(x16bit_addr)

	Returns the XBee in the network whose 16-bit address matches the given one.

	Parameters

	x16bit_addr (XBee16BitAddress) – 16-bit address of the node
to retrieve.

	Returns

	XBee in the network or Non if not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – If x16bit_addr is None or unknown.

	
get_device_by_64(x64bit_addr)

	Returns the XBee in the network whose 64-bit address matches the given one.

	Parameters

	x64bit_addr (XBee64BitAddress) – 64-bit address of the
node to retrieve.

	Returns

	XBee in the network or None if not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – If x64bit_addr is None or unknown.

	
get_device_by_node_id(node_id)

	Returns the XBee in the network whose node identifier matches the given one.

	Parameters

	node_id (String) – Node identifier of the node to retrieve.

	Returns

	XBee in the network or None if not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – If node_id is None.

	
get_devices()

	Returns a copy of the XBee devices list of the network.

If a new XBee node is added to the list after the execution of this
method, this new XBee is not added to the list returned by this method.

	Returns

	A copy of the XBee devices list of the network.

	Return type

	List

	
get_discovery_callbacks()

	Returns the API callbacks that are used in the device discovery process.

This callbacks notify the user callbacks for each XBee discovered.

	Returns

	
	Callback for generic devices discovery

	process, callback for discovery specific XBee ops.

	Return type

	Tuple (Function, Function)

	
get_discovery_options()

	Returns the network discovery process options.

	Returns

	Discovery options value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_discovery_timeout()

	Returns the network discovery timeout.

	Returns

	Network discovery timeout.

	Return type

	Float

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_node_connections(node)

	Returns the network connections with one of their ends node.

A deep discover must be performed to get the connections between
network nodes.

If a new connection is added to the list after the execution of this
method, this new connection is not added to the list returned by this
method.

	Parameters

	node (AbstractXBeeDevice) – The node to get its connections.

	Returns

	List of Connection with node end.

	Return type

	List

See also

XBeeNetwork.get_connections()

XBeeNetwork.start_discovery_process()

	
classmethod get_nt_limits(protocol)

	Returns a tuple with the minimum and maximum values for the ‘NT’
value depending on the protocol.

	Returns

	
	Minimum value in seconds, maximum value in

	seconds.

	Return type

	Tuple (Float, Float)

	
get_number_devices()

	Returns the number of nodes in the network.

	Returns

	Number of nodes in the network.

	Return type

	Integer

	
has_devices()

	Returns whether there is any device in the network.

	Returns

	
	True if there is at least one node in the network,

	False otherwise.

	Return type

	Boolean

	
is_discovery_running()

	Returns whether the discovery process is running.

	Returns

	True if the discovery process is running, False otherwise.

	Return type

	Boolean

	
is_node_in_network(node)

	Checks if the provided node is in the network or if it is the local XBee.

	Parameters

	node (AbstractXBeeDevice) – The node to check.

	Returns

	True if the node is in the network, False otherwise.

	Return type

	Boolean

	Raises

	ValueError – If node is None.

	
remove_device(remote_xbee)

	Removes the provided remote XBee from the network.

	Parameters

	remote_xbee (RemoteXBeeDevice) – Remote XBee to remove.

	Raises

	ValueError – If the provided remote_xbee is not in the network.

	
scan_counter

	Returns the scan counter.

	Returns

	The scan counter.

	Return type

	Integer

	
set_deep_discovery_options(deep_mode=<NeighborDiscoveryMode.CASCADE: (0, 'Cascade')>, del_not_discovered_nodes_in_last_scan=False)

	Configures the deep discovery options with the given values.
These options are only applicable for “deep” discovery
(see start_discovery_process())

	Parameters

	
	deep_mode (NeighborDiscoveryMode, optional, default=`NeighborDiscoveryMode.CASCADE`) – Neighbor
discovery mode, the way to perform the network discovery process.

	del_not_discovered_nodes_in_last_scan (Boolean, optional, default=`False`) – True to
remove nodes from the network if they were not discovered in the last scan.

See also

digi.xbee.models.mode.NeighborDiscoveryMode

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

	
set_deep_discovery_timeouts(node_timeout=None, time_bw_requests=None, time_bw_scans=None)

	Sets deep discovery network timeouts.
These timeouts are only applicable for “deep” discovery
(see start_discovery_process())

	node_timeout (Float, optional, default=`None`):

	Maximum duration in seconds of the discovery process used to find
neighbors of a node. If None already configured timeouts are used.

	time_bw_requests (Float, optional, default=`DEFAULT_TIME_BETWEEN_REQUESTS`): Time to wait

	between node neighbors requests.
It must be between MIN_TIME_BETWEEN_REQUESTS and
MAX_TIME_BETWEEN_REQUESTS seconds inclusive. Use this
setting not to saturate your network:

	
	For ‘Cascade’, the number of seconds to wait after
completion of the neighbor discovery process of the
previous node.

	For ‘Flood’, the minimum time to wait between each node’s
neighbor requests.

	time_bw_scans (Float, optional, default=`DEFAULT_TIME_BETWEEN_SCANS`): Time to wait

	before starting a new network scan.
It must be between MIN_TIME_BETWEEN_SCANS and
MAX_TIME_BETWEEN_SCANS seconds inclusive.

	Raises

	ValueError – if node_timeout, time_bw_requests or
time_bw_scans are not between their corresponding limits.

See also

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

	
set_discovery_options(options)

	Configures the discovery options (NO parameter) with the given value.

	Parameters

	options (Set of DiscoveryOptions) – New discovery options,
empty set to clear the options.

	Raises

	
	ValueError – If options is None.

	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

DiscoveryOptions

	
set_discovery_timeout(discovery_timeout)

	Sets the discovery network timeout.

	Parameters

	discovery_timeout (Float) – Timeout in seconds.

	Raises

	
	ValueError – If discovery_timeout is not between the allowed
minimum and maximum values.

	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
start_discovery_process(deep=False, n_deep_scans=1)

	Starts the discovery process. This method is not blocking.

This process can discover node neighbors and connections, or only nodes:

	Deep discovery: Network nodes and connections between them
(including quality) are discovered.

The discovery process will be running the number of scans
configured in n_deep_scans. A scan is considered the process of
discovering the full network. If there are more than one number of
scans configured, after finishing one another is started, until
n_deep_scans is satisfied.

See set_deep_discovery_options() to establish
the way the network discovery process is performed.

	No deep discovery: Only network nodes are discovered.

The discovery process will be running until the configured timeout
expires or, in case of 802.15.4, until the ‘end’ packet is read.

It may occur that, after timeout expiration, there are nodes that
continue sending discovery responses to the local XBee. In this
case, these nodes will not be added to the network.

In 802.15.4, both (deep and no deep discovery) are the same and none
discover the node connections or their quality. The difference is the
possibility of running more than one scan using a deep discovery.

	Parameters

	
	deep (Boolean, optional, default=`False`) – True for a deep
network scan, looking for neighbors and their connections,
False otherwise.

	n_deep_scans (Integer, optional, default=1) – Number of scans to
perform before automatically stopping the discovery process.
SCAN_TIL_CANCEL means the process will not be
automatically stopped. Only applicable if deep=True.

See also

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.del_discovery_process_finished_callback()

XBeeNetwork.get_deep_discovery_options()

XBeeNetwork.set_deep_discovery_options()

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

	
stop_discovery_process()

	Stops the discovery process if it is running.

Note that some DigiMesh/DigiPoint devices are blocked until the discovery
time configured (‘NT’ parameter) has elapsed, so, when trying to get/set
any parameter during the discovery process, a TimeoutException is raised.

	
class digi.xbee.devices.Raw802Network(xbee_device)[source]

	Bases: digi.xbee.devices.XBeeNetwork

This class represents an 802.15.4 network.

The network allows the discovery of remote nodes in the same network as the
local one and stores them.

Class constructor. Instantiates a new XBeeNetwork.

	Parameters

	xbee_device (XBeeDevice) – Local XBee to get the network from.

	Raises

	ValueError – If xbee_device is None.

	
add_device_discovered_callback(callback)

	Adds a callback for the event DeviceDiscovered.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The discovered remote XBee as a RemoteXBeeDevice.

See also

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

	
add_discovery_process_finished_callback(callback)

	Adds a callback for the event DiscoveryProcessFinished.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	The event code as an NetworkDiscoveryStatus.

	(Optional) A description of the discovery process as a string.

See also

XBeeNetwork.del_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

	
add_end_discovery_scan_callback(callback)

	Adds a callback for the event EndDiscoveryScan.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	Number of scan that has finished (starting with 1).

	Total number of scans.

See also

XBeeNetwork.del_end_discovery_scan_callback()

	
add_if_not_exist(x64bit_addr=None, x16bit_addr=None, node_id=None)

	Adds an XBee with the provided information if it does not exist in the
current network.

If the XBee already exists, its data is updated with the provided
information.

If no valid address is provided (x64bit_addr, x16bit_addr), None
is returned.

	Parameters

	
	x64bit_addr (XBee64BitAddress, optional, default=`None`) – 64-bit address.

	x16bit_addr (XBee16BitAddress, optional, default=`None`) – 16-bit address.

	node_id (String, optional, default=`None`) – Node identifier.

	Returns

	
	the remote XBee with the updated

	information. If the XBee was not in the list yet, this method
returns the given XBee without changes.

	Return type

	AbstractXBeeDevice

	
add_init_discovery_scan_callback(callback)

	Adds a callback for the event InitDiscoveryScan.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	Number of scan to start (starting with 1).

	Total number of scans.

See also

XBeeNetwork.del_init_discovery_scan_callback()

	
add_network_modified_callback(callback)

	Adds a callback for the event NetworkModified.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	The event type as a NetworkEventType.

	The reason of the event as a NetworkEventReason.

	The node added, updated or removed from the network as a
XBeeDevice or RemoteXBeeDevice.

See also

XBeeNetwork.del_network_modified_callback()

	
add_packet_received_from_callback(node, callback)

	Adds a callback to listen to any received packet from the provided node.

	Parameters

	
	node (RemoteXBeeDevice) – The node to listen for frames.

	callback (Function) – The callback. Receives two arguments.

	The received packet as a XBeeAPIPacket.

	The remote XBee who sent the packet as a
RemoteXBeeDevice.

See also

XBeeNetwork.del_packet_received_from_callback()

	
add_remote(remote_xbee)

	Adds the provided remote XBee to the network if it is not in yet.

If the XBee is already in the network, its data is updated with the
information of the provided XBee that are not None.

	Parameters

	remote_xbee (RemoteXBeeDevice) – Remote XBee to add.

	Returns

	
	Provided XBee with updated data. If

	the XBee was not in the list, it returns it without changes.

	Return type

	RemoteXBeeDevice

	
add_remotes(remote_xbees)

	Adds a list of remote XBee nodes to the network.

If any node in the list is already in the network, its data is updated
with the information of the corresponding XBee in the list.

	Parameters

	remote_xbees (List) – List of RemoteXBeeDevice to add.

	
clear()

	Removes all remote XBee nodes from the network.

	
del_device_discovered_callback(callback)

	Deletes a callback for the callback list of DeviceDiscovered event.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

	
del_discovery_process_finished_callback(callback)

	Deletes a callback for the callback list of
DiscoveryProcessFinished event.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

	
del_end_discovery_scan_callback(callback)

	Deletes a callback for the callback list of EndDiscoveryScan.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeNetwork.add_end_discovery_scan_callback()

	
del_init_discovery_scan_callback(callback)

	Deletes a callback for the callback list of InitDiscoveryScan.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeNetwork.add_init_discovery_scan_callback()

	
del_network_modified_callback(callback)

	Deletes a callback for the callback list of NetworkModified.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeNetwork.add_network_modified_callback()

	
del_packet_received_from_callback(node, callb=None)

	Deletes a received packet callback from the provided node.

	Parameters

	
	node (RemoteXBeeDevice) – The node to listen for frames.

	callb (Function, optional, default=`None`) – The callback to delete,
None to delete all.

See also

XBeeNetwork.add_packet_received_from_callback()

	
discover_device(node_id)

	Blocking method. Discovers and reports the first remote XBee that
matches the supplied identifier.

	Parameters

	node_id (String) – Node identifier of the node to discover.

	Returns

	
	Discovered remote XBee, None if the

	timeout expires and the node was not found.

	Return type

	RemoteXBeeDevice

See also

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

	
discover_devices(device_id_list)

	Blocking method. Attempts to discover a list of nodes and add them to
the current network.

This method does not guarantee that all nodes of device_id_list will
be found, even if they exist physically. This depends on the node
discovery operation and timeout.

	Parameters

	device_id_list (List) – List of device IDs to discover.

	Returns

	
	List with the discovered nodes. It may not contain all nodes

	specified in device_id_list.

	Return type

	List

See also

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

	
export(dir_path=None, name=None, desc=None)

	Exports this network to the given file path.

If the provided path already exists the file is removed.

	Params:

	
	dir_path (String, optional, default=`None`): Absolute path of the

	directory to export the network. It should not include the file
name. If not defined home directory is used.

name (String, optional, default=`None`): Network human readable name.
desc (String, optional, default=`None`): Network description.

	Returns

	
	Tuple with result (0: success, 1: failure)

	and string (exported file path if success, error string otherwise).

	Return type

	Tuple (Integer, String)

	
get_connections()

	Returns a copy of the XBee network connections.

A deep discover must be performed to get the connections between
network nodes.

If a new connection is added to the list after the execution of this
method, this new connection is not added to the list returned by this
method.

	Returns

	A copy of the list of Connection for the network.

	Return type

	List

See also

XBeeNetwork.get_node_connections()

XBeeNetwork.start_discovery_process()

	
get_deep_discovery_options()

	Returns the deep discovery process options.

	Returns

	
	(NeighborDiscoveryMode, Boolean): Tuple containing:

	
	
	mode (NeighborDiscoveryMode): Neighbor discovery

	mode, the way to perform the network discovery process.

	
	remove_nodes (Boolean): True to remove nodes from the

	network if they were not discovered in the last scan,
False otherwise.

	Return type

	Tuple

See also

digi.xbee.models.mode.NeighborDiscoveryMode

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

	
get_deep_discovery_timeouts()

	Gets deep discovery network timeouts.
These timeouts are only applicable for “deep” discovery
(see start_discovery_process())

	Returns

	
	Tuple containing:

	
	
	node_timeout (Float): Maximum duration in seconds of the

	discovery process per node. This is used to find neighbors
of a node. This timeout is highly dependent on the nature of
the network:

	
	It should be greater than the highest ‘NT’ (Node
Discovery Timeout) of your network.

	And include enough time to let the message propagate
depending on the sleep cycle of your network nodes.

	
	time_bw_nodes (Float): Time to wait between node neighbors

	requests. Use this setting not to saturate your network:

	
	For ‘Cascade’, the number of seconds to wait after
completion of the neighbor discovery process of the
previous node.

	For ‘Flood’, the minimum time to wait between each
node’s neighbor requests.

	
	time_bw_scans (Float): Time to wait before starting a new

	network scan.

	Return type

	Tuple (Float, Float, Float)

See also

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

	
get_device_by_16(x16bit_addr)

	Returns the XBee in the network whose 16-bit address matches the given one.

	Parameters

	x16bit_addr (XBee16BitAddress) – 16-bit address of the node
to retrieve.

	Returns

	XBee in the network or Non if not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – If x16bit_addr is None or unknown.

	
get_device_by_64(x64bit_addr)

	Returns the XBee in the network whose 64-bit address matches the given one.

	Parameters

	x64bit_addr (XBee64BitAddress) – 64-bit address of the
node to retrieve.

	Returns

	XBee in the network or None if not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – If x64bit_addr is None or unknown.

	
get_device_by_node_id(node_id)

	Returns the XBee in the network whose node identifier matches the given one.

	Parameters

	node_id (String) – Node identifier of the node to retrieve.

	Returns

	XBee in the network or None if not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – If node_id is None.

	
get_devices()

	Returns a copy of the XBee devices list of the network.

If a new XBee node is added to the list after the execution of this
method, this new XBee is not added to the list returned by this method.

	Returns

	A copy of the XBee devices list of the network.

	Return type

	List

	
get_discovery_callbacks()

	Returns the API callbacks that are used in the device discovery process.

This callbacks notify the user callbacks for each XBee discovered.

	Returns

	
	Callback for generic devices discovery

	process, callback for discovery specific XBee ops.

	Return type

	Tuple (Function, Function)

	
get_discovery_options()

	Returns the network discovery process options.

	Returns

	Discovery options value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_discovery_timeout()

	Returns the network discovery timeout.

	Returns

	Network discovery timeout.

	Return type

	Float

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_node_connections(node)

	Returns the network connections with one of their ends node.

A deep discover must be performed to get the connections between
network nodes.

If a new connection is added to the list after the execution of this
method, this new connection is not added to the list returned by this
method.

	Parameters

	node (AbstractXBeeDevice) – The node to get its connections.

	Returns

	List of Connection with node end.

	Return type

	List

See also

XBeeNetwork.get_connections()

XBeeNetwork.start_discovery_process()

	
classmethod get_nt_limits(protocol)

	Returns a tuple with the minimum and maximum values for the ‘NT’
value depending on the protocol.

	Returns

	
	Minimum value in seconds, maximum value in

	seconds.

	Return type

	Tuple (Float, Float)

	
get_number_devices()

	Returns the number of nodes in the network.

	Returns

	Number of nodes in the network.

	Return type

	Integer

	
has_devices()

	Returns whether there is any device in the network.

	Returns

	
	True if there is at least one node in the network,

	False otherwise.

	Return type

	Boolean

	
is_discovery_running()

	Returns whether the discovery process is running.

	Returns

	True if the discovery process is running, False otherwise.

	Return type

	Boolean

	
is_node_in_network(node)

	Checks if the provided node is in the network or if it is the local XBee.

	Parameters

	node (AbstractXBeeDevice) – The node to check.

	Returns

	True if the node is in the network, False otherwise.

	Return type

	Boolean

	Raises

	ValueError – If node is None.

	
remove_device(remote_xbee)

	Removes the provided remote XBee from the network.

	Parameters

	remote_xbee (RemoteXBeeDevice) – Remote XBee to remove.

	Raises

	ValueError – If the provided remote_xbee is not in the network.

	
scan_counter

	Returns the scan counter.

	Returns

	The scan counter.

	Return type

	Integer

	
set_deep_discovery_options(deep_mode=<NeighborDiscoveryMode.CASCADE: (0, 'Cascade')>, del_not_discovered_nodes_in_last_scan=False)

	Configures the deep discovery options with the given values.
These options are only applicable for “deep” discovery
(see start_discovery_process())

	Parameters

	
	deep_mode (NeighborDiscoveryMode, optional, default=`NeighborDiscoveryMode.CASCADE`) – Neighbor
discovery mode, the way to perform the network discovery process.

	del_not_discovered_nodes_in_last_scan (Boolean, optional, default=`False`) – True to
remove nodes from the network if they were not discovered in the last scan.

See also

digi.xbee.models.mode.NeighborDiscoveryMode

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

	
set_deep_discovery_timeouts(node_timeout=None, time_bw_requests=None, time_bw_scans=None)

	Sets deep discovery network timeouts.
These timeouts are only applicable for “deep” discovery
(see start_discovery_process())

	node_timeout (Float, optional, default=`None`):

	Maximum duration in seconds of the discovery process used to find
neighbors of a node. If None already configured timeouts are used.

	time_bw_requests (Float, optional, default=`DEFAULT_TIME_BETWEEN_REQUESTS`): Time to wait

	between node neighbors requests.
It must be between MIN_TIME_BETWEEN_REQUESTS and
MAX_TIME_BETWEEN_REQUESTS seconds inclusive. Use this
setting not to saturate your network:

	
	For ‘Cascade’, the number of seconds to wait after
completion of the neighbor discovery process of the
previous node.

	For ‘Flood’, the minimum time to wait between each node’s
neighbor requests.

	time_bw_scans (Float, optional, default=`DEFAULT_TIME_BETWEEN_SCANS`): Time to wait

	before starting a new network scan.
It must be between MIN_TIME_BETWEEN_SCANS and
MAX_TIME_BETWEEN_SCANS seconds inclusive.

	Raises

	ValueError – if node_timeout, time_bw_requests or
time_bw_scans are not between their corresponding limits.

See also

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

	
set_discovery_options(options)

	Configures the discovery options (NO parameter) with the given value.

	Parameters

	options (Set of DiscoveryOptions) – New discovery options,
empty set to clear the options.

	Raises

	
	ValueError – If options is None.

	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

DiscoveryOptions

	
set_discovery_timeout(discovery_timeout)

	Sets the discovery network timeout.

	Parameters

	discovery_timeout (Float) – Timeout in seconds.

	Raises

	
	ValueError – If discovery_timeout is not between the allowed
minimum and maximum values.

	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
start_discovery_process(deep=False, n_deep_scans=1)

	Starts the discovery process. This method is not blocking.

This process can discover node neighbors and connections, or only nodes:

	Deep discovery: Network nodes and connections between them
(including quality) are discovered.

The discovery process will be running the number of scans
configured in n_deep_scans. A scan is considered the process of
discovering the full network. If there are more than one number of
scans configured, after finishing one another is started, until
n_deep_scans is satisfied.

See set_deep_discovery_options() to establish
the way the network discovery process is performed.

	No deep discovery: Only network nodes are discovered.

The discovery process will be running until the configured timeout
expires or, in case of 802.15.4, until the ‘end’ packet is read.

It may occur that, after timeout expiration, there are nodes that
continue sending discovery responses to the local XBee. In this
case, these nodes will not be added to the network.

In 802.15.4, both (deep and no deep discovery) are the same and none
discover the node connections or their quality. The difference is the
possibility of running more than one scan using a deep discovery.

	Parameters

	
	deep (Boolean, optional, default=`False`) – True for a deep
network scan, looking for neighbors and their connections,
False otherwise.

	n_deep_scans (Integer, optional, default=1) – Number of scans to
perform before automatically stopping the discovery process.
SCAN_TIL_CANCEL means the process will not be
automatically stopped. Only applicable if deep=True.

See also

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.del_discovery_process_finished_callback()

XBeeNetwork.get_deep_discovery_options()

XBeeNetwork.set_deep_discovery_options()

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

	
stop_discovery_process()

	Stops the discovery process if it is running.

Note that some DigiMesh/DigiPoint devices are blocked until the discovery
time configured (‘NT’ parameter) has elapsed, so, when trying to get/set
any parameter during the discovery process, a TimeoutException is raised.

	
class digi.xbee.devices.DigiMeshNetwork(device)[source]

	Bases: digi.xbee.devices.XBeeNetwork

This class represents a DigiMesh network.

The network allows the discovery of remote nodes in the same network as the
local one and stores them.

Class constructor. Instantiates a new DigiMeshNetwork.

	Parameters

	device (DigiMeshDevice) – Local DigiMesh node to get the
network from.

	Raises

	ValueError – If device is None.

	
add_device_discovered_callback(callback)

	Adds a callback for the event DeviceDiscovered.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The discovered remote XBee as a RemoteXBeeDevice.

See also

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

	
add_discovery_process_finished_callback(callback)

	Adds a callback for the event DiscoveryProcessFinished.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	The event code as an NetworkDiscoveryStatus.

	(Optional) A description of the discovery process as a string.

See also

XBeeNetwork.del_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

	
add_end_discovery_scan_callback(callback)

	Adds a callback for the event EndDiscoveryScan.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	Number of scan that has finished (starting with 1).

	Total number of scans.

See also

XBeeNetwork.del_end_discovery_scan_callback()

	
add_if_not_exist(x64bit_addr=None, x16bit_addr=None, node_id=None)

	Adds an XBee with the provided information if it does not exist in the
current network.

If the XBee already exists, its data is updated with the provided
information.

If no valid address is provided (x64bit_addr, x16bit_addr), None
is returned.

	Parameters

	
	x64bit_addr (XBee64BitAddress, optional, default=`None`) – 64-bit address.

	x16bit_addr (XBee16BitAddress, optional, default=`None`) – 16-bit address.

	node_id (String, optional, default=`None`) – Node identifier.

	Returns

	
	the remote XBee with the updated

	information. If the XBee was not in the list yet, this method
returns the given XBee without changes.

	Return type

	AbstractXBeeDevice

	
add_init_discovery_scan_callback(callback)

	Adds a callback for the event InitDiscoveryScan.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	Number of scan to start (starting with 1).

	Total number of scans.

See also

XBeeNetwork.del_init_discovery_scan_callback()

	
add_network_modified_callback(callback)

	Adds a callback for the event NetworkModified.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	The event type as a NetworkEventType.

	The reason of the event as a NetworkEventReason.

	The node added, updated or removed from the network as a
XBeeDevice or RemoteXBeeDevice.

See also

XBeeNetwork.del_network_modified_callback()

	
add_packet_received_from_callback(node, callback)

	Adds a callback to listen to any received packet from the provided node.

	Parameters

	
	node (RemoteXBeeDevice) – The node to listen for frames.

	callback (Function) – The callback. Receives two arguments.

	The received packet as a XBeeAPIPacket.

	The remote XBee who sent the packet as a
RemoteXBeeDevice.

See also

XBeeNetwork.del_packet_received_from_callback()

	
add_remote(remote_xbee)

	Adds the provided remote XBee to the network if it is not in yet.

If the XBee is already in the network, its data is updated with the
information of the provided XBee that are not None.

	Parameters

	remote_xbee (RemoteXBeeDevice) – Remote XBee to add.

	Returns

	
	Provided XBee with updated data. If

	the XBee was not in the list, it returns it without changes.

	Return type

	RemoteXBeeDevice

	
add_remotes(remote_xbees)

	Adds a list of remote XBee nodes to the network.

If any node in the list is already in the network, its data is updated
with the information of the corresponding XBee in the list.

	Parameters

	remote_xbees (List) – List of RemoteXBeeDevice to add.

	
clear()

	Removes all remote XBee nodes from the network.

	
del_device_discovered_callback(callback)

	Deletes a callback for the callback list of DeviceDiscovered event.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

	
del_discovery_process_finished_callback(callback)

	Deletes a callback for the callback list of
DiscoveryProcessFinished event.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

	
del_end_discovery_scan_callback(callback)

	Deletes a callback for the callback list of EndDiscoveryScan.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeNetwork.add_end_discovery_scan_callback()

	
del_init_discovery_scan_callback(callback)

	Deletes a callback for the callback list of InitDiscoveryScan.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeNetwork.add_init_discovery_scan_callback()

	
del_network_modified_callback(callback)

	Deletes a callback for the callback list of NetworkModified.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeNetwork.add_network_modified_callback()

	
del_packet_received_from_callback(node, callb=None)

	Deletes a received packet callback from the provided node.

	Parameters

	
	node (RemoteXBeeDevice) – The node to listen for frames.

	callb (Function, optional, default=`None`) – The callback to delete,
None to delete all.

See also

XBeeNetwork.add_packet_received_from_callback()

	
discover_device(node_id)

	Blocking method. Discovers and reports the first remote XBee that
matches the supplied identifier.

	Parameters

	node_id (String) – Node identifier of the node to discover.

	Returns

	
	Discovered remote XBee, None if the

	timeout expires and the node was not found.

	Return type

	RemoteXBeeDevice

See also

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

	
discover_devices(device_id_list)

	Blocking method. Attempts to discover a list of nodes and add them to
the current network.

This method does not guarantee that all nodes of device_id_list will
be found, even if they exist physically. This depends on the node
discovery operation and timeout.

	Parameters

	device_id_list (List) – List of device IDs to discover.

	Returns

	
	List with the discovered nodes. It may not contain all nodes

	specified in device_id_list.

	Return type

	List

See also

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

	
export(dir_path=None, name=None, desc=None)

	Exports this network to the given file path.

If the provided path already exists the file is removed.

	Params:

	
	dir_path (String, optional, default=`None`): Absolute path of the

	directory to export the network. It should not include the file
name. If not defined home directory is used.

name (String, optional, default=`None`): Network human readable name.
desc (String, optional, default=`None`): Network description.

	Returns

	
	Tuple with result (0: success, 1: failure)

	and string (exported file path if success, error string otherwise).

	Return type

	Tuple (Integer, String)

	
get_connections()

	Returns a copy of the XBee network connections.

A deep discover must be performed to get the connections between
network nodes.

If a new connection is added to the list after the execution of this
method, this new connection is not added to the list returned by this
method.

	Returns

	A copy of the list of Connection for the network.

	Return type

	List

See also

XBeeNetwork.get_node_connections()

XBeeNetwork.start_discovery_process()

	
get_deep_discovery_options()

	Returns the deep discovery process options.

	Returns

	
	(NeighborDiscoveryMode, Boolean): Tuple containing:

	
	
	mode (NeighborDiscoveryMode): Neighbor discovery

	mode, the way to perform the network discovery process.

	
	remove_nodes (Boolean): True to remove nodes from the

	network if they were not discovered in the last scan,
False otherwise.

	Return type

	Tuple

See also

digi.xbee.models.mode.NeighborDiscoveryMode

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

	
get_deep_discovery_timeouts()

	Gets deep discovery network timeouts.
These timeouts are only applicable for “deep” discovery
(see start_discovery_process())

	Returns

	
	Tuple containing:

	
	
	node_timeout (Float): Maximum duration in seconds of the

	discovery process per node. This is used to find neighbors
of a node. This timeout is highly dependent on the nature of
the network:

	
	It should be greater than the highest ‘NT’ (Node
Discovery Timeout) of your network.

	And include enough time to let the message propagate
depending on the sleep cycle of your network nodes.

	
	time_bw_nodes (Float): Time to wait between node neighbors

	requests. Use this setting not to saturate your network:

	
	For ‘Cascade’, the number of seconds to wait after
completion of the neighbor discovery process of the
previous node.

	For ‘Flood’, the minimum time to wait between each
node’s neighbor requests.

	
	time_bw_scans (Float): Time to wait before starting a new

	network scan.

	Return type

	Tuple (Float, Float, Float)

See also

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

	
get_device_by_16(x16bit_addr)

	Returns the XBee in the network whose 16-bit address matches the given one.

	Parameters

	x16bit_addr (XBee16BitAddress) – 16-bit address of the node
to retrieve.

	Returns

	XBee in the network or Non if not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – If x16bit_addr is None or unknown.

	
get_device_by_64(x64bit_addr)

	Returns the XBee in the network whose 64-bit address matches the given one.

	Parameters

	x64bit_addr (XBee64BitAddress) – 64-bit address of the
node to retrieve.

	Returns

	XBee in the network or None if not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – If x64bit_addr is None or unknown.

	
get_device_by_node_id(node_id)

	Returns the XBee in the network whose node identifier matches the given one.

	Parameters

	node_id (String) – Node identifier of the node to retrieve.

	Returns

	XBee in the network or None if not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – If node_id is None.

	
get_devices()

	Returns a copy of the XBee devices list of the network.

If a new XBee node is added to the list after the execution of this
method, this new XBee is not added to the list returned by this method.

	Returns

	A copy of the XBee devices list of the network.

	Return type

	List

	
get_discovery_callbacks()

	Returns the API callbacks that are used in the device discovery process.

This callbacks notify the user callbacks for each XBee discovered.

	Returns

	
	Callback for generic devices discovery

	process, callback for discovery specific XBee ops.

	Return type

	Tuple (Function, Function)

	
get_discovery_options()

	Returns the network discovery process options.

	Returns

	Discovery options value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_discovery_timeout()

	Returns the network discovery timeout.

	Returns

	Network discovery timeout.

	Return type

	Float

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_node_connections(node)

	Returns the network connections with one of their ends node.

A deep discover must be performed to get the connections between
network nodes.

If a new connection is added to the list after the execution of this
method, this new connection is not added to the list returned by this
method.

	Parameters

	node (AbstractXBeeDevice) – The node to get its connections.

	Returns

	List of Connection with node end.

	Return type

	List

See also

XBeeNetwork.get_connections()

XBeeNetwork.start_discovery_process()

	
classmethod get_nt_limits(protocol)

	Returns a tuple with the minimum and maximum values for the ‘NT’
value depending on the protocol.

	Returns

	
	Minimum value in seconds, maximum value in

	seconds.

	Return type

	Tuple (Float, Float)

	
get_number_devices()

	Returns the number of nodes in the network.

	Returns

	Number of nodes in the network.

	Return type

	Integer

	
has_devices()

	Returns whether there is any device in the network.

	Returns

	
	True if there is at least one node in the network,

	False otherwise.

	Return type

	Boolean

	
is_discovery_running()

	Returns whether the discovery process is running.

	Returns

	True if the discovery process is running, False otherwise.

	Return type

	Boolean

	
is_node_in_network(node)

	Checks if the provided node is in the network or if it is the local XBee.

	Parameters

	node (AbstractXBeeDevice) – The node to check.

	Returns

	True if the node is in the network, False otherwise.

	Return type

	Boolean

	Raises

	ValueError – If node is None.

	
remove_device(remote_xbee)

	Removes the provided remote XBee from the network.

	Parameters

	remote_xbee (RemoteXBeeDevice) – Remote XBee to remove.

	Raises

	ValueError – If the provided remote_xbee is not in the network.

	
scan_counter

	Returns the scan counter.

	Returns

	The scan counter.

	Return type

	Integer

	
set_deep_discovery_options(deep_mode=<NeighborDiscoveryMode.CASCADE: (0, 'Cascade')>, del_not_discovered_nodes_in_last_scan=False)

	Configures the deep discovery options with the given values.
These options are only applicable for “deep” discovery
(see start_discovery_process())

	Parameters

	
	deep_mode (NeighborDiscoveryMode, optional, default=`NeighborDiscoveryMode.CASCADE`) – Neighbor
discovery mode, the way to perform the network discovery process.

	del_not_discovered_nodes_in_last_scan (Boolean, optional, default=`False`) – True to
remove nodes from the network if they were not discovered in the last scan.

See also

digi.xbee.models.mode.NeighborDiscoveryMode

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

	
set_deep_discovery_timeouts(node_timeout=None, time_bw_requests=None, time_bw_scans=None)

	Sets deep discovery network timeouts.
These timeouts are only applicable for “deep” discovery
(see start_discovery_process())

	node_timeout (Float, optional, default=`None`):

	Maximum duration in seconds of the discovery process used to find
neighbors of a node. If None already configured timeouts are used.

	time_bw_requests (Float, optional, default=`DEFAULT_TIME_BETWEEN_REQUESTS`): Time to wait

	between node neighbors requests.
It must be between MIN_TIME_BETWEEN_REQUESTS and
MAX_TIME_BETWEEN_REQUESTS seconds inclusive. Use this
setting not to saturate your network:

	
	For ‘Cascade’, the number of seconds to wait after
completion of the neighbor discovery process of the
previous node.

	For ‘Flood’, the minimum time to wait between each node’s
neighbor requests.

	time_bw_scans (Float, optional, default=`DEFAULT_TIME_BETWEEN_SCANS`): Time to wait

	before starting a new network scan.
It must be between MIN_TIME_BETWEEN_SCANS and
MAX_TIME_BETWEEN_SCANS seconds inclusive.

	Raises

	ValueError – if node_timeout, time_bw_requests or
time_bw_scans are not between their corresponding limits.

See also

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

	
set_discovery_options(options)

	Configures the discovery options (NO parameter) with the given value.

	Parameters

	options (Set of DiscoveryOptions) – New discovery options,
empty set to clear the options.

	Raises

	
	ValueError – If options is None.

	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

DiscoveryOptions

	
set_discovery_timeout(discovery_timeout)

	Sets the discovery network timeout.

	Parameters

	discovery_timeout (Float) – Timeout in seconds.

	Raises

	
	ValueError – If discovery_timeout is not between the allowed
minimum and maximum values.

	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
start_discovery_process(deep=False, n_deep_scans=1)

	Starts the discovery process. This method is not blocking.

This process can discover node neighbors and connections, or only nodes:

	Deep discovery: Network nodes and connections between them
(including quality) are discovered.

The discovery process will be running the number of scans
configured in n_deep_scans. A scan is considered the process of
discovering the full network. If there are more than one number of
scans configured, after finishing one another is started, until
n_deep_scans is satisfied.

See set_deep_discovery_options() to establish
the way the network discovery process is performed.

	No deep discovery: Only network nodes are discovered.

The discovery process will be running until the configured timeout
expires or, in case of 802.15.4, until the ‘end’ packet is read.

It may occur that, after timeout expiration, there are nodes that
continue sending discovery responses to the local XBee. In this
case, these nodes will not be added to the network.

In 802.15.4, both (deep and no deep discovery) are the same and none
discover the node connections or their quality. The difference is the
possibility of running more than one scan using a deep discovery.

	Parameters

	
	deep (Boolean, optional, default=`False`) – True for a deep
network scan, looking for neighbors and their connections,
False otherwise.

	n_deep_scans (Integer, optional, default=1) – Number of scans to
perform before automatically stopping the discovery process.
SCAN_TIL_CANCEL means the process will not be
automatically stopped. Only applicable if deep=True.

See also

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.del_discovery_process_finished_callback()

XBeeNetwork.get_deep_discovery_options()

XBeeNetwork.set_deep_discovery_options()

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

	
stop_discovery_process()

	Stops the discovery process if it is running.

Note that some DigiMesh/DigiPoint devices are blocked until the discovery
time configured (‘NT’ parameter) has elapsed, so, when trying to get/set
any parameter during the discovery process, a TimeoutException is raised.

	
class digi.xbee.devices.DigiPointNetwork(xbee_device)[source]

	Bases: digi.xbee.devices.XBeeNetwork

This class represents a DigiPoint network.

The network allows the discovery of remote nodes in the same network as the
local one and stores them.

Class constructor. Instantiates a new XBeeNetwork.

	Parameters

	xbee_device (XBeeDevice) – Local XBee to get the network from.

	Raises

	ValueError – If xbee_device is None.

	
add_device_discovered_callback(callback)

	Adds a callback for the event DeviceDiscovered.

	Parameters

	callback (Function) – The callback. Receives one argument.

	The discovered remote XBee as a RemoteXBeeDevice.

See also

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

	
add_discovery_process_finished_callback(callback)

	Adds a callback for the event DiscoveryProcessFinished.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	The event code as an NetworkDiscoveryStatus.

	(Optional) A description of the discovery process as a string.

See also

XBeeNetwork.del_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

	
add_end_discovery_scan_callback(callback)

	Adds a callback for the event EndDiscoveryScan.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	Number of scan that has finished (starting with 1).

	Total number of scans.

See also

XBeeNetwork.del_end_discovery_scan_callback()

	
add_if_not_exist(x64bit_addr=None, x16bit_addr=None, node_id=None)

	Adds an XBee with the provided information if it does not exist in the
current network.

If the XBee already exists, its data is updated with the provided
information.

If no valid address is provided (x64bit_addr, x16bit_addr), None
is returned.

	Parameters

	
	x64bit_addr (XBee64BitAddress, optional, default=`None`) – 64-bit address.

	x16bit_addr (XBee16BitAddress, optional, default=`None`) – 16-bit address.

	node_id (String, optional, default=`None`) – Node identifier.

	Returns

	
	the remote XBee with the updated

	information. If the XBee was not in the list yet, this method
returns the given XBee without changes.

	Return type

	AbstractXBeeDevice

	
add_init_discovery_scan_callback(callback)

	Adds a callback for the event InitDiscoveryScan.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	Number of scan to start (starting with 1).

	Total number of scans.

See also

XBeeNetwork.del_init_discovery_scan_callback()

	
add_network_modified_callback(callback)

	Adds a callback for the event NetworkModified.

	Parameters

	callback (Function) – The callback. Receives three arguments.

	The event type as a NetworkEventType.

	The reason of the event as a NetworkEventReason.

	The node added, updated or removed from the network as a
XBeeDevice or RemoteXBeeDevice.

See also

XBeeNetwork.del_network_modified_callback()

	
add_packet_received_from_callback(node, callback)

	Adds a callback to listen to any received packet from the provided node.

	Parameters

	
	node (RemoteXBeeDevice) – The node to listen for frames.

	callback (Function) – The callback. Receives two arguments.

	The received packet as a XBeeAPIPacket.

	The remote XBee who sent the packet as a
RemoteXBeeDevice.

See also

XBeeNetwork.del_packet_received_from_callback()

	
add_remote(remote_xbee)

	Adds the provided remote XBee to the network if it is not in yet.

If the XBee is already in the network, its data is updated with the
information of the provided XBee that are not None.

	Parameters

	remote_xbee (RemoteXBeeDevice) – Remote XBee to add.

	Returns

	
	Provided XBee with updated data. If

	the XBee was not in the list, it returns it without changes.

	Return type

	RemoteXBeeDevice

	
add_remotes(remote_xbees)

	Adds a list of remote XBee nodes to the network.

If any node in the list is already in the network, its data is updated
with the information of the corresponding XBee in the list.

	Parameters

	remote_xbees (List) – List of RemoteXBeeDevice to add.

	
clear()

	Removes all remote XBee nodes from the network.

	
del_device_discovered_callback(callback)

	Deletes a callback for the callback list of DeviceDiscovered event.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

	
del_discovery_process_finished_callback(callback)

	Deletes a callback for the callback list of
DiscoveryProcessFinished event.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

	
del_end_discovery_scan_callback(callback)

	Deletes a callback for the callback list of EndDiscoveryScan.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeNetwork.add_end_discovery_scan_callback()

	
del_init_discovery_scan_callback(callback)

	Deletes a callback for the callback list of InitDiscoveryScan.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeNetwork.add_init_discovery_scan_callback()

	
del_network_modified_callback(callback)

	Deletes a callback for the callback list of NetworkModified.

	Parameters

	callback (Function) – The callback to delete.

See also

XBeeNetwork.add_network_modified_callback()

	
del_packet_received_from_callback(node, callb=None)

	Deletes a received packet callback from the provided node.

	Parameters

	
	node (RemoteXBeeDevice) – The node to listen for frames.

	callb (Function, optional, default=`None`) – The callback to delete,
None to delete all.

See also

XBeeNetwork.add_packet_received_from_callback()

	
discover_device(node_id)

	Blocking method. Discovers and reports the first remote XBee that
matches the supplied identifier.

	Parameters

	node_id (String) – Node identifier of the node to discover.

	Returns

	
	Discovered remote XBee, None if the

	timeout expires and the node was not found.

	Return type

	RemoteXBeeDevice

See also

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

	
discover_devices(device_id_list)

	Blocking method. Attempts to discover a list of nodes and add them to
the current network.

This method does not guarantee that all nodes of device_id_list will
be found, even if they exist physically. This depends on the node
discovery operation and timeout.

	Parameters

	device_id_list (List) – List of device IDs to discover.

	Returns

	
	List with the discovered nodes. It may not contain all nodes

	specified in device_id_list.

	Return type

	List

See also

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

	
export(dir_path=None, name=None, desc=None)

	Exports this network to the given file path.

If the provided path already exists the file is removed.

	Params:

	
	dir_path (String, optional, default=`None`): Absolute path of the

	directory to export the network. It should not include the file
name. If not defined home directory is used.

name (String, optional, default=`None`): Network human readable name.
desc (String, optional, default=`None`): Network description.

	Returns

	
	Tuple with result (0: success, 1: failure)

	and string (exported file path if success, error string otherwise).

	Return type

	Tuple (Integer, String)

	
get_connections()

	Returns a copy of the XBee network connections.

A deep discover must be performed to get the connections between
network nodes.

If a new connection is added to the list after the execution of this
method, this new connection is not added to the list returned by this
method.

	Returns

	A copy of the list of Connection for the network.

	Return type

	List

See also

XBeeNetwork.get_node_connections()

XBeeNetwork.start_discovery_process()

	
get_deep_discovery_options()

	Returns the deep discovery process options.

	Returns

	
	(NeighborDiscoveryMode, Boolean): Tuple containing:

	
	
	mode (NeighborDiscoveryMode): Neighbor discovery

	mode, the way to perform the network discovery process.

	
	remove_nodes (Boolean): True to remove nodes from the

	network if they were not discovered in the last scan,
False otherwise.

	Return type

	Tuple

See also

digi.xbee.models.mode.NeighborDiscoveryMode

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

	
get_deep_discovery_timeouts()

	Gets deep discovery network timeouts.
These timeouts are only applicable for “deep” discovery
(see start_discovery_process())

	Returns

	
	Tuple containing:

	
	
	node_timeout (Float): Maximum duration in seconds of the

	discovery process per node. This is used to find neighbors
of a node. This timeout is highly dependent on the nature of
the network:

	
	It should be greater than the highest ‘NT’ (Node
Discovery Timeout) of your network.

	And include enough time to let the message propagate
depending on the sleep cycle of your network nodes.

	
	time_bw_nodes (Float): Time to wait between node neighbors

	requests. Use this setting not to saturate your network:

	
	For ‘Cascade’, the number of seconds to wait after
completion of the neighbor discovery process of the
previous node.

	For ‘Flood’, the minimum time to wait between each
node’s neighbor requests.

	
	time_bw_scans (Float): Time to wait before starting a new

	network scan.

	Return type

	Tuple (Float, Float, Float)

See also

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

	
get_device_by_16(x16bit_addr)

	Returns the XBee in the network whose 16-bit address matches the given one.

	Parameters

	x16bit_addr (XBee16BitAddress) – 16-bit address of the node
to retrieve.

	Returns

	XBee in the network or Non if not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – If x16bit_addr is None or unknown.

	
get_device_by_64(x64bit_addr)

	Returns the XBee in the network whose 64-bit address matches the given one.

	Parameters

	x64bit_addr (XBee64BitAddress) – 64-bit address of the
node to retrieve.

	Returns

	XBee in the network or None if not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – If x64bit_addr is None or unknown.

	
get_device_by_node_id(node_id)

	Returns the XBee in the network whose node identifier matches the given one.

	Parameters

	node_id (String) – Node identifier of the node to retrieve.

	Returns

	XBee in the network or None if not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – If node_id is None.

	
get_devices()

	Returns a copy of the XBee devices list of the network.

If a new XBee node is added to the list after the execution of this
method, this new XBee is not added to the list returned by this method.

	Returns

	A copy of the XBee devices list of the network.

	Return type

	List

	
get_discovery_callbacks()

	Returns the API callbacks that are used in the device discovery process.

This callbacks notify the user callbacks for each XBee discovered.

	Returns

	
	Callback for generic devices discovery

	process, callback for discovery specific XBee ops.

	Return type

	Tuple (Function, Function)

	
get_discovery_options()

	Returns the network discovery process options.

	Returns

	Discovery options value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_discovery_timeout()

	Returns the network discovery timeout.

	Returns

	Network discovery timeout.

	Return type

	Float

	Raises

	
	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
get_node_connections(node)

	Returns the network connections with one of their ends node.

A deep discover must be performed to get the connections between
network nodes.

If a new connection is added to the list after the execution of this
method, this new connection is not added to the list returned by this
method.

	Parameters

	node (AbstractXBeeDevice) – The node to get its connections.

	Returns

	List of Connection with node end.

	Return type

	List

See also

XBeeNetwork.get_connections()

XBeeNetwork.start_discovery_process()

	
classmethod get_nt_limits(protocol)

	Returns a tuple with the minimum and maximum values for the ‘NT’
value depending on the protocol.

	Returns

	
	Minimum value in seconds, maximum value in

	seconds.

	Return type

	Tuple (Float, Float)

	
get_number_devices()

	Returns the number of nodes in the network.

	Returns

	Number of nodes in the network.

	Return type

	Integer

	
has_devices()

	Returns whether there is any device in the network.

	Returns

	
	True if there is at least one node in the network,

	False otherwise.

	Return type

	Boolean

	
is_discovery_running()

	Returns whether the discovery process is running.

	Returns

	True if the discovery process is running, False otherwise.

	Return type

	Boolean

	
is_node_in_network(node)

	Checks if the provided node is in the network or if it is the local XBee.

	Parameters

	node (AbstractXBeeDevice) – The node to check.

	Returns

	True if the node is in the network, False otherwise.

	Return type

	Boolean

	Raises

	ValueError – If node is None.

	
remove_device(remote_xbee)

	Removes the provided remote XBee from the network.

	Parameters

	remote_xbee (RemoteXBeeDevice) – Remote XBee to remove.

	Raises

	ValueError – If the provided remote_xbee is not in the network.

	
scan_counter

	Returns the scan counter.

	Returns

	The scan counter.

	Return type

	Integer

	
set_deep_discovery_options(deep_mode=<NeighborDiscoveryMode.CASCADE: (0, 'Cascade')>, del_not_discovered_nodes_in_last_scan=False)

	Configures the deep discovery options with the given values.
These options are only applicable for “deep” discovery
(see start_discovery_process())

	Parameters

	
	deep_mode (NeighborDiscoveryMode, optional, default=`NeighborDiscoveryMode.CASCADE`) – Neighbor
discovery mode, the way to perform the network discovery process.

	del_not_discovered_nodes_in_last_scan (Boolean, optional, default=`False`) – True to
remove nodes from the network if they were not discovered in the last scan.

See also

digi.xbee.models.mode.NeighborDiscoveryMode

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

	
set_deep_discovery_timeouts(node_timeout=None, time_bw_requests=None, time_bw_scans=None)

	Sets deep discovery network timeouts.
These timeouts are only applicable for “deep” discovery
(see start_discovery_process())

	node_timeout (Float, optional, default=`None`):

	Maximum duration in seconds of the discovery process used to find
neighbors of a node. If None already configured timeouts are used.

	time_bw_requests (Float, optional, default=`DEFAULT_TIME_BETWEEN_REQUESTS`): Time to wait

	between node neighbors requests.
It must be between MIN_TIME_BETWEEN_REQUESTS and
MAX_TIME_BETWEEN_REQUESTS seconds inclusive. Use this
setting not to saturate your network:

	
	For ‘Cascade’, the number of seconds to wait after
completion of the neighbor discovery process of the
previous node.

	For ‘Flood’, the minimum time to wait between each node’s
neighbor requests.

	time_bw_scans (Float, optional, default=`DEFAULT_TIME_BETWEEN_SCANS`): Time to wait

	before starting a new network scan.
It must be between MIN_TIME_BETWEEN_SCANS and
MAX_TIME_BETWEEN_SCANS seconds inclusive.

	Raises

	ValueError – if node_timeout, time_bw_requests or
time_bw_scans are not between their corresponding limits.

See also

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.start_discovery_process()

	
set_discovery_options(options)

	Configures the discovery options (NO parameter) with the given value.

	Parameters

	options (Set of DiscoveryOptions) – New discovery options,
empty set to clear the options.

	Raises

	
	ValueError – If options is None.

	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

See also

DiscoveryOptions

	
set_discovery_timeout(discovery_timeout)

	Sets the discovery network timeout.

	Parameters

	discovery_timeout (Float) – Timeout in seconds.

	Raises

	
	ValueError – If discovery_timeout is not between the allowed
minimum and maximum values.

	TimeoutException – If response is not received before the read
timeout expires.

	XBeeException – If the XBee’s communication interface is closed.

	InvalidOperatingModeException – If the XBee’s operating mode is not
API or ESCAPED API. This method only checks the cached value of
the operating mode.

	ATCommandException – If response is not as expected.

	
start_discovery_process(deep=False, n_deep_scans=1)

	Starts the discovery process. This method is not blocking.

This process can discover node neighbors and connections, or only nodes:

	Deep discovery: Network nodes and connections between them
(including quality) are discovered.

The discovery process will be running the number of scans
configured in n_deep_scans. A scan is considered the process of
discovering the full network. If there are more than one number of
scans configured, after finishing one another is started, until
n_deep_scans is satisfied.

See set_deep_discovery_options() to establish
the way the network discovery process is performed.

	No deep discovery: Only network nodes are discovered.

The discovery process will be running until the configured timeout
expires or, in case of 802.15.4, until the ‘end’ packet is read.

It may occur that, after timeout expiration, there are nodes that
continue sending discovery responses to the local XBee. In this
case, these nodes will not be added to the network.

In 802.15.4, both (deep and no deep discovery) are the same and none
discover the node connections or their quality. The difference is the
possibility of running more than one scan using a deep discovery.

	Parameters

	
	deep (Boolean, optional, default=`False`) – True for a deep
network scan, looking for neighbors and their connections,
False otherwise.

	n_deep_scans (Integer, optional, default=1) – Number of scans to
perform before automatically stopping the discovery process.
SCAN_TIL_CANCEL means the process will not be
automatically stopped. Only applicable if deep=True.

See also

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.del_discovery_process_finished_callback()

XBeeNetwork.get_deep_discovery_options()

XBeeNetwork.set_deep_discovery_options()

XBeeNetwork.get_deep_discovery_timeouts()

XBeeNetwork.set_deep_discovery_timeouts()

XBeeNetwork.get_discovery_options()

XBeeNetwork.set_discovery_options()

XBeeNetwork.get_discovery_timeout()

XBeeNetwork.set_discovery_timeout()

	
stop_discovery_process()

	Stops the discovery process if it is running.

Note that some DigiMesh/DigiPoint devices are blocked until the discovery
time configured (‘NT’ parameter) has elapsed, so, when trying to get/set
any parameter during the discovery process, a TimeoutException is raised.

	
class digi.xbee.devices.NetworkEventType(code, description)[source]

	Bases: enum.Enum

Enumerates the different network event types.

Values:

NetworkEventType.ADD = (0, ‘XBee added to the network’)

NetworkEventType.DEL = (1, ‘XBee removed from the network’)

NetworkEventType.UPDATE = (2, ‘XBee in the network updated’)

NetworkEventType.CLEAR = (3, ‘Network cleared’)

	
code

	Returns the code of the NetworkEventType element.

	Returns

	Integer: Code of the NetworkEventType element.

	
description

	Returns the description of the NetworkEventType element.

	Returns

	Description of the NetworkEventType element.

	Return type

	String

	
class digi.xbee.devices.NetworkEventReason(code, description)[source]

	Bases: enum.Enum

Enumerates the different network event reasons.

Values:

NetworkEventReason.DISCOVERED = (0, ‘Discovered XBee’)

NetworkEventReason.NEIGHBOR = (1, ‘Discovered as XBee neighbor’)

NetworkEventReason.RECEIVED_MSG = (2, ‘Received message from XBee’)

NetworkEventReason.MANUAL = (3, ‘Manual modification’)

NetworkEventReason.ROUTE = (4, ‘Hop of a network route’)

NetworkEventReason.READ_INFO = (5, ‘Read XBee information’)

NetworkEventReason.FIRMWARE_UPDATE = (6, ‘The firmware of the device was updated’)

	
code

	Returns the code of the NetworkEventReason element.

	Returns

	Code of the NetworkEventReason element.

	Return type

	Integer

	
description

	Returns the description of the NetworkEventReason element.

	Returns

	Description of the NetworkEventReason element.

	Return type

	String

	
class digi.xbee.devices.LinkQuality(lq=None, is_rssi=False)[source]

	Bases: object

This class represents the link quality of a connection.
It can be a LQI (Link Quality Index) for Zigbee devices, or RSSI
(Received Signal Strength Indicator) for the rest.

Class constructor. Instantiates a new LinkQuality.

	Parameters

	
	lq (Integer, optional, default=`UNKNOWN`) – Link quality.

	is_rssi (Boolean, optional, default=`False`) – True to specify the
value is a RSSI, False for LQI.

	
UNKNOWN = <digi.xbee.devices.LinkQuality object>

	Unknown link quality.

	
UNKNOWN_VALUE = -9999

	Unknown link quality value.

	
lq

	Returns the link quality value.

	Returns

	The link quality value.

	Return type

	Integer

	
is_rssi

	Returns whether this is a RSSI value.

	Returns

	True if this is an RSSI value, False for LQI.

	Return type

	Boolean

	
class digi.xbee.devices.Connection(node_a, node_b, lq_a2b=None, lq_b2a=None, status_a2b=None, status_b2a=None)[source]

	Bases: object

This class represents a generic connection between two nodes in a XBee
network. It contains the source and destination nodes, the link quality of
the connection between them and its status.

Class constructor. Instantiates a new Connection.

	Parameters

	
	node_a (AbstractXBeeDevice) – One of the connection ends.

	node_b (AbstractXBeeDevice) – The other connection end.

	lq_a2b (LinkQuality or Integer, optional, default=`None`) – Link
quality for the connection node_a -> node_b. If not specified
LinkQuality.UNKNOWN is used.

	lq_b2a (LinkQuality or Integer, optional, default=`None`) – Link
quality for the connection node_b -> node_a. If not specified
LinkQuality.UNKNOWN is used.

	status_a2b (digi.xbee.models.zdo.RouteStatus, optional, default=`None`) – The
status for the connection node_a -> node_b. If not specified
RouteStatus.UNKNOWN is used.

	status_b2a (digi.xbee.models.zdo.RouteStatus, optional, default=`None`) – The
status for the connection node_b -> node_a. If not specified
RouteStatus.UNKNOWN is used.

	Raises

	ValueError – If node_a or node_b is None.

See also

AbstractXBeeDevice

LinkQuality

digi.xbee.models.zdo.RouteStatus

	
node_a

	Returns the node A of this connection.

	Returns

	The node A.

	Return type

	AbstractXBeeDevice

See also

AbstractXBeeDevice

	
node_b

	Returns the node B of this connection.

	Returns

	The node B.

	Return type

	AbstractXBeeDevice

See also

AbstractXBeeDevice

	
lq_a2b

	Returns the link quality of the connection from node A to node B.

	Returns

	Link quality for the connection A -> B.

	Return type

	LinkQuality

See also

LinkQuality

	
lq_b2a

	Returns the link quality of the connection from node B to node A.

	Returns

	Link quality for the connection B -> A.

	Return type

	LinkQuality

See also

LinkQuality

	
status_a2b

	Returns the status of this connection from node A to node B.

	Returns

	The status for A -> B connection.

	Return type

	RouteStatus

See also

digi.xbee.models.zdo.RouteStatus

	
status_b2a

	Returns the status of this connection from node B to node A.

	Returns

	The status for B -> A connection.

	Return type

	RouteStatus

See also

digi.xbee.models.zdo.RouteStatus

	
scan_counter_a2b

	Returns the scan counter for this connection, discovered by its A node.

	Returns

	The scan counter for this connection, discovered by its A node.

	Return type

	Integer

	
scan_counter_b2a

	Returns the scan counter for this connection, discovered by its B node.

	Returns

	The scan counter for this connection, discovered by its B node.

	Return type

	Integer

digi.xbee.exception module

	
exception digi.xbee.exception.XBeeException[source]

	Bases: Exception

Generic XBee API exception. This class and its subclasses indicate
conditions that an application might want to catch.

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.exception.CommunicationException[source]

	Bases: digi.xbee.exception.XBeeException

This exception will be thrown when any problem related to the communication
with the XBee device occurs.

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.exception.ATCommandException(message='There was a problem sending the AT command packet.', cmd_status=None)[source]

	Bases: digi.xbee.exception.CommunicationException

This exception will be thrown when a response of a packet is not success or OK.

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.exception.ConnectionException[source]

	Bases: digi.xbee.exception.XBeeException

This exception will be thrown when any problem related to the connection
with the XBee device occurs.

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.exception.XBeeDeviceException[source]

	Bases: digi.xbee.exception.XBeeException

This exception will be thrown when any problem related to the XBee device
occurs.

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.exception.InvalidConfigurationException(message='The configuration used to open the interface is invalid.')[source]

	Bases: digi.xbee.exception.ConnectionException

This exception will be thrown when trying to open an interface with an
invalid configuration.

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.exception.InvalidOperatingModeException(message=None, op_mode=None)[source]

	Bases: digi.xbee.exception.ConnectionException

This exception will be thrown if the operating mode is different than
OperatingMode.API_MODE and OperatingMode.API_MODE

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.exception.InvalidPacketException(message='The XBee API packet is not properly formed.')[source]

	Bases: digi.xbee.exception.CommunicationException

This exception will be thrown when there is an error parsing an API packet
from the input stream.

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.exception.OperationNotSupportedException(message='The requested operation is not supported by either the connection interface or the XBee device.')[source]

	Bases: digi.xbee.exception.XBeeDeviceException

This exception will be thrown when the operation performed is not supported
by the XBee device.

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.exception.TimeoutException(message='There was a timeout while executing the requested operation.')[source]

	Bases: digi.xbee.exception.CommunicationException

This exception will be thrown when performing synchronous operations and
the configured time expires.

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.exception.TransmitException(message='There was a problem with a transmitted packet response (status not ok)', transmit_status=None)[source]

	Bases: digi.xbee.exception.CommunicationException

This exception will be thrown when receiving a transmit status different
than TransmitStatus.SUCCESS after sending an XBee API packet.

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.exception.XBeeSocketException(message='There was a socket error', status=None)[source]

	Bases: digi.xbee.exception.XBeeException

This exception will be thrown when there is an error performing any socket operation.

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.exception.FirmwareUpdateException[source]

	Bases: digi.xbee.exception.XBeeException

This exception will be thrown when any problem related to the firmware update
process of the XBee device occurs.

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.exception.RecoveryException[source]

	Bases: digi.xbee.exception.XBeeException

This exception will be thrown when any problem related to the auto-recovery
process of the XBee device occurs.

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

digi.xbee.filesystem module

	
class digi.xbee.filesystem.FileSystemElement(name, path=None, is_dir=False, size=0, is_secure=False)[source]

	Bases: object

Class used to represent XBee file system elements (files and directories).

Class constructor. Instantiates a new FileSystemElement
object with the given parameters.

	Parameters

	
	name (String or bytearray) – Name of the file system element.

	path (String or bytearray, optional, default=`None`) – Absolute path
of the element.

	is_dir (Boolean, optional, default=`True`) – True if the
element is a directory, False for a file.

	size (Integer, optional, default=0) – Element size in bytes.
Only for files.

	is_secure (Boolean, optional, default=`False`) – True for a secure
element, False otherwise.

	Raises

	ValueError – If any of the parameters are invalid.

	
name

	Returns the file system element name.

	Returns

	File system element name.

	Return type

	String

	
path

	Returns the file system element absolute path.

	Returns

	File system element absolute path.

	Return type

	String

	
is_dir

	Returns whether the file system element is a directory.

	Returns

	True for a directory, False otherwise.

	Return type

	Boolean

	
size

	Returns the size in bytes of the element.

	Returns

	The size in bytes of the file, 0 for a directory.

	Return type

	Integer

	
size_pretty

	Returns a human readable size (e.g., 1K 234M 2G).

	Returns

	Human readable size.

	Return type

	String

	
is_secure

	Returns whether the element is secure.

	Returns

	True for a secure element, False otherwise.

	Return type

	Boolean

	
static from_data(name, size, flags, path=None)[source]

	Creates a file element from its name and the bytearray with info and
size.

	Parameters

	
	name (String or bytearray) – The name of the element to create.

	size (Bytearray) – Byte array containing file size.

	flags (Integer) – Integer with file system element information.

	path (String or bytearray, optional, default=`None`) – The absolute
path of the element (without its name).

	Returns

	The new file system element.

	Return type

	FileSystemElement

	
exception digi.xbee.filesystem.FileSystemException(message, fs_status=None)[source]

	Bases: digi.xbee.exception.XBeeException

	This exception will be thrown when any problem related with the XBee

	file system occurs.

All functionality of this class is the inherited from Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.filesystem.FileSystemNotSupportedException(message, fs_status=None)[source]

	Bases: digi.xbee.filesystem.FileSystemException

This exception will be thrown when the file system feature is not supported
in the device.

All functionality of this class is the inherited from Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class digi.xbee.filesystem.FileProcess(f_mng, file, timeout)[source]

	Bases: object

This class represents a file process.

Class constructor. Instantiates a new _FileProcess object
with the provided parameters.

	Parameters

	
	(class (f_mng) – .FileSystemManager): The file system manager.

	file (FileSystemElement or String) – File or its absolute path.

	timeout (Float) – Timeout in seconds.

	
running

	Returns if this file command is running.

	Returns

	True if it is running, False otherwise.

	Return type

	Boolean

	
status

	Returns the status code.

	Returns

	The status.

	Return type

	Integer

	
block_size

	Returns the size of the block for this file operation.

	Returns

	Size of the block for this file operation.

	Return type

	Integer

	
class digi.xbee.filesystem.FileSystemManager(xbee)[source]

	Bases: object

Helper class used to manage local or remote XBee file system.

Class constructor. Instantiates a new FileSystemManager with
the given parameters.

	Parameters

	xbee (AbstractXBeeDevice) – XBee to manage its file system.

	Raises

	FileSystemNotSupportedException – If the XBee does not support
filesystem.

	
xbee

	Returns the XBee of this file system manager.

	Returns

	XBee to manage its file system.

	Return type

	AbstractXBeeDevice

	
np_value

	The ‘NP’ parameter value of the local XBee.

	Returns

	The ‘NP’ value.

	Return type

	Integer

	
get_root()[source]

	Returns the root directory.

	Returns

	The root directory.

	Return type

	FileSystemElement

	Raises

	FileSystemException – If there is any error performing the operation
or the function is not supported.

	
make_directory(dir_path, base=None, mk_parents=True, timeout=20)[source]

	Creates the provided directory.

	Parameters

	
	dir_path (String) – Path of the new directory to create. It is
relative to the directory specify in base.

	base (FileSystemElement, optional, default=`None) – Base
directory. If not specify it refers to ‘/flash’.

	mk_parents (Boolean, optional, default=`True`) – True to make
parent directories as needed, False otherwise.

	timeout (Float, optional, default=`DEFAULT_TIMEOUT`) – Maximum number
of seconds to wait for the operation completion. If mk_parents
this is the timeout per directory creation.

	Returns

	List of FileSystemElement created directories.

	Return type

	List

	Raises

	
	FileSystemException – If there is any error performing the operation
or the function is not supported.

	ValueError – If any of the parameters is invalid.

	
list_directory(directory=None, timeout=20)[source]

	Lists the contents of the given directory.

	Parameters

	
	directory (FileSystemElement or String) – Directory to
list or its absolute path.

	timeout (Float, optional, default=`DEFAULT_TIMEOUT`) – Maximum
number of seconds to wait for the operation completion.

	Returns

	
	List of :class:.FilesystemElement` objects contained in

	the given directory, empty list if status is not 0.

	Return type

	List

	Raises

	
	FileSystemException – If there is any error performing the operation
or the function is not supported.

	ValueError – If any of the parameters is invalid.

	
remove(entry, rm_children=True, timeout=20)[source]

	Removes the given file system entry.

All files in a directory must be deleted before removing the directory.
On XBee 3 802.15.4, DigiMesh, and Zigbee, deleted files are marked as
unusable space unless they are at the “end” of the file system
(most-recently created). On these products, deleting a file triggers
recovery of any deleted file space at the end of the file system, and
can lead to a delayed response.

	Parameters

	
	entry (FileSystemElement or String) – File system entry to
remove or its absolute path.

	rm_children (Boolean, optional, default=`True`) – True to remove
directory children if they exist, False otherwise.

	timeout (Float, optional, default=`DEFAULT_TIMEOUT`) – Maximum
number of seconds to wait for the operation completion.

	Raises

	
	FileSystemException – If there is any error performing the operation
or the function is not supported.

	ValueError – If any of the parameters is invalid.

	
read_file(file, offset=0, progress_cb=None)[source]

	Reads from the provided file starting at the given offset.
If there is no progress callback the function blocks
until the required amount of bytes is read.

	Parameters

	
	file (FileSystemElement or String) – File to read or its
absolute path.

	offset (Integer, optional, default=0) – File offset to start
reading.

	progress_cb (Function, optional, default=`None`) – Function called
when new data is read. Receives four arguments:

	The chunk of data read as byte array.

	The progress percentage as float.

	The total size of the file.

	The status when process finishes.

	Returns

	The process to read data from the file.

	Return type

	FileProcess

	Raises

	
	FileSystemException – If there is any error performing the operation
and progress_cb is None.

	ValueError – If any of the parameters is invalid.

See also

get_file()

	
write_file(file, offset=0, secure=False, options=None, progress_cb=None)[source]

	Writes to the provided file the data starting at the given offset. The
function blocks until the all data is written.

	Parameters

	
	file (FileSystemElement or String) – File to write or its
absolute path.

	offset (Integer, optional, default=0) – File offset to start writing.

	secure (Boolean, optional, default=`False`) – True to store the
file securely (no read access), False otherwise.

	options (Dictionary, optional) – Other write options as list:
exclusive, truncate, append.

	progress_cb (Function, optional, default=`None`) – Function call
when data is written. Receives three arguments:

	The amount of bytes written (for each chunk).

	The progress percentage as float.

	The status when process finishes.

	Raises

	
	FileSystemException – If there is any error performing the operation
and progress_cb is None.

	ValueError – If any of the parameters is invalid.

See also

put_file()

	
get_file(src, dest, progress_cb=None)[source]

	Downloads the given XBee file in the specified destination path.

	Parameters

	
	src (FileSystemElement or String) – File to download or
its absolute path.

	dest (String) – The absolute path of the destination file.

	progress_cb (Function, optional) – Function call when data is being
downloaded. Receives three arguments:

	The progress percentage as float.

	Destination file path.

	Source file path.

	Raises

	
	FileSystemException – If there is any error performing the operation
and progress_cb is None.

	ValueError – If any of the parameters is invalid.

	
put_file(src, dest, secure=False, overwrite=False, mk_parents=True, progress_cb=None)[source]

	Uploads the given file to the specified destination path of the XBee.

	Parameters

	
	src (String) – Absolute path of the file to upload.

	dest (FileSystemElement or String) – The file in the XBee
or its absolute path.

	secure (Boolean, optional, default=`False`) – True if the file
should be stored securely, False otherwise.

	overwrite (Boolean, optional, default=`False`) – True to overwrite
the file if it exists, False otherwise.

	mk_parents (Boolean, optional, default=`True`) – True to make
parent directories as needed, False otherwise.

	progress_cb (Function, optional) – Function call when data is being
uploaded. Receives two arguments:

	The progress percentage as float.

	Destination file path.

	Source file path.

	Returns

	The new created file.

	Return type

	FileSystemElement

	Raises

	
	FileSystemException – If there is any error performing the operation
and progress_cb is None.

	ValueError – If any of the parameters is invalid.

	
put_dir(src, dest='/flash', verify=True, progress_cb=None)[source]

	Uploads the given source directory contents into the given destination
directory in the XBee.

	Parameters

	
	src (String) – Local directory to upload its contents.

	dest (FileSystemElement or String) – The destination dir
in the XBee or its absolute path. Defaults to ‘/flash’.

	verify (Boolean, optional, default=`True`) – True to check the
hash of the uploaded content.

	progress_cb (Function, optional) – Function call when data is being
uploaded. Receives three argument:

	The progress percentage as float.

	Destination file path.

	The absolute path of the local being uploaded as string.

	Raises

	
	FileSystemException – If there is any error performing the operation
and progress_cb is None.

	ValueError – If any of the parameters is invalid.

	
get_file_hash(file, timeout=20)[source]

	Returns the SHA256 hash of the given file.

	Parameters

	
	file (FileSystemElement or String) – File to get its hash
or its absolute path.

	timeout (Float, optional, default=`DEFAULT_TIMEOUT`) – Maximum
number of seconds to wait for the operation completion.

	Returns

	SHA256 hash of the given file.

	Return type

	Bytearray

	Raises

	
	FileSystemException – If there is any error performing the operation
or the function is not supported.

	ValueError – If any of the parameters is invalid.

	
move(source, dest, timeout=20)[source]

	Moves the given source element to the given destination path.

	Parameters

	
	source (FileSystemElement or String) – Source entry to move.

	dest (String) – Destination path of the element to move.

	timeout (Float, optional, default=`DEFAULT_TIMEOUT`) – Maximum number
of seconds to wait for the operation completion.

	Raises

	
	FileSystemException – If there is any error performing the operation
or the function is not supported.

	ValueError – If any of the parameters is invalid.

	
get_volume_info(vol='/flash', timeout=20)[source]

	Returns the file system volume information.
Currently ‘/flash’ is the only supported value.

	Parameters

	
	vol (FileSystemElement`or String, optional, default=/flash`) – Volume name.

	timeout (Float, optional, default=`DEFAULT_TIMEOUT`) – Maximum
number of seconds to wait for the operation completion.

	Returns

	Collection of pair values describing volume information.

	Return type

	Dictionary

	Raises

	
	FileSystemException – If there is any error performing the operation
or the function is not supported.

	ValueError – If any of the parameters is invalid.

See also

FSCommandStatus

	
format(vol='/flash', timeout=30)[source]

	Formats provided volume.
Currently ‘/flash’ is the only supported value.
Formatting the file system takes time, and any other requests will fail
until it completes and sends a response.

	Parameters

	
	vol (FileSystemElement`or String, optional, default=/flash`) – Volume name.

	timeout (Float, optional, default=`DEFAULT_FORMAT_TIMEOUT`) – Maximum number Of seconds to wait for the operation completion.

	Returns

	Collection of pair values describing volume information.

	Return type

	Dictionary

	Raises

	
	FileSystemException – If there is any error performing the operation
or the function is not supported.

	ValueError – If any of the parameters is invalid.

See also

FSCommandStatus

	
pget_path_id(dir_path, path_id=0, timeout=20)[source]

	Returns the directory path id of the given path. Returned directory
path id expires if not referenced in 2 minutes.

	Parameters

	
	dir_path (String) – Path of the directory to get its id. It is
relative to the directory path id.

	path_id (Integer, optional, default=0) – Directory path id. 0 for
the root directory.

	timeout (Float, optional, default=`DEFAULT_TIMEOUT`) – Maximum
number of seconds to wait for the operation completion.

	Returns

	
	Status of the file system command

	execution, new directory path id (-1 if status is not 0) and
its absolute path (empty if status is not 0). The full path
may be None or empty if it is too long and exceeds the
communication frames length.

	Return type

	Tuple (Integer, Integer, String)

	Raises

	
	FileSystemException – If there is any error performing the operation
or the function is not supported.

	ValueError – If any of the parameters is invalid.

See also

FSCommandStatus

	
pmake_directory(dir_path, path_id=0, timeout=20)[source]

	Creates the provided directory. Parent directories of the one to be
created must exist. Separate requests must be dane to make intermediate
directories.

	Parameters

	
	dir_path (String) – Path of the new directory to create. It is
relative to the directory path id.

	path_id (Integer, optional, default=0) – Directory path id. 0 for
the root directory.

	timeout (Float, optional, default=`DEFAULT_TIMEOUT`) – Maximum
number of seconds to wait for the operation completion. If
mk_parents this is the timeout per directory creation.

	Returns

	
	Status of the file system command execution

	(see FSCommandStatus).

	Return type

	Integer

	Raises

	
	FileSystemException – If there is any error performing the operation
or the function is not supported.

	ValueError – If any of the parameters is invalid.

See also

FSCommandStatus

	
plist_directory(dir_path, path_id=0, timeout=20)[source]

	Lists the contents of the given directory.

	Parameters

	
	dir_path (String) – Path of the directory to list. It is relative to
the directory path id.

	path_id (Integer, optional, default=0) – Directory path id. 0 for
the root directory.

	timeout (Float, optional, default=`DEFAULT_TIMEOUT`) – Maximum
number of seconds to wait for the operation completion.

	Returns

	
	Status of the file system command execution

	and a list of :class:.FilesystemElement` objects contained in
the given directory, empty list if status is not 0.

	Return type

	Tuple (Integer, List)

	Raises

	
	FileSystemException – If there is any error performing the operation
or the function is not supported.

	ValueError – If any of the parameters is invalid.

See also

FSCommandStatus

	
premove(entry_path, path_id=0, timeout=20)[source]

	Removes the given file system entry.

All files in a directory must be deleted before removing the directory.
On XBee 3 802.15.4, DigiMesh, and Zigbee, deleted files are marked as
as unusable space unless they are at the “end” of the file system
(most-recently created). On these products, deleting a file triggers
recovery of any deleted file space at the end of the file system, and
can lead to a delayed response.

	Parameters

	
	entry_path (String) – Path of the entry to remove. It is relative to
the directory path id.

	path_id (Integer, optional, default=0) – Directory path id. 0 for
the root directory.

	timeout (Float, optional, default=`DEFAULT_TIMEOUT`) – Maximum
number of seconds to wait for the operation completion.

	Returns

	
	Status of the file system command execution

	(see FSCommandStatus).

	Return type

	Integer

	Raises

	
	FileSystemException – If there is any error performing the operation
or the function is not supported.

	ValueError – If any of the parameters is invalid.

See also

FSCommandStatus

	
popen_file(file_path, path_id=0, options=<FileOpenRequestOption.READ: 4>, timeout=20)[source]

	Open a file for reading and/or writing. Use the
FileOpenRequestOption.SECURE (0x80) bitmask for options to upload a
write-only file (one that cannot be downloaded or viewed), useful for
protecting files on the device.
Returned file id expires if not referenced in 2 minutes.

	Parameters

	
	file_path (String) – Path of the file to open. It is relative to the
directory path id.

	path_id (Integer, optional, default=0) – Directory path id. 0 for
the root directory.

	options (Integer, optional, default=`FileOpenRequestOption.READ`) – Bitmask that specifies the options to open the file. It defaults
to FileOpenRequestOption.READ which means open for reading.
See FileOpenRequestOption for more options.

	timeout (Float, optional, default=`DEFAULT_TIMEOUT`) – Maximum
number of seconds to wait for the operation completion.

	Returns

	
	Status of the file system

	command execution (see FSCommandStatus), the file id
to use in later requests, and the size of the file (in bytes),
0xFFFFFFFF if unknown.

	Return type

	Tuple (Integer, Integer, Integer)

	Raises

	
	FileSystemException – If there is any error performing the operation
or the function is not supported.

	ValueError – If any of the parameters is invalid.

See also

FileOpenRequestOption

FSCommandStatus

pclose_file()

	
pclose_file(file_id, timeout=20)[source]

	Closes an open file and releases its file handle.

	Parameters

	
	file_id (Integer) – File id returned when opening.

	timeout (Float, optional, default=`DEFAULT_TIMEOUT`) – Maximum
number of seconds to wait for the operation completion.

	Returns

	
	Status of the file system command execution

	(see FSCommandStatus).

	Return type

	Integer

	Raises

	
	FileSystemException – If there is any error performing the operation
or the function is not supported.

	ValueError – If any of the parameters is invalid.

See also

FSCommandStatus

popen_file()

	
pread_file(file_id, offset=-1, size=-1, timeout=20)[source]

	Reads from the provided file the given amount of bytes starting at the
given offset. The file must be opened for reading first.

	Parameters

	
	file_id (Integer) – File id returned when opening.

	offset (Integer, optional, default=-1) – File offset to start reading.
-1 to use current position.

	size (Integer, optional, default=-1) – Number of bytes to read.
-1 to read as many as possible.

	timeout (Float, optional, default=`DEFAULT_TIMEOUT`) – Maximum
number of seconds to wait for the operation completion.

	Returns

	
	Status of the file

	system command execution (see FSCommandStatus), the
file id, the offset of the read data, and the read data.

	Return type

	Tuple (Integer, Integer, Integer, Bytearray)

	Raises

	
	FileSystemException – If there is any error performing the operation
or the function is not supported.

	ValueError – If any of the parameters is invalid.

See also

FSCommandStatus

popen_file()

	
pwrite_file(file_id, data, offset=-1, timeout=20)[source]

	Writes to the provided file the given data bytes starting at the given
offset. The file must be opened for writing first.

	Parameters

	
	file_id (Integer) – File id returned when opening.

	data (Bytearray, bytes or String) – Data to write.

	offset (Integer, optional, default=-1) – File offset to start writing.
-1 to use current position.

	timeout (Float, optional, default=`DEFAULT_TIMEOUT`) – Maximum
number of seconds to wait for the operation completion.

	Returns

	
	Status of the file system

	command execution (see FSCommandStatus), the file id,
and the current offset after writing.

	Return type

	Tuple (Integer, Integer, Integer)

	Raises

	
	FileSystemException – If there is any error performing the operation
or the function is not supported.

	ValueError – If any of the parameters is invalid.

See also

FSCommandStatus

popen_file()

	
pget_file_hash(file_path, path_id=0, timeout=20)[source]

	Returns the SHA256 hash of the given file.

	Parameters

	
	file_path (String) – Path of the file to get its hash. It is
relative to the directory path id.

	path_id (Integer, optional, default=0) – Directory path id. 0 for
the root directory.

	timeout (Float, optional, default=`DEFAULT_TIMEOUT`) – Maximum
number of seconds to wait for the operation completion.

	Returns

	
	Status of the file system command

	execution and SHA256 hash of the given file (empty bytearray if
status is not 0).

	Return type

	Tuple (Integer, Bytearray)

	Raises

	
	FileSystemException – If there is any error performing the operation
or the function is not supported.

	ValueError – If any of the parameters is invalid.

See also

FSCommandStatus

	
prename(current_path, new_path, path_id=0, timeout=20)[source]

	Rename provided file.

	Parameters

	
	current_path (String) – Current path name. It is relative to the
directory path id.

	new_path (String) – New name. It is relative to the directory path id.

	path_id (Integer, optional, default=0) – Directory path id. 0 for
the root directory.

	timeout (Float, optional, default=`DEFAULT_TIMEOUT`) – Maximum
number of seconds to wait for the operation completion.

	Returns

	
	Status of the file system command execution

	(see FSCommandStatus).

	Return type

	Integer

	Raises

	
	FileSystemException – If there is any error performing the operation
or the function is not supported.

	ValueError – If any of the parameters is invalid.

See also

FSCommandStatus

	
prelease_path_id(path_id, timeout=20)[source]

	Releases the provided directory path id.

	Parameters

	
	path_id (Integer) – Directory path id to release.

	timeout (Float, optional, default=`DEFAULT_TIMEOUT`) – Maximum
number of seconds to wait for the operation completion.

	Returns

	Status of the file system command execution.

	Return type

	Integer

	Raises

	
	FileSystemException – If there is any error performing the operation
or the function is not supported.

	ValueError – If any of the parameters is invalid.

See also

FSCommandStatus

	
class digi.xbee.filesystem.LocalXBeeFileSystemManager(xbee_device)[source]

	Bases: object

Helper class used to manage the local XBee file system.

Class constructor. Instantiates a new
LocalXBeeFileSystemManager with the given parameters.

	Parameters

	xbee_device (XBeeDevice) – The local XBee to manage its
file system.

	
is_connected

	Returns whether the file system manager is connected or not.

	Returns

	
	True if the file system manager is connected, False

	otherwise.

	Return type

	Boolean

	
connect()[source]

	Connects the file system manager.

	Raises

	
	FileSystemException – If there is any error connecting the file
system manager.

	FileSystemNotSupportedException – If the device does not support
filesystem feature.

	
disconnect()[source]

	Disconnects the file system manager and restores the device connection.

	Raises

	XBeeException – If there is any error restoring the XBee connection.

	
get_current_directory()[source]

	Returns the current device directory.

	Returns

	Current device directory.

	Return type

	String

	Raises

	FileSystemException – If there is any error getting the current
directory or the function is not supported.

	
change_directory(directory)[source]

	Changes the current device working directory to the given one.

	Parameters

	directory (String) – New directory to change to.

	Returns

	Current device working directory after the directory change.

	Return type

	String

	Raises

	FileSystemException – If there is any error changing the current
directory or the function is not supported.

	
make_directory(directory)[source]

	Creates the provided directory.

	Parameters

	directory (String) – New directory to create.

	Raises

	FileSystemException – If there is any error creating the directory
or the function is not supported.

	
list_directory(directory=None)[source]

	Lists the contents of the given directory.

	Parameters

	directory (String, optional) – the directory to list its contents.
If not provided, the current directory contents are listed.

	Returns

	
	list of :class:.FilesystemElement` objects contained in

	the given (or current) directory.

	Return type

	List

	Raises

	FileSystemException – if there is any error listing the directory
contents or the function is not supported.

	
remove_element(element_path)[source]

	Removes the given file system element path.

	Parameters

	element_path (String) – Path of the file system element to remove.

	Raises

	FileSystemException – If there is any error removing the element or
the function is not supported.

	
move_element(source_path, dest_path)[source]

	Moves the given source element to the given destination path.

	Parameters

	
	source_path (String) – Source path of the element to move.

	dest_path (String) – Destination path of the element to move.

	Raises

	FileSystemException – If there is any error moving the element or
the function is not supported.

	
put_file(source_path, dest_path, secure=False, progress_callback=None)[source]

	Transfers the given file in the specified destination path of the XBee.

	Parameters

	
	source_path (String) – the path of the file to transfer.

	dest_path (String) – the destination path to put the file in.

	secure (Boolean, optional, default=`False`) – True if the file
should be stored securely, False otherwise.

	progress_callback (Function, optional) – Function to execute to
receive progress information. Takes the following arguments:

	The progress percentage as integer.

	Raises

	FileSystemException – If there is any error transferring the file or
the function is not supported.

	
put_dir(source_dir, dest_dir=None, progress_callback=None)[source]

	Uploads the given source directory contents into the given destination
directory in the device.

	Parameters

	
	source_dir (String) – Local directory to upload its contents.

	dest_dir (String, optional) – Remote directory to upload the
contents to. Defaults to current directory.

	progress_callback (Function, optional) – Function to execute to
receive progress information. Takes the following arguments:

	The file being uploaded as string.

	The progress percentage as integer.

	Raises

	FileSystemException – If there is any error uploading the directory
or the function is not supported.

	
get_file(source_path, dest_path, progress_callback=None)[source]

	Downloads the given XBee device file in the specified destination path.

	Parameters

	
	source_path (String) – Path of the XBee device file to download.

	dest_path (String) – Destination path to store the file in.

	progress_callback (Function, optional) – Function to execute to
receive progress information. Takes the following arguments:

	The progress percentage as integer.

	Raises

	FileSystemException – If there is any error downloading the file or
the function is not supported.

	
format_filesystem()[source]

	Formats the device file system.

	Raises

	FileSystemException – If there is any error formatting the file system.

	
get_usage_information()[source]

	Returns the file system usage information.

	Returns

	Collection of pair values describing the usage information.

	Return type

	Dictionary

	Raises

	FileSystemException – If there is any error retrieving the file
system usage information.

	
get_file_hash(file_path)[source]

	Returns the SHA256 hash of the given file path.

	Parameters

	file_path (String) – Path of the file to get its hash.

	Returns

	SHA256 hash of the given file path.

	Return type

	String

	Raises

	FileSystemException – If there is any error retrieving the file hash.

	
digi.xbee.filesystem.update_remote_filesystem_image(remote_device, ota_filesystem_file, max_block_size=0, timeout=None, progress_callback=None, _prepare=True)[source]

	Performs a remote filesystem update operation in the given target.

	Parameters

	
	remote_device (RemoteXBeeDevice) – Remote XBee to update its
filesystem image.

	ota_filesystem_file (String) – Path of the OTA filesystem file to upload.

	max_block_size (Integer, optional) – Maximum size of the ota block to send.

	timeout (Integer, optional) – Timeout to wait for remote frame requests.

	progress_callback (Function, optional) – Function to execute to receive
progress information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	FileSystemNotSupportedException – If the target does not support
filesystem update.

	FileSystemException – If there is any error updating the remote
filesystem image.

	
digi.xbee.filesystem.check_fs_support(xbee, min_fw_vers=None, max_fw_vers=None)[source]

	Checks if filesystem API feature is supported.

	Parameters

	
	xbee (:AbstractXBeeDevice) – The XBee to check.

	min_fw_vers (Dictionary, optional, default=`None`) – A dictionary with
protocol as key, and minimum firmware version with filesystem
support as value.

	max_fw_vers (Dictionary, optional, default=`None`) – A dictionary with
protocol as key, and maximum firmware version with filesystem
support as value.

	Returns

	True if filesystem is supported, False otherwise.

	Return type

	Boolean

	
digi.xbee.filesystem.get_local_file_hash(local_path)[source]

	Returns the SHA256 hash of the given local file.

	Parameters

	local_path (String) – Absolute path of the file to get its hash.

	Returns

	SHA256 hash of the given file.

	Return type

	Bytearray

digi.xbee.firmware module

	
class digi.xbee.firmware.UpdateConfigurer(node, timeout=None, callback=None)[source]

	Bases: object

For internal use only. Helper class used to prepare nodes and/or network
for an update.

Class constructor. Instantiates a new UpdateConfigurer with
the given parameters.

	Parameters

	
	node (AbstractXBeeDevice) – Target being updated.

	timeout (Float, optional, default=`None`) – Operations timeout.

	callback (Function) – Function to notify about the progress.

	
sync_sleep

	Returns whether node is part of a DigiMesh synchronous sleeping network.

	Returns

	True if it synchronous sleeps, False otherwise.

	Return type

	Boolean

	
prepare_total

	Returns the total work for update preparation step.

	Returns

	Total prepare work.

	Return type

	Integer

	
restore_total

	Returns the total work for update restoration step.

	Returns

	Total restore work.

	Return type

	Integer

	
prepare_for_update(prepare_node=True, prepare_net=True, restore_later=True)[source]

	Prepares the node for an update process.

	Parameters

	
	prepare_node (Boolean, optional, default=`True`) – True to prepare
the node.

	prepare_net (Boolean, optional, default=`True`) – True to prepare
the network.

	restore_later (Boolean, optional, default=`True`) – True to
restore node original values when finish the update process.

	
restore_after_update(restore_settings=True, port_settings=None)[source]

	Restores the node after an update process.

	Parameters

	
	restore_settings (Boolean, optional, default=`True`) – True to
restore stored settings, False otherwise.

	port_settings (Dictionary, optional, default=`None`) – Dictionary
with the new serial port configuration, None for remote node
or if the serial config has not changed.

	
static exec_at_cmd(func, node, cmd, value=None, retries=5, apply=False)[source]

	Reads the given parameter from the XBee with the given number of retries.

	Parameters

	
	func (Function) – Function to execute.

	node (AbstractXBeeDevice) – XBee to get/set parameter.

	(String or (cmd) – class: ATStringCommand): Parameter to get/set.

	value (Bytearray, optional, default=`None`) – Value to set.

	retries (Integer, optional, default=5) – Number of retries to perform.

	apply (Boolean, optional, default=`False`) – True to apply.

	Returns

	Read parameter value.

	Return type

	Bytearray

	Raises

	XBeeException – If the value could be get/set after the retries.

	
progress_cb(task, done=0)[source]

	If a callback was provided in the constructor, notifies it with the
provided task and the corresponding percentage.

	Parameters

	
	task (String) – The task to inform about, it must be TASK_PREPARE
or TASK_RESTORE.

	done (Integer, optional, default=0) – Total amount of done job. If 0,
it is increased by one.

	Returns

	Total work done for the task.

	Return type

	Integer

	
digi.xbee.firmware.update_local_firmware(target, xml_fw_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)[source]

	Performs a local firmware update operation in the given target.

	Parameters

	
	target (String or XBeeDevice) – Target of the firmware upload operation.
String: serial port identifier.
XBeeDevice: XBee to upload its firmware.

	xml_fw_file (String) – Path of the XML file that describes the firmware.

	xbee_firmware_file (String, optional) – Location of the XBee binary firmware file.

	bootloader_firmware_file (String, optional) – Location of the bootloader
binary firmware file.

	timeout (Integer, optional) – Serial port read data timeout.

	progress_callback (Function, optional) – Function to receive progress
information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	FirmwareUpdateException – If there is any error performing the firmware update.

	
digi.xbee.firmware.update_remote_firmware(remote, xml_fw_file, firmware_file=None, bootloader_file=None, max_block_size=0, timeout=None, progress_callback=None, _prepare=True)[source]

	Performs a remote firmware update operation in the given target.

	Parameters

	
	remote (RemoteXBeeDevice) – Remote XBee to upload.

	xml_fw_file (String) – Path of the XML file that describes the firmware.

	firmware_file (String, optional) – Path of the binary firmware file.

	bootloader_file (String, optional) – Path of the bootloader firmware file.

	max_block_size (Integer, optional) – Maximum size of the ota block to send.

	timeout (Integer, optional) – Timeout to wait for remote frame requests.

	progress_callback (Function, optional) – Function to receive progress
information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	FirmwareUpdateException – if there is any error performing the remote
firmware update.

	
digi.xbee.firmware.update_remote_filesystem(remote, ota_fs_file, max_block_size=0, timeout=None, progress_callback=None, _prepare=True)[source]

	Performs a remote filesystem update operation in the given target.

	Parameters

	
	remote (RemoteXBeeDevice) – Remote XBee to update its filesystem.

	ota_fs_file (String) – Path of the OTA filesystem image file.

	max_block_size (Integer, optional) – Maximum size of the ota block to send.

	timeout (Integer, optional) – Timeout to wait for remote frame requests.

	progress_callback (Function, optional) – Function to receive progress
information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	FirmwareUpdateException – If there is any error updating the remote
filesystem image.

digi.xbee.io module

	
class digi.xbee.io.IOLine(description, index, at_command, pwm_command=None)[source]

	Bases: enum.Enum

Enumerates the different IO lines that can be found in the XBee devices.

Depending on the hardware and firmware of the device, the number of lines
that can be used as well as their functionality may vary. Refer to the
product manual to learn more about the IO lines of your XBee device.

Values:

IOLine.DIO0_AD0 = (‘DIO0/AD0’, 0, ‘D0’)

IOLine.DIO1_AD1 = (‘DIO1/AD1’, 1, ‘D1’)

IOLine.DIO2_AD2 = (‘DIO2/AD2’, 2, ‘D2’)

IOLine.DIO3_AD3 = (‘DIO3/AD3’, 3, ‘D3’)

IOLine.DIO4_AD4 = (‘DIO4/AD4’, 4, ‘D4’)

IOLine.DIO5_AD5 = (‘DIO5/AD5’, 5, ‘D5’)

IOLine.DIO6 = (‘DIO6’, 6, ‘D6’)

IOLine.DIO7 = (‘DIO7’, 7, ‘D7’)

IOLine.DIO8 = (‘DIO8’, 8, ‘D8’)

IOLine.DIO9 = (‘DIO9’, 9, ‘D9’)

IOLine.DIO10_PWM0 = (‘DIO10/PWM0’, 10, ‘P0’, ‘M0’)

IOLine.DIO11_PWM1 = (‘DIO11/PWM1’, 11, ‘P1’, ‘M1’)

IOLine.DIO12 = (‘DIO12’, 12, ‘P2’)

IOLine.DIO13 = (‘DIO13’, 13, ‘P3’)

IOLine.DIO14 = (‘DIO14’, 14, ‘P4’)

IOLine.DIO15 = (‘DIO15’, 15, ‘P5’)

IOLine.DIO16 = (‘DIO16’, 16, ‘P6’)

IOLine.DIO17 = (‘DIO17’, 17, ‘P7’)

IOLine.DIO18 = (‘DIO18’, 18, ‘P8’)

IOLine.DIO19 = (‘DIO19’, 19, ‘P9’)

	
description

	Returns the description of the IOLine element.

	Returns

	The description of the IOLine element.

	Return type

	String

	
index

	Returns the index of the IOLine element.

	Returns

	The index of the IOLine element.

	Return type

	Integer

	
at_command

	Returns the AT command of the IOLine element.

	Returns

	The AT command of the IOLine element.

	Return type

	String

	
pwm_at_command

	Returns the PWM AT command associated to the IOLine element.

	Returns

	
	The PWM AT command associated to the IO line, None if

	the IO line does not have a PWM AT command associated.

	Return type

	String

	
has_pwm_capability()[source]

	Returns whether the IO line has PWM capability or not.

	Returns

	True if the IO line has PWM capability, False otherwise.

	Return type

	Boolean

	
class digi.xbee.io.IOValue(code)[source]

	Bases: enum.Enum

Enumerates the possible values of a IOLine configured as digital I/O.

Values:

IOValue.LOW = 4

IOValue.HIGH = 5

	
code

	Returns the code of the IOValue element.

	Returns

	The code of the IOValue element.

	Return type

	String

	
class digi.xbee.io.IOSample(io_sample_payload)[source]

	Bases: object

This class represents an IO Data Sample. The sample is built using the
the constructor. The sample contains an analog and digital mask indicating
which IO lines are configured with that functionality.

Depending on the protocol the XBee device is executing, the digital and
analog masks are retrieved in separated bytes (2 bytes for the digital mask
and 1 for the analog mask) or merged contained (digital and analog masks
are contained in 2 bytes).

Digital and analog channels masks
Indicates which digital and ADC IO lines are configured in the module. Each
bit corresponds to one digital or ADC IO line on the module:

bit 0 = DIO01
bit 1 = DIO10
bit 2 = DIO20
bit 3 = DIO31
bit 4 = DIO40
bit 5 = DIO51
bit 6 = DIO60
bit 7 = DIO70
bit 8 = DIO80
bit 9 = AD00
bit 10 = AD11
bit 11 = AD21
bit 12 = AD30
bit 13 = AD40
bit 14 = AD50
bit 15 = NA0

Example: mask of 0x0C29 means DIO0, DIO3, DIO5, AD1 and AD2 enabled.
0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1

Digital Channel Mask
Indicates which digital IO lines are configured in the module. Each bit
corresponds to one digital IO line on the module:

bit 0 = DIO0AD0
bit 1 = DIO1AD1
bit 2 = DIO2AD2
bit 3 = DIO3AD3
bit 4 = DIO4AD4
bit 5 = DIO5AD5ASSOC
bit 6 = DIO6RTS
bit 7 = DIO7CTS
bit 8 = DIO8DTRSLEEP_RQ
bit 9 = DIO9ON_SLEEP
bit 10 = DIO10PWM0RSSI
bit 11 = DIO11PWM1
bit 12 = DIO12CD
bit 13 = DIO13
bit 14 = DIO14
bit 15 = NA

Example: mask of 0x040B means DIO0, DIO1, DIO2, DIO3 and DIO10 enabled.
0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1

Analog Channel Mask
Indicates which lines are configured as ADC. Each bit in the analog
channel mask corresponds to one ADC line on the module.

bit 0 = AD0DIO0
bit 1 = AD1DIO1
bit 2 = AD2DIO2
bit 3 = AD3DIO3
bit 4 = AD4DIO4
bit 5 = AD5DIO5ASSOC
bit 6 = NA
bit 7 = Supply Voltage Value

Example: mask of 0x03 means AD0, and AD1 enabled.
0 0 0 0 0 0 1 1

Class constructor. Instantiates a new IOSample object with
the provided parameters.

	Parameters

	io_sample_payload (Bytearray) – The payload corresponding to an IO sample.

	Raises

	ValueError – If io_sample_payload length is less than 5.

	
static min_io_sample_payload()[source]

	Returns the minimum IO sample payload length.

	Returns

	The minimum IO sample payload length.

	Return type

	Integer

	
digital_hsb_mask

	Returns the High Significant Byte (HSB) of the digital mask.

	Returns

	The HSB of the digital mask.

	Return type

	Integer

	
digital_lsb_mask

	Returns the Low Significant Byte (HSB) of the digital mask.

	Returns

	The LSB of the digital mask.

	Return type

	Integer

	
digital_mask

	Returns the combined (HSB + LSB) of the digital mask.

	Returns

	The digital mask.

	Return type

	Integer

	
digital_values

	Returns the digital values map.

To verify if this sample contains a valid digital values, use the
method IOSample.has_digital_values().

	Returns

	The digital values map.

	Return type

	Dictionary

	
analog_mask

	Returns the analog mask.

	Returns

	the analog mask.

	Return type

	Integer

	
analog_values

	Returns the analog values map.

To verify if this sample contains a valid analog values, use the
method IOSample.has_analog_values().

	Returns

	The analog values map.

	Return type

	Dictionary

	
power_supply_value

	Returns the value of the power supply voltage.

To verify if this sample contains the power supply voltage, use the
method IOSample.has_power_supply_value().

	Returns

	
	The power supply value, None if the sample does not

	contain power supply value.

	Return type

	Integer

	
has_digital_values()[source]

	Checks whether the IOSample has digital values or not.

	Returns

	True if the sample has digital values, False otherwise.

	Return type

	Boolean

	
has_digital_value(io_line)[source]

	Returns whether th IO sample contains a digital value for the provided
IO line or not.

	Parameters

	io_line (IOLine) – The IO line to check if it has a digital
value.

	Returns

	
	True if the given IO line has a digital value, False

	otherwise.

	Return type

	Boolean

	
has_analog_value(io_line)[source]

	Returns whether the given IOLine has an analog value or not.

	Returns

	
	True if the given IOLine has an analog value, False

	otherwise.

	Return type

	Boolean

	
has_analog_values()[source]

	Returns whether the {@code IOSample} has analog values or not.

	Returns

	Boolean. True if there are analog values, False otherwise.

	
has_power_supply_value()[source]

	Returns whether the IOSample has power supply value or not.

	Returns

	
	Boolean. True if the given IOLine has a power supply value,

	False otherwise.

	
get_digital_value(io_line)[source]

	Returns the digital value of the provided IO line.

To verify if this sample contains a digital value for the given
IOLine, use the method IOSample.has_digital_value().

	Parameters

	io_line (IOLine) – The IO line to get its digital value.

	Returns

	
	The IOValue of the given IO line or

	None if the IO sample does not contain a digital value for
the given IO line.

	Return type

	IOValue

See also

IOLine

IOValue

	
get_analog_value(io_line)[source]

	Returns the analog value of the provided IO line.

To verify if this sample contains an analog value for the given
IOLine, use the method IOSample.has_analog_value().

	Parameters

	io_line (IOLine) – The IO line to get its analog value.

	Returns

	
	The analog value of the given IO line or None if the IO

	sample does not contain an analog value for the given IO line.

	Return type

	Integer

See also

IOLine

	
class digi.xbee.io.IOMode[source]

	Bases: enum.Enum

Enumerates the different Input/Output modes that an IO line can be
configured with.

	
DISABLED = 0

	Disabled

	
SPECIAL_FUNCTIONALITY = 1

	Firmware special functionality

	
PWM = 2

	PWM output

	
ADC = 2

	Analog to Digital Converter

	
DIGITAL_IN = 3

	Digital input

	
DIGITAL_OUT_LOW = 4

	Digital output, Low

	
DIGITAL_OUT_HIGH = 5

	Digital output, High

	
I2C_FUNCTIONALITY = 6

	I2C functionality

digi.xbee.profile module

	
class digi.xbee.profile.FirmwareBaudrate(index, baudrate)[source]

	Bases: enum.Enum

This class lists the available firmware baudrate options for XBee Profiles.

Inherited properties:

name (String): The name of this FirmwareBaudrate.

value (Integer): The ID of this FirmwareBaudrate.

Values:

FirmwareBaudrate.BD_1200 = (0, 1200)

FirmwareBaudrate.BD_2400 = (1, 2400)

FirmwareBaudrate.BD_4800 = (2, 4800)

FirmwareBaudrate.BD_9600 = (3, 9600)

FirmwareBaudrate.BD_19200 = (4, 19200)

FirmwareBaudrate.BD_38400 = (5, 38400)

FirmwareBaudrate.BD_57600 = (6, 57600)

FirmwareBaudrate.BD_115200 = (7, 115200)

FirmwareBaudrate.BD_230400 = (8, 230400)

FirmwareBaudrate.BD_460800 = (9, 460800)

FirmwareBaudrate.BD_921600 = (10, 921600)

	
index

	Returns the index of the FirmwareBaudrate element.

	Returns

	Index of the FirmwareBaudrate element.

	Return type

	Integer

	
baudrate

	Returns the baudrate of the FirmwareBaudrate element.

	Returns

	Baudrate of the FirmwareBaudrate element.

	Return type

	Integer

	
class digi.xbee.profile.FirmwareParity(index, parity)[source]

	Bases: enum.Enum

This class lists the available firmware parity options for XBee Profiles.

Inherited properties:

name (String): The name of this FirmwareParity.

value (Integer): The ID of this FirmwareParity.

Values:

FirmwareParity.NONE = (0, <sphinx.ext.autodoc.importer._MockObject object at 0x7ff5547305d0>)

FirmwareParity.EVEN = (1, <sphinx.ext.autodoc.importer._MockObject object at 0x7ff5535c5ad0>)

FirmwareParity.ODD = (2, <sphinx.ext.autodoc.importer._MockObject object at 0x7ff553623150>)

FirmwareParity.MARK = (3, <sphinx.ext.autodoc.importer._MockObject object at 0x7ff553a1dc50>)

FirmwareParity.SPACE = (4, <sphinx.ext.autodoc.importer._MockObject object at 0x7ff553a1da10>)

	
index

	Returns the index of the FirmwareParity element.

	Returns

	Index of the FirmwareParity element.

	Return type

	Integer

	
parity

	Returns the parity of the FirmwareParity element.

	Returns

	Parity of the FirmwareParity element.

	Return type

	String

	
class digi.xbee.profile.FirmwareStopbits(index, stop_bits)[source]

	Bases: enum.Enum

This class lists the available firmware stop bits options for XBee Profiles.

Inherited properties:

name (String): The name of this FirmwareStopbits.

value (Integer): The ID of this FirmwareStopbits.

Values:

FirmwareStopbits.SB_1 = (0, <sphinx.ext.autodoc.importer._MockObject object at 0x7ff553a1d390>)

FirmwareStopbits.SB_2 = (1, <sphinx.ext.autodoc.importer._MockObject object at 0x7ff553a1d710>)

FirmwareStopbits.SB_1_5 = (2, <sphinx.ext.autodoc.importer._MockObject object at 0x7ff55471c550>)

	
index

	Returns the index of the FirmwareStopbits element.

	Returns

	Index of the FirmwareStopbits element.

	Return type

	Integer

	
stop_bits

	Returns the stop bits of the FirmwareStopbits element.

	Returns

	Stop bits of the FirmwareStopbits element.

	Return type

	Float

	
class digi.xbee.profile.FlashFirmwareOption(code, description)[source]

	Bases: enum.Enum

This class lists the available flash firmware options for XBee Profiles.

Inherited properties:

name (String): The name of this FlashFirmwareOption.

value (Integer): The ID of this FlashFirmwareOption.

Values:

FlashFirmwareOption.FLASH_ALWAYS = (0, ‘Flash always’)

FlashFirmwareOption.FLASH_DIFFERENT = (1, ‘Flash firmware if it is different’)

FlashFirmwareOption.DONT_FLASH = (2, ‘Do not flash firmware’)

	
code

	Returns the code of the FlashFirmwareOption element.

	Returns

	Code of the FlashFirmwareOption element.

	Return type

	Integer

	
description

	Returns the description of the FlashFirmwareOption element.

	Returns

	Description of the FlashFirmwareOption element.

	Return type

	String

	
class digi.xbee.profile.XBeeSettingType(tag, description)[source]

	Bases: enum.Enum

This class lists the available firmware setting types.

Inherited properties:

name (String): The name of this XBeeSettingType.

value (Integer): The ID of this XBeeSettingType.

Values:

XBeeSettingType.NUMBER = (‘number’, ‘Number’)

XBeeSettingType.COMBO = (‘combo’, ‘Combo’)

XBeeSettingType.TEXT = (‘text’, ‘Text’)

XBeeSettingType.BUTTON = (‘button’, ‘Button’)

XBeeSettingType.NO_TYPE = (‘none’, ‘No type’)

	
tag

	Returns the tag of the XBeeSettingType element.

	Returns

	Tag of the XBeeSettingType element.

	Return type

	String

	
description

	Returns the description of the XBeeSettingType element.

	Returns

	Description of the XBeeSettingType element.

	Return type

	String

	
class digi.xbee.profile.XBeeSettingFormat(tag, description)[source]

	Bases: enum.Enum

This class lists the available text firmware setting formats.

Inherited properties:

name (String): The name of this XBeeSettingFormat.

value (Integer): The ID of this XBeeSettingFormat.

Values:

XBeeSettingFormat.HEX = (‘HEX’, ‘Hexadecimal’)

XBeeSettingFormat.ASCII = (‘ASCII’, ‘ASCII’)

XBeeSettingFormat.IPV4 = (‘IPV4’, ‘IPv4’)

XBeeSettingFormat.IPV6 = (‘IPV6’, ‘IPv6’)

XBeeSettingFormat.PHONE = (‘PHONE’, ‘phone’)

XBeeSettingFormat.NO_FORMAT = (‘none’, ‘No format’)

	
tag

	Returns the tag of the XBeeSettingFormat element.

	Returns

	Tag of the XBeeSettingFormat element.

	Return type

	String

	
description

	Returns the description of the XBeeSettingFormat element.

	Returns

	Description of the XBeeSettingFormat element.

	Return type

	String

	
class digi.xbee.profile.XBeeProfileSetting(name, setting_type, setting_format, value)[source]

	Bases: object

This class represents an XBee profile setting and provides information like
the setting name, type, format and value.

Class constructor. Instantiates a new XBeeProfileSetting
with the given parameters.

	Parameters

	
	name (String) – Setting name.

	setting_type (XBeeSettingType) – Setting type.

	setting_format (XBeeSettingType) – Setting format.

	value (String) – Setting value.

	
name

	Returns the XBee setting name.

	Returns

	XBee setting name.

	Return type

	String

	
type

	Returns the XBee setting type.

	Returns

	XBee setting type.

	Return type

	XBeeSettingType

	
format

	Returns the XBee setting format.

	Returns

	XBee setting format.

	Return type

	XBeeSettingFormat

	
value

	Returns the XBee setting value as string.

	Returns

	XBee setting value as string.

	Return type

	String

	
bytearray_value

	Returns the XBee setting value as bytearray to be set in the device.

	Returns

	XBee setting value as bytearray to be set in the device.

	Return type

	Bytearray

	
exception digi.xbee.profile.ReadProfileException[source]

	Bases: digi.xbee.exception.XBeeException

This exception will be thrown when any problem reading the XBee profile
occurs.

All functionality of this class is the inherited from Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.profile.UpdateProfileException[source]

	Bases: digi.xbee.exception.XBeeException

This exception will be thrown when any problem updating the XBee profile
into a device occurs.

All functionality of this class is the inherited from Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class digi.xbee.profile.XBeeProfile(profile_file)[source]

	Bases: object

Helper class used to manage serial port break line in a parallel thread.

Class constructor. Instantiates a new XBeeProfile with the
given parameters.

	Parameters

	profile_file (String) – Path of the ‘.xpro’ profile file.

	Raises

	
	ProfileReadException – If there is any error reading the profile file.

	ValueError – If the provided profile file is not valid

	
open()[source]

	Opens the profile so its components are accessible from properties
firmware_description_file, file_system_path,
remote_file_system_image, and bootloader_file.

The user is responsible for closing the profile when done with it.

	Raises

	ProfileReadException – If there is any error opening the profile.

See also

close()

is_open()

	
close()[source]

	Closes the profile. Its components are no more accessible.

See also

open()

is_open()

	
is_open()[source]

	Returns True if the profile is opened, False otherwise.

See also

open()

close()

	
get_setting_default_value(setting_name)[source]

	Returns the default value of the given firmware setting.

	Parameters

	setting_name (String or ATStringCommand) – Name of the
setting to retrieve its default value.

	Returns

	
	Default value of the setting, None if the setting is not

	found or it has no default value.

	Return type

	String

	
profile_file

	Returns the profile file.

	Returns

	Profile file.

	Return type

	String

	
version

	Returns the profile version.

	Returns

	Profile version.

	Return type

	String

	
flash_firmware_option

	Returns the profile flash firmware option.

	Returns

	Profile flash firmware option.

	Return type

	FlashFirmwareOption

See also

FlashFirmwareOption

	
description

	Returns the profile description.

	Returns

	Profile description.

	Return type

	String

	
reset_settings

	Returns whether the settings of the XBee will be reset before applying
the profile ones or not.

	Returns

	
	True if the settings of the XBee will be reset before

	applying the profile ones, False otherwise.

	Return type

	Boolean

	
has_local_filesystem

	Returns whether the profile has local filesystem information or not.

	Returns

	
	True if the profile has local filesystem information,

	False otherwise.

	Return type

	Boolean

	
has_remote_filesystem

	Returns whether the profile has remote filesystem information or not.

	Returns

	
	True if the profile has remote filesystem information,

	False otherwise.

	Return type

	Boolean

	
has_filesystem

	Returns whether the profile has filesystem information (local or
remote) or not.

	Returns

	
	True if the profile has filesystem information (local or

	remote), False otherwise.

	Return type

	Boolean

	
has_local_firmware_files

	Returns whether the profile has local firmware binaries.

	Returns

	
	True if the profile has local firmware files,

	False otherwise.

	Return type

	Boolean

	
has_remote_firmware_files

	Returns whether the profile has remote firmware binaries.

	Returns

	
	True if the profile has remote firmware files,

	False otherwise.

	Return type

	Boolean

	
has_firmware_files

	Returns whether the profile has firmware binaries (local or remote).

	Returns

	
	True if the profile has local or remote firmware files,

	False otherwise.

	Return type

	Boolean

	
profile_settings

	Returns all the firmware settings that the profile configures.

	Returns

	
	List with all the firmware settings that the profile

	configures (XBeeProfileSetting).

	Return type

	Dict

	
firmware_version

	Returns the compatible firmware version of the profile.

	Returns

	Compatible firmware version of the profile.

	Return type

	Integer

	
hardware_version

	Returns the compatible hardware version of the profile.

	Returns

	Compatible hardware version of the profile.

	Return type

	Integer

	
compatibility_number

	Returns the compatibility number of the profile.

	Returns

	The compatibility number, None if not defined.

	Return type

	Integer

	
region_lock

	Returns the region lock of the profile.

	Returns

	The region lock, None if not defined.

	Return type

	Integer

	
profile_description_file

	Returns the path of the profile description file.

	Returns

	Path of the profile description file.

	Return type

	String

	
firmware_description_file

	Returns the path of the profile firmware description file.

	Returns

	Path of the profile firmware description file.

	Return type

	String

	
file_system_path

	Returns the profile file system path.
None until the profile is extracted.

	Returns

	Path of the profile file system directory.

	Return type

	String

	
remote_file_system_image

	Returns the path of the remote OTA file system image.
None until the profile is extracted.

	Returns

	Path of the remote OTA file system image.

	Return type

	String

	
bootloader_file

	Returns the profile bootloader file path.
None until the profile is extracted.

	Returns

	Path of the profile bootloader file.

	Return type

	String

	
protocol

	Returns the profile XBee protocol.

	Returns

	Profile XBee protocol.

	Return type

	XBeeProtocol

	
digi.xbee.profile.apply_xbee_profile(target, profile_path, timeout=None, progress_callback=None)[source]

	Applies the given XBee profile into the given XBee.
If a serial port is provided as target, the XBee profile must include
the firmware binaries, that are always programmed. In this case, a restore
defaults is also performed before applying settings in the profile (no
matter if the profile is configured to do so or not). If the value of ‘AP’
(operating mode) in the profile is not an API mode or it is not defined,
XBee is configured to use API 1.

	Parameters

	
	target (String or AbstractXBeeDevice) – Target to apply
profile to. String: serial port identifier.
AbstractXBeeDevice: XBee to apply the profile.

	profile_path (String) – path of the XBee profile file to apply.

	timeout (Integer, optional) – Maximum time to wait for target read
operations during the apply profile.

	progress_callback (Function, optional) – Function to execute to receive
progress information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	ValueError – If the XBee profile or the XBee device is not valid.

	UpdateProfileException – If there is any error during the update XBee
profile operation.

digi.xbee.reader module

	
class digi.xbee.reader.XBeeEvent[source]

	Bases: list

This class represents a generic XBee event.

New event callbacks can be added here following this prototype:

def callback_prototype(*args, **kwargs):
 #do something...

All of them will be executed when the event is fired.

See also

list (Python standard class)

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.PacketReceived[source]

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives any packet, independent of
its frame type.

	The callbacks for handle this events will receive the following arguments:

	
	received_packet (XBeeAPIPacket): Received packet.

See also

XBeeAPIPacket

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.PacketReceivedFrom[source]

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives any packet, independent of
its frame type.

	The callbacks for handle this events will receive the following arguments:

	
	received_packet (XBeeAPIPacket): Received packet.

	sender (RemoteXBeeDevice): Remote XBee who sent the packet.

See also

RemoteXBeeDevice

XBeeAPIPacket

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.DataReceived[source]

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives data.

	The callbacks for handle this events will receive the following arguments:

	
	message (XBeeMessage): Message containing the data
received, the sender and the time.

See also

XBeeEvent

XBeeMessage

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.ModemStatusReceived[source]

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when a XBee receives a modem status packet.

	The callbacks for handle this events will receive the following arguments:

	
	modem_status (ModemStatus): Modem status received.

See also

XBeeEvent

ModemStatus

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.IOSampleReceived[source]

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when a XBee receives an IO packet.

This includes:

	IO data sample RX indicator packet.

	RX IO 16 packet.

	RX IO 64 packet.

	The callbacks that handle this event will receive the following arguments:

	
	io_sample (IOSample): Received IO sample.

	sender (RemoteXBeeDevice): Remote XBee who sent the packet.

	time (Integer): the time in which the packet was received.

See also

IOSample

RemoteXBeeDevice

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.NetworkModified[source]

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when the network is being modified by the addition of a
new node, an existing node information is updated, a node removal, or when
the network items are cleared.

	The callbacks that handle this event will receive the following arguments:

	
	event_type (digi.xbee.devices.NetworkEventType): Network
event type.

	reason (digi.xbee.devices.NetworkEventReason): Reason of
the event.

	node (digi.xbee.devices.XBeeDevice or
digi.xbee.devices.RemoteXBeeDevice): Node added, updated
or removed from the network.

See also

digi.xbee.devices.NetworkEventReason

digi.xbee.devices.NetworkEventType

digi.xbee.devices.RemoteXBeeDevice

digi.xbee.devices.XBeeDevice

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.DeviceDiscovered[source]

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee discovers another remote XBee
during a discovering operation.

	The callbacks that handle this event will receive the following arguments:

	
	discovered_device (RemoteXBeeDevice): Discovered remote XBee.

See also

RemoteXBeeDevice

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.DiscoveryProcessFinished[source]

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when the discovery process finishes, either
successfully or due to an error.

	The callbacks that handle this event will receive the following arguments:

	
	status (NetworkDiscoveryStatus): Network discovery status.

	description (String, optional): Description of the discovery status.

See also

NetworkDiscoveryStatus

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.ExplicitDataReceived[source]

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives an explicit data packet.

	The callbacks for handle this events will receive the following arguments:

	
	message (ExplicitXBeeMessage): Message containing the
received data, the sender, the time, and explicit data message
parameters.

See also

XBeeEvent

XBeeMessage

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.IPDataReceived[source]

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives IP data.

	The callbacks for handle this events will receive the following arguments:

	
	message (IPMessage): Message containing containing the IP
address the message belongs to, source and destination ports, IP
protocol, and the content (data) of the message.

See also

XBeeEvent

IPMessage

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.SMSReceived[source]

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives an SMS.

	The callbacks for handle this events will receive the following arguments:

	
	message (SMSMessage): Message containing the phone number
that sent the message and the content (data) of the message.

See also

XBeeEvent

SMSMessage

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.RelayDataReceived[source]

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives a user data relay output packet.

	The callbacks to handle these events will receive the following arguments:

	
	message (UserDataRelayMessage): Message containing the
source interface and the content (data) of the message.

See also

XBeeEvent

UserDataRelayMessage

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.BluetoothDataReceived[source]

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives data from the Bluetooth interface.

	The callbacks to handle these events will receive the following arguments:

	
	data (Bytearray): Received Bluetooth data.

See also

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.MicroPythonDataReceived[source]

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives data from the MicroPython interface.

	The callbacks to handle these events will receive the following arguments:

	
	data (Bytearray): Received MicroPython data.

See also

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.SocketStateReceived[source]

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives a socket state packet.

	The callbacks to handle these events will receive the following arguments:

	
	socket_id (Integer): Socket ID for state reported.

	state (SocketState): Received state.

See also

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.SocketDataReceived[source]

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives a socket receive data packet.

	The callbacks to handle these events will receive the following arguments:

	
	socket_id (Integer): ID of the socket that received the data.

	payload (Bytearray): Received data.

See also

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.SocketDataReceivedFrom[source]

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives a socket receive from data packet.

	The callbacks to handle these events will receive the following arguments:

	
	socket_id (Integer): ID of the socket that received the data.

	
	address (Tuple): Pair (host, port) of the source address where

	host is a string representing an IPv4 address like ‘100.50.200.5’,
and port is an integer.

	payload (Bytearray): Received data.

See also

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.RouteRecordIndicatorReceived[source]

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when a route record packet is received.

	The callbacks to handle these events will receive the following arguments:

	
	
	Source (RemoteXBeeDevice): Remote node that sent the

	route record.

	
	Hops (List): List of intermediate hops 16-bit addresses from closest

	to source (who sent the route record) to closest to destination
(XBee16BitAddress).

See also

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.RouteInformationReceived[source]

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when a route information packet is received.

	The callbacks to handle these events will receive the following arguments:

	
	Source event (Integer): Source event (0x11: NACK, 0x12: Trace route)

	
	Timestamp (Integer): System timer value on the node generating

	this package. The timestamp is in microseconds.

	ACK timeout count (Integer): Number of MAC ACK timeouts that occur.

	
	TX blocked count (Integer): Number of times the transmissions was

	blocked due to reception in progress.

	
	Destination address (XBee64BitAddress): 64-bit address of

	the final destination node.

	
	Source address (XBee64BitAddress): 64-bit address of

	the source node.

	
	Responder address (XBee64BitAddress): 64-bit address of

	of the node that generates this packet after it sends (or attempts
to send) the packet to the next hop (successor node)

	
	Successor address (XBee64BitAddress): 64-bit address of

	of the next node after the responder in the route towards the
destination.

See also

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.RouteReceived[source]

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when a route is received.

	The callbacks to handle these events will receive the following arguments:

	
	source (XBeeDevice): Local node.

	destination (RemoteXBeeDevice): Remote node.

	
	hops (List): List of intermediate hops from source node to

	closest to destination (RemoteXBeeDevice).

See also

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.InitDiscoveryScan[source]

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when a new network discovery scan is about to start.

	The callbacks to handle these events will receive the following arguments:

	
	Number of scan to start (starting with 1).

	Total number of scans.

See also

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.EndDiscoveryScan[source]

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when a network discovery scan has just finished.

	The callbacks to handle these events will receive the following arguments:

	
	Number of scan that has finished (starting with 1).

	Total number of scans.

See also

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.FileSystemFrameReceived[source]

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when a file system packet is received.

	The callbacks to handle these events will receive the following arguments:

	
	Source (AbstractXBeeDevice): Node that sent the file
system frame.

	Frame id (Integer): Received frame id.

	Command (FSCmd): File system command.

	Status (:class: .FSCommandStatus): Status code.

	Receive options (Integer): Bitfield indicating receive options.
See ReceiveOptions.

See also

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.PacketListener(comm_iface, xbee_device, queue_max_size=None)[source]

	Bases: threading.Thread

This class represents a packet listener, which is a thread that’s always
listening for incoming packets to the XBee.

When it receives a packet, this class throws an event depending on which
packet it is. You can add your own callbacks for this events via certain
class methods. This callbacks must have a certain header, see each event
documentation.

This class has fields that are events. Its recommended to use only the
append() and remove() method on them, or -= and += operators.
If you do something more with them, it’s for your own risk.

Here are the parameters which will be received by the event callbacks,
depending on which event it is in each case:

The following parameters are passed via **kwargs to event callbacks of:

	
	PacketReceived:

	1.1 received_packet (XBeeAPIPacket): Received packet.

	
	DataReceived

	
	2.1 message (XBeeMessage): Message containing the data

	received, the sender and the time.

	
	ModemStatusReceived

	3.1 modem_status (ModemStatus): Modem status received.

Class constructor. Instantiates a new PacketListener object
with the provided parameters.

	Parameters

	
	comm_iface (XBeeCommunicationInterface) – Hardware
interface to listen to.

	xbee_device (XBeeDevice) – XBee that is the listener owner.

	queue_max_size (Integer) – Maximum size of the XBee queue.

	
daemon

	A boolean value indicating whether this thread is a daemon thread.

This must be set before start() is called, otherwise RuntimeError is
raised. Its initial value is inherited from the creating thread; the
main thread is not a daemon thread and therefore all threads created in
the main thread default to daemon = False.

The entire Python program exits when only daemon threads are left.

	
wait_until_started(timeout=None)[source]

	Blocks until the thread has fully started. If already started, returns
immediately.

	Parameters

	timeout (Float) – Timeout for the operation in seconds.

	
run()[source]

	This is the method that will be executing for listening packets.

For each packet, it will execute the proper callbacks.

	
stop()[source]

	Stops listening.

	
is_running()[source]

	Returns whether this instance is running or not.

	Returns

	True if this instance is running, False otherwise.

	Return type

	Boolean

	
get_queue()[source]

	Returns the packets queue.

	Returns

	Packets queue.

	Return type

	XBeeQueue

	
get_data_queue()[source]

	Returns the data packets queue.

	Returns

	Data packets queue.

	Return type

	XBeeQueue

	
get_explicit_queue()[source]

	Returns the explicit packets queue.

	Returns

	Explicit packets queue.

	Return type

	XBeeQueue

	
get_ip_queue()[source]

	Returns the IP packets queue.

	Returns

	IP packets queue.

	Return type

	XBeeQueue

	
add_packet_received_callback(callback)[source]

	Adds a callback for the event PacketReceived.

	Parameters

	callback (Function or List of functions) – Callback.
Receives one argument.

	The received packet as a XBeeAPIPacket

	
add_packet_received_from_callback(callback)[source]

	Adds a callback for the event PacketReceivedFrom.

	Parameters

	callback (Function or List of functions) – Callback. Receives
two arguments.

	The received packet as a XBeeAPIPacket

	The remote XBee device who has sent the packet as a
RemoteXBeeDevice

	
add_data_received_callback(callback)[source]

	Adds a callback for the event DataReceived.

	Parameters

	callback (Function or List of functions) – Callback. Receives one
argument.

	The data received as an XBeeMessage

	
add_modem_status_received_callback(callback)[source]

	Adds a callback for the event ModemStatusReceived.

	Parameters

	callback (Function or List of functions) – Callback. Receives one
argument.

	The modem status as a ModemStatus

	
add_io_sample_received_callback(callback)[source]

	Adds a callback for the event IOSampleReceived.

	Parameters

	callback (Function or List of functions) – Callback. Receives three
arguments.

	The received IO sample as an IOSample

	The remote XBee device who has sent the packet as a
RemoteXBeeDevice

	The time in which the packet was received as an Integer

	
add_explicit_data_received_callback(callback)[source]

	Adds a callback for the event ExplicitDataReceived.

	Parameters

	callback (Function or List of functions) – Callback. Receives one
argument.

	The explicit data received as an ExplicitXBeeMessage

	
add_ip_data_received_callback(callback)[source]

	Adds a callback for the event IPDataReceived.

	Parameters

	callback (Function or List of functions) – Callback. Receives one
argument.

	The data received as an IPMessage

	
add_sms_received_callback(callback)[source]

	Adds a callback for the event SMSReceived.

	Parameters

	callback (Function or List of functions) – Callback. Receives one
argument.

	The data received as an SMSMessage

	
add_user_data_relay_received_callback(callback)[source]

	Adds a callback for the event RelayDataReceived.

	Parameters

	callback (Function or List of functions) – Callback. Receives one
argument.

	The data received as a UserDataRelayMessage

	
add_bluetooth_data_received_callback(callback)[source]

	Adds a callback for the event BluetoothDataReceived.

	Parameters

	callback (Function or List of functions) – Callback. Receives one
argument.

	The data received as a Bytearray

	
add_micropython_data_received_callback(callback)[source]

	Adds a callback for the event MicroPythonDataReceived.

	Parameters

	callback (Function or List of functions) – Callback. Receives one
argument.

	The data received as a Bytearray

	
add_socket_state_received_callback(callback)[source]

	Adds a callback for the event SocketStateReceived.

	Parameters

	callback (Function or List of functions) – Callback. Receives two
arguments.

	The socket ID as an Integer.

	The state received as a SocketState

	
add_socket_data_received_callback(callback)[source]

	Adds a callback for the event SocketDataReceived.

	Parameters

	callback (Function or List of functions) – Callback. Receives two
arguments.

	The socket ID as an Integer.

	The status received as a SocketStatus

	
add_socket_data_received_from_callback(callback)[source]

	Adds a callback for the event SocketDataReceivedFrom.

	Parameters

	callback (Function or List of functions) – Callback. Receives three
arguments.

	The socket ID as an Integer.

	A pair (host, port) of the source address where host is a
string representing an IPv4 address like ‘100.50.200.5’,
and port is an integer.

	The status received as a SocketStatus

	
add_route_record_received_callback(callback)[source]

	Adds a callback for the event RouteRecordIndicatorReceived.

	Parameters

	callback (Function or List of functions) – Callback. Receives two
arguments.

	
	Source (RemoteXBeeDevice): Remote node that sent

	the route record.

	
	Hops (List): List of intermediate hops 16-bit addresses from

	closest to source (who sent the route record) to closest to
destination.

	
add_route_info_received_callback(callback)[source]

	Adds a callback for the event RouteInformationReceived.

	Parameters

	callback (Function or List of functions) – Callback. Receives eight
arguments.

	Source event (Integer): Source event (0x11: NACK,
0x12: Trace route)

	Timestamp (Integer): System timer value on the node
generating this package. The timestamp is in microseconds.

	ACK timeout count (Integer): Number of MAC ACK timeouts that occur.

	TX blocked count (Integer): Number of times the transmissions
was blocked due to reception in progress.

	Destination address (XBee64BitAddress): 64-bit
address of the final destination node.

	Source address (XBee64BitAddress): 64-bit address
of the source node.

	Responder address (XBee64BitAddress): 64-bit
address of the node that generated this packet after it sent
(or attempted to send) the packet to the next hop
(successor node)

	Successor address (XBee64BitAddress): 64-bit
address of the next node after the responder in the route
towards the destination.

	
add_fs_frame_received_callback(callback)[source]

	Adds a callback for the event FileSystemFrameReceived.

	Parameters

	callback (Function or List of functions) – Callback. Receives four
arguments.

	
	Source (AbstractXBeeDevice): Node that sent the

	file system frame.

	Frame id (Integer): Received frame id.

	Command (FSCmd): File system command.

	Receive options (Integer): Bitfield indicating receive
options. See ReceiveOptions.

	
del_packet_received_callback(callback)[source]

	Deletes a callback for the callback list of PacketReceived
event.

	Parameters

	callback (Function) – Callback to delete.

	Raises

	ValueError – If callback is not in the callback list of
PacketReceived event.

	
del_packet_received_from_callback(callback)[source]

	Deletes a callback for the callback list of
PacketReceivedFrom event.

	Parameters

	callback (Function) – Callback to delete.

	Raises

	ValueError – If callback is not in the callback list of
PacketReceivedFrom event.

	
del_data_received_callback(callback)[source]

	Deletes a callback for the callback list of DataReceived
event.

	Parameters

	callback (Function) – Callback to delete.

	Raises

	ValueError – If callback is not in the callback list of
DataReceived event.

	
del_modem_status_received_callback(callback)[source]

	Deletes a callback for the callback list of
ModemStatusReceived event.

	Parameters

	callback (Function) – Callback to delete.

	Raises

	ValueError – If callback is not in the callback list of
ModemStatusReceived event.

	
del_io_sample_received_callback(callback)[source]

	Deletes a callback for the callback list of
IOSampleReceived event.

	Parameters

	callback (Function) – Callback to delete.

	Raises

	ValueError – If callback is not in the callback list of
IOSampleReceived event.

	
del_explicit_data_received_callback(callback)[source]

	Deletes a callback for the callback list of
ExplicitDataReceived event.

	Parameters

	callback (Function) – Callback to delete.

	Raises

	ValueError – If callback is not in the callback list of
ExplicitDataReceived event.

	
del_ip_data_received_callback(callback)[source]

	Deletes a callback for the callback list of
IPDataReceived event.

	Parameters

	callback (Function) – Callback to delete.

	Raises

	ValueError – If callback is not in the callback list of
IPDataReceived event.

	
del_sms_received_callback(callback)[source]

	Deletes a callback for the callback list of SMSReceived event.

	Parameters

	callback (Function) – Callback to delete.

	Raises

	ValueError – If callback is not in the callback list of
SMSReceived event.

	
del_user_data_relay_received_callback(callback)[source]

	Deletes a callback for the callback list of
RelayDataReceived event.

	Parameters

	callback (Function) – Callback to delete.

	Raises

	ValueError – If callback is not in the callback list of
RelayDataReceived event.

	
del_bluetooth_data_received_callback(callback)[source]

	Deletes a callback for the callback list of
BluetoothDataReceived event.

	Parameters

	callback (Function) – Callback to delete.

	Raises

	ValueError – If callback is not in the callback list of
BluetoothDataReceived event.

	
del_micropython_data_received_callback(callback)[source]

	Deletes a callback for the callback list of
MicroPythonDataReceived event.

	Parameters

	callback (Function) – Callback to delete.

	Raises

	ValueError – If callback is not in the callback list of
MicroPythonDataReceived event.

	
del_socket_state_received_callback(callback)[source]

	Deletes a callback for the callback list of
SocketStateReceived event.

	Parameters

	callback (Function) – Callback to delete.

	Raises

	ValueError – If callback is not in the callback list of
SocketStateReceived event.

	
del_socket_data_received_callback(callback)[source]

	Deletes a callback for the callback list of
SocketDataReceived event.

	Parameters

	callback (Function) – Callback to delete.

	Raises

	ValueError – If callback is not in the callback list of
SocketDataReceived event.

	
del_socket_data_received_from_callback(callback)[source]

	Deletes a callback for the callback list of
SocketDataReceivedFrom event.

	Parameters

	callback (Function) – Callback to delete.

	Raises

	ValueError – If callback is not in the callback list of
SocketDataReceivedFrom event.

	
del_route_record_received_callback(callback)[source]

	Deletes a callback for the callback list of
RouteRecordIndicatorReceived event.

	Parameters

	callback (Function) – Callback to delete.

	Raises

	ValueError – If callback is not in the callback list of
RouteRecordIndicatorReceived event.

	
del_route_info_callback(callback)[source]

	Deletes a callback for the callback list of
RouteInformationReceived event.

	Parameters

	callback (Function) – Callback to delete.

	Raises

	ValueError – If callback is not in the callback list of
RouteInformationReceived event.

	
del_fs_frame_received_callback(callback)[source]

	Deletes a callback for the callback list of
FileSystemFrameReceived event.

	Parameters

	callback (Function) – Callback to delete.

	Raises

	ValueError – If callback is not in the callback list of
FileSystemFrameReceived event.

	
get_packet_received_callbacks()[source]

	Returns the list of registered callbacks for received packets.

	Returns

	List of PacketReceived events.

	Return type

	List

	
get_packet_received_from_callbacks()[source]

	Returns the list of registered callbacks for received packets.

	Returns

	List of PacketReceivedFrom events.

	Return type

	List

	
get_data_received_callbacks()[source]

	Returns the list of registered callbacks for received data.

	Returns

	List of DataReceived events.

	Return type

	List

	
get_modem_status_received_callbacks()[source]

	Returns the list of registered callbacks for received modem status.

	Returns

	List of ModemStatusReceived events.

	Return type

	List

	
get_io_sample_received_callbacks()[source]

	Returns the list of registered callbacks for received IO samples.

	Returns

	List of IOSampleReceived events.

	Return type

	List

	
get_explicit_data_received_callbacks()[source]

	Returns the list of registered callbacks for received explicit data.

	Returns

	List of ExplicitDataReceived events.

	Return type

	List

	
get_ip_data_received_callbacks()[source]

	Returns the list of registered callbacks for received IP data.

	Returns

	List of IPDataReceived events.

	Return type

	List

	
get_sms_received_callbacks()[source]

	Returns the list of registered callbacks for received SMS.

	Returns

	List of SMSReceived events.

	Return type

	List

	
get_user_data_relay_received_callbacks()[source]

	Returns the list of registered callbacks for received user data relay.

	Returns

	List of RelayDataReceived events.

	Return type

	List

	
get_bluetooth_data_received_callbacks()[source]

	Returns the list of registered callbacks for received Bluetooth data.

	Returns

	List of BluetoothDataReceived events.

	Return type

	List

	
get_micropython_data_received_callbacks()[source]

	Returns the list of registered callbacks for received MicroPython data.

	Returns

	List of MicroPythonDataReceived events.

	Return type

	List

	
get_socket_state_received_callbacks()[source]

	Returns the list of registered callbacks for received socket state.

	Returns

	List of SocketStateReceived events.

	Return type

	List

	
get_socket_data_received_callbacks()[source]

	Returns the list of registered callbacks for received socket data.

	Returns

	List of SocketDataReceived events.

	Return type

	List

	
get_socket_data_received_from_callbacks()[source]

	Returns the list of registered callbacks for received socket data from.

	Returns

	List of SocketDataReceivedFrom events.

	Return type

	List

	
get_route_record_received_callbacks()[source]

	Returns the list of registered callbacks for received route records.

	Returns

	List of RouteRecordIndicatorReceived events.

	Return type

	List

	
get_route_info_callbacks()[source]

	Returns the list of registered callbacks for received route information
packets.

	Returns

	List of RouteInformationReceived events.

	Return type

	List

	
get_fs_frame_received_callbacks()[source]

	Returns the list of registered callbacks for received file system
packets.

	Returns

	List of FileSystemFrameReceived events.

	Return type

	List

	
ident

	Thread identifier of this thread or None if it has not been started.

This is a nonzero integer. See the get_ident() function. Thread
identifiers may be recycled when a thread exits and another thread is
created. The identifier is available even after the thread has exited.

	
isAlive()

	Return whether the thread is alive.

This method is deprecated, use is_alive() instead.

	
is_alive()

	Return whether the thread is alive.

This method returns True just before the run() method starts until just
after the run() method terminates. The module function enumerate()
returns a list of all alive threads.

	
join(timeout=None)

	Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is
called terminates – either normally or through an unhandled exception
or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof). As join() always returns None, you must call
is_alive() after join() to decide whether a timeout happened – if the
thread is still alive, the join() call timed out.

When the timeout argument is not present or None, the operation will
block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current
thread as that would cause a deadlock. It is also an error to join() a
thread before it has been started and attempts to do so raises the same
exception.

	
name

	A string used for identification purposes only.

It has no semantics. Multiple threads may be given the same name. The
initial name is set by the constructor.

	
start()

	Start the thread’s activity.

It must be called at most once per thread object. It arranges for the
object’s run() method to be invoked in a separate thread of control.

This method will raise a RuntimeError if called more than once on the
same thread object.

	
class digi.xbee.reader.XBeeQueue(maxsize=10)[source]

	Bases: queue.Queue

This class represents an XBee queue.

Class constructor. Instantiates a new XBeeQueue with the
provided parameters.

	Parameters

	maxsize (Integer, optional, default=10) – Maximum size of the queue.

	
get(block=True, timeout=None)[source]

	Returns the first element of the queue if there is some element ready
before timeout expires, in case of the timeout is not None.

If timeout is None, this method is non-blocking. In this case, if
there is not any element available, it returns None, otherwise it
returns an XBeeAPIPacket.

	Parameters

	
	block (Boolean) – True to block during timeout waiting for a
packet, False to not block.

	timeout (Integer, optional) – timeout in seconds.

	Returns

	
	Packet if there is any packet available

	before timeout expires. If timeout is None, the returned
value may be None.

	Return type

	XBeeAPIPacket

	Raises

	TimeoutException – If timeout is not None and there is not any
packet available before the timeout expires.

	
get_by_remote(remote, timeout=None)[source]

	Returns the first element of the queue that had been sent by
remote, if there is some in the specified timeout.

If timeout is None, this method is non-blocking. In this case, if
there is not any packet sent by remote in the queue, it returns
None, otherwise it returns an XBeeAPIPacket.

	Parameters

	
	remote (RemoteXBeeDevice) – Remote XBee to get its first
element from queue.

	timeout (Integer, optional, default=`None`) – Timeout in seconds.

	Returns

	
	If there is any packet available before

	the timeout expires. If timeout is None, the returned value
may be None.

	Return type

	XBeeAPIPacket

	Raises

	TimeoutException – If timeout is not None and there is not any
packet available that was sent by remote before the timeout
expires.

	
get_by_ip(ip_addr, timeout=None)[source]

	Returns the first IP data packet from the queue whose IP address
matches the provided address.

If timeout is None, this method is non-blocking. In this case, if
there is not any packet sent by ip_addr in the queue, it returns
None, otherwise it returns an XBeeAPIPacket.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – IP address to look for in
the list of packets.

	timeout (Integer, optional, default=`None`) – Timeout in seconds.

	Returns

	
	If there is any packet available before the

	timeout expires. If timeout is None, the returned value may
be None.

	Return type

	XBeeAPIPacket

	Raises

	TimeoutException – If timeout is not None and there is not any
packet available that was sent by ip_addr before the timeout
expires.

	
empty()

	Return True if the queue is empty, False otherwise (not reliable!).

This method is likely to be removed at some point. Use qsize() == 0
as a direct substitute, but be aware that either approach risks a race
condition where a queue can grow before the result of empty() or
qsize() can be used.

To create code that needs to wait for all queued tasks to be
completed, the preferred technique is to use the join() method.

	
full()

	Return True if the queue is full, False otherwise (not reliable!).

This method is likely to be removed at some point. Use qsize() >= n
as a direct substitute, but be aware that either approach risks a race
condition where a queue can shrink before the result of full() or
qsize() can be used.

	
get_by_id(frame_id, timeout=None)[source]

	Returns the first packet from the queue whose frame ID matches the
provided one.

If timeout is None, this method is non-blocking. In this case, if
there is not any received packet with the provided frame ID in the
queue, it returns None, otherwise it returns an
XBeeAPIPacket.

	Parameters

	
	frame_id (Integer) – Frame ID to look for in the list of packets.

	timeout (Integer, optional, default=`None`) – Timeout in seconds.

	Returns

	
	If there is any packet available before

	the timeout expires. If timeout is None, the returned value
may be None.

	Return type

	XBeeAPIPacket

	Raises

	TimeoutException – If timeout is not None and there is not any
packet available that matches the provided frame ID before the
timeout expires.

	
get_nowait()

	Remove and return an item from the queue without blocking.

Only get an item if one is immediately available. Otherwise
raise the Empty exception.

	
join()

	Blocks until all items in the Queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the
queue. The count goes down whenever a consumer thread calls task_done()
to indicate the item was retrieved and all work on it is complete.

When the count of unfinished tasks drops to zero, join() unblocks.

	
put(item, block=True, timeout=None)

	Put an item into the queue.

If optional args ‘block’ is true and ‘timeout’ is None (the default),
block if necessary until a free slot is available. If ‘timeout’ is
a non-negative number, it blocks at most ‘timeout’ seconds and raises
the Full exception if no free slot was available within that time.
Otherwise (‘block’ is false), put an item on the queue if a free slot
is immediately available, else raise the Full exception (‘timeout’
is ignored in that case).

	
put_nowait(item)

	Put an item into the queue without blocking.

Only enqueue the item if a free slot is immediately available.
Otherwise raise the Full exception.

	
qsize()

	Return the approximate size of the queue (not reliable!).

	
task_done()

	Indicate that a formerly enqueued task is complete.

Used by Queue consumer threads. For each get() used to fetch a task,
a subsequent call to task_done() tells the queue that the processing
on the task is complete.

If a join() is currently blocking, it will resume when all items
have been processed (meaning that a task_done() call was received
for every item that had been put() into the queue).

Raises a ValueError if called more times than there were items
placed in the queue.

	
flush()[source]

	Clears the queue.

digi.xbee.recovery module

	
digi.xbee.recovery.recover_device(target)[source]

	Recovers the XBee from an unknown state and leaves if configured for normal
operations.

	Parameters

	target (String or XBeeDevice) – Target of the recovery operation.

	Raises

	RecoveryException – If there is any error performing the recovery action.

	
digi.xbee.recovery.enter_at_command_mode(port)[source]

	Attempts to put this device in AT Command mode.

	Parameters

	port – The serial port where the XBee is connected to.

	Returns

	
	True if the XBee has entered in AT command mode, False

	otherwise.

	Return type

	Boolean

	Raises

	
	SerialTimeoutException – If there is any error trying to write to
the serial port.

	InvalidOperatingModeException – If the XBee is in API mode.

digi.xbee.sender module

	
class digi.xbee.sender.PacketSender(xbee)[source]

	Bases: object

Class to send XBee packets.

Class constructor. Instantiates a new PacketSender object
with the provided parameters.

	Parameters

	xbee (XBeeDevice) – The XBee.

	
send_packet(packet)[source]

	Sends a packet to the XBee. The packet to send is escaped depending on
the current operating mode.

	Parameters

	packet (XBeePacket) – The packet to send.

	Raises

	
	InvalidOperatingModeException – If the XBee device’s operating mode
is not API or ESCAPED API. This method only checks the cached
value of the operating mode.

	XBeeException – if the XBee device’s communication interface is closed.

See also

XBeePacket

	
is_op_mode_valid(value)[source]

	Returns True if the provided value is a valid operating mode for
the library.

	Parameters

	value (Bytearray) – The value to check.

	Returns

	True for a valid value, False otherwise.

	Return type

	Boolean

	
at_response_received_cb(response)[source]

	Callback to deal with AT command responses and update the
corresponding node. Only for internal use.

	Parameters

	((response) – class: .XBeeAPIPacket): The received API packet.

	
class digi.xbee.sender.SyncRequestSender(xbee, packet_to_send, timeout)[source]

	Bases: object

Class to synchronously send XBee packets. This means after sending
the packet it waits for its response, if the package includes a frame ID,
otherwise it does not wait.

Class constructor. Instantiates a new SyncRequestSender object
with the provided parameters.

	Parameters

	
	xbee (XBeeDevice) – The local XBee to send the packet.

	packet_to_send (XBeePacket) – The packet to transmit.

	timeout (Integer) – Number of seconds to wait. -1 to wait indefinitely.

	
send()[source]

	Sends the packet and waits for its corresponding response.

	Returns

	Received response packet.

	Return type

	XBeePacket

	Raises

	
	InvalidOperatingModeException – If the XBee device’s operating mode
is not API or ESCAPED API. This method only checks the cached
value of the operating mode.

	TimeoutException – If the response is not received in the configured
timeout.

	XBeeException – If the XBee device’s communication interface is closed.

See also

XBeePacket

	
xbee

	Returns the local XBee to send the packet.

	Returns

	Local XBee device.

	Return type

	XBeeDevice

	
packet

	Returns the packet to send.

	Returns

	Packet to send.

	Return type

	XBeePacket

	
timeout

	Returns the maximum number of seconds to wait for a response.

	Returns

	Timeout to wait for a response.

	Return type

	Integer

digi.xbee.serial module

	
class digi.xbee.serial.FlowControl[source]

	Bases: enum.Enum

This class represents all available flow controls.

	
class digi.xbee.serial.XBeeSerialPort(baud_rate, port, data_bits=<sphinx.ext.autodoc.importer._MockObject object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject object>, parity=<sphinx.ext.autodoc.importer._MockObject object>, flow_control=<FlowControl.NONE: None>, timeout=0.1)[source]

	Bases: sphinx.ext.autodoc.importer._MockObject, digi.xbee.comm_interface.XBeeCommunicationInterface

This class extends the functionality of Serial class (PySerial).

It also introduces a minor change in its behaviour: the serial port is not
automatically open when instantiated, only when calling open().

See also

_PySerial: https://github.com/pyserial/pyserial

Class constructor. Instantiates a new XBeeSerialPort object with the
given port parameters.

	Parameters

	
	baud_rate (Integer) – Serial port baud rate.

	port (String) – Serial port name to use.

	data_bits (Integer, optional, default=8) – Serial data bits.

	stop_bits (Float, optional, default=1) – sSerial stop bits.

	parity (Char, optional, default=`N`) – Parity. Default to ‘N’ (None).

	flow_control (Integer, optional, default=`None`) – Flow control.

	timeout (Integer, optional, default=0.1) – Read timeout (seconds).

See also

_PySerial: https://github.com/pyserial/pyserial

	
is_interface_open

	Returns whether the underlying hardware communication interface is active.

	Returns

	Boolean. True if the interface is active, False otherwise.

	
write_frame(frame)[source]

	Writes an XBee frame to the underlying hardware interface.

Subclasses may throw specific exceptions to signal implementation
specific hardware errors.

	Parameters

	frame (Bytearray) – The XBee API frame packet to write. If the
bytearray does not correctly represent an XBee frame, the
behaviour is undefined.

	
read_byte()[source]

	Synchronous. Reads one byte from serial port.

	Returns

	The read byte.

	Return type

	Integer

	Raises

	TimeoutException – If there is no bytes ins serial port buffer.

	
read_bytes(num_bytes)[source]

	Synchronous. Reads the specified number of bytes from the serial port.

	Parameters

	num_bytes (Integer) – the number of bytes to read.

	Returns

	the read bytes.

	Return type

	Bytearray

	Raises

	TimeoutException – if the number of bytes read is less than num_bytes.

	
quit_reading()[source]

	Makes the thread (if any) blocking on wait_for_frame return.

If a thread was blocked on wait_for_frame, this method blocks (for a
maximum of ‘timeout’ seconds) until the blocked thread is resumed.

	
wait_for_frame(operating_mode)[source]

	Reads the next packet. Starts to read when finds the start delimiter.
The last byte read is the checksum.

If there is something in the COM buffer after the
start delimiter, this method discards it.

If the method can’t read a complete and correct packet,
it will return None.

	Parameters

	operating_mode (OperatingMode) – The operating mode in
which the packet should be read.

	Returns

	
	The read packet as bytearray if a packet is read, None

	otherwise.

	Return type

	Bytearray

	
read_existing()[source]

	Asynchronous. Reads all bytes in the serial port buffer. May read 0 bytes.

	Returns

	The bytes read.

	Return type

	Bytearray

	
get_read_timeout()[source]

	Returns the serial port read timeout.

	Returns

	Read timeout in seconds.

	Return type

	Integer

	
set_read_timeout(read_timeout)[source]

	Sets the serial port read timeout in seconds.

	Parameters

	read_timeout (Integer) – The new serial port read timeout in seconds.

	
set_baudrate(new_baudrate)[source]

	Changes the serial port baudrate.

	Parameters

	new_baudrate (Integer) – The new baudrate to set.

	
purge_port()[source]

	Purges the serial port by cleaning the input and output buffers.

	
apply_profile(xbee, profile_path, timeout=None, progress_callback=None)

	Applies the given XBee profile to the XBee device.

	Parameters

	
	xbee (AbstractXBeeDevice) – Local or remote XBee node to
be updated.

	profile_path (String) – Path of the XBee profile file to apply.

	timeout (Integer, optional) – Maximum time to wait for target read
operations during the apply profile.

	progress_callback (Function, optional) – Function to execute to
receive progress information. Receives two arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – If the local XBee is not open.

	InvalidOperatingModeException – If the local XBee operating mode is
invalid.

	UpdateProfileException – If there is any error applying the XBee
profile.

	OperationNotSupportedException – If XBee profiles are not supported
in the XBee.

	
close()

	Terminates the underlying hardware communication interface.

Subclasses may throw specific exceptions to signal implementation
specific hardware errors.

	
get_local_xbee_info()

	Returns a tuple with the local XBee information.

This is used when opening the local XBee. If this information is
provided, it is used as internal XBee data, if not provided, the data
is requested to the XBee.

	Returns

	
	Tuple with local XBee information: operation mode (int),

	hardware version (int), firmware version (int),
64-bit address (string), 16-bit address (string),
node identifier (string), and role (int).

	Return type

	Tuple

	
get_network(local_xbee)

	Returns the XBeeNetwork object associated to the XBeeDevice associated
to this XBeeCommunicationInterface.

Some XBeeCommunicationInterface implementations may need to handle the
`XBeeNetwork associated to the XBeeDevice themselves. If that is the
case, a implementation-specific XBeeNetwork object that complains to
the generic XBeeNetwork class will be returned. Otherwise, this
method returns None and the associated XBeeNetwork is handled as
for a serial-connected XBeeDevice.

	Parameters

	local_xbee (XBeeDevice) – The local XBee device.

	Returns

	
	class: .XBeeNetwork: None if the XBeeNetwork should handled as

	usual, otherwise a XBeeNetwork object.

	
open()

	Establishes the underlying hardware communication interface.

Subclasses may throw specific exceptions to signal implementation
specific errors.

	
supports_apply_profile()

	Returns if the interface supports the apply profile feature.

	Returns

	True if it is supported, False otherwise.

	Return type

	Boolean

	
supports_update_firmware()

	Returns if the interface supports the firmware update feature.

	Returns

	True if it is supported, False otherwise.

	Return type

	Boolean

	
timeout

	Returns the read timeout.

	Returns

	Read timeout in seconds.

	Return type

	Integer

	
update_firmware(xbee, xml_fw_file, xbee_fw_file=None, bootloader_fw_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the provided XBee.

	Parameters

	
	xbee (AbstractXBeeDevice) – Local or remote XBee node to
be updated.

	xml_fw_file (String) – Path of the XML file that describes the
firmware to upload.

	xbee_fw_file (String, optional) – Location of the XBee binary
firmware file.

	bootloader_fw_file (String, optional) – Location of the bootloader
binary firmware file.

	timeout (Integer, optional) – Maximum time to wait for target read
operations during the update process.

	progress_callback (Function, optional) – Function to execute to
receive progress information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – If the local XBee is not open.

	InvalidOperatingModeException – If the local XBee operating mode is
invalid.

	OperationNotSupportedException – If the firmware update is not
supported in the XBee.

	FirmwareUpdateException – If there is any error performing the
firmware update.

digi.xbee.xsocket module

	
class digi.xbee.xsocket.socket(xbee_device, ip_protocol=<IPProtocol.TCP: (1, 'TCP')>)[source]

	Bases: object

This class represents an XBee socket and provides methods to create,
connect, bind and close a socket, as well as send and receive data with it.

Class constructor. Instantiates a new XBee socket object for the given
XBee device.

	Parameters

	
	xbee_device (XBeeDevice) – XBee device of the socket.

	ip_protocol (IPProtocol) – protocol of the socket.

	Raises

	
	ValueError – if xbee_device is None or if xbee_device is not
an instance of CellularDevice.

	ValueError – if ip_protocol is None.

	XBeeException – if the connection with the XBee device is not open.

	
connect(address)[source]

	Connects to a remote socket at the given address.

	Parameters

	address (Tuple) – A pair (host, port) where host is the domain
name or string representation of an IPv4 and port is the
numeric port value.

	Raises

	
	TimeoutException – If the connect response is not received in the
configured timeout.

	ValueError – If address is None or not a pair (host, port).

	ValueError – If port is less than 1 or greater than 65535.

	XBeeException – If the connection with the XBee device is not open.

	XBeeSocketException – If the connect status is not SUCCESS.

	
bind(address)[source]

	Binds the socket to the given address. The socket must not already be bound.

	Parameters

	address (Tuple) – A pair (host, port) where host is the local
interface (not used) and port is the numeric port value.

	Raises

	
	TimeoutException – If the bind response is not received in the
configured timeout.

	ValueError – If address is None or not a pair (host, port).

	ValueError – If port is less than 1 or greater than 65535.

	XBeeException – If the connection with the XBee device is not open.

	XBeeSocketException – If the bind status is not SUCCESS.

	XBeeSocketException – If the socket is already bound.

	
listen(backlog=1)[source]

	Enables a server to accept connections.

	Parameters

	backlog (Integer, optional) – The number of unaccepted connections
that the system will allow before refusing new connections. If
specified, it must be at least 0 (if it is lower, it is set to 0).

	Raises

	XBeeSocketException – If the socket is not bound.

	
accept()[source]

	Accepts a connection. The socket must be bound to an address and
listening for connections.

	Returns

	
	A pair (conn, address) where conn is a new socket object

	usable to send and receive data on the connection, and
address is a pair (host, port) with the address bound to
the socket on the other end of the connection.

	Return type

	Tuple

	Raises

	
	XBeeException – If the connection with the XBee device is not open.

	XBeeSocketException – If the socket is not bound or not listening.

	
gettimeout()[source]

	Returns the configured socket timeout in seconds.

	Returns

	The configured timeout in seconds.

	Return type

	Integer

	
settimeout(timeout)[source]

	Sets the socket timeout in seconds.

	Parameters

	timeout (Integer) – The new socket timeout in seconds.

	
getblocking()[source]

	Returns whether the socket is in blocking mode or not.

	Returns

	True if the socket is in blocking mode, False otherwise.

	Return type

	Boolean

	
setblocking(flag)[source]

	Sets the socket in blocking or non-blocking mode.

	Parameters

	flag (Boolean) – True to set the socket in blocking mode, False
to set it in no blocking mode and configure the timeout with
the default value (5 seconds).

	
recv(bufsize)[source]

	Receives data from the socket.

	Parameters

	bufsize (Integer) – The maximum amount of data to be received at once.

	Returns

	The data received.

	Return type

	Bytearray

	Raises

	ValueError – If bufsize is less than 1.

	
recvfrom(bufsize)[source]

	Receives data from the socket.

	Parameters

	bufsize (Integer) – The maximum amount of data to be received at once.

	Returns

	
	Pair containing the data received

	(Bytearray) and the address of the socket sending the data. The
address is also a pair (host, port) where host is the string
representation of an IPv4 and port is the numeric port value.

	Return type

	Tuple (Bytearray, Tuple)

	Raises

	ValueError – If bufsize is less than 1.

	
send(data)[source]

	Sends data to the socket and returns the number of bytes sent. The
socket must be connected to a remote socket. Applications are
responsible for checking that all data has been sent; if only some of
the data was transmitted, the application needs to attempt delivery of
the remaining data.

	Parameters

	data (Bytearray) – The data to send.

	Returns

	The number of bytes sent.

	Return type

	Integer

	Raises

	
	ValueError – If the data to send is None.

	ValueError – If the number of bytes to send is 0.

	XBeeException – If the connection with the XBee device is not open.

	XBeeSocketException – If the socket is not valid.

	XBeeSocketException – If the socket is not open.

	
sendall(data)[source]

	Sends data to the socket. The socket must be connected to a remote
socket. Unlike send(), this method continues to send data from bytes
until either all data has been sent or an error occurs. None is
returned on success. On error, an exception is raised, and there is no
way to determine how much data, if any, was successfully sent.

	Parameters

	data (Bytearray) – The data to send.

	Raises

	
	TimeoutException – If the send status response is not received in
the configured timeout.

	ValueError – If the data to send is None.

	ValueError – If the number of bytes to send is 0.

	XBeeException – If the connection with the XBee device is not open.

	XBeeSocketException – If the socket is not valid.

	XBeeSocketException – If the send status is not SUCCESS.

	XBeeSocketException – If the socket is not open.

	
sendto(data, address)[source]

	Sends data to the socket. The socket should not be connected to a
remote socket, since the destination socket is specified by address.

	Parameters

	
	data (Bytearray) – The data to send.

	address (Tuple) – The address of the destination socket. It must be
a pair (host, port) where host is the domain name or string
representation of an IPv4 and port is the numeric port value.

	Returns

	The number of bytes sent.

	Return type

	Integer

	Raises

	
	TimeoutException – If the send status response is not received in
the configured timeout.

	ValueError – If the data to send is None.

	ValueError – If the number of bytes to send is 0.

	XBeeException – If the connection with the XBee device is not open.

	XBeeSocketException – If the socket is already open.

	XBeeSocketException – If the send status is not SUCCESS.

	
close()[source]

	Closes the socket.

	Raises

	
	TimeoutException – If the close response is not received in the
configured timeout.

	XBeeException – If the connection with the XBee device is not open.

	XBeeSocketException – If the close status is not SUCCESS.

	
setsocketopt(option, value)[source]

	Sets the value of the given socket option.

	Parameters

	
	option (SocketOption) – The socket option to set its value.

	value (Bytearray) – The new value of the socket option.

	Raises

	
	TimeoutException – If the socket option response is not received in
the configured timeout.

	ValueError – If the option to set is None.

	ValueError – If the value of the option is None.

	XBeeException – If the connection with the XBee device is not open.

	XBeeSocketException – If the socket option response status is not SUCCESS.

	
getsocketopt(option)[source]

	Returns the value of the given socket option.

	Parameters

	option (SocketOption) – The socket option to get its value.

	Returns

	The value of the socket option.

	Return type

	Bytearray

	Raises

	
	TimeoutException – If the socket option response is not received in
the configured timeout.

	ValueError – If the option to set is None.

	XBeeException – If the connection with the XBee device is not open.

	XBeeSocketException – If the socket option response status is not SUCCESS.

	
add_socket_state_callback(callback)[source]

	Adds a callback for the event digi.xbee.reader.SocketStateReceived.

	Parameters

	callback (Function) – The callback. Receives two arguments.

	The socket ID as an Integer.

	The state received as a SocketState

	
del_socket_state_callback(callback)[source]

	Deletes a callback for the callback list of
digi.xbee.reader.SocketStateReceived event.

	Parameters

	callback (Function) – The callback to delete.

	Raises

	ValueError – If callback is not in the callback list of
digi.xbee.reader.SocketStateReceived event.

	
get_sock_info()[source]

	Returns the information of this socket.

	Returns

	The socket information.

	Return type

	SocketInfo

	Raises

	
	InvalidOperatingModeException – If the XBee device’s operating mode
is not API or ESCAPED API. This method only checks the cached
value of the operating mode.

	TimeoutException – If the response is not received before the read
timeout expires.

	XBeeException – If the XBee device’s communication interface is closed.

See also

SocketInfo

	
is_connected

	Returns whether the socket is connected or not.

	Returns

	True if the socket is connected False otherwise.

	Return type

	Boolean

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 digi	

 	
 	
 digi.xbee	

 	
 	
 digi.xbee.comm_interface	

 	
 	
 digi.xbee.devices	

 	
 	
 digi.xbee.exception	

 	
 	
 digi.xbee.filesystem	

 	
 	
 digi.xbee.firmware	

 	
 	
 digi.xbee.io	

 	
 	
 digi.xbee.models	

 	
 	
 digi.xbee.models.accesspoint	

 	
 	
 digi.xbee.models.address	

 	
 	
 digi.xbee.models.atcomm	

 	
 	
 digi.xbee.models.filesystem	

 	
 	
 digi.xbee.models.hw	

 	
 	
 digi.xbee.models.info	

 	
 	
 digi.xbee.models.message	

 	
 	
 digi.xbee.models.mode	

 	
 	
 digi.xbee.models.options	

 	
 	
 digi.xbee.models.protocol	

 	
 	
 digi.xbee.models.status	

 	
 	
 digi.xbee.models.zdo	

 	
 	
 digi.xbee.packets	

 	
 	
 digi.xbee.packets.aft	

 	
 	
 digi.xbee.packets.base	

 	
 	
 digi.xbee.packets.cellular	

 	
 	
 digi.xbee.packets.common	

 	
 	
 digi.xbee.packets.devicecloud	

 	
 	
 digi.xbee.packets.digimesh	

 	
 	
 digi.xbee.packets.factory	

 	
 	
 digi.xbee.packets.filesystem	

 	
 	
 digi.xbee.packets.network	

 	
 	
 digi.xbee.packets.raw	

 	
 	
 digi.xbee.packets.relay	

 	
 	
 digi.xbee.packets.socket	

 	
 	
 digi.xbee.packets.wifi	

 	
 	
 digi.xbee.packets.zigbee	

 	
 	
 digi.xbee.profile	

 	
 	
 digi.xbee.reader	

 	
 	
 digi.xbee.recovery	

 	
 	
 digi.xbee.sender	

 	
 	
 digi.xbee.serial	

 	
 	
 digi.xbee.util	

 	
 	
 digi.xbee.util.utils	

 	
 	
 digi.xbee.util.xmodem	

 	
 	
 digi.xbee.xsocket	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Z

A

 	
 	AbstractXBeeDevice (class in digi.xbee.devices)

 	accept() (digi.xbee.xsocket.socket method)

 	AccessPoint (class in digi.xbee.models.accesspoint)

 	ack_timeout_count (digi.xbee.packets.digimesh.RouteInformationPacket attribute)

 	actual_offset (digi.xbee.models.filesystem.WriteFileCmdResponse attribute)

 	ADC (digi.xbee.io.IOMode attribute)

 	add_bluetooth_data_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	add_data_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	add_device_discovered_callback() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	add_discovery_process_finished_callback() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	add_end_discovery_scan_callback() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	add_expl_data_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	add_explicit_data_received_callback() (digi.xbee.reader.PacketListener method)

 	add_fs_frame_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	add_if_not_exist() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	add_init_discovery_scan_callback() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	add_io_sample_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	add_ip_data_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.reader.PacketListener method)

 	add_micropython_data_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	add_modem_status_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	add_network_modified_callback() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	add_packet_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	add_packet_received_from_callback() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	(digi.xbee.reader.PacketListener method)

 	add_remote() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	add_remotes() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	
 	add_route_info_received_callback() (digi.xbee.reader.PacketListener method)

 	add_route_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	add_route_record_received_callback() (digi.xbee.reader.PacketListener method)

 	add_sms_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	add_sms_received_callback() (digi.xbee.reader.PacketListener method)

 	add_socket_data_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	add_socket_data_received_from_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	add_socket_state_callback() (digi.xbee.xsocket.socket method)

 	add_socket_state_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	add_user_data_relay_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	address (digi.xbee.models.address.XBee16BitAddress attribute)

 	(digi.xbee.models.address.XBee64BitAddress attribute)

 	(digi.xbee.models.address.XBeeIMEIAddress attribute)

 	analog_mask (digi.xbee.io.IOSample attribute)

 	analog_values (digi.xbee.io.IOSample attribute)

 	ApiFrameType (class in digi.xbee.packets.aft)

 	APIOutputMode (class in digi.xbee.models.mode)

 	APIOutputModeBit (class in digi.xbee.models.mode)

 	APPEND (digi.xbee.models.options.FileOpenRequestOption attribute)

 	append() (digi.xbee.reader.BluetoothDataReceived method)

 	(digi.xbee.reader.DataReceived method)

 	(digi.xbee.reader.DeviceDiscovered method)

 	(digi.xbee.reader.DiscoveryProcessFinished method)

 	(digi.xbee.reader.EndDiscoveryScan method)

 	(digi.xbee.reader.ExplicitDataReceived method)

 	(digi.xbee.reader.FileSystemFrameReceived method)

 	(digi.xbee.reader.IOSampleReceived method)

 	(digi.xbee.reader.IPDataReceived method)

 	(digi.xbee.reader.InitDiscoveryScan method)

 	(digi.xbee.reader.MicroPythonDataReceived method)

 	(digi.xbee.reader.ModemStatusReceived method)

 	(digi.xbee.reader.NetworkModified method)

 	(digi.xbee.reader.PacketReceived method)

 	(digi.xbee.reader.PacketReceivedFrom method)

 	(digi.xbee.reader.RelayDataReceived method)

 	(digi.xbee.reader.RouteInformationReceived method)

 	(digi.xbee.reader.RouteReceived method)

 	(digi.xbee.reader.RouteRecordIndicatorReceived method)

 	(digi.xbee.reader.SMSReceived method)

 	(digi.xbee.reader.SocketDataReceived method)

 	(digi.xbee.reader.SocketDataReceivedFrom method)

 	(digi.xbee.reader.SocketStateReceived method)

 	(digi.xbee.reader.XBeeEvent method)

 	APPEND_DD (digi.xbee.models.options.DiscoveryOptions attribute)

 	APPEND_RSSI (digi.xbee.models.options.DiscoveryOptions attribute)

 	APPLY_CHANGES (digi.xbee.models.options.RemoteATCmdOptions attribute)

 	apply_changes() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	apply_profile() (digi.xbee.comm_interface.XBeeCommunicationInterface method)

 	(digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.serial.XBeeSerialPort method)

 	apply_xbee_profile() (in module digi.xbee.profile)

 	APS_ENCRYPTED (digi.xbee.models.options.ReceiveOptions attribute)

 	ascii_to_int() (in module digi.xbee.util.utils)

 	AssociationIndicationStatus (class in digi.xbee.models.status)

 	at_command (digi.xbee.io.IOLine attribute)

 	at_response_received_cb() (digi.xbee.sender.PacketSender method)

 	ATCommand (class in digi.xbee.models.atcomm)

 	ATCommandException

 	ATCommandResponse (class in digi.xbee.models.atcomm)

 	ATCommandStatus (class in digi.xbee.models.status)

 	ATCommPacket (class in digi.xbee.packets.common)

 	ATCommQueuePacket (class in digi.xbee.packets.common)

 	ATCommResponsePacket (class in digi.xbee.packets.common)

 	ATStringCommand (class in digi.xbee.models.atcomm)

B

 	
 	baudrate (digi.xbee.profile.FirmwareBaudrate attribute)

 	bind() (digi.xbee.xsocket.socket method)

 	block_number (digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket attribute)

 	block_size (digi.xbee.filesystem.FileProcess attribute)

 	BluetoothDataReceived (class in digi.xbee.reader)

 	bootloader_file (digi.xbee.profile.XBeeProfile attribute)

 	bootloader_msg_type (digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket attribute)

 	BROADCAST_ADDRESS (digi.xbee.models.address.XBee16BitAddress attribute)

 	(digi.xbee.models.address.XBee64BitAddress attribute)

 	BROADCAST_PACKET (digi.xbee.models.options.ReceiveOptions attribute)

 	BROADCAST_PAN (digi.xbee.models.options.TransmitOptions attribute)

 	BROADCAST_PANS_PACKET (digi.xbee.models.options.ReceiveOptions attribute)

 	
 	broadcast_radius (digi.xbee.packets.common.ExplicitAddressingPacket attribute)

 	(digi.xbee.packets.common.TransmitPacket attribute)

 	build_aggregate_routes() (digi.xbee.devices.DigiMeshDevice method)

 	build_frame() (in module digi.xbee.packets.factory)

 	build_fs_command() (in module digi.xbee.packets.filesystem)

 	bytearray_value (digi.xbee.profile.XBeeProfileSetting attribute)

 	bytes_bad (digi.xbee.models.filesystem.VolFormatCmdResponse attribute)

 	(digi.xbee.models.filesystem.VolStatCmdResponse attribute)

 	bytes_free (digi.xbee.models.filesystem.VolFormatCmdResponse attribute)

 	(digi.xbee.models.filesystem.VolStatCmdResponse attribute)

 	bytes_to_int() (in module digi.xbee.util.utils)

 	bytes_used (digi.xbee.models.filesystem.VolFormatCmdResponse attribute)

 	(digi.xbee.models.filesystem.VolStatCmdResponse attribute)

C

 	
 	CASCADE (digi.xbee.models.mode.NeighborDiscoveryMode attribute)

 	CellularAssociationIndicationStatus (class in digi.xbee.models.status)

 	CellularDevice (class in digi.xbee.devices)

 	change_directory() (digi.xbee.filesystem.LocalXBeeFileSystemManager method)

 	channel (digi.xbee.models.accesspoint.AccessPoint attribute)

 	check_fs_support() (in module digi.xbee.filesystem)

 	clear() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	(digi.xbee.reader.BluetoothDataReceived method)

 	(digi.xbee.reader.DataReceived method)

 	(digi.xbee.reader.DeviceDiscovered method)

 	(digi.xbee.reader.DiscoveryProcessFinished method)

 	(digi.xbee.reader.EndDiscoveryScan method)

 	(digi.xbee.reader.ExplicitDataReceived method)

 	(digi.xbee.reader.FileSystemFrameReceived method)

 	(digi.xbee.reader.IOSampleReceived method)

 	(digi.xbee.reader.IPDataReceived method)

 	(digi.xbee.reader.InitDiscoveryScan method)

 	(digi.xbee.reader.MicroPythonDataReceived method)

 	(digi.xbee.reader.ModemStatusReceived method)

 	(digi.xbee.reader.NetworkModified method)

 	(digi.xbee.reader.PacketReceived method)

 	(digi.xbee.reader.PacketReceivedFrom method)

 	(digi.xbee.reader.RelayDataReceived method)

 	(digi.xbee.reader.RouteInformationReceived method)

 	(digi.xbee.reader.RouteReceived method)

 	(digi.xbee.reader.RouteRecordIndicatorReceived method)

 	(digi.xbee.reader.SMSReceived method)

 	(digi.xbee.reader.SocketDataReceived method)

 	(digi.xbee.reader.SocketDataReceivedFrom method)

 	(digi.xbee.reader.SocketStateReceived method)

 	(digi.xbee.reader.XBeeEvent method)

 	client_socket_id (digi.xbee.packets.socket.SocketNewIPv4ClientPacket attribute)

 	close() (digi.xbee.comm_interface.XBeeCommunicationInterface method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.profile.XBeeProfile method)

 	(digi.xbee.serial.XBeeSerialPort method)

 	(digi.xbee.xsocket.socket method)

 	CloseDirCmdRequest (class in digi.xbee.models.filesystem)

 	CloseDirCmdResponse (class in digi.xbee.models.filesystem)

 	CloseFileCmdRequest (class in digi.xbee.models.filesystem)

 	CloseFileCmdResponse (class in digi.xbee.models.filesystem)

 	cluster_id (digi.xbee.models.message.ExplicitXBeeMessage attribute)

 	(digi.xbee.packets.common.ExplicitAddressingPacket attribute)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket attribute)

 	code (digi.xbee.devices.NetworkEventReason attribute)

 	(digi.xbee.devices.NetworkEventType attribute)

 	(digi.xbee.io.IOValue attribute)

 	(digi.xbee.models.accesspoint.WiFiEncryptionType attribute)

 	(digi.xbee.models.atcomm.SpecialByte attribute)

 	(digi.xbee.models.filesystem.FSCmdType attribute)

 	(digi.xbee.models.hw.HardwareVersion attribute)

 	(digi.xbee.models.hw.LegacyHardwareVersion attribute)

 	(digi.xbee.models.mode.APIOutputMode attribute)

 	(digi.xbee.models.mode.APIOutputModeBit attribute)

 	(digi.xbee.models.mode.IPAddressingMode attribute)

 	(digi.xbee.models.mode.NeighborDiscoveryMode attribute)

 	(digi.xbee.models.mode.OperatingMode attribute)

 	(digi.xbee.models.options.DiscoveryOptions attribute)

 	(digi.xbee.models.options.RegisterKeyOptions attribute)

 	(digi.xbee.models.options.SendDataRequestOptions attribute)

 	(digi.xbee.models.options.SocketOption attribute)

 	(digi.xbee.models.options.XBeeLocalInterface attribute)

 	(digi.xbee.models.protocol.IPProtocol attribute)

 	(digi.xbee.models.protocol.XBeeProtocol attribute)

 	(digi.xbee.models.status.ATCommandStatus attribute)

 	(digi.xbee.models.status.AssociationIndicationStatus attribute)

 	(digi.xbee.models.status.CellularAssociationIndicationStatus attribute)

 	(digi.xbee.models.status.DeviceCloudStatus attribute)

 	(digi.xbee.models.status.DiscoveryStatus attribute)

 	(digi.xbee.models.status.EmberBootloaderMessageType attribute)

 	(digi.xbee.models.status.FSCommandStatus attribute)

 	(digi.xbee.models.status.FrameError attribute)

 	(digi.xbee.models.status.ModemStatus attribute)

 	(digi.xbee.models.status.NetworkDiscoveryStatus attribute)

 	(digi.xbee.models.status.PowerLevel attribute)

 	(digi.xbee.models.status.SocketInfoState attribute)

 	(digi.xbee.models.status.SocketState attribute)

 	(digi.xbee.models.status.SocketStatus attribute)

 	(digi.xbee.models.status.TransmitStatus attribute)

 	(digi.xbee.models.status.WiFiAssociationIndicationStatus attribute)

 	(digi.xbee.models.status.ZigbeeRegisterStatus attribute)

 	(digi.xbee.packets.aft.ApiFrameType attribute)

 	(digi.xbee.profile.FlashFirmwareOption attribute)

 	comm_iface (digi.xbee.devices.CellularDevice attribute)

 	(digi.xbee.devices.DigiMeshDevice attribute)

 	(digi.xbee.devices.DigiPointDevice attribute)

 	(digi.xbee.devices.IPDevice attribute)

 	(digi.xbee.devices.LPWANDevice attribute)

 	(digi.xbee.devices.NBIoTDevice attribute)

 	(digi.xbee.devices.Raw802Device attribute)

 	(digi.xbee.devices.WiFiDevice attribute)

 	(digi.xbee.devices.XBeeDevice attribute)

 	(digi.xbee.devices.ZigBeeDevice attribute)

 	command (digi.xbee.models.atcomm.ATCommand attribute)

 	(digi.xbee.models.atcomm.ATCommandResponse attribute)

 	(digi.xbee.models.atcomm.ATStringCommand attribute)

 	(digi.xbee.packets.common.ATCommPacket attribute)

 	(digi.xbee.packets.common.ATCommQueuePacket attribute)

 	(digi.xbee.packets.common.ATCommResponsePacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandPacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket attribute)

 	(digi.xbee.packets.filesystem.FSRequestPacket attribute)

 	(digi.xbee.packets.filesystem.FSResponsePacket attribute)

 	(digi.xbee.packets.filesystem.RemoteFSRequestPacket attribute)

 	(digi.xbee.packets.filesystem.RemoteFSResponsePacket attribute)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket attribute)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket attribute)

 	command_value (digi.xbee.packets.common.ATCommResponsePacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket attribute)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket attribute)

 	CommunicationException

 	compatibility_number (digi.xbee.profile.XBeeProfile attribute)

 	complex_desc_supported (digi.xbee.models.zdo.NodeDescriptor attribute)

 	connect() (digi.xbee.filesystem.LocalXBeeFileSystemManager method)

 	(digi.xbee.xsocket.socket method)

 	connect_by_ap() (digi.xbee.devices.WiFiDevice method)

 	connect_by_ssid() (digi.xbee.devices.WiFiDevice method)

 	Connection (class in digi.xbee.devices)

 	ConnectionException

 	content_type (digi.xbee.packets.devicecloud.SendDataRequestPacket attribute)

 	COORDINATOR_ADDRESS (digi.xbee.models.address.XBee16BitAddress attribute)

 	(digi.xbee.models.address.XBee64BitAddress attribute)

 	copy() (digi.xbee.reader.BluetoothDataReceived method)

 	(digi.xbee.reader.DataReceived method)

 	(digi.xbee.reader.DeviceDiscovered method)

 	(digi.xbee.reader.DiscoveryProcessFinished method)

 	(digi.xbee.reader.EndDiscoveryScan method)

 	(digi.xbee.reader.ExplicitDataReceived method)

 	(digi.xbee.reader.FileSystemFrameReceived method)

 	(digi.xbee.reader.IOSampleReceived method)

 	(digi.xbee.reader.IPDataReceived method)

 	(digi.xbee.reader.InitDiscoveryScan method)

 	(digi.xbee.reader.MicroPythonDataReceived method)

 	(digi.xbee.reader.ModemStatusReceived method)

 	(digi.xbee.reader.NetworkModified method)

 	(digi.xbee.reader.PacketReceived method)

 	(digi.xbee.reader.PacketReceivedFrom method)

 	(digi.xbee.reader.RelayDataReceived method)

 	(digi.xbee.reader.RouteInformationReceived method)

 	(digi.xbee.reader.RouteReceived method)

 	(digi.xbee.reader.RouteRecordIndicatorReceived method)

 	(digi.xbee.reader.SMSReceived method)

 	(digi.xbee.reader.SocketDataReceived method)

 	(digi.xbee.reader.SocketDataReceivedFrom method)

 	(digi.xbee.reader.SocketStateReceived method)

 	(digi.xbee.reader.XBeeEvent method)

 	
 	count() (digi.xbee.reader.BluetoothDataReceived method)

 	(digi.xbee.reader.DataReceived method)

 	(digi.xbee.reader.DeviceDiscovered method)

 	(digi.xbee.reader.DiscoveryProcessFinished method)

 	(digi.xbee.reader.EndDiscoveryScan method)

 	(digi.xbee.reader.ExplicitDataReceived method)

 	(digi.xbee.reader.FileSystemFrameReceived method)

 	(digi.xbee.reader.IOSampleReceived method)

 	(digi.xbee.reader.IPDataReceived method)

 	(digi.xbee.reader.InitDiscoveryScan method)

 	(digi.xbee.reader.MicroPythonDataReceived method)

 	(digi.xbee.reader.ModemStatusReceived method)

 	(digi.xbee.reader.NetworkModified method)

 	(digi.xbee.reader.PacketReceived method)

 	(digi.xbee.reader.PacketReceivedFrom method)

 	(digi.xbee.reader.RelayDataReceived method)

 	(digi.xbee.reader.RouteInformationReceived method)

 	(digi.xbee.reader.RouteReceived method)

 	(digi.xbee.reader.RouteRecordIndicatorReceived method)

 	(digi.xbee.reader.SMSReceived method)

 	(digi.xbee.reader.SocketDataReceived method)

 	(digi.xbee.reader.SocketDataReceivedFrom method)

 	(digi.xbee.reader.SocketStateReceived method)

 	(digi.xbee.reader.XBeeEvent method)

 	CREATE (digi.xbee.models.options.FileOpenRequestOption attribute)

 	create_cmd() (digi.xbee.models.filesystem.CloseDirCmdRequest class method)

 	(digi.xbee.models.filesystem.CloseDirCmdResponse class method)

 	(digi.xbee.models.filesystem.CloseFileCmdRequest class method)

 	(digi.xbee.models.filesystem.CloseFileCmdResponse class method)

 	(digi.xbee.models.filesystem.CreateDirCmdRequest class method)

 	(digi.xbee.models.filesystem.CreateDirCmdResponse class method)

 	(digi.xbee.models.filesystem.DeleteCmdRequest class method)

 	(digi.xbee.models.filesystem.DeleteCmdResponse class method)

 	(digi.xbee.models.filesystem.FSCmd class method)

 	(digi.xbee.models.filesystem.FileIdCmd class method)

 	(digi.xbee.models.filesystem.FileIdNameCmd class method)

 	(digi.xbee.models.filesystem.GetPathIdCmdRequest class method)

 	(digi.xbee.models.filesystem.GetPathIdCmdResponse class method)

 	(digi.xbee.models.filesystem.HashFileCmdRequest class method)

 	(digi.xbee.models.filesystem.HashFileCmdResponse class method)

 	(digi.xbee.models.filesystem.OpenDirCmdRequest class method)

 	(digi.xbee.models.filesystem.OpenDirCmdResponse class method)

 	(digi.xbee.models.filesystem.OpenFileCmdRequest class method)

 	(digi.xbee.models.filesystem.OpenFileCmdResponse class method)

 	(digi.xbee.models.filesystem.ReadDirCmdRequest class method)

 	(digi.xbee.models.filesystem.ReadDirCmdResponse class method)

 	(digi.xbee.models.filesystem.ReadFileCmdRequest class method)

 	(digi.xbee.models.filesystem.ReadFileCmdResponse class method)

 	(digi.xbee.models.filesystem.RenameCmdRequest class method)

 	(digi.xbee.models.filesystem.RenameCmdResponse class method)

 	(digi.xbee.models.filesystem.UnknownFSCmd class method)

 	(digi.xbee.models.filesystem.VolFormatCmdRequest class method)

 	(digi.xbee.models.filesystem.VolFormatCmdResponse class method)

 	(digi.xbee.models.filesystem.VolStatCmdRequest class method)

 	(digi.xbee.models.filesystem.VolStatCmdResponse class method)

 	(digi.xbee.models.filesystem.WriteFileCmdRequest class method)

 	(digi.xbee.models.filesystem.WriteFileCmdResponse class method)

 	create_packet() (digi.xbee.packets.base.GenericXBeePacket static method)

 	(digi.xbee.packets.base.UnknownXBeePacket static method)

 	(digi.xbee.packets.base.XBeeAPIPacket static method)

 	(digi.xbee.packets.base.XBeePacket static method)

 	(digi.xbee.packets.cellular.RXSMSPacket static method)

 	(digi.xbee.packets.cellular.TXSMSPacket static method)

 	(digi.xbee.packets.common.ATCommPacket static method)

 	(digi.xbee.packets.common.ATCommQueuePacket static method)

 	(digi.xbee.packets.common.ATCommResponsePacket static method)

 	(digi.xbee.packets.common.ExplicitAddressingPacket static method)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket static method)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket static method)

 	(digi.xbee.packets.common.ModemStatusPacket static method)

 	(digi.xbee.packets.common.ReceivePacket static method)

 	(digi.xbee.packets.common.RemoteATCommandPacket static method)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket static method)

 	(digi.xbee.packets.common.TransmitPacket static method)

 	(digi.xbee.packets.common.TransmitStatusPacket static method)

 	(digi.xbee.packets.devicecloud.DeviceRequestPacket static method)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket static method)

 	(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket static method)

 	(digi.xbee.packets.devicecloud.FrameErrorPacket static method)

 	(digi.xbee.packets.devicecloud.SendDataRequestPacket static method)

 	(digi.xbee.packets.devicecloud.SendDataResponsePacket static method)

 	(digi.xbee.packets.digimesh.RouteInformationPacket static method)

 	(digi.xbee.packets.filesystem.FSRequestPacket static method)

 	(digi.xbee.packets.filesystem.FSResponsePacket static method)

 	(digi.xbee.packets.filesystem.RemoteFSRequestPacket static method)

 	(digi.xbee.packets.filesystem.RemoteFSResponsePacket static method)

 	(digi.xbee.packets.network.RXIPv4Packet static method)

 	(digi.xbee.packets.network.TXIPv4Packet static method)

 	(digi.xbee.packets.raw.RX16IOPacket static method)

 	(digi.xbee.packets.raw.RX16Packet static method)

 	(digi.xbee.packets.raw.RX64IOPacket static method)

 	(digi.xbee.packets.raw.RX64Packet static method)

 	(digi.xbee.packets.raw.TX16Packet static method)

 	(digi.xbee.packets.raw.TX64Packet static method)

 	(digi.xbee.packets.raw.TXStatusPacket static method)

 	(digi.xbee.packets.relay.UserDataRelayOutputPacket static method)

 	(digi.xbee.packets.relay.UserDataRelayPacket static method)

 	(digi.xbee.packets.socket.SocketBindListenPacket static method)

 	(digi.xbee.packets.socket.SocketClosePacket static method)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket static method)

 	(digi.xbee.packets.socket.SocketConnectPacket static method)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket static method)

 	(digi.xbee.packets.socket.SocketCreatePacket static method)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket static method)

 	(digi.xbee.packets.socket.SocketListenResponsePacket static method)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket static method)

 	(digi.xbee.packets.socket.SocketOptionRequestPacket static method)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket static method)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket static method)

 	(digi.xbee.packets.socket.SocketReceivePacket static method)

 	(digi.xbee.packets.socket.SocketSendPacket static method)

 	(digi.xbee.packets.socket.SocketSendToPacket static method)

 	(digi.xbee.packets.socket.SocketStatePacket static method)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket static method)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket static method)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket static method)

 	(digi.xbee.packets.zigbee.CreateSourceRoutePacket static method)

 	(digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket static method)

 	(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket static method)

 	(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket static method)

 	(digi.xbee.packets.zigbee.RouteRecordIndicatorPacket static method)

 	create_socket_info() (digi.xbee.models.info.SocketInfo static method)

 	create_source_route() (digi.xbee.devices.ZigBeeDevice method)

 	create_xbee_device() (digi.xbee.devices.CellularDevice class method)

 	(digi.xbee.devices.DigiMeshDevice class method)

 	(digi.xbee.devices.DigiPointDevice class method)

 	(digi.xbee.devices.IPDevice class method)

 	(digi.xbee.devices.LPWANDevice class method)

 	(digi.xbee.devices.NBIoTDevice class method)

 	(digi.xbee.devices.Raw802Device class method)

 	(digi.xbee.devices.WiFiDevice class method)

 	(digi.xbee.devices.XBeeDevice class method)

 	(digi.xbee.devices.ZigBeeDevice class method)

 	CreateDirCmdRequest (class in digi.xbee.models.filesystem)

 	CreateDirCmdResponse (class in digi.xbee.models.filesystem)

 	CreateSourceRoutePacket (class in digi.xbee.packets.zigbee)

D

 	
 	daemon (digi.xbee.reader.PacketListener attribute)

 	data (digi.xbee.models.filesystem.ReadFileCmdResponse attribute)

 	(digi.xbee.models.filesystem.WriteFileCmdRequest attribute)

 	(digi.xbee.models.message.ExplicitXBeeMessage attribute)

 	(digi.xbee.models.message.IPMessage attribute)

 	(digi.xbee.models.message.SMSMessage attribute)

 	(digi.xbee.models.message.UserDataRelayMessage attribute)

 	(digi.xbee.models.message.XBeeMessage attribute)

 	(digi.xbee.packets.cellular.RXSMSPacket attribute)

 	(digi.xbee.packets.cellular.TXSMSPacket attribute)

 	(digi.xbee.packets.network.RXIPv4Packet attribute)

 	(digi.xbee.packets.network.TXIPv4Packet attribute)

 	(digi.xbee.packets.relay.UserDataRelayOutputPacket attribute)

 	(digi.xbee.packets.relay.UserDataRelayPacket attribute)

 	DataReceived (class in digi.xbee.reader)

 	DEFAULT_TIME_BETWEEN_REQUESTS (digi.xbee.devices.XBeeNetwork attribute)

 	DEFAULT_TIME_BETWEEN_SCANS (digi.xbee.devices.XBeeNetwork attribute)

 	del_bluetooth_data_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	del_data_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	del_device_discovered_callback() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	del_discovery_process_finished_callback() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	del_end_discovery_scan_callback() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	del_expl_data_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	del_explicit_data_received_callback() (digi.xbee.reader.PacketListener method)

 	del_fs_frame_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	del_init_discovery_scan_callback() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	del_io_sample_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	del_ip_data_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.reader.PacketListener method)

 	del_micropython_data_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	del_modem_status_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	del_network_modified_callback() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	del_packet_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	del_packet_received_from_callback() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	(digi.xbee.reader.PacketListener method)

 	del_route_info_callback() (digi.xbee.reader.PacketListener method)

 	del_route_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	del_route_record_received_callback() (digi.xbee.reader.PacketListener method)

 	del_sms_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	del_sms_received_callback() (digi.xbee.reader.PacketListener method)

 	del_socket_data_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	del_socket_data_received_from_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	del_socket_state_callback() (digi.xbee.xsocket.socket method)

 	del_socket_state_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	del_user_data_relay_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	DeleteCmdRequest (class in digi.xbee.models.filesystem)

 	DeleteCmdResponse (class in digi.xbee.models.filesystem)

 	deprecated() (in module digi.xbee.util.utils)

 	depth (digi.xbee.models.zdo.Neighbor attribute)

 	desc_capabilities (digi.xbee.models.zdo.NodeDescriptor attribute)

 	description (digi.xbee.devices.NetworkEventReason attribute)

 	(digi.xbee.devices.NetworkEventType attribute)

 	(digi.xbee.io.IOLine attribute)

 	(digi.xbee.models.accesspoint.WiFiEncryptionType attribute)

 	(digi.xbee.models.atcomm.ATStringCommand attribute)

 	(digi.xbee.models.filesystem.FSCmdType attribute)

 	(digi.xbee.models.hw.HardwareVersion attribute)

 	(digi.xbee.models.mode.APIOutputMode attribute)

 	(digi.xbee.models.mode.APIOutputModeBit attribute)

 	(digi.xbee.models.mode.IPAddressingMode attribute)

 	(digi.xbee.models.mode.NeighborDiscoveryMode attribute)

 	(digi.xbee.models.mode.OperatingMode attribute)

 	(digi.xbee.models.options.DiscoveryOptions attribute)

 	(digi.xbee.models.options.RegisterKeyOptions attribute)

 	(digi.xbee.models.options.SendDataRequestOptions attribute)

 	(digi.xbee.models.options.SocketOption attribute)

 	(digi.xbee.models.options.XBeeLocalInterface attribute)

 	(digi.xbee.models.protocol.IPProtocol attribute)

 	(digi.xbee.models.protocol.Role attribute)

 	(digi.xbee.models.protocol.XBeeProtocol attribute)

 	(digi.xbee.models.status.ATCommandStatus attribute)

 	(digi.xbee.models.status.AssociationIndicationStatus attribute)

 	(digi.xbee.models.status.CellularAssociationIndicationStatus attribute)

 	(digi.xbee.models.status.DeviceCloudStatus attribute)

 	(digi.xbee.models.status.DiscoveryStatus attribute)

 	(digi.xbee.models.status.EmberBootloaderMessageType attribute)

 	(digi.xbee.models.status.FSCommandStatus attribute)

 	(digi.xbee.models.status.FrameError attribute)

 	(digi.xbee.models.status.ModemStatus attribute)

 	(digi.xbee.models.status.NetworkDiscoveryStatus attribute)

 	(digi.xbee.models.status.PowerLevel attribute)

 	(digi.xbee.models.status.SocketInfoState attribute)

 	(digi.xbee.models.status.SocketState attribute)

 	(digi.xbee.models.status.SocketStatus attribute)

 	(digi.xbee.models.status.TransmitStatus attribute)

 	(digi.xbee.models.status.WiFiAssociationIndicationStatus attribute)

 	(digi.xbee.models.status.ZigbeeRegisterStatus attribute)

 	(digi.xbee.packets.aft.ApiFrameType attribute)

 	(digi.xbee.profile.FlashFirmwareOption attribute)

 	(digi.xbee.profile.XBeeProfile attribute)

 	(digi.xbee.profile.XBeeSettingFormat attribute)

 	(digi.xbee.profile.XBeeSettingType attribute)

 	
 	dest_address (digi.xbee.packets.network.TXIPv4Packet attribute)

 	(digi.xbee.packets.socket.SocketConnectPacket attribute)

 	(digi.xbee.packets.socket.SocketSendToPacket attribute)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket attribute)

 	DEST_ADDRESS_BINARY (digi.xbee.packets.socket.SocketConnectPacket attribute)

 	DEST_ADDRESS_STRING (digi.xbee.packets.socket.SocketConnectPacket attribute)

 	dest_address_type (digi.xbee.packets.socket.SocketConnectPacket attribute)

 	dest_endpoint (digi.xbee.models.message.ExplicitXBeeMessage attribute)

 	(digi.xbee.packets.common.ExplicitAddressingPacket attribute)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket attribute)

 	dest_interface (digi.xbee.packets.relay.UserDataRelayPacket attribute)

 	dest_port (digi.xbee.models.message.IPMessage attribute)

 	(digi.xbee.packets.network.RXIPv4Packet attribute)

 	(digi.xbee.packets.network.TXIPv4Packet attribute)

 	(digi.xbee.packets.socket.SocketConnectPacket attribute)

 	(digi.xbee.packets.socket.SocketSendToPacket attribute)

 	destination (digi.xbee.models.zdo.Route attribute)

 	determine_protocol() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	DeviceCloudStatus (class in digi.xbee.models.status)

 	DeviceDiscovered (class in digi.xbee.reader)

 	DeviceRequestPacket (class in digi.xbee.packets.devicecloud)

 	DeviceResponsePacket (class in digi.xbee.packets.devicecloud)

 	DeviceResponseStatusPacket (class in digi.xbee.packets.devicecloud)

 	DictKeys (class in digi.xbee.packets.base)

 	digi (module)

 	digi.xbee (module)

 	digi.xbee.comm_interface (module)

 	digi.xbee.devices (module)

 	digi.xbee.exception (module)

 	digi.xbee.filesystem (module)

 	digi.xbee.firmware (module)

 	digi.xbee.io (module)

 	digi.xbee.models (module)

 	digi.xbee.models.accesspoint (module)

 	digi.xbee.models.address (module)

 	digi.xbee.models.atcomm (module)

 	digi.xbee.models.filesystem (module)

 	digi.xbee.models.hw (module)

 	digi.xbee.models.info (module)

 	digi.xbee.models.message (module)

 	digi.xbee.models.mode (module)

 	digi.xbee.models.options (module)

 	digi.xbee.models.protocol (module)

 	digi.xbee.models.status (module)

 	digi.xbee.models.zdo (module)

 	digi.xbee.packets (module)

 	digi.xbee.packets.aft (module)

 	digi.xbee.packets.base (module)

 	digi.xbee.packets.cellular (module)

 	digi.xbee.packets.common (module)

 	digi.xbee.packets.devicecloud (module)

 	digi.xbee.packets.digimesh (module)

 	digi.xbee.packets.factory (module)

 	digi.xbee.packets.filesystem (module)

 	digi.xbee.packets.network (module)

 	digi.xbee.packets.raw (module)

 	digi.xbee.packets.relay (module)

 	digi.xbee.packets.socket (module)

 	digi.xbee.packets.wifi (module)

 	digi.xbee.packets.zigbee (module)

 	digi.xbee.profile (module)

 	digi.xbee.reader (module)

 	digi.xbee.recovery (module)

 	digi.xbee.sender (module)

 	digi.xbee.serial (module)

 	digi.xbee.util (module)

 	digi.xbee.util.utils (module)

 	digi.xbee.util.xmodem (module)

 	digi.xbee.xsocket (module)

 	DIGIMESH_MODE (digi.xbee.models.options.ReceiveOptions attribute)

 	(digi.xbee.models.options.TransmitOptions attribute)

 	DigiMeshDevice (class in digi.xbee.devices)

 	DigiMeshNetwork (class in digi.xbee.devices)

 	DigiPointDevice (class in digi.xbee.devices)

 	DigiPointNetwork (class in digi.xbee.devices)

 	digital_hsb_mask (digi.xbee.io.IOSample attribute)

 	DIGITAL_IN (digi.xbee.io.IOMode attribute)

 	digital_lsb_mask (digi.xbee.io.IOSample attribute)

 	digital_mask (digi.xbee.io.IOSample attribute)

 	DIGITAL_OUT_HIGH (digi.xbee.io.IOMode attribute)

 	DIGITAL_OUT_LOW (digi.xbee.io.IOMode attribute)

 	digital_values (digi.xbee.io.IOSample attribute)

 	direction (digi.xbee.models.filesystem.CloseDirCmdRequest attribute)

 	(digi.xbee.models.filesystem.CloseDirCmdResponse attribute)

 	(digi.xbee.models.filesystem.CloseFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.CloseFileCmdResponse attribute)

 	(digi.xbee.models.filesystem.CreateDirCmdRequest attribute)

 	(digi.xbee.models.filesystem.CreateDirCmdResponse attribute)

 	(digi.xbee.models.filesystem.DeleteCmdRequest attribute)

 	(digi.xbee.models.filesystem.DeleteCmdResponse attribute)

 	(digi.xbee.models.filesystem.FSCmd attribute)

 	(digi.xbee.models.filesystem.FileIdCmd attribute)

 	(digi.xbee.models.filesystem.FileIdNameCmd attribute)

 	(digi.xbee.models.filesystem.GetPathIdCmdRequest attribute)

 	(digi.xbee.models.filesystem.GetPathIdCmdResponse attribute)

 	(digi.xbee.models.filesystem.HashFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.HashFileCmdResponse attribute)

 	(digi.xbee.models.filesystem.OpenDirCmdRequest attribute)

 	(digi.xbee.models.filesystem.OpenDirCmdResponse attribute)

 	(digi.xbee.models.filesystem.OpenFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.OpenFileCmdResponse attribute)

 	(digi.xbee.models.filesystem.ReadDirCmdRequest attribute)

 	(digi.xbee.models.filesystem.ReadDirCmdResponse attribute)

 	(digi.xbee.models.filesystem.ReadFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.ReadFileCmdResponse attribute)

 	(digi.xbee.models.filesystem.RenameCmdRequest attribute)

 	(digi.xbee.models.filesystem.RenameCmdResponse attribute)

 	(digi.xbee.models.filesystem.UnknownFSCmd attribute)

 	(digi.xbee.models.filesystem.VolFormatCmdRequest attribute)

 	(digi.xbee.models.filesystem.VolFormatCmdResponse attribute)

 	(digi.xbee.models.filesystem.VolStatCmdRequest attribute)

 	(digi.xbee.models.filesystem.VolStatCmdResponse attribute)

 	(digi.xbee.models.filesystem.WriteFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.WriteFileCmdResponse attribute)

 	DirResponseFlag (class in digi.xbee.models.options)

 	DISABLE_ACK (digi.xbee.models.options.RemoteATCmdOptions attribute)

 	(digi.xbee.models.options.TransmitOptions attribute)

 	disable_bluetooth() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	disable_logger() (in module digi.xbee.util.utils)

 	DISABLE_RETRIES_AND_REPAIR (digi.xbee.models.options.TransmitOptions attribute)

 	DISABLED (digi.xbee.io.IOMode attribute)

 	disconnect() (digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.filesystem.LocalXBeeFileSystemManager method)

 	discover_device() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	discover_devices() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	DISCOVER_MYSELF (digi.xbee.models.options.DiscoveryOptions attribute)

 	discovery_status (digi.xbee.packets.common.TransmitStatusPacket attribute)

 	DiscoveryOptions (class in digi.xbee.models.options)

 	DiscoveryProcessFinished (class in digi.xbee.reader)

 	DiscoveryStatus (class in digi.xbee.models.status)

 	doc_enum() (in module digi.xbee.util.utils)

 	DONT_ATTEMPT_RD (digi.xbee.models.options.TransmitOptions attribute)

 	dst_addr (digi.xbee.packets.digimesh.RouteInformationPacket attribute)

E

 	
 	EmberBootloaderMessageType (class in digi.xbee.models.status)

 	empty() (digi.xbee.reader.XBeeQueue method)

 	enable_apply_changes() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	ENABLE_APS_ENCRYPTION (digi.xbee.models.options.TransmitOptions attribute)

 	enable_bluetooth() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	enable_logger() (in module digi.xbee.util.utils)

 	ENABLE_MULTICAST (digi.xbee.models.options.TransmitOptions attribute)

 	ENABLE_TRACE_ROUTE (digi.xbee.models.options.TransmitOptions attribute)

 	ENABLE_UNICAST_NACK (digi.xbee.models.options.TransmitOptions attribute)

 	ENABLE_UNICAST_TRACE_ROUTE (digi.xbee.models.options.TransmitOptions attribute)

 	encryption_type (digi.xbee.models.accesspoint.AccessPoint attribute)

 	EndDiscoveryScan (class in digi.xbee.reader)

 	enter_at_command_mode() (in module digi.xbee.recovery)

 	error (digi.xbee.models.zdo.NeighborFinder attribute)

 	(digi.xbee.models.zdo.NeighborTableReader attribute)

 	(digi.xbee.models.zdo.NodeDescriptorReader attribute)

 	(digi.xbee.models.zdo.RouteTableReader attribute)

 	(digi.xbee.packets.devicecloud.FrameErrorPacket attribute)

 	EXCLUSIVE (digi.xbee.models.options.FileOpenRequestOption attribute)

 	exec_at_cmd() (digi.xbee.firmware.UpdateConfigurer static method)

 	
 	execute_command() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	ExplicitAddressingPacket (class in digi.xbee.packets.common)

 	ExplicitDataReceived (class in digi.xbee.reader)

 	ExplicitRXIndicatorPacket (class in digi.xbee.packets.common)

 	ExplicitXBeeMessage (class in digi.xbee.models.message)

 	export() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	extend() (digi.xbee.reader.BluetoothDataReceived method)

 	(digi.xbee.reader.DataReceived method)

 	(digi.xbee.reader.DeviceDiscovered method)

 	(digi.xbee.reader.DiscoveryProcessFinished method)

 	(digi.xbee.reader.EndDiscoveryScan method)

 	(digi.xbee.reader.ExplicitDataReceived method)

 	(digi.xbee.reader.FileSystemFrameReceived method)

 	(digi.xbee.reader.IOSampleReceived method)

 	(digi.xbee.reader.IPDataReceived method)

 	(digi.xbee.reader.InitDiscoveryScan method)

 	(digi.xbee.reader.MicroPythonDataReceived method)

 	(digi.xbee.reader.ModemStatusReceived method)

 	(digi.xbee.reader.NetworkModified method)

 	(digi.xbee.reader.PacketReceived method)

 	(digi.xbee.reader.PacketReceivedFrom method)

 	(digi.xbee.reader.RelayDataReceived method)

 	(digi.xbee.reader.RouteInformationReceived method)

 	(digi.xbee.reader.RouteReceived method)

 	(digi.xbee.reader.RouteRecordIndicatorReceived method)

 	(digi.xbee.reader.SMSReceived method)

 	(digi.xbee.reader.SocketDataReceived method)

 	(digi.xbee.reader.SocketDataReceivedFrom method)

 	(digi.xbee.reader.SocketStateReceived method)

 	(digi.xbee.reader.XBeeEvent method)

 	EXTENDED_TIMEOUT (digi.xbee.models.options.RemoteATCmdOptions attribute)

F

 	
 	file_data (digi.xbee.packets.devicecloud.SendDataRequestPacket attribute)

 	file_hash (digi.xbee.models.filesystem.HashFileCmdResponse attribute)

 	file_system_path (digi.xbee.profile.XBeeProfile attribute)

 	FileIdCmd (class in digi.xbee.models.filesystem)

 	FileIdNameCmd (class in digi.xbee.models.filesystem)

 	FileOpenRequestOption (class in digi.xbee.models.options)

 	FileProcess (class in digi.xbee.filesystem)

 	FileSystemElement (class in digi.xbee.filesystem)

 	FileSystemException

 	FileSystemFrameReceived (class in digi.xbee.reader)

 	FileSystemManager (class in digi.xbee.filesystem)

 	FileSystemNotSupportedException

 	firmware_description_file (digi.xbee.profile.XBeeProfile attribute)

 	firmware_version (digi.xbee.profile.XBeeProfile attribute)

 	FirmwareBaudrate (class in digi.xbee.profile)

 	FirmwareParity (class in digi.xbee.profile)

 	FirmwareStopbits (class in digi.xbee.profile)

 	FirmwareUpdateException

 	flags (digi.xbee.packets.devicecloud.DeviceRequestPacket attribute)

 	flash_firmware_option (digi.xbee.profile.XBeeProfile attribute)

 	FlashFirmwareOption (class in digi.xbee.profile)

 	FLOOD (digi.xbee.models.mode.NeighborDiscoveryMode attribute)

 	FlowControl (class in digi.xbee.serial)

 	flush() (digi.xbee.reader.XBeeQueue method)

 	flush_queues() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	force_disassociate() (digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	format (digi.xbee.profile.XBeeProfileSetting attribute)

 	format() (digi.xbee.filesystem.FileSystemManager method)

 	format_filesystem() (digi.xbee.filesystem.LocalXBeeFileSystemManager method)

 	frame_id (digi.xbee.packets.base.GenericXBeePacket attribute)

 	(digi.xbee.packets.base.UnknownXBeePacket attribute)

 	(digi.xbee.packets.base.XBeeAPIPacket attribute)

 	(digi.xbee.packets.cellular.RXSMSPacket attribute)

 	(digi.xbee.packets.cellular.TXSMSPacket attribute)

 	(digi.xbee.packets.common.ATCommPacket attribute)

 	(digi.xbee.packets.common.ATCommQueuePacket attribute)

 	(digi.xbee.packets.common.ATCommResponsePacket attribute)

 	(digi.xbee.packets.common.ExplicitAddressingPacket attribute)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket attribute)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket attribute)

 	(digi.xbee.packets.common.ModemStatusPacket attribute)

 	(digi.xbee.packets.common.ReceivePacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandPacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket attribute)

 	(digi.xbee.packets.common.TransmitPacket attribute)

 	(digi.xbee.packets.common.TransmitStatusPacket attribute)

 	(digi.xbee.packets.devicecloud.DeviceRequestPacket attribute)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket attribute)

 	(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket attribute)

 	(digi.xbee.packets.devicecloud.FrameErrorPacket attribute)

 	(digi.xbee.packets.devicecloud.SendDataRequestPacket attribute)

 	(digi.xbee.packets.devicecloud.SendDataResponsePacket attribute)

 	(digi.xbee.packets.digimesh.RouteInformationPacket attribute)

 	(digi.xbee.packets.filesystem.FSRequestPacket attribute)

 	(digi.xbee.packets.filesystem.FSResponsePacket attribute)

 	(digi.xbee.packets.filesystem.RemoteFSRequestPacket attribute)

 	(digi.xbee.packets.filesystem.RemoteFSResponsePacket attribute)

 	(digi.xbee.packets.network.RXIPv4Packet attribute)

 	(digi.xbee.packets.network.TXIPv4Packet attribute)

 	(digi.xbee.packets.raw.RX16IOPacket attribute)

 	(digi.xbee.packets.raw.RX16Packet attribute)

 	(digi.xbee.packets.raw.RX64IOPacket attribute)

 	(digi.xbee.packets.raw.RX64Packet attribute)

 	(digi.xbee.packets.raw.TX16Packet attribute)

 	(digi.xbee.packets.raw.TX64Packet attribute)

 	(digi.xbee.packets.raw.TXStatusPacket attribute)

 	(digi.xbee.packets.relay.UserDataRelayOutputPacket attribute)

 	(digi.xbee.packets.relay.UserDataRelayPacket attribute)

 	(digi.xbee.packets.socket.SocketBindListenPacket attribute)

 	(digi.xbee.packets.socket.SocketClosePacket attribute)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketConnectPacket attribute)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketCreatePacket attribute)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketListenResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket attribute)

 	(digi.xbee.packets.socket.SocketOptionRequestPacket attribute)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket attribute)

 	(digi.xbee.packets.socket.SocketReceivePacket attribute)

 	(digi.xbee.packets.socket.SocketSendPacket attribute)

 	(digi.xbee.packets.socket.SocketSendToPacket attribute)

 	(digi.xbee.packets.socket.SocketStatePacket attribute)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket attribute)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket attribute)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket attribute)

 	(digi.xbee.packets.zigbee.CreateSourceRoutePacket attribute)

 	(digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket attribute)

 	(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket attribute)

 	(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket attribute)

 	(digi.xbee.packets.zigbee.RouteRecordIndicatorPacket attribute)

 	
 	FrameError (class in digi.xbee.models.status)

 	FrameErrorPacket (class in digi.xbee.packets.devicecloud)

 	freq_band (digi.xbee.models.zdo.NodeDescriptor attribute)

 	from_bytes() (digi.xbee.models.address.XBee16BitAddress class method)

 	(digi.xbee.models.address.XBee64BitAddress class method)

 	from_data() (digi.xbee.filesystem.FileSystemElement static method)

 	from_hex_string() (digi.xbee.models.address.XBee16BitAddress class method)

 	(digi.xbee.models.address.XBee64BitAddress class method)

 	from_string() (digi.xbee.models.address.XBeeIMEIAddress class method)

 	fs_entries (digi.xbee.models.filesystem.OpenDirCmdResponse attribute)

 	(digi.xbee.models.filesystem.ReadDirCmdResponse attribute)

 	fs_id (digi.xbee.models.filesystem.CloseDirCmdRequest attribute)

 	(digi.xbee.models.filesystem.CloseFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.CreateDirCmdRequest attribute)

 	(digi.xbee.models.filesystem.DeleteCmdRequest attribute)

 	(digi.xbee.models.filesystem.FileIdCmd attribute)

 	(digi.xbee.models.filesystem.FileIdNameCmd attribute)

 	(digi.xbee.models.filesystem.GetPathIdCmdRequest attribute)

 	(digi.xbee.models.filesystem.GetPathIdCmdResponse attribute)

 	(digi.xbee.models.filesystem.HashFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.OpenDirCmdRequest attribute)

 	(digi.xbee.models.filesystem.OpenDirCmdResponse attribute)

 	(digi.xbee.models.filesystem.OpenFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.OpenFileCmdResponse attribute)

 	(digi.xbee.models.filesystem.ReadDirCmdRequest attribute)

 	(digi.xbee.models.filesystem.ReadDirCmdResponse attribute)

 	(digi.xbee.models.filesystem.ReadFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.ReadFileCmdResponse attribute)

 	(digi.xbee.models.filesystem.RenameCmdRequest attribute)

 	(digi.xbee.models.filesystem.WriteFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.WriteFileCmdResponse attribute)

 	FSCmd (class in digi.xbee.models.filesystem)

 	FSCmdType (class in digi.xbee.models.filesystem)

 	FSCommandStatus (class in digi.xbee.models.status)

 	FSRequestPacket (class in digi.xbee.packets.filesystem)

 	FSResponsePacket (class in digi.xbee.packets.filesystem)

 	full() (digi.xbee.reader.XBeeQueue method)

 	full_path (digi.xbee.models.filesystem.GetPathIdCmdResponse attribute)

G

 	
 	GenericXBeePacket (class in digi.xbee.packets.base)

 	get() (digi.xbee.reader.XBeeQueue method)

 	get_16bit_addr() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_64bit_addr() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_access_point() (digi.xbee.devices.WiFiDevice method)

 	get_access_point_timeout() (digi.xbee.devices.WiFiDevice method)

 	get_adc_value() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_ai_status() (digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_analog_value() (digi.xbee.io.IOSample method)

 	get_api_output_mode() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_api_output_mode_value() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_bluetooth_data_received_callbacks() (digi.xbee.reader.PacketListener method)

 	get_bluetooth_mac_addr() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_by_id() (digi.xbee.reader.XBeeQueue method)

 	get_by_ip() (digi.xbee.reader.XBeeQueue method)

 	get_by_remote() (digi.xbee.reader.XBeeQueue method)

 	get_cellular_ai_status() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	get_checksum() (digi.xbee.packets.base.GenericXBeePacket method)

 	(digi.xbee.packets.base.UnknownXBeePacket method)

 	(digi.xbee.packets.base.XBeeAPIPacket method)

 	(digi.xbee.packets.base.XBeePacket method)

 	(digi.xbee.packets.cellular.RXSMSPacket method)

 	(digi.xbee.packets.cellular.TXSMSPacket method)

 	(digi.xbee.packets.common.ATCommPacket method)

 	(digi.xbee.packets.common.ATCommQueuePacket method)

 	(digi.xbee.packets.common.ATCommResponsePacket method)

 	(digi.xbee.packets.common.ExplicitAddressingPacket method)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket method)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket method)

 	(digi.xbee.packets.common.ModemStatusPacket method)

 	(digi.xbee.packets.common.ReceivePacket method)

 	(digi.xbee.packets.common.RemoteATCommandPacket method)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket method)

 	(digi.xbee.packets.common.TransmitPacket method)

 	(digi.xbee.packets.common.TransmitStatusPacket method)

 	(digi.xbee.packets.devicecloud.DeviceRequestPacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket method)

 	(digi.xbee.packets.devicecloud.FrameErrorPacket method)

 	(digi.xbee.packets.devicecloud.SendDataRequestPacket method)

 	(digi.xbee.packets.devicecloud.SendDataResponsePacket method)

 	(digi.xbee.packets.digimesh.RouteInformationPacket method)

 	(digi.xbee.packets.filesystem.FSRequestPacket method)

 	(digi.xbee.packets.filesystem.FSResponsePacket method)

 	(digi.xbee.packets.filesystem.RemoteFSRequestPacket method)

 	(digi.xbee.packets.filesystem.RemoteFSResponsePacket method)

 	(digi.xbee.packets.network.RXIPv4Packet method)

 	(digi.xbee.packets.network.TXIPv4Packet method)

 	(digi.xbee.packets.raw.RX16IOPacket method)

 	(digi.xbee.packets.raw.RX16Packet method)

 	(digi.xbee.packets.raw.RX64IOPacket method)

 	(digi.xbee.packets.raw.RX64Packet method)

 	(digi.xbee.packets.raw.TX16Packet method)

 	(digi.xbee.packets.raw.TX64Packet method)

 	(digi.xbee.packets.raw.TXStatusPacket method)

 	(digi.xbee.packets.relay.UserDataRelayOutputPacket method)

 	(digi.xbee.packets.relay.UserDataRelayPacket method)

 	(digi.xbee.packets.socket.SocketBindListenPacket method)

 	(digi.xbee.packets.socket.SocketClosePacket method)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket method)

 	(digi.xbee.packets.socket.SocketConnectPacket method)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket method)

 	(digi.xbee.packets.socket.SocketCreatePacket method)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket method)

 	(digi.xbee.packets.socket.SocketListenResponsePacket method)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket method)

 	(digi.xbee.packets.socket.SocketOptionRequestPacket method)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket method)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket method)

 	(digi.xbee.packets.socket.SocketReceivePacket method)

 	(digi.xbee.packets.socket.SocketSendPacket method)

 	(digi.xbee.packets.socket.SocketSendToPacket method)

 	(digi.xbee.packets.socket.SocketStatePacket method)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket method)

 	(digi.xbee.packets.zigbee.CreateSourceRoutePacket method)

 	(digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket method)

 	(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket method)

 	(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket method)

 	(digi.xbee.packets.zigbee.RouteRecordIndicatorPacket method)

 	get_comm_iface() (digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	get_connections() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	get_current_directory() (digi.xbee.filesystem.LocalXBeeFileSystemManager method)

 	get_current_frame_id() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_data_queue() (digi.xbee.reader.PacketListener method)

 	get_data_received_callbacks() (digi.xbee.reader.PacketListener method)

 	get_deep_discovery_options() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	get_deep_discovery_timeouts() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	get_dest_address() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_dest_ip_addr() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	get_device_by_16() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	get_device_by_64() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	get_device_by_node_id() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	get_devices() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	get_digital_value() (digi.xbee.io.IOSample method)

 	get_dio_value() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_discovery_callbacks() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	get_discovery_options() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	get_discovery_timeout() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	get_dns_address() (digi.xbee.devices.WiFiDevice method)

 	get_explicit_data_received_callbacks() (digi.xbee.reader.PacketListener method)

 	get_explicit_queue() (digi.xbee.reader.PacketListener method)

 	get_file() (digi.xbee.filesystem.FileSystemManager method)

 	(digi.xbee.filesystem.LocalXBeeFileSystemManager method)

 	get_file_hash() (digi.xbee.filesystem.FileSystemManager method)

 	(digi.xbee.filesystem.LocalXBeeFileSystemManager method)

 	get_file_manager() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_file_ymodem() (in module digi.xbee.util.xmodem)

 	get_firmware_version() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_frame_spec_data() (digi.xbee.packets.base.GenericXBeePacket method)

 	(digi.xbee.packets.base.UnknownXBeePacket method)

 	(digi.xbee.packets.base.XBeeAPIPacket method)

 	(digi.xbee.packets.base.XBeePacket method)

 	(digi.xbee.packets.cellular.RXSMSPacket method)

 	(digi.xbee.packets.cellular.TXSMSPacket method)

 	(digi.xbee.packets.common.ATCommPacket method)

 	(digi.xbee.packets.common.ATCommQueuePacket method)

 	(digi.xbee.packets.common.ATCommResponsePacket method)

 	(digi.xbee.packets.common.ExplicitAddressingPacket method)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket method)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket method)

 	(digi.xbee.packets.common.ModemStatusPacket method)

 	(digi.xbee.packets.common.ReceivePacket method)

 	(digi.xbee.packets.common.RemoteATCommandPacket method)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket method)

 	(digi.xbee.packets.common.TransmitPacket method)

 	(digi.xbee.packets.common.TransmitStatusPacket method)

 	(digi.xbee.packets.devicecloud.DeviceRequestPacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket method)

 	(digi.xbee.packets.devicecloud.FrameErrorPacket method)

 	(digi.xbee.packets.devicecloud.SendDataRequestPacket method)

 	(digi.xbee.packets.devicecloud.SendDataResponsePacket method)

 	(digi.xbee.packets.digimesh.RouteInformationPacket method)

 	(digi.xbee.packets.filesystem.FSRequestPacket method)

 	(digi.xbee.packets.filesystem.FSResponsePacket method)

 	(digi.xbee.packets.filesystem.RemoteFSRequestPacket method)

 	(digi.xbee.packets.filesystem.RemoteFSResponsePacket method)

 	(digi.xbee.packets.network.RXIPv4Packet method)

 	(digi.xbee.packets.network.TXIPv4Packet method)

 	(digi.xbee.packets.raw.RX16IOPacket method)

 	(digi.xbee.packets.raw.RX16Packet method)

 	(digi.xbee.packets.raw.RX64IOPacket method)

 	(digi.xbee.packets.raw.RX64Packet method)

 	(digi.xbee.packets.raw.TX16Packet method)

 	(digi.xbee.packets.raw.TX64Packet method)

 	(digi.xbee.packets.raw.TXStatusPacket method)

 	(digi.xbee.packets.relay.UserDataRelayOutputPacket method)

 	(digi.xbee.packets.relay.UserDataRelayPacket method)

 	(digi.xbee.packets.socket.SocketBindListenPacket method)

 	(digi.xbee.packets.socket.SocketClosePacket method)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket method)

 	(digi.xbee.packets.socket.SocketConnectPacket method)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket method)

 	(digi.xbee.packets.socket.SocketCreatePacket method)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket method)

 	(digi.xbee.packets.socket.SocketListenResponsePacket method)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket method)

 	(digi.xbee.packets.socket.SocketOptionRequestPacket method)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket method)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket method)

 	(digi.xbee.packets.socket.SocketReceivePacket method)

 	(digi.xbee.packets.socket.SocketSendPacket method)

 	(digi.xbee.packets.socket.SocketSendToPacket method)

 	(digi.xbee.packets.socket.SocketStatePacket method)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket method)

 	(digi.xbee.packets.zigbee.CreateSourceRoutePacket method)

 	(digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket method)

 	(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket method)

 	(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket method)

 	(digi.xbee.packets.zigbee.RouteRecordIndicatorPacket method)

 	get_frame_type() (digi.xbee.packets.base.GenericXBeePacket method)

 	(digi.xbee.packets.base.UnknownXBeePacket method)

 	(digi.xbee.packets.base.XBeeAPIPacket method)

 	(digi.xbee.packets.cellular.RXSMSPacket method)

 	(digi.xbee.packets.cellular.TXSMSPacket method)

 	(digi.xbee.packets.common.ATCommPacket method)

 	(digi.xbee.packets.common.ATCommQueuePacket method)

 	(digi.xbee.packets.common.ATCommResponsePacket method)

 	(digi.xbee.packets.common.ExplicitAddressingPacket method)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket method)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket method)

 	(digi.xbee.packets.common.ModemStatusPacket method)

 	(digi.xbee.packets.common.ReceivePacket method)

 	(digi.xbee.packets.common.RemoteATCommandPacket method)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket method)

 	(digi.xbee.packets.common.TransmitPacket method)

 	(digi.xbee.packets.common.TransmitStatusPacket method)

 	(digi.xbee.packets.devicecloud.DeviceRequestPacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket method)

 	(digi.xbee.packets.devicecloud.FrameErrorPacket method)

 	(digi.xbee.packets.devicecloud.SendDataRequestPacket method)

 	(digi.xbee.packets.devicecloud.SendDataResponsePacket method)

 	(digi.xbee.packets.digimesh.RouteInformationPacket method)

 	(digi.xbee.packets.filesystem.FSRequestPacket method)

 	(digi.xbee.packets.filesystem.FSResponsePacket method)

 	(digi.xbee.packets.filesystem.RemoteFSRequestPacket method)

 	(digi.xbee.packets.filesystem.RemoteFSResponsePacket method)

 	(digi.xbee.packets.network.RXIPv4Packet method)

 	(digi.xbee.packets.network.TXIPv4Packet method)

 	(digi.xbee.packets.raw.RX16IOPacket method)

 	(digi.xbee.packets.raw.RX16Packet method)

 	(digi.xbee.packets.raw.RX64IOPacket method)

 	(digi.xbee.packets.raw.RX64Packet method)

 	(digi.xbee.packets.raw.TX16Packet method)

 	(digi.xbee.packets.raw.TX64Packet method)

 	(digi.xbee.packets.raw.TXStatusPacket method)

 	(digi.xbee.packets.relay.UserDataRelayOutputPacket method)

 	(digi.xbee.packets.relay.UserDataRelayPacket method)

 	(digi.xbee.packets.socket.SocketBindListenPacket method)

 	(digi.xbee.packets.socket.SocketClosePacket method)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket method)

 	(digi.xbee.packets.socket.SocketConnectPacket method)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket method)

 	(digi.xbee.packets.socket.SocketCreatePacket method)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket method)

 	(digi.xbee.packets.socket.SocketListenResponsePacket method)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket method)

 	(digi.xbee.packets.socket.SocketOptionRequestPacket method)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket method)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket method)

 	(digi.xbee.packets.socket.SocketReceivePacket method)

 	(digi.xbee.packets.socket.SocketSendPacket method)

 	(digi.xbee.packets.socket.SocketSendToPacket method)

 	(digi.xbee.packets.socket.SocketStatePacket method)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket method)

 	(digi.xbee.packets.zigbee.CreateSourceRoutePacket method)

 	(digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket method)

 	(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket method)

 	(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket method)

 	(digi.xbee.packets.zigbee.RouteRecordIndicatorPacket method)

 	
 	get_frame_type_value() (digi.xbee.packets.base.GenericXBeePacket method)

 	(digi.xbee.packets.base.UnknownXBeePacket method)

 	(digi.xbee.packets.base.XBeeAPIPacket method)

 	(digi.xbee.packets.cellular.RXSMSPacket method)

 	(digi.xbee.packets.cellular.TXSMSPacket method)

 	(digi.xbee.packets.common.ATCommPacket method)

 	(digi.xbee.packets.common.ATCommQueuePacket method)

 	(digi.xbee.packets.common.ATCommResponsePacket method)

 	(digi.xbee.packets.common.ExplicitAddressingPacket method)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket method)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket method)

 	(digi.xbee.packets.common.ModemStatusPacket method)

 	(digi.xbee.packets.common.ReceivePacket method)

 	(digi.xbee.packets.common.RemoteATCommandPacket method)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket method)

 	(digi.xbee.packets.common.TransmitPacket method)

 	(digi.xbee.packets.common.TransmitStatusPacket method)

 	(digi.xbee.packets.devicecloud.DeviceRequestPacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket method)

 	(digi.xbee.packets.devicecloud.FrameErrorPacket method)

 	(digi.xbee.packets.devicecloud.SendDataRequestPacket method)

 	(digi.xbee.packets.devicecloud.SendDataResponsePacket method)

 	(digi.xbee.packets.digimesh.RouteInformationPacket method)

 	(digi.xbee.packets.filesystem.FSRequestPacket method)

 	(digi.xbee.packets.filesystem.FSResponsePacket method)

 	(digi.xbee.packets.filesystem.RemoteFSRequestPacket method)

 	(digi.xbee.packets.filesystem.RemoteFSResponsePacket method)

 	(digi.xbee.packets.network.RXIPv4Packet method)

 	(digi.xbee.packets.network.TXIPv4Packet method)

 	(digi.xbee.packets.raw.RX16IOPacket method)

 	(digi.xbee.packets.raw.RX16Packet method)

 	(digi.xbee.packets.raw.RX64IOPacket method)

 	(digi.xbee.packets.raw.RX64Packet method)

 	(digi.xbee.packets.raw.TX16Packet method)

 	(digi.xbee.packets.raw.TX64Packet method)

 	(digi.xbee.packets.raw.TXStatusPacket method)

 	(digi.xbee.packets.relay.UserDataRelayOutputPacket method)

 	(digi.xbee.packets.relay.UserDataRelayPacket method)

 	(digi.xbee.packets.socket.SocketBindListenPacket method)

 	(digi.xbee.packets.socket.SocketClosePacket method)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket method)

 	(digi.xbee.packets.socket.SocketConnectPacket method)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket method)

 	(digi.xbee.packets.socket.SocketCreatePacket method)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket method)

 	(digi.xbee.packets.socket.SocketListenResponsePacket method)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket method)

 	(digi.xbee.packets.socket.SocketOptionRequestPacket method)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket method)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket method)

 	(digi.xbee.packets.socket.SocketReceivePacket method)

 	(digi.xbee.packets.socket.SocketSendPacket method)

 	(digi.xbee.packets.socket.SocketSendToPacket method)

 	(digi.xbee.packets.socket.SocketStatePacket method)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket method)

 	(digi.xbee.packets.zigbee.CreateSourceRoutePacket method)

 	(digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket method)

 	(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket method)

 	(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket method)

 	(digi.xbee.packets.zigbee.RouteRecordIndicatorPacket method)

 	get_fs_frame_received_callbacks() (digi.xbee.reader.PacketListener method)

 	get_gateway_address() (digi.xbee.devices.WiFiDevice method)

 	get_hardware_version() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_hsb() (digi.xbee.models.address.XBee16BitAddress method)

 	get_imei_addr() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	get_int_from_byte() (in module digi.xbee.util.utils)

 	get_io_configuration() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_io_sample_received_callbacks() (digi.xbee.reader.PacketListener method)

 	get_io_sampling_rate() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_ip_addr() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	get_ip_addressing_mode() (digi.xbee.devices.WiFiDevice method)

 	get_ip_data_received_callbacks() (digi.xbee.reader.PacketListener method)

 	get_ip_queue() (digi.xbee.reader.PacketListener method)

 	get_local_file_hash() (in module digi.xbee.filesystem)

 	get_local_xbee_device() (digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	get_local_xbee_info() (digi.xbee.comm_interface.XBeeCommunicationInterface method)

 	(digi.xbee.serial.XBeeSerialPort method)

 	get_lsb() (digi.xbee.models.address.XBee16BitAddress method)

 	get_many_to_one_broadcasting_time() (digi.xbee.devices.ZigBeeDevice method)

 	get_mask_address() (digi.xbee.devices.WiFiDevice method)

 	get_micropython_data_received_callbacks() (digi.xbee.reader.PacketListener method)

 	get_modem_status_received_callbacks() (digi.xbee.reader.PacketListener method)

 	get_neighbor_table() (digi.xbee.models.zdo.NeighborTableReader method)

 	get_neighbors() (digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.models.zdo.NeighborFinder method)

 	get_network() (digi.xbee.comm_interface.XBeeCommunicationInterface method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.serial.XBeeSerialPort method)

 	get_next_frame_id() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_node_connections() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	get_node_descriptor() (digi.xbee.models.zdo.NodeDescriptorReader method)

 	get_node_id() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_nowait() (digi.xbee.reader.XBeeQueue method)

 	get_nt_limits() (digi.xbee.devices.DigiMeshNetwork class method)

 	(digi.xbee.devices.DigiPointNetwork class method)

 	(digi.xbee.devices.Raw802Network class method)

 	(digi.xbee.devices.XBeeNetwork class method)

 	(digi.xbee.devices.ZigBeeNetwork class method)

 	get_number_devices() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	get_ota_max_block_size() (digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	get_packet_received_callbacks() (digi.xbee.reader.PacketListener method)

 	get_packet_received_from_callbacks() (digi.xbee.reader.PacketListener method)

 	get_pan_id() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_parameter() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_parameter_string() (digi.xbee.models.atcomm.ATCommand method)

 	get_phone_number_byte_array() (digi.xbee.packets.cellular.RXSMSPacket method)

 	(digi.xbee.packets.cellular.TXSMSPacket method)

 	get_power_level() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_protocol() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_pwm_duty_cycle() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_queue() (digi.xbee.reader.PacketListener method)

 	get_read_timeout() (digi.xbee.serial.XBeeSerialPort method)

 	get_role() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_root() (digi.xbee.filesystem.FileSystemManager method)

 	get_route_info_callbacks() (digi.xbee.reader.PacketListener method)

 	get_route_record_received_callbacks() (digi.xbee.reader.PacketListener method)

 	get_route_table() (digi.xbee.models.zdo.RouteTableReader method)

 	get_route_to_node() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_routes() (digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_serial_port() (digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	get_setting_default_value() (digi.xbee.profile.XBeeProfile method)

 	get_sms_received_callbacks() (digi.xbee.reader.PacketListener method)

 	get_sock_info() (digi.xbee.xsocket.socket method)

 	get_socket_data_received_callbacks() (digi.xbee.reader.PacketListener method)

 	get_socket_data_received_from_callbacks() (digi.xbee.reader.PacketListener method)

 	get_socket_info() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	get_socket_state_received_callbacks() (digi.xbee.reader.PacketListener method)

 	get_sockets_list() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	get_sync_ops_timeout() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_usage_information() (digi.xbee.filesystem.LocalXBeeFileSystemManager method)

 	get_user_data_relay_received_callbacks() (digi.xbee.reader.PacketListener method)

 	get_volume_info() (digi.xbee.filesystem.FileSystemManager method)

 	get_wifi_ai_status() (digi.xbee.devices.WiFiDevice method)

 	get_xbee_device_callbacks() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	getblocking() (digi.xbee.xsocket.socket method)

 	GetPathIdCmdRequest (class in digi.xbee.models.filesystem)

 	GetPathIdCmdResponse (class in digi.xbee.models.filesystem)

 	getsocketopt() (digi.xbee.xsocket.socket method)

 	gettimeout() (digi.xbee.xsocket.socket method)

H

 	
 	hardware_version (digi.xbee.profile.XBeeProfile attribute)

 	HardwareVersion (class in digi.xbee.models.hw)

 	has_analog_value() (digi.xbee.io.IOSample method)

 	has_analog_values() (digi.xbee.io.IOSample method)

 	has_devices() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	has_digital_value() (digi.xbee.io.IOSample method)

 	has_digital_values() (digi.xbee.io.IOSample method)

 	has_explicit_packets() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	has_filesystem (digi.xbee.profile.XBeeProfile attribute)

 	
 	has_firmware_files (digi.xbee.profile.XBeeProfile attribute)

 	has_local_filesystem (digi.xbee.profile.XBeeProfile attribute)

 	has_local_firmware_files (digi.xbee.profile.XBeeProfile attribute)

 	has_packets() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	has_power_supply_value() (digi.xbee.io.IOSample method)

 	has_pwm_capability() (digi.xbee.io.IOLine method)

 	has_remote_filesystem (digi.xbee.profile.XBeeProfile attribute)

 	has_remote_firmware_files (digi.xbee.profile.XBeeProfile attribute)

 	HashFileCmdRequest (class in digi.xbee.models.filesystem)

 	HashFileCmdResponse (class in digi.xbee.models.filesystem)

 	hex_string_to_bytes() (in module digi.xbee.util.utils)

 	hex_to_string() (in module digi.xbee.util.utils)

 	hops (digi.xbee.packets.zigbee.CreateSourceRoutePacket attribute)

 	(digi.xbee.packets.zigbee.RouteRecordIndicatorPacket attribute)

I

 	
 	I2C_FUNCTIONALITY (digi.xbee.io.IOMode attribute)

 	id (digi.xbee.models.protocol.Role attribute)

 	(digi.xbee.models.zdo.NeighborRelationship attribute)

 	(digi.xbee.models.zdo.RouteStatus attribute)

 	ident (digi.xbee.reader.PacketListener attribute)

 	index (digi.xbee.io.IOLine attribute)

 	(digi.xbee.profile.FirmwareBaudrate attribute)

 	(digi.xbee.profile.FirmwareParity attribute)

 	(digi.xbee.profile.FirmwareStopbits attribute)

 	index() (digi.xbee.reader.BluetoothDataReceived method)

 	(digi.xbee.reader.DataReceived method)

 	(digi.xbee.reader.DeviceDiscovered method)

 	(digi.xbee.reader.DiscoveryProcessFinished method)

 	(digi.xbee.reader.EndDiscoveryScan method)

 	(digi.xbee.reader.ExplicitDataReceived method)

 	(digi.xbee.reader.FileSystemFrameReceived method)

 	(digi.xbee.reader.IOSampleReceived method)

 	(digi.xbee.reader.IPDataReceived method)

 	(digi.xbee.reader.InitDiscoveryScan method)

 	(digi.xbee.reader.MicroPythonDataReceived method)

 	(digi.xbee.reader.ModemStatusReceived method)

 	(digi.xbee.reader.NetworkModified method)

 	(digi.xbee.reader.PacketReceived method)

 	(digi.xbee.reader.PacketReceivedFrom method)

 	(digi.xbee.reader.RelayDataReceived method)

 	(digi.xbee.reader.RouteInformationReceived method)

 	(digi.xbee.reader.RouteReceived method)

 	(digi.xbee.reader.RouteRecordIndicatorReceived method)

 	(digi.xbee.reader.SMSReceived method)

 	(digi.xbee.reader.SocketDataReceived method)

 	(digi.xbee.reader.SocketDataReceivedFrom method)

 	(digi.xbee.reader.SocketStateReceived method)

 	(digi.xbee.reader.XBeeEvent method)

 	INDIRECT_TRANSMISSION (digi.xbee.models.options.TransmitOptions attribute)

 	InitDiscoveryScan (class in digi.xbee.reader)

 	insert() (digi.xbee.reader.BluetoothDataReceived method)

 	(digi.xbee.reader.DataReceived method)

 	(digi.xbee.reader.DeviceDiscovered method)

 	(digi.xbee.reader.DiscoveryProcessFinished method)

 	(digi.xbee.reader.EndDiscoveryScan method)

 	(digi.xbee.reader.ExplicitDataReceived method)

 	(digi.xbee.reader.FileSystemFrameReceived method)

 	(digi.xbee.reader.IOSampleReceived method)

 	(digi.xbee.reader.IPDataReceived method)

 	(digi.xbee.reader.InitDiscoveryScan method)

 	(digi.xbee.reader.MicroPythonDataReceived method)

 	(digi.xbee.reader.ModemStatusReceived method)

 	(digi.xbee.reader.NetworkModified method)

 	(digi.xbee.reader.PacketReceived method)

 	(digi.xbee.reader.PacketReceivedFrom method)

 	(digi.xbee.reader.RelayDataReceived method)

 	(digi.xbee.reader.RouteInformationReceived method)

 	(digi.xbee.reader.RouteReceived method)

 	(digi.xbee.reader.RouteRecordIndicatorReceived method)

 	(digi.xbee.reader.SMSReceived method)

 	(digi.xbee.reader.SocketDataReceived method)

 	(digi.xbee.reader.SocketDataReceivedFrom method)

 	(digi.xbee.reader.SocketStateReceived method)

 	(digi.xbee.reader.XBeeEvent method)

 	int_to_ascii() (in module digi.xbee.util.utils)

 	int_to_bytes() (in module digi.xbee.util.utils)

 	int_to_length() (in module digi.xbee.util.utils)

 	InvalidConfigurationException

 	InvalidOperatingModeException

 	InvalidPacketException

 	io_sample (digi.xbee.packets.common.IODataSampleRxIndicatorPacket attribute)

 	(digi.xbee.packets.raw.RX16IOPacket attribute)

 	(digi.xbee.packets.raw.RX64IOPacket attribute)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket attribute)

 	IODataSampleRxIndicatorPacket (class in digi.xbee.packets.common)

 	IODataSampleRxIndicatorWifiPacket (class in digi.xbee.packets.wifi)

 	IOLine (class in digi.xbee.io)

 	IOMode (class in digi.xbee.io)

 	IOSample (class in digi.xbee.io)

 	IOSampleReceived (class in digi.xbee.reader)

 	IOValue (class in digi.xbee.io)

 	ip_addr (digi.xbee.models.message.IPMessage attribute)

 	ip_protocol (digi.xbee.packets.network.RXIPv4Packet attribute)

 	(digi.xbee.packets.network.TXIPv4Packet attribute)

 	IPAddressingMode (class in digi.xbee.models.mode)

 	IPDataReceived (class in digi.xbee.reader)

 	IPDevice (class in digi.xbee.devices)

 	IPMessage (class in digi.xbee.models.message)

 	IPProtocol (class in digi.xbee.models.protocol)

 	is_alive() (digi.xbee.reader.PacketListener method)

 	is_apply_changes_enabled() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	is_bit_enabled() (in module digi.xbee.util.utils)

 	is_broadcast (digi.xbee.models.message.ExplicitXBeeMessage attribute)

 	(digi.xbee.models.message.XBeeMessage attribute)

 	is_broadcast() (digi.xbee.packets.base.GenericXBeePacket method)

 	(digi.xbee.packets.base.UnknownXBeePacket method)

 	(digi.xbee.packets.base.XBeeAPIPacket method)

 	(digi.xbee.packets.cellular.RXSMSPacket method)

 	(digi.xbee.packets.cellular.TXSMSPacket method)

 	(digi.xbee.packets.common.ATCommPacket method)

 	(digi.xbee.packets.common.ATCommQueuePacket method)

 	(digi.xbee.packets.common.ATCommResponsePacket method)

 	(digi.xbee.packets.common.ExplicitAddressingPacket method)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket method)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket method)

 	(digi.xbee.packets.common.ModemStatusPacket method)

 	(digi.xbee.packets.common.ReceivePacket method)

 	(digi.xbee.packets.common.RemoteATCommandPacket method)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket method)

 	(digi.xbee.packets.common.TransmitPacket method)

 	(digi.xbee.packets.common.TransmitStatusPacket method)

 	(digi.xbee.packets.devicecloud.DeviceRequestPacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket method)

 	(digi.xbee.packets.devicecloud.FrameErrorPacket method)

 	(digi.xbee.packets.devicecloud.SendDataRequestPacket method)

 	(digi.xbee.packets.devicecloud.SendDataResponsePacket method)

 	(digi.xbee.packets.digimesh.RouteInformationPacket method)

 	(digi.xbee.packets.filesystem.FSRequestPacket method)

 	(digi.xbee.packets.filesystem.FSResponsePacket method)

 	(digi.xbee.packets.filesystem.RemoteFSRequestPacket method)

 	(digi.xbee.packets.filesystem.RemoteFSResponsePacket method)

 	(digi.xbee.packets.network.RXIPv4Packet method)

 	(digi.xbee.packets.network.TXIPv4Packet method)

 	(digi.xbee.packets.raw.RX16IOPacket method)

 	(digi.xbee.packets.raw.RX16Packet method)

 	(digi.xbee.packets.raw.RX64IOPacket method)

 	(digi.xbee.packets.raw.RX64Packet method)

 	(digi.xbee.packets.raw.TX16Packet method)

 	(digi.xbee.packets.raw.TX64Packet method)

 	(digi.xbee.packets.raw.TXStatusPacket method)

 	(digi.xbee.packets.relay.UserDataRelayOutputPacket method)

 	(digi.xbee.packets.relay.UserDataRelayPacket method)

 	(digi.xbee.packets.socket.SocketBindListenPacket method)

 	(digi.xbee.packets.socket.SocketClosePacket method)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket method)

 	(digi.xbee.packets.socket.SocketConnectPacket method)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket method)

 	(digi.xbee.packets.socket.SocketCreatePacket method)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket method)

 	(digi.xbee.packets.socket.SocketListenResponsePacket method)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket method)

 	(digi.xbee.packets.socket.SocketOptionRequestPacket method)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket method)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket method)

 	(digi.xbee.packets.socket.SocketReceivePacket method)

 	(digi.xbee.packets.socket.SocketSendPacket method)

 	(digi.xbee.packets.socket.SocketSendToPacket method)

 	(digi.xbee.packets.socket.SocketStatePacket method)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket method)

 	(digi.xbee.packets.zigbee.CreateSourceRoutePacket method)

 	(digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket method)

 	(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket method)

 	(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket method)

 	(digi.xbee.packets.zigbee.RouteRecordIndicatorPacket method)

 	
 	is_connected (digi.xbee.filesystem.LocalXBeeFileSystemManager attribute)

 	(digi.xbee.xsocket.socket attribute)

 	is_connected() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	is_device_info_complete() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	is_dir (digi.xbee.filesystem.FileSystemElement attribute)

 	IS_DIR (digi.xbee.models.options.DirResponseFlag attribute)

 	is_discovery_running() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	is_interface_open (digi.xbee.comm_interface.XBeeCommunicationInterface attribute)

 	(digi.xbee.serial.XBeeSerialPort attribute)

 	is_known_node_addr() (digi.xbee.models.address.XBee16BitAddress class method)

 	(digi.xbee.models.address.XBee64BitAddress class method)

 	is_last (digi.xbee.models.filesystem.OpenDirCmdResponse attribute)

 	(digi.xbee.models.filesystem.ReadDirCmdResponse attribute)

 	IS_LAST (digi.xbee.models.options.DirResponseFlag attribute)

 	is_low_memory (digi.xbee.models.zdo.Route attribute)

 	is_many_to_one (digi.xbee.models.zdo.Route attribute)

 	is_node_in_network() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	is_op_mode_valid() (digi.xbee.sender.PacketSender method)

 	is_open() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.profile.XBeeProfile method)

 	is_remote() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	is_route_record_required (digi.xbee.models.zdo.Route attribute)

 	is_rssi (digi.xbee.devices.LinkQuality attribute)

 	is_running() (digi.xbee.reader.PacketListener method)

 	is_secure (digi.xbee.filesystem.FileSystemElement attribute)

 	IS_SECURE (digi.xbee.models.options.DirResponseFlag attribute)

 	is_valid() (digi.xbee.models.address.XBee16BitAddress class method)

 	(digi.xbee.models.address.XBee64BitAddress class method)

 	(digi.xbee.models.address.XBeeIMEIAddress class method)

 	isAlive() (digi.xbee.reader.PacketListener method)

J

 	
 	join() (digi.xbee.reader.PacketListener method)

 	(digi.xbee.reader.XBeeQueue method)

K

 	
 	key (digi.xbee.packets.zigbee.RegisterJoiningDevicePacket attribute)

L

 	
 	LegacyHardwareVersion (class in digi.xbee.models.hw)

 	length (digi.xbee.packets.digimesh.RouteInformationPacket attribute)

 	length_to_int() (in module digi.xbee.util.utils)

 	letter (digi.xbee.models.hw.LegacyHardwareVersion attribute)

 	LinkQuality (class in digi.xbee.devices)

 	list_directory() (digi.xbee.filesystem.FileSystemManager method)

 	(digi.xbee.filesystem.LocalXBeeFileSystemManager method)

 	listen() (digi.xbee.xsocket.socket method)

 	local_interface (digi.xbee.models.message.UserDataRelayMessage attribute)

 	local_port (digi.xbee.models.info.SocketInfo attribute)

 	LocalXBeeFileSystemManager (class in digi.xbee.filesystem)

 	log (digi.xbee.devices.AbstractXBeeDevice attribute)

 	(digi.xbee.devices.CellularDevice attribute)

 	(digi.xbee.devices.DigiMeshDevice attribute)

 	(digi.xbee.devices.DigiPointDevice attribute)

 	(digi.xbee.devices.IPDevice attribute)

 	(digi.xbee.devices.LPWANDevice attribute)

 	(digi.xbee.devices.NBIoTDevice attribute)

 	(digi.xbee.devices.Raw802Device attribute)

 	(digi.xbee.devices.RemoteDigiMeshDevice attribute)

 	(digi.xbee.devices.RemoteDigiPointDevice attribute)

 	(digi.xbee.devices.RemoteRaw802Device attribute)

 	(digi.xbee.devices.RemoteXBeeDevice attribute)

 	(digi.xbee.devices.RemoteZigBeeDevice attribute)

 	(digi.xbee.devices.WiFiDevice attribute)

 	(digi.xbee.devices.XBeeDevice attribute)

 	(digi.xbee.devices.ZigBeeDevice attribute)

 	
 	LPWANDevice (class in digi.xbee.devices)

 	lq (digi.xbee.devices.LinkQuality attribute)

 	(digi.xbee.models.zdo.Neighbor attribute)

 	lq_a2b (digi.xbee.devices.Connection attribute)

 	lq_b2a (digi.xbee.devices.Connection attribute)

M

 	
 	mac_capabilities (digi.xbee.models.zdo.NodeDescriptor attribute)

 	make_directory() (digi.xbee.filesystem.FileSystemManager method)

 	(digi.xbee.filesystem.LocalXBeeFileSystemManager method)

 	manufacturer_code (digi.xbee.models.zdo.NodeDescriptor attribute)

 	max_buffer_size (digi.xbee.models.zdo.NodeDescriptor attribute)

 	max_in_transfer_size (digi.xbee.models.zdo.NodeDescriptor attribute)

 	max_out_transfer_size (digi.xbee.models.zdo.NodeDescriptor attribute)

 	MAX_TIME_BETWEEN_REQUESTS (digi.xbee.devices.XBeeNetwork attribute)

 	MAX_TIME_BETWEEN_SCANS (digi.xbee.devices.XBeeNetwork attribute)

 	
 	MicroPythonDataReceived (class in digi.xbee.reader)

 	min_io_sample_payload() (digi.xbee.io.IOSample static method)

 	MIN_TIME_BETWEEN_REQUESTS (digi.xbee.devices.XBeeNetwork attribute)

 	MIN_TIME_BETWEEN_SCANS (digi.xbee.devices.XBeeNetwork attribute)

 	modem_status (digi.xbee.packets.common.ModemStatusPacket attribute)

 	ModemStatus (class in digi.xbee.models.status)

 	ModemStatusPacket (class in digi.xbee.packets.common)

 	ModemStatusReceived (class in digi.xbee.reader)

 	move() (digi.xbee.filesystem.FileSystemManager method)

 	move_element() (digi.xbee.filesystem.LocalXBeeFileSystemManager method)

N

 	
 	name (digi.xbee.filesystem.FileSystemElement attribute)

 	(digi.xbee.models.filesystem.CreateDirCmdRequest attribute)

 	(digi.xbee.models.filesystem.DeleteCmdRequest attribute)

 	(digi.xbee.models.filesystem.FileIdNameCmd attribute)

 	(digi.xbee.models.filesystem.GetPathIdCmdRequest attribute)

 	(digi.xbee.models.filesystem.HashFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.OpenDirCmdRequest attribute)

 	(digi.xbee.models.filesystem.OpenFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.RenameCmdRequest attribute)

 	(digi.xbee.models.filesystem.VolFormatCmdRequest attribute)

 	(digi.xbee.models.filesystem.VolStatCmdRequest attribute)

 	(digi.xbee.profile.XBeeProfileSetting attribute)

 	(digi.xbee.reader.PacketListener attribute)

 	NBIoTDevice (class in digi.xbee.devices)

 	ND_PACKET_FINISH (digi.xbee.devices.XBeeNetwork attribute)

 	ND_PACKET_REMOTE (digi.xbee.devices.XBeeNetwork attribute)

 	needs_id() (digi.xbee.packets.base.GenericXBeePacket method)

 	(digi.xbee.packets.base.UnknownXBeePacket method)

 	(digi.xbee.packets.base.XBeeAPIPacket method)

 	(digi.xbee.packets.cellular.RXSMSPacket method)

 	(digi.xbee.packets.cellular.TXSMSPacket method)

 	(digi.xbee.packets.common.ATCommPacket method)

 	(digi.xbee.packets.common.ATCommQueuePacket method)

 	(digi.xbee.packets.common.ATCommResponsePacket method)

 	(digi.xbee.packets.common.ExplicitAddressingPacket method)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket method)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket method)

 	(digi.xbee.packets.common.ModemStatusPacket method)

 	(digi.xbee.packets.common.ReceivePacket method)

 	(digi.xbee.packets.common.RemoteATCommandPacket method)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket method)

 	(digi.xbee.packets.common.TransmitPacket method)

 	(digi.xbee.packets.common.TransmitStatusPacket method)

 	(digi.xbee.packets.devicecloud.DeviceRequestPacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket method)

 	(digi.xbee.packets.devicecloud.FrameErrorPacket method)

 	(digi.xbee.packets.devicecloud.SendDataRequestPacket method)

 	(digi.xbee.packets.devicecloud.SendDataResponsePacket method)

 	(digi.xbee.packets.digimesh.RouteInformationPacket method)

 	(digi.xbee.packets.filesystem.FSRequestPacket method)

 	(digi.xbee.packets.filesystem.FSResponsePacket method)

 	(digi.xbee.packets.filesystem.RemoteFSRequestPacket method)

 	(digi.xbee.packets.filesystem.RemoteFSResponsePacket method)

 	(digi.xbee.packets.network.RXIPv4Packet method)

 	(digi.xbee.packets.network.TXIPv4Packet method)

 	(digi.xbee.packets.raw.RX16IOPacket method)

 	(digi.xbee.packets.raw.RX16Packet method)

 	(digi.xbee.packets.raw.RX64IOPacket method)

 	(digi.xbee.packets.raw.RX64Packet method)

 	(digi.xbee.packets.raw.TX16Packet method)

 	(digi.xbee.packets.raw.TX64Packet method)

 	(digi.xbee.packets.raw.TXStatusPacket method)

 	(digi.xbee.packets.relay.UserDataRelayOutputPacket method)

 	(digi.xbee.packets.relay.UserDataRelayPacket method)

 	(digi.xbee.packets.socket.SocketBindListenPacket method)

 	(digi.xbee.packets.socket.SocketClosePacket method)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket method)

 	(digi.xbee.packets.socket.SocketConnectPacket method)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket method)

 	(digi.xbee.packets.socket.SocketCreatePacket method)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket method)

 	(digi.xbee.packets.socket.SocketListenResponsePacket method)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket method)

 	(digi.xbee.packets.socket.SocketOptionRequestPacket method)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket method)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket method)

 	(digi.xbee.packets.socket.SocketReceivePacket method)

 	(digi.xbee.packets.socket.SocketSendPacket method)

 	(digi.xbee.packets.socket.SocketSendToPacket method)

 	(digi.xbee.packets.socket.SocketStatePacket method)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket method)

 	(digi.xbee.packets.zigbee.CreateSourceRoutePacket method)

 	(digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket method)

 	(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket method)

 	(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket method)

 	(digi.xbee.packets.zigbee.RouteRecordIndicatorPacket method)

 	
 	Neighbor (class in digi.xbee.models.zdo)

 	NeighborDiscoveryMode (class in digi.xbee.models.mode)

 	NeighborFinder (class in digi.xbee.models.zdo)

 	NeighborRelationship (class in digi.xbee.models.zdo)

 	NeighborTableReader (class in digi.xbee.models.zdo)

 	NetworkDiscoveryStatus (class in digi.xbee.models.status)

 	NetworkEventReason (class in digi.xbee.devices)

 	NetworkEventType (class in digi.xbee.devices)

 	NetworkModified (class in digi.xbee.reader)

 	new_name (digi.xbee.models.filesystem.RenameCmdRequest attribute)

 	next_hop (digi.xbee.models.zdo.Route attribute)

 	node (digi.xbee.models.zdo.Neighbor attribute)

 	node_a (digi.xbee.devices.Connection attribute)

 	node_b (digi.xbee.devices.Connection attribute)

 	NodeDescriptor (class in digi.xbee.models.zdo)

 	NodeDescriptorReader (class in digi.xbee.models.zdo)

 	NONE (digi.xbee.models.options.ReceiveOptions attribute)

 	(digi.xbee.models.options.RemoteATCmdOptions attribute)

 	(digi.xbee.models.options.TransmitOptions attribute)

 	np_value (digi.xbee.filesystem.FileSystemManager attribute)

 	number_of_hops (digi.xbee.packets.zigbee.CreateSourceRoutePacket attribute)

 	(digi.xbee.packets.zigbee.RouteRecordIndicatorPacket attribute)

O

 	
 	offset (digi.xbee.models.filesystem.ReadFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.ReadFileCmdResponse attribute)

 	(digi.xbee.models.filesystem.WriteFileCmdRequest attribute)

 	op_mode (digi.xbee.packets.base.GenericXBeePacket attribute)

 	(digi.xbee.packets.base.UnknownXBeePacket attribute)

 	(digi.xbee.packets.base.XBeeAPIPacket attribute)

 	(digi.xbee.packets.base.XBeePacket attribute)

 	(digi.xbee.packets.cellular.RXSMSPacket attribute)

 	(digi.xbee.packets.cellular.TXSMSPacket attribute)

 	(digi.xbee.packets.common.ATCommPacket attribute)

 	(digi.xbee.packets.common.ATCommQueuePacket attribute)

 	(digi.xbee.packets.common.ATCommResponsePacket attribute)

 	(digi.xbee.packets.common.ExplicitAddressingPacket attribute)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket attribute)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket attribute)

 	(digi.xbee.packets.common.ModemStatusPacket attribute)

 	(digi.xbee.packets.common.ReceivePacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandPacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket attribute)

 	(digi.xbee.packets.common.TransmitPacket attribute)

 	(digi.xbee.packets.common.TransmitStatusPacket attribute)

 	(digi.xbee.packets.devicecloud.DeviceRequestPacket attribute)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket attribute)

 	(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket attribute)

 	(digi.xbee.packets.devicecloud.FrameErrorPacket attribute)

 	(digi.xbee.packets.devicecloud.SendDataRequestPacket attribute)

 	(digi.xbee.packets.devicecloud.SendDataResponsePacket attribute)

 	(digi.xbee.packets.digimesh.RouteInformationPacket attribute)

 	(digi.xbee.packets.filesystem.FSRequestPacket attribute)

 	(digi.xbee.packets.filesystem.FSResponsePacket attribute)

 	(digi.xbee.packets.filesystem.RemoteFSRequestPacket attribute)

 	(digi.xbee.packets.filesystem.RemoteFSResponsePacket attribute)

 	(digi.xbee.packets.network.RXIPv4Packet attribute)

 	(digi.xbee.packets.network.TXIPv4Packet attribute)

 	(digi.xbee.packets.raw.RX16IOPacket attribute)

 	(digi.xbee.packets.raw.RX16Packet attribute)

 	(digi.xbee.packets.raw.RX64IOPacket attribute)

 	(digi.xbee.packets.raw.RX64Packet attribute)

 	(digi.xbee.packets.raw.TX16Packet attribute)

 	(digi.xbee.packets.raw.TX64Packet attribute)

 	(digi.xbee.packets.raw.TXStatusPacket attribute)

 	(digi.xbee.packets.relay.UserDataRelayOutputPacket attribute)

 	(digi.xbee.packets.relay.UserDataRelayPacket attribute)

 	(digi.xbee.packets.socket.SocketBindListenPacket attribute)

 	(digi.xbee.packets.socket.SocketClosePacket attribute)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketConnectPacket attribute)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketCreatePacket attribute)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketListenResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket attribute)

 	(digi.xbee.packets.socket.SocketOptionRequestPacket attribute)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket attribute)

 	(digi.xbee.packets.socket.SocketReceivePacket attribute)

 	(digi.xbee.packets.socket.SocketSendPacket attribute)

 	(digi.xbee.packets.socket.SocketSendToPacket attribute)

 	(digi.xbee.packets.socket.SocketStatePacket attribute)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket attribute)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket attribute)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket attribute)

 	(digi.xbee.packets.zigbee.CreateSourceRoutePacket attribute)

 	(digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket attribute)

 	(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket attribute)

 	(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket attribute)

 	(digi.xbee.packets.zigbee.RouteRecordIndicatorPacket attribute)

 	open() (digi.xbee.comm_interface.XBeeCommunicationInterface method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.profile.XBeeProfile method)

 	(digi.xbee.serial.XBeeSerialPort method)

 	OpenDirCmdRequest (class in digi.xbee.models.filesystem)

 	OpenDirCmdResponse (class in digi.xbee.models.filesystem)

 	OpenFileCmdRequest (class in digi.xbee.models.filesystem)

 	OpenFileCmdResponse (class in digi.xbee.models.filesystem)

 	operating_mode (digi.xbee.devices.CellularDevice attribute)

 	(digi.xbee.devices.DigiMeshDevice attribute)

 	(digi.xbee.devices.DigiPointDevice attribute)

 	(digi.xbee.devices.IPDevice attribute)

 	(digi.xbee.devices.LPWANDevice attribute)

 	(digi.xbee.devices.NBIoTDevice attribute)

 	(digi.xbee.devices.Raw802Device attribute)

 	(digi.xbee.devices.WiFiDevice attribute)

 	(digi.xbee.devices.XBeeDevice attribute)

 	(digi.xbee.devices.ZigBeeDevice attribute)

 	OperatingMode (class in digi.xbee.models.mode)

 	OperationNotSupportedException

 	option (digi.xbee.packets.socket.SocketOptionRequestPacket attribute)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket attribute)

 	option_data (digi.xbee.packets.socket.SocketOptionRequestPacket attribute)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket attribute)

 	options (digi.xbee.models.filesystem.OpenFileCmdRequest attribute)

 	(digi.xbee.packets.devicecloud.SendDataRequestPacket attribute)

 	(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket attribute)

 	
 	OPTIONS_CLOSE_SOCKET (digi.xbee.packets.network.TXIPv4Packet attribute)

 	OPTIONS_LEAVE_SOCKET_OPEN (digi.xbee.packets.network.TXIPv4Packet attribute)

 	OTAFirmwareUpdateStatusPacket (class in digi.xbee.packets.zigbee)

 	output() (digi.xbee.models.filesystem.CloseDirCmdRequest method)

 	(digi.xbee.models.filesystem.CloseDirCmdResponse method)

 	(digi.xbee.models.filesystem.CloseFileCmdRequest method)

 	(digi.xbee.models.filesystem.CloseFileCmdResponse method)

 	(digi.xbee.models.filesystem.CreateDirCmdRequest method)

 	(digi.xbee.models.filesystem.CreateDirCmdResponse method)

 	(digi.xbee.models.filesystem.DeleteCmdRequest method)

 	(digi.xbee.models.filesystem.DeleteCmdResponse method)

 	(digi.xbee.models.filesystem.FSCmd method)

 	(digi.xbee.models.filesystem.FileIdCmd method)

 	(digi.xbee.models.filesystem.FileIdNameCmd method)

 	(digi.xbee.models.filesystem.GetPathIdCmdRequest method)

 	(digi.xbee.models.filesystem.GetPathIdCmdResponse method)

 	(digi.xbee.models.filesystem.HashFileCmdRequest method)

 	(digi.xbee.models.filesystem.HashFileCmdResponse method)

 	(digi.xbee.models.filesystem.OpenDirCmdRequest method)

 	(digi.xbee.models.filesystem.OpenDirCmdResponse method)

 	(digi.xbee.models.filesystem.OpenFileCmdRequest method)

 	(digi.xbee.models.filesystem.OpenFileCmdResponse method)

 	(digi.xbee.models.filesystem.ReadDirCmdRequest method)

 	(digi.xbee.models.filesystem.ReadDirCmdResponse method)

 	(digi.xbee.models.filesystem.ReadFileCmdRequest method)

 	(digi.xbee.models.filesystem.ReadFileCmdResponse method)

 	(digi.xbee.models.filesystem.RenameCmdRequest method)

 	(digi.xbee.models.filesystem.RenameCmdResponse method)

 	(digi.xbee.models.filesystem.UnknownFSCmd method)

 	(digi.xbee.models.filesystem.VolFormatCmdRequest method)

 	(digi.xbee.models.filesystem.VolFormatCmdResponse method)

 	(digi.xbee.models.filesystem.VolStatCmdRequest method)

 	(digi.xbee.models.filesystem.VolStatCmdResponse method)

 	(digi.xbee.models.filesystem.WriteFileCmdRequest method)

 	(digi.xbee.models.filesystem.WriteFileCmdResponse method)

 	(digi.xbee.packets.base.GenericXBeePacket method)

 	(digi.xbee.packets.base.UnknownXBeePacket method)

 	(digi.xbee.packets.base.XBeeAPIPacket method)

 	(digi.xbee.packets.base.XBeePacket method)

 	(digi.xbee.packets.cellular.RXSMSPacket method)

 	(digi.xbee.packets.cellular.TXSMSPacket method)

 	(digi.xbee.packets.common.ATCommPacket method)

 	(digi.xbee.packets.common.ATCommQueuePacket method)

 	(digi.xbee.packets.common.ATCommResponsePacket method)

 	(digi.xbee.packets.common.ExplicitAddressingPacket method)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket method)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket method)

 	(digi.xbee.packets.common.ModemStatusPacket method)

 	(digi.xbee.packets.common.ReceivePacket method)

 	(digi.xbee.packets.common.RemoteATCommandPacket method)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket method)

 	(digi.xbee.packets.common.TransmitPacket method)

 	(digi.xbee.packets.common.TransmitStatusPacket method)

 	(digi.xbee.packets.devicecloud.DeviceRequestPacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket method)

 	(digi.xbee.packets.devicecloud.FrameErrorPacket method)

 	(digi.xbee.packets.devicecloud.SendDataRequestPacket method)

 	(digi.xbee.packets.devicecloud.SendDataResponsePacket method)

 	(digi.xbee.packets.digimesh.RouteInformationPacket method)

 	(digi.xbee.packets.filesystem.FSRequestPacket method)

 	(digi.xbee.packets.filesystem.FSResponsePacket method)

 	(digi.xbee.packets.filesystem.RemoteFSRequestPacket method)

 	(digi.xbee.packets.filesystem.RemoteFSResponsePacket method)

 	(digi.xbee.packets.network.RXIPv4Packet method)

 	(digi.xbee.packets.network.TXIPv4Packet method)

 	(digi.xbee.packets.raw.RX16IOPacket method)

 	(digi.xbee.packets.raw.RX16Packet method)

 	(digi.xbee.packets.raw.RX64IOPacket method)

 	(digi.xbee.packets.raw.RX64Packet method)

 	(digi.xbee.packets.raw.TX16Packet method)

 	(digi.xbee.packets.raw.TX64Packet method)

 	(digi.xbee.packets.raw.TXStatusPacket method)

 	(digi.xbee.packets.relay.UserDataRelayOutputPacket method)

 	(digi.xbee.packets.relay.UserDataRelayPacket method)

 	(digi.xbee.packets.socket.SocketBindListenPacket method)

 	(digi.xbee.packets.socket.SocketClosePacket method)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket method)

 	(digi.xbee.packets.socket.SocketConnectPacket method)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket method)

 	(digi.xbee.packets.socket.SocketCreatePacket method)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket method)

 	(digi.xbee.packets.socket.SocketListenResponsePacket method)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket method)

 	(digi.xbee.packets.socket.SocketOptionRequestPacket method)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket method)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket method)

 	(digi.xbee.packets.socket.SocketReceivePacket method)

 	(digi.xbee.packets.socket.SocketSendPacket method)

 	(digi.xbee.packets.socket.SocketSendToPacket method)

 	(digi.xbee.packets.socket.SocketStatePacket method)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket method)

 	(digi.xbee.packets.zigbee.CreateSourceRoutePacket method)

 	(digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket method)

 	(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket method)

 	(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket method)

 	(digi.xbee.packets.zigbee.RouteRecordIndicatorPacket method)

P

 	
 	packet (digi.xbee.sender.SyncRequestSender attribute)

 	PACKET_ACKNOWLEDGED (digi.xbee.models.options.ReceiveOptions attribute)

 	PacketListener (class in digi.xbee.reader)

 	PacketReceived (class in digi.xbee.reader)

 	PacketReceivedFrom (class in digi.xbee.reader)

 	PacketSender (class in digi.xbee.sender)

 	parameter (digi.xbee.models.atcomm.ATCommand attribute)

 	(digi.xbee.packets.common.ATCommPacket attribute)

 	(digi.xbee.packets.common.ATCommQueuePacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandPacket attribute)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket attribute)

 	parent (digi.xbee.devices.RemoteZigBeeDevice attribute)

 	parity (digi.xbee.profile.FirmwareParity attribute)

 	parse_socket_list() (digi.xbee.models.info.SocketInfo static method)

 	path (digi.xbee.filesystem.FileSystemElement attribute)

 	(digi.xbee.packets.devicecloud.SendDataRequestPacket attribute)

 	PATTERN (digi.xbee.models.address.XBee16BitAddress attribute)

 	(digi.xbee.models.address.XBee64BitAddress attribute)

 	(digi.xbee.models.address.XBeeIMEIAddress attribute)

 	PATTERN_PHONE_NUMBER (in module digi.xbee.packets.cellular)

 	payload (digi.xbee.packets.socket.SocketReceiveFromPacket attribute)

 	(digi.xbee.packets.socket.SocketReceivePacket attribute)

 	(digi.xbee.packets.socket.SocketSendPacket attribute)

 	(digi.xbee.packets.socket.SocketSendToPacket attribute)

 	pclose_file() (digi.xbee.filesystem.FileSystemManager method)

 	pget_file_hash() (digi.xbee.filesystem.FileSystemManager method)

 	pget_path_id() (digi.xbee.filesystem.FileSystemManager method)

 	phone_number (digi.xbee.models.message.SMSMessage attribute)

 	(digi.xbee.packets.cellular.RXSMSPacket attribute)

 	(digi.xbee.packets.cellular.TXSMSPacket attribute)

 	plist_directory() (digi.xbee.filesystem.FileSystemManager method)

 	pmake_directory() (digi.xbee.filesystem.FileSystemManager method)

 	POINT_MULTIPOINT_MODE (digi.xbee.models.options.ReceiveOptions attribute)

 	(digi.xbee.models.options.TransmitOptions attribute)

 	pop() (digi.xbee.reader.BluetoothDataReceived method)

 	(digi.xbee.reader.DataReceived method)

 	(digi.xbee.reader.DeviceDiscovered method)

 	(digi.xbee.reader.DiscoveryProcessFinished method)

 	(digi.xbee.reader.EndDiscoveryScan method)

 	(digi.xbee.reader.ExplicitDataReceived method)

 	(digi.xbee.reader.FileSystemFrameReceived method)

 	(digi.xbee.reader.IOSampleReceived method)

 	(digi.xbee.reader.IPDataReceived method)

 	(digi.xbee.reader.InitDiscoveryScan method)

 	(digi.xbee.reader.MicroPythonDataReceived method)

 	(digi.xbee.reader.ModemStatusReceived method)

 	(digi.xbee.reader.NetworkModified method)

 	(digi.xbee.reader.PacketReceived method)

 	(digi.xbee.reader.PacketReceivedFrom method)

 	(digi.xbee.reader.RelayDataReceived method)

 	(digi.xbee.reader.RouteInformationReceived method)

 	(digi.xbee.reader.RouteReceived method)

 	(digi.xbee.reader.RouteRecordIndicatorReceived method)

 	(digi.xbee.reader.SMSReceived method)

 	(digi.xbee.reader.SocketDataReceived method)

 	(digi.xbee.reader.SocketDataReceivedFrom method)

 	(digi.xbee.reader.SocketStateReceived method)

 	(digi.xbee.reader.XBeeEvent method)

 	
 	popen_file() (digi.xbee.filesystem.FileSystemManager method)

 	power_supply_value (digi.xbee.io.IOSample attribute)

 	PowerLevel (class in digi.xbee.models.status)

 	pread_file() (digi.xbee.filesystem.FileSystemManager method)

 	prelease_path_id() (digi.xbee.filesystem.FileSystemManager method)

 	premove() (digi.xbee.filesystem.FileSystemManager method)

 	prename() (digi.xbee.filesystem.FileSystemManager method)

 	prepare_for_update() (digi.xbee.firmware.UpdateConfigurer method)

 	prepare_total (digi.xbee.firmware.UpdateConfigurer attribute)

 	profile_description_file (digi.xbee.profile.XBeeProfile attribute)

 	profile_file (digi.xbee.profile.XBeeProfile attribute)

 	profile_id (digi.xbee.models.message.ExplicitXBeeMessage attribute)

 	(digi.xbee.packets.common.ExplicitAddressingPacket attribute)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket attribute)

 	profile_settings (digi.xbee.profile.XBeeProfile attribute)

 	progress_cb() (digi.xbee.firmware.UpdateConfigurer method)

 	protocol (digi.xbee.models.info.SocketInfo attribute)

 	(digi.xbee.models.message.IPMessage attribute)

 	(digi.xbee.packets.socket.SocketCreatePacket attribute)

 	(digi.xbee.profile.XBeeProfile attribute)

 	purge_port() (digi.xbee.serial.XBeeSerialPort method)

 	put() (digi.xbee.reader.XBeeQueue method)

 	put_dir() (digi.xbee.filesystem.FileSystemManager method)

 	(digi.xbee.filesystem.LocalXBeeFileSystemManager method)

 	put_file() (digi.xbee.filesystem.FileSystemManager method)

 	(digi.xbee.filesystem.LocalXBeeFileSystemManager method)

 	put_nowait() (digi.xbee.reader.XBeeQueue method)

 	PWM (digi.xbee.io.IOMode attribute)

 	pwm_at_command (digi.xbee.io.IOLine attribute)

 	pwrite_file() (digi.xbee.filesystem.FileSystemManager method)

Q

 	
 	qsize() (digi.xbee.reader.XBeeQueue method)

 	
 	quit_reading() (digi.xbee.comm_interface.XBeeCommunicationInterface method)

 	(digi.xbee.serial.XBeeSerialPort method)

R

 	
 	Raw802Device (class in digi.xbee.devices)

 	Raw802Network (class in digi.xbee.devices)

 	reachable (digi.xbee.devices.AbstractXBeeDevice attribute)

 	(digi.xbee.devices.CellularDevice attribute)

 	(digi.xbee.devices.DigiMeshDevice attribute)

 	(digi.xbee.devices.DigiPointDevice attribute)

 	(digi.xbee.devices.IPDevice attribute)

 	(digi.xbee.devices.LPWANDevice attribute)

 	(digi.xbee.devices.NBIoTDevice attribute)

 	(digi.xbee.devices.Raw802Device attribute)

 	(digi.xbee.devices.RemoteDigiMeshDevice attribute)

 	(digi.xbee.devices.RemoteDigiPointDevice attribute)

 	(digi.xbee.devices.RemoteRaw802Device attribute)

 	(digi.xbee.devices.RemoteXBeeDevice attribute)

 	(digi.xbee.devices.RemoteZigBeeDevice attribute)

 	(digi.xbee.devices.WiFiDevice attribute)

 	(digi.xbee.devices.XBeeDevice attribute)

 	(digi.xbee.devices.ZigBeeDevice attribute)

 	READ (digi.xbee.models.options.FileOpenRequestOption attribute)

 	READ_AS_MANY (digi.xbee.models.filesystem.ReadFileCmdRequest attribute)

 	read_byte() (digi.xbee.serial.XBeeSerialPort method)

 	read_bytes() (digi.xbee.serial.XBeeSerialPort method)

 	read_data() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	read_data_from() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	read_device_info() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	read_existing() (digi.xbee.serial.XBeeSerialPort method)

 	read_expl_data() (digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	read_expl_data_from() (digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	read_file() (digi.xbee.filesystem.FileSystemManager method)

 	read_io_sample() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	read_ip_data() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	read_ip_data_from() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	ReadDirCmdRequest (class in digi.xbee.models.filesystem)

 	ReadDirCmdResponse (class in digi.xbee.models.filesystem)

 	ReadFileCmdRequest (class in digi.xbee.models.filesystem)

 	ReadFileCmdResponse (class in digi.xbee.models.filesystem)

 	ReadProfileException

 	real_status (digi.xbee.packets.common.ATCommResponsePacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket attribute)

 	receive_options (digi.xbee.packets.common.ExplicitRXIndicatorPacket attribute)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket attribute)

 	(digi.xbee.packets.common.ReceivePacket attribute)

 	(digi.xbee.packets.filesystem.RemoteFSResponsePacket attribute)

 	(digi.xbee.packets.raw.RX16IOPacket attribute)

 	(digi.xbee.packets.raw.RX16Packet attribute)

 	(digi.xbee.packets.raw.RX64IOPacket attribute)

 	(digi.xbee.packets.raw.RX64Packet attribute)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket attribute)

 	(digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket attribute)

 	(digi.xbee.packets.zigbee.RouteRecordIndicatorPacket attribute)

 	ReceiveOptions (class in digi.xbee.models.options)

 	ReceivePacket (class in digi.xbee.packets.common)

 	recover_device() (in module digi.xbee.recovery)

 	RecoveryException

 	recv() (digi.xbee.xsocket.socket method)

 	recvfrom() (digi.xbee.xsocket.socket method)

 	region_lock (digi.xbee.profile.XBeeProfile attribute)

 	register_joining_device() (digi.xbee.devices.ZigBeeDevice method)

 	register_joining_device_async() (digi.xbee.devices.ZigBeeDevice method)

 	RegisterDeviceStatusPacket (class in digi.xbee.packets.zigbee)

 	RegisterJoiningDevicePacket (class in digi.xbee.packets.zigbee)

 	RegisterKeyOptions (class in digi.xbee.models.options)

 	registrant_address (digi.xbee.packets.zigbee.RegisterJoiningDevicePacket attribute)

 	relationship (digi.xbee.models.zdo.Neighbor attribute)

 	RelayDataReceived (class in digi.xbee.reader)

 	remote_address (digi.xbee.models.info.SocketInfo attribute)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket attribute)

 	remote_device (digi.xbee.models.message.ExplicitXBeeMessage attribute)

 	(digi.xbee.models.message.XBeeMessage attribute)

 	remote_file_system_image (digi.xbee.profile.XBeeProfile attribute)

 	remote_port (digi.xbee.models.info.SocketInfo attribute)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket attribute)

 	RemoteATCmdOptions (class in digi.xbee.models.options)

 	RemoteATCommandPacket (class in digi.xbee.packets.common)

 	
 	RemoteATCommandResponsePacket (class in digi.xbee.packets.common)

 	RemoteATCommandResponseWifiPacket (class in digi.xbee.packets.wifi)

 	RemoteATCommandWifiPacket (class in digi.xbee.packets.wifi)

 	RemoteDigiMeshDevice (class in digi.xbee.devices)

 	RemoteDigiPointDevice (class in digi.xbee.devices)

 	RemoteFSRequestPacket (class in digi.xbee.packets.filesystem)

 	RemoteFSResponsePacket (class in digi.xbee.packets.filesystem)

 	RemoteRaw802Device (class in digi.xbee.devices)

 	RemoteXBeeDevice (class in digi.xbee.devices)

 	RemoteZigBeeDevice (class in digi.xbee.devices)

 	remove() (digi.xbee.filesystem.FileSystemManager method)

 	(digi.xbee.reader.BluetoothDataReceived method)

 	(digi.xbee.reader.DataReceived method)

 	(digi.xbee.reader.DeviceDiscovered method)

 	(digi.xbee.reader.DiscoveryProcessFinished method)

 	(digi.xbee.reader.EndDiscoveryScan method)

 	(digi.xbee.reader.ExplicitDataReceived method)

 	(digi.xbee.reader.FileSystemFrameReceived method)

 	(digi.xbee.reader.IOSampleReceived method)

 	(digi.xbee.reader.IPDataReceived method)

 	(digi.xbee.reader.InitDiscoveryScan method)

 	(digi.xbee.reader.MicroPythonDataReceived method)

 	(digi.xbee.reader.ModemStatusReceived method)

 	(digi.xbee.reader.NetworkModified method)

 	(digi.xbee.reader.PacketReceived method)

 	(digi.xbee.reader.PacketReceivedFrom method)

 	(digi.xbee.reader.RelayDataReceived method)

 	(digi.xbee.reader.RouteInformationReceived method)

 	(digi.xbee.reader.RouteReceived method)

 	(digi.xbee.reader.RouteRecordIndicatorReceived method)

 	(digi.xbee.reader.SMSReceived method)

 	(digi.xbee.reader.SocketDataReceived method)

 	(digi.xbee.reader.SocketDataReceivedFrom method)

 	(digi.xbee.reader.SocketStateReceived method)

 	(digi.xbee.reader.XBeeEvent method)

 	remove_device() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	remove_element() (digi.xbee.filesystem.LocalXBeeFileSystemManager method)

 	RenameCmdRequest (class in digi.xbee.models.filesystem)

 	RenameCmdResponse (class in digi.xbee.models.filesystem)

 	REPEATER_MODE (digi.xbee.models.options.ReceiveOptions attribute)

 	(digi.xbee.models.options.TransmitOptions attribute)

 	request_data (digi.xbee.packets.devicecloud.DeviceRequestPacket attribute)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket attribute)

 	request_id (digi.xbee.packets.devicecloud.DeviceRequestPacket attribute)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket attribute)

 	reset() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	reset_settings (digi.xbee.profile.XBeeProfile attribute)

 	responder_addr (digi.xbee.packets.digimesh.RouteInformationPacket attribute)

 	response (digi.xbee.models.atcomm.ATCommandResponse attribute)

 	restore_after_update() (digi.xbee.firmware.UpdateConfigurer method)

 	restore_total (digi.xbee.firmware.UpdateConfigurer attribute)

 	reverse() (digi.xbee.reader.BluetoothDataReceived method)

 	(digi.xbee.reader.DataReceived method)

 	(digi.xbee.reader.DeviceDiscovered method)

 	(digi.xbee.reader.DiscoveryProcessFinished method)

 	(digi.xbee.reader.EndDiscoveryScan method)

 	(digi.xbee.reader.ExplicitDataReceived method)

 	(digi.xbee.reader.FileSystemFrameReceived method)

 	(digi.xbee.reader.IOSampleReceived method)

 	(digi.xbee.reader.IPDataReceived method)

 	(digi.xbee.reader.InitDiscoveryScan method)

 	(digi.xbee.reader.MicroPythonDataReceived method)

 	(digi.xbee.reader.ModemStatusReceived method)

 	(digi.xbee.reader.NetworkModified method)

 	(digi.xbee.reader.PacketReceived method)

 	(digi.xbee.reader.PacketReceivedFrom method)

 	(digi.xbee.reader.RelayDataReceived method)

 	(digi.xbee.reader.RouteInformationReceived method)

 	(digi.xbee.reader.RouteReceived method)

 	(digi.xbee.reader.RouteRecordIndicatorReceived method)

 	(digi.xbee.reader.SMSReceived method)

 	(digi.xbee.reader.SocketDataReceived method)

 	(digi.xbee.reader.SocketDataReceivedFrom method)

 	(digi.xbee.reader.SocketStateReceived method)

 	(digi.xbee.reader.XBeeEvent method)

 	rf_data (digi.xbee.packets.common.ExplicitAddressingPacket attribute)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket attribute)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket attribute)

 	(digi.xbee.packets.common.ReceivePacket attribute)

 	(digi.xbee.packets.common.TransmitPacket attribute)

 	(digi.xbee.packets.raw.RX16IOPacket attribute)

 	(digi.xbee.packets.raw.RX16Packet attribute)

 	(digi.xbee.packets.raw.RX64IOPacket attribute)

 	(digi.xbee.packets.raw.RX64Packet attribute)

 	(digi.xbee.packets.raw.TX16Packet attribute)

 	(digi.xbee.packets.raw.TX64Packet attribute)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket attribute)

 	Role (class in digi.xbee.models.protocol)

 	role (digi.xbee.models.zdo.NodeDescriptor attribute)

 	Route (class in digi.xbee.models.zdo)

 	route_cmd_options (digi.xbee.packets.zigbee.CreateSourceRoutePacket attribute)

 	RouteInformationPacket (class in digi.xbee.packets.digimesh)

 	RouteInformationReceived (class in digi.xbee.reader)

 	RouteReceived (class in digi.xbee.reader)

 	RouteRecordIndicatorPacket (class in digi.xbee.packets.zigbee)

 	RouteRecordIndicatorReceived (class in digi.xbee.reader)

 	RouteStatus (class in digi.xbee.models.zdo)

 	RouteTableReader (class in digi.xbee.models.zdo)

 	rssi (digi.xbee.packets.raw.RX16IOPacket attribute)

 	(digi.xbee.packets.raw.RX16Packet attribute)

 	(digi.xbee.packets.raw.RX64IOPacket attribute)

 	(digi.xbee.packets.raw.RX64Packet attribute)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket attribute)

 	run() (digi.xbee.reader.PacketListener method)

 	running (digi.xbee.filesystem.FileProcess attribute)

 	(digi.xbee.models.zdo.NeighborFinder attribute)

 	(digi.xbee.models.zdo.NeighborTableReader attribute)

 	(digi.xbee.models.zdo.NodeDescriptorReader attribute)

 	(digi.xbee.models.zdo.RouteTableReader attribute)

 	RX16IOPacket (class in digi.xbee.packets.raw)

 	RX16Packet (class in digi.xbee.packets.raw)

 	RX64IOPacket (class in digi.xbee.packets.raw)

 	RX64Packet (class in digi.xbee.packets.raw)

 	RXIPv4Packet (class in digi.xbee.packets.network)

 	RXSMSPacket (class in digi.xbee.packets.cellular)

S

 	
 	scan_access_points() (digi.xbee.devices.WiFiDevice method)

 	scan_counter (digi.xbee.devices.AbstractXBeeDevice attribute)

 	(digi.xbee.devices.CellularDevice attribute)

 	(digi.xbee.devices.DigiMeshDevice attribute)

 	(digi.xbee.devices.DigiMeshNetwork attribute)

 	(digi.xbee.devices.DigiPointDevice attribute)

 	(digi.xbee.devices.DigiPointNetwork attribute)

 	(digi.xbee.devices.IPDevice attribute)

 	(digi.xbee.devices.LPWANDevice attribute)

 	(digi.xbee.devices.NBIoTDevice attribute)

 	(digi.xbee.devices.Raw802Device attribute)

 	(digi.xbee.devices.Raw802Network attribute)

 	(digi.xbee.devices.RemoteDigiMeshDevice attribute)

 	(digi.xbee.devices.RemoteDigiPointDevice attribute)

 	(digi.xbee.devices.RemoteRaw802Device attribute)

 	(digi.xbee.devices.RemoteXBeeDevice attribute)

 	(digi.xbee.devices.RemoteZigBeeDevice attribute)

 	(digi.xbee.devices.WiFiDevice attribute)

 	(digi.xbee.devices.XBeeDevice attribute)

 	(digi.xbee.devices.XBeeNetwork attribute)

 	(digi.xbee.devices.ZigBeeDevice attribute)

 	(digi.xbee.devices.ZigBeeNetwork attribute)

 	scan_counter_a2b (digi.xbee.devices.Connection attribute)

 	scan_counter_b2a (digi.xbee.devices.Connection attribute)

 	SCAN_TIL_CANCEL (digi.xbee.devices.XBeeNetwork attribute)

 	SECURE (digi.xbee.models.options.FileOpenRequestOption attribute)

 	SECURE_SESSION_ENC (digi.xbee.models.options.ReceiveOptions attribute)

 	(digi.xbee.models.options.RemoteATCmdOptions attribute)

 	(digi.xbee.models.options.TransmitOptions attribute)

 	send() (digi.xbee.sender.SyncRequestSender method)

 	(digi.xbee.xsocket.socket method)

 	send_bluetooth_data() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	send_data() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	send_data_16() (digi.xbee.devices.Raw802Device method)

 	send_data_64() (digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	send_data_64_16() (digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	send_data_async() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	send_data_async_16() (digi.xbee.devices.Raw802Device method)

 	send_data_async_64() (digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	send_data_async_64_16() (digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	send_data_broadcast() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	send_expl_data() (digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	send_expl_data_async() (digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	send_expl_data_broadcast() (digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	send_file_xmodem() (in module digi.xbee.util.xmodem)

 	send_file_ymodem() (in module digi.xbee.util.xmodem)

 	send_ip_data() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	send_ip_data_async() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	send_ip_data_broadcast() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	send_micropython_data() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	send_multicast_data() (digi.xbee.devices.ZigBeeDevice method)

 	send_multicast_data_async() (digi.xbee.devices.ZigBeeDevice method)

 	send_packet() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.sender.PacketSender method)

 	send_packet_sync_and_get_response() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	send_sms() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	send_sms_async() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	send_user_data_relay() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	sendall() (digi.xbee.xsocket.socket method)

 	SendDataRequestOptions (class in digi.xbee.models.options)

 	SendDataRequestPacket (class in digi.xbee.packets.devicecloud)

 	SendDataResponsePacket (class in digi.xbee.packets.devicecloud)

 	sendto() (digi.xbee.xsocket.socket method)

 	SENT_FROM_END_DEVICE (digi.xbee.models.options.ReceiveOptions attribute)

 	serial_port (digi.xbee.devices.CellularDevice attribute)

 	(digi.xbee.devices.DigiMeshDevice attribute)

 	(digi.xbee.devices.DigiPointDevice attribute)

 	(digi.xbee.devices.IPDevice attribute)

 	(digi.xbee.devices.LPWANDevice attribute)

 	(digi.xbee.devices.NBIoTDevice attribute)

 	(digi.xbee.devices.Raw802Device attribute)

 	(digi.xbee.devices.WiFiDevice attribute)

 	(digi.xbee.devices.XBeeDevice attribute)

 	(digi.xbee.devices.ZigBeeDevice attribute)

 	set_16bit_addr() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	set_64bit_addr() (digi.xbee.devices.RemoteRaw802Device method)

 	set_access_point_timeout() (digi.xbee.devices.WiFiDevice method)

 	set_api_output_mode() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	set_api_output_mode_value() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	set_baudrate() (digi.xbee.serial.XBeeSerialPort method)

 	set_deep_discovery_options() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	set_deep_discovery_timeouts() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	set_dest_address() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	set_dest_ip_addr() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	set_dio_change_detection() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	set_dio_value() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	set_discovery_options() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	set_discovery_timeout() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	set_dns_address() (digi.xbee.devices.WiFiDevice method)

 	set_gateway_address() (digi.xbee.devices.WiFiDevice method)

 	set_io_configuration() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	set_io_sampling_rate() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	
 	set_ip_address() (digi.xbee.devices.WiFiDevice method)

 	set_ip_addressing_mode() (digi.xbee.devices.WiFiDevice method)

 	set_local_xbee_device() (digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	set_many_to_one_broadcasting_time() (digi.xbee.devices.ZigBeeDevice method)

 	set_mask_address() (digi.xbee.devices.WiFiDevice method)

 	set_node_id() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	set_ota_max_block_size() (digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	set_pan_id() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	set_parameter() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	set_power_level() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	set_pwm_duty_cycle() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	set_read_timeout() (digi.xbee.serial.XBeeSerialPort method)

 	set_sync_ops_timeout() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	setblocking() (digi.xbee.xsocket.socket method)

 	setsocketopt() (digi.xbee.xsocket.socket method)

 	settimeout() (digi.xbee.xsocket.socket method)

 	signal_quality (digi.xbee.models.accesspoint.AccessPoint attribute)

 	size (digi.xbee.filesystem.FileSystemElement attribute)

 	(digi.xbee.models.filesystem.OpenFileCmdResponse attribute)

 	(digi.xbee.models.filesystem.ReadFileCmdRequest attribute)

 	size_pretty (digi.xbee.filesystem.FileSystemElement attribute)

 	SMSMessage (class in digi.xbee.models.message)

 	SMSReceived (class in digi.xbee.reader)

 	socket (class in digi.xbee.xsocket)

 	socket_id (digi.xbee.models.info.SocketInfo attribute)

 	(digi.xbee.packets.socket.SocketBindListenPacket attribute)

 	(digi.xbee.packets.socket.SocketClosePacket attribute)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketConnectPacket attribute)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketListenResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket attribute)

 	(digi.xbee.packets.socket.SocketOptionRequestPacket attribute)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket attribute)

 	(digi.xbee.packets.socket.SocketReceivePacket attribute)

 	(digi.xbee.packets.socket.SocketSendPacket attribute)

 	(digi.xbee.packets.socket.SocketSendToPacket attribute)

 	(digi.xbee.packets.socket.SocketStatePacket attribute)

 	SocketBindListenPacket (class in digi.xbee.packets.socket)

 	SocketClosePacket (class in digi.xbee.packets.socket)

 	SocketCloseResponsePacket (class in digi.xbee.packets.socket)

 	SocketConnectPacket (class in digi.xbee.packets.socket)

 	SocketConnectResponsePacket (class in digi.xbee.packets.socket)

 	SocketCreatePacket (class in digi.xbee.packets.socket)

 	SocketCreateResponsePacket (class in digi.xbee.packets.socket)

 	SocketDataReceived (class in digi.xbee.reader)

 	SocketDataReceivedFrom (class in digi.xbee.reader)

 	SocketInfo (class in digi.xbee.models.info)

 	SocketInfoState (class in digi.xbee.models.status)

 	SocketListenResponsePacket (class in digi.xbee.packets.socket)

 	SocketNewIPv4ClientPacket (class in digi.xbee.packets.socket)

 	SocketOption (class in digi.xbee.models.options)

 	SocketOptionRequestPacket (class in digi.xbee.packets.socket)

 	SocketOptionResponsePacket (class in digi.xbee.packets.socket)

 	SocketReceiveFromPacket (class in digi.xbee.packets.socket)

 	SocketReceivePacket (class in digi.xbee.packets.socket)

 	SocketSendPacket (class in digi.xbee.packets.socket)

 	SocketSendToPacket (class in digi.xbee.packets.socket)

 	SocketState (class in digi.xbee.models.status)

 	SocketStatePacket (class in digi.xbee.packets.socket)

 	SocketStateReceived (class in digi.xbee.reader)

 	SocketStatus (class in digi.xbee.models.status)

 	sort() (digi.xbee.reader.BluetoothDataReceived method)

 	(digi.xbee.reader.DataReceived method)

 	(digi.xbee.reader.DeviceDiscovered method)

 	(digi.xbee.reader.DiscoveryProcessFinished method)

 	(digi.xbee.reader.EndDiscoveryScan method)

 	(digi.xbee.reader.ExplicitDataReceived method)

 	(digi.xbee.reader.FileSystemFrameReceived method)

 	(digi.xbee.reader.IOSampleReceived method)

 	(digi.xbee.reader.IPDataReceived method)

 	(digi.xbee.reader.InitDiscoveryScan method)

 	(digi.xbee.reader.MicroPythonDataReceived method)

 	(digi.xbee.reader.ModemStatusReceived method)

 	(digi.xbee.reader.NetworkModified method)

 	(digi.xbee.reader.PacketReceived method)

 	(digi.xbee.reader.PacketReceivedFrom method)

 	(digi.xbee.reader.RelayDataReceived method)

 	(digi.xbee.reader.RouteInformationReceived method)

 	(digi.xbee.reader.RouteReceived method)

 	(digi.xbee.reader.RouteRecordIndicatorReceived method)

 	(digi.xbee.reader.SMSReceived method)

 	(digi.xbee.reader.SocketDataReceived method)

 	(digi.xbee.reader.SocketDataReceivedFrom method)

 	(digi.xbee.reader.SocketStateReceived method)

 	(digi.xbee.reader.XBeeEvent method)

 	source_address (digi.xbee.packets.network.RXIPv4Packet attribute)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket attribute)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket attribute)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket attribute)

 	source_endpoint (digi.xbee.models.message.ExplicitXBeeMessage attribute)

 	(digi.xbee.packets.common.ExplicitAddressingPacket attribute)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket attribute)

 	source_port (digi.xbee.models.message.IPMessage attribute)

 	(digi.xbee.packets.network.RXIPv4Packet attribute)

 	(digi.xbee.packets.network.TXIPv4Packet attribute)

 	(digi.xbee.packets.socket.SocketBindListenPacket attribute)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket attribute)

 	SPECIAL_FUNCTIONALITY (digi.xbee.io.IOMode attribute)

 	SpecialByte (class in digi.xbee.models.atcomm)

 	src_addr (digi.xbee.packets.digimesh.RouteInformationPacket attribute)

 	src_event (digi.xbee.packets.digimesh.RouteInformationPacket attribute)

 	src_interface (digi.xbee.packets.relay.UserDataRelayOutputPacket attribute)

 	ssid (digi.xbee.models.accesspoint.AccessPoint attribute)

 	start() (digi.xbee.reader.PacketListener method)

 	start_discovery_process() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	start_listening() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	state (digi.xbee.models.info.SocketInfo attribute)

 	(digi.xbee.packets.socket.SocketStatePacket attribute)

 	status (digi.xbee.filesystem.FileProcess attribute)

 	(digi.xbee.models.atcomm.ATCommandResponse attribute)

 	(digi.xbee.models.filesystem.CloseDirCmdRequest attribute)

 	(digi.xbee.models.filesystem.CloseDirCmdResponse attribute)

 	(digi.xbee.models.filesystem.CloseFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.CloseFileCmdResponse attribute)

 	(digi.xbee.models.filesystem.CreateDirCmdRequest attribute)

 	(digi.xbee.models.filesystem.CreateDirCmdResponse attribute)

 	(digi.xbee.models.filesystem.DeleteCmdRequest attribute)

 	(digi.xbee.models.filesystem.DeleteCmdResponse attribute)

 	(digi.xbee.models.filesystem.FSCmd attribute)

 	(digi.xbee.models.filesystem.FileIdCmd attribute)

 	(digi.xbee.models.filesystem.FileIdNameCmd attribute)

 	(digi.xbee.models.filesystem.GetPathIdCmdRequest attribute)

 	(digi.xbee.models.filesystem.GetPathIdCmdResponse attribute)

 	(digi.xbee.models.filesystem.HashFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.HashFileCmdResponse attribute)

 	(digi.xbee.models.filesystem.OpenDirCmdRequest attribute)

 	(digi.xbee.models.filesystem.OpenDirCmdResponse attribute)

 	(digi.xbee.models.filesystem.OpenFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.OpenFileCmdResponse attribute)

 	(digi.xbee.models.filesystem.ReadDirCmdRequest attribute)

 	(digi.xbee.models.filesystem.ReadDirCmdResponse attribute)

 	(digi.xbee.models.filesystem.ReadFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.ReadFileCmdResponse attribute)

 	(digi.xbee.models.filesystem.RenameCmdRequest attribute)

 	(digi.xbee.models.filesystem.RenameCmdResponse attribute)

 	(digi.xbee.models.filesystem.UnknownFSCmd attribute)

 	(digi.xbee.models.filesystem.VolFormatCmdRequest attribute)

 	(digi.xbee.models.filesystem.VolFormatCmdResponse attribute)

 	(digi.xbee.models.filesystem.VolStatCmdRequest attribute)

 	(digi.xbee.models.filesystem.VolStatCmdResponse attribute)

 	(digi.xbee.models.filesystem.WriteFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.WriteFileCmdResponse attribute)

 	(digi.xbee.models.zdo.Route attribute)

 	(digi.xbee.packets.common.ATCommResponsePacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket attribute)

 	(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket attribute)

 	(digi.xbee.packets.devicecloud.SendDataResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketListenResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket attribute)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket attribute)

 	(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket attribute)

 	status_a2b (digi.xbee.devices.Connection attribute)

 	status_b2a (digi.xbee.devices.Connection attribute)

 	status_value (digi.xbee.models.filesystem.CloseDirCmdRequest attribute)

 	(digi.xbee.models.filesystem.CloseDirCmdResponse attribute)

 	(digi.xbee.models.filesystem.CloseFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.CloseFileCmdResponse attribute)

 	(digi.xbee.models.filesystem.CreateDirCmdRequest attribute)

 	(digi.xbee.models.filesystem.CreateDirCmdResponse attribute)

 	(digi.xbee.models.filesystem.DeleteCmdRequest attribute)

 	(digi.xbee.models.filesystem.DeleteCmdResponse attribute)

 	(digi.xbee.models.filesystem.FSCmd attribute)

 	(digi.xbee.models.filesystem.FileIdCmd attribute)

 	(digi.xbee.models.filesystem.FileIdNameCmd attribute)

 	(digi.xbee.models.filesystem.GetPathIdCmdRequest attribute)

 	(digi.xbee.models.filesystem.GetPathIdCmdResponse attribute)

 	(digi.xbee.models.filesystem.HashFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.HashFileCmdResponse attribute)

 	(digi.xbee.models.filesystem.OpenDirCmdRequest attribute)

 	(digi.xbee.models.filesystem.OpenDirCmdResponse attribute)

 	(digi.xbee.models.filesystem.OpenFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.OpenFileCmdResponse attribute)

 	(digi.xbee.models.filesystem.ReadDirCmdRequest attribute)

 	(digi.xbee.models.filesystem.ReadDirCmdResponse attribute)

 	(digi.xbee.models.filesystem.ReadFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.ReadFileCmdResponse attribute)

 	(digi.xbee.models.filesystem.RenameCmdRequest attribute)

 	(digi.xbee.models.filesystem.RenameCmdResponse attribute)

 	(digi.xbee.models.filesystem.UnknownFSCmd attribute)

 	(digi.xbee.models.filesystem.VolFormatCmdRequest attribute)

 	(digi.xbee.models.filesystem.VolFormatCmdResponse attribute)

 	(digi.xbee.models.filesystem.VolStatCmdRequest attribute)

 	(digi.xbee.models.filesystem.VolStatCmdResponse attribute)

 	(digi.xbee.models.filesystem.WriteFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.WriteFileCmdResponse attribute)

 	stop() (digi.xbee.models.zdo.NeighborFinder method)

 	(digi.xbee.models.zdo.NeighborTableReader method)

 	(digi.xbee.models.zdo.NodeDescriptorReader method)

 	(digi.xbee.models.zdo.RouteTableReader method)

 	(digi.xbee.reader.PacketListener method)

 	stop_bits (digi.xbee.profile.FirmwareStopbits attribute)

 	stop_discovery_process() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	stop_listening() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	successor_addr (digi.xbee.packets.digimesh.RouteInformationPacket attribute)

 	supports_apply_profile() (digi.xbee.comm_interface.XBeeCommunicationInterface method)

 	(digi.xbee.serial.XBeeSerialPort method)

 	supports_update_firmware() (digi.xbee.comm_interface.XBeeCommunicationInterface method)

 	(digi.xbee.serial.XBeeSerialPort method)

 	sync_sleep (digi.xbee.firmware.UpdateConfigurer attribute)

 	SyncRequestSender (class in digi.xbee.sender)

T

 	
 	tag (digi.xbee.profile.XBeeSettingFormat attribute)

 	(digi.xbee.profile.XBeeSettingType attribute)

 	target (digi.xbee.packets.devicecloud.DeviceRequestPacket attribute)

 	task_done() (digi.xbee.reader.XBeeQueue method)

 	timeout (digi.xbee.comm_interface.XBeeCommunicationInterface attribute)

 	(digi.xbee.sender.SyncRequestSender attribute)

 	(digi.xbee.serial.XBeeSerialPort attribute)

 	TIMEOUT_READ_PACKET (digi.xbee.devices.XBeeDevice attribute)

 	TimeoutException

 	timestamp (digi.xbee.models.message.ExplicitXBeeMessage attribute)

 	(digi.xbee.models.message.XBeeMessage attribute)

 	(digi.xbee.packets.digimesh.RouteInformationPacket attribute)

 	to_dict() (digi.xbee.models.filesystem.CloseDirCmdRequest method)

 	(digi.xbee.models.filesystem.CloseDirCmdResponse method)

 	(digi.xbee.models.filesystem.CloseFileCmdRequest method)

 	(digi.xbee.models.filesystem.CloseFileCmdResponse method)

 	(digi.xbee.models.filesystem.CreateDirCmdRequest method)

 	(digi.xbee.models.filesystem.CreateDirCmdResponse method)

 	(digi.xbee.models.filesystem.DeleteCmdRequest method)

 	(digi.xbee.models.filesystem.DeleteCmdResponse method)

 	(digi.xbee.models.filesystem.FSCmd method)

 	(digi.xbee.models.filesystem.FileIdCmd method)

 	(digi.xbee.models.filesystem.FileIdNameCmd method)

 	(digi.xbee.models.filesystem.GetPathIdCmdRequest method)

 	(digi.xbee.models.filesystem.GetPathIdCmdResponse method)

 	(digi.xbee.models.filesystem.HashFileCmdRequest method)

 	(digi.xbee.models.filesystem.HashFileCmdResponse method)

 	(digi.xbee.models.filesystem.OpenDirCmdRequest method)

 	(digi.xbee.models.filesystem.OpenDirCmdResponse method)

 	(digi.xbee.models.filesystem.OpenFileCmdRequest method)

 	(digi.xbee.models.filesystem.OpenFileCmdResponse method)

 	(digi.xbee.models.filesystem.ReadDirCmdRequest method)

 	(digi.xbee.models.filesystem.ReadDirCmdResponse method)

 	(digi.xbee.models.filesystem.ReadFileCmdRequest method)

 	(digi.xbee.models.filesystem.ReadFileCmdResponse method)

 	(digi.xbee.models.filesystem.RenameCmdRequest method)

 	(digi.xbee.models.filesystem.RenameCmdResponse method)

 	(digi.xbee.models.filesystem.UnknownFSCmd method)

 	(digi.xbee.models.filesystem.VolFormatCmdRequest method)

 	(digi.xbee.models.filesystem.VolFormatCmdResponse method)

 	(digi.xbee.models.filesystem.VolStatCmdRequest method)

 	(digi.xbee.models.filesystem.VolStatCmdResponse method)

 	(digi.xbee.models.filesystem.WriteFileCmdRequest method)

 	(digi.xbee.models.filesystem.WriteFileCmdResponse method)

 	(digi.xbee.models.message.ExplicitXBeeMessage method)

 	(digi.xbee.models.message.IPMessage method)

 	(digi.xbee.models.message.SMSMessage method)

 	(digi.xbee.models.message.UserDataRelayMessage method)

 	(digi.xbee.models.message.XBeeMessage method)

 	(digi.xbee.packets.base.GenericXBeePacket method)

 	(digi.xbee.packets.base.UnknownXBeePacket method)

 	(digi.xbee.packets.base.XBeeAPIPacket method)

 	(digi.xbee.packets.base.XBeePacket method)

 	(digi.xbee.packets.cellular.RXSMSPacket method)

 	(digi.xbee.packets.cellular.TXSMSPacket method)

 	(digi.xbee.packets.common.ATCommPacket method)

 	(digi.xbee.packets.common.ATCommQueuePacket method)

 	(digi.xbee.packets.common.ATCommResponsePacket method)

 	(digi.xbee.packets.common.ExplicitAddressingPacket method)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket method)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket method)

 	(digi.xbee.packets.common.ModemStatusPacket method)

 	(digi.xbee.packets.common.ReceivePacket method)

 	(digi.xbee.packets.common.RemoteATCommandPacket method)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket method)

 	(digi.xbee.packets.common.TransmitPacket method)

 	(digi.xbee.packets.common.TransmitStatusPacket method)

 	(digi.xbee.packets.devicecloud.DeviceRequestPacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket method)

 	(digi.xbee.packets.devicecloud.FrameErrorPacket method)

 	(digi.xbee.packets.devicecloud.SendDataRequestPacket method)

 	(digi.xbee.packets.devicecloud.SendDataResponsePacket method)

 	(digi.xbee.packets.digimesh.RouteInformationPacket method)

 	(digi.xbee.packets.filesystem.FSRequestPacket method)

 	(digi.xbee.packets.filesystem.FSResponsePacket method)

 	(digi.xbee.packets.filesystem.RemoteFSRequestPacket method)

 	(digi.xbee.packets.filesystem.RemoteFSResponsePacket method)

 	(digi.xbee.packets.network.RXIPv4Packet method)

 	(digi.xbee.packets.network.TXIPv4Packet method)

 	(digi.xbee.packets.raw.RX16IOPacket method)

 	(digi.xbee.packets.raw.RX16Packet method)

 	(digi.xbee.packets.raw.RX64IOPacket method)

 	(digi.xbee.packets.raw.RX64Packet method)

 	(digi.xbee.packets.raw.TX16Packet method)

 	(digi.xbee.packets.raw.TX64Packet method)

 	(digi.xbee.packets.raw.TXStatusPacket method)

 	(digi.xbee.packets.relay.UserDataRelayOutputPacket method)

 	(digi.xbee.packets.relay.UserDataRelayPacket method)

 	(digi.xbee.packets.socket.SocketBindListenPacket method)

 	(digi.xbee.packets.socket.SocketClosePacket method)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket method)

 	(digi.xbee.packets.socket.SocketConnectPacket method)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket method)

 	(digi.xbee.packets.socket.SocketCreatePacket method)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket method)

 	(digi.xbee.packets.socket.SocketListenResponsePacket method)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket method)

 	(digi.xbee.packets.socket.SocketOptionRequestPacket method)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket method)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket method)

 	(digi.xbee.packets.socket.SocketReceivePacket method)

 	(digi.xbee.packets.socket.SocketSendPacket method)

 	(digi.xbee.packets.socket.SocketSendToPacket method)

 	(digi.xbee.packets.socket.SocketStatePacket method)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket method)

 	(digi.xbee.packets.zigbee.CreateSourceRoutePacket method)

 	(digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket method)

 	(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket method)

 	(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket method)

 	(digi.xbee.packets.zigbee.RouteRecordIndicatorPacket method)

 	
 	transmit_options (digi.xbee.packets.common.ExplicitAddressingPacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandPacket attribute)

 	(digi.xbee.packets.common.TransmitPacket attribute)

 	(digi.xbee.packets.filesystem.RemoteFSRequestPacket attribute)

 	(digi.xbee.packets.network.TXIPv4Packet attribute)

 	(digi.xbee.packets.raw.TX16Packet attribute)

 	(digi.xbee.packets.raw.TX64Packet attribute)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket attribute)

 	transmit_retry_count (digi.xbee.packets.common.TransmitStatusPacket attribute)

 	transmit_status (digi.xbee.packets.common.TransmitStatusPacket attribute)

 	(digi.xbee.packets.raw.TXStatusPacket attribute)

 	TransmitException

 	TransmitOptions (class in digi.xbee.models.options)

 	TransmitPacket (class in digi.xbee.packets.common)

 	TransmitStatus (class in digi.xbee.models.status)

 	TransmitStatusPacket (class in digi.xbee.packets.common)

 	transport (digi.xbee.packets.devicecloud.DeviceRequestPacket attribute)

 	TRUNCATE (digi.xbee.models.options.FileOpenRequestOption attribute)

 	TX16Packet (class in digi.xbee.packets.raw)

 	TX64Packet (class in digi.xbee.packets.raw)

 	tx_block_count (digi.xbee.packets.digimesh.RouteInformationPacket attribute)

 	TXIPv4Packet (class in digi.xbee.packets.network)

 	TXSMSPacket (class in digi.xbee.packets.cellular)

 	TXStatusPacket (class in digi.xbee.packets.raw)

 	type (digi.xbee.models.filesystem.CloseDirCmdRequest attribute)

 	(digi.xbee.models.filesystem.CloseDirCmdResponse attribute)

 	(digi.xbee.models.filesystem.CloseFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.CloseFileCmdResponse attribute)

 	(digi.xbee.models.filesystem.CreateDirCmdRequest attribute)

 	(digi.xbee.models.filesystem.CreateDirCmdResponse attribute)

 	(digi.xbee.models.filesystem.DeleteCmdRequest attribute)

 	(digi.xbee.models.filesystem.DeleteCmdResponse attribute)

 	(digi.xbee.models.filesystem.FSCmd attribute)

 	(digi.xbee.models.filesystem.FileIdCmd attribute)

 	(digi.xbee.models.filesystem.FileIdNameCmd attribute)

 	(digi.xbee.models.filesystem.GetPathIdCmdRequest attribute)

 	(digi.xbee.models.filesystem.GetPathIdCmdResponse attribute)

 	(digi.xbee.models.filesystem.HashFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.HashFileCmdResponse attribute)

 	(digi.xbee.models.filesystem.OpenDirCmdRequest attribute)

 	(digi.xbee.models.filesystem.OpenDirCmdResponse attribute)

 	(digi.xbee.models.filesystem.OpenFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.OpenFileCmdResponse attribute)

 	(digi.xbee.models.filesystem.ReadDirCmdRequest attribute)

 	(digi.xbee.models.filesystem.ReadDirCmdResponse attribute)

 	(digi.xbee.models.filesystem.ReadFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.ReadFileCmdResponse attribute)

 	(digi.xbee.models.filesystem.RenameCmdRequest attribute)

 	(digi.xbee.models.filesystem.RenameCmdResponse attribute)

 	(digi.xbee.models.filesystem.UnknownFSCmd attribute)

 	(digi.xbee.models.filesystem.VolFormatCmdRequest attribute)

 	(digi.xbee.models.filesystem.VolFormatCmdResponse attribute)

 	(digi.xbee.models.filesystem.VolStatCmdRequest attribute)

 	(digi.xbee.models.filesystem.VolStatCmdResponse attribute)

 	(digi.xbee.models.filesystem.WriteFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.WriteFileCmdResponse attribute)

 	(digi.xbee.profile.XBeeProfileSetting attribute)

U

 	
 	unescape_data() (digi.xbee.packets.base.GenericXBeePacket static method)

 	(digi.xbee.packets.base.UnknownXBeePacket static method)

 	(digi.xbee.packets.base.XBeeAPIPacket static method)

 	(digi.xbee.packets.base.XBeePacket static method)

 	(digi.xbee.packets.cellular.RXSMSPacket static method)

 	(digi.xbee.packets.cellular.TXSMSPacket static method)

 	(digi.xbee.packets.common.ATCommPacket static method)

 	(digi.xbee.packets.common.ATCommQueuePacket static method)

 	(digi.xbee.packets.common.ATCommResponsePacket static method)

 	(digi.xbee.packets.common.ExplicitAddressingPacket static method)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket static method)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket static method)

 	(digi.xbee.packets.common.ModemStatusPacket static method)

 	(digi.xbee.packets.common.ReceivePacket static method)

 	(digi.xbee.packets.common.RemoteATCommandPacket static method)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket static method)

 	(digi.xbee.packets.common.TransmitPacket static method)

 	(digi.xbee.packets.common.TransmitStatusPacket static method)

 	(digi.xbee.packets.devicecloud.DeviceRequestPacket static method)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket static method)

 	(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket static method)

 	(digi.xbee.packets.devicecloud.FrameErrorPacket static method)

 	(digi.xbee.packets.devicecloud.SendDataRequestPacket static method)

 	(digi.xbee.packets.devicecloud.SendDataResponsePacket static method)

 	(digi.xbee.packets.digimesh.RouteInformationPacket static method)

 	(digi.xbee.packets.filesystem.FSRequestPacket static method)

 	(digi.xbee.packets.filesystem.FSResponsePacket static method)

 	(digi.xbee.packets.filesystem.RemoteFSRequestPacket static method)

 	(digi.xbee.packets.filesystem.RemoteFSResponsePacket static method)

 	(digi.xbee.packets.network.RXIPv4Packet static method)

 	(digi.xbee.packets.network.TXIPv4Packet static method)

 	(digi.xbee.packets.raw.RX16IOPacket static method)

 	(digi.xbee.packets.raw.RX16Packet static method)

 	(digi.xbee.packets.raw.RX64IOPacket static method)

 	(digi.xbee.packets.raw.RX64Packet static method)

 	(digi.xbee.packets.raw.TX16Packet static method)

 	(digi.xbee.packets.raw.TX64Packet static method)

 	(digi.xbee.packets.raw.TXStatusPacket static method)

 	(digi.xbee.packets.relay.UserDataRelayOutputPacket static method)

 	(digi.xbee.packets.relay.UserDataRelayPacket static method)

 	(digi.xbee.packets.socket.SocketBindListenPacket static method)

 	(digi.xbee.packets.socket.SocketClosePacket static method)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket static method)

 	(digi.xbee.packets.socket.SocketConnectPacket static method)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket static method)

 	(digi.xbee.packets.socket.SocketCreatePacket static method)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket static method)

 	(digi.xbee.packets.socket.SocketListenResponsePacket static method)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket static method)

 	(digi.xbee.packets.socket.SocketOptionRequestPacket static method)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket static method)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket static method)

 	(digi.xbee.packets.socket.SocketReceivePacket static method)

 	(digi.xbee.packets.socket.SocketSendPacket static method)

 	(digi.xbee.packets.socket.SocketSendToPacket static method)

 	(digi.xbee.packets.socket.SocketStatePacket static method)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket static method)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket static method)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket static method)

 	(digi.xbee.packets.zigbee.CreateSourceRoutePacket static method)

 	(digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket static method)

 	(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket static method)

 	(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket static method)

 	(digi.xbee.packets.zigbee.RouteRecordIndicatorPacket static method)

 	UNKNOWN (digi.xbee.devices.LinkQuality attribute)

 	UNKNOWN_ADDRESS (digi.xbee.models.address.XBee16BitAddress attribute)

 	(digi.xbee.models.address.XBee64BitAddress attribute)

 	UNKNOWN_VALUE (digi.xbee.devices.LinkQuality attribute)

 	UnknownFSCmd (class in digi.xbee.models.filesystem)

 	UnknownXBeePacket (class in digi.xbee.packets.base)

 	
 	unregister_joining_device() (digi.xbee.devices.ZigBeeDevice method)

 	unregister_joining_device_async() (digi.xbee.devices.ZigBeeDevice method)

 	update_bluetooth_password() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	update_device_data_from() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	update_filesystem_image() (digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	update_firmware() (digi.xbee.comm_interface.XBeeCommunicationInterface method)

 	(digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.serial.XBeeSerialPort method)

 	update_local_firmware() (in module digi.xbee.firmware)

 	update_remote_filesystem() (in module digi.xbee.firmware)

 	update_remote_filesystem_image() (in module digi.xbee.filesystem)

 	update_remote_firmware() (in module digi.xbee.firmware)

 	UpdateConfigurer (class in digi.xbee.firmware)

 	UpdateProfileException

 	USE_BROADCAST_PAN_ID (digi.xbee.models.options.TransmitOptions attribute)

 	USE_CURRENT_OFFSET (digi.xbee.models.filesystem.ReadFileCmdRequest attribute)

 	(digi.xbee.models.filesystem.WriteFileCmdRequest attribute)

 	USE_EXTENDED_TIMEOUT (digi.xbee.models.options.TransmitOptions attribute)

 	user_desc_supported (digi.xbee.models.zdo.NodeDescriptor attribute)

 	UserDataRelayMessage (class in digi.xbee.models.message)

 	UserDataRelayOutputPacket (class in digi.xbee.packets.relay)

 	UserDataRelayPacket (class in digi.xbee.packets.relay)

V

 	
 	value (digi.xbee.profile.XBeeProfileSetting attribute)

 	version (digi.xbee.profile.XBeeProfile attribute)

 	VolFormatCmdRequest (class in digi.xbee.models.filesystem)

 	
 	VolFormatCmdResponse (class in digi.xbee.models.filesystem)

 	VolStatCmdRequest (class in digi.xbee.models.filesystem)

 	VolStatCmdResponse (class in digi.xbee.models.filesystem)

W

 	
 	wait_for_frame() (digi.xbee.comm_interface.XBeeCommunicationInterface method)

 	(digi.xbee.serial.XBeeSerialPort method)

 	wait_until_started() (digi.xbee.reader.PacketListener method)

 	WiFiAssociationIndicationStatus (class in digi.xbee.models.status)

 	WiFiDevice (class in digi.xbee.devices)

 	WiFiEncryptionType (class in digi.xbee.models.accesspoint)

 	with_traceback() (digi.xbee.exception.ATCommandException method)

 	(digi.xbee.exception.CommunicationException method)

 	(digi.xbee.exception.ConnectionException method)

 	(digi.xbee.exception.FirmwareUpdateException method)

 	(digi.xbee.exception.InvalidConfigurationException method)

 	(digi.xbee.exception.InvalidOperatingModeException method)

 	(digi.xbee.exception.InvalidPacketException method)

 	(digi.xbee.exception.OperationNotSupportedException method)

 	(digi.xbee.exception.RecoveryException method)

 	(digi.xbee.exception.TimeoutException method)

 	(digi.xbee.exception.TransmitException method)

 	(digi.xbee.exception.XBeeDeviceException method)

 	(digi.xbee.exception.XBeeException method)

 	(digi.xbee.exception.XBeeSocketException method)

 	(digi.xbee.filesystem.FileSystemException method)

 	(digi.xbee.filesystem.FileSystemNotSupportedException method)

 	(digi.xbee.profile.ReadProfileException method)

 	(digi.xbee.profile.UpdateProfileException method)

 	(digi.xbee.util.xmodem.XModemCancelException method)

 	(digi.xbee.util.xmodem.XModemException method)

 	
 	WRITE (digi.xbee.models.options.FileOpenRequestOption attribute)

 	write_changes() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	write_file() (digi.xbee.filesystem.FileSystemManager method)

 	write_frame() (digi.xbee.comm_interface.XBeeCommunicationInterface method)

 	(digi.xbee.serial.XBeeSerialPort method)

 	WriteFileCmdRequest (class in digi.xbee.models.filesystem)

 	WriteFileCmdResponse (class in digi.xbee.models.filesystem)

X

 	
 	x16bit_dest_addr (digi.xbee.packets.common.ExplicitAddressingPacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandPacket attribute)

 	(digi.xbee.packets.common.TransmitPacket attribute)

 	(digi.xbee.packets.common.TransmitStatusPacket attribute)

 	(digi.xbee.packets.raw.TX16Packet attribute)

 	(digi.xbee.packets.zigbee.CreateSourceRoutePacket attribute)

 	x16bit_source_addr (digi.xbee.packets.common.ExplicitRXIndicatorPacket attribute)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket attribute)

 	(digi.xbee.packets.common.ReceivePacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket attribute)

 	(digi.xbee.packets.raw.RX16IOPacket attribute)

 	(digi.xbee.packets.raw.RX16Packet attribute)

 	(digi.xbee.packets.zigbee.RouteRecordIndicatorPacket attribute)

 	x16bit_updater_addr (digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket attribute)

 	x64bit_dest_addr (digi.xbee.packets.common.ExplicitAddressingPacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandPacket attribute)

 	(digi.xbee.packets.common.TransmitPacket attribute)

 	(digi.xbee.packets.filesystem.RemoteFSRequestPacket attribute)

 	(digi.xbee.packets.raw.TX64Packet attribute)

 	(digi.xbee.packets.zigbee.CreateSourceRoutePacket attribute)

 	x64bit_source_addr (digi.xbee.packets.common.ExplicitRXIndicatorPacket attribute)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket attribute)

 	(digi.xbee.packets.common.ReceivePacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket attribute)

 	(digi.xbee.packets.filesystem.RemoteFSResponsePacket attribute)

 	(digi.xbee.packets.raw.RX64IOPacket attribute)

 	(digi.xbee.packets.raw.RX64Packet attribute)

 	(digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket attribute)

 	(digi.xbee.packets.zigbee.RouteRecordIndicatorPacket attribute)

 	
 	x64bit_target_addr (digi.xbee.packets.zigbee.OTAFirmwareUpdateStatusPacket attribute)

 	xbee (digi.xbee.filesystem.FileSystemManager attribute)

 	(digi.xbee.sender.SyncRequestSender attribute)

 	XBee16BitAddress (class in digi.xbee.models.address)

 	XBee64BitAddress (class in digi.xbee.models.address)

 	XBeeAPIPacket (class in digi.xbee.packets.base)

 	XBeeCommunicationInterface (class in digi.xbee.comm_interface)

 	XBeeDevice (class in digi.xbee.devices)

 	XBeeDeviceException

 	XBeeEvent (class in digi.xbee.reader)

 	XBeeException

 	XBeeIMEIAddress (class in digi.xbee.models.address)

 	XBeeLocalInterface (class in digi.xbee.models.options)

 	XBeeMessage (class in digi.xbee.models.message)

 	XBeeNetwork (class in digi.xbee.devices)

 	XBeePacket (class in digi.xbee.packets.base)

 	XBeeProfile (class in digi.xbee.profile)

 	XBeeProfileSetting (class in digi.xbee.profile)

 	XBeeProtocol (class in digi.xbee.models.protocol)

 	XBeeQueue (class in digi.xbee.reader)

 	XBeeSerialPort (class in digi.xbee.serial)

 	XBeeSettingFormat (class in digi.xbee.profile)

 	XBeeSettingType (class in digi.xbee.profile)

 	XBeeSocketException

 	XModemCancelException

 	XModemException

Z

 	
 	ZigBeeDevice (class in digi.xbee.devices)

 	
 	ZigBeeNetwork (class in digi.xbee.devices)

 	ZigbeeRegisterStatus (class in digi.xbee.models.status)

 All modules for which code is available

	digi.xbee.comm_interface

	digi.xbee.devices

	digi.xbee.exception

	digi.xbee.filesystem

	digi.xbee.firmware

	digi.xbee.io

	digi.xbee.models.accesspoint

	digi.xbee.models.address

	digi.xbee.models.atcomm

	digi.xbee.models.filesystem

	digi.xbee.models.hw

	digi.xbee.models.info

	digi.xbee.models.message

	digi.xbee.models.mode

	digi.xbee.models.options

	digi.xbee.models.protocol

	digi.xbee.models.status

	digi.xbee.models.zdo

	digi.xbee.packets.aft

	digi.xbee.packets.base

	digi.xbee.packets.cellular

	digi.xbee.packets.common

	digi.xbee.packets.devicecloud

	digi.xbee.packets.digimesh

	digi.xbee.packets.factory

	digi.xbee.packets.filesystem

	digi.xbee.packets.network

	digi.xbee.packets.raw

	digi.xbee.packets.relay

	digi.xbee.packets.socket

	digi.xbee.packets.wifi

	digi.xbee.packets.zigbee

	digi.xbee.profile

	digi.xbee.reader

	digi.xbee.recovery

	digi.xbee.sender

	digi.xbee.serial

	digi.xbee.util.utils

	digi.xbee.util.xmodem

	digi.xbee.xsocket

	queue

	threading

 Source code for queue

'''A multi-producer, multi-consumer queue.'''

import threading
from collections import deque
from heapq import heappush, heappop
from time import monotonic as time
try:
 from _queue import SimpleQueue
except ImportError:
 SimpleQueue = None

__all__ = ['Empty', 'Full', 'Queue', 'PriorityQueue', 'LifoQueue', 'SimpleQueue']

try:
 from _queue import Empty
except AttributeError:
 class Empty(Exception):
 'Exception raised by Queue.get(block=0)/get_nowait().'
 pass

class Full(Exception):
 'Exception raised by Queue.put(block=0)/put_nowait().'
 pass

class Queue:
 '''Create a queue object with a given maximum size.

 If maxsize is <= 0, the queue size is infinite.
 '''

 def __init__(self, maxsize=0):
 self.maxsize = maxsize
 self._init(maxsize)

 # mutex must be held whenever the queue is mutating. All methods
 # that acquire mutex must release it before returning. mutex
 # is shared between the three conditions, so acquiring and
 # releasing the conditions also acquires and releases mutex.
 self.mutex = threading.Lock()

 # Notify not_empty whenever an item is added to the queue; a
 # thread waiting to get is notified then.
 self.not_empty = threading.Condition(self.mutex)

 # Notify not_full whenever an item is removed from the queue;
 # a thread waiting to put is notified then.
 self.not_full = threading.Condition(self.mutex)

 # Notify all_tasks_done whenever the number of unfinished tasks
 # drops to zero; thread waiting to join() is notified to resume
 self.all_tasks_done = threading.Condition(self.mutex)
 self.unfinished_tasks = 0

 def task_done(self):
 '''Indicate that a formerly enqueued task is complete.

 Used by Queue consumer threads. For each get() used to fetch a task,
 a subsequent call to task_done() tells the queue that the processing
 on the task is complete.

 If a join() is currently blocking, it will resume when all items
 have been processed (meaning that a task_done() call was received
 for every item that had been put() into the queue).

 Raises a ValueError if called more times than there were items
 placed in the queue.
 '''
 with self.all_tasks_done:
 unfinished = self.unfinished_tasks - 1
 if unfinished <= 0:
 if unfinished < 0:
 raise ValueError('task_done() called too many times')
 self.all_tasks_done.notify_all()
 self.unfinished_tasks = unfinished

 def join(self):
 '''Blocks until all items in the Queue have been gotten and processed.

 The count of unfinished tasks goes up whenever an item is added to the
 queue. The count goes down whenever a consumer thread calls task_done()
 to indicate the item was retrieved and all work on it is complete.

 When the count of unfinished tasks drops to zero, join() unblocks.
 '''
 with self.all_tasks_done:
 while self.unfinished_tasks:
 self.all_tasks_done.wait()

 def qsize(self):
 '''Return the approximate size of the queue (not reliable!).'''
 with self.mutex:
 return self._qsize()

 def empty(self):
 '''Return True if the queue is empty, False otherwise (not reliable!).

 This method is likely to be removed at some point. Use qsize() == 0
 as a direct substitute, but be aware that either approach risks a race
 condition where a queue can grow before the result of empty() or
 qsize() can be used.

 To create code that needs to wait for all queued tasks to be
 completed, the preferred technique is to use the join() method.
 '''
 with self.mutex:
 return not self._qsize()

 def full(self):
 '''Return True if the queue is full, False otherwise (not reliable!).

 This method is likely to be removed at some point. Use qsize() >= n
 as a direct substitute, but be aware that either approach risks a race
 condition where a queue can shrink before the result of full() or
 qsize() can be used.
 '''
 with self.mutex:
 return 0 < self.maxsize <= self._qsize()

 def put(self, item, block=True, timeout=None):
 '''Put an item into the queue.

 If optional args 'block' is true and 'timeout' is None (the default),
 block if necessary until a free slot is available. If 'timeout' is
 a non-negative number, it blocks at most 'timeout' seconds and raises
 the Full exception if no free slot was available within that time.
 Otherwise ('block' is false), put an item on the queue if a free slot
 is immediately available, else raise the Full exception ('timeout'
 is ignored in that case).
 '''
 with self.not_full:
 if self.maxsize > 0:
 if not block:
 if self._qsize() >= self.maxsize:
 raise Full
 elif timeout is None:
 while self._qsize() >= self.maxsize:
 self.not_full.wait()
 elif timeout < 0:
 raise ValueError("'timeout' must be a non-negative number")
 else:
 endtime = time() + timeout
 while self._qsize() >= self.maxsize:
 remaining = endtime - time()
 if remaining <= 0.0:
 raise Full
 self.not_full.wait(remaining)
 self._put(item)
 self.unfinished_tasks += 1
 self.not_empty.notify()

 def get(self, block=True, timeout=None):
 '''Remove and return an item from the queue.

 If optional args 'block' is true and 'timeout' is None (the default),
 block if necessary until an item is available. If 'timeout' is
 a non-negative number, it blocks at most 'timeout' seconds and raises
 the Empty exception if no item was available within that time.
 Otherwise ('block' is false), return an item if one is immediately
 available, else raise the Empty exception ('timeout' is ignored
 in that case).
 '''
 with self.not_empty:
 if not block:
 if not self._qsize():
 raise Empty
 elif timeout is None:
 while not self._qsize():
 self.not_empty.wait()
 elif timeout < 0:
 raise ValueError("'timeout' must be a non-negative number")
 else:
 endtime = time() + timeout
 while not self._qsize():
 remaining = endtime - time()
 if remaining <= 0.0:
 raise Empty
 self.not_empty.wait(remaining)
 item = self._get()
 self.not_full.notify()
 return item

 def put_nowait(self, item):
 '''Put an item into the queue without blocking.

 Only enqueue the item if a free slot is immediately available.
 Otherwise raise the Full exception.
 '''
 return self.put(item, block=False)

 def get_nowait(self):
 '''Remove and return an item from the queue without blocking.

 Only get an item if one is immediately available. Otherwise
 raise the Empty exception.
 '''
 return self.get(block=False)

 # Override these methods to implement other queue organizations
 # (e.g. stack or priority queue).
 # These will only be called with appropriate locks held

 # Initialize the queue representation
 def _init(self, maxsize):
 self.queue = deque()

 def _qsize(self):
 return len(self.queue)

 # Put a new item in the queue
 def _put(self, item):
 self.queue.append(item)

 # Get an item from the queue
 def _get(self):
 return self.queue.popleft()

class PriorityQueue(Queue):
 '''Variant of Queue that retrieves open entries in priority order (lowest first).

 Entries are typically tuples of the form: (priority number, data).
 '''

 def _init(self, maxsize):
 self.queue = []

 def _qsize(self):
 return len(self.queue)

 def _put(self, item):
 heappush(self.queue, item)

 def _get(self):
 return heappop(self.queue)

class LifoQueue(Queue):
 '''Variant of Queue that retrieves most recently added entries first.'''

 def _init(self, maxsize):
 self.queue = []

 def _qsize(self):
 return len(self.queue)

 def _put(self, item):
 self.queue.append(item)

 def _get(self):
 return self.queue.pop()

class _PySimpleQueue:
 '''Simple, unbounded FIFO queue.

 This pure Python implementation is not reentrant.
 '''
 # Note: while this pure Python version provides fairness
 # (by using a threading.Semaphore which is itself fair, being based
 # on threading.Condition), fairness is not part of the API contract.
 # This allows the C version to use a different implementation.

 def __init__(self):
 self._queue = deque()
 self._count = threading.Semaphore(0)

 def put(self, item, block=True, timeout=None):
 '''Put the item on the queue.

 The optional 'block' and 'timeout' arguments are ignored, as this method
 never blocks. They are provided for compatibility with the Queue class.
 '''
 self._queue.append(item)
 self._count.release()

 def get(self, block=True, timeout=None):
 '''Remove and return an item from the queue.

 If optional args 'block' is true and 'timeout' is None (the default),
 block if necessary until an item is available. If 'timeout' is
 a non-negative number, it blocks at most 'timeout' seconds and raises
 the Empty exception if no item was available within that time.
 Otherwise ('block' is false), return an item if one is immediately
 available, else raise the Empty exception ('timeout' is ignored
 in that case).
 '''
 if timeout is not None and timeout < 0:
 raise ValueError("'timeout' must be a non-negative number")
 if not self._count.acquire(block, timeout):
 raise Empty
 return self._queue.popleft()

 def put_nowait(self, item):
 '''Put an item into the queue without blocking.

 This is exactly equivalent to `put(item)` and is only provided
 for compatibility with the Queue class.
 '''
 return self.put(item, block=False)

 def get_nowait(self):
 '''Remove and return an item from the queue without blocking.

 Only get an item if one is immediately available. Otherwise
 raise the Empty exception.
 '''
 return self.get(block=False)

 def empty(self):
 '''Return True if the queue is empty, False otherwise (not reliable!).'''
 return len(self._queue) == 0

 def qsize(self):
 '''Return the approximate size of the queue (not reliable!).'''
 return len(self._queue)

if SimpleQueue is None:
 SimpleQueue = _PySimpleQueue

 Source code for threading

"""Thread module emulating a subset of Java's threading model."""

import os as _os
import sys as _sys
import _thread

from time import monotonic as _time
from traceback import format_exc as _format_exc
from _weakrefset import WeakSet
from itertools import islice as _islice, count as _count
try:
 from _collections import deque as _deque
except ImportError:
 from collections import deque as _deque

Note regarding PEP 8 compliant names
This threading model was originally inspired by Java, and inherited
the convention of camelCase function and method names from that
language. Those original names are not in any imminent danger of
being deprecated (even for Py3k),so this module provides them as an
alias for the PEP 8 compliant names
Note that using the new PEP 8 compliant names facilitates substitution
with the multiprocessing module, which doesn't provide the old
Java inspired names.

__all__ = ['get_ident', 'active_count', 'Condition', 'current_thread',
 'enumerate', 'main_thread', 'TIMEOUT_MAX',
 'Event', 'Lock', 'RLock', 'Semaphore', 'BoundedSemaphore', 'Thread',
 'Barrier', 'BrokenBarrierError', 'Timer', 'ThreadError',
 'setprofile', 'settrace', 'local', 'stack_size']

Rename some stuff so "from threading import *" is safe
_start_new_thread = _thread.start_new_thread
_allocate_lock = _thread.allocate_lock
_set_sentinel = _thread._set_sentinel
get_ident = _thread.get_ident
ThreadError = _thread.error
try:
 _CRLock = _thread.RLock
except AttributeError:
 _CRLock = None
TIMEOUT_MAX = _thread.TIMEOUT_MAX
del _thread

Support for profile and trace hooks

_profile_hook = None
_trace_hook = None

def setprofile(func):
 """Set a profile function for all threads started from the threading module.

 The func will be passed to sys.setprofile() for each thread, before its
 run() method is called.

 """
 global _profile_hook
 _profile_hook = func

def settrace(func):
 """Set a trace function for all threads started from the threading module.

 The func will be passed to sys.settrace() for each thread, before its run()
 method is called.

 """
 global _trace_hook
 _trace_hook = func

Synchronization classes

Lock = _allocate_lock

def RLock(*args, **kwargs):
 """Factory function that returns a new reentrant lock.

 A reentrant lock must be released by the thread that acquired it. Once a
 thread has acquired a reentrant lock, the same thread may acquire it again
 without blocking; the thread must release it once for each time it has
 acquired it.

 """
 if _CRLock is None:
 return _PyRLock(*args, **kwargs)
 return _CRLock(*args, **kwargs)

class _RLock:
 """This class implements reentrant lock objects.

 A reentrant lock must be released by the thread that acquired it. Once a
 thread has acquired a reentrant lock, the same thread may acquire it
 again without blocking; the thread must release it once for each time it
 has acquired it.

 """

 def __init__(self):
 self._block = _allocate_lock()
 self._owner = None
 self._count = 0

 def __repr__(self):
 owner = self._owner
 try:
 owner = _active[owner].name
 except KeyError:
 pass
 return "<%s %s.%s object owner=%r count=%d at %s>" % (
 "locked" if self._block.locked() else "unlocked",
 self.__class__.__module__,
 self.__class__.__qualname__,
 owner,
 self._count,
 hex(id(self))
)

 def acquire(self, blocking=True, timeout=-1):
 """Acquire a lock, blocking or non-blocking.

 When invoked without arguments: if this thread already owns the lock,
 increment the recursion level by one, and return immediately. Otherwise,
 if another thread owns the lock, block until the lock is unlocked. Once
 the lock is unlocked (not owned by any thread), then grab ownership, set
 the recursion level to one, and return. If more than one thread is
 blocked waiting until the lock is unlocked, only one at a time will be
 able to grab ownership of the lock. There is no return value in this
 case.

 When invoked with the blocking argument set to true, do the same thing
 as when called without arguments, and return true.

 When invoked with the blocking argument set to false, do not block. If a
 call without an argument would block, return false immediately;
 otherwise, do the same thing as when called without arguments, and
 return true.

 When invoked with the floating-point timeout argument set to a positive
 value, block for at most the number of seconds specified by timeout
 and as long as the lock cannot be acquired. Return true if the lock has
 been acquired, false if the timeout has elapsed.

 """
 me = get_ident()
 if self._owner == me:
 self._count += 1
 return 1
 rc = self._block.acquire(blocking, timeout)
 if rc:
 self._owner = me
 self._count = 1
 return rc

 __enter__ = acquire

 def release(self):
 """Release a lock, decrementing the recursion level.

 If after the decrement it is zero, reset the lock to unlocked (not owned
 by any thread), and if any other threads are blocked waiting for the
 lock to become unlocked, allow exactly one of them to proceed. If after
 the decrement the recursion level is still nonzero, the lock remains
 locked and owned by the calling thread.

 Only call this method when the calling thread owns the lock. A
 RuntimeError is raised if this method is called when the lock is
 unlocked.

 There is no return value.

 """
 if self._owner != get_ident():
 raise RuntimeError("cannot release un-acquired lock")
 self._count = count = self._count - 1
 if not count:
 self._owner = None
 self._block.release()

 def __exit__(self, t, v, tb):
 self.release()

 # Internal methods used by condition variables

 def _acquire_restore(self, state):
 self._block.acquire()
 self._count, self._owner = state

 def _release_save(self):
 if self._count == 0:
 raise RuntimeError("cannot release un-acquired lock")
 count = self._count
 self._count = 0
 owner = self._owner
 self._owner = None
 self._block.release()
 return (count, owner)

 def _is_owned(self):
 return self._owner == get_ident()

_PyRLock = _RLock

class Condition:
 """Class that implements a condition variable.

 A condition variable allows one or more threads to wait until they are
 notified by another thread.

 If the lock argument is given and not None, it must be a Lock or RLock
 object, and it is used as the underlying lock. Otherwise, a new RLock object
 is created and used as the underlying lock.

 """

 def __init__(self, lock=None):
 if lock is None:
 lock = RLock()
 self._lock = lock
 # Export the lock's acquire() and release() methods
 self.acquire = lock.acquire
 self.release = lock.release
 # If the lock defines _release_save() and/or _acquire_restore(),
 # these override the default implementations (which just call
 # release() and acquire() on the lock). Ditto for _is_owned().
 try:
 self._release_save = lock._release_save
 except AttributeError:
 pass
 try:
 self._acquire_restore = lock._acquire_restore
 except AttributeError:
 pass
 try:
 self._is_owned = lock._is_owned
 except AttributeError:
 pass
 self._waiters = _deque()

 def __enter__(self):
 return self._lock.__enter__()

 def __exit__(self, *args):
 return self._lock.__exit__(*args)

 def __repr__(self):
 return "<Condition(%s, %d)>" % (self._lock, len(self._waiters))

 def _release_save(self):
 self._lock.release() # No state to save

 def _acquire_restore(self, x):
 self._lock.acquire() # Ignore saved state

 def _is_owned(self):
 # Return True if lock is owned by current_thread.
 # This method is called only if _lock doesn't have _is_owned().
 if self._lock.acquire(0):
 self._lock.release()
 return False
 else:
 return True

 def wait(self, timeout=None):
 """Wait until notified or until a timeout occurs.

 If the calling thread has not acquired the lock when this method is
 called, a RuntimeError is raised.

 This method releases the underlying lock, and then blocks until it is
 awakened by a notify() or notify_all() call for the same condition
 variable in another thread, or until the optional timeout occurs. Once
 awakened or timed out, it re-acquires the lock and returns.

 When the timeout argument is present and not None, it should be a
 floating point number specifying a timeout for the operation in seconds
 (or fractions thereof).

 When the underlying lock is an RLock, it is not released using its
 release() method, since this may not actually unlock the lock when it
 was acquired multiple times recursively. Instead, an internal interface
 of the RLock class is used, which really unlocks it even when it has
 been recursively acquired several times. Another internal interface is
 then used to restore the recursion level when the lock is reacquired.

 """
 if not self._is_owned():
 raise RuntimeError("cannot wait on un-acquired lock")
 waiter = _allocate_lock()
 waiter.acquire()
 self._waiters.append(waiter)
 saved_state = self._release_save()
 gotit = False
 try: # restore state no matter what (e.g., KeyboardInterrupt)
 if timeout is None:
 waiter.acquire()
 gotit = True
 else:
 if timeout > 0:
 gotit = waiter.acquire(True, timeout)
 else:
 gotit = waiter.acquire(False)
 return gotit
 finally:
 self._acquire_restore(saved_state)
 if not gotit:
 try:
 self._waiters.remove(waiter)
 except ValueError:
 pass

 def wait_for(self, predicate, timeout=None):
 """Wait until a condition evaluates to True.

 predicate should be a callable which result will be interpreted as a
 boolean value. A timeout may be provided giving the maximum time to
 wait.

 """
 endtime = None
 waittime = timeout
 result = predicate()
 while not result:
 if waittime is not None:
 if endtime is None:
 endtime = _time() + waittime
 else:
 waittime = endtime - _time()
 if waittime <= 0:
 break
 self.wait(waittime)
 result = predicate()
 return result

 def notify(self, n=1):
 """Wake up one or more threads waiting on this condition, if any.

 If the calling thread has not acquired the lock when this method is
 called, a RuntimeError is raised.

 This method wakes up at most n of the threads waiting for the condition
 variable; it is a no-op if no threads are waiting.

 """
 if not self._is_owned():
 raise RuntimeError("cannot notify on un-acquired lock")
 all_waiters = self._waiters
 waiters_to_notify = _deque(_islice(all_waiters, n))
 if not waiters_to_notify:
 return
 for waiter in waiters_to_notify:
 waiter.release()
 try:
 all_waiters.remove(waiter)
 except ValueError:
 pass

 def notify_all(self):
 """Wake up all threads waiting on this condition.

 If the calling thread has not acquired the lock when this method
 is called, a RuntimeError is raised.

 """
 self.notify(len(self._waiters))

 notifyAll = notify_all

class Semaphore:
 """This class implements semaphore objects.

 Semaphores manage a counter representing the number of release() calls minus
 the number of acquire() calls, plus an initial value. The acquire() method
 blocks if necessary until it can return without making the counter
 negative. If not given, value defaults to 1.

 """

 # After Tim Peters' semaphore class, but not quite the same (no maximum)

 def __init__(self, value=1):
 if value < 0:
 raise ValueError("semaphore initial value must be >= 0")
 self._cond = Condition(Lock())
 self._value = value

 def acquire(self, blocking=True, timeout=None):
 """Acquire a semaphore, decrementing the internal counter by one.

 When invoked without arguments: if the internal counter is larger than
 zero on entry, decrement it by one and return immediately. If it is zero
 on entry, block, waiting until some other thread has called release() to
 make it larger than zero. This is done with proper interlocking so that
 if multiple acquire() calls are blocked, release() will wake exactly one
 of them up. The implementation may pick one at random, so the order in
 which blocked threads are awakened should not be relied on. There is no
 return value in this case.

 When invoked with blocking set to true, do the same thing as when called
 without arguments, and return true.

 When invoked with blocking set to false, do not block. If a call without
 an argument would block, return false immediately; otherwise, do the
 same thing as when called without arguments, and return true.

 When invoked with a timeout other than None, it will block for at
 most timeout seconds. If acquire does not complete successfully in
 that interval, return false. Return true otherwise.

 """
 if not blocking and timeout is not None:
 raise ValueError("can't specify timeout for non-blocking acquire")
 rc = False
 endtime = None
 with self._cond:
 while self._value == 0:
 if not blocking:
 break
 if timeout is not None:
 if endtime is None:
 endtime = _time() + timeout
 else:
 timeout = endtime - _time()
 if timeout <= 0:
 break
 self._cond.wait(timeout)
 else:
 self._value -= 1
 rc = True
 return rc

 __enter__ = acquire

 def release(self):
 """Release a semaphore, incrementing the internal counter by one.

 When the counter is zero on entry and another thread is waiting for it
 to become larger than zero again, wake up that thread.

 """
 with self._cond:
 self._value += 1
 self._cond.notify()

 def __exit__(self, t, v, tb):
 self.release()

class BoundedSemaphore(Semaphore):
 """Implements a bounded semaphore.

 A bounded semaphore checks to make sure its current value doesn't exceed its
 initial value. If it does, ValueError is raised. In most situations
 semaphores are used to guard resources with limited capacity.

 If the semaphore is released too many times it's a sign of a bug. If not
 given, value defaults to 1.

 Like regular semaphores, bounded semaphores manage a counter representing
 the number of release() calls minus the number of acquire() calls, plus an
 initial value. The acquire() method blocks if necessary until it can return
 without making the counter negative. If not given, value defaults to 1.

 """

 def __init__(self, value=1):
 Semaphore.__init__(self, value)
 self._initial_value = value

 def release(self):
 """Release a semaphore, incrementing the internal counter by one.

 When the counter is zero on entry and another thread is waiting for it
 to become larger than zero again, wake up that thread.

 If the number of releases exceeds the number of acquires,
 raise a ValueError.

 """
 with self._cond:
 if self._value >= self._initial_value:
 raise ValueError("Semaphore released too many times")
 self._value += 1
 self._cond.notify()

class Event:
 """Class implementing event objects.

 Events manage a flag that can be set to true with the set() method and reset
 to false with the clear() method. The wait() method blocks until the flag is
 true. The flag is initially false.

 """

 # After Tim Peters' event class (without is_posted())

 def __init__(self):
 self._cond = Condition(Lock())
 self._flag = False

 def _reset_internal_locks(self):
 # private! called by Thread._reset_internal_locks by _after_fork()
 self._cond.__init__(Lock())

 def is_set(self):
 """Return true if and only if the internal flag is true."""
 return self._flag

 isSet = is_set

 def set(self):
 """Set the internal flag to true.

 All threads waiting for it to become true are awakened. Threads
 that call wait() once the flag is true will not block at all.

 """
 with self._cond:
 self._flag = True
 self._cond.notify_all()

 def clear(self):
 """Reset the internal flag to false.

 Subsequently, threads calling wait() will block until set() is called to
 set the internal flag to true again.

 """
 with self._cond:
 self._flag = False

 def wait(self, timeout=None):
 """Block until the internal flag is true.

 If the internal flag is true on entry, return immediately. Otherwise,
 block until another thread calls set() to set the flag to true, or until
 the optional timeout occurs.

 When the timeout argument is present and not None, it should be a
 floating point number specifying a timeout for the operation in seconds
 (or fractions thereof).

 This method returns the internal flag on exit, so it will always return
 True except if a timeout is given and the operation times out.

 """
 with self._cond:
 signaled = self._flag
 if not signaled:
 signaled = self._cond.wait(timeout)
 return signaled

A barrier class. Inspired in part by the pthread_barrier_* api and
the CyclicBarrier class from Java. See
http://sourceware.org/pthreads-win32/manual/pthread_barrier_init.html and
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/
CyclicBarrier.html
for information.
We maintain two main states, 'filling' and 'draining' enabling the barrier
to be cyclic. Threads are not allowed into it until it has fully drained
since the previous cycle. In addition, a 'resetting' state exists which is
similar to 'draining' except that threads leave with a BrokenBarrierError,
and a 'broken' state in which all threads get the exception.
class Barrier:
 """Implements a Barrier.

 Useful for synchronizing a fixed number of threads at known synchronization
 points. Threads block on 'wait()' and are simultaneously awoken once they
 have all made that call.

 """

 def __init__(self, parties, action=None, timeout=None):
 """Create a barrier, initialised to 'parties' threads.

 'action' is a callable which, when supplied, will be called by one of
 the threads after they have all entered the barrier and just prior to
 releasing them all. If a 'timeout' is provided, it is used as the
 default for all subsequent 'wait()' calls.

 """
 self._cond = Condition(Lock())
 self._action = action
 self._timeout = timeout
 self._parties = parties
 self._state = 0 #0 filling, 1, draining, -1 resetting, -2 broken
 self._count = 0

 def wait(self, timeout=None):
 """Wait for the barrier.

 When the specified number of threads have started waiting, they are all
 simultaneously awoken. If an 'action' was provided for the barrier, one
 of the threads will have executed that callback prior to returning.
 Returns an individual index number from 0 to 'parties-1'.

 """
 if timeout is None:
 timeout = self._timeout
 with self._cond:
 self._enter() # Block while the barrier drains.
 index = self._count
 self._count += 1
 try:
 if index + 1 == self._parties:
 # We release the barrier
 self._release()
 else:
 # We wait until someone releases us
 self._wait(timeout)
 return index
 finally:
 self._count -= 1
 # Wake up any threads waiting for barrier to drain.
 self._exit()

 # Block until the barrier is ready for us, or raise an exception
 # if it is broken.
 def _enter(self):
 while self._state in (-1, 1):
 # It is draining or resetting, wait until done
 self._cond.wait()
 #see if the barrier is in a broken state
 if self._state < 0:
 raise BrokenBarrierError
 assert self._state == 0

 # Optionally run the 'action' and release the threads waiting
 # in the barrier.
 def _release(self):
 try:
 if self._action:
 self._action()
 # enter draining state
 self._state = 1
 self._cond.notify_all()
 except:
 #an exception during the _action handler. Break and reraise
 self._break()
 raise

 # Wait in the barrier until we are released. Raise an exception
 # if the barrier is reset or broken.
 def _wait(self, timeout):
 if not self._cond.wait_for(lambda : self._state != 0, timeout):
 #timed out. Break the barrier
 self._break()
 raise BrokenBarrierError
 if self._state < 0:
 raise BrokenBarrierError
 assert self._state == 1

 # If we are the last thread to exit the barrier, signal any threads
 # waiting for the barrier to drain.
 def _exit(self):
 if self._count == 0:
 if self._state in (-1, 1):
 #resetting or draining
 self._state = 0
 self._cond.notify_all()

 def reset(self):
 """Reset the barrier to the initial state.

 Any threads currently waiting will get the BrokenBarrier exception
 raised.

 """
 with self._cond:
 if self._count > 0:
 if self._state == 0:
 #reset the barrier, waking up threads
 self._state = -1
 elif self._state == -2:
 #was broken, set it to reset state
 #which clears when the last thread exits
 self._state = -1
 else:
 self._state = 0
 self._cond.notify_all()

 def abort(self):
 """Place the barrier into a 'broken' state.

 Useful in case of error. Any currently waiting threads and threads
 attempting to 'wait()' will have BrokenBarrierError raised.

 """
 with self._cond:
 self._break()

 def _break(self):
 # An internal error was detected. The barrier is set to
 # a broken state all parties awakened.
 self._state = -2
 self._cond.notify_all()

 @property
 def parties(self):
 """Return the number of threads required to trip the barrier."""
 return self._parties

 @property
 def n_waiting(self):
 """Return the number of threads currently waiting at the barrier."""
 # We don't need synchronization here since this is an ephemeral result
 # anyway. It returns the correct value in the steady state.
 if self._state == 0:
 return self._count
 return 0

 @property
 def broken(self):
 """Return True if the barrier is in a broken state."""
 return self._state == -2

exception raised by the Barrier class
class BrokenBarrierError(RuntimeError):
 pass

Helper to generate new thread names
_counter = _count().__next__
_counter() # Consume 0 so first non-main thread has id 1.
def _newname(template="Thread-%d"):
 return template % _counter()

Active thread administration
_active_limbo_lock = _allocate_lock()
_active = {} # maps thread id to Thread object
_limbo = {}
_dangling = WeakSet()
Set of Thread._tstate_lock locks of non-daemon threads used by _shutdown()
to wait until all Python thread states get deleted:
see Thread._set_tstate_lock().
_shutdown_locks_lock = _allocate_lock()
_shutdown_locks = set()

Main class for threads

class Thread:
 """A class that represents a thread of control.

 This class can be safely subclassed in a limited fashion. There are two ways
 to specify the activity: by passing a callable object to the constructor, or
 by overriding the run() method in a subclass.

 """

 _initialized = False
 # Need to store a reference to sys.exc_info for printing
 # out exceptions when a thread tries to use a global var. during interp.
 # shutdown and thus raises an exception about trying to perform some
 # operation on/with a NoneType
 _exc_info = _sys.exc_info
 # Keep sys.exc_clear too to clear the exception just before
 # allowing .join() to return.
 #XXX __exc_clear = _sys.exc_clear

 def __init__(self, group=None, target=None, name=None,
 args=(), kwargs=None, *, daemon=None):
 """This constructor should always be called with keyword arguments. Arguments are:

 group should be None; reserved for future extension when a ThreadGroup
 class is implemented.

 target is the callable object to be invoked by the run()
 method. Defaults to None, meaning nothing is called.

 name is the thread name. By default, a unique name is constructed of
 the form "Thread-N" where N is a small decimal number.

 args is the argument tuple for the target invocation. Defaults to ().

 kwargs is a dictionary of keyword arguments for the target
 invocation. Defaults to {}.

 If a subclass overrides the constructor, it must make sure to invoke
 the base class constructor (Thread.__init__()) before doing anything
 else to the thread.

 """
 assert group is None, "group argument must be None for now"
 if kwargs is None:
 kwargs = {}
 self._target = target
 self._name = str(name or _newname())
 self._args = args
 self._kwargs = kwargs
 if daemon is not None:
 self._daemonic = daemon
 else:
 self._daemonic = current_thread().daemon
 self._ident = None
 self._tstate_lock = None
 self._started = Event()
 self._is_stopped = False
 self._initialized = True
 # sys.stderr is not stored in the class like
 # sys.exc_info since it can be changed between instances
 self._stderr = _sys.stderr
 # For debugging and _after_fork()
 _dangling.add(self)

 def _reset_internal_locks(self, is_alive):
 # private! Called by _after_fork() to reset our internal locks as
 # they may be in an invalid state leading to a deadlock or crash.
 self._started._reset_internal_locks()
 if is_alive:
 self._set_tstate_lock()
 else:
 # The thread isn't alive after fork: it doesn't have a tstate
 # anymore.
 self._is_stopped = True
 self._tstate_lock = None

 def __repr__(self):
 assert self._initialized, "Thread.__init__() was not called"
 status = "initial"
 if self._started.is_set():
 status = "started"
 self.is_alive() # easy way to get ._is_stopped set when appropriate
 if self._is_stopped:
 status = "stopped"
 if self._daemonic:
 status += " daemon"
 if self._ident is not None:
 status += " %s" % self._ident
 return "<%s(%s, %s)>" % (self.__class__.__name__, self._name, status)

 def start(self):
 """Start the thread's activity.

 It must be called at most once per thread object. It arranges for the
 object's run() method to be invoked in a separate thread of control.

 This method will raise a RuntimeError if called more than once on the
 same thread object.

 """
 if not self._initialized:
 raise RuntimeError("thread.__init__() not called")

 if self._started.is_set():
 raise RuntimeError("threads can only be started once")
 with _active_limbo_lock:
 _limbo[self] = self
 try:
 _start_new_thread(self._bootstrap, ())
 except Exception:
 with _active_limbo_lock:
 del _limbo[self]
 raise
 self._started.wait()

 def run(self):
 """Method representing the thread's activity.

 You may override this method in a subclass. The standard run() method
 invokes the callable object passed to the object's constructor as the
 target argument, if any, with sequential and keyword arguments taken
 from the args and kwargs arguments, respectively.

 """
 try:
 if self._target:
 self._target(*self._args, **self._kwargs)
 finally:
 # Avoid a refcycle if the thread is running a function with
 # an argument that has a member that points to the thread.
 del self._target, self._args, self._kwargs

 def _bootstrap(self):
 # Wrapper around the real bootstrap code that ignores
 # exceptions during interpreter cleanup. Those typically
 # happen when a daemon thread wakes up at an unfortunate
 # moment, finds the world around it destroyed, and raises some
 # random exception *** while trying to report the exception in
 # _bootstrap_inner() below ***. Those random exceptions
 # don't help anybody, and they confuse users, so we suppress
 # them. We suppress them only when it appears that the world
 # indeed has already been destroyed, so that exceptions in
 # _bootstrap_inner() during normal business hours are properly
 # reported. Also, we only suppress them for daemonic threads;
 # if a non-daemonic encounters this, something else is wrong.
 try:
 self._bootstrap_inner()
 except:
 if self._daemonic and _sys is None:
 return
 raise

 def _set_ident(self):
 self._ident = get_ident()

 def _set_tstate_lock(self):
 """
 Set a lock object which will be released by the interpreter when
 the underlying thread state (see pystate.h) gets deleted.
 """
 self._tstate_lock = _set_sentinel()
 self._tstate_lock.acquire()

 if not self.daemon:
 with _shutdown_locks_lock:
 _shutdown_locks.add(self._tstate_lock)

 def _bootstrap_inner(self):
 try:
 self._set_ident()
 self._set_tstate_lock()
 self._started.set()
 with _active_limbo_lock:
 _active[self._ident] = self
 del _limbo[self]

 if _trace_hook:
 _sys.settrace(_trace_hook)
 if _profile_hook:
 _sys.setprofile(_profile_hook)

 try:
 self.run()
 except SystemExit:
 pass
 except:
 # If sys.stderr is no more (most likely from interpreter
 # shutdown) use self._stderr. Otherwise still use sys (as in
 # _sys) in case sys.stderr was redefined since the creation of
 # self.
 if _sys and _sys.stderr is not None:
 print("Exception in thread %s:\n%s" %
 (self.name, _format_exc()), file=_sys.stderr)
 elif self._stderr is not None:
 # Do the best job possible w/o a huge amt. of code to
 # approximate a traceback (code ideas from
 # Lib/traceback.py)
 exc_type, exc_value, exc_tb = self._exc_info()
 try:
 print((
 "Exception in thread " + self.name +
 " (most likely raised during interpreter shutdown):"), file=self._stderr)
 print((
 "Traceback (most recent call last):"), file=self._stderr)
 while exc_tb:
 print((
 ' File "%s", line %s, in %s' %
 (exc_tb.tb_frame.f_code.co_filename,
 exc_tb.tb_lineno,
 exc_tb.tb_frame.f_code.co_name)), file=self._stderr)
 exc_tb = exc_tb.tb_next
 print(("%s: %s" % (exc_type, exc_value)), file=self._stderr)
 self._stderr.flush()
 # Make sure that exc_tb gets deleted since it is a memory
 # hog; deleting everything else is just for thoroughness
 finally:
 del exc_type, exc_value, exc_tb
 finally:
 # Prevent a race in
 # test_threading.test_no_refcycle_through_target when
 # the exception keeps the target alive past when we
 # assert that it's dead.
 #XXX self._exc_clear()
 pass
 finally:
 with _active_limbo_lock:
 try:
 # We don't call self._delete() because it also
 # grabs _active_limbo_lock.
 del _active[get_ident()]
 except:
 pass

 def _stop(self):
 # After calling ._stop(), .is_alive() returns False and .join() returns
 # immediately. ._tstate_lock must be released before calling ._stop().
 #
 # Normal case: C code at the end of the thread's life
 # (release_sentinel in _threadmodule.c) releases ._tstate_lock, and
 # that's detected by our ._wait_for_tstate_lock(), called by .join()
 # and .is_alive(). Any number of threads _may_ call ._stop()
 # simultaneously (for example, if multiple threads are blocked in
 # .join() calls), and they're not serialized. That's harmless -
 # they'll just make redundant rebindings of ._is_stopped and
 # ._tstate_lock. Obscure: we rebind ._tstate_lock last so that the
 # "assert self._is_stopped" in ._wait_for_tstate_lock() always works
 # (the assert is executed only if ._tstate_lock is None).
 #
 # Special case: _main_thread releases ._tstate_lock via this
 # module's _shutdown() function.
 lock = self._tstate_lock
 if lock is not None:
 assert not lock.locked()
 self._is_stopped = True
 self._tstate_lock = None
 if not self.daemon:
 with _shutdown_locks_lock:
 _shutdown_locks.discard(lock)

 def _delete(self):
 "Remove current thread from the dict of currently running threads."
 with _active_limbo_lock:
 del _active[get_ident()]
 # There must not be any python code between the previous line
 # and after the lock is released. Otherwise a tracing function
 # could try to acquire the lock again in the same thread, (in
 # current_thread()), and would block.

 def join(self, timeout=None):
 """Wait until the thread terminates.

 This blocks the calling thread until the thread whose join() method is
 called terminates -- either normally or through an unhandled exception
 or until the optional timeout occurs.

 When the timeout argument is present and not None, it should be a
 floating point number specifying a timeout for the operation in seconds
 (or fractions thereof). As join() always returns None, you must call
 is_alive() after join() to decide whether a timeout happened -- if the
 thread is still alive, the join() call timed out.

 When the timeout argument is not present or None, the operation will
 block until the thread terminates.

 A thread can be join()ed many times.

 join() raises a RuntimeError if an attempt is made to join the current
 thread as that would cause a deadlock. It is also an error to join() a
 thread before it has been started and attempts to do so raises the same
 exception.

 """
 if not self._initialized:
 raise RuntimeError("Thread.__init__() not called")
 if not self._started.is_set():
 raise RuntimeError("cannot join thread before it is started")
 if self is current_thread():
 raise RuntimeError("cannot join current thread")

 if timeout is None:
 self._wait_for_tstate_lock()
 else:
 # the behavior of a negative timeout isn't documented, but
 # historically .join(timeout=x) for x<0 has acted as if timeout=0
 self._wait_for_tstate_lock(timeout=max(timeout, 0))

 def _wait_for_tstate_lock(self, block=True, timeout=-1):
 # Issue #18808: wait for the thread state to be gone.
 # At the end of the thread's life, after all knowledge of the thread
 # is removed from C data structures, C code releases our _tstate_lock.
 # This method passes its arguments to _tstate_lock.acquire().
 # If the lock is acquired, the C code is done, and self._stop() is
 # called. That sets ._is_stopped to True, and ._tstate_lock to None.
 lock = self._tstate_lock
 if lock is None: # already determined that the C code is done
 assert self._is_stopped
 elif lock.acquire(block, timeout):
 lock.release()
 self._stop()

 @property
 def name(self):
 """A string used for identification purposes only.

 It has no semantics. Multiple threads may be given the same name. The
 initial name is set by the constructor.

 """
 assert self._initialized, "Thread.__init__() not called"
 return self._name

 @name.setter
 def name(self, name):
 assert self._initialized, "Thread.__init__() not called"
 self._name = str(name)

 @property
 def ident(self):
 """Thread identifier of this thread or None if it has not been started.

 This is a nonzero integer. See the get_ident() function. Thread
 identifiers may be recycled when a thread exits and another thread is
 created. The identifier is available even after the thread has exited.

 """
 assert self._initialized, "Thread.__init__() not called"
 return self._ident

 def is_alive(self):
 """Return whether the thread is alive.

 This method returns True just before the run() method starts until just
 after the run() method terminates. The module function enumerate()
 returns a list of all alive threads.

 """
 assert self._initialized, "Thread.__init__() not called"
 if self._is_stopped or not self._started.is_set():
 return False
 self._wait_for_tstate_lock(False)
 return not self._is_stopped

 def isAlive(self):
 """Return whether the thread is alive.

 This method is deprecated, use is_alive() instead.
 """
 import warnings
 warnings.warn('isAlive() is deprecated, use is_alive() instead',
 PendingDeprecationWarning, stacklevel=2)
 return self.is_alive()

 @property
 def daemon(self):
 """A boolean value indicating whether this thread is a daemon thread.

 This must be set before start() is called, otherwise RuntimeError is
 raised. Its initial value is inherited from the creating thread; the
 main thread is not a daemon thread and therefore all threads created in
 the main thread default to daemon = False.

 The entire Python program exits when only daemon threads are left.

 """
 assert self._initialized, "Thread.__init__() not called"
 return self._daemonic

 @daemon.setter
 def daemon(self, daemonic):
 if not self._initialized:
 raise RuntimeError("Thread.__init__() not called")
 if self._started.is_set():
 raise RuntimeError("cannot set daemon status of active thread")
 self._daemonic = daemonic

 def isDaemon(self):
 return self.daemon

 def setDaemon(self, daemonic):
 self.daemon = daemonic

 def getName(self):
 return self.name

 def setName(self, name):
 self.name = name

The timer class was contributed by Itamar Shtull-Trauring

class Timer(Thread):
 """Call a function after a specified number of seconds:

 t = Timer(30.0, f, args=None, kwargs=None)
 t.start()
 t.cancel() # stop the timer's action if it's still waiting

 """

 def __init__(self, interval, function, args=None, kwargs=None):
 Thread.__init__(self)
 self.interval = interval
 self.function = function
 self.args = args if args is not None else []
 self.kwargs = kwargs if kwargs is not None else {}
 self.finished = Event()

 def cancel(self):
 """Stop the timer if it hasn't finished yet."""
 self.finished.set()

 def run(self):
 self.finished.wait(self.interval)
 if not self.finished.is_set():
 self.function(*self.args, **self.kwargs)
 self.finished.set()

Special thread class to represent the main thread

class _MainThread(Thread):

 def __init__(self):
 Thread.__init__(self, name="MainThread", daemon=False)
 self._set_tstate_lock()
 self._started.set()
 self._set_ident()
 with _active_limbo_lock:
 _active[self._ident] = self

Dummy thread class to represent threads not started here.
These aren't garbage collected when they die, nor can they be waited for.
If they invoke anything in threading.py that calls current_thread(), they
leave an entry in the _active dict forever after.
Their purpose is to return *something* from current_thread().
They are marked as daemon threads so we won't wait for them
when we exit (conform previous semantics).

class _DummyThread(Thread):

 def __init__(self):
 Thread.__init__(self, name=_newname("Dummy-%d"), daemon=True)

 self._started.set()
 self._set_ident()
 with _active_limbo_lock:
 _active[self._ident] = self

 def _stop(self):
 pass

 def is_alive(self):
 assert not self._is_stopped and self._started.is_set()
 return True

 def join(self, timeout=None):
 assert False, "cannot join a dummy thread"

Global API functions

def current_thread():
 """Return the current Thread object, corresponding to the caller's thread of control.

 If the caller's thread of control was not created through the threading
 module, a dummy thread object with limited functionality is returned.

 """
 try:
 return _active[get_ident()]
 except KeyError:
 return _DummyThread()

currentThread = current_thread

def active_count():
 """Return the number of Thread objects currently alive.

 The returned count is equal to the length of the list returned by
 enumerate().

 """
 with _active_limbo_lock:
 return len(_active) + len(_limbo)

activeCount = active_count

def _enumerate():
 # Same as enumerate(), but without the lock. Internal use only.
 return list(_active.values()) + list(_limbo.values())

def enumerate():
 """Return a list of all Thread objects currently alive.

 The list includes daemonic threads, dummy thread objects created by
 current_thread(), and the main thread. It excludes terminated threads and
 threads that have not yet been started.

 """
 with _active_limbo_lock:
 return list(_active.values()) + list(_limbo.values())

from _thread import stack_size

Create the main thread object,
and make it available for the interpreter
(Py_Main) as threading._shutdown.

_main_thread = _MainThread()

def _shutdown():
 """
 Wait until the Python thread state of all non-daemon threads get deleted.
 """
 # Obscure: other threads may be waiting to join _main_thread. That's
 # dubious, but some code does it. We can't wait for C code to release
 # the main thread's tstate_lock - that won't happen until the interpreter
 # is nearly dead. So we release it here. Note that just calling _stop()
 # isn't enough: other threads may already be waiting on _tstate_lock.
 if _main_thread._is_stopped:
 # _shutdown() was already called
 return

 # Main thread
 tlock = _main_thread._tstate_lock
 # The main thread isn't finished yet, so its thread state lock can't have
 # been released.
 assert tlock is not None
 assert tlock.locked()
 tlock.release()
 _main_thread._stop()

 # Join all non-deamon threads
 while True:
 with _shutdown_locks_lock:
 locks = list(_shutdown_locks)
 _shutdown_locks.clear()

 if not locks:
 break

 for lock in locks:
 # mimick Thread.join()
 lock.acquire()
 lock.release()

 # new threads can be spawned while we were waiting for the other
 # threads to complete

def main_thread():
 """Return the main thread object.

 In normal conditions, the main thread is the thread from which the
 Python interpreter was started.
 """
 return _main_thread

get thread-local implementation, either from the thread
module, or from the python fallback

try:
 from _thread import _local as local
except ImportError:
 from _threading_local import local

def _after_fork():
 """
 Cleanup threading module state that should not exist after a fork.
 """
 # Reset _active_limbo_lock, in case we forked while the lock was held
 # by another (non-forked) thread. http://bugs.python.org/issue874900
 global _active_limbo_lock, _main_thread
 global _shutdown_locks_lock, _shutdown_locks
 _active_limbo_lock = _allocate_lock()

 # fork() only copied the current thread; clear references to others.
 new_active = {}

 try:
 current = _active[get_ident()]
 except KeyError:
 # fork() was called in a thread which was not spawned
 # by threading.Thread. For example, a thread spawned
 # by thread.start_new_thread().
 current = _MainThread()

 _main_thread = current

 # reset _shutdown() locks: threads re-register their _tstate_lock below
 _shutdown_locks_lock = _allocate_lock()
 _shutdown_locks = set()

 with _active_limbo_lock:
 # Dangling thread instances must still have their locks reset,
 # because someone may join() them.
 threads = set(_enumerate())
 threads.update(_dangling)
 for thread in threads:
 # Any lock/condition variable may be currently locked or in an
 # invalid state, so we reinitialize them.
 if thread is current:
 # There is only one active thread. We reset the ident to
 # its new value since it can have changed.
 thread._reset_internal_locks(True)
 ident = get_ident()
 thread._ident = ident
 new_active[ident] = thread
 else:
 # All the others are already stopped.
 thread._reset_internal_locks(False)
 thread._stop()

 _limbo.clear()
 _active.clear()
 _active.update(new_active)
 assert len(_active) == 1

if hasattr(_os, "register_at_fork"):
 _os.register_at_fork(after_in_child=_after_fork)

 Source code for digi.xbee.comm_interface

Copyright 2019, 2020, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

import abc
from abc import abstractmethod

[docs]class XBeeCommunicationInterface(metaclass=abc.ABCMeta):
 """
 This class represents the way the communication with the local XBee is
 established.
 """

[docs] @abstractmethod
 def open(self):
 """
 Establishes the underlying hardware communication interface.

 Subclasses may throw specific exceptions to signal implementation
 specific errors.
 """

[docs] @abstractmethod
 def close(self):
 """
 Terminates the underlying hardware communication interface.

 Subclasses may throw specific exceptions to signal implementation
 specific hardware errors.
 """

 @property
 @abstractmethod
 def is_interface_open(self):
 """
 Returns whether the underlying hardware communication interface is
 active or not.

 Returns:
 Boolean: `True` if the interface is active, `False` otherwise.
 """

[docs] @abstractmethod
 def wait_for_frame(self, operating_mode):
 """
 Reads the next API frame packet.

 This method blocks until:
 * A complete frame is read, in which case returns it.
 * The configured timeout goes by, in which case returns `None`.
 * Another thread calls quit_reading, in which case returns `None`.

 This method is not thread-safe, so no more than one thread should
 invoke it at the same time.

 Subclasses may throw specific exceptions to signal implementation
 specific hardware errors.

 Args:
 operating_mode (:class:`.OperatingMode`): The operating mode of the
 XBee connected to this hardware interface.
 Note: If this parameter does not match the connected XBee
 configuration, the behavior is undefined.

 Returns:
 Bytearray: The read packet as bytearray if a packet is read,
 `None` otherwise.
 """

[docs] @abstractmethod
 def quit_reading(self):
 """
 Makes the thread (if any) blocking on wait_for_frame return.

 If a thread was blocked on wait_for_frame, this method blocks (for a
 maximum of 'timeout' seconds) until the blocked thread is resumed.
 """

[docs] @abstractmethod
 def write_frame(self, frame):
 """
 Writes an XBee frame to the underlying hardware interface.

 Subclasses may throw specific exceptions to signal implementation
 specific hardware errors.

 Args:
 frame (Bytearray): The XBee API frame packet to write.
 If the bytearray does not correctly represent an XBee frame,
 the behaviour is undefined.
 """

[docs] def get_network(self, local_xbee):
 """
 Returns the XBeeNetwork object associated to the XBeeDevice associated
 to this `XBeeCommunicationInterface`.

 Some `XBeeCommunicationInterface implementations may need to handle the
 `XBeeNetwork` associated to the `XBeeDevice` themselves. If that is the
 case, a implementation-specific XBeeNetwork object that complains to
 the generic `XBeeNetwork` class will be returned. Otherwise, this
 method returns `None` and the associated `XBeeNetwork` is handled as
 for a serial-connected `XBeeDevice`.

 Args:
 local_xbee (:class:`.XBeeDevice`): The local XBee device.

 Returns:
 :class: `.XBeeNetwork`: `None` if the XBeeNetwork should handled as
 usual, otherwise a `XBeeNetwork` object.
 """
 return None

[docs] def get_local_xbee_info(self):
 """
 Returns a tuple with the local XBee information.

 This is used when opening the local XBee. If this information is
 provided, it is used as internal XBee data, if not provided, the data
 is requested to the XBee.

 Returns:
 Tuple: Tuple with local XBee information: operation mode (int),
 hardware version (int), firmware version (int),
 64-bit address (string), 16-bit address (string),
 node identifier (string), and role (int).
 """
 return None

[docs] def supports_update_firmware(self):
 """
 Returns if the interface supports the firmware update feature.

 Returns:
 Boolean: `True` if it is supported, `False` otherwise.
 """
 return False

[docs] def update_firmware(self, xbee, xml_fw_file, xbee_fw_file=None,
 bootloader_fw_file=None, timeout=None,
 progress_callback=None):
 """
 Performs a firmware update operation of the provided XBee.

 Args:
 xbee (:class:`.AbstractXBeeDevice`): Local or remote XBee node to
 be updated.
 xml_fw_file (String): Path of the XML file that describes the
 firmware to upload.
 xbee_fw_file (String, optional): Location of the XBee binary
 firmware file.
 bootloader_fw_file (String, optional): Location of the bootloader
 binary firmware file.
 timeout (Integer, optional): Maximum time to wait for target read
 operations during the update process.
 progress_callback (Function, optional): Function to execute to
 receive progress information. Receives two arguments:

 * The current update task as a String
 * The current update task percentage as an Integer

 Raises:
 XBeeException: If the local XBee is not open.
 InvalidOperatingModeException: If the local XBee operating mode is
 invalid.
 OperationNotSupportedException: If the firmware update is not
 supported in the XBee.
 FirmwareUpdateException: If there is any error performing the
 firmware update.
 """

[docs] def supports_apply_profile(self):
 """
 Returns if the interface supports the apply profile feature.

 Returns:
 Boolean: `True` if it is supported, `False` otherwise.
 """
 return False

[docs] def apply_profile(self, xbee, profile_path, timeout=None, progress_callback=None):
 """
 Applies the given XBee profile to the XBee device.

 Args:
 xbee (:class:`.AbstractXBeeDevice`): Local or remote XBee node to
 be updated.
 profile_path (String): Path of the XBee profile file to apply.
 timeout (Integer, optional): Maximum time to wait for target read
 operations during the apply profile.
 progress_callback (Function, optional): Function to execute to
 receive progress information. Receives two arguments:

 * The current apply profile task as a String
 * The current apply profile task percentage as an Integer

 Raises:
 XBeeException: If the local XBee is not open.
 InvalidOperatingModeException: If the local XBee operating mode is
 invalid.
 UpdateProfileException: If there is any error applying the XBee
 profile.
 OperationNotSupportedException: If XBee profiles are not supported
 in the XBee.
 """

 @property
 @abstractmethod
 def timeout(self):
 """
 Returns the read timeout.

 Returns:
 Integer: Read timeout in seconds.
 """

 @timeout.setter
 @abstractmethod
 def timeout(self, timeout):
 """
 Sets the read timeout in seconds.

 Args:
 timeout (Integer): The new read timeout in seconds.
 """

 Source code for digi.xbee.devices

Copyright 2017-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

import logging
import threading
import time

from abc import ABCMeta, abstractmethod
from enum import Enum, unique
from functools import wraps
from ipaddress import IPv4Address
from queue import Queue, Empty

from digi.xbee import serial
from digi.xbee.filesystem import FileSystemManager
from digi.xbee.packets.cellular import TXSMSPacket
from digi.xbee.models.accesspoint import AccessPoint, WiFiEncryptionType
from digi.xbee.models.atcomm import ATCommandResponse, ATCommand, ATStringCommand
from digi.xbee.models.hw import HardwareVersion
from digi.xbee.models.mode import OperatingMode, APIOutputMode, \
 IPAddressingMode, NeighborDiscoveryMode, APIOutputModeBit
from digi.xbee.models.address import XBee64BitAddress, XBee16BitAddress, \
 XBeeIMEIAddress
from digi.xbee.models.info import SocketInfo
from digi.xbee.models.message import XBeeMessage, ExplicitXBeeMessage, IPMessage
from digi.xbee.models.options import TransmitOptions, RemoteATCmdOptions, \
 DiscoveryOptions, XBeeLocalInterface, RegisterKeyOptions
from digi.xbee.models.protocol import XBeeProtocol, IPProtocol, Role
from digi.xbee.models.status import ATCommandStatus, TransmitStatus, \
 PowerLevel, ModemStatus, CellularAssociationIndicationStatus, \
 WiFiAssociationIndicationStatus, AssociationIndicationStatus, NetworkDiscoveryStatus
from digi.xbee.packets.aft import ApiFrameType
from digi.xbee.packets.base import XBeeAPIPacket
from digi.xbee.packets.common import ATCommPacket, TransmitPacket, \
 RemoteATCommandPacket, ExplicitAddressingPacket, ATCommQueuePacket, \
 ATCommResponsePacket, RemoteATCommandResponsePacket
from digi.xbee.packets.network import TXIPv4Packet
from digi.xbee.packets.raw import TX64Packet, TX16Packet
from digi.xbee.packets.relay import UserDataRelayPacket
from digi.xbee.packets.zigbee import RegisterJoiningDevicePacket, \
 RegisterDeviceStatusPacket, CreateSourceRoutePacket
from digi.xbee.sender import PacketSender, SyncRequestSender
from digi.xbee.util import utils
from digi.xbee.exception import XBeeException, TimeoutException, \
 InvalidOperatingModeException, ATCommandException, \
 OperationNotSupportedException, TransmitException
from digi.xbee.io import IOSample, IOMode
from digi.xbee.reader import PacketListener, PacketReceived, DeviceDiscovered, \
 DiscoveryProcessFinished, NetworkModified, RouteReceived, InitDiscoveryScan, \
 EndDiscoveryScan, XBeeEvent
from digi.xbee.serial import FlowControl
from digi.xbee.serial import XBeeSerialPort

_ERROR_INCOMPATIBLE_PROTOCOL = \
 "Error reading device information: Your module seems to be %s and NOT %s. " \
 "Check if you are using the appropriate device class."

[docs]class AbstractXBeeDevice:
 """
 This class provides common functionality for all XBee devices.
 """
 __metaclass__ = ABCMeta

 _DEFAULT_TIMEOUT_SYNC_OPERATIONS = 4
 """
 The default timeout for all synchronous operations, in seconds.
 """

 _BLE_API_USERNAME = "apiservice"
 """
 Bluetooth Low Energy API username.
 """

 _log = logging.getLogger(__name__)
 """
 Logger.
 """

 def __init__(self, local_xbee_device=None, serial_port=None,
 sync_ops_timeout=_DEFAULT_TIMEOUT_SYNC_OPERATIONS, comm_iface=None):
 """
 Class constructor. Instantiates a new :class:`.AbstractXBeeDevice`
 object with the provided parameters.

 Args:
 local_xbee_device (:class:`.XBeeDevice`, optional, default=`None`): Only
 necessary if XBee is remote. The local XBee to be the connection
 interface to communicate with the remote XBee one.
 serial_port (:class:`.XBeeSerialPort`, optional, default=`None`): Only
 necessary if the XBee device is local. The serial port to
 communicate with this XBee.
 sync_ops_timeout (Integer, optional, default: :attr:`AbstractXBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS`):
 Timeout (in seconds) for all synchronous operations.
 comm_iface (:class:`.XBeeCommunicationInterface`, optional, default=`None`):
 Only necessary if the XBee is local. The hardware interface to
 communicate with this XBee.

 .. seealso::
 | :class:`.XBeeDevice`
 | :class:`.XBeeSerialPort`
 """
 if (serial_port, comm_iface).count(None) != 1:
 raise XBeeException("Either 'serial_port' or 'comm_iface' must be "
 "'None' (and only one of them)")

 self.__current_frame_id = 0x00

 self._16bit_addr = None
 self._64bit_addr = None
 self._apply_changes_flag = True

 self._is_open = False
 self._operating_mode = None

 self._local_xbee_device = local_xbee_device
 self._comm_iface = serial_port if serial_port is not None else comm_iface
 self._serial_port = self._comm_iface if isinstance(self._comm_iface, XBeeSerialPort) else None

 self._timeout = sync_ops_timeout

 self.__io_packet_received = False
 self.__io_packet_payload = None

 self._hardware_version = None
 self._firmware_version = None
 self._protocol = None
 self._node_id = None
 self._role = Role.UNKNOWN

 self._packet_listener = None
 self._packet_sender = None

 self._scan_counter = 0
 self._reachable = True

 self._initializing = False

 self.__generic_lock = threading.Lock()

 self._ota_max_block_size = 0
 self._file_manager = None

 def __eq__(self, other):
 """
 Operator '=='. Compares two :class:`.AbstractXBeeDevice` instances.

 Returns:
 If at least one XBee has 64-bit address (not `None`), this method
 returns `True` if both XBee addresses are equal, `False` otherwise.

 If at least one XBee has 16-bit address (not `None`), this method
 returns `True` if both XBee addresses are equal, `False` otherwise.

 If at least one XBee has node id (not `None`), this method returns
 `True` if both XBee IDs are equal, `False` otherwise.

 Else (all parameters of both devices are `None`) returns `True`.
 """
 if other is None:
 return False
 if not isinstance(self, AbstractXBeeDevice) or not isinstance(other, AbstractXBeeDevice):
 return False
 if self.get_64bit_addr() is not None and other.get_64bit_addr() is not None:
 return self.get_64bit_addr() == other.get_64bit_addr()
 return False

 def __hash__(self):
 return hash((23, self.get_64bit_addr()))

 def __str__(self):
 node_id = "" if self.get_node_id() is None else self.get_node_id()
 return "%s - %s" % (self.get_64bit_addr(), node_id)

[docs] def update_device_data_from(self, device):
 """
 Updates the current node information with provided data. This is only
 for internal use.

 Args:
 device (:class:`.AbstractXBeeDevice`): XBee to get the data from.

 Return:
 Boolean: `True` if the node data has been updated, `False` otherwise.
 """
 updated = False

 if not device.is_remote() or device.get_local_xbee_device() == self:
 # Use the internal attribute because the 'operating_mode' property
 # is only available for 'XBeeDevice' objects and not for
 # 'RemoteXBeeDevice' objects, and 'device' parameter is always a
 # remote object even to update a local XBee object
 new_op_mode = device._operating_mode
 if new_op_mode and new_op_mode != self._operating_mode:
 self._operating_mode = new_op_mode
 updated = True

 new_ni = device.get_node_id()
 if new_ni is not None and new_ni != self._node_id:
 self._node_id = new_ni
 updated = True

 new_addr64 = device.get_64bit_addr()
 if (XBee64BitAddress.is_known_node_addr(new_addr64)
 and new_addr64 != self._64bit_addr
 and not XBee64BitAddress.is_known_node_addr(self._64bit_addr)):
 self._64bit_addr = new_addr64
 updated = True

 new_addr16 = device.get_16bit_addr()
 if new_addr16 != self._16bit_addr:
 if (device.get_protocol() in (XBeeProtocol.DIGI_MESH,
 XBeeProtocol.DIGI_POINT,
 XBeeProtocol.RAW_802_15_4)
 or XBee16BitAddress.is_known_node_addr(new_addr16)):
 self._16bit_addr = new_addr16
 updated = True

 new_role = device.get_role()
 if (new_role is not None
 and new_role != Role.UNKNOWN
 and new_role != self._role):
 self._role = new_role
 updated = True

 new_fw = device.get_firmware_version()
 if new_fw:
 self._firmware_version = new_fw

 new_hw = device.get_hardware_version()
 if new_hw:
 self._hardware_version = new_hw

 if isinstance(self, (ZigBeeDevice, RemoteZigBeeDevice)):
 new_parent = device.parent
 if new_parent:
 self.parent = new_parent
 updated = True

 return updated

[docs] def get_parameter(self, parameter, parameter_value=None, apply=None):
 """
 Returns the value of the provided parameter via an AT Command.

 Args:
 parameter (String or :class: `.ATStringCommand`): Parameter to get.
 parameter_value (Bytearray, optional, default=`None`): Value of the
 parameter to execute (if any).
 apply (Boolean, optional, default=`None`): `True` to apply changes
 in XBee configuration, `False` not to apply them, `None` to use
 `is_apply_changes_enabled()` returned value.

 Returns:
 Bytearray: Parameter value.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.

 .. seealso::
 | :meth:`.AbstractXBeeDevice.set_parameter`
 | :meth:`.AbstractXBeeDevice.execute_command`
 | :meth:`.AbstractXBeeDevice.apply_changes`
 | :meth:`.AbstractXBeeDevice.write_changes`
 """
 # Use 'None' as 'apply' default value to keep the behaviour the method
 # had in previous versions
 value = self.__send_parameter(
 parameter, parameter_value=parameter_value, apply=apply)

 # Check if response is None, if so throw an exception (maybe a write-only parameter)
 if value is None:
 if isinstance(parameter, ATStringCommand):
 parameter = parameter.command
 raise OperationNotSupportedException(
 message="Could not get the %s value." % parameter)

 return value

[docs] def set_parameter(self, parameter, value, apply=None):
 """
 Sets the value of a parameter via an AT Command.

 Any parameter changes are applied automatically, if `apply` is `True` or
 if it is `None` and apply flag is enabled (`is_apply_changes_enabled()`)

 You can set this flag via the method
 :meth:`.AbstractXBeeDevice.enable_apply_changes`.

 This only applies modified values in the XBee configuration, to save
 changed parameters permanently (between resets), use
 :meth:`.AbstractXBeeDevice.write_changes`.

 Args:
 parameter (String or :class: `.ATStringCommand`): Parameter to set.
 value (Bytearray): Value of the parameter.
 apply (Boolean, optional, default=`None`): `True` to apply changes,
 `False` otherwise, `None` to use `is_apply_changes_enabled()`
 returned value.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 ValueError: If `parameter` is `None` or `value` is `None`.

 .. seealso::
 | :meth:`.AbstractXBeeDevice.get_parameter`
 | :meth:`.AbstractXBeeDevice.execute_command`
 | :meth:`.AbstractXBeeDevice.apply_changes`
 | :meth:`.AbstractXBeeDevice.write_changes`
 | :meth:`.AbstractXBeeDevice.is_apply_changes_enabled`
 | :meth:`.AbstractXBeeDevice.enable_apply_changes`
 """
 if value is None:
 raise ValueError("Value of the parameter cannot be None.")

 # Use 'None' as 'apply' default value to keep the behaviour the method
 # had in previous versions
 self.__send_parameter(parameter, parameter_value=value, apply=apply)

[docs] def execute_command(self, parameter, value=None, apply=None):
 """
 Executes the provided command.

 Args:
 parameter (String or :class: `.ATStringCommand`): AT command to execute.
 value (bytearray, optional, default=`None`): Command value (if any).
 apply (Boolean, optional, default=`None`): `True` to apply changes
 in XBee configuration, `False` not to apply them, `None` to use
 `is_apply_changes_enabled()` returned value.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.

 .. seealso::
 | :meth:`.AbstractXBeeDevice.get_parameter`
 | :meth:`.AbstractXBeeDevice.set_parameter`
 | :meth:`.AbstractXBeeDevice.apply_changes`
 | :meth:`.AbstractXBeeDevice.write_changes`
 | :meth:`.AbstractXBeeDevice.is_apply_changes_enabled`
 | :meth:`.AbstractXBeeDevice.enable_apply_changes`
 """
 # Use 'None' as 'apply' default value to keep the behaviour the method
 # had in previous versions
 self.__send_parameter(parameter, parameter_value=value, apply=apply)

 def __send_parameter(self, parameter, parameter_value=None, apply=None):
 """
 Sends the given AT parameter to this XBee with an optional argument
 or value and returns the response (likely the value) of that parameter
 in a byte array format.

 Args:
 parameter (String or :class: `.ATStringCommand`): AT command/parameter to execute.
 parameter_value (bytearray, optional, default=`None`): Value of the
 AT command/parameter (if any).
 apply (Boolean, optional, default=`None`): `True` to enable the
 apply changes flag, `False` to disable it, `None` to use
 `is_apply_changes_enabled()` returned value.

 Returns:
 Bytearray: A byte array containing the value of the parameter.

 Raises:
 ValueError: if `parameter` is `None` or if `len(parameter) != 2`.
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 """
 if parameter is None:
 raise ValueError("Parameter cannot be None.")
 if isinstance(parameter, ATStringCommand):
 parameter = parameter.command
 if len(parameter) != 2:
 raise ValueError("Parameter must contain exactly 2 characters.")

 at_command = ATCommand(parameter, parameter=parameter_value)

 # Send the AT command.
 response = self._send_at_command(at_command, apply=apply)

 self._check_at_cmd_response_is_valid(response)

 return response.response

 def _check_at_cmd_response_is_valid(self, response):
 """
 Checks if the provided `ATCommandResponse` is valid throwing an
 :class:`.ATCommandException` in case it is not.

 Args:
 response: The AT command response to check.

 Raises:
 ATCommandException: If `response` is `None` or `response.status != OK`.
 """
 if (response is None or not isinstance(response, ATCommandResponse)
 or response.status is None):
 raise ATCommandException()
 if response.status != ATCommandStatus.OK:
 raise ATCommandException(message=response.status.description,
 cmd_status=response.status)

 def _send_at_command(self, command, apply=None):
 """
 Sends the given AT command and waits for answer or until the configured
 receive timeout expires.

 Args:
 command (:class:`.ATCommand`): AT command to send.
 apply (Boolean, optional, default=`None`): `True` to enable the
 apply changes flag, `False` to disable it, `None` to use
 `is_apply_changes_enabled()` returned value.

 Returns:
 :class:`.ATCommandResponse`: Response of the command or `None`
 if there is no response.

 Raises:
 ValueError: If `command` is `None`.
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 """
 if command is None:
 raise ValueError("AT command cannot be None.")

 if (not self.is_remote() and command.parameter
 and command.command.upper() == ATStringCommand.AP.command
 and not self._packet_sender.is_op_mode_valid(command.parameter)):
 op_mode_val = utils.bytes_to_int(command.parameter)
 op_mode = OperatingMode.get(op_mode_val)
 raise ATCommandException(
 message="Operating mode '%d' (%s) not set not to loose XBee connection"
 % (op_mode_val, op_mode.description if op_mode else "Unknown"))

 operating_mode = self._get_operating_mode()
 if operating_mode not in (OperatingMode.API_MODE, OperatingMode.ESCAPED_API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 apply = apply if apply is not None else self.is_apply_changes_enabled()

 if self.is_remote():
 remote_at_cmd_opts = RemoteATCmdOptions.NONE.value
 if apply:
 remote_at_cmd_opts |= RemoteATCmdOptions.APPLY_CHANGES.value

 remote_16bit_addr = self.get_16bit_addr()
 if remote_16bit_addr is None:
 remote_16bit_addr = XBee16BitAddress.UNKNOWN_ADDRESS

 packet = RemoteATCommandPacket(
 self._get_next_frame_id(), self.get_64bit_addr(), remote_16bit_addr,
 remote_at_cmd_opts, command.command, parameter=command.parameter)
 else:
 if apply:
 packet = ATCommPacket(self._get_next_frame_id(), command.command,
 parameter=command.parameter)
 else:
 packet = ATCommQueuePacket(self._get_next_frame_id(),
 command.command, parameter=command.parameter)

 if self.is_remote():
 answer_packet = self._local_xbee_device.send_packet_sync_and_get_response(
 packet, timeout=self._timeout)
 else:
 answer_packet = self._send_packet_sync_and_get_response(packet)

 response = None

 if isinstance(answer_packet, (ATCommResponsePacket, RemoteATCommandResponsePacket)):
 response = ATCommandResponse(command, response=answer_packet.command_value,
 status=answer_packet.status)

 return response

[docs] def apply_changes(self):
 """
 Applies changes via 'AC' command.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 """
 self.execute_command(ATStringCommand.AC, apply=False)

[docs] def write_changes(self):
 """
 Writes configurable parameter values to the non-volatile memory of the
 XBee so that parameter modifications persist through subsequent resets.

 Parameters values remain in the device's memory until overwritten by
 subsequent use of this method.

 If changes are made without writing them, the XBee reverts back to
 previously saved parameters the next time the module is powered-on.

 Writing the parameter modifications does not mean those values are
 immediately applied, this depends on the status of the 'apply
 configuration changes' option. Use method
 :meth:`is_apply_changes_enabled` to get its status and
 :meth:`enable_apply_changes` to enable/disable the option. Method
 :meth:`apply_changes` can be used in order to manually apply the changes.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 """
 self.execute_command(ATStringCommand.WR, apply=False)

[docs] @abstractmethod
 def reset(self):
 """
 Performs a software reset on this XBee and blocks until the process is
 completed.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 """

 def _read_device_info(self, reason, init=True, fire_event=True):
 """
 Updates all instance parameters reading them from the XBee.

 Args:
 reason (:class:`.NetworkEventReason`): If an event is thrown, this
 parameter specifies the reason.
 init (Boolean, optional, default=`True`): If `False` only not
 initialized parameters are read, all if `True`.
 fire_event (Boolean, optional, default=`True`): `True` to throw
 and update event if any parameter changed, `False` otherwise.
 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.

 .. seealso::
 | :meth:`.AbstractXBeeDevice.is_device_info_complete`
 """
 if self.is_remote():
 if not self._local_xbee_device.comm_iface.is_interface_open:
 raise XBeeException("Local XBee device's communication interface closed")
 else:
 if (self._operating_mode not in (OperatingMode.API_MODE,
 OperatingMode.ESCAPED_API_MODE)):
 raise InvalidOperatingModeException(op_mode=self._operating_mode)

 if not self._comm_iface.is_interface_open:
 raise XBeeException("XBee device's communication interface closed")

 if self._initializing:
 return

 self._initializing = True

 if self.is_remote() and init:
 # Clear the 16-bit address, it might be obsolete: a problem for Zigbee
 self._16bit_addr = XBee16BitAddress.UNKNOWN_ADDRESS

 updated = False

 try:
 # Hardware version:
 if init or self._hardware_version is None:
 hw_version = HardwareVersion.get(
 self.get_parameter(ATStringCommand.HV, apply=False)[0])
 if self._hardware_version != hw_version:
 updated = True
 self._hardware_version = hw_version
 # Firmware version:
 if init or self._firmware_version is None:
 fw_version = self.get_parameter(ATStringCommand.VR, apply=False)
 if self._firmware_version != fw_version:
 updated = True
 self._firmware_version = fw_version

 # Protocol:
 self._protocol = self.determine_protocol(
 self._hardware_version.code, self._firmware_version)

 # 64-bit address:
 if init or not XBee64BitAddress.is_known_node_addr(self._64bit_addr):
 sh_val = self.get_parameter(ATStringCommand.SH, apply=False)
 sl_val = self.get_parameter(ATStringCommand.SL, apply=False)
 x64bit_addr = XBee64BitAddress(sh_val + sl_val)
 if self._64bit_addr != x64bit_addr:
 self._64bit_addr = x64bit_addr
 updated = True
 # Node ID:
 if init or not self._node_id:
 node_id = str(self.get_parameter(ATStringCommand.NI, apply=False),
 encoding='utf8', errors='ignore')
 if self._node_id != node_id:
 self._node_id = node_id
 updated = True
 # 16-bit address:
 if self._protocol in (XBeeProtocol.ZIGBEE, XBeeProtocol.RAW_802_15_4,
 XBeeProtocol.XTEND, XBeeProtocol.SMART_ENERGY,
 XBeeProtocol.ZNET):
 if init or not XBee16BitAddress.is_known_node_addr(self._16bit_addr):
 x16bit_addr = XBee16BitAddress(
 self.get_parameter(ATStringCommand.MY, apply=False))
 if self._16bit_addr != x16bit_addr:
 self._16bit_addr = x16bit_addr
 updated = True
 else:
 # For protocols that do not support a 16-bit address, set it to unknown
 self._16bit_addr = XBee16BitAddress.UNKNOWN_ADDRESS

 # Role:
 if init or self._role is None or self._role == Role.UNKNOWN:
 role = self._determine_role()
 if self._role != role:
 self._role = role
 updated = True
 except XBeeException:
 raise
 else:
 if fire_event and updated:
 network = self.get_local_xbee_device().get_network() if self.is_remote() \
 else self.get_network()
 if (network
 and (not self.is_remote()
 or network.get_device_by_64(self._64bit_addr)
 or network.get_device_by_16(self._16bit_addr))):
 network._network_modified(
 NetworkEventType.UPDATE, reason, node=self)
 finally:
 self._initializing = False

[docs] def read_device_info(self, init=True, fire_event=True):
 """
 Updates all instance parameters reading them from the XBee.

 Args:
 init (Boolean, optional, default=`True`): If `False` only not
 initialized parameters are read, all if `True`.
 fire_event (Boolean, optional, default=`True`): `True` to throw
 and update event if any parameter changed, `False` otherwise.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.

 .. seealso::
 | :meth:`.AbstractXBeeDevice.is_device_info_complete`
 """
 self._read_device_info(NetworkEventReason.READ_INFO, init=init, fire_event=fire_event)

[docs] def determine_protocol(self, hardware_version, firmware_version):
 """
 Determines the XBee protocol based on the given hardware and firmware
 versions.

 Args:
 hardware_version (Integer): Hardware version to get its protocol.
 firmware_version (Bytearray): Firmware version to get its protocol.

 Returns:
 :class:`.XBeeProtocol`: XBee protocol corresponding to the given
 hardware and firmware versions.
 """
 br_value = None
 if hardware_version in (HardwareVersion.SX.code,
 HardwareVersion.SX_PRO.code,
 HardwareVersion.XB8X.code):
 br_value = self.get_parameter(ATStringCommand.BR, apply=False)[0]

 return XBeeProtocol.determine_protocol(
 hardware_version, firmware_version, br_value=br_value)

[docs] def is_device_info_complete(self):
 """
 Returns whether XBee node information is complete.

 Returns:
 Boolean: `True` if node information is complete, `False` otherwise.

 .. seealso::
 | :meth:`.AbstractXBeeDevice.read_device_info`
 """
 is_16bit_init = True
 if self._protocol in (XBeeProtocol.RAW_802_15_4, XBeeProtocol.ZIGBEE,
 XBeeProtocol.XTEND, XBeeProtocol.SMART_ENERGY,
 XBeeProtocol.ZNET):
 is_16bit_init = XBee16BitAddress.is_known_node_addr(self._16bit_addr)

 return (self._hardware_version is not None
 and self._firmware_version is not None
 and XBee64BitAddress.is_known_node_addr(self._64bit_addr)
 and self._node_id is not None
 and is_16bit_init
 and self._role is not None and self._role != Role.UNKNOWN)

 def _determine_role(self):
 """
 Determines the role of the XBee depending on its protocol.

 Returns:
 :class:`.Role`: XBee role.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 """
 if self._protocol in (XBeeProtocol.DIGI_MESH, XBeeProtocol.SX, XBeeProtocol.XTEND_DM):
 ce_val = utils.bytes_to_int(
 self.get_parameter(ATStringCommand.CE, apply=False))
 if ce_val == 0:
 try:
 # Capture the possible exception because DigiMesh S2C does not have
 # SS command, so the read will throw an ATCommandException
 ss_val = self.get_parameter(ATStringCommand.SS, apply=False)
 except ATCommandException:
 ss_val = None

 if not ss_val:
 return Role.ROUTER

 ss_val = utils.bytes_to_int(ss_val)
 if utils.is_bit_enabled(ss_val, 1):
 return Role.COORDINATOR
 return Role.ROUTER
 if ce_val == 1:
 return Role.COORDINATOR
 return Role.END_DEVICE
 if self._protocol in (XBeeProtocol.RAW_802_15_4, XBeeProtocol.DIGI_POINT,
 XBeeProtocol.XLR, XBeeProtocol.XLR_DM):
 ce_val = utils.bytes_to_int(
 self.get_parameter(ATStringCommand.CE, apply=False))
 if self._protocol == XBeeProtocol.RAW_802_15_4:
 if ce_val == 0:
 return Role.END_DEVICE
 if ce_val == 1:
 return Role.COORDINATOR
 else:
 if ce_val == 0:
 return Role.ROUTER
 if ce_val in (1, 3):
 return Role.COORDINATOR
 if ce_val in (2, 4, 6):
 return Role.END_DEVICE
 elif self._protocol in (XBeeProtocol.ZIGBEE, XBeeProtocol.SMART_ENERGY):
 try:
 ce_val = utils.bytes_to_int(
 self.get_parameter(ATStringCommand.CE, apply=False))
 if ce_val == 1:
 return Role.COORDINATOR

 sm_val = utils.bytes_to_int(
 self.get_parameter(ATStringCommand.SM, apply=False))

 return Role.ROUTER if sm_val == 0 else Role.END_DEVICE
 except ATCommandException:
 from digi.xbee.models.zdo import NodeDescriptorReader
 n_desc = NodeDescriptorReader(
 self, configure_ao=True,
 timeout=3*self._timeout if self.is_remote() else 2*self._timeout) \
 .get_node_descriptor()
 if n_desc:
 return n_desc.role

 return Role.UNKNOWN

[docs] def get_node_id(self):
 """
 Returns the node identifier ('NI') value of the XBee.

 Returns:
 String: Node identifier ('NI') of the XBee.
 """
 return self._node_id

[docs] def set_node_id(self, node_id):
 """
 Sets the node identifier ('NI`) value of the XBee.

 Args:
 node_id (String): New node identifier ('NI') of the XBee.

 Raises:
 ValueError: If `node_id` is `None` or its length is greater than 20.
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 """
 if node_id is None:
 raise ValueError("Node ID cannot be None")
 if len(node_id) > 20:
 raise ValueError("Node ID length must be less than 21")

 self.set_parameter(ATStringCommand.NI, bytearray(node_id, 'utf8'),
 apply=self.is_apply_changes_enabled())
 self._node_id = node_id

[docs] def get_hardware_version(self):
 """
 Returns the hardware version of the XBee.

 Returns:
 :class:`.HardwareVersion`: Hardware version of the XBee.

 .. seealso::
 | :class:`.HardwareVersion`
 """
 return self._hardware_version

[docs] def get_firmware_version(self):
 """
 Returns the firmware version of the XBee.

 Returns:
 Bytearray: Firmware version of the XBee.
 """
 return self._firmware_version

[docs] def get_protocol(self):
 """
 Returns the current protocol of the XBee.

 Returns:
 :class:`.XBeeProtocol`: Current protocol of the XBee.

 .. seealso::
 | :class:`.XBeeProtocol`
 """
 return self._protocol

[docs] def get_16bit_addr(self):
 """
 Returns the 16-bit address of the XBee.

 Returns:
 :class:`.XBee16BitAddress`: 16-bit address of the XBee.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 return self._16bit_addr

[docs] def set_16bit_addr(self, value):
 """
 Sets the 16-bit address of the XBee.

 Args:
 value (:class:`.XBee16BitAddress`): New 16-bit address of the XBee.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 OperationNotSupportedException: If the protocol is not 802.15.4.
 """
 if self.get_protocol() != XBeeProtocol.RAW_802_15_4:
 raise OperationNotSupportedException(
 message="16-bit address can only be set in 802.15.4 protocol")

 self.set_parameter(ATStringCommand.MY, value.address,
 apply=self.is_apply_changes_enabled())
 self._16bit_addr = value

[docs] def get_64bit_addr(self):
 """
 Returns the 64-bit address of the XBee.

 Returns:
 :class:`.XBee64BitAddress`: 64-bit address of the XBee.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 return self._64bit_addr

[docs] def get_role(self):
 """
 Gets the XBee role.

 Returns:
 :class:`.Role`: the role of the XBee.

 .. seealso::
 | :class:`.Role`
 """
 return self._role

[docs] def get_current_frame_id(self):
 """
 Returns the last used frame ID.

 Returns:
 Integer: Last used frame ID.
 """
 return self.__current_frame_id

[docs] def enable_apply_changes(self, value):
 """
 Sets apply changes flag.

 Args:
 value (Boolean): `True` to enable apply changes flag, `False` to
 disable it.
 """
 self._apply_changes_flag = value

[docs] def is_apply_changes_enabled(self):
 """
 Returns whether apply changes flag is enabled.

 Returns:
 Boolean: `True` if apply changes flag is enabled, `False` otherwise.
 """
 return self._apply_changes_flag

[docs] @abstractmethod
 def is_remote(self):
 """
 Determines whether XBee is remote.

 Returns:
 Boolean: `True` if the XBee is remote, `False` otherwise.
 """

[docs] def set_sync_ops_timeout(self, sync_ops_timeout):
 """
 Sets the serial port read timeout.

 Args:
 sync_ops_timeout (Integer): Read timeout in seconds.
 """
 self._timeout = sync_ops_timeout
 if self.is_remote():
 self._local_xbee_device.comm_iface.timeout = self._timeout
 else:
 self._comm_iface.timeout = self._timeout

[docs] def get_sync_ops_timeout(self):
 """
 Returns the serial port read timeout.

 Returns:
 Integer: Serial port read timeout in seconds.
 """
 return self._timeout

[docs] def get_dest_address(self):
 """
 Returns the 64-bit address of the XBee that is data destination.

 Returns:
 :class:`.XBee64BitAddress`: 64-bit address of destination XBee.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.

 .. seealso::
 | :class:`.XBee64BitAddress`
 | :meth:`.set_dest_address`
 """
 dh_val = self.get_parameter(ATStringCommand.DH, apply=False)
 dl_val = self.get_parameter(ATStringCommand.DL, apply=False)
 return XBee64BitAddress(dh_val + dl_val)

[docs] def set_dest_address(self, addr):
 """
 Sets the 64-bit address of the XBee that is data destination.

 Args:
 addr (:class:`.XBee64BitAddress` or :class:`.RemoteXBeeDevice`):
 Address itself or remote XBee to be data destination.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 ValueError: If `addr` is `None`.

 .. seealso::
 | :class:`.XBee64BitAddress`
 | :meth:`.get_dest_address`
 """
 if isinstance(addr, RemoteXBeeDevice):
 addr = addr.get_64bit_addr()

 apply = self.is_apply_changes_enabled()
 with self.__generic_lock:
 try:
 self.set_parameter(
 ATStringCommand.DH, addr.address[:4], apply=False)
 self.set_parameter(
 ATStringCommand.DL, addr.address[4:], apply=apply)
 except (TimeoutException, XBeeException,
 InvalidOperatingModeException, ATCommandException) as exc:
 # Raise the exception.
 raise exc

[docs] def get_pan_id(self):
 """
 Returns the operating PAN ID of the XBee.

 Returns:
 Bytearray: Operating PAN ID of the XBee.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.

 .. seealso::
 | :meth:`.set_pan_id`
 """
 if self.get_protocol() == XBeeProtocol.ZIGBEE:
 return self.get_parameter(ATStringCommand.OP, apply=False)
 return self.get_parameter(ATStringCommand.ID, apply=False)

[docs] def set_pan_id(self, value):
 """
 Sets the operating PAN ID of the XBee.

 Args:
 value (Bytearray): New operating PAN ID of the XBee. Must have only
 1 or 2 bytes.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.

 .. seealso::
 | :meth:`.get_pan_id`
 """
 self.set_parameter(ATStringCommand.ID, value,
 apply=self.is_apply_changes_enabled())

[docs] def get_power_level(self):
 """
 Returns the power level of the XBee.

 Returns:
 :class:`.PowerLevel`: Power level of the XBee.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.

 .. seealso::
 | :class:`.PowerLevel`
 | :meth:`.set_power_level`
 """
 return PowerLevel.get(self.get_parameter(ATStringCommand.PL, apply=False)[0])

[docs] def set_power_level(self, power_level):
 """
 Sets the power level of the XBee.

 Args:
 power_level (:class:`.PowerLevel`): New power level of the XBee.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.

 .. seealso::
 | :class:`.PowerLevel`
 | :meth:`.get_power_level`
 """
 self.set_parameter(ATStringCommand.PL, bytearray([power_level.code]),
 apply=self.is_apply_changes_enabled())

[docs] def set_io_configuration(self, io_line, io_mode):
 """
 Sets the configuration of the provided IO line.

 Args:
 io_line (:class:`.IOLine`): IO line to configure.
 io_mode (:class:`.IOMode`): IO mode to set to the IO line.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.

 .. seealso::
 | :class:`.IOLine`
 | :class:`.IOMode`
 | :meth:`.get_io_configuration`
 """
 self.set_parameter(io_line.at_command, bytearray([io_mode.value]),
 apply=self.is_apply_changes_enabled())

[docs] def get_io_configuration(self, io_line):
 """
 Returns the configuration of the provided IO line.

 Args:
 io_line (:class:`.IOLine`): IO line to get its configuration.

 Returns:
 :class:`.IOMode`: IO mode of the IO line provided.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.

 .. seealso::
 | :class:`.IOLine`
 | :class:`.IOMode`
 | :meth:`.set_io_configuration`
 """
 value = self.get_parameter(io_line.at_command, apply=False)
 try:
 mode = IOMode(value[0])
 except ValueError:
 raise OperationNotSupportedException(
 "Received configuration IO mode '%s' is invalid." % utils.hex_to_string(value))
 return mode

[docs] def get_io_sampling_rate(self):
 """
 Returns the IO sampling rate of the XBee.

 Returns:
 Integer: IO sampling rate of XBee.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.

 .. seealso::
 | :meth:`.set_io_sampling_rate`
 """
 resp = self.get_parameter(ATStringCommand.IR, apply=False)
 return utils.bytes_to_int(resp) / 1000.00

[docs] def set_io_sampling_rate(self, rate):
 """
 Sets the IO sampling rate of the XBee in seconds. A sample rate of 0
 means the IO sampling feature is disabled.

 Args:
 rate (Integer): New IO sampling rate of the XBee in seconds.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.

 .. seealso::
 | :meth:`.get_io_sampling_rate`
 """
 self.set_parameter(ATStringCommand.IR,
 utils.int_to_bytes(int(rate * 1000)),
 apply=self.is_apply_changes_enabled())

[docs] def read_io_sample(self):
 """
 Returns an IO sample from the XBee containing the value of all enabled
 digital IO and analog input channels.

 Returns:
 :class:`.IOSample`: IO sample read from the XBee.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.

 .. seealso::
 | :class:`.IOSample`
 """
 # The response to the IS command in local 802.15.4 devices is empty,
 # so we have to use callbacks to read the packet.
 if not self.is_remote() and self.get_protocol() == XBeeProtocol.RAW_802_15_4:
 lock = threading.Condition()
 self.__io_packet_received = False
 self.__io_packet_payload = None

 def io_sample_callback(received_packet):
 # Discard non API packets.
 if not isinstance(received_packet, XBeeAPIPacket):
 return
 # If we already have received an IO packet, ignore this packet.
 if self.__io_packet_received:
 return
 frame_type = received_packet.get_frame_type()
 # Save the packet value (IO sample payload).
 if frame_type in (ApiFrameType.IO_DATA_SAMPLE_RX_INDICATOR,
 ApiFrameType.RX_IO_16, ApiFrameType.RX_IO_64):
 self.__io_packet_payload = received_packet.rf_data
 else:
 return
 # Set the IO packet received flag.
 self.__io_packet_received = True
 # Continue execution by notifying the lock object.
 lock.acquire()
 lock.notify()
 lock.release()

 self._add_packet_received_callback(io_sample_callback)

 try:
 # Execute command.
 self.execute_command(ATStringCommand.IS, apply=False)

 lock.acquire()
 lock.wait(self.get_sync_ops_timeout())
 lock.release()

 if self.__io_packet_payload is None:
 raise TimeoutException(message="Timeout waiting for the IO response packet.")
 sample_payload = self.__io_packet_payload
 finally:
 self._del_packet_received_callback(io_sample_callback)
 else:
 sample_payload = self.get_parameter(ATStringCommand.IS, apply=False)

 try:
 return IOSample(sample_payload)
 except Exception as exc:
 raise XBeeException("Could not create the IO sample.", exc)

[docs] def get_adc_value(self, io_line):
 """
 Returns the analog value of the provided IO line.

 The provided IO line must be previously configured as ADC. To do so,
 use :meth:`.AbstractXBeeDevice.set_io_configuration` and :attr:`.IOMode.ADC`.

 Args:
 io_line (:class:`.IOLine`): IO line to get its ADC value.

 Returns:
 Integer: Analog value corresponding to the provided IO line.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 OperationNotSupportedException: If response does not contain the
 value for the given IO line.

 .. seealso::
 | :class:`.IOLine`
 | :meth:`.set_io_configuration`
 """
 io_sample = self.read_io_sample()
 if not io_sample.has_analog_values() or io_line not in io_sample.analog_values.keys():
 raise OperationNotSupportedException(
 "Answer does not contain analog data for %s." % io_line.description)

 return io_sample.analog_values[io_line]

[docs] def set_pwm_duty_cycle(self, io_line, cycle):
 """
 Sets the duty cycle in % of the provided IO line.

 The provided IO line must be PWM-capable, previously configured as PWM output.

 Args:
 io_line (:class:`.IOLine`): IO Line to be assigned.
 cycle (Integer): Duty cycle in % to be assigned. Must be between 0 and 100.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 ValueError: If the given IO line does not have PWM capability or
 `cycle` is not between 0 and 100.

 .. seealso::
 | :class:`.IOLine`
 | :attr:`.IOMode.PWM`
 """
 if not io_line.has_pwm_capability():
 raise ValueError("%s has no PWM capability." % io_line)
 if cycle < 0 or cycle > 100:
 raise ValueError("Cycle must be between 0% and 100%.")

 duty_cycle = int(round(cycle * 1023.00 / 100.00))

 self.set_parameter(io_line.pwm_at_command,
 bytearray(utils.int_to_bytes(duty_cycle)),
 apply=self.is_apply_changes_enabled())

[docs] def get_pwm_duty_cycle(self, io_line):
 """
 Returns the PWM duty cycle in % corresponding to the provided IO line.

 Args:
 io_line (:class:`.IOLine`): IO line to get its PWM duty cycle.

 Returns:
 Integer: PWM duty cycle of the given IO line.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 ValueError: If `io_line` has no PWM capability.

 .. seealso::
 | :class:`.IOLine`
 """
 if not io_line.has_pwm_capability():
 raise ValueError("%s has no PWM capability." % io_line)

 value = utils.bytes_to_int(
 self.get_parameter(io_line.pwm_at_command, apply=False))
 return round(((value * 100.0 / 1023.0) * 100.0) / 100.0)

[docs] def get_dio_value(self, io_line):
 """
 Returns the digital value of the provided IO line.

 The provided IO line must be previously configured as digital I/O.
 To do so, use :meth:`.AbstractXBeeDevice.set_io_configuration`.

 Args:
 io_line (:class:`.IOLine`): the DIO line to gets its digital value.

 Returns:
 :class:`.IOValue`: current value of the provided IO line.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 OperationNotSupportedException: If response does not contain the
 value for the given IO line.

 .. seealso::
 | :class:`.IOLine`
 | :class:`.IOValue`
 | :meth:`.set_io_configuration`
 """
 sample = self.read_io_sample()
 if not sample.has_digital_values() or io_line not in sample.digital_values.keys():
 raise OperationNotSupportedException(
 "Answer does not contain digital data for %s." % io_line.description)
 return sample.digital_values[io_line]

[docs] def set_dio_value(self, io_line, io_value):
 """
 Sets the digital value (high or low) to the provided IO line.

 Args:
 io_line (:class:`.IOLine`): Digital IO line to sets its value.
 io_value (:class:`.IOValue`): IO value to set to the IO line.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.

 .. seealso::
 | :class:`.IOLine`
 | :class:`.IOValue`
 """
 self.set_parameter(io_line.at_command, bytearray([io_value.value]),
 apply=self.is_apply_changes_enabled())

[docs] def set_dio_change_detection(self, io_lines_set):
 """
 Sets the digital IO lines to be monitored and sampled whenever their
 status changes. A `None` set of lines disables this feature.

 Args:
 io_lines_set: Set of :class:`.IOLine`.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.

 .. seealso::
 | :class:`.IOLine`
 """
 flags = bytearray(2)
 if io_lines_set is not None:
 for io_line in io_lines_set:
 i = io_line.index
 if i < 8:
 flags[1] = flags[1] | (1 << i)
 else:
 flags[0] = flags[0] | ((1 << i) - 8)
 self.set_parameter(ATStringCommand.IC, flags,
 apply=self.is_apply_changes_enabled())

[docs] @utils.deprecated("1.3", details="Use :meth:`get_api_output_mode_value`")
 def get_api_output_mode(self):
 """
 Returns the API output mode of the XBee.

 The API output mode determines the format of the data through the
 serial interface of the XBee.

 Returns:
 :class:`.APIOutputMode`: API output mode of the XBee.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.

 .. seealso::
 | :class:`.APIOutputMode`
 """
 return APIOutputMode.get(
 self.get_parameter(ATStringCommand.AO, apply=False)[0])

[docs] def get_api_output_mode_value(self):
 """
 Returns the API output mode of the XBee.

 The API output mode determines the format that the received data is
 output through the serial interface of the XBee.

 Returns:
 Bytearray: the parameter value.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 OperationNotSupportedException: If it is not supported by the
 current protocol.

 .. seealso::
 | :class:`digi.xbee.models.mode.APIOutputModeBit`
 """
 if self.get_protocol() not in (XBeeProtocol.ZIGBEE, XBeeProtocol.DIGI_MESH,
 XBeeProtocol.DIGI_POINT, XBeeProtocol.XLR,
 XBeeProtocol.XLR_DM):
 raise OperationNotSupportedException(
 message="Operation not supported for the current protocol (%s)"
 % self.get_protocol().description)

 return self.get_parameter(ATStringCommand.AO, apply=False)

[docs] @utils.deprecated("1.3", details="Use :meth:`set_api_output_mode_value`")
 def set_api_output_mode(self, api_output_mode):
 """
 Sets the API output mode of the XBee.

 Args:
 api_output_mode (:class:`.APIOutputMode`): New API output mode.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 OperationNotSupportedException: If it is not supported by the
 current protocol.

 .. seealso::
 | :class:`.APIOutputMode`
 """
 self.set_parameter(ATStringCommand.AO,
 bytearray([api_output_mode.code]),
 apply=self.is_apply_changes_enabled())

[docs] def set_api_output_mode_value(self, api_output_mode):
 """
 Sets the API output mode of the XBee.

 Args:
 api_output_mode (Integer): New API output mode options.
 Calculate this value using the method
 :meth:`.APIOutputModeBit.calculate_api_output_mode_value`
 with a set of :class:`.APIOutputModeBit`.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 OperationNotSupportedException: If it is not supported by the
 current protocol.

 .. seealso::
 | :class:`.APIOutputModeBit`
 """
 if api_output_mode is None:
 raise ValueError("API output mode cannot be None")

 if self.get_protocol() not in (XBeeProtocol.ZIGBEE, XBeeProtocol.DIGI_MESH,
 XBeeProtocol.DIGI_POINT, XBeeProtocol.XLR,
 XBeeProtocol.XLR_DM):
 raise OperationNotSupportedException(
 message="Operation not supported for the current protocol (%s)"
 % self.get_protocol().description)

 self.set_parameter(ATStringCommand.AO, bytearray([api_output_mode]),
 apply=self.is_apply_changes_enabled())

[docs] def enable_bluetooth(self):
 """
 Enables the Bluetooth interface of this XBee.

 To work with this interface, you must also configure the Bluetooth
 password if not done previously. Use method
 :meth:`.AbstractXBeeDevice.update_bluetooth_password`.

 Note that your XBee must include Bluetooth Low Energy support.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 """
 self._enable_bluetooth(True)

[docs] def disable_bluetooth(self):
 """
 Disables the Bluetooth interface of this XBee.

 Note that your device must include Bluetooth Low Energy support.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 """
 self._enable_bluetooth(False)

 def _enable_bluetooth(self, enable):
 """
 Enables or disables the Bluetooth interface of this XBee.

 Args:
 enable (Boolean): `True` to enable the Bluetooth interface, `False`
 to disable it.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 """
 self.set_parameter(ATStringCommand.BT, b'\x01' if enable else b'\x00',
 apply=False)
 self.write_changes()
 self.apply_changes()

[docs] def get_bluetooth_mac_addr(self):
 """
 Reads and returns the EUI-48 Bluetooth MAC address of this XBee
 following the format `00112233AABB`.

 Note that your device must include Bluetooth Low Energy support.

 Returns:
 String: The Bluetooth MAC address.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 """
 return utils.hex_to_string(
 self.get_parameter(ATStringCommand.BL, apply=False), pretty=False)

[docs] def update_bluetooth_password(self, new_password):
 """
 Changes the Bluetooth password of this XBee with the new one provided.

 Note that your device must include Bluetooth Low Energy support.

 Args:
 new_password (String): New Bluetooth password.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 """
 import srp

 # Generate the salt and verifier using the SRP library.
 salt, verifier = srp.create_salted_verification_key(
 self._BLE_API_USERNAME, new_password, hash_alg=srp.SHA256,
 ng_type=srp.NG_1024, salt_len=4)

 # Ensure the verifier is 128 bytes.
 verifier = (128 - len(verifier)) * b'\x00' + verifier

 # Set the salt.
 self.set_parameter(ATStringCommand.DOLLAR_S, salt, apply=False)

 # Set the verifier (split in 4 settings)
 index = 0
 at_length = int(len(verifier) / 4)

 self.set_parameter(ATStringCommand.DOLLAR_V,
 verifier[index:(index + at_length)], apply=False)
 index += at_length
 self.set_parameter(ATStringCommand.DOLLAR_W,
 verifier[index:(index + at_length)], apply=False)
 index += at_length
 self.set_parameter(ATStringCommand.DOLLAR_X,
 verifier[index:(index + at_length)], apply=False)
 index += at_length
 self.set_parameter(ATStringCommand.DOLLAR_Y,
 verifier[index:(index + at_length)], apply=False)

 # Write and apply changes.
 self.write_changes()
 self.apply_changes()

[docs] def update_firmware(self, xml_firmware_file, xbee_firmware_file=None,
 bootloader_firmware_file=None, timeout=None, progress_callback=None):
 """
 Performs a firmware update operation of the XBee.

 Args:
 xml_firmware_file (String): Path of the XML file that describes the
 firmware to upload.
 xbee_firmware_file (String, optional, default=`None`): Location of
 the XBee binary firmware file.
 bootloader_firmware_file (String, optional, default=`None`): Location
 of the bootloader binary firmware file.
 timeout (Integer, optional, default=`None`): Maximum time to wait
 for target read operations during the update process (seconds).
 progress_callback (Function, optional, default=`None`): Function to
 to receive progress information. Receives two arguments:

 * The current update task as a String
 * The current update task percentage as an Integer

 Raises:
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 OperationNotSupportedException: If XBee does not support firmware update.
 FirmwareUpdateException: If there is any error during the firmware update.
 """
 from digi.xbee import firmware

 if not self._comm_iface.is_interface_open:
 raise XBeeException("XBee device's communication interface closed.")

 if self.is_remote():
 firmware.update_remote_firmware(self, xml_firmware_file,
 firmware_file=xbee_firmware_file,
 bootloader_file=bootloader_firmware_file,
 timeout=timeout,
 max_block_size=self._ota_max_block_size,
 progress_callback=progress_callback)
 else:
 if self._operating_mode not in (OperatingMode.API_MODE,
 OperatingMode.ESCAPED_API_MODE):
 raise InvalidOperatingModeException(op_mode=self._operating_mode)
 if not self._serial_port:
 raise OperationNotSupportedException(
 "Firmware update is only supported in local XBee connected by serial")
 firmware.update_local_firmware(self, xml_firmware_file,
 xbee_firmware_file=xbee_firmware_file,
 bootloader_firmware_file=bootloader_firmware_file,
 timeout=timeout,
 progress_callback=progress_callback)

 def _autodetect_device(self):
 """
 Performs an autodetection of the local XBee.

 Raises:
 RecoveryException: If there is any error performing the recovery.
 OperationNotSupportedException: If the firmware autodetection is
 not supported in the XBee.
 """
 from digi.xbee import recovery

 if (self.get_hardware_version()
 and self.get_hardware_version().code not in recovery.SUPPORTED_HARDWARE_VERSIONS):
 raise OperationNotSupportedException(
 "Autodetection is only supported in XBee 3 devices")
 recovery.recover_device(self)

[docs] def apply_profile(self, profile_path, timeout=None, progress_callback=None):
 """
 Applies the given XBee profile to the XBee.

 Args:
 profile_path (String): Path of the XBee profile file to apply.
 timeout (Integer, optional, default=`None`): Maximum time to wait
 for target read operations during the apply profile (seconds).
 progress_callback (Function, optional, default=`None`): Function to
 receive progress information. Receives two arguments:

 * The current apply profile task as a String
 * The current apply profile task percentage as an Integer

 Raises:
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 UpdateProfileException: If there is any error applying the XBee profile.
 """
 from digi.xbee import profile

 if not self._comm_iface.is_interface_open:
 raise XBeeException("XBee device's communication interface closed.")
 if (not self.is_remote()
 and self._operating_mode not in (OperatingMode.API_MODE,
 OperatingMode.ESCAPED_API_MODE)):
 raise InvalidOperatingModeException(op_mode=self._operating_mode)

 profile.apply_xbee_profile(self, profile_path, timeout=timeout,
 progress_callback=progress_callback)

[docs] def get_file_manager(self):
 """
 Returns the file system manager for the XBee.

 Returns:
 :class:`.FileSystemManager`: The file system manager.

 Raises:
 FileSystemNotSupportedException: If the XBee does not support
 filesystem.
 """
 if not self._file_manager:
 self._file_manager = FileSystemManager(self)

 return self._file_manager

 def _get_ai_status(self):
 """
 Returns the current association status of this XBee. It indicates
 occurrences of errors during the modem initialization and connection.

 Returns:
 :class:`.AssociationIndicationStatus`: The XBee association
 indication status.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 """
 value = self.get_parameter(ATStringCommand.AI, apply=False)
 return AssociationIndicationStatus.get(utils.bytes_to_int(value))

 def _force_disassociate(self):
 """
 Forces this XBee to immediately disassociate from the network and
 re-attempt to associate.

 Only valid for End Devices.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 """
 self.execute_command(ATStringCommand.DA, apply=False)

 def _get_next_frame_id(self):
 """
 Returns the next frame ID of the XBee.

 Returns:
 Integer: The next frame ID of the XBee.
 """
 if self.is_remote():
 fid = self._local_xbee_device._get_next_frame_id()

 else:
 if self.__current_frame_id == 0xFF:
 self.__current_frame_id = 1
 else:
 self.__current_frame_id += 1
 fid = self.__current_frame_id

 return fid

 def _get_operating_mode(self):
 """
 Returns the Operating mode (AT, API or API escaped) of this XBee if it
 is local, and the operating mode of the local XBee for a remote node.

 Returns:
 :class:`.OperatingMode`: The operating mode of the local XBee.
 """
 if self.is_remote():
 return self._local_xbee_device.operating_mode
 return self._operating_mode

 @staticmethod
 def _before_send_method(func):
 """
 Decorator. Used to check the operating mode and the COM port's state
 before a sending operation.
 """
 @wraps(func)
 def dec_function(self, *args, **kwargs):
 if not self._comm_iface.is_interface_open:
 raise XBeeException("XBee device's communication interface closed.")
 if (self._operating_mode != OperatingMode.API_MODE
 and self._operating_mode != OperatingMode.ESCAPED_API_MODE):
 raise InvalidOperatingModeException(op_mode=self._operating_mode)
 return func(self, *args, **kwargs)
 return dec_function

 @staticmethod
 def _after_send_method(func):
 """
 Decorator. Used to check if the response's transmit status is success
 after a sending operation.
 """
 @wraps(func)
 def dec_function(*args, **kwargs):
 response = func(*args, **kwargs)
 if (response.transmit_status != TransmitStatus.SUCCESS
 and response.transmit_status != TransmitStatus.SELF_ADDRESSED):
 raise TransmitException(transmit_status=response.transmit_status)
 return response
 return dec_function

 def _get_packet_by_id(self, frame_id):
 """
 Reads packets until there is one packet found with the provided frame ID.

 Args:
 frame_id (Integer): Frame ID to use for. Must be between 0 and 255.

 Returns:
 :class:XBeePacket: First XBee packet read whose frame ID matches
 the provided one.

 Raises:
 ValueError: If `frame_id` is less than 0 or greater than 255.
 TimeoutException: If there was not any XBee packet matching the
 provided frame ID that could be read.
 """
 if not 0 <= frame_id <= 255:
 raise ValueError("Frame ID must be between 0 and 255.")

 queue = self._packet_listener.get_queue()

 packet = queue.get_by_id(frame_id, timeout=XBeeDevice.TIMEOUT_READ_PACKET)

 return packet

 @staticmethod
 def __is_api_packet(xbee_packet):
 """
 Determines whether the provided XBee packet is an API packet.

 Returns:
 Boolean: `True` if the provided XBee packet is an API packet (its
 frame type is in :class:`.ApiFrameType` enum), `False` otherwise.
 """
 aft = xbee_packet.get_frame_type()
 try:
 ApiFrameType.get(aft)
 except ValueError:
 return False
 return True

 def _add_packet_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.PacketReceived`.

 Args:
 callback (Function): The callback. Receives one argument.

 * The received packet as a :class:`.XBeeAPIPacket`
 """
 self._packet_listener.add_packet_received_callback(callback)

 def _del_packet_received_callback(self, callback):
 """
 Deletes a callback for the callback list of :class:`.PacketReceived` event.

 Args:
 callback (Function): The callback to delete.

 Raises:
 ValueError: If `callback` is not in the callback list of
 :class:`.PacketReceived` event.
 """
 if callback in self._packet_listener.get_packet_received_callbacks():
 self._packet_listener.del_packet_received_callback(callback)

 def _send_packet_sync_and_get_response(self, packet_to_send, timeout=None):
 """
 Sends the packet and waits for its corresponding response.

 Args:
 packet_to_send (:class:`.XBeePacket`): The packet to transmit.
 timeout (Integer, optional, default=`None`): Number of seconds to
 wait. -1 to wait indefinitely.

 Returns:
 :class:`.XBeePacket`: Received response packet.

 Raises:
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 TimeoutException: If response is not received in the configured
 timeout.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.XBeePacket`
 """
 if not self._packet_listener.is_running():
 raise XBeeException("Packet listener is not running.")

 sender = SyncRequestSender(self, packet_to_send,
 self._timeout if timeout is None else timeout)
 return sender.send()

 def _send_packet(self, packet, sync=False):
 """
 Sends the packet and waits for the response. The packet to send is
 escaped depending on the current operating mode.

 This method can be synchronous or asynchronous.

 If synchronous, this method discards all response packets until it finds
 the one that has the appropriate frame ID, that is, the sent packet's
 frame ID.

 If asynchronous, this method does not wait for any response and returns
 `None`.

 Args:
 packet (:class:`.XBeePacket`): The packet to send.
 sync (Boolean): `True` to wait for the response of the sent packet
 and return it, `False` otherwise.

 Returns:
 :class:`.XBeePacket`: Response packet if `sync` is `True`, `None`
 otherwise.

 Raises:
 TimeoutException: If `sync` is `True` and the response packet for
 the sent one cannot be read.
 InvalidOperatingModeException: If the XBee operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the packet listener is not running or the XBee's
 communication interface is closed.

 .. seealso::
 | :class:`.XBeePacket`
 """
 if not self._packet_listener.is_running():
 raise XBeeException("Packet listener is not running.")

 self._packet_sender.send_packet(packet)

 return self._get_packet_by_id(packet.frame_id) if sync else None

 def _get_routes(self, route_cb=None, finished_cb=None, timeout=None):
 """
 Returns the routes of this XBee. If `route_cb` is not defined, the
 process blocks until the complete routing table is read.

 Args:
 route_cb (Function, optional, default=`None`): Method called when
 a new route is received. Receives two arguments:

 * The XBee that owns this new route.
 * The new route.

 finished_cb (Function, optional, default=`None`): Method to execute
 when the process finishes. Receives three arguments:

 * The XBee that executed the ZDO command.
 * A list with the discovered routes.
 * An error message if something went wrong.

 timeout (Float, optional, default=`RouteTableReader.DEFAULT_TIMEOUT`): The
 ZDO command timeout in seconds.
 Returns:
 List: List of :class:`.Route` when `route_cb` is not defined,
 `None` otherwise (in this case routes are received in the callback).

 Raises:
 OperationNotSupportedException: If XBee protocol is not Zigbee or Smart Energy.

 .. seealso::
 | :class:`com.digi.models.zdo.Route`
 """
 from digi.xbee.models.zdo import RouteTableReader
 reader = RouteTableReader(self, configure_ao=True,
 timeout=timeout if timeout else RouteTableReader.DEFAULT_TIMEOUT)

 return reader.get_route_table(route_cb=route_cb, finished_cb=finished_cb)

 def _get_neighbors(self, neighbor_cb=None, finished_cb=None, timeout=None):
 """
 Returns the neighbors of this XBee. If `neighbor_cb` is not defined:
 * In Zigbee and SmartEnergy the process blocks until the complete
 neighbor table is read.
 * In DigiMesh the process blocks the provided timeout.

 Args:
 neighbor_cb (Function, optional, default=`None`): Function called
 when a new neighbor is received. Receives two arguments:

 * The XBee that owns this new neighbor.
 * The new neighbor.

 finished_cb (Function, optional, default=`None`): Function to
 execute when the process finishes. Receives three arguments:

 * The XBee device that is searching for its neighbors.
 * A list with the discovered neighbors.
 * An error message if something went wrong.

 timeout (Float, optional, default=`None`): The timeout in seconds.
 Returns:
 List: List of :class:`.Neighbor` when `neighbor_cb` is not defined,
 `None` otherwise (in this case neighbors are received in the callback).

 Raises:
 OperationNotSupportedException: If XBee protocol is not Zigbee,
 Smart Energy or DigiMesh.

 .. seealso::
 | :class:`com.digi.models.zdo.Neighbor`
 """
 if self.get_protocol() in (XBeeProtocol.ZIGBEE, XBeeProtocol.SMART_ENERGY):
 from digi.xbee.models.zdo import NeighborTableReader
 reader = NeighborTableReader(
 self, configure_ao=True,
 timeout=timeout if timeout else NeighborTableReader.DEFAULT_TIMEOUT)

 neighbors = reader.get_neighbor_table(neighbor_cb=neighbor_cb,
 finished_cb=finished_cb)
 elif self.get_protocol() in (XBeeProtocol.DIGI_MESH, XBeeProtocol.XLR_DM,
 XBeeProtocol.XTEND_DM, XBeeProtocol.SX):
 from digi.xbee.models.zdo import NeighborFinder
 finder = NeighborFinder(
 self, timeout=timeout if timeout else NeighborFinder.DEFAULT_TIMEOUT)

 neighbors = finder.get_neighbors(neighbor_cb=neighbor_cb,
 finished_cb=finished_cb)
 else:
 raise OperationNotSupportedException("Get neighbors is not supported in %s"
 % self.get_protocol().description)

 if not neighbors:
 return neighbors

 network = self.get_local_xbee_device().get_network() if self.is_remote() \
 else self.get_network()
 for neighbor in neighbors:
 n_node = neighbor.node
 is_local = bool(
 n_node.get_64bit_addr() == (self.get_local_xbee_device().get_64bit_addr() if self.is_remote() else self.get_64bit_addr()))
 node = network._add_remote_from_attr(
 NetworkEventReason.NEIGHBOR,
 x64bit_addr="local" if is_local else n_node.get_64bit_addr(),
 x16bit_addr=n_node.get_16bit_addr(), node_id=n_node.get_node_id())
 node_from_network = network.get_device_by_64(n_node.get_64bit_addr())
 if not node_from_network:
 node_from_network = network.add_remote(node)

 neighbor._node = node_from_network

 return neighbors

 @property
 def reachable(self):
 """
 Returns whether the XBee is reachable.

 Returns:
 Boolean: `True` if the device is reachable, `False` otherwise.
 """
 return self._reachable

 @property
 def scan_counter(self):
 """
 Returns the scan counter for this node.

 Returns:
 Integer: The scan counter for this node.
 """
 return self._scan_counter

 @property
 def log(self):
 """
 Returns the XBee logger.

 Returns:
 :class:`.Logger`: The XBee device logger.
 """
 return self._log

[docs]class XBeeDevice(AbstractXBeeDevice):
 """
 This class represents a non-remote generic XBee.

 This class has fields that are events. Its recommended to use only the
 append() and remove() method on them, or -= and += operators.
 If you do something more with them, it's for your own risk.
 """

 __DEFAULT_GUARD_TIME = 1.2 # seconds
 """
 Timeout to wait after entering and exiting command mode in seconds.

 It is used to determine the operating mode of the module (this library only
 supports API modes, not AT (transparent) mode).
 """

 __TIMEOUT_ENTER_COMMAND_MODE = 1.5 # seconds
 """
 Timeout to wait after entering in command mode in seconds.

 It is used to determine the operating mode of the module (this library only
 supports API modes, not transparent mode).
 """

 __TIMEOUT_RESET = 5 # seconds
 """
 Timeout to wait when resetting the module.
 """

 TIMEOUT_READ_PACKET = 3 # seconds
 """
 Timeout to read packets.
 """

 __COMMAND_MODE_CHAR = "+"
 """
 Character you have to send to enter AT command mode
 """

 __COMMAND_MODE_OK = "OK\r"
 """
 Response received if the attempt to enter in AT command mode goes well.
 """

 def __init__(self, port=None, baud_rate=None, data_bits=serial.EIGHTBITS,
 stop_bits=serial.STOPBITS_ONE, parity=serial.PARITY_NONE,
 flow_control=FlowControl.NONE,
 _sync_ops_timeout=AbstractXBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS,
 comm_iface=None):
 """
 Class constructor. Instantiates a new :class:`.XBeeDevice` with the
 provided parameters.

 Args:
 port (String): Serial port identifier. Depends on operating system.
 e.g. '/dev/ttyUSB0' on 'GNU/Linux' or 'COM3' on Windows.
 baud_rate (Integer, optional, default=`None`): Serial port baud rate.
 data_bits (Integer, default: :attr:`.serial.EIGHTBITS`): Port bitsize.
 stop_bits (Integer, default: :attr:`.serial.STOPBITS_ONE`): Port stop bits.
 parity (Character, default: :attr:`.serial.PARITY_NONE`): Port parity.
 flow_control (Integer, default: :attr:`.FlowControl.NONE`): Port flow control.
 _sync_ops_timeout (Integer, default: 4): Read timeout (in seconds).
 comm_iface (:class:`.XBeeCommunicationInterface`): Communication interface.

 Raises:
 All exceptions raised by PySerial's Serial class constructor.

 .. seealso::
 | PySerial documentation: http://pyserial.sourceforge.net
 """
 super().__init__(
 serial_port=XBeeSerialPort(baud_rate=baud_rate, port=port,
 data_bits=data_bits, stop_bits=stop_bits,
 parity=parity, flow_control=flow_control,
 timeout=_sync_ops_timeout) if comm_iface is None else None,
 sync_ops_timeout=_sync_ops_timeout, comm_iface=comm_iface)
 # If there is no XBeeNetwork object provided by comm_iface,
 # initialize a default XBeeNetwork
 if not comm_iface or comm_iface.get_network(self) is None:
 self._network = self._init_network()
 else:
 self._network = None

 self.__packet_queue = None
 self.__data_queue = None
 self.__explicit_queue = None

 self.__modem_status_received = False

 self.__tmp_dm_routes_to = {}
 self.__tmp_dm_to_insert = []
 self.__tmp_dm_routes_lock = threading.Lock()
 self.__route_received = RouteReceived()

[docs] @classmethod
 def create_xbee_device(cls, comm_port_data):
 """
 Creates and returns an :class:`.XBeeDevice` from data of the port to
 which is connected.

 Args:
 comm_port_data (Dictionary): Dictionary with all comm port data needed.
 The dictionary keys are:
 | "baudRate" --> Baud rate.
 | "port" --> Port number.
 | "bitSize" --> Bit size.
 | "stopBits" --> Stop bits.
 | "parity" --> Parity.
 | "flowControl" --> Flow control.
 | "timeout" for --> Timeout for synchronous operations (in seconds).

 Returns:
 :class:`.XBeeDevice`: XBee object created.

 Raises:
 SerialException: If the port to open does not exist or is already opened.

 .. seealso::
 | :class:`.XBeeDevice`
 """
 return XBeeDevice(comm_port_data["port"], comm_port_data["baudRate"],
 data_bits=comm_port_data["bitSize"],
 stop_bits=comm_port_data["stopBits"],
 parity=comm_port_data["parity"],
 flow_control=comm_port_data["flowControl"],
 _sync_ops_timeout=comm_port_data["timeout"])

[docs] def open(self, force_settings=False):
 """
 Opens the communication with the XBee and loads information about it.

 Args:
 force_settings (Boolean, optional, default=`False`): `True` to open
 the device ensuring/forcing that the specified serial settings
 are applied even if the current configuration is different,
 `False` to open the device with the current configuration.

 Raises:
 TimeoutException: If there is any problem with the communication.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee is already opened.
 """
 if self._is_open:
 raise XBeeException("XBee device already open.")

 self._comm_iface.open()
 self._log.info("%s port opened", self._comm_iface)
 xbee_info = self._comm_iface.get_local_xbee_info()
 if xbee_info:
 self._operating_mode = OperatingMode.get(xbee_info[0])
 elif self._operating_mode not in (OperatingMode.API_MODE,
 OperatingMode.ESCAPED_API_MODE):
 self._operating_mode = OperatingMode.API_MODE
 if not self._packet_sender:
 self._packet_sender = PacketSender(self)
 self._restart_packet_listener()

 try:
 self._do_open()
 except XBeeException as exc:
 if not force_settings:
 raise exc
 self.log.debug("Could not open the port with default setting, "
 "forcing settings using recovery: %s", str(exc))
 if self._serial_port is None:
 raise XBeeException("Can not open the port by forcing the settings, "
 "it is only supported for Serial")
 self._autodetect_device()
 self.open(force_settings=False)

 def _do_open(self):
 """
 Opens the communication with the XBee and loads information about it.

 Raises:
 TimeoutException: If there is any problem with the communication.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee is already opened.
 """
 xbee_info = self._comm_iface.get_local_xbee_info() if self._comm_iface else None
 if xbee_info:
 self._operating_mode = OperatingMode.get(xbee_info[0])
 self._hardware_version = HardwareVersion.get(xbee_info[1])
 self._firmware_version = utils.int_to_bytes(xbee_info[2])
 self._protocol = self.determine_protocol(
 self._hardware_version.code, self._firmware_version)
 self._64bit_addr = XBee64BitAddress.from_hex_string(xbee_info[3])
 self._16bit_addr = XBee16BitAddress.from_hex_string(xbee_info[4])
 self._node_id = xbee_info[5]
 self._role = Role.get(xbee_info[6])

 else:
 # Determine the operating mode of the XBee device.
 self._operating_mode = self._determine_operating_mode()
 if self._operating_mode == OperatingMode.UNKNOWN:
 self.close()
 raise InvalidOperatingModeException(message="Could not determine operating mode")
 if self._operating_mode not in (OperatingMode.API_MODE,
 OperatingMode.ESCAPED_API_MODE):
 self.close()
 raise InvalidOperatingModeException(op_mode=self._operating_mode)

 # Read the device info (obtain its parameters and protocol).
 self.read_device_info()

 self._is_open = True

[docs] def close(self):
 """
 Closes the communication with the XBee.

 This method guarantees that all threads running are stopped and the
 serial port is closed.
 """
 if self._network is not None:
 self._network.stop_discovery_process()

 if self._packet_listener is not None:
 self._packet_listener.stop()

 if self._comm_iface is not None and self._comm_iface.is_interface_open:
 self._comm_iface.close()
 self._log.info("%s closed", self._comm_iface)

 self._is_open = False

 @property
 def serial_port(self):
 """
 Returns the serial port associated to the XBee, if any.

 Returns:
 :class:`.XBeeSerialPort`: Serial port of the XBee. `None` if the
 local XBee does not use serial communication.

 .. seealso::
 | :class:`.XBeeSerialPort`
 """
 return self._serial_port

 @property
 def comm_iface(self):
 """
 Returns the hardware interface associated to the XBee.

 Returns:
 :class:`.XBeeCommunicationInterface`: Hardware interface of the XBee.

 .. seealso::
 | :class:`.XBeeCommunicationInterface`
 """
 return self._comm_iface

 @property
 def operating_mode(self):
 """
 Returns the operating mode of this XBee.

 Returns:
 :class:`.OperatingMode`. This XBee operating mode.
 """
 return super()._get_operating_mode()

[docs] @AbstractXBeeDevice._before_send_method
 def get_parameter(self, parameter, parameter_value=None, apply=None):
 """
 Override.

 .. seealso::
 | :meth:`.AbstractXBeeDevice.get_parameter`
 """
 return super().get_parameter(
 parameter, parameter_value=parameter_value, apply=apply)

[docs] @AbstractXBeeDevice._before_send_method
 def set_parameter(self, parameter, value, apply=None):
 """
 Override.

 See:
 :meth:`.AbstractXBeeDevice.set_parameter`
 """
 super().set_parameter(parameter, value, apply=apply)

 @AbstractXBeeDevice._before_send_method
 @AbstractXBeeDevice._after_send_method
 def _send_data_64_16(self, x64addr, x16addr, data,
 transmit_options=TransmitOptions.NONE.value):
 """
 Blocking method. This method sends data to the remote XBee with the
 given 64-bit/16-bit address.

 This method waits for the packet response. The default timeout is
 :attr:`.XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS`.

 Args:
 x64addr (:class:`.XBee64BitAddress`): 64-bit address of the
 destination XBee.
 x16addr (:class:`.XBee16BitAddress`): 16-bit address of the
 destination XBee, :attr:`.XBee16BitAddress.UNKNOWN_ADDRESS` if unknown.
 data (String or Bytearray): Raw data to send.
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Returns:
 :class:`.XBeePacket`: The response.

 Raises:
 ValueError: If `x64addr`, `x16addr` or `data` is `None`.
 TimeoutException: If response is not received before the read
 timeout expires.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 TransmitException: If the status of the response received is not OK.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.XBee64BitAddress`
 | :class:`.XBee16BitAddress`
 | :class:`.XBeePacket`
 """
 if x64addr is None:
 raise ValueError("64-bit address cannot be None")
 if x16addr is None:
 raise ValueError("16-bit address cannot be None")
 if not isinstance(data, (str, bytearray, bytes)):
 raise ValueError("Data must be a string or bytearray")

 if self.is_remote():
 raise OperationNotSupportedException(
 message="Cannot send data to a remote device from a remote device")

 if isinstance(data, str):
 data = data.encode(encoding="utf8", errors="ignore")

 packet = TransmitPacket(self.get_next_frame_id(), x64addr, x16addr,
 0, transmit_options, rf_data=data)
 return self.send_packet_sync_and_get_response(packet)

 @AbstractXBeeDevice._before_send_method
 @AbstractXBeeDevice._after_send_method
 def _send_data_64(self, x64addr, data, transmit_options=TransmitOptions.NONE.value):
 """
 Blocking method. This method sends data to a remote XBee with the given
 64-bit address.

 This method waits for the packet response. The default timeout is
 :attr:`.XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS`.

 Args:
 x64addr (:class:`.XBee64BitAddress`): 64-bit address of the
 destination XBee.
 data (String or Bytearray): Raw data to send.
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Returns:
 :class:`.XBeePacket`: The response.

 Raises:
 ValueError: If `x64addr` or `data` is `None`.
 TimeoutException: If response is not received before the read
 timeout expires.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 TransmitException: If the status of the response received is not OK.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.XBee64BitAddress`
 | :class:`.XBeePacket`
 """
 if x64addr is None:
 raise ValueError("64-bit address cannot be None")
 if not isinstance(data, (str, bytearray, bytes)):
 raise ValueError("Data must be a string or bytearray")

 if self.is_remote():
 raise OperationNotSupportedException(
 message="Cannot send data to a remote device from a remote device")

 if isinstance(data, str):
 data = data.encode(encoding="utf8", errors="ignore")

 if self.get_protocol() == XBeeProtocol.RAW_802_15_4:
 packet = TX64Packet(self.get_next_frame_id(), x64addr,
 transmit_options, rf_data=data)
 else:
 packet = TransmitPacket(self.get_next_frame_id(), x64addr,
 XBee16BitAddress.UNKNOWN_ADDRESS, 0,
 transmit_options, rf_data=data)
 return self.send_packet_sync_and_get_response(packet)

 @AbstractXBeeDevice._before_send_method
 @AbstractXBeeDevice._after_send_method
 def _send_data_16(self, x16addr, data, transmit_options=TransmitOptions.NONE.value):
 """
 Blocking method. This method sends data to a remote XBee with the given
 16-bit address.

 This method will wait for the packet response. The default timeout is
 :attr:`.XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS`.

 Args:
 x16addr (:class:`.XBee16BitAddress`): 16-bit address of the
 destination XBee.
 data (String or Bytearray): Raw data to send.
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Returns:
 :class:`.XBeePacket`: The response.

 Raises:
 ValueError: If `x16addr` or `data` is `None`.
 TimeoutException: If response is not received before the read
 timeout expires.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 TransmitException: If the status of the response received is not OK.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.XBee16BitAddress`
 | :class:`.XBeePacket`
 """
 if x16addr is None:
 raise ValueError("16-bit address cannot be None")
 if not isinstance(data, (str, bytearray, bytes)):
 raise ValueError("Data must be a string or bytearray")

 if self.is_remote():
 raise OperationNotSupportedException(
 message="Cannot send data to a remote device from a remote device")

 if isinstance(data, str):
 data = data.encode(encoding="utf8", errors="ignore")

 packet = TX16Packet(self.get_next_frame_id(), x16addr,
 transmit_options, rf_data=data)
 return self.send_packet_sync_and_get_response(packet)

[docs] def send_data(self, remote_xbee, data, transmit_options=TransmitOptions.NONE.value):
 """
 Blocking method. This method sends data to a remote XBee synchronously.

 This method will wait for the packet response. The default timeout is
 :attr:`.XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS`.

 Args:
 remote_xbee (:class:`.RemoteXBeeDevice`): Remote XBee to send data to.
 data (String or Bytearray): Raw data to send.
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Returns:
 :class:`.XBeePacket`: The response.

 Raises:
 ValueError: If `remote_xbee` is `None`.
 TimeoutException: If response is not received before the read
 timeout expires.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 TransmitException: If the status of the response received is not OK.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.RemoteXBeeDevice`
 | :class:`.XBeePacket`
 """
 if remote_xbee is None:
 raise ValueError("Remote XBee device cannot be None")

 protocol = self.get_protocol()
 if protocol in (XBeeProtocol.ZIGBEE, XBeeProtocol.DIGI_POINT):
 if (remote_xbee.get_64bit_addr() is not None
 and remote_xbee.get_16bit_addr() is not None):
 return self._send_data_64_16(remote_xbee.get_64bit_addr(),
 remote_xbee.get_16bit_addr(),
 data, transmit_options=transmit_options)
 if remote_xbee.get_64bit_addr() is not None:
 return self._send_data_64(remote_xbee.get_64bit_addr(), data,
 transmit_options=transmit_options)
 return self._send_data_64_16(XBee64BitAddress.UNKNOWN_ADDRESS,
 remote_xbee.get_16bit_addr(),
 data, transmit_options=transmit_options)
 if protocol == XBeeProtocol.RAW_802_15_4:
 if remote_xbee.get_64bit_addr() is not None:
 return self._send_data_64(remote_xbee.get_64bit_addr(), data,
 transmit_options=transmit_options)
 return self._send_data_16(remote_xbee.get_16bit_addr(), data,
 transmit_options=transmit_options)

 return self._send_data_64(remote_xbee.get_64bit_addr(), data,
 transmit_options=transmit_options)

 @AbstractXBeeDevice._before_send_method
 def _send_data_async_64_16(self, x64addr, x16addr, data,
 transmit_options=TransmitOptions.NONE.value):
 """
 Non-blocking method. This method sends data to a remote XBee with the
 given 64-bit/16-bit address.

 This method does not wait for a response.

 Args:
 x64addr (:class:`.XBee64BitAddress`): 64-bit address of the
 destination XBee.
 x16addr (:class:`.XBee16BitAddress`): 16-bit address of the
 destination XBee, :attr:`.XBee16BitAddress.UNKNOWN_ADDRESS` if unknown.
 data (String or Bytearray): Raw data to send.
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Raises:
 ValueError: If `x64addr`, `x16addr` or `data` is `None`.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.XBee64BitAddress`
 | :class:`.XBee16BitAddress`
 | :class:`.XBeePacket`
 """
 if x64addr is None:
 raise ValueError("64-bit address cannot be None")
 if x16addr is None:
 raise ValueError("16-bit address cannot be None")
 if not isinstance(data, (str, bytearray, bytes)):
 raise ValueError("Data must be a string or bytearray")

 if self.is_remote():
 raise OperationNotSupportedException(
 message="Cannot send data to a remote device from a remote device")

 if isinstance(data, str):
 data = data.encode(encoding="utf8", errors="ignore")

 packet = TransmitPacket(self.get_next_frame_id(), x64addr, x16addr, 0,
 transmit_options, rf_data=data)
 self.send_packet(packet)

 @AbstractXBeeDevice._before_send_method
 def _send_data_async_64(self, x64addr, data, transmit_options=TransmitOptions.NONE.value):
 """
 Non-blocking method. This method sends data to a remote XBee with the
 given 64-bit address.

 This method does not wait for a response.

 Args:
 x64addr (:class:`.XBee64BitAddress`): 64-bit address of the
 destination XBee.
 data (String or Bytearray): Raw data to send.
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Raises:
 ValueError: If `x64addr` or `data` is `None`.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.XBee64BitAddress`
 | :class:`.XBeePacket`
 """
 if x64addr is None:
 raise ValueError("64-bit address cannot be None")
 if not isinstance(data, (str, bytearray, bytes)):
 raise ValueError("Data must be a string or bytearray")

 if self.is_remote():
 raise OperationNotSupportedException(
 message="Cannot send data to a remote device from a remote device")

 if isinstance(data, str):
 data = data.encode(encoding="utf8", errors="ignore")

 if self.get_protocol() == XBeeProtocol.RAW_802_15_4:
 packet = TX64Packet(self.get_next_frame_id(), x64addr,
 transmit_options, rf_data=data)
 else:
 packet = TransmitPacket(self.get_next_frame_id(), x64addr,
 XBee16BitAddress.UNKNOWN_ADDRESS, 0,
 transmit_options, rf_data=data)
 self.send_packet(packet)

 @AbstractXBeeDevice._before_send_method
 def _send_data_async_16(self, x16addr, data, transmit_options=TransmitOptions.NONE.value):
 """
 Non-blocking method. This method sends data to a remote XBee with the
 given 16-bit address.

 This method does not wait for a response.

 Args:
 x16addr (:class:`.XBee16BitAddress`): 16-bit address of the
 destination XBee.
 data (String or Bytearray): Raw data to send.
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Raises:
 ValueError: If `x16addr` or `data` is `None`.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.XBee16BitAddress`
 | :class:`.XBeePacket`
 """
 if x16addr is None:
 raise ValueError("16-bit address cannot be None")
 if not isinstance(data, (str, bytearray, bytes)):
 raise ValueError("Data must be a string or bytearray")

 if self.is_remote():
 raise OperationNotSupportedException(
 message="Cannot send data to a remote device from a remote device")

 if isinstance(data, str):
 data = data.encode(encoding="utf8", errors="ignore")

 packet = TX16Packet(self.get_next_frame_id(),
 x16addr,
 transmit_options,
 rf_data=data)
 self.send_packet(packet)

[docs] def send_data_async(self, remote_xbee, data, transmit_options=TransmitOptions.NONE.value):
 """
 Non-blocking method. This method sends data to a remote XBee.

 This method does not wait for a response.

 Args:
 remote_xbee (:class:`.RemoteXBeeDevice`): the remote XBee to send data to.
 data (String or Bytearray): Raw data to send.
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Raises:
 ValueError: If `remote_xbee` is `None`.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.RemoteXBeeDevice`
 """
 if remote_xbee is None:
 raise ValueError("Remote XBee device cannot be None")

 protocol = self.get_protocol()
 if protocol in (XBeeProtocol.ZIGBEE, XBeeProtocol.DIGI_POINT):
 if (remote_xbee.get_64bit_addr() is not None
 and remote_xbee.get_16bit_addr() is not None):
 self._send_data_async_64_16(remote_xbee.get_64bit_addr(),
 remote_xbee.get_16bit_addr(),
 data, transmit_options=transmit_options)
 elif remote_xbee.get_64bit_addr() is not None:
 self._send_data_async_64(remote_xbee.get_64bit_addr(), data,
 transmit_options=transmit_options)
 else:
 self._send_data_async_64_16(XBee64BitAddress.UNKNOWN_ADDRESS,
 remote_xbee.get_16bit_addr(),
 data, transmit_options=transmit_options)
 elif protocol == XBeeProtocol.RAW_802_15_4:
 if remote_xbee.get_64bit_addr() is not None:
 self._send_data_async_64(remote_xbee.get_64bit_addr(), data,
 transmit_options=transmit_options)
 else:
 self._send_data_async_16(remote_xbee.get_16bit_addr(), data,
 transmit_options=transmit_options)
 else:
 self._send_data_async_64(remote_xbee.get_64bit_addr(), data,
 transmit_options=transmit_options)

[docs] def send_data_broadcast(self, data, transmit_options=TransmitOptions.NONE.value):
 """
 Sends the provided data to all the XBee nodes of the network (broadcast).

 This method blocks until a success or error transmit status arrives or
 the configured receive timeout expires.

 The received timeout is configured using method
 :meth:`.AbstractXBeeDevice.set_sync_ops_timeout` and can be consulted
 with :meth:`.AbstractXBeeDevice.get_sync_ops_timeout` method.

 Args:
 data (String or Bytearray): Data to send.
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 TransmitException: If the status of the response received is not OK.
 XBeeException: If the XBee's communication interface is closed.
 """
 return self._send_data_64(XBee64BitAddress.BROADCAST_ADDRESS, data,
 transmit_options=transmit_options)

[docs] @AbstractXBeeDevice._before_send_method
 def send_user_data_relay(self, local_interface, data):
 """
 Sends the given data to the given XBee local interface.

 Args:
 local_interface (:class:`.XBeeLocalInterface`): Destination XBee
 local interface.
 data (Bytearray): Data to send.

 Raises:
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ValueError: If `local_interface` is `None`.
 XBeeException: If there is any problem sending the User Data Relay.

 .. seealso::
 | :class:`.XBeeLocalInterface`
 """
 if local_interface is None:
 raise ValueError("Destination interface cannot be None")

 # Send the packet asynchronously since User Data Relay frames only
 # receive a transmit status if an error occurs
 self.send_packet(UserDataRelayPacket(self.get_next_frame_id(),
 local_interface, data=data))

[docs] def send_bluetooth_data(self, data):
 """
 Sends the given data to the Bluetooth interface using a User Data Relay frame.

 Args:
 data (Bytearray): Data to send.

 Raises:
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If there is any problem sending the data.

 .. seealso::
 | :meth:`.XBeeDevice.send_micropython_data`
 | :meth:`.XBeeDevice.send_user_data_relay`
 """
 self.send_user_data_relay(XBeeLocalInterface.BLUETOOTH, data)

[docs] def send_micropython_data(self, data):
 """
 Sends the given data to the MicroPython interface using a User Data
 Relay frame.

 Args:
 data (Bytearray): Data to send.

 Raises:
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If there is any problem sending the data.

 .. seealso::
 | :meth:`.XBeeDevice.send_bluetooth_data`
 | :meth:`.XBeeDevice.send_user_data_relay`
 """
 self.send_user_data_relay(XBeeLocalInterface.MICROPYTHON, data)

[docs] def read_data(self, timeout=None):
 """
 Reads new data received by this XBee.

 If `timeout` is specified, this method blocks until new data is received
 or the timeout expires, throwing a :class:`.TimeoutException` in this case.

 Args:
 timeout (Integer, optional): Read timeout in seconds. If `None`,
 this method is non-blocking and returns `None` if no data is available.

 Returns:
 :class:`.XBeeMessage`: Read message or `None` if this XBee did not
 receive new data.

 Raises:
 ValueError: If a timeout is specified and is less than 0.
 TimeoutException: If a timeout is specified and no data was
 received during that time.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.XBeeMessage`
 """
 return self.__read_data_packet(None, timeout, False)

[docs] def read_data_from(self, remote_xbee, timeout=None):
 """
 Reads new data received from the given remote XBee.

 If `timeout` is specified, this method blocks until new data is received
 or the timeout expires, throwing a :class:`.TimeoutException` in this case.

 Args:
 remote_xbee (:class:`.RemoteXBeeDevice`): Remote XBee that sent the data.
 timeout (Integer, optional): Read timeout in seconds. If `None`,
 this method is non-blocking and returns `None` if no data is available.

 Returns:
 :class:`.XBeeMessage`: Read message sent by `remote_xbee` or `None`
 if this XBee did not receive new data.

 Raises:
 ValueError: If a timeout is specified and is less than 0.
 TimeoutException: If a timeout is specified and no data was received
 during that time.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.XBeeMessage`
 | :class:`.RemoteXBeeDevice`
 """
 return self.__read_data_packet(remote_xbee, timeout, False)

[docs] def has_packets(self):
 """
 Returns if there are pending packets to read. This does not include
 explicit packets.

 Return:
 Boolean: `True` if there are pending packets, `False` otherwise.

 .. seealso::
 | :meth:`.XBeeDevice.has_explicit_packets`
 """
 return not self.__packet_queue.empty()

[docs] def has_explicit_packets(self):
 """
 Returns if there are pending explicit packets to read. This does not
 include non-explicit packets.

 Return:
 Boolean: `True` if there are pending packets, `False` otherwise.

 .. seealso::
 | :meth:`.XBeeDevice.has_packets`
 """
 return not self.__explicit_queue.empty()

[docs] def flush_queues(self):
 """
 Flushes the packets queue.
 """
 self.__packet_queue.flush()
 self.__data_queue.flush()
 self.__explicit_queue.flush()

[docs] def reset(self):
 """
 Override method.

 .. seealso::
 | :meth:`.AbstractXBeeDevice.reset`
 """
 # Send reset command.
 response = self._send_at_command(ATCommand(ATStringCommand.FR.command))

 # Check if AT Command response is valid.
 self._check_at_cmd_response_is_valid(response)

 lock = threading.Condition()
 self.__modem_status_received = False

 def ms_callback(modem_status):
 if modem_status in (ModemStatus.HARDWARE_RESET,
 ModemStatus.WATCHDOG_TIMER_RESET):
 self.__modem_status_received = True
 lock.acquire()
 lock.notify()
 lock.release()

 self.add_modem_status_received_callback(ms_callback)
 lock.acquire()
 lock.wait(self.__TIMEOUT_RESET)
 lock.release()
 self.del_modem_status_received_callback(ms_callback)

 if self.__modem_status_received is False:
 raise TimeoutException(message="Timeout waiting for the modem status packet.")

[docs] def add_packet_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.PacketReceived`.

 Args:
 callback (Function): The callback. Receives one argument.

 * The received packet as a :class:`.XBeeAPIPacket`.
 """
 super()._add_packet_received_callback(callback)

[docs] @AbstractXBeeDevice._before_send_method
 def add_data_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.DataReceived`.

 Args:
 callback (Function): The callback. Receives one argument.

 * The data received as an :class:`.XBeeMessage`.
 """
 self._packet_listener.add_data_received_callback(callback)

[docs] @AbstractXBeeDevice._before_send_method
 def add_modem_status_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.ModemStatusReceived`.

 Args:
 callback (Function): The callback. Receives one argument.

 * The modem status as a :class:`.ModemStatus`.
 """
 self._packet_listener.add_modem_status_received_callback(callback)

[docs] @AbstractXBeeDevice._before_send_method
 def add_io_sample_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.IOSampleReceived`.

 Args:
 callback (Function): The callback. Receives three arguments.

 * The received IO sample as an :class:`.IOSample`.
 * The remote XBee which sent the packet as a :class:`.RemoteXBeeDevice`.
 * The time in which the packet was received as an Integer.
 """
 self._packet_listener.add_io_sample_received_callback(callback)

[docs] @AbstractXBeeDevice._before_send_method
 def add_expl_data_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.ExplicitDataReceived`.

 Args:
 callback (Function): The callback. Receives one argument.

 * The explicit data received as a :class:`.ExplicitXBeeMessage`.
 """
 self._packet_listener.add_explicit_data_received_callback(callback)

[docs] @AbstractXBeeDevice._before_send_method
 def add_user_data_relay_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.RelayDataReceived`.

 Args:
 callback (Function): The callback. Receives one argument.

 * The relay data as a :class:`.UserDataRelayMessage`.
 """
 self._packet_listener.add_user_data_relay_received_callback(callback)

[docs] @AbstractXBeeDevice._before_send_method
 def add_bluetooth_data_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.BluetoothDataReceived`.

 Args:
 callback (Function): The callback. Receives one argument.

 * The Bluetooth data as a Bytearray.
 """
 self._packet_listener.add_bluetooth_data_received_callback(callback)

[docs] @AbstractXBeeDevice._before_send_method
 def add_micropython_data_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.MicroPythonDataReceived`.

 Args:
 callback (Function): The callback. Receives one argument.

 * The MicroPython data as a Bytearray.
 """
 self._packet_listener.add_micropython_data_received_callback(callback)

[docs] @AbstractXBeeDevice._before_send_method
 def add_socket_state_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.SocketStateReceived`.

 Args:
 callback (Function): The callback. Receives two arguments.

 * The socket ID as an Integer.
 * The state received as a :class:`.SocketState`.
 """
 self._packet_listener.add_socket_state_received_callback(callback)

[docs] @AbstractXBeeDevice._before_send_method
 def add_socket_data_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.SocketDataReceived`.

 Args:
 callback (Function): The callback. Receives two arguments.

 * The socket ID as an Integer.
 * The data received as Bytearray.
 """
 self._packet_listener.add_socket_data_received_callback(callback)

[docs] @AbstractXBeeDevice._before_send_method
 def add_socket_data_received_from_callback(self, callback):
 """
 Adds a callback for the event :class:`.SocketDataReceivedFrom`.

 Args:
 callback (Function): The callback. Receives three arguments.

 * The socket ID as an Integer.
 * Source address pair (host, port) where host is a string
 representing an IPv4 address like '100.50.200.5', and port
 is an integer.
 * The data received as Bytearray.
 """
 self._packet_listener.add_socket_data_received_from_callback(callback)

[docs] @AbstractXBeeDevice._before_send_method
 def add_fs_frame_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.FileSystemFrameReceived`.

 Args:
 callback (Function): The callback. Receives four arguments.

 * Source (:class:`.AbstractXBeeDevice`): The node that sent the
 file system frame.
 * Frame id (Integer): The received frame id.
 * Command (:class:`.FSCmd`): The file system command.
 * Receive options (Integer): Bitfield indicating receive options.

 .. seealso::
 | :class:`.AbstractXBeeDevice`
 | :class:`.FSCmd`
 | :class:`.ReceiveOptions`
 """
 self._packet_listener.add_fs_frame_received_callback(callback)

[docs] def del_packet_received_callback(self, callback):
 """
 Deletes a callback for the callback list of :class:`.PacketReceived` event.

 Args:
 callback (Function): The callback to delete.
 """
 super()._del_packet_received_callback(callback)

[docs] @AbstractXBeeDevice._before_send_method
 def del_data_received_callback(self, callback):
 """
 Deletes a callback for the callback list of :class:`.DataReceived` event.

 Args:
 callback (Function): The callback to delete.
 """
 if callback in self._packet_listener.get_data_received_callbacks():
 self._packet_listener.del_data_received_callback(callback)

[docs] @AbstractXBeeDevice._before_send_method
 def del_modem_status_received_callback(self, callback):
 """
 Deletes a callback for the callback list of :class:`.ModemStatusReceived`
 event.

 Args:
 callback (Function): The callback to delete.
 """
 if callback in self._packet_listener.get_modem_status_received_callbacks():
 self._packet_listener.del_modem_status_received_callback(callback)

[docs] @AbstractXBeeDevice._before_send_method
 def del_io_sample_received_callback(self, callback):
 """
 Deletes a callback for the callback list of :class:`.IOSampleReceived`
 event.

 Args:
 callback (Function): The callback to delete.
 """
 if callback in self._packet_listener.get_io_sample_received_callbacks():
 self._packet_listener.del_io_sample_received_callback(callback)

[docs] @AbstractXBeeDevice._before_send_method
 def del_expl_data_received_callback(self, callback):
 """
 Deletes a callback for the callback list of :class:`.ExplicitDataReceived`
 event.

 Args:
 callback (Function): The callback to delete.
 """
 if callback in self._packet_listener.get_explicit_data_received_callbacks():
 self._packet_listener.del_explicit_data_received_callback(callback)

[docs] @AbstractXBeeDevice._before_send_method
 def del_user_data_relay_received_callback(self, callback):
 """
 Deletes a callback for the callback list of :class:`.RelayDataReceived`
 event.

 Args:
 callback (Function): The callback to delete.
 """
 if callback in self._packet_listener.get_user_data_relay_received_callbacks():
 self._packet_listener.del_user_data_relay_received_callback(callback)

[docs] @AbstractXBeeDevice._before_send_method
 def del_bluetooth_data_received_callback(self, callback):
 """
 Deletes a callback for the callback list of
 :class:`.BluetoothDataReceived` event.

 Args:
 callback (Function): The callback to delete.
 """
 if callback in self._packet_listener.get_bluetooth_data_received_callbacks():
 self._packet_listener.del_bluetooth_data_received_callback(callback)

[docs] @AbstractXBeeDevice._before_send_method
 def del_micropython_data_received_callback(self, callback):
 """
 Deletes a callback for the callback list of
 :class:`.MicroPythonDataReceived` event.

 Args:
 callback (Function): The callback to delete.
 """
 if callback in self._packet_listener.get_micropython_data_received_callbacks():
 self._packet_listener.del_micropython_data_received_callback(callback)

[docs] @AbstractXBeeDevice._before_send_method
 def del_socket_state_received_callback(self, callback):
 """
 Deletes a callback for the callback list of
 :class:`.SocketStateReceived` event.

 Args:
 callback (Function): The callback to delete.
 """
 if callback in self._packet_listener.get_socket_state_received_callbacks():
 self._packet_listener.del_socket_state_received_callback(callback)

[docs] @AbstractXBeeDevice._before_send_method
 def del_socket_data_received_callback(self, callback):
 """
 Deletes a callback for the callback list of
 :class:`.SocketDataReceived` event.

 Args:
 callback (Function): The callback to delete.
 """
 if callback in self._packet_listener.get_socket_data_received_callbacks():
 self._packet_listener.del_socket_data_received_callback(callback)

[docs] @AbstractXBeeDevice._before_send_method
 def del_socket_data_received_from_callback(self, callback):
 """
 Deletes a callback for the callback list of
 :class:`.SocketDataReceivedFrom` event.

 Args:
 callback (Function): The callback to delete.
 """
 if callback in self._packet_listener.get_socket_data_received_from_callbacks():
 self._packet_listener.del_socket_data_received_from_callback(callback)

[docs] @AbstractXBeeDevice._before_send_method
 def del_fs_frame_received_callback(self, callback):
 """
 Deletes a callback for the callback list of
 :class:`.FileSystemFrameReceived` event.

 Args:
 callback (Function): The callback to delete.
 """
 if callback in self._packet_listener.get_fs_frame_received_callbacks():
 self._packet_listener.del_fs_frame_received_callback(callback)

[docs] def get_xbee_device_callbacks(self):
 """
 Returns this XBee internal callbacks for process received packets.

 This method is called by the PacketListener associated with this XBee
 to get its callbacks. These callbacks are executed before user callbacks.

 Returns:
 :class:`.PacketReceived`
 """
 api_callbacks = PacketReceived()

 if self.serial_port:
 api_callbacks.append(self._packet_sender.at_response_received_cb)

 if not self._network:
 return api_callbacks

 for i in self._network.get_discovery_callbacks():
 api_callbacks.append(i)

 return api_callbacks

[docs] def is_open(self):
 """
 Returns whether this XBee is open.

 Returns:
 Boolean. `True` if this XBee is open, `False` otherwise.
 """
 return self._is_open

[docs] def is_remote(self):
 """
 Override method.

 .. seealso::
 | :meth:`.AbstractXBeeDevice.is_remote`
 """
 return False

[docs] def get_network(self):
 """
 Returns the network of this XBee.

 Returns:
 :class:`.XBeeNetwork`: The XBee network.
 """
 comm_network = self._comm_iface.get_network(self) if self._comm_iface else None
 if comm_network:
 return comm_network

 if self._network is None:
 self._network = self._init_network()

 return self._network

 def _restart_packet_listener(self):
 """
 Restarts the XBee packet listener.
 """
 # Store already registered callbacks
 packet_cbs = self._packet_listener.get_packet_received_callbacks() \
 if self._packet_listener else None
 packet_from_cbs = self._packet_listener.get_packet_received_from_callbacks() \
 if self._packet_listener else None
 data_cbs = self._packet_listener.get_data_received_callbacks() \
 if self._packet_listener else None
 modem_status_cbs = self._packet_listener.get_modem_status_received_callbacks() \
 if self._packet_listener else None
 io_cbs = self._packet_listener.get_io_sample_received_callbacks() \
 if self._packet_listener else None
 expl_data_cbs = self._packet_listener.get_explicit_data_received_callbacks() \
 if self._packet_listener else None
 ip_data_cbs = self._packet_listener.get_ip_data_received_callbacks() \
 if self._packet_listener else None
 sms_cbs = self._packet_listener.get_sms_received_callbacks() \
 if self._packet_listener else None
 user_data_relay_cbs = self._packet_listener.get_user_data_relay_received_callbacks() \
 if self._packet_listener else None
 bt_data_cbs = self._packet_listener.get_bluetooth_data_received_callbacks() \
 if self._packet_listener else None
 mp_data_cbs = self._packet_listener.get_micropython_data_received_callbacks() \
 if self._packet_listener else None
 socket_st_cbs = self._packet_listener.get_socket_state_received_callbacks() \
 if self._packet_listener else None
 socket_data_cbs = self._packet_listener.get_socket_data_received_callbacks() \
 if self._packet_listener else None
 socket_data_from_cbs = self._packet_listener.get_socket_data_received_from_callbacks() \
 if self._packet_listener else None
 route_record_cbs = self._packet_listener.get_route_record_received_callbacks() \
 if self._packet_listener else None
 route_info_cbs = self._packet_listener.get_route_info_callbacks() \
 if self._packet_listener else None
 fs_frame_cbs = self._packet_listener.get_fs_frame_received_callbacks() \
 if self._packet_listener else None

 # Initialize the packet listener
 self._packet_listener = None
 self._packet_listener = PacketListener(self._comm_iface, self)
 self.__packet_queue = self._packet_listener.get_queue()
 self.__data_queue = self._packet_listener.get_data_queue()
 self.__explicit_queue = self._packet_listener.get_explicit_queue()

 # Restore callbacks if any
 self._packet_listener.add_packet_received_callback(packet_cbs)
 self._packet_listener.add_packet_received_from_callback(packet_from_cbs)
 self._packet_listener.add_data_received_callback(data_cbs)
 self._packet_listener.add_modem_status_received_callback(modem_status_cbs)
 self._packet_listener.add_io_sample_received_callback(io_cbs)
 self._packet_listener.add_explicit_data_received_callback(expl_data_cbs)
 self._packet_listener.add_ip_data_received_callback(ip_data_cbs)
 self._packet_listener.add_sms_received_callback(sms_cbs)
 self._packet_listener.add_user_data_relay_received_callback(user_data_relay_cbs)
 self._packet_listener.add_bluetooth_data_received_callback(bt_data_cbs)
 self._packet_listener.add_micropython_data_received_callback(mp_data_cbs)
 self._packet_listener.add_socket_state_received_callback(socket_st_cbs)
 self._packet_listener.add_socket_data_received_callback(socket_data_cbs)
 self._packet_listener.add_socket_data_received_from_callback(socket_data_from_cbs)
 self._packet_listener.add_route_record_received_callback(route_record_cbs)
 self._packet_listener.add_route_info_received_callback(route_info_cbs)
 self._packet_listener.add_fs_frame_received_callback(fs_frame_cbs)

 self._packet_listener.start()
 self._packet_listener.wait_until_started()

 def _init_network(self):
 """
 Initializes a new network.

 Returns:
 :class:`.XBeeDevice.XBeeNetwork`: Initialized network.
 """
 return XBeeNetwork(self)

 @AbstractXBeeDevice._before_send_method
 @AbstractXBeeDevice._after_send_method
 def _send_expl_data(self, remote_xbee, data, src_endpoint, dest_endpoint,
 cluster_id, profile_id, transmit_options=TransmitOptions.NONE.value):
 """
 Blocking method. Sends the provided explicit data to the given XBee,
 source and destination end points, cluster and profile ids.

 This method blocks until a success or error response arrives or the
 configured receive timeout expires. The default timeout is
 :attr:`.XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS`.

 Args:
 remote_xbee (:class:`.RemoteXBeeDevice`): Remote XBee to send data to.
 data (String or Bytearray): Raw data to send.
 src_endpoint (Integer): Source endpoint of the transmission. 1 byte.
 dest_endpoint (Integer): Destination endpoint of the transmission. 1 byte.
 cluster_id (Integer): Cluster ID of the transmission (between 0x0 and 0xFFFF)
 profile_id (Integer): Profile ID of the transmission (between 0x0 and 0xFFFF)
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Returns:
 :class:`.XBeePacket`: Response packet obtained after sending data.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 TransmitException: If the status of the response received is not OK.
 XBeeException: If the XBee's communication interface is closed.
 ValueError: if `cluster_id` or `profile_id` is less than 0x0 or
 greater than 0xFFFF.

 .. seealso::
 | :class:`.RemoteXBeeDevice`
 | :class:`.XBeePacket`
 """
 return self.send_packet_sync_and_get_response(
 self.__build_expldata_packet(remote_xbee, data, src_endpoint,
 dest_endpoint, cluster_id, profile_id,
 broadcast=False,
 transmit_options=transmit_options))

 @AbstractXBeeDevice._before_send_method
 def _send_expl_data_async(self, remote_xbee, data, src_endpoint, dest_endpoint,
 cluster_id, profile_id, transmit_options=TransmitOptions.NONE.value):
 """
 Non-blocking method. Sends the provided explicit data to the given XBee,
 source and destination end points, cluster and profile ids.

 Args:
 remote_xbee (:class:`.RemoteXBeeDevice`): Remote XBee to send data to.
 data (String or Bytearray): Raw data to send.
 src_endpoint (Integer): Source endpoint of the transmission. 1 byte.
 dest_endpoint (Integer): Destination endpoint of the transmission. 1 byte.
 cluster_id (Integer): Cluster ID of the transmission (between 0x0 and 0xFFFF)
 profile_id (Integer): Profile ID of the transmission (between 0x0 and 0xFFFF)
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Raises:
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.
 ValueError: if `cluster_id` or `profile_id` is less than 0x0 or
 greater than 0xFFFF.

 .. seealso::
 | :class:`.RemoteXBeeDevice`
 """
 self.send_packet(
 self.__build_expldata_packet(remote_xbee, data, src_endpoint,
 dest_endpoint, cluster_id, profile_id,
 broadcast=False, transmit_options=transmit_options))

 def _send_expl_data_broadcast(self, data, src_endpoint, dest_endpoint, cluster_id, profile_id,
 transmit_options=TransmitOptions.NONE.value):
 """
 Sends the provided explicit data to all the XBee nodes of the network
 (broadcast) using provided source and destination end points, cluster
 and profile ids.

 This method blocks until a success or error transmit status arrives or
 the configured receive timeout expires. The received timeout is
 configured using the :meth:`.AbstractXBeeDevice.set_sync_ops_timeout`
 method and can be consulted with method
 :meth:`.AbstractXBeeDevice.get_sync_ops_timeout`.

 Args:
 data (String or Bytearray): Raw data to send.
 src_endpoint (Integer): Source endpoint of the transmission. 1 byte.
 dest_endpoint (Integer): Destination endpoint of the transmission. 1 byte.
 cluster_id (Integer): Cluster ID of the transmission (between 0x0 and 0xFFFF)
 profile_id (Integer): Profile ID of the transmission (between 0x0 and 0xFFFF)
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 TransmitException: If the status of the response received is not OK.
 XBeeException: If the XBee's communication interface is closed.
 ValueError: if `cluster_id` or `profile_id` is less than 0x0 or
 greater than 0xFFFF.

 .. seealso::
 | :meth:`.XBeeDevice._send_expl_data`
 """
 return self.send_packet_sync_and_get_response(
 self.__build_expldata_packet(None, data, src_endpoint, dest_endpoint,
 cluster_id, profile_id, broadcast=True,
 transmit_options=transmit_options))

 def _read_expl_data(self, timeout=None):
 """
 Reads new explicit data received by this XBee.

 If `timeout` is specified, this method blocks until new data is received
 or the timeout expires, throwing a :class:`.TimeoutException` in this case.

 Args:
 timeout (Integer, optional): Read timeout in seconds. If `None`,
 this method is non-blocking and returns `None` if there is no
 explicit data available.

 Returns:
 :class:`.ExplicitXBeeMessage`: Read message or `None` if this XBee
 did not receive new explicit data.

 Raises:
 ValueError: If a timeout is specified and is less than 0.
 TimeoutException: If a timeout is specified and no explicit data was
 received during that time.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.ExplicitXBeeMessage`
 """
 return self.__read_data_packet(None, timeout, True)

 def _read_expl_data_from(self, remote_xbee, timeout=None):
 """
 Reads new explicit data received from the given remote XBee.

 If `timeout` is specified, this method blocks until new data is received
 or the timeout expires, throwing a :class:`.TimeoutException` in this case.

 Args:
 remote_xbee (:class:`.RemoteXBeeDevice`): Remote XBee that sent the explicit data.
 timeout (Integer, optional): Read timeout in seconds. If `None`,
 this method is non-blocking and returns `None` if there is no
 data available.

 Returns:
 :class:`.ExplicitXBeeMessage`: Read message sent by `remote_xbee`
 or `None` if this XBee did not receive new data from that node.

 Raises:
 ValueError: If a timeout is specified and is less than 0.
 TimeoutException: If a timeout is specified and no explicit data was
 received during that time.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.ExplicitXBeeMessage`
 | :class:`.RemoteXBeeDevice`
 """
 return self.__read_data_packet(remote_xbee, timeout, True)

 @AbstractXBeeDevice._before_send_method
 def __read_data_packet(self, remote, timeout, explicit):
 """
 Reads a new data packet received by this XBee during the provided timeout.

 If `timeout` is specified, this method blocks until new data is received
 or the timeout expires, throwing a :class:`.TimeoutException` in this case.

 Args:
 remote (:class:`.RemoteXBeeDevice`): Remote XBee to get a data
 packet from. `None` to read a data packet sent by any device.
 timeout (Integer): The time to wait for a data packet in seconds.
 explicit (Boolean): `True` to read an explicit data packet, `False`
 to read an standard data packet.

 Returns:
 :class:`.XBeeMessage` or :class:`.ExplicitXBeeMessage`: XBee
 message received by this device.

 Raises:
 ValueError: If a timeout is specified and is less than 0.
 TimeoutException: If a timeout is specified and no explicit data was
 received during that time.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.XBeeMessage`
 | :class:`.ExplicitXBeeMessage`
 | :class:`.RemoteXBeeDevice`
 """
 if timeout is not None and timeout < 0:
 raise ValueError("Read timeout must be 0 or greater")

 if not explicit:
 if remote is None:
 packet = self.__data_queue.get(timeout=timeout)
 else:
 packet = self.__data_queue.get_by_remote(remote, timeout=timeout)
 else:
 if remote is None:
 packet = self.__explicit_queue.get(timeout=timeout)
 else:
 packet = self.__explicit_queue.get_by_remote(remote, timeout=timeout)

 if packet is None:
 return None

 frame_type = packet.get_frame_type()
 if frame_type in (ApiFrameType.RECEIVE_PACKET,
 ApiFrameType.RX_16, ApiFrameType.RX_64):
 return self.__build_xbee_message(packet, explicit=False)
 if frame_type == ApiFrameType.EXPLICIT_RX_INDICATOR:
 return self.__build_xbee_message(packet, explicit=True)

 return None

 def _enter_at_command_mode(self):
 """
 Attempts to put this device in AT Command mode. Only valid if device is
 working in AT mode.

 Returns:
 Boolean: `True` if the XBee has entered in AT command mode, `False`
 otherwise.

 Raises:
 SerialTimeoutException: If there is any error trying to write to
 the serial port.
 InvalidOperatingModeException: If the XBee is in API mode.
 """
 if not self._serial_port:
 raise XBeeException(
 "Command mode is only supported for local XBee devices using a serial connection")
 if self._operating_mode in (OperatingMode.API_MODE, OperatingMode.ESCAPED_API_MODE):
 raise InvalidOperatingModeException(
 message="Invalid mode. Command mode can be only accessed while in AT mode")

 from digi.xbee.recovery import enter_at_command_mode
 return enter_at_command_mode(self._serial_port)

 def _exit_at_command_mode(self):
 """
 Exits AT command mode. The XBee has to be in command mode.

 Raises:
 SerialTimeoutException: If there is any error trying to write to
 the serial port.
 InvalidOperatingModeException: If the XBee is in API mode.
 """
 if not self._serial_port:
 raise XBeeException(
 "Command mode is only supported for local XBee devices using a serial connection")

 if self._operating_mode in (OperatingMode.API_MODE, OperatingMode.ESCAPED_API_MODE):
 raise InvalidOperatingModeException(
 message="Invalid mode. Command mode can be only be exited while in AT mode")

 self._serial_port.write("ATCN\r".encode("utf8"))
 time.sleep(self.__DEFAULT_GUARD_TIME)

 def _determine_operating_mode(self):
 """
 Determines and returns the operating mode of the XBee dice.

 If the XBee is not in AT command mode, this method attempts to enter on it.

 Returns:
 :class:`.OperatingMode`: This XBee operating mode.

 .. seealso::
 | :class:`.OperatingMode`
 """
 try:
 response = self.get_parameter(ATStringCommand.AP, apply=False)
 return OperatingMode.get(response[0])
 except TimeoutException:
 self._operating_mode = OperatingMode.AT_MODE
 listening = self._packet_listener is not None and self._packet_listener.is_running()
 try:
 # Stop listening for packets.
 if listening:
 self._packet_listener.stop()
 self._packet_listener.join()
 # If there is timeout exception and is possible to enter
 # in AT command mode, get the actual mode.
 if self._enter_at_command_mode():
 return self.__get_actual_mode()
 except XBeeException as ste:
 self._log.exception(ste)
 except UnicodeDecodeError:
 # This error is thrown when trying to decode bytes without
 # utf-8 representation, just ignore.
 pass
 finally:
 # Exit AT command mode.
 self._exit_at_command_mode()
 # Restore the packets listening.
 if listening:
 self._restart_packet_listener()
 return OperatingMode.UNKNOWN

[docs] def send_packet_sync_and_get_response(self, packet_to_send, timeout=None):
 """
 Sends the packet and waits for its corresponding response.

 Args:
 packet_to_send (:class:`.XBeePacket`): The packet to transmit.
 timeout (Integer, optional, default=`None`): Number of seconds to
 wait. -1 to wait indefinitely.

 Returns:
 :class:`.XBeePacket`: Received response packet.

 Raises:
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 TimeoutException: If response is not received in the configured
 timeout.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.XBeePacket`
 """
 return self._send_packet_sync_and_get_response(packet_to_send, timeout=timeout)

[docs] def send_packet(self, packet, sync=False):
 """
 Sends the packet and waits for the response. The packet to send is
 escaped depending on the current operating mode.

 This method can be synchronous or asynchronous.

 If synchronous, this method discards all response packets until it finds
 the one that has the appropriate frame ID, that is, the sent packet's
 frame ID.

 If asynchronous, this method does not wait for any response and returns
 `None`.

 Args:
 packet (:class:`.XBeePacket`): The packet to send.
 sync (Boolean): `True` to wait for the response of the sent packet
 and return it, `False` otherwise.

 Returns:
 :class:`.XBeePacket`: Response packet if `sync` is `True`, `None`
 otherwise.

 Raises:
 TimeoutException: If `sync` is `True` and the response packet for
 the sent one cannot be read.
 InvalidOperatingModeException: If the XBee operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the packet listener is not running or the XBee's
 communication interface is closed.

 .. seealso::
 | :class:`.XBeePacket`
 """
 return self._send_packet(packet, sync=sync)

 def __build_xbee_message(self, packet, explicit=False):
 """
 Builds and returns the XBee message corresponding to the provided
 packet`. The result is an :class:`.XBeeMessage` or
 :class:`.ExplicitXBeeMessage` depending on the provided parameters.

 Args:
 packet (:class:`.XBeePacket`): Packet to get its corresponding XBee
 message.
 explicit (Boolean): `True` if the packet is an explicit packet,
 `False` otherwise.

 Returns:
 :class:`.XBeeMessage` or :class:`.ExplicitXBeeMessage`: Resulting XBee message.

 .. seealso::
 | :class:`.ExplicitXBeeMessage`
 | :class:`.XBeeMessage`
 | :class:`.XBeePacket`
 """
 x64addr = None
 x16addr = None
 remote = None

 if hasattr(packet, "x16bit_source_addr"):
 x16addr = packet.x16bit_source_addr
 if hasattr(packet, "x64bit_source_addr"):
 x64addr = packet.x64bit_source_addr
 if x64addr is not None or x16addr is not None:
 remote = RemoteXBeeDevice(self, x64bit_addr=x64addr, x16bit_addr=x16addr)

 if explicit:
 msg = ExplicitXBeeMessage(packet.rf_data, remote, time.time(), packet.source_endpoint,
 packet.dest_endpoint, packet.cluster_id,
 packet.profile_id, broadcast=packet.is_broadcast())
 else:
 msg = XBeeMessage(packet.rf_data, remote, time.time(), broadcast=packet.is_broadcast())

 return msg

 def __build_expldata_packet(self, remote_xbee, data, src_endpoint, dest_endpoint,
 cluster_id, profile_id, broadcast=False,
 transmit_options=TransmitOptions.NONE.value):
 """
 Builds and returns an explicit data packet with the provided parameters.

 Args:
 remote_xbee (:class:`.RemoteXBeeDevice`): Remote XBee to send data to.
 data (String or Bytearray): Raw data to send.
 src_endpoint (Integer): Source endpoint of the transmission. 1 byte.
 dest_endpoint (Integer): Destination endpoint of the transmission. 1 byte.
 cluster_id (Integer): Cluster ID of the transmission (between 0x0 and 0xFFFF)
 profile_id (Integer): Profile ID of the transmission (between 0x0 and 0xFFFF)
 broadcast (Boolean, optional): `True` to send data in broadcast
 mode (`remote_xbee` is ignored), `False` to send data to the
 specified `remote_xbee`.
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Returns:
 :class:`.ExplicitAddressingPacket`: Explicit packet generated with
 the provided parameters.

 Raises:
 All exceptions raised by :meth:`.ExplicitAddressingPacket.__init__`

 .. seealso::
 | :class:`.ExplicitAddressingPacket`
 | :meth:`.ExplicitAddressingPacket.__init__`
 | :class:`.RemoteXBeeDevice`
 """
 if broadcast:
 x64addr = XBee64BitAddress.BROADCAST_ADDRESS
 x16addr = XBee16BitAddress.UNKNOWN_ADDRESS
 else:
 x64addr = remote_xbee.get_64bit_addr()
 x16addr = remote_xbee.get_16bit_addr()

 # If the device does not have 16-bit address, set it to Unknown.
 if x16addr is None:
 x16addr = XBee16BitAddress.UNKNOWN_ADDRESS

 if isinstance(data, str):
 data = data.encode(encoding="utf8", errors='ignore')

 return ExplicitAddressingPacket(self._get_next_frame_id(), x64addr,
 x16addr, src_endpoint, dest_endpoint,
 cluster_id, profile_id, 0, transmit_options, rf_data=data)

 def __get_actual_mode(self):
 """
 Gets and returns the actual operating mode of the XBee reading 'AP'
 parameter in AT command mode.

 Returns:
 :class:`.OperatingMode`: The actual operating mode of the XBee or
 `OperatingMode.UNKNOWN` if could not be read.

 Raises:
 SerialTimeoutException: If there is any error trying to write to
 the serial port.
 """
 if not self._serial_port:
 raise XBeeException(
 "Command mode is only supported for local XBee devices using a serial connection")

 # Clear the serial input stream.
 self._serial_port.flushInput()
 # Send the 'AP' command.
 self._serial_port.write("ATAP\r".encode(encoding="utf8"))
 time.sleep(0.1)
 # Read the 'AP' answer.
 ap_answer = self._serial_port.read_existing() \
 .decode(encoding="utf8", errors='ignore').rstrip()
 if len(ap_answer) == 0:
 return OperatingMode.UNKNOWN
 # Return the corresponding operating mode for the AP answer.
 try:
 return OperatingMode.get(int(ap_answer, 16))
 except ValueError:
 return OperatingMode.UNKNOWN

[docs] def get_next_frame_id(self):
 """
 Returns the next frame ID of the XBee.

 Returns:
 Integer: The next frame ID of the XBee.
 """
 return self._get_next_frame_id()

[docs] def add_route_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.RouteReceived`.
 This works for Zigbee and Digimesh devices.

 Args:
 callback (Function): The callback. Receives three arguments.

 * source (:class:`.XBeeDevice`): The source node.
 * destination (:class:`.RemoteXBeeDevice`): The destination node.
 * hops (List): List of intermediate hops from closest to source
 to closest to destination (:class:`.RemoteXBeeDevice`).

 .. seealso::
 | :meth:`.XBeeDevice.del_route_received_callback`
 """
 if self._protocol not in (XBeeProtocol.ZIGBEE, XBeeProtocol.ZNET,
 XBeeProtocol.SMART_ENERGY,
 XBeeProtocol.DIGI_MESH,
 XBeeProtocol.DIGI_POINT, XBeeProtocol.SX):
 raise ValueError(
 "Cannot register route received callback for %s XBee devices"
 % self._protocol.description)

 self.__route_received += callback

 if (self._protocol in (XBeeProtocol.ZIGBEE, XBeeProtocol.ZNET,
 XBeeProtocol.SMART_ENERGY)
 and self.__route_record_callback not in self._packet_listener.get_route_record_received_callbacks()):
 self._packet_listener.add_route_record_received_callback(self.__route_record_callback)
 elif self.__route_info_callback not in self._packet_listener.get_route_info_callbacks():
 self._packet_listener.add_route_info_received_callback(self.__route_info_callback)

[docs] def del_route_received_callback(self, callback):
 """
 Deletes a callback for the callback list of :class:`.RouteReceived` event.

 Args:
 callback (Function): The callback to delete.

 .. seealso::
 | :meth:`.XBeeDevice.add_route_received_callback`
 """
 if callback in self.__route_received:
 self.__route_received -= callback

 if (self._protocol in (XBeeProtocol.ZIGBEE, XBeeProtocol.ZNET,
 XBeeProtocol.SMART_ENERGY)
 and self.__route_record_callback in self._packet_listener.get_route_record_received_callbacks()):
 self._packet_listener.del_route_record_received_callback(self.__route_record_callback)
 elif self.__route_info_callback in self._packet_listener.get_route_info_callbacks():
 self._packet_listener.del_route_info_callback(self.__route_info_callback)

 def __route_record_callback(self, src, hops):
 """
 Callback method to receive route record indicator (0xA1) frames.

 Args:
 src (:class:`.RemoteXBeeDevice`): The remote node that sent the
 route record indicator frame.
 hops (List): List of 16-bit addresses (:class:`XBee16BitAddress`)
 of the intermediate hops starting from source node to closest
 to destination.
 """
 node_list = []
 network = self.get_network()

 self._log.debug("Source route for %s (hops %d): %s", src, len(hops),
 " <<< ".join(map(str, hops)))
 for hop in hops:
 node = network.get_device_by_16(hop)
 # If the intermediate hop is not yet in the network, add it
 if not node:
 node = network._add_remote(
 RemoteZigBeeDevice(self, x16bit_addr=hop),
 NetworkEventReason.ROUTE)

 if node not in node_list and hop != src.get_16bit_addr():
 node_list.append(node)

 # Reverse the route: closest to source node the first one
 node_list.reverse()

 self.__route_received(self, src, node_list)

 def __route_info_callback(self, _src_event, _timestamp, _ack_timeout_count,
 _tx_block_count, dst_addr, src_addr,
 responder_addr, successor_addr):
 """
 Callback method to receive route information (0x8D) frames.

 Args:
 _src_event (Integer): The source event (0x11: NACK, 0x12: Trace route)
 _timestamp (Integer): The system timer value on the node generating
 this package. The timestamp is in microseconds.
 _ack_timeout_count (Integer): Number of MAC ACK timeouts that occur.
 _tx_block_count (Integer): Number of times the transmissions was
 blocked due to reception in progress.
 dst_addr (:class:`.XBee64BitAddress`): 64-bit address of the final
 destination node.
 src_addr (:class:`.XBee64BitAddress`): 64-bit address of
 the source node.
 responder_addr (:class:`.XBee64BitAddress`): 64-bit address of the
 the node that generates this packet after it sends (or attempts
 to send) the packet to the next hop (successor node)
 successor_addr (:class:`.XBee64BitAddress`): 64-bit address of the
 next node after the responder in the route towards the destination.
 """
 self._log.debug("Trace route for %s: responder %s >>> successor %s",
 dst_addr, responder_addr, successor_addr)

 def check_dm_route_complete(src, dst, hops_list):
 length = len(hops_list)

 if not length:
 return False

 if hops_list[0][0] != src:
 return False

 if hops_list[length - 1][1] != dst:
 return False

 for idx in range(len(hops_list)):
 if length < idx + 2:
 break
 if hops_list[idx][1] != hops_list[idx + 1][0]:
 return False

 return True

 with self.__tmp_dm_routes_lock:
 if str(dst_addr) not in self.__tmp_dm_routes_to:
 self.__tmp_dm_routes_to.update({str(dst_addr): []})

 dm_hops_list = self.__tmp_dm_routes_to.get(str(dst_addr))

 # There is no guarantee that Route Information Packet frames
 # arrive in the same order as the route taken by the unicast packet.
 hop = (responder_addr, successor_addr)

 if hop in dm_hops_list:
 return

 if responder_addr == src_addr:
 dm_hops_list.insert(0, hop)
 elif successor_addr == dst_addr or not dm_hops_list:
 dm_hops_list.append(hop)
 else:
 self.__tmp_dm_to_insert.insert(0, hop)

 aux_list = []
 for to_insert in self.__tmp_dm_to_insert:
 for element in dm_hops_list:
 # Successor in the list is the received responder
 if element[1] == to_insert[0]:
 dm_hops_list.insert(dm_hops_list.index(element) + 1, to_insert)
 break
 # Responder in the list is the received successor
 if element[0] == to_insert[1]:
 dm_hops_list.insert(dm_hops_list.index(element), to_insert)
 break
 # Cannot order it, save it for later
 aux_list.append(to_insert)

 self.__tmp_dm_to_insert = aux_list

 # Check if this is the latest packet of the Trace Route process
 if (self.__tmp_dm_to_insert
 or not check_dm_route_complete(src_addr, dst_addr, dm_hops_list)):
 return

 # Generate the list of ordered hops
 node_list = []
 network = self.get_network()
 for i in range(len(dm_hops_list)):
 address = dm_hops_list[i][0]
 node = network.get_device_by_64(address)
 if not node:
 # If the intermediate hop is not yet in the network, add it
 if not node:
 node = network._add_remote(
 RemoteDigiMeshDevice(self, x64bit_addr=address),
 NetworkEventReason.ROUTE)

 if node not in node_list and address != dst_addr:
 node_list.append(node)

 dest_node = network.get_device_by_64(dst_addr)
 if not dest_node:
 # If the destination is not yet in the network, add it
 if not dest_node:
 dest_node = network._add_remote(
 RemoteDigiMeshDevice(self, x64bit_addr=dst_addr),
 NetworkEventReason.ROUTE)

 self.__tmp_dm_to_insert.clear()
 self.__tmp_dm_routes_to.clear()

 # Remove the source node (first one in list) from the hops
 self.__route_received(self, dest_node, node_list[1:])

[docs] def get_route_to_node(self, remote, timeout=10, force=True):
 """
 Gets the route from this XBee to the given remote node.

 For Zigbee:
 * 'AR' parameter of the local node must be configured with a value
 different from 'FF'.
 * Set `force` to `True` to force the Zigbee remote node to return
 its route independently of the local node configuration as high
 or low RAM concentrator ('DO' of the local value)

 Args:
 remote (:class:`.RemoteXBeeDevice`): The remote node.
 timeout (Float, optional, default=10): Maximum number of seconds to
 wait for the route.
 force (Boolean): `True` to force asking for the route, `False`
 otherwise. Only for Zigbee.

 Returns:
 Tuple: Tuple containing route data:
 - status (:class:`.TransmitStatus`): The transmit status.
 - Tuple with route data (`None` if the route was not read in the
 provided timeout):

 - source (:class:`.RemoteXBeeDevice`): The source node of the
 route.
 - destination (:class:`.RemoteXBeeDevice`): The destination node
 of the route.
 - hops (List): List of intermediate nodes
 (:class:`.RemoteXBeeDevice`) ordered from closest to source
 to closest to destination node (source and destination not
 included).
 """
 if not remote.is_remote():
 raise ValueError("Remote cannot be a local XBee")
 if self._64bit_addr == remote.get_64bit_addr():
 raise ValueError("Remote cannot be the local XBee")
 if self != remote.get_local_xbee_device():
 raise ValueError("Remote must have '%s' as local XBee" % self)
 if timeout is None or timeout <= 0:
 raise ValueError("Timeout must be greater than 0")

 self._log.debug("Getting route for node %s", remote)

 if self._protocol in (XBeeProtocol.ZIGBEE, XBeeProtocol.ZNET,
 XBeeProtocol.SMART_ENERGY, XBeeProtocol.DIGI_MESH,
 XBeeProtocol.SX):
 status, route = self.__get_trace_route(remote, timeout, force=force)
 else:
 route = self, remote, []
 status = TransmitStatus.SUCCESS

 if route:
 self._log.debug("Route: {{{!s}{!s}{!s} >>> {!s} (hops: {!s})}}".format(
 route[0], " >>> " if route[2] else "", " >>> ".join(map(str, route[2])),
 route[1], len(route[2]) + 1))

 return status, route

 def __get_trace_route(self, remote, timeout, force=True):
 """
 Gets the route from this XBee to the given remote node.

 Args:
 remote (:class:`.RemoteXBeeDevice`): The remote node.
 timeout (Float): Maximum number of seconds to wait for the route.
 force (Boolean): `True` to force asking for the route, `False`
 otherwise. Only for Zigbee.

 Returns:
 Tuple: Tuple containing route data:
 - status (:class:`.TransmitStatus`): The transmit status.
 - Tuple with route data (`None` if the route was not read in the
 provided timeout):
 - source (:class:`.RemoteXBeeDevice`): The source node of the
 route.
 - destination (:class:`.RemoteXBeeDevice`): The destination node
 of the route.
 - hops (List): List of intermediate nodes
 (:class:`.RemoteXBeeDevice`) ordered from closest to source
 to closest to destination node (source and destination not
 included).
 """
 lock = threading.Event()
 node_list = []

 def route_cb(src, dest, hops):
 nonlocal node_list
 if dest == remote:
 node_list = [src, *hops]
 lock.set()

 if remote == self:
 return None, None

 if self._protocol in (XBeeProtocol.ZIGBEE, XBeeProtocol.ZNET,
 XBeeProtocol.SMART_ENERGY):
 if remote.get_role() == Role.END_DEVICE:
 return None, None

 # Transmit a some information to the remote
 packet = TransmitPacket(
 0x01, # Frame ID
 remote.get_64bit_addr(), # 64-bit address of the remote
 remote.get_16bit_addr(), # 16-bit address of the remote
 0x00, # Broadcast radius (0x00 - Maximum)
 0x00, # Transmit options (0x00 - None)
 bytearray([0]) # Dummy payload
)

 # To force getting the route we have to send again the AR value
 # configured in the local node (only if it is different from FF)
 if force:
 ar_value = None
 try:
 ar_value = self.get_parameter(ATStringCommand.AR, apply=False)
 if ar_value and utils.bytes_to_int(ar_value) != 0xFF:
 self.set_parameter(ATStringCommand.AR, ar_value, apply=False)
 except XBeeException as exc:
 self._log.debug(
 "Error getting route to node: unable to %s '%s' value: %s",
 "get" if not ar_value else "set",
 ATStringCommand.AR.command, str(exc))

 elif self._protocol in (XBeeProtocol.DIGI_MESH, XBeeProtocol.SX):
 # Transmit a some information to the remote
 packet = TransmitPacket(
 0x01, # Frame ID
 remote.get_64bit_addr(), # 64-bit address of the remote
 remote.get_16bit_addr(), # 16-bit address of the remote
 0x00, # Broadcast radius (0x00 - Maximum)
 # Transmit options (0x08 - Generate trace route packets)
 TransmitOptions.DIGIMESH_MODE.value | TransmitOptions.ENABLE_TRACE_ROUTE.value,
 bytearray([0]) # Dummy payload
)

 else:
 return None, None

 lock.clear()

 status = None
 timed_out = False

 self.add_route_received_callback(route_cb)

 try:
 start = time.time()

 st_frame = self.send_packet_sync_and_get_response(packet, timeout=timeout)
 status = st_frame.transmit_status if st_frame else None
 if status in (TransmitStatus.SUCCESS, TransmitStatus.SELF_ADDRESSED):
 timed_out = not lock.wait(timeout - (time.time() - start))
 except TimeoutException:
 timed_out = True
 finally:
 self.del_route_received_callback(route_cb)

 # Check if the list of intermediate nodes is empty
 if timed_out or not node_list:
 return status, None

 return status, (self, remote, node_list[1:])

[docs]class Raw802Device(XBeeDevice):
 """
 This class represents a local 802.15.4 XBee.
 """

 def __init__(self, port=None, baud_rate=None, data_bits=serial.EIGHTBITS,
 stop_bits=serial.STOPBITS_ONE, parity=serial.PARITY_NONE,
 flow_control=FlowControl.NONE,
 _sync_ops_timeout=AbstractXBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS,
 comm_iface=None):
 """
 Class constructor. Instantiates a new :class:`.Raw802Device` with the
 provided parameters.

 Args:
 port (String): Serial port identifier. Depends on operating system.
 e.g. '/dev/ttyUSB0' on 'GNU/Linux' or 'COM3' on Windows.
 baud_rate (Integer): Serial port baud rate.
 data_bits (Integer, default: :attr:`.serial.EIGHTBITS`): Port bitsize.
 stop_bits (Integer, default: :attr:`.serial.STOPBITS_ONE`): Port stop bits.
 parity (Character, default: :attr:`.serial.PARITY_NONE`): Port parity.
 flow_control (Integer, default: :attr:`.FlowControl.NONE`): Port flow control.
 _sync_ops_timeout (Integer, default: 3): Read timeout (in seconds).
 comm_iface (:class:`.XBeeCommunicationInterface`): Communication interface.

 Raises:
 All exceptions raised by :meth:`.XBeeDevice.__init__` constructor.

 .. seealso::
 | :class:`.XBeeDevice`
 | :meth:`.XBeeDevice.__init__`
 """
 super().__init__(port, baud_rate, data_bits=data_bits, stop_bits=stop_bits,
 parity=parity, flow_control=flow_control,
 _sync_ops_timeout=_sync_ops_timeout, comm_iface=comm_iface)

[docs] def open(self, force_settings=False):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeDevice.open`
 """
 super().open(force_settings=force_settings)
 if self._protocol != XBeeProtocol.RAW_802_15_4:
 self.close()
 raise XBeeException(_ERROR_INCOMPATIBLE_PROTOCOL
 % (self.get_protocol(), XBeeProtocol.RAW_802_15_4))

[docs] def get_protocol(self):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeDevice.get_protocol`
 """
 if not self._protocol or self._protocol == XBeeProtocol.UNKNOWN:
 return XBeeProtocol.RAW_802_15_4

 return self._protocol

 def _init_network(self):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeDevice._init_network`
 """
 return Raw802Network(self)

[docs] def get_ai_status(self):
 """
 Returns the current association status of this XBee. It indicates
 occurrences of errors during the modem initialization and connection.

 Returns:
 :class:`.AssociationIndicationStatus`: The XBee association
 indication status.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 """
 return self._get_ai_status()

[docs] def send_data_64(self, x64addr, data, transmit_options=TransmitOptions.NONE.value):
 """
 Blocking method. This method sends data to a remote XBee with the given
 64-bit address.

 This method waits for the packet response. The default timeout is
 :attr:`.XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS`.

 Args:
 x64addr (:class:`.XBee64BitAddress`): 64-bit address of the
 destination XBee.
 data (String or Bytearray): Raw data to send.
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Returns:
 :class:`.XBeePacket`: The response.

 Raises:
 ValueError: If `x64addr` or `data` is `None`.
 TimeoutException: If response is not received before the read
 timeout expires.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 TransmitException: If the status of the response received is not OK.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.XBee64BitAddress`
 | :class:`.XBeePacket`
 """
 return self._send_data_64(x64addr, data, transmit_options=transmit_options)

[docs] def send_data_async_64(self, x64addr, data, transmit_options=TransmitOptions.NONE.value):
 """
 Non-blocking method. This method sends data to a remote XBee with the
 given 64-bit address.

 This method does not wait for a response.

 Args:
 x64addr (:class:`.XBee64BitAddress`): 64-bit address of the
 destination XBee.
 data (String or Bytearray): Raw data to send.
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Raises:
 ValueError: If `x64addr` or `data` is `None`.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.XBee64BitAddress`
 | :class:`.XBeePacket`
 """
 self._send_data_async_64(x64addr, data, transmit_options=transmit_options)

[docs] def send_data_16(self, x16addr, data, transmit_options=TransmitOptions.NONE.value):
 """
 Blocking method. This method sends data to a remote XBee with the given
 16-bit address.

 This method will wait for the packet response. The default timeout is
 :attr:`.XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS`.

 Args:
 x16addr (:class:`.XBee16BitAddress`): 16-bit address of the
 destination XBee.
 data (String or Bytearray): Raw data to send.
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Returns:
 :class:`.XBeePacket`: The response.

 Raises:
 ValueError: If `x16addr` or `data` is `None`.
 TimeoutException: If response is not received before the read
 timeout expires.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 TransmitException: If the status of the response received is not OK.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.XBee16BitAddress`
 | :class:`.XBeePacket`
 """
 return self._send_data_16(x16addr, data, transmit_options=transmit_options)

[docs] def send_data_async_16(self, x16addr, data, transmit_options=TransmitOptions.NONE.value):
 """
 Non-blocking method. This method sends data to a remote XBee with the
 given 16-bit address.

 This method does not wait for a response.

 Args:
 x16addr (:class:`.XBee16BitAddress`): 16-bit address of the
 destination XBee.
 data (String or Bytearray): Raw data to send.
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Raises:
 ValueError: If `x16addr` or `data` is `None`.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.XBee16BitAddress`
 | :class:`.XBeePacket`
 """
 self._send_data_async_16(x16addr, data, transmit_options=transmit_options)

[docs]class DigiMeshDevice(XBeeDevice):
 """
 This class represents a local DigiMesh XBee.
 """

 def __init__(self, port=None, baud_rate=None, data_bits=serial.EIGHTBITS,
 stop_bits=serial.STOPBITS_ONE, parity=serial.PARITY_NONE,
 flow_control=FlowControl.NONE,
 _sync_ops_timeout=AbstractXBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS,
 comm_iface=None):
 """
 Class constructor. Instantiates a new :class:`.DigiMeshDevice` with the
 provided parameters.

 Args:
 port (String): serial port identifier. Depends on operating system.
 e.g. '/dev/ttyUSB0' on 'GNU/Linux' or 'COM3' on Windows.
 baud_rate (Integer): Serial port baud rate.
 data_bits (Integer, default: :attr:`.serial.EIGHTBITS`): Port bitsize.
 stop_bits (Integer, default: :attr:`.serial.STOPBITS_ONE`): Port stop bits.
 parity (Character, default: :attr:`.serial.PARITY_NONE`): Port parity.
 flow_control (Integer, default: :attr:`.FlowControl.NONE`): port flow control.
 _sync_ops_timeout (Integer, default: 3): Read timeout (in seconds).
 comm_iface (:class:`.XBeeCommunicationInterface`): Communication interface.

 Raises:
 All exceptions raised by :meth:`.XBeeDevice.__init__` constructor.

 .. seealso::
 | :class:`.XBeeDevice`
 | :meth:`.XBeeDevice.__init__`
 """
 super().__init__(port, baud_rate, data_bits=data_bits, stop_bits=stop_bits,
 parity=parity, flow_control=flow_control,
 _sync_ops_timeout=_sync_ops_timeout, comm_iface=comm_iface)

[docs] def open(self, force_settings=False):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeDevice.open`
 """
 super().open(force_settings=force_settings)
 if self._protocol != XBeeProtocol.DIGI_MESH:
 self.close()
 raise XBeeException(_ERROR_INCOMPATIBLE_PROTOCOL
 % (self.get_protocol(), XBeeProtocol.DIGI_MESH))

[docs] def get_protocol(self):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeDevice.get_protocol`
 """
 if not self._protocol or self._protocol == XBeeProtocol.UNKNOWN:
 return XBeeProtocol.DIGI_MESH

 return self._protocol

 def _init_network(self):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeDevice._init_network`
 """
 return DigiMeshNetwork(self)

[docs] def build_aggregate_routes(self):
 """
 Forces all nodes in the network to automatically build routes to this
 node. The receiving node establishes a route back to this node.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 """
 self.set_parameter(ATStringCommand.AG,
 XBee16BitAddress.UNKNOWN_ADDRESS.address,
 apply=False)

[docs] def send_data_64(self, x64addr, data, transmit_options=TransmitOptions.NONE.value):
 """
 Blocking method. This method sends data to a remote XBee with the given
 64-bit address.

 This method waits for the packet response. The default timeout is
 :attr:`.XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS`.

 Args:
 x64addr (:class:`.XBee64BitAddress`): 64-bit address of the
 destination XBee.
 data (String or Bytearray): Raw data to send.
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Returns:
 :class:`.XBeePacket`: The response.

 Raises:
 ValueError: If `x64addr` or `data` is `None`.
 TimeoutException: If response is not received before the read
 timeout expires.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 TransmitException: If the status of the response received is not OK.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.XBee64BitAddress`
 | :class:`.XBeePacket`
 """
 return self._send_data_64(x64addr, data, transmit_options=transmit_options)

[docs] def send_data_async_64(self, x64addr, data, transmit_options=TransmitOptions.NONE.value):
 """
 Non-blocking method. This method sends data to a remote XBee with the
 given 64-bit address.

 This method does not wait for a response.

 Args:
 x64addr (:class:`.XBee64BitAddress`): 64-bit address of the
 destination XBee.
 data (String or Bytearray): Raw data to send.
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Raises:
 ValueError: If `x64addr` or `data` is `None`.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.XBee64BitAddress`
 | :class:`.XBeePacket`
 """
 self._send_data_async_64(x64addr, data, transmit_options=transmit_options)

[docs] def read_expl_data(self, timeout=None):
 """
 Reads new explicit data received by this XBee.

 If `timeout` is specified, this method blocks until new data is received
 or the timeout expires, throwing a :class:`.TimeoutException` in this case.

 Args:
 timeout (Integer, optional): Read timeout in seconds. If `None`,
 this method is non-blocking and returns `None` if there is no
 explicit data available.

 Returns:
 :class:`.ExplicitXBeeMessage`: Read message or `None` if this XBee
 did not receive new explicit data.

 Raises:
 ValueError: If a timeout is specified and is less than 0.
 TimeoutException: If a timeout is specified and no explicit data was
 received during that time.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.ExplicitXBeeMessage`
 """
 return self._read_expl_data(timeout=timeout)

[docs] def read_expl_data_from(self, remote_xbee, timeout=None):
 """
 Reads new explicit data received from the given remote XBee.

 If `timeout` is specified, this method blocks until new data is received
 or the timeout expires, throwing a :class:`.TimeoutException` in this case.

 Args:
 remote_xbee (:class:`.RemoteXBeeDevice`): Remote XBee that sent the explicit data.
 timeout (Integer, optional): Read timeout in seconds. If `None`,
 this method is non-blocking and returns `None` if there is no
 data available.

 Returns:
 :class:`.ExplicitXBeeMessage`: Read message sent by `remote_xbee`
 or `None` if this XBee did not receive new data from that node.

 Raises:
 ValueError: If a timeout is specified and is less than 0.
 TimeoutException: If a timeout is specified and no explicit data was
 received during that time.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.ExplicitXBeeMessage`
 | :class:`.RemoteXBeeDevice`
 """
 return self._read_expl_data_from(remote_xbee, timeout=timeout)

[docs] def send_expl_data(self, remote_xbee, data, src_endpoint, dest_endpoint,
 cluster_id, profile_id, transmit_options=TransmitOptions.NONE.value):
 """
 Blocking method. Sends the provided explicit data to the given XBee,
 source and destination end points, cluster and profile ids.

 This method blocks until a success or error response arrives or the
 configured receive timeout expires. The default timeout is
 :attr:`.XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS`.

 Args:
 remote_xbee (:class:`.RemoteXBeeDevice`): Remote XBee to send data to.
 data (String or Bytearray): Raw data to send.
 src_endpoint (Integer): Source endpoint of the transmission. 1 byte.
 dest_endpoint (Integer): Destination endpoint of the transmission. 1 byte.
 cluster_id (Integer): Cluster ID of the transmission (between 0x0 and 0xFFFF)
 profile_id (Integer): Profile ID of the transmission (between 0x0 and 0xFFFF)
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Returns:
 :class:`.XBeePacket`: Response packet obtained after sending data.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 TransmitException: If the status of the response received is not OK.
 XBeeException: If the XBee's communication interface is closed.
 ValueError: if `cluster_id` or `profile_id` is less than 0x0 or
 greater than 0xFFFF.

 .. seealso::
 | :class:`.RemoteXBeeDevice`
 | :class:`.XBeePacket`
 """
 return self._send_expl_data(
 remote_xbee, data, src_endpoint, dest_endpoint, cluster_id,
 profile_id, transmit_options=transmit_options)

[docs] def send_expl_data_broadcast(self, data, src_endpoint, dest_endpoint, cluster_id,
 profile_id, transmit_options=TransmitOptions.NONE.value):
 """
 Sends the provided explicit data to all the XBee nodes of the network
 (broadcast) using provided source and destination end points, cluster
 and profile ids.

 This method blocks until a success or error transmit status arrives or
 the configured receive timeout expires. The received timeout is
 configured using the :meth:`.AbstractXBeeDevice.set_sync_ops_timeout`
 method and can be consulted with method
 :meth:`.AbstractXBeeDevice.get_sync_ops_timeout`.

 Args:
 data (String or Bytearray): Raw data to send.
 src_endpoint (Integer): Source endpoint of the transmission. 1 byte.
 dest_endpoint (Integer): Destination endpoint of the transmission. 1 byte.
 cluster_id (Integer): Cluster ID of the transmission (between 0x0 and 0xFFFF)
 profile_id (Integer): Profile ID of the transmission (between 0x0 and 0xFFFF)
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 TransmitException: If the status of the response received is not OK.
 XBeeException: If the XBee's communication interface is closed.
 ValueError: if `cluster_id` or `profile_id` is less than 0x0 or
 greater than 0xFFFF.

 .. seealso::
 | :meth:`.XBeeDevice._send_expl_data`
 """
 return self._send_expl_data_broadcast(
 data, src_endpoint, dest_endpoint, cluster_id, profile_id,
 transmit_options=transmit_options)

[docs] def send_expl_data_async(self, remote_xbee, data, src_endpoint, dest_endpoint,
 cluster_id, profile_id, transmit_options=TransmitOptions.NONE.value):
 """
 Non-blocking method. Sends the provided explicit data to the given XBee,
 source and destination end points, cluster and profile ids.

 Args:
 remote_xbee (:class:`.RemoteXBeeDevice`): Remote XBee to send data to.
 data (String or Bytearray): Raw data to send.
 src_endpoint (Integer): Source endpoint of the transmission. 1 byte.
 dest_endpoint (Integer): Destination endpoint of the transmission. 1 byte.
 cluster_id (Integer): Cluster ID of the transmission (between 0x0 and 0xFFFF)
 profile_id (Integer): Profile ID of the transmission (between 0x0 and 0xFFFF)
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Raises:
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.
 ValueError: if `cluster_id` or `profile_id` is less than 0x0 or
 greater than 0xFFFF.

 .. seealso::
 | :class:`.RemoteXBeeDevice`
 """
 self._send_expl_data_async(remote_xbee, data, src_endpoint,
 dest_endpoint, cluster_id, profile_id,
 transmit_options=transmit_options)

[docs] def get_neighbors(self, neighbor_cb=None, finished_cb=None, timeout=None):
 """
 Returns the neighbors of this XBee. If `neighbor_cb` is not
 defined, the process blocks during the specified timeout.

 Args:
 neighbor_cb (Function, optional, default=`None`): Method called
 when a new neighbor is received. Receives two arguments:

 * The XBee that owns this new neighbor.
 * The new neighbor.

 finished_cb (Function, optional, default=`None`): Method to execute
 when the process finishes. Receives two arguments:

 * The XBee that is searching for its neighbors.
 * A list with the discovered neighbors.
 * An error message if something went wrong.

 timeout (Float, optional, default=`NeighborFinder.DEFAULT_TIMEOUT`): The timeout
 in seconds.
 Returns:
 List: List of :class:`.Neighbor` when `neighbor_cb` is not defined,
 `None` otherwise (in this case neighbors are received in the callback).

 Raises:
 OperationNotSupportedException: If XBee protocol is not DigiMesh.

 .. seealso::
 | :class:`com.digi.models.zdo.Neighbor`
 """
 from digi.xbee.models.zdo import NeighborFinder
 return super()._get_neighbors(
 neighbor_cb=neighbor_cb, finished_cb=finished_cb,
 timeout=timeout if timeout else NeighborFinder.DEFAULT_TIMEOUT)

[docs]class DigiPointDevice(XBeeDevice):
 """
 This class represents a local DigiPoint XBee.
 """

 def __init__(self, port=None, baud_rate=None, data_bits=serial.EIGHTBITS,
 stop_bits=serial.STOPBITS_ONE, parity=serial.PARITY_NONE,
 flow_control=FlowControl.NONE,
 _sync_ops_timeout=AbstractXBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS,
 comm_iface=None):
 """
 Class constructor. Instantiates a new :class:`.DigiPointDevice` with
 the provided parameters.

 Args:
 port (String): Serial port identifier. Depends on operating system.
 e.g. '/dev/ttyUSB0' on 'GNU/Linux' or 'COM3' on Windows.
 baud_rate (Integer): Serial port baud rate.
 data_bits (Integer, default: :attr:`.serial.EIGHTBITS`): Port bitsize.
 stop_bits (Integer, default: :attr:`.serial.STOPBITS_ONE`): Port stop bits.
 parity (Character, default: :attr:`.serial.PARITY_NONE`): Port parity.
 flow_control (Integer, default: :attr:`.FlowControl.NONE`): Port flow control.
 _sync_ops_timeout (Integer, default: 3): Read timeout (in seconds).
 comm_iface (:class:`.XBeeCommunicationInterface`): Communication interface.

 Raises:
 All exceptions raised by :meth:`.XBeeDevice.__init__` constructor.

 .. seealso::
 | :class:`.XBeeDevice`
 | :meth:`.XBeeDevice.__init__`
 """
 super().__init__(port, baud_rate, data_bits=data_bits, stop_bits=stop_bits,
 parity=parity, flow_control=flow_control,
 _sync_ops_timeout=_sync_ops_timeout, comm_iface=comm_iface)

[docs] def open(self, force_settings=False):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeDevice.open`
 """
 super().open(force_settings=force_settings)
 if self._protocol != XBeeProtocol.DIGI_POINT:
 self.close()
 raise XBeeException(_ERROR_INCOMPATIBLE_PROTOCOL
 % (self.get_protocol(), XBeeProtocol.DIGI_POINT))

[docs] def get_protocol(self):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeDevice.get_protocol`
 """
 if not self._protocol or self._protocol == XBeeProtocol.UNKNOWN:
 return XBeeProtocol.DIGI_POINT

 return self._protocol

 def _init_network(self):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeDevice._init_network`
 """
 return DigiPointNetwork(self)

[docs] def send_data_64_16(self, x64addr, x16addr, data,
 transmit_options=TransmitOptions.NONE.value):
 """
 Blocking method. This method sends data to the remote XBee with the
 given 64-bit/16-bit address.

 This method waits for the packet response. The default timeout is
 :attr:`.XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS`.

 Args:
 x64addr (:class:`.XBee64BitAddress`): 64-bit address of the
 destination XBee.
 x16addr (:class:`.XBee16BitAddress`): 16-bit address of the
 destination XBee, :attr:`.XBee16BitAddress.UNKNOWN_ADDRESS` if unknown.
 data (String or Bytearray): Raw data to send.
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Returns:
 :class:`.XBeePacket`: The response.

 Raises:
 ValueError: If `x64addr`, `x16addr` or `data` is `None`.
 TimeoutException: If response is not received before the read
 timeout expires.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 TransmitException: If the status of the response received is not OK.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.XBee64BitAddress`
 | :class:`.XBee16BitAddress`
 | :class:`.XBeePacket`
 """
 return self._send_data_64_16(x64addr, x16addr, data,
 transmit_options=transmit_options)

[docs] def send_data_async_64_16(self, x64addr, x16addr, data,
 transmit_options=TransmitOptions.NONE.value):
 """
 Non-blocking method. This method sends data to a remote XBee with the
 given 64-bit/16-bit address.

 This method does not wait for a response.

 Args:
 x64addr (:class:`.XBee64BitAddress`): 64-bit address of the
 destination XBee.
 x16addr (:class:`.XBee16BitAddress`): 16-bit address of the
 destination XBee, :attr:`.XBee16BitAddress.UNKNOWN_ADDRESS` if unknown.
 data (String or Bytearray): Raw data to send.
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Raises:
 ValueError: If `x64addr`, `x16addr` or `data` is `None`.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.XBee64BitAddress`
 | :class:`.XBee16BitAddress`
 | :class:`.XBeePacket`
 """
 self._send_data_async_64_16(x64addr, x16addr, data,
 transmit_options=transmit_options)

[docs] def read_expl_data(self, timeout=None):
 """
 Reads new explicit data received by this XBee.

 If `timeout` is specified, this method blocks until new data is received
 or the timeout expires, throwing a :class:`.TimeoutException` in this case.

 Args:
 timeout (Integer, optional): Read timeout in seconds. If `None`,
 this method is non-blocking and returns `None` if there is no
 explicit data available.

 Returns:
 :class:`.ExplicitXBeeMessage`: Read message or `None` if this XBee
 did not receive new explicit data.

 Raises:
 ValueError: If a timeout is specified and is less than 0.
 TimeoutException: If a timeout is specified and no explicit data was
 received during that time.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.ExplicitXBeeMessage`
 """
 return self._read_expl_data(timeout=timeout)

[docs] def read_expl_data_from(self, remote_xbee, timeout=None):
 """
 Reads new explicit data received from the given remote XBee.

 If `timeout` is specified, this method blocks until new data is received
 or the timeout expires, throwing a :class:`.TimeoutException` in this case.

 Args:
 remote_xbee (:class:`.RemoteXBeeDevice`): Remote XBee that sent the explicit data.
 timeout (Integer, optional): Read timeout in seconds. If `None`,
 this method is non-blocking and returns `None` if there is no
 data available.

 Returns:
 :class:`.ExplicitXBeeMessage`: Read message sent by `remote_xbee`
 or `None` if this XBee did not receive new data from that node.

 Raises:
 ValueError: If a timeout is specified and is less than 0.
 TimeoutException: If a timeout is specified and no explicit data was
 received during that time.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.ExplicitXBeeMessage`
 | :class:`.RemoteXBeeDevice`
 """
 return self._read_expl_data_from(remote_xbee, timeout=timeout)

[docs] def send_expl_data(self, remote_xbee, data, src_endpoint, dest_endpoint,
 cluster_id, profile_id, transmit_options=TransmitOptions.NONE.value):
 """
 Blocking method. Sends the provided explicit data to the given XBee,
 source and destination end points, cluster and profile ids.

 This method blocks until a success or error response arrives or the
 configured receive timeout expires. The default timeout is
 :attr:`.XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS`.

 Args:
 remote_xbee (:class:`.RemoteXBeeDevice`): Remote XBee to send data to.
 data (String or Bytearray): Raw data to send.
 src_endpoint (Integer): Source endpoint of the transmission. 1 byte.
 dest_endpoint (Integer): Destination endpoint of the transmission. 1 byte.
 cluster_id (Integer): Cluster ID of the transmission (between 0x0 and 0xFFFF)
 profile_id (Integer): Profile ID of the transmission (between 0x0 and 0xFFFF)
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Returns:
 :class:`.XBeePacket`: Response packet obtained after sending data.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 TransmitException: If the status of the response received is not OK.
 XBeeException: If the XBee's communication interface is closed.
 ValueError: if `cluster_id` or `profile_id` is less than 0x0 or
 greater than 0xFFFF.

 .. seealso::
 | :class:`.RemoteXBeeDevice`
 | :class:`.XBeePacket`
 """
 return self._send_expl_data(remote_xbee, data, src_endpoint,
 dest_endpoint, cluster_id, profile_id,
 transmit_options=transmit_options)

[docs] def send_expl_data_broadcast(self, data, src_endpoint, dest_endpoint, cluster_id, profile_id,
 transmit_options=TransmitOptions.NONE.value):
 """
 Sends the provided explicit data to all the XBee nodes of the network
 (broadcast) using provided source and destination end points, cluster
 and profile ids.

 This method blocks until a success or error transmit status arrives or
 the configured receive timeout expires. The received timeout is
 configured using the :meth:`.AbstractXBeeDevice.set_sync_ops_timeout`
 method and can be consulted with method
 :meth:`.AbstractXBeeDevice.get_sync_ops_timeout`.

 Args:
 data (String or Bytearray): Raw data to send.
 src_endpoint (Integer): Source endpoint of the transmission. 1 byte.
 dest_endpoint (Integer): Destination endpoint of the transmission. 1 byte.
 cluster_id (Integer): Cluster ID of the transmission (between 0x0 and 0xFFFF)
 profile_id (Integer): Profile ID of the transmission (between 0x0 and 0xFFFF)
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 TransmitException: If the status of the response received is not OK.
 XBeeException: If the XBee's communication interface is closed.
 ValueError: if `cluster_id` or `profile_id` is less than 0x0 or
 greater than 0xFFFF.

 .. seealso::
 | :meth:`.XBeeDevice._send_expl_data`
 """
 return self._send_expl_data_broadcast(data, src_endpoint, dest_endpoint,
 cluster_id, profile_id,
 transmit_options=transmit_options)

[docs] def send_expl_data_async(self, remote_xbee, data, src_endpoint, dest_endpoint,
 cluster_id, profile_id, transmit_options=TransmitOptions.NONE.value):
 """
 Non-blocking method. Sends the provided explicit data to the given XBee,
 source and destination end points, cluster and profile ids.

 Args:
 remote_xbee (:class:`.RemoteXBeeDevice`): Remote XBee to send data to.
 data (String or Bytearray): Raw data to send.
 src_endpoint (Integer): Source endpoint of the transmission. 1 byte.
 dest_endpoint (Integer): Destination endpoint of the transmission. 1 byte.
 cluster_id (Integer): Cluster ID of the transmission (between 0x0 and 0xFFFF)
 profile_id (Integer): Profile ID of the transmission (between 0x0 and 0xFFFF)
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Raises:
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.
 ValueError: if `cluster_id` or `profile_id` is less than 0x0 or
 greater than 0xFFFF.

 .. seealso::
 | :class:`.RemoteXBeeDevice`
 """
 self._send_expl_data_async(remote_xbee, data, src_endpoint,
 dest_endpoint, cluster_id, profile_id,
 transmit_options=transmit_options)

[docs]class ZigBeeDevice(XBeeDevice):
 """
 This class represents a local Zigbee XBee.
 """

 def __init__(self, port=None, baud_rate=None, data_bits=serial.EIGHTBITS,
 stop_bits=serial.STOPBITS_ONE, parity=serial.PARITY_NONE,
 flow_control=FlowControl.NONE,
 _sync_ops_timeout=AbstractXBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS,
 comm_iface=None):
 """
 Class constructor. Instantiates a new :class:`.ZigBeeDevice` with the
 provided parameters.

 Args:
 port (String): Serial port identifier. Depends on operating system.
 e.g. '/dev/ttyUSB0' on 'GNU/Linux' or 'COM3' on Windows.
 baud_rate (Integer): Serial port baud rate.
 data_bits (Integer, default: :attr:`.serial.EIGHTBITS`): Port bitsize.
 stop_bits (Integer, default: :attr:`.serial.STOPBITS_ONE`): Port stop bits.
 parity (Character, default: :attr:`.serial.PARITY_NONE`): Port parity.
 flow_control (Integer, default: :attr:`.FlowControl.NONE`): Port flow control.
 _sync_ops_timeout (Integer, default: 3): Read timeout (in seconds).
 comm_iface (:class:`.XBeeCommunicationInterface`): Communication interface.

 Raises:
 All exceptions raised by :meth:`.XBeeDevice.__init__` constructor.

 .. seealso::
 | :class:`.XBeeDevice`
 | :meth:`.XBeeDevice.__init__`
 """
 super().__init__(port, baud_rate, data_bits=data_bits, stop_bits=stop_bits,
 parity=parity, flow_control=flow_control,
 _sync_ops_timeout=_sync_ops_timeout, comm_iface=comm_iface)

[docs] def open(self, force_settings=False):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeDevice.open`
 """
 super().open(force_settings=force_settings)
 if self._protocol != XBeeProtocol.ZIGBEE:
 self.close()
 raise XBeeException(_ERROR_INCOMPATIBLE_PROTOCOL
 % (self.get_protocol(), XBeeProtocol.ZIGBEE))

[docs] def get_protocol(self):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeDevice.get_protocol`
 """
 if not self._protocol or self._protocol == XBeeProtocol.UNKNOWN:
 return XBeeProtocol.ZIGBEE

 return self._protocol

 def _init_network(self):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeDevice._init_network`
 """
 return ZigBeeNetwork(self)

[docs] def get_ai_status(self):
 """
 Returns the current association status of this XBee. It indicates
 occurrences of errors during the modem initialization and connection.

 Returns:
 :class:`.AssociationIndicationStatus`: The XBee association
 indication status.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 """
 return self._get_ai_status()

[docs] def force_disassociate(self):
 """
 Forces this XBee to immediately disassociate from the network and
 re-attempt to associate.

 Only valid for End Devices.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 """
 self._force_disassociate()

[docs] def get_many_to_one_broadcasting_time(self):
 """
 Returns the time between aggregation route broadcast in tenths of a
 second.

 Returns:
 Integer: The number of tenths of a second between aggregation route
 broadcasts. -1 if it is disabled.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 """
 seconds = utils.bytes_to_int(
 self.get_parameter(ATStringCommand.AR, apply=False))
 # 0xFF disables aggregation route broadcasting
 if seconds == 0xFF:
 return -1

 return seconds

[docs] def set_many_to_one_broadcasting_time(self, tenths_second):
 """
 Configures the time between aggregation route broadcast in tenths of a
 second.

 Args:
 tenths_second (Integer): The number of tenths of a second between
 aggregation route broadcasts. -1 to disable. 0 to only send one
 broadcast.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 ValueError: If `tenths_second` is `None` or is lower than -1, or
 bigger than 254.
 """
 if tenths_second is None:
 raise ValueError("The number of seconds cannot be None")
 if tenths_second < -1 or tenths_second > 0xFE:
 raise ValueError("The number of seconds must be between -1 and 254")

 if tenths_second == -1:
 tenths_second = 0xFF

 self.set_parameter(ATStringCommand.AR, bytearray([tenths_second]),
 apply=self.is_apply_changes_enabled())

[docs] def send_data_64_16(self, x64addr, x16addr, data, transmit_options=TransmitOptions.NONE.value):
 """
 Blocking method. This method sends data to the remote XBee with the
 given 64-bit/16-bit address.

 This method waits for the packet response. The default timeout is
 :attr:`.XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS`.

 Args:
 x64addr (:class:`.XBee64BitAddress`): 64-bit address of the
 destination XBee.
 x16addr (:class:`.XBee16BitAddress`): 16-bit address of the
 destination XBee, :attr:`.XBee16BitAddress.UNKNOWN_ADDRESS` if unknown.
 data (String or Bytearray): Raw data to send.
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Returns:
 :class:`.XBeePacket`: The response.

 Raises:
 ValueError: If `x64addr`, `x16addr` or `data` is `None`.
 TimeoutException: If response is not received before the read
 timeout expires.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 TransmitException: If the status of the response received is not OK.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.XBee64BitAddress`
 | :class:`.XBee16BitAddress`
 | :class:`.XBeePacket`
 """
 return self._send_data_64_16(x64addr, x16addr, data,
 transmit_options=transmit_options)

[docs] def send_data_async_64_16(self, x64addr, x16addr, data,
 transmit_options=TransmitOptions.NONE.value):
 """
 Non-blocking method. This method sends data to a remote XBee with the
 given 64-bit/16-bit address.

 This method does not wait for a response.

 Args:
 x64addr (:class:`.XBee64BitAddress`): 64-bit address of the
 destination XBee.
 x16addr (:class:`.XBee16BitAddress`): 16-bit address of the
 destination XBee, :attr:`.XBee16BitAddress.UNKNOWN_ADDRESS` if unknown.
 data (String or Bytearray): Raw data to send.
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Raises:
 ValueError: If `x64addr`, `x16addr` or `data` is `None`.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.XBee64BitAddress`
 | :class:`.XBee16BitAddress`
 | :class:`.XBeePacket`
 """
 self._send_data_async_64_16(x64addr, x16addr, data, transmit_options=transmit_options)

[docs] def read_expl_data(self, timeout=None):
 """
 Reads new explicit data received by this XBee.

 If `timeout` is specified, this method blocks until new data is received
 or the timeout expires, throwing a :class:`.TimeoutException` in this case.

 Args:
 timeout (Integer, optional): Read timeout in seconds. If `None`,
 this method is non-blocking and returns `None` if there is no
 explicit data available.

 Returns:
 :class:`.ExplicitXBeeMessage`: Read message or `None` if this XBee
 did not receive new explicit data.

 Raises:
 ValueError: If a timeout is specified and is less than 0.
 TimeoutException: If a timeout is specified and no explicit data was
 received during that time.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.ExplicitXBeeMessage`
 """
 return self._read_expl_data(timeout=timeout)

[docs] def read_expl_data_from(self, remote_xbee, timeout=None):
 """
 Reads new explicit data received from the given remote XBee.

 If `timeout` is specified, this method blocks until new data is received
 or the timeout expires, throwing a :class:`.TimeoutException` in this case.

 Args:
 remote_xbee (:class:`.RemoteXBeeDevice`): Remote XBee that sent the explicit data.
 timeout (Integer, optional): Read timeout in seconds. If `None`,
 this method is non-blocking and returns `None` if there is no
 data available.

 Returns:
 :class:`.ExplicitXBeeMessage`: Read message sent by `remote_xbee`
 or `None` if this XBee did not receive new data from that node.

 Raises:
 ValueError: If a timeout is specified and is less than 0.
 TimeoutException: If a timeout is specified and no explicit data was
 received during that time.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.ExplicitXBeeMessage`
 | :class:`.RemoteXBeeDevice`
 """
 return self._read_expl_data_from(remote_xbee, timeout=timeout)

[docs] def send_expl_data(self, remote_xbee, data, src_endpoint, dest_endpoint,
 cluster_id, profile_id, transmit_options=TransmitOptions.NONE.value):
 """
 Blocking method. Sends the provided explicit data to the given XBee,
 source and destination end points, cluster and profile ids.

 This method blocks until a success or error response arrives or the
 configured receive timeout expires. The default timeout is
 :attr:`.XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS`.

 Args:
 remote_xbee (:class:`.RemoteXBeeDevice`): Remote XBee to send data to.
 data (String or Bytearray): Raw data to send.
 src_endpoint (Integer): Source endpoint of the transmission. 1 byte.
 dest_endpoint (Integer): Destination endpoint of the transmission. 1 byte.
 cluster_id (Integer): Cluster ID of the transmission (between 0x0 and 0xFFFF)
 profile_id (Integer): Profile ID of the transmission (between 0x0 and 0xFFFF)
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Returns:
 :class:`.XBeePacket`: Response packet obtained after sending data.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 TransmitException: If the status of the response received is not OK.
 XBeeException: If the XBee's communication interface is closed.
 ValueError: if `cluster_id` or `profile_id` is less than 0x0 or
 greater than 0xFFFF.

 .. seealso::
 | :class:`.RemoteXBeeDevice`
 | :class:`.XBeePacket`
 """
 return self._send_expl_data(remote_xbee, data, src_endpoint,
 dest_endpoint, cluster_id, profile_id,
 transmit_options=transmit_options)

[docs] def send_expl_data_broadcast(self, data, src_endpoint, dest_endpoint,
 cluster_id, profile_id,
 transmit_options=TransmitOptions.NONE.value):
 """
 Sends the provided explicit data to all the XBee nodes of the network
 (broadcast) using provided source and destination end points, cluster
 and profile ids.

 This method blocks until a success or error transmit status arrives or
 the configured receive timeout expires. The received timeout is
 configured using the :meth:`.AbstractXBeeDevice.set_sync_ops_timeout`
 method and can be consulted with method
 :meth:`.AbstractXBeeDevice.get_sync_ops_timeout`.

 Args:
 data (String or Bytearray): Raw data to send.
 src_endpoint (Integer): Source endpoint of the transmission. 1 byte.
 dest_endpoint (Integer): Destination endpoint of the transmission. 1 byte.
 cluster_id (Integer): Cluster ID of the transmission (between 0x0 and 0xFFFF)
 profile_id (Integer): Profile ID of the transmission (between 0x0 and 0xFFFF)
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 TransmitException: If the status of the response received is not OK.
 XBeeException: If the XBee's communication interface is closed.
 ValueError: if `cluster_id` or `profile_id` is less than 0x0 or
 greater than 0xFFFF.

 .. seealso::
 | :meth:`.XBeeDevice._send_expl_data`
 """
 return self._send_expl_data_broadcast(data, src_endpoint, dest_endpoint,
 cluster_id, profile_id,
 transmit_options=transmit_options)

[docs] def send_expl_data_async(self, remote_xbee, data, src_endpoint, dest_endpoint,
 cluster_id, profile_id, transmit_options=TransmitOptions.NONE.value):
 """
 Non-blocking method. Sends the provided explicit data to the given XBee,
 source and destination end points, cluster and profile ids.

 Args:
 remote_xbee (:class:`.RemoteXBeeDevice`): Remote XBee to send data to.
 data (String or Bytearray): Raw data to send.
 src_endpoint (Integer): Source endpoint of the transmission. 1 byte.
 dest_endpoint (Integer): Destination endpoint of the transmission. 1 byte.
 cluster_id (Integer): Cluster ID of the transmission (between 0x0 and 0xFFFF)
 profile_id (Integer): Profile ID of the transmission (between 0x0 and 0xFFFF)
 transmit_options (Integer, optional): Transmit options, bitfield of
 :class:`.TransmitOptions`. Default to `TransmitOptions.NONE.value`.

 Raises:
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.
 ValueError: if `cluster_id` or `profile_id` is less than 0x0 or
 greater than 0xFFFF.

 .. seealso::
 | :class:`.RemoteXBeeDevice`
 """
 self._send_expl_data_async(remote_xbee, data, src_endpoint,
 dest_endpoint, cluster_id, profile_id,
 transmit_options=transmit_options)

[docs] @AbstractXBeeDevice._before_send_method
 @AbstractXBeeDevice._after_send_method
 def send_multicast_data(self, group_id, data, src_endpoint, dest_endpoint,
 cluster_id, profile_id):
 """
 Blocking method. This method sends multicast data to the provided group
 ID synchronously.

 This method will wait for the packet response. The default timeout for
 this method is :attr:`.XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS`.

 Args:
 group_id (:class:`.XBee16BitAddress`): 16-bit address of the
 multicast group.
 data (Bytearray): Raw data to send.
 src_endpoint (Integer): Source endpoint of the transmission. 1 byte.
 dest_endpoint (Integer): Destination endpoint of the transmission. 1 byte.
 cluster_id (Integer): Cluster ID of the transmission (between 0x0 and 0xFFFF)
 profile_id (Integer): Profile ID of the transmission (between 0x0 and 0xFFFF)

 Returns:
 :class:`.XBeePacket`: the response packet.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`XBee16BitAddress`
 | :class:`XBeePacket`
 """
 packet_to_send = ExplicitAddressingPacket(
 self._get_next_frame_id(), XBee64BitAddress.UNKNOWN_ADDRESS,
 group_id, src_endpoint, dest_endpoint, cluster_id, profile_id, 0,
 TransmitOptions.ENABLE_MULTICAST.value, rf_data=data)

 return self.send_packet_sync_and_get_response(packet_to_send)

[docs] @AbstractXBeeDevice._before_send_method
 def send_multicast_data_async(self, group_id, data, src_endpoint,
 dest_endpoint, cluster_id, profile_id):
 """
 Non-blocking method. This method sends multicast data to the provided
 group ID.

 This method does not wait for a response.

 Args:
 group_id (:class:`.XBee16BitAddress`): 16-bit address of the
 multicast group.
 data (Bytearray): Raw data to send.
 src_endpoint (Integer): Source endpoint of the transmission. 1 byte.
 dest_endpoint (Integer): Destination endpoint of the transmission. 1 byte.
 cluster_id (Integer): Cluster ID of the transmission (between 0x0 and 0xFFFF)
 profile_id (Integer): Profile ID of the transmission (between 0x0 and 0xFFFF)

 Raises:
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`XBee16BitAddress`
 """
 packet_to_send = ExplicitAddressingPacket(
 self._get_next_frame_id(), XBee64BitAddress.UNKNOWN_ADDRESS,
 group_id, src_endpoint, dest_endpoint, cluster_id, profile_id, 0,
 TransmitOptions.ENABLE_MULTICAST.value, rf_data=data)

 self.send_packet(packet_to_send)

[docs] @AbstractXBeeDevice._before_send_method
 def register_joining_device(self, registrant_address, options, key):
 """
 Securely registers a joining device to a trust center. Registration is
 the process by which a node is authorized to join the network using a
 preconfigured link key or installation code that is conveyed to the
 trust center out-of-band (using a physical interface and not over-the-air).

 This method is synchronous, it sends the register joining device request
 and waits for the answer of the operation. Then, returns the
 corresponding status.

 Args:
 registrant_address (:class:`XBee64BitAddress`): 64-bit address of
 the device to register.
 options (RegisterKeyOptions): Register options indicating the key source.
 key (Bytearray): Key of the device to register.

 Returns:
 :class:`.ZigbeeRegisterStatus`: Register device operation status or
 `None` if the answer is not a `RegisterDeviceStatusPacket`.

 Raises:
 TimeoutException: If the answer is not received in the configured timeout.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.
 ValueError: If `registrant_address` or `options` is `None`.

 .. seealso::
 | :class:`RegisterKeyOptions`
 | :class:`XBee64BitAddress`
 | :class:`ZigbeeRegisterStatus`
 """
 if registrant_address is None:
 raise ValueError("Registrant address cannot be 'None'")
 if options is None:
 raise ValueError("Options cannot be 'None'")

 packet_to_send = RegisterJoiningDevicePacket(
 self.get_next_frame_id(), registrant_address, options, key)
 response_packet = self.send_packet_sync_and_get_response(packet_to_send)
 if isinstance(response_packet, RegisterDeviceStatusPacket):
 return response_packet.status
 return None

[docs] @AbstractXBeeDevice._before_send_method
 def register_joining_device_async(self, registrant_address, options, key):
 """
 Securely registers a joining device to a trust center. Registration is
 the process by which a node is authorized to join the network using a
 preconfigured link key or installation code that is conveyed to the
 trust center out-of-band (using a physical interface and not over-the-air).

 This method is asynchronous, which means that it does not wait for an
 answer after sending the request.

 Args:
 registrant_address (:class:`XBee64BitAddress`): 64-bit address of
 the device to register.
 options (RegisterKeyOptions): Register options indicating the key source.
 key (Bytearray): Key of the device to register.

 Raises:
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.
 ValueError: if `registrant_address` or `options` is `None`.

 .. seealso::
 | :class:`RegisterKeyOptions`
 | :class:`XBee64BitAddress`
 """
 if registrant_address is None:
 raise ValueError("Registrant address cannot be 'None'.")
 if options is None:
 raise ValueError("Options cannot be 'None'.")

 packet_to_send = RegisterJoiningDevicePacket(
 self.get_next_frame_id(), registrant_address, options, key)
 self.send_packet(packet_to_send, sync=True)

[docs] @AbstractXBeeDevice._before_send_method
 def unregister_joining_device(self, unregistrant_address):
 """
 Unregisters a joining device from a trust center.

 This method is synchronous, it sends the unregister joining device
 request and waits for the answer of the operation. Then, returns the
 corresponding status.

 Args:
 unregistrant_address (:class:`XBee64BitAddress`): 64-bit address of
 the device to unregister.

 Returns:
 :class:`.ZigbeeRegisterStatus`: Unregister device operation status
 or `None` if the answer is not a `RegisterDeviceStatusPacket`.

 Raises:
 TimeoutException: If the answer is not received in the configured timeout.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.
 ValueError: If `registrant_address` is `None`.

 .. seealso::
 | :class:`XBee64BitAddress`
 | :class:`ZigbeeRegisterStatus`
 """
 return self.register_joining_device(unregistrant_address,
 RegisterKeyOptions.LINK_KEY, None)

[docs] @AbstractXBeeDevice._before_send_method
 def unregister_joining_device_async(self, unregistrant_address):
 """
 Unregisters a joining device from a trust center.

 This method is asynchronous, which means that it will not wait for an
 answer after sending the unregister request.

 Args:
 unregistrant_address (:class:`XBee64BitAddress`): 64-bit address of
 the device to unregister.

 Raises:
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the XBee's communication interface is closed.
 ValueError: If `registrant_address` is `None`.

 .. seealso::
 | :class:`XBee64BitAddress`
 """
 self.register_joining_device_async(unregistrant_address,
 RegisterKeyOptions.LINK_KEY, None)

[docs] def get_routes(self, route_cb=None, finished_cb=None, timeout=None):
 """
 Returns the routes of this XBee. If `route_cb` is not defined,
 the process blocks until the complete routing table is read.

 Args:
 route_cb (Function, optional, default=`None`): Method called
 when a new route is received. Receives two arguments:

 * The XBee that owns this new route.
 * The new route.

 finished_cb (Function, optional, default=`None`): Method to execute
 when the process finishes. Receives three arguments:

 * The XBee that executed the ZDO command.
 * A list with the discovered routes.
 * An error message if something went wrong.

 timeout (Float, optional, default=`RouteTableReader.DEFAULT_TIMEOUT`): The
 ZDO command timeout in seconds.
 Returns:
 List: List of :class:`.Route` when `route_cb` is not defined,
 `None` otherwise (in this case routes are received in the callback).

 Raises:
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 OperationNotSupportedException: If XBee is not Zigbee or Smart Energy.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`com.digi.models.zdo.Route`
 """
 from digi.xbee.models.zdo import RouteTableReader
 return super()._get_routes(route_cb=route_cb, finished_cb=finished_cb,
 timeout=timeout if timeout else RouteTableReader.DEFAULT_TIMEOUT)

[docs] def get_neighbors(self, neighbor_cb=None, finished_cb=None, timeout=None):
 """
 Returns the neighbors of this XBee. If `neighbor_cb` is not
 defined, the process blocks until the complete neighbor table is read.

 Args:
 neighbor_cb (Function, optional, default=`None`): Method called
 when a new neighbor is received. Receives two arguments:

 * The XBee that owns this new neighbor.
 * The new neighbor.

 finished_cb (Function, optional, default=`None`): Method to execute
 when the process finishes. Receives three arguments:

 * The XBee that executed the ZDO command.
 * A list with the discovered neighbors.
 * An error message if something went wrong.

 timeout (Float, optional, default=`NeighborTableReader.DEFAULT_TIMEOUT`): The ZDO
 command timeout in seconds.
 Returns:
 List: List of :class:`.Neighbor` when `neighbor_cb` is not defined,
 `None` otherwise (in this case neighbors are received in the callback).

 Raises:
 OperationNotSupportedException: If XBee is not Zigbee or Smart Energy.

 .. seealso::
 | :class:`com.digi.models.zdo.Neighbor`
 """
 from digi.xbee.models.zdo import NeighborTableReader
 return super()._get_neighbors(
 neighbor_cb=neighbor_cb, finished_cb=finished_cb,
 timeout=timeout if timeout else NeighborTableReader.DEFAULT_TIMEOUT)

[docs] def create_source_route(self, dest_node, hops):
 """
 Creates a source route for the provided destination node. A source route
 specifies the complete route a packet traverses to get from source to
 destination.

 For best results, use source routing with many-to-one routing.

 Args:
 dest_node (:class:`.RemoteXBeeDevice`): The destination node.
 hops (List): List of intermediate nodes (:class:`.RemoteXBeeDevice`)
 ordered from closest to source to closest to destination node
 (source and destination excluded).

 Raises:
 ValueError: If `dest_node` is `None`, or if it is a local node, or
 if its protocol is not Zigbee based, or if its 64-bit address or
 16-bit address is `None`, unknown, or invalid.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 XBeeException: If the packet listener is not running or the XBee's
 communication interface is closed.
 """
 if not dest_node:
 raise ValueError("Destination node cannot be None")
 if not dest_node.is_remote():
 raise ValueError("Destination node cannot be a local node")

 if dest_node.get_protocol() not in (XBeeProtocol.ZIGBEE,
 XBeeProtocol.ZNET,
 XBeeProtocol.SMART_ENERGY):
 raise ValueError("Invalid protocol of destination node")

 x64 = dest_node.get_64bit_addr()
 if x64 == XBee64BitAddress.BROADCAST_ADDRESS:
 raise ValueError("Invalid 64-bit address of destination node: %s" % x64)

 x16 = dest_node.get_16bit_addr()
 if x16 == XBee16BitAddress.BROADCAST_ADDRESS:
 raise ValueError("Invalid 16-bit address of destination node: %s" % x16)

 if (not XBee64BitAddress.is_known_node_addr(x64)
 and not XBee16BitAddress.is_known_node_addr(x16)):
 raise ValueError("64-bit and 16-bit addresses of destination node cannot be unknown")

 if hops is None:
 hops = []

 addresses = []
 for hop in hops:
 hop16 = hop.get_16bit_addr()
 if not XBee16BitAddress.is_known_node_addr(hop16):
 raise ValueError("Invalid 16-bit address of hop node: %s" % hop16)
 addresses.append(hop16)

 self._log.debug("Create source route for %s: {%s%s%s >>> %s (hops: %s)}",
 dest_node, dest_node.get_local_xbee_device(),
 " >>> " if hops else "", " >>> ".join(map(str, hops)),
 dest_node, len(hops) + 1)
 self.send_packet(
 CreateSourceRoutePacket(0x00, x64, x16, route_options=0, hops=addresses), sync=False)

[docs]class IPDevice(XBeeDevice):
 """
 This class provides common functionality for XBee IP devices.
 """

 BROADCAST_IP = "255.255.255.255"

 __DEFAULT_SOURCE_PORT = 9750

 __DEFAULT_PROTOCOL = IPProtocol.TCP

 __OPERATION_EXCEPTION = "Operation not supported in this module."

 def __init__(self, port=None, baud_rate=None, data_bits=serial.EIGHTBITS,
 stop_bits=serial.STOPBITS_ONE, parity=serial.PARITY_NONE,
 flow_control=FlowControl.NONE,
 _sync_ops_timeout=AbstractXBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS,
 comm_iface=None):
 """
 Class constructor. Instantiates a new :class:`.IPDevice` with the
 provided parameters.

 Args:
 port (String): Serial port identifier. Depends on operating system.
 e.g. '/dev/ttyUSB0' on 'GNU/Linux' or 'COM3' on Windows.
 baud_rate (Integer): Serial port baud rate.
 data_bits (Integer, default: :attr:`.serial.EIGHTBITS`): Port bitsize.
 stop_bits (Integer, default: :attr:`.serial.STOPBITS_ONE`): Port stop bits.
 parity (Character, default: :attr:`.serial.PARITY_NONE`): Port parity.
 flow_control (Integer, default: :attr:`.FlowControl.NONE`): Port flow control.
 _sync_ops_timeout (Integer, default: 3): Read timeout (in seconds).
 comm_iface (:class:`.XBeeCommunicationInterface`): Communication interface.

 Raises:
 All exceptions raised by :meth:`.XBeeDevice.__init__` constructor.

 .. seealso::
 | :class:`.XBeeDevice`
 | :meth:`.XBeeDevice.__init__`
 """
 super().__init__(port, baud_rate, data_bits=data_bits, stop_bits=stop_bits,
 parity=parity, flow_control=flow_control,
 _sync_ops_timeout=_sync_ops_timeout, comm_iface=comm_iface)
 self._ip_addr = None
 self._source_port = self.__DEFAULT_SOURCE_PORT

 def _read_device_info(self, reason, init=True, fire_event=True):
 """
 Override.

 .. seealso::
 | :meth:`.AbstractXBeeDevice._read_device_info`
 """
 updated = False

 # Read the module's IP address.
 if init or self._ip_addr is None:
 resp = self.get_parameter(ATStringCommand.MY, apply=False)
 ip_addr = IPv4Address(utils.bytes_to_int(resp))
 if self._ip_addr != ip_addr:
 updated = True
 self._ip_addr = ip_addr

 # Read the source port.
 if init or self._source_port is None:
 try:
 resp = self.get_parameter(ATStringCommand.C0, apply=False)
 src_port = utils.bytes_to_int(resp)
 if self._source_port != src_port:
 updated = True
 self._source_port = src_port
 except XBeeException:
 # Do not refresh the source port value if there is an error reading
 # it from the module.
 pass

 super()._read_device_info(reason, init=init,
 fire_event=updated and fire_event)

[docs] def is_device_info_complete(self):
 """
 Override.

 .. seealso::
 | :meth:`.AbstractXBeeDevice.is_device_info_complete`
 """
 return (super().is_device_info_complete()
 and self._ip_addr is not None and self._source_port is not None)

[docs] def get_ip_addr(self):
 """
 Returns the IP address of this IP XBee.

 To refresh this value use the method :meth:`.IPDevice.read_device_info`.

 Returns:
 :class:`ipaddress.IPv4Address`: The IP address of this IP device.

 .. seealso::
 | :class:`ipaddress.IPv4Address`
 """
 return self._ip_addr

[docs] def set_dest_ip_addr(self, address):
 """
 Sets the destination IP address.

 Args:
 address (:class:`ipaddress.IPv4Address`): Destination IP address.

 Raises:
 ValueError: If `address` is `None`.
 TimeoutException: If there is a timeout setting the destination IP address.
 XBeeException: If there is any other XBee related exception.

 .. seealso::
 | :class:`ipaddress.IPv4Address`
 """
 if address is None:
 raise ValueError("Destination IP address cannot be None")

 self.set_parameter(ATStringCommand.DL,
 bytearray(address.exploded, "utf8"),
 apply=self.is_apply_changes_enabled())

[docs] def get_dest_ip_addr(self):
 """
 Returns the destination IP address.

 Returns:
 :class:`ipaddress.IPv4Address`: Configured destination IP address.

 Raises:
 TimeoutException: If there is a timeout getting the destination IP address.
 XBeeException: If there is any other XBee related exception.

 .. seealso::
 | :class:`ipaddress.IPv4Address`
 """
 return IPv4Address(
 str(self.get_parameter(ATStringCommand.DL, apply=False), encoding="utf8"))

[docs] def add_ip_data_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.IPDataReceived`.

 Args:
 callback (Function): The callback. Receives one argument.

 * The data received as an :class:`.IPMessage`
 """
 self._packet_listener.add_ip_data_received_callback(callback)

[docs] def del_ip_data_received_callback(self, callback):
 """
 Deletes a callback for the callback list of :class:`.IPDataReceived`
 event.

 Args:
 callback (Function): The callback to delete.
 """
 if callback in self._packet_listener.get_ip_data_received_callbacks():
 self._packet_listener.del_ip_data_received_callback(callback)

[docs] def start_listening(self, src_port):
 """
 Starts listening for incoming IP transmissions in the provided port.

 Args:
 src_port (Integer): Port to listen for incoming transmissions.

 Raises:
 ValueError: If `source_port` is less than 0 or greater than 65535.
 TimeoutException: If there is a timeout setting the source port.
 XBeeException: If there is any other XBee related exception.
 """
 if not 0 <= src_port <= 65535:
 raise ValueError("Source port must be between 0 and 65535")

 self.set_parameter(ATStringCommand.C0, utils.int_to_bytes(src_port),
 apply=self.is_apply_changes_enabled())
 self._source_port = src_port

[docs] def stop_listening(self):
 """
 Stops listening for incoming IP transmissions.

 Raises:
 TimeoutException: If there is a timeout processing the operation.
 XBeeException: If there is any other XBee related exception.
 """
 self.set_parameter(ATStringCommand.C0, utils.int_to_bytes(0),
 apply=self.is_apply_changes_enabled())
 self._source_port = 0

[docs] @AbstractXBeeDevice._before_send_method
 @AbstractXBeeDevice._after_send_method
 def send_ip_data(self, ip_addr, dest_port, protocol, data, close_socket=False):
 """
 Sends the provided IP data to the given IP address and port using the
 specified IP protocol. For TCP and TCP SSL protocols, you can also
 indicate if the socket should be closed when data is sent.

 This method blocks until a success or error response arrives or the
 configured receive timeout expires.

 Args:
 ip_addr (:class:`ipaddress.IPv4Address`): The IP address to send IP data to.
 dest_port (Integer): The destination port of the transmission.
 protocol (:class:`.IPProtocol`): The IP protocol used for the transmission.
 data (String or Bytearray): The IP data to be sent.
 close_socket (Boolean, optional, default=`False`): `True` to close
 the socket just after the transmission. `False` to keep it open.

 Raises:
 ValueError: If `ip_addr` or `protocol` or `data` is `None` or
 `dest_port` is less than 0 or greater than 65535.
 OperationNotSupportedException: If the XBee is remote.
 TimeoutException: If there is a timeout sending the data.
 XBeeException: If there is any other XBee related exception.
 """
 if ip_addr is None:
 raise ValueError("IP address cannot be None")
 if protocol is None:
 raise ValueError("Protocol cannot be None")
 if not isinstance(data, (str, bytearray, bytes)):
 raise ValueError("Data must be a string or bytearray")

 if not 0 <= dest_port <= 65535:
 raise ValueError("Destination port must be between 0 and 65535")

 # Check if device is remote.
 if self.is_remote():
 raise OperationNotSupportedException(message="Cannot send IP data from a remote device")

 # The source port value depends on the protocol used in the transmission.
 # For UDP, source port value must be the same as 'C0' one. For TCP it must be 0.
 src_port = self._source_port
 if protocol is not IPProtocol.UDP:
 src_port = 0

 if isinstance(data, str):
 data = data.encode(encoding="utf8", errors="ignore")

 opts = TXIPv4Packet.OPTIONS_CLOSE_SOCKET if close_socket else TXIPv4Packet.OPTIONS_LEAVE_SOCKET_OPEN

 packet = TXIPv4Packet(self.get_next_frame_id(), ip_addr, dest_port,
 src_port, protocol, opts, data=data)

 return self.send_packet_sync_and_get_response(packet)

[docs] @AbstractXBeeDevice._before_send_method
 def send_ip_data_async(self, ip_addr, dest_port, protocol, data, close_socket=False):
 """
 Sends the provided IP data to the given IP address and port
 asynchronously using the specified IP protocol. For TCP and TCP SSL
 protocols, you can also indicate if the socket should be closed when
 data is sent.

 Asynchronous transmissions do not wait for answer from the remote
 device or for transmit status packet.

 Args:
 ip_addr (:class:`ipaddress.IPv4Address`): The IP address to send IP data to.
 dest_port (Integer): The destination port of the transmission.
 protocol (:class:`.IPProtocol`): The IP protocol used for the transmission.
 data (String or Bytearray): The IP data to be sent.
 close_socket (Boolean, optional, default=`False`): `True` to close
 the socket just after the transmission. `False` to keep it open.

 Raises:
 ValueError: If `ip_addr` or `protocol` or `data` is `None` or
 `dest_port` is less than 0 or greater than 65535.
 OperationNotSupportedException: If the XBee is remote.
 XBeeException: If there is any other XBee related exception.
 """
 if ip_addr is None:
 raise ValueError("IP address cannot be None")
 if protocol is None:
 raise ValueError("Protocol cannot be None")
 if not isinstance(data, (str, bytearray, bytes)):
 raise ValueError("Data must be a string or bytearray")

 if not 0 <= dest_port <= 65535:
 raise ValueError("Destination port must be between 0 and 65535")

 # Check if device is remote.
 if self.is_remote():
 raise OperationNotSupportedException(
 message="Cannot send IP data from a remote device")

 # The source port value depends on the protocol used in the transmission.
 # For UDP, source port value must be the same as 'C0' one. For TCP it must be 0.
 src_port = self._source_port
 if protocol is IPProtocol.UDP:
 src_port = 0

 if isinstance(data, str):
 data = data.encode(encoding="utf8", errors="ignore")

 opts = TXIPv4Packet.OPTIONS_CLOSE_SOCKET if close_socket else TXIPv4Packet.OPTIONS_LEAVE_SOCKET_OPEN

 packet = TXIPv4Packet(self.get_next_frame_id(), ip_addr, dest_port,
 src_port, protocol, opts, data=data)

 self.send_packet(packet)

[docs] def send_ip_data_broadcast(self, dest_port, data):
 """
 Sends the provided IP data to all clients.

 This method blocks until a success or error transmit status arrives or
 the configured receive timeout expires.

 Args:
 dest_port (Integer): The destination port of the transmission.
 data (String or Bytearray): The IP data to be sent.

 Raises:
 ValueError: If `data` is `None` or `dest_port` is less than 0 or
 greater than 65535.
 TimeoutException: If there is a timeout sending the data.
 XBeeException: If there is any other XBee related exception.
 """
 return self.send_ip_data(IPv4Address(self.BROADCAST_IP), dest_port, IPProtocol.UDP, data)

[docs] @AbstractXBeeDevice._before_send_method
 def read_ip_data(self, timeout=XBeeDevice.TIMEOUT_READ_PACKET):
 """
 Reads new IP data received by this XBee during the provided timeout.

 This method blocks until new IP data is received or the provided
 timeout expires.

 For non-blocking operations, register a callback and use the method
 :meth:`IPDevice.add_ip_data_received_callback`.

 Before reading IP data you need to start listening for incoming IP data
 at a specific port. Use the method :meth:`IPDevice.start_listening` for
 that purpose. When finished, you can use the method
 :meth:`IPDevice.stop_listening` to stop listening for incoming IP data.

 Args:
 timeout (Integer, optional): The time to wait for new IP data in seconds.

 Returns:
 :class:`.IPMessage`: IP message, `None` if this device did not receive new data.

 Raises:
 ValueError: If `timeout` is less than 0.
 """
 if timeout < 0:
 raise ValueError("Read timeout must be 0 or greater.")

 return self.__read_ip_data_packet(timeout)

[docs] @AbstractXBeeDevice._before_send_method
 def read_ip_data_from(self, ip_addr, timeout=XBeeDevice.TIMEOUT_READ_PACKET):
 """
 Reads new IP data received from the given IP address during the
 provided timeout.

 This method blocks until new IP data from the provided IP address is
 received or the given timeout expires.

 For non-blocking operations, register a callback and use the method
 :meth:`IPDevice.add_ip_data_received_callback`.

 Before reading IP data you need to start listening for incoming IP data
 at a specific port. Use the method :meth:`IPDevice.start_listening` for
 that purpose. When finished, you can use the method
 :meth:`IPDevice.stop_listening` to stop listening for incoming IP data.

 Args:
 ip_addr (:class:`ipaddress.IPv4Address`): The IP address to read data from.
 timeout (Integer, optional): The time to wait for new IP data in seconds.

 Returns:
 :class:`.IPMessage`: IP message, `None` if this device did not
 receive new data from the provided IP address.

 Raises:
 ValueError: If `timeout` is less than 0.
 """
 if timeout < 0:
 raise ValueError("Read timeout must be 0 or greater.")

 return self.__read_ip_data_packet(timeout, ip_addr=ip_addr)

 def __read_ip_data_packet(self, timeout, ip_addr=None):
 """
 Reads a new IP data packet received by this IP XBee device during
 the provided timeout.

 This method blocks until new IP data is received or the given
 timeout expires.

 If the provided IP address is `None` the method returns the first IP
 data packet read from any IP address. If the IP address is not `None`
 the method returns the first data package read from the given IP address.

 Args:
 timeout (Integer, optional): The time to wait for new IP data in seconds.
 ip_addr (:class:`ipaddress.IPv4Address`, optional): The IP address
 to read data from. `None` to read an IP data packet from any IP address.

 Returns:
 :class:`.IPMessage`: IP message, `None` if this device did not
 receive new data from the provided IP address.
 """
 queue = self._packet_listener.get_ip_queue()

 if ip_addr is None:
 packet = queue.get(timeout=timeout)
 else:
 packet = queue.get_by_ip(ip_addr, timeout=timeout)

 if packet is None:
 return None

 if packet.get_frame_type() == ApiFrameType.RX_IPV4:
 return IPMessage(packet.source_address, packet.source_port,
 packet.dest_port, packet.ip_protocol, packet.data)

 return None

[docs] def get_network(self):
 """
 Deprecated.

 This protocol does not support the network functionality.
 """
 return None

 def _init_network(self):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeDevice._init_network`
 """
 return None

[docs] def get_16bit_addr(self):
 """
 Deprecated.

 This protocol does not have an associated 16-bit address.
 """
 return None

[docs] def get_dest_address(self):
 """
 Deprecated.

 Operation not supported in this protocol. Use
 :meth:`.IPDevice.get_dest_ip_addr` instead. This method raises an
 :class:`.AttributeError`.
 """
 raise AttributeError(self.__OPERATION_EXCEPTION)

[docs] def set_dest_address(self, addr):
 """
 Deprecated.

 Operation not supported in this protocol. Use
 :meth:`.IPDevice.set_dest_ip_addr` instead. This method raises an
 :class:`.AttributeError`.
 """
 raise AttributeError(self.__OPERATION_EXCEPTION)

[docs] def get_pan_id(self):
 """
 Deprecated.

 Operation not supported in this protocol. This method raises an
 :class:`.AttributeError`.
 """
 raise AttributeError(self.__OPERATION_EXCEPTION)

[docs] def set_pan_id(self, value):
 """
 Deprecated.

 Operation not supported in this protocol. This method raises an
 :class:`.AttributeError`.
 """
 raise AttributeError(self.__OPERATION_EXCEPTION)

[docs] def add_data_received_callback(self, callback):
 """
 Deprecated.

 Operation not supported in this protocol. This method raises an
 :class:`.AttributeError`.
 """
 raise AttributeError(self.__OPERATION_EXCEPTION)

[docs] def del_data_received_callback(self, callback):
 """
 Deprecated.

 Operation not supported in this protocol. This method raises an
 :class:`.AttributeError`.
 """
 raise AttributeError(self.__OPERATION_EXCEPTION)

[docs] def add_expl_data_received_callback(self, callback):
 """
 Deprecated.

 Operation not supported in this protocol. This method raises an
 :class:`.AttributeError`.
 """
 raise AttributeError(self.__OPERATION_EXCEPTION)

[docs] def del_expl_data_received_callback(self, callback):
 """
 Deprecated.

 Operation not supported in this protocol. This method raises an
 :class:`.AttributeError`.
 """
 raise AttributeError(self.__OPERATION_EXCEPTION)

[docs] def read_data(self, timeout=None):
 """
 Deprecated.

 Operation not supported in this protocol. This method raises an
 :class:`.AttributeError`.
 """
 raise AttributeError(self.__OPERATION_EXCEPTION)

[docs] def read_data_from(self, remote_xbee, timeout=None):
 """
 Deprecated.

 Operation not supported in this protocol. This method raises an
 :class:`.AttributeError`.
 """
 raise AttributeError(self.__OPERATION_EXCEPTION)

[docs] def send_data_broadcast(self, data, transmit_options=TransmitOptions.NONE.value):
 """
 Deprecated.

 Operation not supported in this protocol. This method raises an
 :class:`.AttributeError`.
 """
 raise AttributeError(self.__OPERATION_EXCEPTION)

[docs] def send_data(self, remote_xbee, data, transmit_options=TransmitOptions.NONE.value):
 """
 Deprecated.

 Operation not supported in this protocol. This method raises an
 :class:`.AttributeError`.
 """
 raise AttributeError(self.__OPERATION_EXCEPTION)

[docs] def send_data_async(self, remote_xbee, data, transmit_options=TransmitOptions.NONE.value):
 """
 Deprecated.

 Operation not supported in this protocol. This method raises an
 :class:`.AttributeError`.
 """
 raise AttributeError(self.__OPERATION_EXCEPTION)

[docs]class CellularDevice(IPDevice):
 """
 This class represents a local Cellular device.
 """

 def __init__(self, port=None, baud_rate=None, data_bits=serial.EIGHTBITS,
 stop_bits=serial.STOPBITS_ONE, parity=serial.PARITY_NONE,
 flow_control=FlowControl.NONE,
 _sync_ops_timeout=AbstractXBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS,
 comm_iface=None):
 """
 Class constructor. Instantiates a new :class:`.CellularDevice` with the
 provided parameters.

 Args:
 port (String): Serial port identifier. Depends on operating system.
 e.g. '/dev/ttyUSB0' on 'GNU/Linux' or 'COM3' on Windows.
 baud_rate (Integer): Serial port baud rate.
 data_bits (Integer, default: :attr:`.serial.EIGHTBITS`): Port bitsize.
 stop_bits (Integer, default: :attr:`.serial.STOPBITS_ONE`): Port stop bits.
 parity (Character, default: :attr:`.serial.PARITY_NONE`): Port parity.
 flow_control (Integer, default: :attr:`.FlowControl.NONE`): Port flow control.
 _sync_ops_timeout (Integer, default: 3): Read timeout (in seconds).
 comm_iface (:class:`.XBeeCommunicationInterface`): Communication interface.

 Raises:
 All exceptions raised by :meth:`.XBeeDevice.__init__` constructor.

 .. seealso::
 | :class:`.XBeeDevice`
 | :meth:`.XBeeDevice.__init__`
 """
 super().__init__(port, baud_rate, data_bits=data_bits, stop_bits=stop_bits,
 parity=parity, flow_control=flow_control,
 _sync_ops_timeout=_sync_ops_timeout, comm_iface=comm_iface)
 self._imei_addr = None

[docs] def open(self, force_settings=False):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeDevice.open`
 """
 super().open(force_settings=force_settings)
 if self._protocol not in (XBeeProtocol.CELLULAR, XBeeProtocol.CELLULAR_NBIOT):
 self.close()
 raise XBeeException(_ERROR_INCOMPATIBLE_PROTOCOL
 % (self.get_protocol(), XBeeProtocol.CELLULAR))

[docs] def get_protocol(self):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeDevice.get_protocol`
 """
 if not self._protocol or self._protocol == XBeeProtocol.UNKNOWN:
 return XBeeProtocol.CELLULAR

 return self._protocol

 def _read_device_info(self, reason, init=True, fire_event=True):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeDevice._read_device_info`
 """
 updated = False

 # Generate the IMEI address.
 if init or self._imei_addr is None:
 imei_addr = XBeeIMEIAddress(self._64bit_addr.address)
 if self._imei_addr != imei_addr:
 updated = True
 self._imei_addr = imei_addr

 super()._read_device_info(reason, init=init,
 fire_event=updated and fire_event)

[docs] def is_device_info_complete(self):
 """
 Override.

 .. seealso::
 | :meth:`.AbstractXBeeDevice.is_device_info_complete`
 """
 return super().is_device_info_complete() and self._imei_addr is not None

[docs] def is_connected(self):
 """
 Returns whether the device is connected to the Internet.

 Returns:
 Boolean: `True` if connected to the Internet, `False` otherwise.

 Raises:
 TimeoutException: If there is a timeout getting the association
 indication status.
 XBeeException: If there is any other XBee related exception.
 """
 status = self.get_cellular_ai_status()
 return status == CellularAssociationIndicationStatus.SUCCESSFULLY_CONNECTED

[docs] def get_cellular_ai_status(self):
 """
 Returns the current association status of this Cellular device.

 It indicates occurrences of errors during the modem initialization
 and connection.

 Returns:
 :class:`.CellularAssociationIndicationStatus`: The association
 indication status of the Cellular device.

 Raises:
 TimeoutException: If there is a timeout getting the association
 indication status.
 XBeeException: If there is any other XBee related exception.
 """
 value = self.get_parameter(ATStringCommand.AI, apply=False)
 return CellularAssociationIndicationStatus.get(utils.bytes_to_int(value))

[docs] def add_sms_callback(self, callback):
 """
 Adds a callback for the event :class:`.SMSReceived`.

 Args:
 callback (Function): The callback. Receives one argument.

 * The data received as an :class:`.SMSMessage`
 """
 self._packet_listener.add_sms_received_callback(callback)

[docs] def del_sms_callback(self, callback):
 """
 Deletes a callback for the callback list of :class:`.SMSReceived`
 event.

 Args:
 callback (Function): The callback to delete.
 """
 if callback in self._packet_listener.get_sms_received_callbacks():
 self._packet_listener.del_sms_received_callback(callback)

[docs] def get_imei_addr(self):
 """
 Returns the IMEI address of this Cellular device.

 To refresh this value use the method :meth:`.CellularDevice.read_device_info`.

 Returns:
 :class:`.XBeeIMEIAddress`: The IMEI address of this Cellular device.
 """
 return self._imei_addr

[docs] @AbstractXBeeDevice._before_send_method
 @AbstractXBeeDevice._after_send_method
 def send_sms(self, phone_number, data):
 """
 Sends the provided SMS message to the given phone number.

 This method blocks until a success or error response arrives or the
 configured receive timeout expires.

 For non-blocking operations use the method :meth:`.CellularDevice.send_sms_async`.

 Args:
 phone_number (String): The phone number to send the SMS to.
 data (String): Text of the SMS.

 Raises:
 ValueError: If `phone_number` or `data` is `None`.
 OperationNotSupportedException: If the device is remote.
 TimeoutException: If there is a timeout sending the SMS.
 XBeeException: If there is any other XBee related exception.
 """
 if phone_number is None:
 raise ValueError("Phone number cannot be None")
 if data is None:
 raise ValueError("Data cannot be None")

 # Check if device is remote.
 if self.is_remote():
 raise OperationNotSupportedException(message="Cannot send SMS from a remote device")

 xbee_packet = TXSMSPacket(self.get_next_frame_id(), phone_number, data)

 return self.send_packet_sync_and_get_response(xbee_packet)

[docs] @AbstractXBeeDevice._before_send_method
 def send_sms_async(self, phone_number, data):
 """
 Sends asynchronously the provided SMS to the given phone number.

 Asynchronous transmissions do not wait for answer or for transmit
 status packet.

 Args:
 phone_number (String): The phone number to send the SMS to.
 data (String): Text of the SMS.

 Raises:
 ValueError: If `phone_number` or `data` is `None`.
 OperationNotSupportedException: If the device is remote.
 XBeeException: If there is any other XBee related exception.
 """
 if phone_number is None:
 raise ValueError("Phone number cannot be None")
 if data is None:
 raise ValueError("Data cannot be None")

 # Check if device is remote.
 if self.is_remote():
 raise OperationNotSupportedException(message="Cannot send SMS from a remote device")

 xbee_packet = TXSMSPacket(self.get_next_frame_id(), phone_number, data)

 self.send_packet(xbee_packet)

[docs] def get_sockets_list(self):
 """
 Returns a list with the IDs of all active (open) sockets.

 Returns:
 List: list with the IDs of all active (open) sockets, or empty list
 if there is not any active socket.

 Raises:
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 TimeoutException: If the response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 """
 response = self.get_parameter(ATStringCommand.SI, apply=False)
 return SocketInfo.parse_socket_list(response)

[docs] def get_socket_info(self, socket_id):
 """
 Returns the information of the socket with the given socket ID.

 Args:
 socket_id (Integer): ID of the socket.

 Returns:
 :class:`.SocketInfo`: The socket information, or `None` if the
 socket with that ID does not exist.

 Raises:
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 TimeoutException: If the response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.

 .. seealso::
 | :class:`.SocketInfo`
 """
 try:
 response = self.get_parameter(ATStringCommand.SI,
 parameter_value=utils.int_to_bytes(socket_id, 1),
 apply=False)
 return SocketInfo.create_socket_info(response)
 except ATCommandException:
 return None

[docs] def get_64bit_addr(self):
 """
 Deprecated.

 Cellular protocol does not have an associated 64-bit address.
 """
 return None

[docs] def add_io_sample_received_callback(self, callback):
 """
 Deprecated.

 Operation not supported in this protocol. This method raises an
 :class:`.AttributeError`.
 """
 raise AttributeError(self.__OPERATION_EXCEPTION)

[docs] def del_io_sample_received_callback(self, callback):
 """
 Deprecated.

 Operation not supported in this protocol. This method raises an
 :class:`.AttributeError`.
 """
 raise AttributeError(self.__OPERATION_EXCEPTION)

[docs] def set_dio_change_detection(self, io_lines_set):
 """
 Deprecated.

 Operation not supported in this protocol. This method raises an
 :class:`.AttributeError`.
 """
 raise AttributeError(self.__OPERATION_EXCEPTION)

[docs] def get_io_sampling_rate(self):
 """
 Deprecated.

 Operation not supported in this protocol. This method raises an
 :class:`.AttributeError`.
 """
 raise AttributeError(self.__OPERATION_EXCEPTION)

[docs] def set_io_sampling_rate(self, rate):
 """
 Deprecated.

 Operation not supported in this protocol. This method raises an
 :class:`.AttributeError`.
 """
 raise AttributeError(self.__OPERATION_EXCEPTION)

[docs] def get_node_id(self):
 """
 Deprecated.

 Operation not supported in this protocol. This method raises an
 :class:`.AttributeError`.
 """
 raise AttributeError(self.__OPERATION_EXCEPTION)

[docs] def set_node_id(self, node_id):
 """
 Deprecated.

 Operation not supported in this protocol. This method raises an
 :class:`.AttributeError`.
 """
 raise AttributeError(self.__OPERATION_EXCEPTION)

[docs] def get_power_level(self):
 """
 Deprecated.

 Operation not supported in this protocol. This method raises an
 :class:`.AttributeError`.
 """
 raise AttributeError(self.__OPERATION_EXCEPTION)

[docs] def set_power_level(self, power_level):
 """
 Deprecated.

 Operation not supported in this protocol. This method raises an
 :class:`.AttributeError`.
 """
 raise AttributeError(self.__OPERATION_EXCEPTION)

[docs]class LPWANDevice(CellularDevice):
 """
 This class provides common functionality for XBee Low-Power Wide-Area Network
 devices.
 """

 def __init__(self, port=None, baud_rate=None, data_bits=serial.EIGHTBITS,
 stop_bits=serial.STOPBITS_ONE, parity=serial.PARITY_NONE,
 flow_control=FlowControl.NONE,
 _sync_ops_timeout=AbstractXBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS,
 comm_iface=None):
 """
 Class constructor. Instantiates a new :class:`.LPWANDevice` with the
 provided parameters.

 Args:
 port (String): Serial port identifier. Depends on operating system.
 e.g. '/dev/ttyUSB0' on 'GNU/Linux' or 'COM3' on Windows.
 baud_rate (Integer): Serial port baud rate.
 data_bits (Integer, default: :attr:`.serial.EIGHTBITS`): Port bitsize.
 stop_bits (Integer, default: :attr:`.serial.STOPBITS_ONE`): Port stop bits.
 parity (Character, default: :attr:`.serial.PARITY_NONE`): Port parity.
 flow_control (Integer, default: :attr:`.FlowControl.NONE`): Port flow control.
 _sync_ops_timeout (Integer, default: 3): Read timeout (in seconds).
 comm_iface (:class:`.XBeeCommunicationInterface`): Communication interface.

 Raises:
 All exceptions raised by :meth:`.XBeeDevice.__init__` constructor.

 .. seealso::
 | :class:`.CellularDevice`
 | :meth:`.CellularDevice.__init__`
 """
 super().__init__(port, baud_rate, data_bits=data_bits, stop_bits=stop_bits,
 parity=parity, flow_control=flow_control,
 _sync_ops_timeout=_sync_ops_timeout, comm_iface=comm_iface)

[docs] def send_ip_data(self, ip_addr, dest_port, protocol, data, close_socket=False):
 """
 Sends the provided IP data to the given IP address and port using
 the specified IP protocol.

 This method blocks until a success or error response arrives or the
 configured receive timeout expires.

 Args:
 ip_addr (:class:`ipaddress.IPv4Address`): The IP address to send IP data to.
 dest_port (Integer): The destination port of the transmission.
 protocol (:class:`.IPProtocol`): The IP protocol used for the transmission.
 data (String or Bytearray): The IP data to be sent.
 close_socket (Boolean, optional): Must be `False`.

 Raises:
 ValueError: If `protocol` is not UDP.
 """
 if protocol != IPProtocol.UDP:
 raise ValueError("This protocol only supports UDP transmissions")

 super().send_ip_data(ip_addr, dest_port, protocol, data, close_socket=close_socket)

[docs] def send_ip_data_async(self, ip_addr, dest_port, protocol, data, close_socket=False):
 """
 Sends the provided IP data to the given IP address and port
 asynchronously using the specified IP protocol.

 Asynchronous transmissions do not wait for answer from the remote
 device or for transmit status packet.

 Args:
 ip_addr (:class:`ipaddress.IPv4Address`): The IP address to send IP data to.
 dest_port (Integer): The destination port of the transmission.
 protocol (:class:`.IPProtocol`): The IP protocol used for the transmission.
 data (String or Bytearray): The IP data to be sent.
 close_socket (Boolean, optional): Must be `False`.

 Raises:
 ValueError: If `protocol` is not UDP.
 """
 if protocol != IPProtocol.UDP:
 raise ValueError("This protocol only supports UDP transmissions")

 super().send_ip_data_async(ip_addr, dest_port, protocol, data, close_socket=close_socket)

[docs] def add_sms_callback(self, callback):
 """
 Deprecated.

 Operation not supported in this protocol. This method raises an
 :class:`.AttributeError`.
 """
 raise AttributeError(self.__OPERATION_EXCEPTION)

[docs] def del_sms_callback(self, callback):
 """
 Deprecated.

 Operation not supported in this protocol. This method raises an
 :class:`.AttributeError`.
 """
 raise AttributeError(self.__OPERATION_EXCEPTION)

[docs] def send_sms(self, phone_number, data):
 """
 Deprecated.

 Operation not supported in this protocol. This method raises an
 :class:`.AttributeError`.
 """
 raise AttributeError(self.__OPERATION_EXCEPTION)

[docs] def send_sms_async(self, phone_number, data):
 """
 Deprecated.

 Operation not supported in this protocol. This method raises an
 :class:`.AttributeError`.
 """
 raise AttributeError(self.__OPERATION_EXCEPTION)

[docs]class NBIoTDevice(LPWANDevice):
 """
 This class represents a local NB-IoT device.
 """

 def __init__(self, port=None, baud_rate=None, data_bits=serial.EIGHTBITS,
 stop_bits=serial.STOPBITS_ONE, parity=serial.PARITY_NONE,
 flow_control=FlowControl.NONE,
 _sync_ops_timeout=AbstractXBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS,
 comm_iface=None):
 """
 Class constructor. Instantiates a new :class:`.NBIoTDevice` with the
 provided parameters.

 Args:
 port (String): Serial port identifier. Depends on operating system.
 e.g. '/dev/ttyUSB0' on 'GNU/Linux' or 'COM3' on Windows.
 baud_rate (Integer): Serial port baud rate.
 data_bits (Integer, default: :attr:`.serial.EIGHTBITS`): Port bitsize.
 stop_bits (Integer, default: :attr:`.serial.STOPBITS_ONE`): Port stop bits.
 parity (Character, default: :attr:`.serial.PARITY_NONE`): Port parity.
 flow_control (Integer, default: :attr:`.FlowControl.NONE`): Port flow control.
 _sync_ops_timeout (Integer, default: 3): Read timeout (in seconds).
 comm_iface (:class:`.XBeeCommunicationInterface`): Communication interface.

 Raises:
 All exceptions raised by :meth:`.XBeeDevice.__init__` constructor.

 .. seealso::
 | :class:`.LPWANDevice`
 | :meth:`.LPWANDevice.__init__`
 """
 super().__init__(port, baud_rate, data_bits=data_bits, stop_bits=stop_bits,
 parity=parity, flow_control=flow_control,
 _sync_ops_timeout=_sync_ops_timeout, comm_iface=comm_iface)
 self._imei_addr = None

[docs] def open(self, force_settings=False):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeDevice.open`
 """
 super().open(force_settings=force_settings)
 if self._protocol != XBeeProtocol.CELLULAR_NBIOT:
 self.close()
 raise XBeeException(_ERROR_INCOMPATIBLE_PROTOCOL
 % (self.get_protocol(), XBeeProtocol.CELLULAR_NBIOT))

[docs] def get_protocol(self):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeDevice.get_protocol`
 """
 if not self._protocol or self._protocol == XBeeProtocol.UNKNOWN:
 return XBeeProtocol.CELLULAR_NBIOT

 return self._protocol

[docs]class WiFiDevice(IPDevice):
 """
 This class represents a local Wi-Fi XBee.
 """

 # Timeout to connect, disconnect, and scan access points
 __DEFAULT_ACCESS_POINT_TIMEOUT = 15
 # Access points discovery timeout
 __DISCOVER_TIMEOUT = 30

 def __init__(self, port=None, baud_rate=None, data_bits=serial.EIGHTBITS,
 stop_bits=serial.STOPBITS_ONE, parity=serial.PARITY_NONE,
 flow_control=FlowControl.NONE,
 _sync_ops_timeout=AbstractXBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS,
 comm_iface=None):
 """
 Class constructor. Instantiates a new :class:`.WiFiDevice` with the
 provided parameters.

 Args:
 port (String): Serial port identifier. Depends on operating system.
 e.g. '/dev/ttyUSB0' on 'GNU/Linux' or 'COM3' on Windows.
 baud_rate (Integer): Serial port baud rate.
 data_bits (Integer, default: :attr:`.serial.EIGHTBITS`): Port bitsize.
 stop_bits (Integer, default: :attr:`.serial.STOPBITS_ONE`): Port stop bits.
 parity (Character, default: :attr:`.serial.PARITY_NONE`): Port parity.
 flow_control (Integer, default: :attr:`.FlowControl.NONE`): Port flow control.
 _sync_ops_timeout (Integer, default: 3): Read timeout (in seconds).
 comm_iface (:class:`.XBeeCommunicationInterface`): Communication interface.

 Raises:
 All exceptions raised by :meth:`.XBeeDevice.__init__` constructor.

 .. seealso::
 | :class:`.IPDevice`
 | :meth:`.v.__init__`
 """
 super().__init__(port, baud_rate, data_bits=data_bits, stop_bits=stop_bits,
 parity=parity, flow_control=flow_control,
 _sync_ops_timeout=_sync_ops_timeout, comm_iface=comm_iface)
 self.__ap_timeout = self.__DEFAULT_ACCESS_POINT_TIMEOUT
 self.__scanning_aps = False
 self.__scanning_aps_error = False

[docs] def open(self, force_settings=False):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeDevice.open`
 """
 super().open(force_settings=force_settings)
 if self._protocol != XBeeProtocol.XBEE_WIFI:
 self.close()
 raise XBeeException(_ERROR_INCOMPATIBLE_PROTOCOL
 % (self.get_protocol(), XBeeProtocol.XBEE_WIFI))

[docs] def get_protocol(self):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeDevice.get_protocol`
 """
 if not self._protocol or self._protocol == XBeeProtocol.UNKNOWN:
 return XBeeProtocol.XBEE_WIFI

 return self._protocol

[docs] def get_wifi_ai_status(self):
 """
 Returns the current association status of the device.

 Returns:
 :class:`.WiFiAssociationIndicationStatus`: Current association
 status of the device.

 Raises:
 TimeoutException: If there is a timeout getting the association
 indication status.
 XBeeException: If there is any other XBee related exception.

 .. seealso::
 | :class:`.WiFiAssociationIndicationStatus`
 """
 return WiFiAssociationIndicationStatus.get(utils.bytes_to_int(
 self.get_parameter(ATStringCommand.AI, apply=False)))

[docs] def get_access_point(self, ssid):
 """
 Finds and returns the access point that matches the supplied SSID.

 Args:
 ssid (String): SSID of the access point to get.

 Returns:
 :class:`.AccessPoint`: Discovered access point with the provided
 SID, or `None` if the timeout expires and the access point was
 not found.

 Raises:
 TimeoutException: If there is a timeout getting the access point.
 XBeeException: If there is an error sending the discovery command.

 .. seealso::
 | :class:`.AccessPoint`
 """
 ap_list = self.scan_access_points()

 for access_point in ap_list:
 if access_point.ssid == ssid:
 return access_point

 return None

[docs] @AbstractXBeeDevice._before_send_method
 def scan_access_points(self):
 """
 Performs a scan to search for access points in the vicinity.

 This method blocks until all the access points are discovered or the
 configured access point timeout expires.

 The access point timeout is configured using the
 :meth:`.WiFiDevice.set_access_point_timeout` method and can be
 consulted with :meth:`.WiFiDevice.get_access_point_timeout` method.

 Returns:
 List: List of :class:`.AccessPoint` objects discovered.

 Raises:
 TimeoutException: If there is a timeout scanning the access points.
 XBeeException: If there is any other XBee related exception.

 .. seealso::
 | :class:`.AccessPoint`
 """
 access_points_list = []

 if self.operating_mode not in (OperatingMode.API_MODE, OperatingMode.ESCAPED_API_MODE):
 raise InvalidOperatingModeException(
 message="Only can scan for access points in API mode.")

 def packet_receive_callback(xbee_packet):
 if not self.__scanning_aps:
 return
 if xbee_packet.get_frame_type() != ApiFrameType.AT_COMMAND_RESPONSE:
 return
 if xbee_packet.command.upper() != ATStringCommand.AS.command:
 return

 # Check for error.
 if xbee_packet.status == ATCommandStatus.ERROR:
 self.__scanning_aps = False
 self.__scanning_aps_error = True
 # Check for end of discovery.
 elif xbee_packet.command_value is None or len(xbee_packet.command_value) == 0:
 self.__scanning_aps = False
 # Get the access point from the command value.
 else:
 access_point = self.__parse_access_point(xbee_packet.command_value)
 if access_point is not None:
 access_points_list.append(access_point)

 self.add_packet_received_callback(packet_receive_callback)
 self.__scanning_aps = True

 try:
 self.send_packet(ATCommPacket(self.get_next_frame_id(), ATStringCommand.AS.command),
 sync=False)

 dead_line = time.time() + self.__DISCOVER_TIMEOUT
 while self.__scanning_aps and time.time() < dead_line:
 time.sleep(0.1)

 # Check if we exited because of a timeout.
 if self.__scanning_aps:
 raise TimeoutException
 # Check if there was an error in the active scan command (device is already connected).
 if self.__scanning_aps_error:
 raise XBeeException("There is an SSID already configured.")
 finally:
 self.__scanning_aps = False
 self.__scanning_aps_error = False
 self.del_packet_received_callback(packet_receive_callback)

 return access_points_list

[docs] def connect_by_ap(self, access_point, password=None):
 """
 Connects to the provided access point.

 This method blocks until the connection with the access point is
 established or the configured access point timeout expires.

 The access point timeout is configured using the
 :meth:`.WiFiDevice.set_access_point_timeout` method and can be
 consulted with :meth:`.WiFiDevice.get_access_point_timeout` method.

 Once the module is connected to the access point, you can issue the
 :meth:`.WiFiDevice.write_changes` method to save the connection
 settings. This way the module will try to connect to the access point
 every time it is powered on.

 Args:
 access_point (:class:`.AccessPoint`): The access point to connect to.
 password (String, optional): The password for the access point,
 `None` if it does not have any encryption enabled.

 Returns:
 Boolean: `True` if the module connected to the access point
 successfully, `False` otherwise.

 Raises:
 ValueError: If `access_point` is `None`.
 TimeoutException: If there is a timeout sending the connect commands.
 XBeeException: If there is any other XBee related exception.

 .. seealso::
 | :meth:`.WiFiDevice.connect_by_ssid`
 | :meth:`.WiFiDevice.disconnect`
 | :meth:`.WiFiDevice.get_access_point`
 | :meth:`.WiFiDevice.get_access_point_timeout`
 | :meth:`.WiFiDevice.scan_access_points`
 | :meth:`.WiFiDevice.set_access_point_timeout`
 """
 if access_point is None:
 raise ValueError("The access point to connect to cannot be None.")

 set_pw = password is not None and access_point.encryption_type != WiFiEncryptionType.NONE
 # Set connection parameters.
 self.set_parameter(ATStringCommand.ID,
 bytearray(access_point.ssid, "utf8"), apply=False)
 self.set_parameter(ATStringCommand.EE,
 utils.int_to_bytes(access_point.encryption_type.code, num_bytes=1),
 apply=bool(not set_pw and self.is_apply_changes_enabled()))
 if set_pw:
 self.set_parameter(ATStringCommand.PK, bytearray(password, "utf8"),
 apply=self.is_apply_changes_enabled())

 # Wait for the module to connect to the access point.
 dead_line = time.time() + self.__ap_timeout
 while time.time() < dead_line:
 time.sleep(0.1)
 # Get the association indication value of the module.
 status = self.get_parameter(ATStringCommand.AI, apply=False)
 if status is None or len(status) < 1:
 continue
 if status[0] == 0:
 return True
 return False

[docs] def connect_by_ssid(self, ssid, password=None):
 """
 Connects to the access point with provided SSID.

 This method blocks until the connection with the access point is
 established or the configured access point timeout expires.

 The access point timeout is configured using the
 :meth:`.WiFiDevice.set_access_point_timeout` method and can be
 consulted with :meth:`.WiFiDevice.get_access_point_timeout` method.

 Once the module is connected to the access point, you can issue the
 :meth:`.WiFiDevice.write_changes` method to save the connection
 settings. This way the module will try to connect to the access point
 every time it is powered on.

 Args:
 ssid (String): SSID of the access point to connect to.
 password (String, optional): The password for the access point,
 `None` if it does not have any encryption enabled.

 Returns:
 Boolean: `True` if the module connected to the access point
 successfully, `False` otherwise.

 Raises:
 ValueError: If `ssid` is `None`.
 TimeoutException: If there is a timeout sending the connect commands.
 XBeeException: If the access point with the provided SSID cannot be found.
 XBeeException: If there is any other XBee related exception.

 .. seealso::
 | :meth:`.WiFiDevice.connect_by_ap`
 | :meth:`.WiFiDevice.disconnect`
 | :meth:`.WiFiDevice.get_access_point`
 | :meth:`.WiFiDevice.get_access_point_timeout`
 | :meth:`.WiFiDevice.scan_access_points`
 | :meth:`.WiFiDevice.set_access_point_timeout`
 """
 if ssid is None:
 raise ValueError("SSID of access point cannot be None.")

 access_point = self.get_access_point(ssid)
 if access_point is None:
 raise XBeeException("Couldn't find any access point with SSID '%s'." % ssid)

 return self.connect_by_ap(access_point, password=password)

[docs] def disconnect(self):
 """
 Disconnects from the access point that the device is connected to.

 This method blocks until the device disconnects totally from the
 access point or the configured access point timeout expires.

 The access point timeout is configured using the
 :meth:`.WiFiDevice.set_access_point_timeout` method and can be
 consulted with :meth:`.WiFiDevice.get_access_point_timeout` method.

 Returns:
 Boolean: `True` if the module disconnected from the access point
 successfully, `False` otherwise.

 Raises:
 TimeoutException: If there is a timeout sending the disconnect command.
 XBeeException: If there is any other XBee related exception.

 .. seealso::
 | :meth:`.WiFiDevice.connect_by_ap`
 | :meth:`.WiFiDevice.connect_by_ssid`
 | :meth:`.WiFiDevice.get_access_point_timeout`
 | :meth:`.WiFiDevice.set_access_point_timeout`
 """
 self.execute_command(ATStringCommand.NR, apply=False)
 dead_line = time.time() + self.__ap_timeout
 while time.time() < dead_line:
 time.sleep(0.1)
 # Get the association indication value of the module.
 status = self.get_parameter(ATStringCommand.AI, apply=False)
 if status is None or len(status) < 1:
 continue
 if status[0] == 0x23:
 return True
 return False

[docs] def is_connected(self):
 """
 Returns whether the device is connected to an access point or not.

 Returns:
 Boolean: `True` if the device is connected to an access point,
 `False` otherwise.

 Raises:
 TimeoutException: If there is a timeout getting the association
 indication status.

 .. seealso::
 | :meth:`.WiFiDevice.get_wifi_ai_status`
 | :class:`.WiFiAssociationIndicationStatus`
 """
 status = self.get_wifi_ai_status()

 return status == WiFiAssociationIndicationStatus.SUCCESSFULLY_JOINED

 def __parse_access_point(self, ap_data):
 """
 Parses the given active scan API data and returns an
 :class:`.AccessPoint`: object.

 Args:
 ap_data (Bytearray): Access point data to parse.

 Returns:
 :class:`.AccessPoint`: Access point parsed from the provided data.
 `None` if the provided data does not correspond to an access point.

 .. seealso::
 | :class:`.AccessPoint`
 """
 index = 0

 if len(ap_data) == 0:
 return None

 # Get the version.
 version = ap_data[index]
 index += 1
 if len(ap_data[index:]) == 0:
 return None
 # Get the channel.
 channel = ap_data[index]
 index += 1
 if len(ap_data[index:]) == 0:
 return None
 # Get the encryption type.
 encryption_type = ap_data[index]
 index += 1
 if len(ap_data[index:]) == 0:
 return None
 # Get the signal strength.
 signal_strength = ap_data[index]
 index += 1
 if len(ap_data[index:]) == 0:
 return None

 signal_quality = self.__get_signal_quality(version, signal_strength)

 return AccessPoint(str(ap_data[index:], encoding="utf8"),
 WiFiEncryptionType.get(encryption_type),
 channel=channel, signal_quality=signal_quality)

 @staticmethod
 def __get_signal_quality(wifi_version, signal_strength):
 """
 Converts the signal strength value in signal quality (%) based on the
 provided Wi-Fi version.

 Args:
 wifi_version (Integer): Wi-Fi protocol version of the Wi-Fi XBee.
 signal_strength (Integer): Signal strength value to convert to %.

 Returns:
 Integer: The signal quality in %.
 """
 if wifi_version == 1:
 if signal_strength <= -100:
 quality = 0
 elif signal_strength >= -50:
 quality = 100
 else:
 quality = (2 * (signal_strength + 100))
 else:
 quality = 2 * signal_strength

 # Check limits.
 if quality > 100:
 quality = 100
 if quality < 0:
 quality = 0

 return quality

[docs] def get_access_point_timeout(self):
 """
 Returns the configured access point timeout for connecting,
 disconnecting and scanning access points.

 Returns:
 Integer: The current access point timeout in milliseconds.

 .. seealso::
 | :meth:`.WiFiDevice.set_access_point_timeout`
 """
 return self.__ap_timeout

[docs] def set_access_point_timeout(self, ap_timeout):
 """
 Configures the access point timeout in milliseconds for connecting,
 disconnecting and scanning access points.

 Args:
 ap_timeout (Integer): The new access point timeout in milliseconds.

 Raises:
 ValueError: If `ap_timeout` is less than 0.

 .. seealso::
 | :meth:`.WiFiDevice.get_access_point_timeout`
 """
 if ap_timeout < 0:
 raise ValueError("Access point timeout cannot be less than 0.")
 self.__ap_timeout = ap_timeout

[docs] def get_ip_addressing_mode(self):
 """
 Returns the IP addressing mode of the device.

 Returns:
 :class:`.IPAddressingMode`: The IP addressing mode.

 Raises:
 TimeoutException: If there is a timeout reading the IP addressing mode.

 .. seealso::
 | :meth:`.WiFiDevice.set_ip_addressing_mode`
 | :class:`.IPAddressingMode`
 """
 return IPAddressingMode.get(utils.bytes_to_int(
 self.get_parameter(ATStringCommand.MA, apply=False)))

[docs] def set_ip_addressing_mode(self, mode):
 """
 Sets the IP addressing mode of the device.

 Args:
 mode (:class:`.IPAddressingMode`): The new IP addressing mode to set.

 Raises:
 TimeoutException: If there is a timeout setting the IP addressing mode.

 .. seealso::
 | :meth:`.WiFiDevice.get_ip_addressing_mode`
 | :class:`.IPAddressingMode`
 """
 self.set_parameter(ATStringCommand.MA,
 utils.int_to_bytes(mode.code, num_bytes=1),
 apply=self.is_apply_changes_enabled())

[docs] def set_ip_address(self, ip_address):
 """
 Sets the IP address of the module.

 This method can only be called if the module is configured
 in :attr:`.IPAddressingMode.STATIC` mode. Otherwise an `XBeeException`
 will be thrown.

 Args:
 ip_address (:class:`ipaddress.IPv4Address`): New IP address to set.

 Raises:
 TimeoutException: If there is a timeout setting the IP address.

 .. seealso::
 | :meth:`.WiFiDevice.get_mask_address`
 | :class:`ipaddress.IPv4Address`
 """
 self.set_parameter(ATStringCommand.MY, ip_address.packed,
 apply=self.is_apply_changes_enabled())

[docs] def get_mask_address(self):
 """
 Returns the subnet mask IP address.

 Returns:
 :class:`ipaddress.IPv4Address`: The subnet mask IP address.

 Raises:
 TimeoutException: If there is a timeout reading the subnet mask address.

 .. seealso::
 | :meth:`.WiFiDevice.set_mask_address`
 | :class:`ipaddress.IPv4Address`
 """
 return IPv4Address(
 bytes(self.get_parameter(ATStringCommand.MK, apply=False)))

[docs] def set_mask_address(self, mask_address):
 """
 Sets the subnet mask IP address.

 This method can only be called if the module is configured
 in :attr:`.IPAddressingMode.STATIC` mode. Otherwise an `XBeeException`
 will be thrown.

 Args:
 mask_address (:class:`ipaddress.IPv4Address`): New subnet mask address to set.

 Raises:
 TimeoutException: If there is a timeout setting the subnet mask address.

 .. seealso::
 | :meth:`.WiFiDevice.get_mask_address`
 | :class:`ipaddress.IPv4Address`
 """
 self.set_parameter(ATStringCommand.MK, mask_address.packed,
 apply=self.is_apply_changes_enabled())

[docs] def get_gateway_address(self):
 """
 Returns the IP address of the gateway.

 Returns:
 :class:`ipaddress.IPv4Address`: The IP address of the gateway.

 Raises:
 TimeoutException: If there is a timeout reading the gateway address.

 .. seealso::
 | :meth:`.WiFiDevice.set_dns_address`
 | :class:`ipaddress.IPv4Address`
 """
 return IPv4Address(
 bytes(self.get_parameter(ATStringCommand.GW, apply=False)))

[docs] def set_gateway_address(self, gateway_address):
 """
 Sets the IP address of the gateway.

 This method can only be called if the module is configured
 in :attr:`.IPAddressingMode.STATIC` mode. Otherwise an `XBeeException`
 will be thrown.

 Args:
 gateway_address (:class:`ipaddress.IPv4Address`): The new gateway address to set.

 Raises:
 TimeoutException: If there is a timeout setting the gateway address.

 .. seealso::
 | :meth:`.WiFiDevice.get_gateway_address`
 | :class:`ipaddress.IPv4Address`
 """
 self.set_parameter(ATStringCommand.GW, gateway_address.packed,
 apply=self.is_apply_changes_enabled())

[docs] def get_dns_address(self):
 """
 Returns the IP address of Domain Name Server (DNS).

 Returns:
 :class:`ipaddress.IPv4Address`: The DNS address configured.

 Raises:
 TimeoutException: If there is a timeout reading the DNS address.

 .. seealso::
 | :meth:`.WiFiDevice.set_dns_address`
 | :class:`ipaddress.IPv4Address`
 """
 return IPv4Address(
 bytes(self.get_parameter(ATStringCommand.NS, apply=False)))

[docs] def set_dns_address(self, dns_address):
 """
 Sets the IP address of Domain Name Server (DNS).

 Args:
 dns_address (:class:`ipaddress.IPv4Address`): The new DNS address to set.

 Raises:
 TimeoutException: If there is a timeout setting the DNS address.

 .. seealso::
 | :meth:`.WiFiDevice.get_dns_address`
 | :class:`ipaddress.IPv4Address`
 """
 self.set_parameter(ATStringCommand.NS, dns_address.packed,
 apply=self.is_apply_changes_enabled())

[docs]class RemoteXBeeDevice(AbstractXBeeDevice):
 """
 This class represents a remote XBee.
 """

 def __init__(self, local_xbee, x64bit_addr=XBee64BitAddress.UNKNOWN_ADDRESS,
 x16bit_addr=XBee16BitAddress.UNKNOWN_ADDRESS, node_id=None):
 """
 Class constructor. Instantiates a new :class:`.RemoteXBeeDevice` with
 the provided parameters.

 Args:
 local_xbee (:class:`.XBeeDevice`): Local XBee associated with the remote one.
 x64bit_addr (:class:`.XBee64BitAddress`): 64-bit address of the remote XBee.
 x16bit_addr (:class:`.XBee16BitAddress`): 16-bit address of the remote XBee.
 node_id (String, optional): Node identifier of the remote XBee.

 .. seealso::
 | :class:`XBee16BitAddress`
 | :class:`XBee64BitAddress`
 | :class:`XBeeDevice`
 """
 super().__init__(local_xbee_device=local_xbee,
 comm_iface=local_xbee.comm_iface)

 self._local_xbee_device = local_xbee
 self._64bit_addr = x64bit_addr
 if not x64bit_addr:
 self._64bit_addr = XBee64BitAddress.UNKNOWN_ADDRESS
 self._protocol = local_xbee.get_protocol()
 self._16bit_addr = x16bit_addr
 if not x16bit_addr or self._protocol in (XBeeProtocol.DIGI_MESH,
 XBeeProtocol.DIGI_POINT):
 self._16bit_addr = XBee16BitAddress.UNKNOWN_ADDRESS
 self._node_id = node_id

[docs] def get_parameter(self, parameter, parameter_value=None, apply=None):
 """
 Override.

 .. seealso::
 | :meth:`.AbstractXBeeDevice.get_parameter`
 """
 return super().get_parameter(
 parameter, parameter_value=parameter_value, apply=apply)

[docs] def set_parameter(self, parameter, value, apply=None):
 """
 Override.

 .. seealso::
 | :meth:`.AbstractXBeeDevice.set_parameter`
 """
 super().set_parameter(parameter, value, apply=apply)

[docs] def is_remote(self):
 """
 Override method.

 .. seealso::
 | :meth:`.AbstractXBeeDevice.is_remote`
 """
 return True

[docs] def reset(self):
 """
 Override method.

 .. seealso::
 | :meth:`.AbstractXBeeDevice.reset`
 """
 # Send reset command.
 try:
 response = self._send_at_command(ATCommand(ATStringCommand.FR.command))
 except TimeoutException as exc:
 # Remote 802.15.4 devices do not respond to the AT command.
 if self._local_xbee_device.get_protocol() == XBeeProtocol.RAW_802_15_4:
 return
 raise exc

 # Check if AT Command response is valid.
 self._check_at_cmd_response_is_valid(response)

[docs] def get_local_xbee_device(self):
 """
 Returns the local XBee associated to the remote one.

 Returns:
 :class:`.XBeeDevice`: Local XBee.
 """
 return self._local_xbee_device

[docs] def set_local_xbee_device(self, local_xbee_device):
 """
 This methods associates a :class:`.XBeeDevice` to the remote XBee.

 Args:
 local_xbee_device (:class:`.XBeeDevice`): New local XBee associated
 to the remote one.

 .. seealso::
 | :class:`.XBeeDevice`
 """
 self._local_xbee_device = local_xbee_device

[docs] def get_serial_port(self):
 """
 Returns the serial port of the local XBee associated to the remote one.

 Returns:
 :class:`XBeeSerialPort`: Serial port of the local XBee associated
 to the remote one.

 .. seealso::
 | :class:`XBeeSerialPort`
 """
 return self._local_xbee_device.serial_port

[docs] def get_comm_iface(self):
 """
 Returns the communication interface of the local XBee associated to
 the remote one.

 Returns:
 :class:`XBeeCommunicationInterface`: Communication interface of the
 local XBee associated to the remote one.

 .. seealso::
 | :class:`XBeeCommunicationInterface`
 """
 return self._local_xbee_device.comm_iface

[docs] def get_ota_max_block_size(self):
 """
 Returns the maximum number of bytes to send for ota updates.

 Returns:
 Integer: Maximum ota block size to send.
 """
 return self._ota_max_block_size

[docs] def set_ota_max_block_size(self, size):
 """
 Sets the maximum number of bytes to send for ota updates.

 Args:
 size (Integer): Maximum ota block size to send.

 Raises:
 ValueError: If size is not between 0 and 255.
 """
 if not isinstance(size, int):
 raise ValueError("Maximum block size must be an integer")
 if size < 0 or size > 255:
 raise ValueError("Maximum block size must be between 0 and 255")

 self._ota_max_block_size = size

[docs] def update_filesystem_image(self, ota_filesystem_file, timeout=None,
 progress_callback=None):
 """
 Performs a filesystem image update operation of the device.

 Args:
 ota_filesystem_file (String): Location of the OTA filesystem image file.
 timeout (Integer, optional): Maximum time to wait for target read
 operations during the update process.
 progress_callback (Function, optional): Function to receive
 progress information. Receives two arguments:

 * The current update task as a String.
 * The current update task percentage as an Integer.

 Raises:
 XBeeException: If the device is not open.
 InvalidOperatingModeException: If the device operating mode is invalid.
 FileSystemNotSupportedException: If the filesystem update is not
 supported in the XBee.
 FileSystemException: If there is any error performing the filesystem update.
 """
 from digi.xbee.filesystem import update_remote_filesystem_image

 if not self._comm_iface.is_interface_open:
 raise XBeeException("XBee device's communication interface closed.")

 update_remote_filesystem_image(self, ota_filesystem_file, timeout=timeout,
 max_block_size=self._ota_max_block_size,
 progress_callback=progress_callback)

[docs]class RemoteRaw802Device(RemoteXBeeDevice):
 """
 This class represents a remote 802.15.4 XBee.
 """

 def __init__(self, local_xbee, x64bit_addr=None, x16bit_addr=None, node_id=None):
 """
 Class constructor. Instantiates a new :class:`.RemoteXBeeDevice` with
 the provided parameters.

 Args:
 local_xbee (:class:`.XBeeDevice`): Local XBee associated with the remote one.
 x64bit_addr (:class:`.XBee64BitAddress`): 64-bit address of the remote XBee.
 x16bit_addr (:class:`.XBee16BitAddress`): 16-bit address of the remote XBee.
 node_id (String, optional): Node identifier of the remote XBee.

 Raises:
 XBeeException: If the protocol of `local_xbee` is invalid.

 .. seealso::
 | :class:`RemoteXBeeDevice`
 | :class:`XBee16BitAddress`
 | :class:`XBee64BitAddress`
 | :class:`XBeeDevice`
 """
 if local_xbee.get_protocol() != XBeeProtocol.RAW_802_15_4:
 raise XBeeException("Invalid protocol.")

 super().__init__(local_xbee, x64bit_addr=x64bit_addr,
 x16bit_addr=x16bit_addr, node_id=node_id)

[docs] def get_protocol(self):
 """
 Override.

 .. seealso::
 | :meth:`.RemoteXBeeDevice.get_protocol`
 """
 return XBeeProtocol.RAW_802_15_4

[docs] def set_64bit_addr(self, address):
 """
 Sets the 64-bit address of this remote 802.15.4 device.

 Args:
 address (:class:`.XBee64BitAddress`): The 64-bit address to set.

 Raises:
 ValueError: If `address` is `None`.
 """
 if address is None:
 raise ValueError("64-bit address cannot be None")

 self._64bit_addr = address

[docs] def get_ai_status(self):
 """
 Returns the current association status of this XBee. It indicates
 occurrences of errors during the modem initialization and connection.

 Returns:
 :class:`.AssociationIndicationStatus`: The XBee association
 indication status.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 """
 return self._get_ai_status()

[docs]class RemoteDigiMeshDevice(RemoteXBeeDevice):
 """
 This class represents a remote DigiMesh XBee device.
 """

 def __init__(self, local_xbee, x64bit_addr=None, node_id=None):
 """
 Class constructor. Instantiates a new :class:`.RemoteDigiMeshDevice`
 with the provided parameters.

 Args:
 local_xbee (:class:`.XBeeDevice`): Local XBee associated with the remote one.
 x64bit_addr (:class:`.XBee64BitAddress`): 64-bit address of the remote XBee.
 node_id (String, optional): Node identifier of the remote XBee.

 Raises:
 XBeeException: If the protocol of `local_xbee` is invalid.

 .. seealso::
 | :class:`RemoteXBeeDevice`
 | :class:`XBee64BitAddress`
 | :class:`XBeeDevice`
 """
 if local_xbee.get_protocol() != XBeeProtocol.DIGI_MESH:
 raise XBeeException("Invalid protocol.")

 super().__init__(local_xbee, x64bit_addr=x64bit_addr,
 x16bit_addr=XBee16BitAddress.UNKNOWN_ADDRESS, node_id=node_id)

[docs] def get_protocol(self):
 """
 Override.

 .. seealso::
 | :meth:`.RemoteXBeeDevice.get_protocol`
 """
 return XBeeProtocol.DIGI_MESH

[docs] def get_neighbors(self, neighbor_cb=None, finished_cb=None, timeout=None):
 """
 Returns the neighbors of this XBee. If `neighbor_cb` is not
 defined, the process blocks during the specified timeout.

 Args:
 neighbor_cb (Function, optional, default=`None`): Method called
 when a new neighbor is received. Receives two arguments:

 * The XBee that owns this new neighbor.
 * The new neighbor.

 finished_cb (Function, optional, default=`None`): Method to execute
 when the process finishes. Receives three arguments:

 * The XBee that is searching for its neighbors.
 * A list with the discovered neighbors.
 * An error message if something went wrong.

 timeout (Float, optional, default=`NeighborFinder.DEFAULT_TIMEOUT`): The timeout
 in seconds.
 Returns:
 List: List of :class:`.Neighbor` when `neighbor_cb` is not defined,
 `None` otherwise (in this case neighbors are received in the callback).

 Raises:
 OperationNotSupportedException: If XBee protocol is not DigiMesh.

 .. seealso::
 | :class:`com.digi.models.zdo.Neighbor`
 """
 from digi.xbee.models.zdo import NeighborFinder
 return super()._get_neighbors(
 neighbor_cb=neighbor_cb, finished_cb=finished_cb,
 timeout=timeout if timeout else NeighborFinder.DEFAULT_TIMEOUT)

[docs]class RemoteDigiPointDevice(RemoteXBeeDevice):
 """
 This class represents a remote DigiPoint XBee.
 """

 def __init__(self, local_xbee, x64bit_addr=None, node_id=None):
 """
 Class constructor. Instantiates a new :class:`.RemoteDigiMeshDevice`
 with the provided parameters.

 Args:
 local_xbee (:class:`.XBeeDevice`): Local XBee associated with the remote one.
 x64bit_addr (:class:`.XBee64BitAddress`): 64-bit address of the remote XBee.
 node_id (String, optional): Node identifier of the remote XBee.

 Raises:
 XBeeException: If the protocol of `local_xbee` is invalid.

 .. seealso::
 | :class:`RemoteXBeeDevice`
 | :class:`XBee64BitAddress`
 | :class:`XBeeDevice`
 """
 if local_xbee.get_protocol() != XBeeProtocol.DIGI_POINT:
 raise XBeeException("Invalid protocol.")

 super().__init__(local_xbee, x64bit_addr=x64bit_addr,
 x16bit_addr=XBee16BitAddress.UNKNOWN_ADDRESS, node_id=node_id)

[docs] def get_protocol(self):
 """
 Override.

 .. seealso::
 | :meth:`.RemoteXBeeDevice.get_protocol`
 """
 return XBeeProtocol.DIGI_POINT

[docs]class RemoteZigBeeDevice(RemoteXBeeDevice):
 """
 This class represents a remote Zigbee XBee.
 """

 def __init__(self, local_xbee, x64bit_addr=None, x16bit_addr=None, node_id=None):
 """
 Class constructor. Instantiates a new :class:`.RemoteDigiMeshDevice`
 with the provided parameters.

 Args:
 local_xbee (:class:`.XBeeDevice`): Local XBee associated with the remote one.
 x64bit_addr (:class:`.XBee64BitAddress`): 64-bit address of the remote XBee.
 x16bit_addr (:class:`.XBee16BitAddress`): 16-bit address of the remote XBee.
 node_id (String, optional): Node identifier of the remote XBee.

 Raises:
 XBeeException: If the protocol of `local_xbee` is invalid.

 .. seealso::
 | :class:`RemoteXBeeDevice`
 | :class:`XBee16BitAddress`
 | :class:`XBee64BitAddress`
 | :class:`XBeeDevice`
 """
 if local_xbee.get_protocol() != XBeeProtocol.ZIGBEE:
 raise XBeeException("Invalid protocol.")

 super().__init__(local_xbee, x64bit_addr=x64bit_addr,
 x16bit_addr=x16bit_addr, node_id=node_id)

 # If the remote node is an end device, its parent is stored here.
 self.__parent = None

 @property
 def parent(self):
 """
 Returns the parent of the XBee if it is an end device.

 Returns:
 :class:`.AbstractXBeeDevice`: The parent of the node for end
 devices, `None` if unknown or if it is not an end device.
 """
 return self.__parent if self.get_role() == Role.END_DEVICE else None

 @parent.setter
 def parent(self, node):
 """
 Configures the XBee parent if it is an end device. If not it has no
 effect.

 Args:
 node (:class:`.AbstractXBeeDevice`): The parent of the node.
 """
 if self.get_role() == Role.END_DEVICE:
 self.__parent = node

[docs] def get_protocol(self):
 """
 Override.

 .. seealso::
 | :meth:`.RemoteXBeeDevice.get_protocol`
 """
 return XBeeProtocol.ZIGBEE

 def _read_device_info(self, reason, init=True, fire_event=True):
 """
 Override.

 .. seealso::
 | :meth:`.AbstractXBeeDevice._read_device_info`
 """
 updated = False
 if init or self.__parent is None:
 # Check the role, to get the parent only for end devices
 if self._role in (Role.UNKNOWN, None):
 super()._read_device_info(reason, init=init, fire_event=fire_event)

 if self._role != Role.END_DEVICE:
 super()._read_device_info(reason, init=init, fire_event=fire_event)
 return

 # Read the module's parent address for end devices.
 resp = self.get_parameter(ATStringCommand.MP, apply=False)
 if not XBee16BitAddress.is_known_node_addr(resp):
 super()._read_device_info(reason, init=init, fire_event=fire_event)
 return

 parent_addr = XBee16BitAddress(resp)
 network = self._local_xbee_device.get_network()
 parent = network.get_device_by_16(parent_addr)
 # If the parent node is not yet in the network, add it
 if not parent:
 parent = network._add_remote(
 RemoteZigBeeDevice(self._local_xbee_device,
 x16bit_addr=parent_addr),
 NetworkEventReason.NEIGHBOR)
 self.__parent = parent
 updated = True

 super()._read_device_info(reason, init=init, fire_event=updated and fire_event)

[docs] def is_device_info_complete(self):
 """
 Override.

 .. seealso::
 | :meth:`.AbstractXBeeDevice.is_device_info_complete`
 """
 return (super().is_device_info_complete()
 and self._role == Role.END_DEVICE and self.__parent is not None)

[docs] def get_ai_status(self):
 """
 Returns the current association status of this XBee. It indicates
 occurrences of errors during the modem initialization and connection.

 Returns:
 :class:`.AssociationIndicationStatus`: The XBee association
 indication status.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 """
 return self._get_ai_status()

[docs] def force_disassociate(self):
 """
 Forces this XBee to immediately disassociate from the network and
 re-attempt to associate.

 Only valid for End Devices.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 """
 self._force_disassociate()

[docs] def get_routes(self, route_cb=None, finished_cb=None, timeout=None):
 """
 Returns the routes of this XBee. If `route_cb` is not defined, the
 process blocks until the complete routing table is read.

 Args:
 route_cb (Function, optional, default=`None`): Method called when a
 new route is received. Receives two arguments:

 * The XBee that owns this new route.
 * The new route.

 finished_cb (Function, optional, default=`None`): Method to execute
 when the process finishes. Receives three arguments:

 * The XBee that executed the ZDO command.
 * A list with the discovered routes.
 * An error message if something went wrong.

 timeout (Float, optional, default=`RouteTableReader.DEFAULT_TIMEOUT`): The ZDO command
 timeout in seconds.
 Returns:
 List: List of :class:`.Route` when `route_cb` is not defined,
 `None` otherwise (in this case routes are received in the callback).

 Raises:
 OperationNotSupportedException: If XBee protocol is not Zigbee or Smart Energy.

 .. seealso::
 | :class:`com.digi.models.zdo.Route`
 """
 from digi.xbee.models.zdo import RouteTableReader
 return super()._get_routes(route_cb=route_cb, finished_cb=finished_cb,
 timeout=timeout if timeout else RouteTableReader.DEFAULT_TIMEOUT)

[docs] def get_neighbors(self, neighbor_cb=None, finished_cb=None, timeout=None):
 """
 Returns the neighbors of this XBee. If `neighbor_cb` is not
 defined, the process blocks until the complete neighbor table is read.

 Args:
 neighbor_cb (Function, optional, default=`None`): Method called
 when a new neighbor is received. Receives two arguments:

 * The XBee that owns this new neighbor.
 * The new neighbor.

 finished_cb (Function, optional, default=`None`): Method to execute
 when the process finishes. Receives three arguments:

 * The XBee that executed the ZDO command.
 * A list with the discovered neighbors.
 * An error message if something went wrong.

 timeout (Float, optional, default=`NeighborTableReader.DEFAULT_TIMEOUT`): The ZDO
 command timeout in seconds.
 Returns:
 List: List of :class:`.Neighbor` when `neighbor_cb` is not defined,
 `None` otherwise (in this case neighbors are received in the callback).

 Raises:
 OperationNotSupportedException: If XBee protocol is not Zigbee or Smart Energy.

 .. seealso::
 | :class:`com.digi.models.zdo.Neighbor`
 """
 from digi.xbee.models.zdo import NeighborTableReader
 return super()._get_neighbors(
 neighbor_cb=neighbor_cb, finished_cb=finished_cb,
 timeout=timeout if timeout else NeighborTableReader.DEFAULT_TIMEOUT)

[docs]class XBeeNetwork:
 """
 This class represents an XBee Network.

 The network allows the discovery of remote devices in the same network
 as the local one and stores them.
 """

 ND_PACKET_FINISH = 0x01
 """
 Flag that indicates a "discovery process finish" packet.
 """

 ND_PACKET_REMOTE = 0x02
 """
 Flag that indicates a discovery process packet with info about a remote XBee.
 """

 # Default timeout for discovering process in case of
 # the real timeout can't be determined.
 _DEFAULT_DISCOVERY_TIMEOUT = 20

 # Correction values for the timeout for determined devices.
 # It has been tested and work 'fine'
 __DIGI_POINT_TIMEOUT_CORRECTION = 8

 __TIME_FOR_NEW_NODES_IN_FIFO = 1 # seconds
 __TIME_WHILE_FINISH_PREVIOUS_PROCESS = 1 # seconds, for 'Cascade' mode

 __DEFAULT_QUEUE_MAX_SIZE = 300
 """
 Default max. size that the queue has.
 """

 __MAX_SCAN_COUNTER = 10000

 DEFAULT_TIME_BETWEEN_SCANS = 10 # seconds
 """
 Default time (in seconds) to wait before starting a new scan.
 """

 MIN_TIME_BETWEEN_SCANS = 0 # seconds
 """
 Low limit for the time (in seconds) to wait before starting a new scan.
 """

 MAX_TIME_BETWEEN_SCANS = 3 * 24 * 60 * 60 # seconds
 """
 High limit for the time (in seconds) to wait before starting a new scan.
 """

 DEFAULT_TIME_BETWEEN_REQUESTS = 5 # seconds
 """
 Default time (in seconds) to wait between node neighbors requests.
 """

 MIN_TIME_BETWEEN_REQUESTS = 0 # seconds
 """
 Low limit for the time (in seconds) to wait between node neighbors requests.
 """

 MAX_TIME_BETWEEN_REQUESTS = 10 * 60 # seconds
 """
 High limit for the time (in seconds) to wait between node neighbors requests.
 """

 SCAN_TIL_CANCEL = 0 # 0 for not stopping
 """
 The neighbor discovery process continues until is manually stopped.
 """

 NT_LIMITS = {
 XBeeProtocol.RAW_802_15_4: (0x1 / 10, 0xFC / 10), # 0.1, 25.2 seconds
 XBeeProtocol.ZIGBEE: (0x20 / 10, 0xFF / 10), # 3.2, 25.5 seconds
 XBeeProtocol.DIGI_MESH: (0x20 / 10, 0x2EE0 / 10) # 3.2, 5788.8 seconds
 }

 _log = logging.getLogger("XBeeNetwork")
 """
 Logger.
 """

 def __init__(self, xbee_device):
 """
 Class constructor. Instantiates a new `XBeeNetwork`.

 Args:
 xbee_device (:class:`.XBeeDevice`): Local XBee to get the network from.

 Raises:
 ValueError: If `xbee_device` is `None`.
 """
 if xbee_device is None:
 raise ValueError("Local XBee device cannot be None")

 self._local_xbee = xbee_device
 self.__devices_list = []
 self.__last_search_dev_list = []
 self.__lock = threading.Lock()
 self.__discovering = False
 self._stop_event = threading.Event()
 self.__discover_result = None
 self._network_modified = NetworkModified()
 self._device_discovered = DeviceDiscovered()
 self.__device_discovery_finished = DiscoveryProcessFinished()
 self.__discovery_thread = None
 self.__sought_device_id = None
 self.__discovered_device = None

 # FIFO to store the nodes to ask for their neighbors
 self._nodes_queue = Queue(self.__DEFAULT_QUEUE_MAX_SIZE)

 # List with the MAC address (string format) of the still active request processes
 self.__active_processes = []

 # Last date of a sent request. Used to wait certain time between requests:
 # * In 'Flood' mode to satisfy the minimum time to wait between node requests
 # * For 'Cascade', the time to wait is applied after finishing the previous request
 # process
 self.__last_request_date = 0

 self.__scan_counter = 0

 self.__connections = []
 self.__conn_lock = threading.Lock()

 # Dictionary to store the route and node discovery processes per node,
 # so they can be stop when required.
 # The dictionary uses as key the 64-bit address string representation
 # (to be thread-safe)
 self.__nd_processes = {}

 self.__mode = NeighborDiscoveryMode.CASCADE
 self.__stop_scan = 1
 self.__rm_not_discovered_in_last_scan = False
 self.__time_bw_scans = self.DEFAULT_TIME_BETWEEN_SCANS
 self.__time_bw_nodes = self.DEFAULT_TIME_BETWEEN_REQUESTS
 self._node_timeout = None

 self.__saved_nt = None

 self.__init_scan_cbs = InitDiscoveryScan()
 self.__end_scan_cbs = EndDiscoveryScan()

 # Dictionary to store registered callbacks per node.
 self.__packet_received_from = {}

 def __increment_scan_counter(self):
 """
 Increments (by one) the scan counter.
 """
 self.__scan_counter += 1
 if self.__scan_counter > self.__MAX_SCAN_COUNTER:
 self.__scan_counter = 0

 @property
 def scan_counter(self):
 """
 Returns the scan counter.

 Returns:
 Integer: The scan counter.
 """
 return self.__scan_counter

[docs] def start_discovery_process(self, deep=False, n_deep_scans=1):
 """
 Starts the discovery process. This method is not blocking.

 This process can discover node neighbors and connections, or only nodes:

 * Deep discovery: Network nodes and connections between them
 (including quality) are discovered.

 The discovery process will be running the number of scans
 configured in `n_deep_scans`. A scan is considered the process of
 discovering the full network. If there are more than one number of
 scans configured, after finishing one another is started, until
 `n_deep_scans` is satisfied.

 See :meth:`~.XBeeNetwork.set_deep_discovery_options` to establish
 the way the network discovery process is performed.

 * No deep discovery: Only network nodes are discovered.

 The discovery process will be running until the configured timeout
 expires or, in case of 802.15.4, until the 'end' packet is read.

 It may occur that, after timeout expiration, there are nodes that
 continue sending discovery responses to the local XBee. In this
 case, these nodes will not be added to the network.

 In 802.15.4, both (deep and no deep discovery) are the same and none
 discover the node connections or their quality. The difference is the
 possibility of running more than one scan using a deep discovery.

 Args:
 deep (Boolean, optional, default=`False`): `True` for a deep
 network scan, looking for neighbors and their connections,
 `False` otherwise.
 n_deep_scans (Integer, optional, default=1): Number of scans to
 perform before automatically stopping the discovery process.
 :const:`SCAN_TIL_CANCEL` means the process will not be
 automatically stopped. Only applicable if `deep=True`.

 .. seealso::
 | :meth:`.XBeeNetwork.add_device_discovered_callback`
 | :meth:`.XBeeNetwork.add_discovery_process_finished_callback`
 | :meth:`.XBeeNetwork.del_device_discovered_callback`
 | :meth:`.XBeeNetwork.del_discovery_process_finished_callback`
 | :meth:`.XBeeNetwork.get_deep_discovery_options`
 | :meth:`.XBeeNetwork.set_deep_discovery_options`
 | :meth:`.XBeeNetwork.get_deep_discovery_timeouts`
 | :meth:`.XBeeNetwork.set_deep_discovery_timeouts`
 | :meth:`.XBeeNetwork.get_discovery_options`
 | :meth:`.XBeeNetwork.set_discovery_options`
 | :meth:`.XBeeNetwork.get_discovery_timeout`
 | :meth:`.XBeeNetwork.set_discovery_timeout`
 """
 with self.__lock:
 if self.__discovering:
 return

 self._log.info("Start network discovery for '%s'%s", self._local_xbee,
 (" (%d scans)" % n_deep_scans) if deep else "")

 if deep:
 self.__stop_scan = n_deep_scans

 self.__discovery_thread = threading.Thread(
 target=self.__discover_devices_and_notify_callbacks,
 kwargs={'discover_network': deep}, daemon=True)
 self.__discovery_thread.start()

[docs] def stop_discovery_process(self):
 """
 Stops the discovery process if it is running.

 Note that some DigiMesh/DigiPoint devices are blocked until the discovery
 time configured ('NT' parameter) has elapsed, so, when trying to get/set
 any parameter during the discovery process, a TimeoutException is raised.
 """
 self._stop_event.set()

 if self.__discovery_thread and self.__discovering:
 self.__discovery_thread.join()
 self.__discovery_thread = None

[docs] def discover_device(self, node_id):
 """
 Blocking method. Discovers and reports the first remote XBee that
 matches the supplied identifier.

 Args:
 node_id (String): Node identifier of the node to discover.

 Returns:
 :class:`.RemoteXBeeDevice`: Discovered remote XBee, `None` if the
 timeout expires and the node was not found.

 .. seealso::
 | :meth:`.XBeeNetwork.get_discovery_options`
 | :meth:`.XBeeNetwork.set_discovery_options`
 | :meth:`.XBeeNetwork.get_discovery_timeout`
 | :meth:`.XBeeNetwork.set_discovery_timeout`
 """
 self._stop_event.clear()

 try:
 with self.__lock:
 self.__sought_device_id = node_id
 self.__discover_devices(node_id=node_id)
 finally:
 with self.__lock:
 self.__sought_device_id = None
 remote = self.__discovered_device
 self.__discovered_device = None
 if remote is not None:
 self._add_remote(remote, NetworkEventReason.DISCOVERED)

 return remote

[docs] def discover_devices(self, device_id_list):
 """
 Blocking method. Attempts to discover a list of nodes and add them to
 the current network.

 This method does not guarantee that all nodes of `device_id_list` will
 be found, even if they exist physically. This depends on the node
 discovery operation and timeout.

 Args:
 device_id_list (List): List of device IDs to discover.

 Returns:
 List: List with the discovered nodes. It may not contain all nodes
 specified in `device_id_list`.

 .. seealso::
 | :meth:`.XBeeNetwork.get_discovery_options`
 | :meth:`.XBeeNetwork.set_discovery_options`
 | :meth:`.XBeeNetwork.get_discovery_timeout`
 | :meth:`.XBeeNetwork.set_discovery_timeout`
 """
 self.start_discovery_process()
 while self.is_discovery_running():
 time.sleep(0.1)
 discovered_devices = list(filter(lambda x: x.get_node_id() in device_id_list, self.__last_search_dev_list))
 self.__last_search_dev_list.clear()
 return discovered_devices

[docs] def is_discovery_running(self):
 """
 Returns whether the discovery process is running.

 Returns:
 Boolean: `True` if the discovery process is running, `False` otherwise.
 """
 return self.__discovering

[docs] def get_devices(self):
 """
 Returns a copy of the XBee devices list of the network.

 If a new XBee node is added to the list after the execution of this
 method, this new XBee is not added to the list returned by this method.

 Returns:
 List: A copy of the XBee devices list of the network.
 """
 with self.__lock:
 dl_copy = [len(self.__devices_list)]
 dl_copy[:] = self.__devices_list[:]
 return dl_copy

[docs] def has_devices(self):
 """
 Returns whether there is any device in the network.

 Returns:
 Boolean: `True` if there is at least one node in the network,
 `False` otherwise.
 """
 return len(self.__devices_list) > 0

[docs] def get_number_devices(self):
 """
 Returns the number of nodes in the network.

 Returns:
 Integer: Number of nodes in the network.
 """
 return len(self.__devices_list)

[docs] def export(self, dir_path=None, name=None, desc=None):
 """
 Exports this network to the given file path.

 If the provided path already exists the file is removed.

 Params:
 dir_path (String, optional, default=`None`): Absolute path of the
 directory to export the network. It should not include the file
 name. If not defined home directory is used.
 name (String, optional, default=`None`): Network human readable name.
 desc (String, optional, default=`None`): Network description.

 Returns:
 Tuple (Integer, String): Tuple with result (0: success, 1: failure)
 and string (exported file path if success, error string otherwise).
 """
 import datetime
 from pathlib import Path

 date_now = datetime.datetime.now()
 if not dir_path:
 dir_path = str(Path.home())
 if not name:
 name = "%s network" % str(self._local_xbee)
 file_name = "%s_%s.xnet" % (name.strip().replace(" ", "_"),
 date_now.strftime("%m%d%y_%H%M%S"))
 file = Path(dir_path, file_name)
 try:
 if file.exists():
 file.unlink()
 file.parent.mkdir(parents=True, exist_ok=True)
 except OSError as exc:
 return 1, "%s (%d): %s" % (exc.strerror, exc.errno, exc.filename)

 from digi.xbee.util.exportutils import generate_network_xml
 tree = generate_network_xml(self._local_xbee, date_now=date_now,
 name=name, desc=desc)

 from zipfile import ZipFile, ZipInfo, ZIP_DEFLATED
 try:
 with ZipFile(str(file), 'w') as xnet_zip:
 info = ZipInfo(filename='network.xml',
 date_time=time.localtime(date_now.timestamp()))
 info.compress_type = ZIP_DEFLATED
 with xnet_zip.open(info, 'w') as xnet_file:
 tree.write(xnet_file, encoding='utf8', xml_declaration=False)
 except (OSError, IOError) as exc:
 return 1, "%s (%d): %s" % (exc.strerror, exc.errno, exc.filename)

 return 0, str(file)

[docs] def add_network_modified_callback(self, callback):
 """
 Adds a callback for the event :class:`.NetworkModified`.

 Args:
 callback (Function): The callback. Receives three arguments.

 * The event type as a :class:`.NetworkEventType`.
 * The reason of the event as a :class:`.NetworkEventReason`.
 * The node added, updated or removed from the network as a
 :class:`.XBeeDevice` or :class:`.RemoteXBeeDevice`.

 .. seealso::
 | :meth:`.XBeeNetwork.del_network_modified_callback`
 """
 self._network_modified += callback

[docs] def add_device_discovered_callback(self, callback):
 """
 Adds a callback for the event :class:`.DeviceDiscovered`.

 Args:
 callback (Function): The callback. Receives one argument.

 * The discovered remote XBee as a :class:`.RemoteXBeeDevice`.

 .. seealso::
 | :meth:`.XBeeNetwork.del_device_discovered_callback`
 | :meth:`.XBeeNetwork.add_discovery_process_finished_callback`
 | :meth:`.XBeeNetwork.del_discovery_process_finished_callback`
 """
 self._device_discovered += callback

[docs] def add_init_discovery_scan_callback(self, callback):
 """
 Adds a callback for the event :class:`.InitDiscoveryScan`.

 Args:
 callback (Function): The callback. Receives two arguments.

 * Number of scan to start (starting with 1).
 * Total number of scans.

 .. seealso::
 | :meth:`.XBeeNetwork.del_init_discovery_scan_callback`
 """
 self.__init_scan_cbs += callback

[docs] def add_end_discovery_scan_callback(self, callback):
 """
 Adds a callback for the event :class:`.EndDiscoveryScan`.

 Args:
 callback (Function): The callback. Receives two arguments.

 * Number of scan that has finished (starting with 1).
 * Total number of scans.

 .. seealso::
 | :meth:`.XBeeNetwork.del_end_discovery_scan_callback`
 """
 self.__end_scan_cbs += callback

[docs] def add_discovery_process_finished_callback(self, callback):
 """
 Adds a callback for the event :class:`.DiscoveryProcessFinished`.

 Args:
 callback (Function): The callback. Receives two arguments.

 * The event code as an :class:`.NetworkDiscoveryStatus`.
 * (Optional) A description of the discovery process as a string.

 .. seealso::
 | :meth:`.XBeeNetwork.del_discovery_process_finished_callback`
 | :meth:`.XBeeNetwork.add_device_discovered_callback`
 | :meth:`.XBeeNetwork.del_device_discovered_callback`
 """
 self.__device_discovery_finished += callback

[docs] def add_packet_received_from_callback(self, node, callback):
 """
 Adds a callback to listen to any received packet from the provided node.

 Args:
 node (:class:`.RemoteXBeeDevice`): The node to listen for frames.
 callback (Function): The callback. Receives two arguments.

 * The received packet as a :class:`.XBeeAPIPacket`.
 * The remote XBee who sent the packet as a
 :class:`.RemoteXBeeDevice`.

 .. seealso::
 | :meth:`.XBeeNetwork.del_packet_received_from_callback`
 """
 if not self.__packet_received_from:
 self._local_xbee._packet_listener.add_packet_received_from_callback(
 self.__received_packet_from_cb)

 cbs = self.__packet_received_from.get(str(node.get_64bit_addr()))
 if not cbs:
 cbs = XBeeEvent()
 self.__packet_received_from.update({str(node.get_64bit_addr()): cbs})

 cbs += callback

 def __received_packet_from_cb(self, packet, remote):
 """
 Callback method to handle received packets from a remote.

 Args:
 packet (:class:.`XBeeAPIPacket`): The received packet.
 remote (:class:`.RemoteXBeeDevice`): The node receiving the packet.
 """
 cbs = self.__packet_received_from.get(str(remote.get_64bit_addr()))
 if not cbs:
 return

 cbs(packet, remote)

[docs] def del_network_modified_callback(self, callback):
 """
 Deletes a callback for the callback list of :class:`.NetworkModified`.

 Args:
 callback (Function): The callback to delete.

 .. seealso::
 | :meth:`.XBeeNetwork.add_network_modified_callback`
 """
 if callback in self._network_modified:
 self._network_modified -= callback

[docs] def del_device_discovered_callback(self, callback):
 """
 Deletes a callback for the callback list of :class:`.DeviceDiscovered` event.

 Args:
 callback (Function): The callback to delete.

 .. seealso::
 | :meth:`.XBeeNetwork.add_device_discovered_callback`
 | :meth:`.XBeeNetwork.add_discovery_process_finished_callback`
 | :meth:`.XBeeNetwork.del_discovery_process_finished_callback`
 """
 if callback in self._device_discovered:
 self._device_discovered -= callback

[docs] def del_init_discovery_scan_callback(self, callback):
 """
 Deletes a callback for the callback list of :class:`.InitDiscoveryScan`.

 Args:
 callback (Function): The callback to delete.

 .. seealso::
 | :meth:`.XBeeNetwork.add_init_discovery_scan_callback`
 """
 if callback in self.__init_scan_cbs:
 self.__init_scan_cbs -= callback

[docs] def del_end_discovery_scan_callback(self, callback):
 """
 Deletes a callback for the callback list of :class:`.EndDiscoveryScan`.

 Args:
 callback (Function): The callback to delete.

 .. seealso::
 | :meth:`.XBeeNetwork.add_end_discovery_scan_callback`
 """
 if callback in self.__end_scan_cbs:
 self.__end_scan_cbs -= callback

[docs] def del_discovery_process_finished_callback(self, callback):
 """
 Deletes a callback for the callback list of
 :class:`.DiscoveryProcessFinished` event.

 Args:
 callback (Function): The callback to delete.

 .. seealso::
 | :meth:`.XBeeNetwork.add_discovery_process_finished_callback`
 | :meth:`.XBeeNetwork.add_device_discovered_callback`
 | :meth:`.XBeeNetwork.del_device_discovered_callback`
 """
 if callback in self.__device_discovery_finished:
 self.__device_discovery_finished -= callback

[docs] def del_packet_received_from_callback(self, node, callb=None):
 """
 Deletes a received packet callback from the provided node.

 Args:
 node (:class:`.RemoteXBeeDevice`): The node to listen for frames.
 callb (Function, optional, default=`None`): The callback to delete,
 `None` to delete all.

 .. seealso::
 | :meth:`.XBeeNetwork.add_packet_received_from_callback`
 """
 cbs = self.__packet_received_from.get(str(node.get_64bit_addr()), None)
 if not cbs:
 return

 if not callb:
 cbs.clear()
 elif callb in cbs:
 cbs -= callb

 if not cbs:
 self.__packet_received_from.pop(str(node.get_64bit_addr()), None)

 if (not self.__packet_received_from
 and self.__received_packet_from_cb in
 self._local_xbee._packet_listener.get_packet_received_from_callbacks()):
 self._local_xbee._packet_listener.del_packet_received_from_callback(
 self.__received_packet_from_cb)

[docs] def clear(self):
 """
 Removes all remote XBee nodes from the network.
 """
 return self._clear(NetworkEventReason.MANUAL)

 def _clear(self, reason):
 """
 Removes all the remote XBee nodes from the network.

 Args:
 reason (:class:`.NetworkEventReason`): Reason of the clear event.
 """
 with self.__lock:
 for node in self.__devices_list:
 self.del_packet_received_from_callback(node, callb=None)

 with self.__lock:
 self.__devices_list.clear()

 with self.__conn_lock:
 self.__connections.clear()

 self._network_modified(NetworkEventType.CLEAR, reason, node=None)

[docs] def get_discovery_options(self):
 """
 Returns the network discovery process options.

 Returns:
 Bytearray: Discovery options value.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 """
 return self._local_xbee.get_parameter(ATStringCommand.NO, apply=False)

[docs] def set_discovery_options(self, options):
 """
 Configures the discovery options (`NO` parameter) with the given value.

 Args:
 options (Set of :class:`.DiscoveryOptions`): New discovery options,
 empty set to clear the options.

 Raises:
 ValueError: If `options` is `None`.
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.

 .. seealso::
 | :class:`.DiscoveryOptions`
 """
 if options is None:
 raise ValueError("Options cannot be None")

 value = DiscoveryOptions.calculate_discovery_value(self._local_xbee.get_protocol(), options)
 self._local_xbee.set_parameter(ATStringCommand.NO,
 utils.int_to_bytes(value), apply=True)

[docs] def get_deep_discovery_options(self):
 """
 Returns the deep discovery process options.

 Returns:
 Tuple: (:class:`.NeighborDiscoveryMode`, Boolean): Tuple containing:
 - mode (:class:`.NeighborDiscoveryMode`): Neighbor discovery
 mode, the way to perform the network discovery process.
 - remove_nodes (Boolean): `True` to remove nodes from the
 network if they were not discovered in the last scan,
 `False` otherwise.

 .. seealso::
 | :class:`digi.xbee.models.mode.NeighborDiscoveryMode`
 | :meth:`.XBeeNetwork.set_deep_discovery_timeouts`
 | :meth:`.XBeeNetwork.start_discovery_process`
 """
 return self.__mode, self.__rm_not_discovered_in_last_scan

[docs] def set_deep_discovery_options(self, deep_mode=NeighborDiscoveryMode.CASCADE,
 del_not_discovered_nodes_in_last_scan=False):
 """
 Configures the deep discovery options with the given values.
 These options are only applicable for "deep" discovery
 (see :meth:`~.XBeeNetwork.start_discovery_process`)

 Args:
 deep_mode (:class:`.NeighborDiscoveryMode`, optional, default=`NeighborDiscoveryMode.CASCADE`): Neighbor
 discovery mode, the way to perform the network discovery process.
 del_not_discovered_nodes_in_last_scan (Boolean, optional, default=`False`): `True` to
 remove nodes from the network if they were not discovered in the last scan.

 .. seealso::
 | :class:`digi.xbee.models.mode.NeighborDiscoveryMode`
 | :meth:`.XBeeNetwork.get_deep_discovery_timeouts`
 | :meth:`.XBeeNetwork.start_discovery_process`
 """
 if deep_mode is not None and not isinstance(deep_mode, NeighborDiscoveryMode):
 raise TypeError("Deep mode must be NeighborDiscoveryMode not {!r}".format(
 deep_mode.__class__.__name__))

 self.__mode = deep_mode if deep_mode is not None else NeighborDiscoveryMode.CASCADE

 self.__rm_not_discovered_in_last_scan = del_not_discovered_nodes_in_last_scan

[docs] def get_discovery_timeout(self):
 """
 Returns the network discovery timeout.

 Returns:
 Float: Network discovery timeout.

 Raises:
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 """
 tout = self._local_xbee.get_parameter(ATStringCommand.NT, apply=False)

 return utils.bytes_to_int(tout) / 10.0

[docs] def set_discovery_timeout(self, discovery_timeout):
 """
 Sets the discovery network timeout.

 Args:
 discovery_timeout (Float): Timeout in seconds.

 Raises:
 ValueError: If `discovery_timeout` is not between the allowed
 minimum and maximum values.
 TimeoutException: If response is not received before the read
 timeout expires.
 XBeeException: If the XBee's communication interface is closed.
 InvalidOperatingModeException: If the XBee's operating mode is not
 API or ESCAPED API. This method only checks the cached value of
 the operating mode.
 ATCommandException: If response is not as expected.
 """
 min_nt, max_nt = self.get_nt_limits(self._local_xbee.get_protocol())
 if discovery_timeout < min_nt or discovery_timeout > max_nt:
 raise ValueError("Value must be between %f and %f seconds"
 % (min_nt, max_nt))

 discovery_timeout *= 10 # seconds to 100ms
 timeout = bytearray([int(discovery_timeout)])
 self._local_xbee.set_parameter(ATStringCommand.NT, timeout,
 apply=True)

[docs] def get_deep_discovery_timeouts(self):
 """
 Gets deep discovery network timeouts.
 These timeouts are only applicable for "deep" discovery
 (see :meth:`~.XBeeNetwork.start_discovery_process`)

 Returns:
 Tuple (Float, Float, Float): Tuple containing:
 - node_timeout (Float): Maximum duration in seconds of the
 discovery process per node. This is used to find neighbors
 of a node. This timeout is highly dependent on the nature of
 the network:

 .. hlist::
 :columns: 1

 * It should be greater than the highest 'NT' (Node
 Discovery Timeout) of your network.
 * And include enough time to let the message propagate
 depending on the sleep cycle of your network nodes.

 - time_bw_nodes (Float): Time to wait between node neighbors
 requests. Use this setting not to saturate your network:

 .. hlist::
 :columns: 1

 * For 'Cascade', the number of seconds to wait after
 completion of the neighbor discovery process of the
 previous node.
 * For 'Flood', the minimum time to wait between each
 node's neighbor requests.

 - time_bw_scans (Float): Time to wait before starting a new
 network scan.

 .. seealso::
 | :meth:`.XBeeNetwork.set_deep_discovery_timeouts`
 | :meth:`.XBeeNetwork.start_discovery_process`
 """
 return self._node_timeout, self.__time_bw_nodes, self.__time_bw_scans

[docs] def set_deep_discovery_timeouts(self, node_timeout=None, time_bw_requests=None, time_bw_scans=None):
 """
 Sets deep discovery network timeouts.
 These timeouts are only applicable for "deep" discovery
 (see :meth:`~.XBeeNetwork.start_discovery_process`)

 node_timeout (Float, optional, default=`None`):
 Maximum duration in seconds of the discovery process used to find
 neighbors of a node. If `None` already configured timeouts are used.

 time_bw_requests (Float, optional, default=`DEFAULT_TIME_BETWEEN_REQUESTS`): Time to wait
 between node neighbors requests.
 It must be between :const:`MIN_TIME_BETWEEN_REQUESTS` and
 :const:`MAX_TIME_BETWEEN_REQUESTS` seconds inclusive. Use this
 setting not to saturate your network:

 .. hlist::
 :columns: 1

 * For 'Cascade', the number of seconds to wait after
 completion of the neighbor discovery process of the
 previous node.
 * For 'Flood', the minimum time to wait between each node's
 neighbor requests.

 time_bw_scans (Float, optional, default=`DEFAULT_TIME_BETWEEN_SCANS`): Time to wait
 before starting a new network scan.
 It must be between :const:`MIN_TIME_BETWEEN_SCANS` and
 :const:`MAX_TIME_BETWEEN_SCANS` seconds inclusive.

 Raises:
 ValueError: if `node_timeout`, `time_bw_requests` or
 `time_bw_scans` are not between their corresponding limits.

 .. seealso::
 | :meth:`.XBeeNetwork.get_deep_discovery_timeouts`
 | :meth:`.XBeeNetwork.start_discovery_process`
 """
 min_nt, max_nt = self.get_nt_limits(self._local_xbee.get_protocol())

 if node_timeout and (node_timeout < min_nt or node_timeout > max_nt):
 raise ValueError("Node timeout must be between %f and %f seconds"
 % (min_nt, max_nt))

 if (time_bw_requests
 and (time_bw_requests < self.MIN_TIME_BETWEEN_REQUESTS
 or time_bw_requests > self.MAX_TIME_BETWEEN_REQUESTS)):
 raise ValueError("Time between neighbor requests must be between %d and %d" %
 (self.MIN_TIME_BETWEEN_REQUESTS,
 self.MAX_TIME_BETWEEN_REQUESTS))

 if (time_bw_scans
 and (time_bw_scans < self.MIN_TIME_BETWEEN_SCANS
 or time_bw_scans > self.MAX_TIME_BETWEEN_SCANS)):
 raise ValueError("Time between scans must be between %d and %d" %
 (self.MIN_TIME_BETWEEN_SCANS,
 self.MAX_TIME_BETWEEN_SCANS))

 self._node_timeout = node_timeout
 self.__time_bw_nodes = time_bw_requests if time_bw_requests is not None \
 else self.DEFAULT_TIME_BETWEEN_REQUESTS
 self.__time_bw_scans = time_bw_scans if time_bw_scans is not None \
 else self.DEFAULT_TIME_BETWEEN_SCANS

[docs] @classmethod
 def get_nt_limits(cls, protocol):
 """
 Returns a tuple with the minimum and maximum values for the 'NT'
 value depending on the protocol.

 Returns:
 Tuple (Float, Float): Minimum value in seconds, maximum value in
 seconds.
 """
 if protocol in (XBeeProtocol.RAW_802_15_4, XBeeProtocol.ZIGBEE,
 XBeeProtocol.DIGI_MESH):
 return cls.NT_LIMITS[protocol]

 # Calculate the minimum of the min values and the maximum of max values
 min_nt = min(map(lambda p: p[0], cls.NT_LIMITS.values()))
 max_nt = max(map(lambda p: p[1], cls.NT_LIMITS.values()))

 return min_nt, max_nt

[docs] def is_node_in_network(self, node):
 """
 Checks if the provided node is in the network or if it is the local XBee.

 Args:
 node (:class:`.AbstractXBeeDevice`): The node to check.

 Returns:
 Boolean: `True` if the node is in the network, `False` otherwise.

 Raises:
 ValueError: If `node` is `None`.
 """
 if not node:
 raise ValueError("Node cannot be None")

 x64 = node.get_64bit_addr()
 if XBee64BitAddress.is_known_node_addr(x64):
 return self.get_device_by_64(x64) is not None

 x16 = node.get_16bit_addr()
 if XBee16BitAddress.is_known_node_addr(x16):
 return self.get_device_by_16(x16) is not None

 node_id = node.get_node_id()
 if node_id:
 return self.get_device_by_node_id(node_id) is not None

 return False

[docs] def get_device_by_64(self, x64bit_addr):
 """
 Returns the XBee in the network whose 64-bit address matches the given one.

 Args:
 x64bit_addr (:class:`XBee64BitAddress`): 64-bit address of the
 node to retrieve.

 Returns:
 :class:`.AbstractXBeeDevice`: XBee in the network or `None` if not found.

 Raises:
 ValueError: If `x64bit_addr` is `None` or unknown.
 """
 if x64bit_addr is None:
 raise ValueError("64-bit address cannot be None")
 if not XBee64BitAddress.is_known_node_addr(x64bit_addr):
 raise ValueError("64-bit address cannot be unknown")

 if self._local_xbee.get_64bit_addr() == x64bit_addr:
 return self._local_xbee

 with self.__lock:
 for device in self.__devices_list:
 if device.get_64bit_addr() is not None and device.get_64bit_addr() == x64bit_addr:
 return device

 return None

[docs] def get_device_by_16(self, x16bit_addr):
 """
 Returns the XBee in the network whose 16-bit address matches the given one.

 Args:
 x16bit_addr (:class:`XBee16BitAddress`): 16-bit address of the node
 to retrieve.

 Returns:
 :class:`.AbstractXBeeDevice`: XBee in the network or `Non` if not found.

 Raises:
 ValueError: If `x16bit_addr` is `None` or unknown.
 """
 if self._local_xbee.get_protocol() == XBeeProtocol.DIGI_MESH:
 raise ValueError("DigiMesh protocol does not support 16-bit addressing")
 if self._local_xbee.get_protocol() == XBeeProtocol.DIGI_POINT:
 raise ValueError("Point-to-Multipoint protocol does not support 16-bit addressing")
 if x16bit_addr is None:
 raise ValueError("16-bit address cannot be None")
 if not XBee16BitAddress.is_known_node_addr(x16bit_addr):
 raise ValueError("16-bit address cannot be unknown")

 if self._local_xbee.get_16bit_addr() == x16bit_addr:
 return self._local_xbee

 with self.__lock:
 for device in self.__devices_list:
 if device.get_16bit_addr() is not None and device.get_16bit_addr() == x16bit_addr:
 return device

 return None

[docs] def get_device_by_node_id(self, node_id):
 """
 Returns the XBee in the network whose node identifier matches the given one.

 Args:
 node_id (String): Node identifier of the node to retrieve.

 Returns:
 :class:`.AbstractXBeeDevice`: XBee in the network or `None` if not found.

 Raises:
 ValueError: If `node_id` is `None`.
 """
 if node_id is None:
 raise ValueError("Node ID cannot be None")

 if self._local_xbee.get_node_id() == node_id:
 return self._local_xbee

 with self.__lock:
 for device in self.__devices_list:
 if device.get_node_id() is not None and device.get_node_id() == node_id:
 return device

 return None

[docs] def add_if_not_exist(self, x64bit_addr=None, x16bit_addr=None, node_id=None):
 """
 Adds an XBee with the provided information if it does not exist in the
 current network.

 If the XBee already exists, its data is updated with the provided
 information.

 If no valid address is provided (`x64bit_addr`, `x16bit_addr`), `None`
 is returned.

 Args:
 x64bit_addr (:class:`XBee64BitAddress`, optional, default=`None`):
 64-bit address.
 x16bit_addr (:class:`XBee16BitAddress`, optional, default=`None`):
 16-bit address.
 node_id (String, optional, default=`None`): Node identifier.

 Returns:
 :class:`.AbstractXBeeDevice`: the remote XBee with the updated
 information. If the XBee was not in the list yet, this method
 returns the given XBee without changes.
 """
 if not (XBee64BitAddress.is_known_node_addr(x64bit_addr)
 or XBee16BitAddress.is_known_node_addr(x16bit_addr)):
 return None

 if x64bit_addr == self._local_xbee.get_64bit_addr():
 return self._local_xbee

 return self._add_remote_from_attr(NetworkEventReason.MANUAL, x64bit_addr=x64bit_addr,
 x16bit_addr=x16bit_addr, node_id=node_id)

[docs] def add_remote(self, remote_xbee):
 """
 Adds the provided remote XBee to the network if it is not in yet.

 If the XBee is already in the network, its data is updated with the
 information of the provided XBee that are not `None`.

 Args:
 remote_xbee (:class:`.RemoteXBeeDevice`): Remote XBee to add.

 Returns:
 :class:`.RemoteXBeeDevice`: Provided XBee with updated data. If
 the XBee was not in the list, it returns it without changes.
 """
 return self._add_remote(remote_xbee, NetworkEventReason.MANUAL)

 def _add_remote(self, remote_xbee, reason):
 """
 Adds the provided remote XBee to the network if it is not in yet.

 If the XBee is already in the network, its data is updated with the
 information of the provided XBee that are not `None`.

 Args:
 remote_xbee (:class:`.RemoteXBeeDevice`): Remote XBee to add.
 reason (:class:`.NetworkEventReason`): Reason of the addition.

 Returns:
 :class:`.AbstractXBeeDevice`: Provided XBee with updated data. If
 the XBee was not in the list, it returns it without changes.
 """
 if not remote_xbee:
 return remote_xbee

 found = None

 # Check if it is the local device
 if (not remote_xbee.is_remote()
 or remote_xbee == remote_xbee.get_local_xbee_device()):
 found = remote_xbee if not remote_xbee.is_remote() \
 else remote_xbee.get_local_xbee_device()
 # Look for the remote in the network list
 else:
 x64 = remote_xbee.get_64bit_addr()
 x16 = remote_xbee.get_16bit_addr()
 is_x64_known_addr = XBee64BitAddress.is_known_node_addr(x64)
 is_x16_known_addr = XBee16BitAddress.is_known_node_addr(x16)

 if not is_x64_known_addr and not is_x16_known_addr:
 return None

 # If node does not have a valid 64-bit address, ask for it only if
 # its 16-bit is valid
 if not is_x64_known_addr and is_x16_known_addr:
 # It may happen the node is in the network cache and can be
 # found by its 16-bit address. In this case, this would not be
 # necessary. But, by always asking, we are trying to keep the
 # 64-bit address as the main key for nodes and reducing the
 # possibilities of considering the same node what actually are
 # different physical but maybe with the same 16-bit address
 # (bad configured in case of 802.15.4) or with a not updated
 # 16-bit address (in a Zigbee network)
 remote_xbee._initializing = True
 # Ask for the 64-bit address
 try:
 sh_val = remote_xbee.get_parameter(ATStringCommand.SH, apply=False)
 sl_val = remote_xbee.get_parameter(ATStringCommand.SL, apply=False)
 x64 = XBee64BitAddress(sh_val + sl_val)
 is_x64_known_addr = XBee64BitAddress.is_known_node_addr(x64)
 remote_xbee._64bit_addr = x64
 except XBeeException as exc:
 self._log.debug(
 "Error while trying to get 64-bit address of XBee (%s - %s): %s",
 remote_xbee, x16, str(exc))
 remote_xbee._initializing = False

 # Look for the node in the cache by its 64-bit address
 if is_x64_known_addr:
 with self.__lock:
 if remote_xbee in self.__devices_list:
 found = self.__devices_list[self.__devices_list.index(remote_xbee)]

 # If not found, look for the node in the cache by its 16-bit address
 if not found:
 found_16 = None
 if is_x16_known_addr:
 found_16 = self.get_device_by_16(x16)

 # For an invalid 64-bit address of the node to add, use the
 # node found by its 16-bit address in the cache
 if not is_x64_known_addr:
 found = found_16
 # For a valid 64-bit address of the node to add, check if the
 # node with the same 16-bit address in the cache has a valid
 # 64-bit address. If not, consider this addition an update of
 # the existing entry (found by the 16-bit address)
 elif (found_16
 and not XBee64BitAddress.is_known_node_addr(
 found_16.get_64bit_addr())):
 found = found_16

 if found:
 already_in_scan = False
 if reason in (NetworkEventReason.NEIGHBOR, NetworkEventReason.DISCOVERED):
 already_in_scan = found.scan_counter == self.__scan_counter
 if not already_in_scan:
 found._scan_counter = self.__scan_counter

 is_init = found._initializing and reason == NetworkEventReason.RECEIVED_MSG
 if not is_init and found.update_device_data_from(remote_xbee):
 self._network_modified(NetworkEventType.UPDATE, reason, node=found)
 found._reachable = True

 return None if already_in_scan else found

 if reason in (NetworkEventReason.NEIGHBOR, NetworkEventReason.DISCOVERED):
 remote_xbee._scan_counter = self.__scan_counter

 self.__devices_list.append(remote_xbee)
 self._network_modified(NetworkEventType.ADD, reason, node=remote_xbee)

 return remote_xbee

 def _add_remote_from_attr(self, reason, x64bit_addr=None, x16bit_addr=None, node_id=None,
 role=Role.UNKNOWN, hw_version=None, fw_version=None, op_mode=None):
 """
 Creates a new XBee using the provided data and adds it to the network
 if it is not included yet.

 If the XBee is already in the network, its data is updated with the
 provided information.

 Args:
 reason (:class:`.NetworkEventReason`): The reason of the addition.
 x64bit_addr (:class:`.XBee64BitAddress`, optional,
 default=`None`): The 64-bit address of the remote XBee.
 x16bit_addr (:class:`.XBee16BitAddress`, optional,
 default=`None`): The 16-bit address of the remote XBee.
 node_id (String, optional, default=`None`): The node identifier of the remote XBee.
 role (:class:`.Role`, optional, default=`Role.UNKNOWN`): The role
 of the remote XBee.
 hw_version (:class:`.HardwareVersion`, optional, default=`None`): The hardware version.
 fw_version (bytearray, optional, default=`None`): The firmware version.
 op_mode (:class:`.OperatingMode`, optional, default=`None`): The
 operating mode, useful to update the local XBee.

 Returns:
 :class:`.RemoteXBeeDevice`: Remote XBee generated from the provided
 data if the data provided is correct and the XBee protocol is
 valid, `None` otherwise.

 .. seealso::
 | :class:`.NetworkEventReason`
 | :class:`digi.xbee.models.address.XBee16BitAddress`
 | :class:`digi.xbee.models.address.XBee64BitAddress`
 | :class:`digi.xbee.models.hw.HardwareVersion`
 | :class:`digi.xbee.models.protocol.Role`
 | :class:`digi.xbee.models.mode.OperatingMode`
 """
 return self._add_remote(
 self.__create_remote(x64bit_addr=x64bit_addr, x16bit_addr=x16bit_addr,
 node_id=node_id, role=role, hw_version=hw_version,
 fw_version=fw_version, op_mode=op_mode), reason)

[docs] def add_remotes(self, remote_xbees):
 """
 Adds a list of remote XBee nodes to the network.

 If any node in the list is already in the network, its data is updated
 with the information of the corresponding XBee in the list.

 Args:
 remote_xbees (List): List of :class:`.RemoteXBeeDevice` to add.
 """
 for rem in remote_xbees:
 self.add_remote(rem)

 def _remove_device(self, remote_xbee, reason, force=True):
 """
 Removes the provided remote XBee from the network.

 Args:
 remote_xbee (:class:`.RemoteXBeeDevice`): Remote XBee to remove.
 reason (:class:`.NetworkEventReason`): Reason of the removal.
 force (Boolean, optional, default=`True`): `True` to force the
 deletion of the node, `False` otherwise.

 Raises:
 ValueError: If the provided `remote_xbee` is not in the network.
 """
 if not remote_xbee:
 return

 with self.__lock:
 if remote_xbee not in self.__devices_list:
 return

 i = self.__devices_list.index(remote_xbee)
 found_node = self.__devices_list[i]
 if force:
 self.__devices_list.remove(found_node)
 if found_node.reachable:
 self._network_modified(NetworkEventType.DEL, reason, node=remote_xbee)

 node_b_connections = self.__get_connections_for_node_a_b(found_node, node_a=False)

 # Remove connections with this node as one of its ends
 self.__remove_node_connections(found_node, only_as_node_a=True, force=force)

 if force:
 self.del_packet_received_from_callback(found_node, callb=None)
 else:
 # Only for Zigbee, mark non-reachable end devices
 if (remote_xbee.get_protocol() in (XBeeProtocol.ZIGBEE,
 XBeeProtocol.SMART_ENERGY)
 and remote_xbee.get_role() == Role.END_DEVICE):
 for conn in node_b_connections:
 # End devices do not have connections from them (not asking
 # for their routing and neighbor tables), but if their
 # parent is not reachable, they are not either
 if not conn.node_a.reachable:
 self._set_node_reachable(remote_xbee, False)
 break

[docs] def remove_device(self, remote_xbee):
 """
 Removes the provided remote XBee from the network.

 Args:
 remote_xbee (:class:`.RemoteXBeeDevice`): Remote XBee to remove.

 Raises:
 ValueError: If the provided `remote_xbee` is not in the network.
 """
 self._remove_device(remote_xbee, NetworkEventReason.MANUAL, force=True)

[docs] def get_discovery_callbacks(self):
 """
 Returns the API callbacks that are used in the device discovery process.

 This callbacks notify the user callbacks for each XBee discovered.

 Returns:
 Tuple (Function, Function): Callback for generic devices discovery
 process, callback for discovery specific XBee ops.
 """
 def discovery_gen_callback(xbee_packet):
 """
 Callback for generic devices discovery process.
 """
 # if the discovering process is not running, stop.
 if not self.__discovering:
 return
 # Check the packet
 nd_id = self.__check_nd_packet(xbee_packet)
 if nd_id == XBeeNetwork.ND_PACKET_FINISH:
 # if it's a ND finish signal, stop wait for packets
 self.__discover_result = xbee_packet.status
 self._stop_event.set()
 elif nd_id == XBeeNetwork.ND_PACKET_REMOTE:
 x16, x64, n_id, role, x64_parent = \
 self.__get_data_for_remote(xbee_packet.command_value)
 remote = self.__create_remote(x64bit_addr=x64, x16bit_addr=x16,
 node_id=n_id, role=role,
 parent_addr=x64_parent)
 if remote is not None:
 # If remote was successfully created and it is not in the
 # XBee list, add it and notify callbacks.
 self._log.debug(" o Discovered neighbor of %s: %s",
 self._local_xbee, remote)

 node = self._add_remote(remote, NetworkEventReason.DISCOVERED)
 if not node:
 # Node already in network for this scan
 node = self.get_device_by_64(remote.get_64bit_addr())
 self._log.debug(
 " - NODE already in network in this scan (scan: %d) %s",
 self.__scan_counter, node)
 else:
 # Do not add the neighbors to the FIFO, because
 # only the local device performs an 'ND'
 self._log.debug(" - Added to network (scan: %d)", node.scan_counter)

 # Do not add a connection to the same node (the local one)
 if node != self._local_xbee:
 # Add connection (there is not RSSI info for a 'ND')
 from digi.xbee.models.zdo import RouteStatus
 if self._add_connection(Connection(
 self._local_xbee, node, LinkQuality.UNKNOWN, LinkQuality.UNKNOWN,
 RouteStatus.ACTIVE, RouteStatus.ACTIVE)):
 self._log.debug(" - Added connection: %s >>> %s",
 self._local_xbee, node)
 else:
 self._log.debug(
 " - CONNECTION already in network in this scan (scan: %d) %s >>> %s",
 self.__scan_counter, self._local_xbee, node)

 # Always add the XBee device to the last discovered devices list:
 self.__last_search_dev_list.append(node)
 self._device_discovered(node)

 def discovery_spec_callback(xbee_packet):
 """
 This callback is used for discovery specific XBee device ops.
 """
 # if __sought_device_id is None, exit (not searching XBee device).
 if self.__sought_device_id is None:
 return
 # Check the packet
 nd_id = self.__check_nd_packet(xbee_packet)
 if nd_id == XBeeNetwork.ND_PACKET_FINISH:
 # if it's a ND finish signal, stop wait for packets
 self.__discover_result = xbee_packet.status
 if xbee_packet.status == ATCommandStatus.OK:
 with self.__lock:
 self.__sought_device_id = None
 self.stop_discovery_process()
 elif nd_id == XBeeNetwork.ND_PACKET_REMOTE:
 # if it is not a finish signal, it contains info about a remote XBee.
 x16, x64, n_id, role, x64_parent = \
 self.__get_data_for_remote(xbee_packet.command_value)
 remote = self.__create_remote(x64bit_addr=x64, x16bit_addr=x16,
 node_id=n_id, role=role,
 parent_addr=x64_parent)
 # if it's the sought XBee device, put it in the proper variable.
 if self.__sought_device_id == remote.get_node_id():
 with self.__lock:
 self.__discovered_device = remote
 self.__sought_device_id = None
 self.stop_discovery_process()

 return discovery_gen_callback, discovery_spec_callback

 def _get_discovery_thread(self):
 """
 Returns the network discovery thread.

 Used to determine whether the discovery thread is alive or not.

 Returns:
 :class:`.Thread`: Network discovery thread.
 """
 return self.__discovery_thread

 @staticmethod
 def __check_nd_packet(xbee_packet):
 """
 Checks if the provided XBee packet is a 'ND' response. If so, checks if
 is the 'end' signal of the discovery process or if it has information
 about a remote XBee.

 Returns:
 Integer: ID that indicates if the packet is a finish discovery
 signal or if it contains information about a remote XBee, or
 `None` if `xbee_packet` is not a response for an 'ND' command.

 * :attr:`.XBeeNetwork.ND_PACKET_FINISH`: if `xbee_packet` is
 an end signal.
 * :attr:`.XBeeNetwork.ND_PACKET_REMOTE`: if `xbee_packet` has
 info about a remote XBee.
 """
 if (xbee_packet.get_frame_type() == ApiFrameType.AT_COMMAND_RESPONSE
 and xbee_packet.command.upper() == ATStringCommand.ND.command):
 if xbee_packet.command_value is None or len(xbee_packet.command_value) == 0:
 return XBeeNetwork.ND_PACKET_FINISH
 return XBeeNetwork.ND_PACKET_REMOTE

 return None

 def __discover_devices_and_notify_callbacks(self, discover_network=False):
 """
 Blocking method. Performs a discovery operation, waits until it finishes
 (timeout or 'end' packet for 802.15.4), and notifies callbacks.

 Args:
 discover_network (Boolean, optional, default=`False`): `True` to
 discovery the full network with connections between nodes,
 `False` to only discover nodes with a single 'ND'.
 """
 self._stop_event.clear()
 self.__last_search_dev_list.clear()
 self.__discovering = True
 self.__discover_result = None

 if not discover_network:
 status = self.__discover_devices()
 self._discovery_done(self.__active_processes)
 else:
 status = self._discover_full_network()

 self._log.info("End network discovery for '%s'", self._local_xbee)
 self.__device_discovery_finished(status if status else NetworkDiscoveryStatus.SUCCESS)

 def _discover_full_network(self):
 """
 Discovers the network of the local node.

 Returns:
 :class:`digi.xbee.models.status.NetworkDiscoveryStatus`: Resulting
 status of the discovery process.
 """
 try:
 code = self.__init_discovery(self._nodes_queue)
 if code != NetworkDiscoveryStatus.SUCCESS:
 return code

 while (self.__stop_scan == self.SCAN_TIL_CANCEL
 or self.__scan_counter < self.__stop_scan):

 if self.__scan_counter > 0:
 self._log.debug("")
 self._log.debug(" [*] Waiting %f seconds to start next scan",
 self.__time_bw_scans)
 code = self.__wait_checking(self.__time_bw_scans)
 if code != NetworkDiscoveryStatus.SUCCESS:
 return code

 self.__init_scan()

 # Check for cancel
 if self._stop_event.is_set():
 return NetworkDiscoveryStatus.CANCEL

 code = self.__discover_network(self._nodes_queue, self.__active_processes,
 self._node_timeout)
 if code != NetworkDiscoveryStatus.SUCCESS:
 return code

 # Purge network
 self.__purge(force=self.__rm_not_discovered_in_last_scan)

 # Notify end scan
 self.__end_scan_cbs(self.__scan_counter, self.__stop_scan)

 return code
 finally:
 self._discovery_done(self.__active_processes)

 def __init_discovery(self, nodes_queue):
 """
 Initializes the discovery process before starting any network scan:
 * Initializes the scan counter
 * Removes all the nodes from the FIFO
 * Prepares the local XBee to start the process

 Args:
 nodes_queue (:class:`queue.Queue`): FIFO where the nodes to
 discover their neighbors are stored.

 Returns:
 :class:`.NetworkDiscoveryStatus`: Resulting status of the process.
 """
 # Initialize the scan number
 self.__scan_counter = 0

 # Initialize all nodes/connections scan counter
 with self.__lock:
 for xb_item in self.__devices_list:
 xb_item._scan_counter = self.__scan_counter

 with self.__conn_lock:
 for conn_item in self.__connections:
 conn_item.scan_counter_a2b = self.__scan_counter
 conn_item.scan_counter_b2a = self.__scan_counter

 # Clear the nodes FIFO
 while not nodes_queue.empty():
 try:
 nodes_queue.get(block=False)
 except Empty:
 continue
 nodes_queue.task_done()

 self.__purge(force=self.__rm_not_discovered_in_last_scan)

 try:
 self._prepare_network_discovery()
 except XBeeException as exc:
 self._log.warning(str(exc))

 return NetworkDiscoveryStatus.SUCCESS

 def _prepare_network_discovery(self):
 """
 Performs XBee configuration before starting the full network discovery.
 This saves the current 'NT' value and sets it to `self._node_timeout`.
 """
 self._log.debug("[*] Preconfiguring %s", ATStringCommand.NT.command)

 try:
 self.__saved_nt = self.get_discovery_timeout()

 if self._node_timeout is None:
 self._node_timeout = self.__saved_nt

 # Do not configure NT if it is already
 if self.__saved_nt == self._node_timeout:
 self.__saved_nt = None
 return

 self.set_discovery_timeout(self._node_timeout)
 except XBeeException as exc:
 raise XBeeException(
 "Could not prepare XBee for network discovery: %s" % str(exc))

 def __init_scan(self):
 """
 Prepares a network to start a new scan.
 """
 self.__increment_scan_counter()
 self._local_xbee._scan_counter = self.__scan_counter

 self.__last_request_date = 0

 # Notify start scan
 self.__init_scan_cbs(self.__scan_counter, self.__stop_scan)

 self._log.debug("\n")
 self._log.debug("================================")
 self._log.debug(" %d network scan", self.__scan_counter)
 self._log.debug(" Mode: %s (%d)", self.__mode.description, self.__mode.code)
 self._log.debug(" Stop after scan: %d", self.__stop_scan)
 self._log.debug(" Timeout/node: %s", self._node_timeout
 if self._node_timeout is not None else "-")
 self._log.debug("================================")

 def __discover_network(self, nodes_queue, active_processes, node_timeout):
 """
 Discovers the network of the local node.

 Args:
 nodes_queue (:class:`queue.Queue`): FIFO where the nodes to
 discover their neighbors are stored.
 active_processes (List): List of active discovery processes.
 node_timeout (Float): Maximum number of seconds to discover
 neighbors for each node.

 Returns:
 :class:`.NetworkDiscoveryStatus`: Resulting status of the process.
 """
 code = NetworkDiscoveryStatus.SUCCESS

 # Add local node to the FIFO
 nodes_queue.put(self._local_xbee)

 while True:
 # Wait to have items in the nodes FIFO while some nodes are being discovered,
 # because them can fill the FIFO with new nodes to ask
 while nodes_queue.empty() and active_processes:
 self._log.debug("")
 self._log.debug(
 " [*] Waiting for more nodes to request or finishing active processes (%d)\n",
 len(active_processes))
 for act_proc in active_processes:
 self._log.debug(" Waiting for %s", act_proc)

 code = self.__wait_checking(self.__TIME_FOR_NEW_NODES_IN_FIFO)
 if code == NetworkDiscoveryStatus.CANCEL:
 return code

 # Check if there are more nodes in the FIFO
 while not nodes_queue.empty():
 # Process the next node
 code = self.__discover_next_node_neighbors(nodes_queue, active_processes,
 node_timeout)
 # Only stop if the process has been cancelled, otherwise continue with the
 # next node
 if code == NetworkDiscoveryStatus.CANCEL:
 return code

 # For cascade, wait until previous processes finish
 if self.__mode == NeighborDiscoveryMode.CASCADE:
 while active_processes:
 code = self.__wait_checking(
 self.__TIME_WHILE_FINISH_PREVIOUS_PROCESS)
 if code == NetworkDiscoveryStatus.CANCEL:
 return code

 # Check if all processes finish
 if not active_processes:
 self._check_not_discovered_nodes(self.__devices_list, nodes_queue)
 if not nodes_queue.empty():
 continue
 break

 return code

 def __discover_next_node_neighbors(self, nodes_queue, active_processes, node_timeout):
 """
 Discovers the neighbors of the next node in the given FIFO.

 Args:
 nodes_queue (:class:`queue.Queue`): FIFO where the nodes to
 discover their neighbors are stored.
 active_processes (List): List of active discovery processes.
 node_timeout (Float): Maximum number of seconds to discover
 neighbors for each node.

 Returns:
 :class:`.NetworkDiscoveryStatus`: Resulting status of the process.
 """
 code = NetworkDiscoveryStatus.SUCCESS

 # Check for cancel
 if self._stop_event.is_set():
 return NetworkDiscoveryStatus.CANCEL

 requester = nodes_queue.get()

 # Wait between nodes but not for the local one
 if requester != self._local_xbee:
 time_to_wait = self.__time_bw_nodes
 if self.__mode != NeighborDiscoveryMode.CASCADE:
 time_to_wait = self.__time_bw_nodes + (time.time() - self.__last_request_date)
 self._log.debug("")
 self._log.debug(" [*] Waiting %f before sending next request to %s",
 time_to_wait if time_to_wait > 0 else 0.0, requester)
 code = self.__wait_checking(time_to_wait)
 if code != NetworkDiscoveryStatus.SUCCESS:
 return code

 # If the previous request finished, discover node neighbors
 if not requester.get_64bit_addr() in active_processes:
 self._log.debug("")
 self._log.debug(" [*] Discovering neighbors of %s", requester)
 self.__last_request_date = time.time()
 return self._discover_neighbors(requester, nodes_queue, active_processes, node_timeout)

 self._log.debug("")
 self._log.debug(" [*] Previous request for %s did not finish...", requester)
 nodes_queue.put(requester)

 return code

 def _check_not_discovered_nodes(self, devices_list, nodes_queue):
 """
 Checks not discovered nodes in the current scan, and add them to the
 FIFO if necessary.

 Args:
 devices_list (List): List of nodes to check.
 nodes_queue (:class:`queue.Queue`): FIFO where the nodes to
 discover their neighbors are stored.
 """
 # Check for nodes in the network not discovered in this scan and ensure
 # they are reachable by directly asking them for its NI
 for n_item in devices_list:
 if n_item.scan_counter != self.__scan_counter:
 self._log.debug(" [*] Checking not discovered node %s... (scan %d)",
 n_item, self.__scan_counter)
 n_item._scan_counter = self.__scan_counter
 try:
 n_item.get_parameter(ATStringCommand.NI, apply=False)
 n_item._reachable = True
 # Update also the connection
 from digi.xbee.models.zdo import RouteStatus
 if self._add_connection(Connection(
 self._local_xbee, n_item, LinkQuality.UNKNOWN,
 LinkQuality.UNKNOWN, RouteStatus.ACTIVE, RouteStatus.ACTIVE)):
 self._log.debug(" - Added connection: %s >>> %s",
 self._local_xbee, n_item)
 except XBeeException:
 n_item._reachable = False
 self._log.debug(" - Reachable: %s (scan %d)",
 n_item._reachable, self.__scan_counter)

 def _discover_neighbors(self, requester, nodes_queue, active_processes, node_timeout):
 """
 Starts the process to discover the neighbors of the given node.

 Args:
 requester(:class:`.AbstractXBeeDevice`): XBee to discover its neighbors.
 nodes_queue (:class:`queue.Queue`): FIFO where the nodes to
 discover their neighbors are stored.
 active_processes (List): List of active discovery processes.
 node_timeout (Float): Timeout to discover neighbors (seconds).

 Returns:
 :class:`.NetworkDiscoveryStatus`: Resulting status of the process.
 """
 code = self.__discover_devices()
 if not code:
 return NetworkDiscoveryStatus.SUCCESS

 # Do not stop scans unless the process is cancel, not because of an error.
 if code is NetworkDiscoveryStatus.ERROR_NET_DISCOVER:
 self._stop_event.clear()
 return NetworkDiscoveryStatus.SUCCESS

 return code

 def __discover_devices(self, node_id=None):
 """
 Blocking method. Performs a device discovery in the network and waits
 until it finish (timeout or 'end' packet for 802.15.4)

 Args:
 node_id (String, optional, default=`None`): Node identifier of the
 remote XBee to discover.

 Returns:
 :class:`.NetworkDiscoveryStatus`: The error code, `None` if
 finished successfully.
 """
 self.__active_processes.append(str(self._local_xbee.get_64bit_addr()))

 try:
 timeout = self._calculate_timeout(
 default_timeout=XBeeNetwork._DEFAULT_DISCOVERY_TIMEOUT)
 # send "ND" async
 self._local_xbee.send_packet(
 ATCommPacket(self._local_xbee.get_next_frame_id(),
 ATStringCommand.ND.command,
 parameter=None if node_id is None
 else bytearray(node_id, encoding='utf8', errors='ignore')),
 sync=False)

 self.__nd_processes.update({str(self._local_xbee.get_64bit_addr()): self})

 op_times_out = not self._stop_event.wait(timeout)

 self.__nd_processes.pop(str(self._local_xbee), None)

 if (op_times_out or not self.__discover_result
 or self.__discover_result == ATCommandStatus.OK):
 err_code = None
 elif self.__discover_result and self.__discover_result != ATCommandStatus.OK:
 err_code = NetworkDiscoveryStatus.ERROR_NET_DISCOVER
 else:
 err_code = NetworkDiscoveryStatus.CANCEL

 self._node_discovery_process_finished(self._local_xbee, code=err_code,
 error=err_code.description if err_code else None)

 return err_code
 except Exception as exc:
 self._local_xbee.log.exception(exc)

 def _node_discovery_process_finished(self, requester, code=None, error=None):
 """
 Notifies the discovery process has finished successfully for `requester` node.

 Args:
 requester (:class:`.AbstractXBeeDevice`): XBee that requests the discovery process.
 code (:class:`.NetworkDiscoveryStatus`): Error code for the process.
 error (String): Error message, `None` if successfully finished.
 """
 # Purge the connections of the node
 self._log.debug("")
 self._log.debug(" [*] Purging node connections of %s", requester)
 purged = self.__purge_node_connections(requester,
 force=self.__rm_not_discovered_in_last_scan)
 if self.__rm_not_discovered_in_last_scan:
 for conn in purged:
 self._log.debug(" o Removed connection: %s", conn)

 # Remove the discovery process from the active processes list
 if str(requester.get_64bit_addr()) in self.__active_processes:
 self.__active_processes.remove(str(requester.get_64bit_addr()))

 if code and code not in (NetworkDiscoveryStatus.SUCCESS,
 NetworkDiscoveryStatus.CANCEL) or error:
 self._log.debug("[***** ERROR] During neighbors scan of %s", requester)
 if error:
 self._log.debug(" %s", error)
 else:
 self._log.debug(" %s", code.description)

 self._handle_special_errors(requester, error)
 else:
 self._log.debug("[!!!] Process finishes for %s - Remaining: %d",
 requester, len(self.__active_processes))

 def _handle_special_errors(self, requester, error):
 """
 Process some special errors.

 Args:
 requester (:class:`.AbstractXBeeDevice`): XBee that requests the discovery process.
 error (String): Error message.
 """
 if not (error.endswith(TransmitStatus.NOT_JOINED_NETWORK.description)
 or error.endswith(TransmitStatus.ADDRESS_NOT_FOUND.description)
 or error.endswith(TransmitStatus.NETWORK_ACK_FAILURE.description)
 or error.endswith("ZDO command not sent")
 or error.endswith("ZDO command answer not received")
 or error.endswith("%s command answer not received" % ATStringCommand.FN.command)
 or error.endswith("Error executing %s command (status: %s (%d))"
 % (ATStringCommand.FN.command,
 ATCommandStatus.TX_FAILURE.description,
 ATCommandStatus.TX_FAILURE.code))):
 return

 # The node is not found so it is not reachable
 self._log.debug(" o [***] Non-reachable: %s -> ERROR %s", requester, error)

 # Do not remove any node here, although the preference is configured
 # to do so. Do it at the end of the scan...
 no_reachables = [requester]

 requester._scan_counter = self.__scan_counter

 # Get the children nodes to mark them as non-reachable
 conn_list = self.__get_connections_for_node_a_b(requester, node_a=True)
 for conn in conn_list:
 child = conn.node_b
 # Child node already discovered in this scan
 if not child or child.scan_counter == self.__scan_counter:
 continue
 # Only the connection with the requester node joins the child to
 # the network so it is not reachable
 if len(self.get_node_connections(child)) <= 1:
 no_reachables.append(child)

 # If the node has more than one connection, we cannot be sure if it
 # will be discovered by other devices later since the scan did not end

 # Mark as non-reachable
 for node in no_reachables:
 self._set_node_reachable(node, False)

 def _discovery_done(self, active_processes):
 """
 Discovery process has finished either due to cancellation, successful
 completion, or failure.

 Args:
 active_processes (List): List of active discovery processes.
 """
 self._restore_network()

 if self.__nd_processes:
 copy = active_processes[:]
 for act_proc in copy:
 nd_proc = self.__nd_processes.get(act_proc)
 if not nd_proc:
 continue
 nd_proc.stop_discovery_process()
 while act_proc in self.__nd_processes:
 time.sleep(0.1)

 self.__nd_processes.clear()
 active_processes.clear()

 with self.__lock:
 self.__discovering = False

 def _restore_network(self):
 """
 Performs XBee configuration after the full network discovery.
 This restores the previous 'NT' value.
 """
 if self.__saved_nt is None:
 return

 self._log.debug("[*] Postconfiguring %s", ATStringCommand.NT.command)
 try:
 self.set_discovery_timeout(self.__saved_nt)
 except XBeeException as exc:
 self._error = "Could not restore XBee after network discovery: %s" % str(exc)

 self.__saved_nt = None

 def _is_802_compatible(self):
 """
 Checks if the device performing the node discovery is a legacy 802.15.4
 device or a S1B device working in compatibility mode.

 Returns:
 Boolean: `True` if the device performing the node discovery is a
 legacy 802.15.4 or S1B in compatibility mode, `False` otherwise.
 """
 if self._local_xbee.get_protocol() != XBeeProtocol.RAW_802_15_4:
 return False
 param = None
 try:
 param = self._local_xbee.get_parameter(ATStringCommand.C8, apply=False)
 except ATCommandException:
 pass
 if param is None or param[0] & 0x2 == 2:
 return True
 return False

 def _calculate_timeout(self, default_timeout=_DEFAULT_DISCOVERY_TIMEOUT):
 """
 Determines the discovery timeout.

 Gets timeout information from the device and applies the proper
 corrections to it.

 If the timeout cannot be determined getting it from the device, this
 method returns the default timeout for discovery operations.

 Args:
 default_timeout (Float): Default value to use in case of error.

 Returns:
 Float: discovery timeout in seconds.
 """
 self._log.debug("[*] Calculating network discovery timeout...")

 if not default_timeout or default_timeout < 0:
 default_timeout = XBeeNetwork._DEFAULT_DISCOVERY_TIMEOUT

 # Read the maximum discovery timeout (N?)
 try:
 discovery_timeout = utils.bytes_to_int(
 self._local_xbee.get_parameter(
 ATStringCommand.N_QUESTION, apply=False)) / 1000
 except XBeeException:
 # If N? does not exist, read the NT parameter.
 self._log.debug("Could not calculate network discovery timeout: "
 "'%s' does not exist, trying with '%s'",
 ATStringCommand.N_QUESTION.command,
 ATStringCommand.NT.command)
 # Read the network timeout (NT)
 try:
 discovery_timeout = self.get_discovery_timeout()
 except XBeeException as exc:
 discovery_timeout = default_timeout
 self._log.warning("Could not calculate network discovery timeout: "
 "Error reading '%s'", ATStringCommand.NT.command)
 self._local_xbee.log.exception(exc)

 # In DigiPoint the network discovery timeout is NT + the
 # network propagation time. It means that if the user sends an AT
 # command just after NT ms, s/he will receive a timeout exception.
 if self._local_xbee.get_protocol() == XBeeProtocol.DIGI_POINT:
 discovery_timeout += XBeeNetwork.__DIGI_POINT_TIMEOUT_CORRECTION

 self._log.debug(" Network discovery timeout: %f s", discovery_timeout)

 return discovery_timeout

 def __create_remote(self, x64bit_addr=XBee64BitAddress.UNKNOWN_ADDRESS,
 x16bit_addr=XBee16BitAddress.UNKNOWN_ADDRESS, node_id=None,
 role=Role.UNKNOWN, parent_addr=None, hw_version=None,
 fw_version=None, op_mode=None):
 """
 Creates and returns a :class:`.RemoteXBeeDevice` from the provided data,
 if the data contains the required information and in the required
 format.

 Args:
 x64bit_addr (:class:`.XBee64BitAddress`, optional,
 default=`XBee64BitAddress.UNKNOWN_ADDRESS`): 64-bit address.
 x16bit_addr (:class:`.XBee16BitAddress`, optional,
 default=`XBee16BitAddress.UNKNOWN_ADDRESS`): 16-bit address.
 node_id (String, optional, default=`None`): Node identifier.
 role (:class:`.Role`, optional, default=`Role.UNKNOWN`): XBee role.
 parent_addr (:class:`.XBee64BitAddress`, optional, default=`None`):
 64-bit address of the parent.
 hw_version (:class:`.HardwareVersion`, optional, default=`None`): Hardware version.
 fw_version (bytearray, optional, default=`None`): Firmware version.
 op_mode (:class:`.OperatingMode`, optional, default=`None`): The
 operating mode, useful to update the local XBee.

 Returns:
 :class:`.RemoteXBeeDevice`: Remote XBee generated from the provided
 data if the data provided is correct and the XBee protocol is
 valid, `None` otherwise.

 .. seealso::
 | :class:`digi.xbee.models.address.XBee16BitAddress`
 | :class:`digi.xbee.models.address.XBee64BitAddress`
 | :class:`digi.xbee.models.hw.HardwareVersion`
 | :class:`digi.xbee.models.protocol.Role`
 | :class:`digi.xbee.models.mode.OperatingMode`
 """
 if x64bit_addr == "local":
 x64bit_addr = self._local_xbee.get_64bit_addr()

 if not (XBee64BitAddress.is_known_node_addr(x64bit_addr)
 or XBee16BitAddress.is_known_node_addr(x16bit_addr)):
 return None

 protocol = self._local_xbee.get_protocol()

 if protocol == XBeeProtocol.ZIGBEE:
 xbee = RemoteZigBeeDevice(self._local_xbee, x64bit_addr=x64bit_addr,
 x16bit_addr=x16bit_addr, node_id=node_id)
 if not XBee64BitAddress.is_known_node_addr(parent_addr):
 xbee.parent = None
 else:
 xbee.parent = self.get_device_by_64(parent_addr)
 elif protocol == XBeeProtocol.DIGI_MESH:
 xbee = RemoteDigiMeshDevice(self._local_xbee, x64bit_addr=x64bit_addr, node_id=node_id)
 elif protocol == XBeeProtocol.DIGI_POINT:
 xbee = RemoteDigiPointDevice(self._local_xbee, x64bit_addr=x64bit_addr, node_id=node_id)
 elif protocol == XBeeProtocol.RAW_802_15_4:
 xbee = RemoteRaw802Device(self._local_xbee, x64bit_addr=x64bit_addr,
 x16bit_addr=x16bit_addr, node_id=node_id)
 else:
 xbee = RemoteXBeeDevice(self._local_xbee, x64bit_addr=x64bit_addr,
 x16bit_addr=x16bit_addr, node_id=node_id)

 xbee._role = role
 xbee._hardware_version = hw_version
 xbee._firmware_version = fw_version
 xbee._operating_mode = op_mode

 return xbee

 def __get_data_for_remote(self, data):
 """
 Extracts the :class:`.XBee16BitAddress` (bytes 0 and 1), the
 :class:`.XBee64BitAddress` (bytes 2 to 9) and the node identifier
 from the provided data.

 Args:
 data (Bytearray): Data to extract information from.

 Returns:
 Tuple (:class:`.XBee16BitAddress`, :class:`.XBee64BitAddress`,
 String, :class:.`Role`, :class:`.XBee64BitAddress`):
 Remote device information (16-bit address, 64-bit address,
 node identifier, role, 64-bit address of parent).
 """
 role = Role.UNKNOWN
 parent_addr = None
 if self._local_xbee.get_protocol() == XBeeProtocol.RAW_802_15_4:
 # node ID starts at 11 if protocol is not 802.15.4:
 # 802.15.4 adds an info byte between 64bit address and XBee device ID, avoid it:
 i = 11
 # node ID goes from 11 to the next 0x00.
 while data[i] != 0x00:
 i += 1
 node_id = data[11:i]
 else:
 # node ID starts at 10 if protocol is not 802.15.4
 i = 10
 # node id goes from 'i' to the next 0x00.
 while data[i] != 0x00:
 i += 1
 node_id = data[10:i]
 i += 1
 # parent address: next 2 bytes from i
 parent_addr = XBee64BitAddress(data[i:i+2])
 i += 2
 # role is the next byte
 role = Role.get(utils.bytes_to_int(data[i:i+1]))
 return XBee16BitAddress(data[0:2]), XBee64BitAddress(data[2:10]), \
 node_id.decode('utf8', errors='ignore'), role, parent_addr

 def _set_node_reachable(self, node, reachable):
 """
 Configures a node as reachable or non-reachable. It throws an network
 event if this attribute changes.
 If the value of the attribute was already `reachable` value, this
 method does nothing.

 Args:
 node (:class:`.AbstractXBeeDevice`): The node to configure.
 reachable (Boolean): `True` to configure as reachable, `False` otherwise.
 """
 if node._reachable != reachable:
 node._reachable = reachable
 self._network_modified(NetworkEventType.UPDATE, NetworkEventReason.NEIGHBOR, node=node)

[docs] def get_connections(self):
 """
 Returns a copy of the XBee network connections.

 A deep discover must be performed to get the connections between
 network nodes.

 If a new connection is added to the list after the execution of this
 method, this new connection is not added to the list returned by this
 method.

 Returns:
 List: A copy of the list of :class:`.Connection` for the network.

 .. seealso::
 | :meth:`.XBeeNetwork.get_node_connections`
 | :meth:`.XBeeNetwork.start_discovery_process`
 """
 with self.__conn_lock:
 return self.__connections.copy()

[docs] def get_node_connections(self, node):
 """
 Returns the network connections with one of their ends `node`.

 A deep discover must be performed to get the connections between
 network nodes.

 If a new connection is added to the list after the execution of this
 method, this new connection is not added to the list returned by this
 method.

 Args:
 node (:class:`.AbstractXBeeDevice`): The node to get its connections.

 Returns:
 List: List of :class:`.Connection` with `node` end.

 .. seealso::
 | :meth:`.XBeeNetwork.get_connections`
 | :meth:`.XBeeNetwork.start_discovery_process`
 """
 connections = []
 with self.__conn_lock:
 for conn in self.__connections:
 if conn.node_a == node or conn.node_b == node:
 connections.append(conn)

 return connections

 def __get_connections_for_node_a_b(self, node, node_a=True):
 """
 Returns the network connections with the given node as `node_a` or
 `node_b`.

 Args:
 node (:class:`.AbstractXBeeDevice`): The node to get its connections.
 node_a (Boolean, optional, default=`True`): `True` to get
 connections where the given node is `node_a`, `False` to get
 those where the node is `node_b`.

 Returns:
 List: List of :class:`.Connection` with `node` as `node_a` end.
 """
 connections = []
 with self.__conn_lock:
 for conn in self.__connections:
 if ((node_a and conn.node_a == node)
 or (not node_a and conn.node_b == node)):
 connections.append(conn)

 return connections

 def __get_connection(self, node_a, node_b):
 """
 Returns the connection with ends `node_a` and `node_b`.

 Args:
 node_a (:class:`.AbstractXBeeDevice`): "node_a" end of the connection.
 node_b (:class:`.AbstractXBeeDevice`): "node_b" end of the connection.

 Returns:
 :class:`.Connection`: The connection with ends `node_a` and `node_b`,
 `None` if not found.

 Raises:
 ValueError: If `node_a` or `node_b` are `None`.
 """
 if not node_a:
 raise ValueError("Node A cannot be None")
 if not node_b:
 raise ValueError("Node B cannot be None")

 conn = Connection(node_a, node_b)

 with self.__conn_lock:
 if conn not in self.__connections:
 return None

 index = self.__connections.index(conn)

 return self.__connections[index]

 def __append_connection(self, connection):
 """
 Adds a new connection to the network.

 Args:
 connection (:class:`.Connection`): The connection to be added.

 Raise:
 ValueError: If `connection` is `None`.
 """
 if not connection:
 raise ValueError("Connection cannot be None")

 with self.__conn_lock:
 self.__connections.append(connection)

 def __del_connection(self, connection):
 """
 Removes a connection from the network.

 Args:
 connection (:class:`.Connection`): The connection to be removed.

 Raise:
 ValueError: If `connection` is `None`.
 """
 if not connection:
 raise ValueError("Connection cannot be None")

 with self.__conn_lock:
 if connection in self.__connections:
 self.__connections.remove(connection)

 def _add_connection(self, connection):
 """
 Adds a new connection to the network. The end nodes of this connection
 are added to the network if they do not exist.

 Args:
 connection (class:`.Connection`): The connection to add.

 Returns:
 Boolean: `True` if the connection was successfully added, `False`
 if the connection was already added.
 """
 if not connection:
 return False

 node_a = self.get_device_by_64(connection.node_a.get_64bit_addr())
 node_b = self.get_device_by_64(connection.node_b.get_64bit_addr())

 # Add the source node
 if not node_a:
 node_a = self._add_remote(connection.node_a, NetworkEventReason.NEIGHBOR)

 if not node_b:
 node_b = self._add_remote(connection.node_b, NetworkEventReason.NEIGHBOR)

 if not node_a or not node_b:
 return False

 # Check if the connection already exists a -> b or b -> a
 c_ab = self.__get_connection(node_a, node_b)
 c_ba = self.__get_connection(node_b, node_a)

 # If none of them exist, add it
 if not c_ab and not c_ba:
 connection.scan_counter_a2b = self.__scan_counter
 self.__append_connection(connection)
 return True

 # If the connection exists, update its data
 if c_ab:
 if c_ab.scan_counter_a2b != self.__scan_counter:
 c_ab.lq_a2b = connection.lq_a2b
 c_ab.status_a2b = connection.status_a2b
 c_ab.scan_counter_a2b = self.__scan_counter
 return True

 elif c_ba:
 if c_ba.scan_counter_b2a != self.__scan_counter:
 c_ba.lq_b2a = connection.lq_a2b
 c_ba.status_b2a = connection.status_a2b
 c_ba.scan_counter_b2a = self.__scan_counter
 return True

 return False

 def __remove_node_connections(self, node, only_as_node_a=False, force=False):
 """
 Remove the connections that has node as one of its ends.

 Args:
 node (:class:`.AbstractXBeeDevice`): Node whose connections are
 being removed.
 only_as_node_a (Boolean, optional, default=`False`): Only remove
 those connections with the provided node as `node_a`.
 force (Boolean, optional, default=`True`): `True` to force the
 deletion of the connections, `False` otherwise.

 Returns:
 List: List of removed connections.
 """
 if only_as_node_a:
 node_conn = self.__get_connections_for_node_a_b(node, node_a=True)
 else:
 node_conn = self.get_node_connections(node)

 with self.__conn_lock:
 c_removed = [len(node_conn)]
 c_removed[:] = node_conn[:]
 for conn in node_conn:
 if force:
 self.__connections.remove(conn)
 else:
 conn.lq_a2b = LinkQuality.UNKNOWN

 return c_removed

 def __purge(self, force=False):
 """
 Removes the nodes and connections that has not been discovered during
 the last scan.

 Args:
 force (Boolean, optional, default=`False`): `True` to force the
 deletion of nodes and connections, `False` otherwise.
 """
 # Purge nodes and connections from network
 removed_nodes = self.__purge_network_nodes(force=force)
 removed_connections = self.__purge_network_connections(force=force)

 self._log.debug("")
 self._log.debug(" [*] Purging network...")
 for node in removed_nodes:
 self._log.debug(" o Removed node: %s", node)
 for conn in removed_connections:
 self._log.debug(" o Removed connections: %s", conn)

 def __purge_network_nodes(self, force=False):
 """
 Removes the nodes and connections that has not been discovered during
 the last scan.

 Args:
 force (Boolean, optional, default=`False`): `True` to force the
 deletion of nodes, `False` otherwise.

 Returns:
 List: The list of purged nodes.
 """
 nodes_to_remove = []
 with self.__lock:
 for node in self.__devices_list:
 if (not node.scan_counter
 or node.scan_counter != self.__scan_counter
 or not node.reachable):
 nodes_to_remove.append(node)

 for node in nodes_to_remove:
 self._remove_device(node, NetworkEventReason.NEIGHBOR, force=force)

 return nodes_to_remove

 def __purge_network_connections(self, force=False):
 """
 Removes the connections that has not been discovered during the last scan.

 Args:
 force (Boolean, optional, default=`False`): `True` to force the
 deletion of connections, `False` otherwise.

 Returns:
 List: The list of purged connections.
 """
 connections_to_remove = []
 with self.__conn_lock:
 for conn in self.__connections:
 if (conn.scan_counter_a2b != self.__scan_counter
 and conn.scan_counter_b2a != self.__scan_counter):
 conn.lq_a2b = LinkQuality.UNKNOWN
 conn.lq_b2a = LinkQuality.UNKNOWN
 connections_to_remove.append(conn)
 elif conn.scan_counter_a2b != self.__scan_counter:
 conn.lq_a2b = LinkQuality.UNKNOWN
 elif conn.scan_counter_b2a != self.__scan_counter:
 conn.lq_b2a = LinkQuality.UNKNOWN
 elif (conn.lq_a2b == LinkQuality.UNKNOWN
 and conn.lq_b2a == LinkQuality.UNKNOWN):
 connections_to_remove.append(conn)

 if force:
 for conn in connections_to_remove:
 self.__del_connection(conn)

 return connections_to_remove

 def __purge_node_connections(self, node_a, force=False):
 """
 Purges given node connections. Removes the connections that has not
 been discovered during the last scan.

 Args:
 node_a (:class:`.AbstractXBeeDevice`): The "node_a" of the
 connections to purge.
 force (Boolean, optional, default=`False`): `True` to force the
 deletion of the connections, `False` otherwise.

 Returns:
 List: List of purged connections.
 """
 c_purged = []

 # Get node connections, but only those whose "node_a" is "node" (we are only purging
 # connections that are discovered with "node", and they are those with "node" as "node_a")
 node_conn = self.__get_connections_for_node_a_b(node_a, node_a=True)

 with self.__conn_lock:
 for conn in node_conn:
 if conn.scan_counter_a2b != self.__scan_counter:
 conn.lq_a2b = LinkQuality.UNKNOWN
 if (conn.scan_counter_b2a == self.__scan_counter
 and conn.lq_b2a == LinkQuality.UNKNOWN):
 c_purged.append(conn)

 if force:
 for conn in c_purged:
 self.__del_connection(conn)

 return c_purged

 def __wait_checking(self, seconds):
 """
 Waits some time, verifying if the process has been canceled.

 Args:
 seconds (Float): The amount of seconds to wait.

 Returns:
 :class:`.NetworkDiscoveryStatus`: Resulting status of the process.
 """
 if seconds <= 0:
 return NetworkDiscoveryStatus.SUCCESS

 def current_ms_time():
 return int(round(time.time() * 1000))

 dead_line = current_ms_time() + seconds*1000
 while current_ms_time() < dead_line:
 time.sleep(0.25)
 # Check for cancel
 if self._stop_event.is_set():
 return NetworkDiscoveryStatus.CANCEL

 return NetworkDiscoveryStatus.SUCCESS

[docs]class ZigBeeNetwork(XBeeNetwork):
 """
 This class represents a Zigbee network.

 The network allows the discovery of remote nodes in the same network as the
 local one and stores them.
 """
 __ROUTE_TABLE_TYPE = "route_table"
 __NEIGHBOR_TABLE_TYPE = "neighbor_table"

 def __init__(self, device):
 """
 Class constructor. Instantiates a new `ZigBeeNetwork`.

 Args:
 device (:class:`.ZigBeeDevice`): Local Zigbee node to get the
 network from.

 Raises:
 ValueError: If `device` is `None`.
 """
 super().__init__(device)

 self.__saved_ao = None

 # Dictionary to store the route and neighbor discovery processes per
 # node, so they can be stop when required.
 # The dictionary uses as key the 64-bit address string representation (to be thread-safe)
 self.__zdo_processes = {}

 # Dictionary to store discovered routes for each Zigbee device
 # The dictionary uses as key the 64-bit address string representation (to be thread-safe)
 self.__discovered_routes = {}

 def _prepare_network_discovery(self):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeNetwork._prepare_network_discovery`
 """
 self._log.debug("[*] Preconfiguring %s", ATStringCommand.AO.command)
 try:
 self.__enable_explicit_mode()
 except XBeeException as exc:
 raise XBeeException(
 "Could not prepare XBee for network discovery: %s" % str(exc))

 def _discover_neighbors(self, requester, nodes_queue, active_processes, node_timeout):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeNetwork._discover_neighbors`
 """
 active_processes.append(str(requester.get_64bit_addr()))

 if node_timeout is None:
 node_timeout = 30

 code = self.__get_route_table(requester, nodes_queue, node_timeout)

 return code

 def _node_discovery_process_finished(self, requester, code=None, error=None):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeNetwork._node_discovery_process_finished`
 """
 super()._node_discovery_process_finished(requester, code=code, error=error)

 # An "address not found" error may occur when the 16-bit address
 # in the cache is not the right one. Try to read the new value and,
 # if it is different from the old one, add the node to the FIFO again
 if error and TransmitStatus.ADDRESS_NOT_FOUND.description in error:
 self._log.debug("[***** ERROR] '%s' for %s: refresh 16-bit address",
 requester, error)
 x16_orig = requester.get_16bit_addr()
 try:
 x16 = XBee16BitAddress(
 requester.get_parameter(ATStringCommand.MY, apply=False))
 if x16_orig != x16:
 self._nodes_queue.put(requester)
 except XBeeException:
 pass

 def _check_not_discovered_nodes(self, devices_list, nodes_queue):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeNetwork._check_not_discovered_nodes`
 """
 for node in devices_list:
 if not node.scan_counter or node.scan_counter != self.scan_counter:
 self._log.debug(" [*] Adding to FIFO not discovered node %s... (scan %d)",
 node, self.scan_counter)
 nodes_queue.put(node)

 def _discovery_done(self, active_processes):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeNetwork._discovery_done`
 """
 copy = active_processes[:]
 for act_proc in copy:
 zdos = self.__zdo_processes.get(act_proc)
 if not zdos:
 continue

 self.__stop_zdo_command(zdos, self.__ROUTE_TABLE_TYPE)
 self.__stop_zdo_command(zdos, self.__NEIGHBOR_TABLE_TYPE)

 zdos.clear()

 self.__zdo_processes.clear()
 self.__discovered_routes.clear()

 super()._discovery_done(active_processes)

 def _restore_network(self):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeNetwork._restore_network`
 """
 if self.__saved_ao is None:
 return

 self._log.debug("[*] Postconfiguring %s", ATStringCommand.AO.command)
 try:
 self._local_xbee.set_parameter(ATStringCommand.AO,
 self.__saved_ao, apply=True)
 except XBeeException as exc:
 self._error = "Could not restore XBee after network discovery: %s" % str(exc)

 self.__saved_ao = None

 def _handle_special_errors(self, requester, error):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeNetwork._handle_special_errors`
 """
 super()._handle_special_errors(requester, error)

 if error == "ZDO command answer not received":
 # 'AO' value is misconfigured, restore it
 self._log.debug(" [***] Local XBee misconfigured: restoring 'AO' value")
 try:
 self.__enable_explicit_mode()
 except XBeeException as exc:
 self._log.warning("Unable to restore 'AO0 value: %s", str(exc))

 # Add the node to the FIFO to try again
 self._nodes_queue.put(requester)

 def __enable_explicit_mode(self):
 """
 Enables explicit mode by modifying the value of 'AO' parameter if it
 is needed.
 """
 self.__saved_ao = self._local_xbee.get_api_output_mode_value()

 # Do not configure AO if it is already:
 # * Bit 0: Native/Explicit API output (1)
 # * Bit 5: Prevent ZDO msgs from going out the serial port (0)
 value = bytearray([self.__saved_ao[0]]) if self.__saved_ao \
 else bytearray([APIOutputModeBit.EXPLICIT.code])
 if (value[0] & APIOutputModeBit.EXPLICIT.code
 and not value[0] & APIOutputModeBit.SUPPRESS_ALL_ZDO_MSG.code):
 self.__saved_ao = None

 return

 value[0] = value[0] | APIOutputModeBit.EXPLICIT.code
 value[0] = value[0] & ~APIOutputModeBit.SUPPRESS_ALL_ZDO_MSG.code

 self._local_xbee.set_parameter(ATStringCommand.AO, value, apply=True)

 def __get_route_table(self, requester, nodes_queue, node_timeout):
 """
 Launch the process to get the route table of the XBee.

 Args:
 requester (:class:`.AbstractXBeeDevice`): XBee to discover its
 routing table.
 nodes_queue (:class:`queue.Queue`): FIFO where the nodes to
 discover their neighbors are stored.
 node_timeout (Float): Timeout to get the routing table (seconds).

 Returns:
 :class:`.NetworkDiscoveryStatus`: Resulting status of the process.
 """
 def __new_route_cb(xbee, route):
 self._log.debug(" o Discovered route of %s: %s - %s -> %s",
 xbee, route.destination, route.next_hop, route.status)

 # Requester node is clearly reachable
 self._set_node_reachable(xbee, True)

 # Get the discovered routes of the node
 routes_list = self.__discovered_routes.get(str(xbee.get_64bit_addr()))
 if not routes_list:
 routes_list = {}
 self.__discovered_routes.update({str(xbee.get_64bit_addr()): routes_list})

 # Add the new route
 if str(route.next_hop) not in routes_list:
 routes_list.update({str(route.next_hop): route})
 else:
 r_in_list = routes_list.get(str(route.next_hop))
 self._log.debug(" - ROUTE already found %s - %s -> %s",
 r_in_list.destination, r_in_list.next_hop, r_in_list.status)
 from digi.xbee.models.zdo import RouteStatus
 if r_in_list.status != RouteStatus.ACTIVE and route.status == RouteStatus.ACTIVE:
 self._log.debug(" - Updating route %s - %s -> %s",
 route.destination, route.next_hop, route.status)
 routes_list.update({str(route.next_hop): route})

 # Check for cancel
 if self._stop_event.is_set():
 cmd = self.__get_zdo_command(xbee, self.__ROUTE_TABLE_TYPE)
 if cmd:
 cmd.stop()

 def __route_discover_finished_cb(xbee, _routes, error):
 zdo_processes = self.__zdo_processes.get(str(requester.get_64bit_addr()))
 if zdo_processes:
 zdo_processes.pop(self.__ROUTE_TABLE_TYPE)

 if error:
 self.__zdo_processes.pop(str(requester.get_64bit_addr()), None)
 # Remove the discovered routes
 self.__discovered_routes.pop(str(xbee.get_64bit_addr()), None)
 # Process the error and do not continue
 self._node_discovery_process_finished(
 xbee, code=NetworkDiscoveryStatus.ERROR_GENERAL, error=error)
 else:
 # Check for cancel
 if self._stop_event.is_set():
 # Remove the discovered routes
 self.__discovered_routes.pop(str(xbee.get_64bit_addr()), None)
 self._node_discovery_process_finished(xbee, code=NetworkDiscoveryStatus.CANCEL)

 # Get neighbor table
 code = self.__get_neighbor_table(xbee, nodes_queue, node_timeout)
 if code != NetworkDiscoveryStatus.SUCCESS:
 self._node_discovery_process_finished(
 xbee, code=NetworkDiscoveryStatus.ERROR_GENERAL, error=error)

 self._log.debug(" [o] Getting ROUTE TABLE of node %s", requester)

 from digi.xbee.models.zdo import RouteTableReader
 reader = RouteTableReader(requester, configure_ao=False, timeout=node_timeout)
 reader.get_route_table(route_cb=__new_route_cb,
 finished_cb=__route_discover_finished_cb)

 processes = self.__zdo_processes.get(str(requester.get_64bit_addr()))
 if not processes:
 processes = {}
 self.__zdo_processes.update({str(requester.get_64bit_addr()): processes})
 processes.update({self.__ROUTE_TABLE_TYPE: reader})

 return NetworkDiscoveryStatus.SUCCESS

 def __get_neighbor_table(self, requester, nodes_queue, node_timeout):
 """
 Launch the process to get the neighbor table of the XBee.

 Args:
 requester (:class:`.AbstractXBeeDevice`): XBee to discover its
 neighbor table.
 nodes_queue (:class:`queue.Queue`): FIFO where the nodes to
 discover their neighbors are stored.
 node_timeout (Float): Timeout to get the neighbor table (seconds).

 Returns:
 :class:`.NetworkDiscoveryStatus`: Resulting status of the process.
 """
 def __new_neighbor_cb(xbee, neighbor):
 # Do not add a connection to the same node
 if neighbor == xbee:
 return

 # Get the discovered routes of the node
 routes_list = self.__discovered_routes.get(str(xbee.get_64bit_addr()))

 # Add the new neighbor
 self.__process_discovered_neighbor_data(xbee, routes_list, neighbor, nodes_queue)

 # Check for cancel
 if self._stop_event.is_set():
 cmd = self.__get_zdo_command(xbee, self.__NEIGHBOR_TABLE_TYPE)
 if cmd:
 cmd.stop()

 def __neighbor_discover_finished_cb(xbee, _, error):
 zdo_processes = self.__zdo_processes.get(str(requester.get_64bit_addr()))
 if zdo_processes:
 zdo_processes.pop(self.__NEIGHBOR_TABLE_TYPE, None)
 self.__zdo_processes.pop(str(requester.get_64bit_addr()), None)

 # Remove the discovered routes
 self.__discovered_routes.pop(str(xbee.get_64bit_addr()), None)

 # Process the error if exists
 code = NetworkDiscoveryStatus.SUCCESS if not error \
 else NetworkDiscoveryStatus.ERROR_GENERAL
 self._node_discovery_process_finished(xbee, code=code, error=error)

 self._log.debug(" [o] Getting NEIGHBOR TABLE of node %s", requester)

 from digi.xbee.models.zdo import NeighborTableReader
 reader = NeighborTableReader(requester, configure_ao=False, timeout=node_timeout)
 reader.get_neighbor_table(neighbor_cb=__new_neighbor_cb,
 finished_cb=__neighbor_discover_finished_cb)

 processes = self.__zdo_processes.get(str(requester.get_64bit_addr()))
 if not processes:
 processes = {}
 self.__zdo_processes.update({str(requester.get_64bit_addr()): processes})
 processes.update({self.__NEIGHBOR_TABLE_TYPE: reader})

 return NetworkDiscoveryStatus.SUCCESS

 def __process_discovered_neighbor_data(self, requester, routes, neighbor, nodes_queue):
 """
 Notifies a neighbor has been discovered.

 Args:
 requester (:class:`.AbstractXBeeDevice`): Zigbee node whose neighbor
 table was requested.
 routes (Dictionary): A dictionary with the next hop 16-bit address
 string as key, and the route (:class:`.Route`) as value.
 neighbor (:class:`.Neighbor`): The discovered neighbor.
 nodes_queue (:class:`queue.Queue`): FIFO where the nodes to
 discover their neighbors are stored.
 """
 self._log.debug(" o Discovered neighbor of %s: %s (%s)",
 requester, neighbor.node, neighbor.relationship.name)

 # Requester node is clearly reachable
 self._set_node_reachable(requester, True)

 # Add the neighbor node to the network
 node = self._add_remote(neighbor.node, NetworkEventReason.NEIGHBOR)
 if not node:
 # Node already in network for this scan
 node = self.get_device_by_64(neighbor.node.get_64bit_addr())
 self._log.debug(" - NODE already in network in this scan (scan: %d) %s",
 node.scan_counter, node)
 else:
 if neighbor.node.get_role() != Role.END_DEVICE:
 # Add to the FIFO to ask for its neighbors
 nodes_queue.put(node)
 self._log.debug(" - Added to network (scan: %d)", node.scan_counter)
 else:
 # Not asking to End Devices when found, consider them as reachable
 self._set_node_reachable(node, True)
 # Save its parent
 node.parent = requester
 self._device_discovered(node)

 # Add connections
 route = None
 if routes:
 route = routes.get(str(neighbor.node.get_16bit_addr()))

 if not route and not neighbor.relationship:
 return

 from digi.xbee.models.zdo import RouteStatus, NeighborRelationship
 connection = None

 if route:
 connection = Connection(requester, node, lq_a2b=neighbor.lq,
 lq_b2a=LinkQuality.UNKNOWN, status_a2b=route.status,
 status_b2a=RouteStatus.UNKNOWN)
 self._log.debug(" - Using route for the connection: %d", route.status.id)
 elif (neighbor.node.get_role() != Role.UNKNOWN
 and neighbor.relationship != NeighborRelationship.PREVIOUS_CHILD
 and neighbor.relationship != NeighborRelationship.SIBLING):
 self._log.debug(
 " - No route for this node, using relationship for the connection: %s",
 neighbor.relationship.name)
 if neighbor.relationship == NeighborRelationship.PARENT:
 connection = Connection(node, requester, lq_a2b=neighbor.lq,
 lq_b2a=LinkQuality.UNKNOWN, status_a2b=RouteStatus.ACTIVE,
 status_b2a=RouteStatus.UNKNOWN)
 elif (neighbor.relationship == NeighborRelationship.CHILD
 or neighbor.relationship == NeighborRelationship.UNDETERMINED):
 connection = Connection(requester, node, lq_a2b=neighbor.lq,
 lq_b2a=LinkQuality.UNKNOWN, status_a2b=RouteStatus.ACTIVE,
 status_b2a=RouteStatus.UNKNOWN)
 if not connection:
 self._log.debug(" - Connection NULL for this neighbor")
 return

 if self._add_connection(connection):
 self._log.debug(" - Added connection (LQI: %d) %s >>> %s",
 neighbor.lq, requester, node)
 else:
 self._log.debug(
 " - CONNECTION (LQI: %d) already in network in this"
 " scan (scan: %d) %s >>> %s",
 neighbor.lq, node.scan_counter, requester, node)

 def __get_zdo_command(self, xbee, cmd_type):
 """
 Returns the ZDO command in process (route/neighbor table) for the
 provided node.

 Args:
 xbee (:class:`.AbstractXBeeDevice`): Node to get a ZDO command in process.
 cmd_type (String): The ZDO command type (route/neighbor table)
 """
 cmds = self.__zdo_processes.get(str(xbee.get_64bit_addr()))
 if cmds:
 return cmds.get(cmd_type)

 return None

 def __stop_zdo_command(self, commands, cmd_type):
 """
 Stops the execution of the ZDO command contained in the given dictionary.
 This method blocks until the ZDO command is completely stopped.

 Args:
 commands (Dictionary): The dictionary with the ZDO command to stop.
 cmd_type (String): The ZDO command type (route/neighbor table)
 """
 if not commands or not cmd_type:
 return

 cmd = commands.get(cmd_type)
 if not cmd or not cmd.running:
 return

 cmd.stop()

[docs]class Raw802Network(XBeeNetwork):
 """
 This class represents an 802.15.4 network.

 The network allows the discovery of remote nodes in the same network as the
 local one and stores them.
 """

 def _calculate_timeout(self, default_timeout=XBeeNetwork._DEFAULT_DISCOVERY_TIMEOUT):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeNetwork._calculate_timeout`
 """
 discovery_timeout = super()._calculate_timeout(default_timeout=default_timeout)

 if self._is_802_compatible():
 discovery_timeout += 2 # Give some time to receive the ND finish packet

 self._log.debug(" 802.15.4 network discovery timeout: %f s", discovery_timeout)

 return discovery_timeout

[docs]class DigiMeshNetwork(XBeeNetwork):
 """
 This class represents a DigiMesh network.

 The network allows the discovery of remote nodes in the same network as the
 local one and stores them.
 """

 def __init__(self, device):
 """
 Class constructor. Instantiates a new `DigiMeshNetwork`.

 Args:
 device (:class:`.DigiMeshDevice`): Local DigiMesh node to get the
 network from.

 Raises:
 ValueError: If `device` is `None`.
 """
 super().__init__(device)

 self.__saved_no = None
 self.__saved_so = None

 self.__sync_sleep_enabled = False

 # Calculated timeout based on the 'N?' value of the local XBee and the
 # sleep configuration of the network.
 self.__real_node_timeout = None

 # Dictionary to store the neighbor find processes per node, so they
 # can be stop when required.
 # The dictionary uses as key the 64-bit address string representation (to be thread-safe)
 self.__neighbor_finders = {}

 def _calculate_timeout(self, default_timeout=XBeeNetwork._DEFAULT_DISCOVERY_TIMEOUT):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeNetwork._calculate_timeout`
 """
 discovery_timeout = super()._calculate_timeout(default_timeout=default_timeout)

 # If the module is 'Synchronous Cyclic Sleep Support' (SM=7) or
 # 'Synchronous Cyclic Sleep' (SM=8), we need to calculate the total
 # number of inactivity seconds.
 try:
 sm_value = utils.bytes_to_int(
 self._local_xbee.get_parameter(ATStringCommand.SM.command, apply=False))
 self.__sync_sleep_enabled = sm_value in (7, 8)
 if self.__sync_sleep_enabled:
 os_val = utils.bytes_to_int(# Operating sleep time
 self._local_xbee.get_parameter(ATStringCommand.OS.command, apply=False)) / 100
 ow_val = utils.bytes_to_int(# Operating wake time
 self._local_xbee.get_parameter(ATStringCommand.OW.command, apply=False)) / 1000
 discovery_timeout = \
 discovery_timeout * (os_val + ow_val) / ow_val
 except XBeeException:
 self._log.warning("Could not calculate network discovery timeout: "
 "unable to read sleep parameters ('%s', '%s')",
 ATStringCommand.OS.command, ATStringCommand.OW.command)

 self._log.debug(" DigiMesh network discovery timeout: %f s", discovery_timeout)

 return discovery_timeout

 def _prepare_network_discovery(self):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeNetwork._prepare_network_discovery`
 """
 super()._prepare_network_discovery()

 self._log.debug("[*] Preconfiguring %s", ATStringCommand.NO.command)
 try:
 # Configured discovery options "APPEND_DD" and "APPEND_RSSI" in the
 # local XBee affects also to the FN requests of the remotes.
 # For example, if "APPEND_RSSI" is enabled in the local XBee, no
 # matter what is configured in any remote, when 'FN' is sent as a
 # remote command to a remote node, the RSSI is included in every
 # received response. The same is applicable to "APPEND_DD".
 self.__saved_no = self.get_discovery_options()

 # Do not configure NO if it is already
 if utils.is_bit_enabled(self.__saved_no[0], 2):
 self.__saved_no = None
 else:
 self.set_discovery_options({DiscoveryOptions.APPEND_RSSI})

 self._log.debug("[*] Preconfiguring %s", ATStringCommand.SO.command)
 self.__saved_so = self._local_xbee.get_parameter(
 ATStringCommand.SO, apply=False)

 # Enable bit 2 of SO: Enable API sleep status messages
 # Useful for synchronous sleep networks to know when the network is sleeping or awake
 if utils.is_bit_enabled(self.__saved_so[1], 2):
 self.__saved_so = None
 else:
 value = utils.int_to_bytes(utils.bytes_to_int(self.__saved_so), 2)
 value[1] = value[1] | 0x04 if not (value[1] & 0x04 == 4) else value[1]

 self._local_xbee.set_parameter(ATStringCommand.SO, value, apply=True)

 except XBeeException as exc:
 raise XBeeException(
 "Could not prepare XBee for network discovery: %s" % str(exc))

 # Calculate the real timeout to wait for responses, based on 'N?' and
 # the cyclic sleep times, if the node is configured for that.
 # This is calculated for the local node and applied also for remote
 # nodes (that is, it is considering 'NT', 'NN', 'NH' of all nodes are
 # configured with the same values in each module)
 self.__real_node_timeout = self._calculate_timeout(default_timeout=self._node_timeout)

 def _discover_neighbors(self, requester, nodes_queue, active_processes, node_timeout):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeNetwork._discover_neighbors`
 """
 def __new_neighbor_cb(xbee, neighbor):
 # Do not add a connection to the same node
 if neighbor == xbee:
 return

 # Add the new neighbor
 self.__process_discovered_neighbor_data(xbee, neighbor, nodes_queue)

 def __neighbor_discover_finished_cb(xbee, _, error):
 self.__neighbor_finders.pop(str(requester.get_64bit_addr()), None)

 # Process the error if exists
 code = NetworkDiscoveryStatus.SUCCESS if not error \
 else NetworkDiscoveryStatus.ERROR_GENERAL
 self._node_discovery_process_finished(xbee, code=code, error=error)

 self._log.debug(" [o] Calling NEIGHBOR FINDER for node %s", requester)

 if requester.is_remote() and self.__sync_sleep_enabled:
 self._log.debug(" - Ensure network is awaken ...")
 awake = threading.Event()

 # Register a callback to check if the local XBee is configured to
 # 'Enable API sleep status messages' (bit 2 of 'SO')
 def modem_st_cb(modem_status):
 if modem_status == ModemStatus.NETWORK_WOKE_UP:
 self._local_xbee.del_modem_status_received_callback(modem_st_cb)
 awake.set()

 self._local_xbee.add_modem_status_received_callback(modem_st_cb)
 while not awake.wait(timeout=node_timeout):
 pass

 from digi.xbee.models.zdo import NeighborFinder
 finder = NeighborFinder(requester, timeout=self.__real_node_timeout)
 finder.get_neighbors(neighbor_cb=__new_neighbor_cb,
 finished_cb=__neighbor_discover_finished_cb)

 active_processes.append(str(requester.get_64bit_addr()))
 self.__neighbor_finders.update({str(requester.get_64bit_addr()): finder})

 return NetworkDiscoveryStatus.SUCCESS

 def _check_not_discovered_nodes(self, devices_list, nodes_queue):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeNetwork._check_not_discovered_nodes`
 """
 for node in devices_list:
 if not node.scan_counter or node.scan_counter != self.scan_counter:
 self._log.debug(" [*] Adding to FIFO not discovered node %s... (scan %d)",
 node, self.scan_counter)
 nodes_queue.put(node)

 def _discovery_done(self, active_processes):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeNetwork._discovery_done`
 """
 copy = active_processes[:]
 for act_proc in copy:
 finder = self.__neighbor_finders.get(act_proc)
 if not finder:
 continue

 finder.stop()

 self.__neighbor_finders.clear()

 super()._discovery_done(active_processes)

 def _restore_network(self):
 """
 Override.

 .. seealso::
 | :meth:`.XBeeNetwork._restore_network`
 """
 super()._restore_network()
 error = ""

 if self.__saved_no is not None:
 self._log.debug("[*] Postconfiguring %s", ATStringCommand.NO.command)
 try:
 self._local_xbee.set_parameter(ATStringCommand.NO,
 self.__saved_no,
 apply=bool(not self.__saved_so))
 except XBeeException as exc:
 error = str(exc)

 self.__saved_no = None

 if self.__saved_so is not None:
 self._log.debug("[*] Postconfiguring %s", ATStringCommand.SO.command)
 try:
 self._local_xbee.set_parameter(ATStringCommand.SO,
 self.__saved_so, apply=True)
 except XBeeException as exc:
 if error:
 error += ". "
 error += str(exc)

 self.__saved_so = None

 if error:
 self._error = "Could not restore XBee after network discovery: %s" % error

 def __process_discovered_neighbor_data(self, requester, neighbor, nodes_queue):
 """
 Notifies a neighbor has been discovered.

 Args:
 requester (:class:`.AbstractXBeeDevice`): DigiMesh node whose
 neighbors was requested.
 neighbor (:class:`.Neighbor`): The discovered neighbor.
 nodes_queue (:class:`queue.Queue`): FIFO where the nodes to
 discover their neighbors are stored.
 """
 self._log.debug(" o Discovered neighbor of %s: %s (%s)",
 requester, neighbor.node, neighbor.relationship.name)

 # Requester node is clearly reachable
 self._set_node_reachable(requester, True)

 # Add the neighbor node to the network
 node = self._add_remote(neighbor.node, NetworkEventReason.NEIGHBOR)
 if not node:
 # Node already in network for this scan
 node = self.get_device_by_64(neighbor.node.get_64bit_addr())
 self._log.debug(" - NODE already in network in this scan (scan: %d) %s",
 node.scan_counter, node)
 # Do not add the connection if the discovered device is itself
 if node.get_64bit_addr() == requester.get_64bit_addr():
 return
 else:
 # Add to the FIFO to ask for its neighbors
 nodes_queue.put(node)
 self._log.debug(" - Added to network (scan: %d)", node.scan_counter)

 self._device_discovered(node)

 # Add connections
 from digi.xbee.models.zdo import RouteStatus
 connection = Connection(requester, node, lq_a2b=neighbor.lq, lq_b2a=LinkQuality.UNKNOWN,
 status_a2b=RouteStatus.ACTIVE, status_b2a=RouteStatus.ACTIVE)

 if self._add_connection(connection):
 self._log.debug(" - Added connection (RSSI: %s) %s >>> %s",
 connection.lq_a2b, requester, node)
 else:
 self._log.debug(
 " - CONNECTION (RSSI: %s) already in network in this "
 "scan (scan: %d) %s >>> %s",
 connection.lq_a2b, node.scan_counter, requester, node)

 # Found node is clearly reachable, it answered to a FN
 self._set_node_reachable(node, True)

[docs]class DigiPointNetwork(XBeeNetwork):
 """
 This class represents a DigiPoint network.

 The network allows the discovery of remote nodes in the same network as the
 local one and stores them.
 """

[docs]@unique
class NetworkEventType(Enum):
 """
 Enumerates the different network event types.
 """

 ADD = (0x00, "XBee added to the network")
 DEL = (0x01, "XBee removed from the network")
 UPDATE = (0x02, "XBee in the network updated")
 CLEAR = (0x03, "Network cleared")

 def __init__(self, code, description):
 self.__code = code
 self.__description = description

 @property
 def code(self):
 """
 Returns the code of the `NetworkEventType` element.

 Returns
 Integer: Code of the `NetworkEventType` element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the `NetworkEventType` element.

 Returns:
 String: Description of the `NetworkEventType` element.
 """
 return self.__description

 @classmethod
 def get(cls, code):
 """
 Returns the network event for the given code.

 Args:
 code (Integer): Code of the network event to get.

 Returns:
 :class:`.NetworkEventType`: the `NetworkEventType` with the given
 code, `None` if there is not any event with the provided code.
 """
 for ev_type in cls:
 if ev_type.code == code:
 return ev_type

 return None

NetworkEventType.__doc__ += utils.doc_enum(NetworkEventType)

[docs]@unique
class NetworkEventReason(Enum):
 """
 Enumerates the different network event reasons.
 """

 DISCOVERED = (0x00, "Discovered XBee")
 NEIGHBOR = (0x01, "Discovered as XBee neighbor")
 RECEIVED_MSG = (0x02, "Received message from XBee")
 MANUAL = (0x03, "Manual modification")
 ROUTE = (0x04, "Hop of a network route")
 READ_INFO = (0x05, "Read XBee information")
 FIRMWARE_UPDATE = (0x06, "The firmware of the device was updated")

 def __init__(self, code, description):
 self.__code = code
 self.__description = description

 @property
 def code(self):
 """
 Returns the code of the `NetworkEventReason` element.

 Returns:
 Integer: Code of the `NetworkEventReason` element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the `NetworkEventReason` element.

 Returns:
 String: Description of the `NetworkEventReason` element.
 """
 return self.__description

 @classmethod
 def get(cls, code):
 """
 Returns the network event reason for the given code.

 Args:
 code (Integer): Code of the network event reason to get.

 Returns:
 :class:`.NetworkEventReason`: the `NetworkEventReason` with the
 given code, `None` if there is not any reason with the provided code.
 """
 for reason in cls:
 if reason.code == code:
 return reason

 return None

NetworkEventReason.__doc__ += utils.doc_enum(NetworkEventReason)

[docs]class LinkQuality:
 """
 This class represents the link quality of a connection.
 It can be a LQI (Link Quality Index) for Zigbee devices, or RSSI
 (Received Signal Strength Indicator) for the rest.
 """

 UNKNOWN = None
 """
 Unknown link quality.
 """

 UNKNOWN_VALUE = -9999
 """
 Unknown link quality value.
 """

 __UNKNOWN_STR = '?'

 def __init__(self, lq=UNKNOWN, is_rssi=False):
 """
 Class constructor. Instantiates a new `LinkQuality`.

 Args:
 lq (Integer, optional, default=`UNKNOWN`): Link quality.
 is_rssi (Boolean, optional, default=`False`): `True` to specify the
 value is a RSSI, `False` for LQI.
 """
 self.__lq = lq
 self.__is_rssi = is_rssi

 def __str__(self):
 if self.__lq == 0:
 return str(self.__lq)

 if self.__lq == self.UNKNOWN_VALUE:
 return self.__UNKNOWN_STR

 if self.__is_rssi:
 return "-" + str(self.__lq)

 return str(self.__lq)

 @property
 def lq(self):
 """
 Returns the link quality value.

 Returns:
 Integer: The link quality value.
 """
 return self.__lq

 @property
 def is_rssi(self):
 """
 Returns whether this is a RSSI value.

 Returns:
 Boolean: `True` if this is an RSSI value, `False` for LQI.
 """
 return self.__is_rssi

LinkQuality.UNKNOWN = LinkQuality(lq=LinkQuality.UNKNOWN_VALUE)

[docs]class Connection:
 """
 This class represents a generic connection between two nodes in a XBee
 network. It contains the source and destination nodes, the link quality of
 the connection between them and its status.
 """

 def __init__(self, node_a, node_b, lq_a2b=None, lq_b2a=None, status_a2b=None, status_b2a=None):
 """
 Class constructor. Instantiates a new `Connection`.

 Args:
 node_a (:class:`.AbstractXBeeDevice`): One of the connection ends.
 node_b (:class:`.AbstractXBeeDevice`): The other connection end.
 lq_a2b (:class:`.LinkQuality` or Integer, optional, default=`None`): Link
 quality for the connection node_a -> node_b. If not specified
 `LinkQuality.UNKNOWN` is used.
 lq_b2a (:class:`.LinkQuality` or Integer, optional, default=`None`): Link
 quality for the connection node_b -> node_a. If not specified
 `LinkQuality.UNKNOWN` is used.
 status_a2b (:class:`digi.xbee.models.zdo.RouteStatus`, optional, default=`None`): The
 status for the connection node_a -> node_b. If not specified
 `RouteStatus.UNKNOWN` is used.
 status_b2a (:class:`digi.xbee.models.zdo.RouteStatus`, optional, default=`None`): The
 status for the connection node_b -> node_a. If not specified
 `RouteStatus.UNKNOWN` is used.

 Raises:
 ValueError: If `node_a` or `node_b` is `None`.

 .. seealso::
 | :class:`.AbstractXBeeDevice`
 | :class:`.LinkQuality`
 | :class:`digi.xbee.models.zdo.RouteStatus`
 """
 if not node_a:
 raise ValueError("Node A must be defined")
 if not node_b:
 raise ValueError("Node B must be defined")

 self.__node_a = node_a
 self.__node_b = node_b

 self.__lq_a2b = Connection.__get_lq(lq_a2b, node_a)
 self.__lq_b2a = Connection.__get_lq(lq_b2a, node_a)

 from digi.xbee.models.zdo import RouteStatus
 self.__st_a2b = status_a2b if status_a2b else RouteStatus.UNKNOWN
 self.__st_b2a = status_b2a if status_b2a else RouteStatus.UNKNOWN

 self.__scan_counter_a2b = 0
 self.__scan_counter_b2a = 0

 def __str__(self):
 return "{{{!s} >>> {!s} [{!s} / {!s}]: {!s} / {!s}}}".format(
 self.__node_a, self.__node_b, self.__st_a2b, self.__st_b2a,
 self.__lq_a2b, self.__lq_b2a)

 def __eq__(self, other):
 if not isinstance(other, Connection):
 return False

 return self.__node_a.get_64bit_addr() == other.node_a.get_64bit_addr() \
 and self.__node_b.get_64bit_addr() == other.node_b.get_64bit_addr()

 def __hash__(self):
 return hash((self.__node_a.get_64bit_addr(), self.__node_b.get_64bit_addr()))

 @property
 def node_a(self):
 """
 Returns the node A of this connection.

 Returns:
 :class:`.AbstractXBeeDevice`: The node A.

 .. seealso::
 | :class:`.AbstractXBeeDevice`
 """
 return self.__node_a

 @property
 def node_b(self):
 """
 Returns the node B of this connection.

 Returns:
 :class:`.AbstractXBeeDevice`: The node B.

 .. seealso::
 | :class:`.AbstractXBeeDevice`
 """
 return self.__node_b

 @property
 def lq_a2b(self):
 """
 Returns the link quality of the connection from node A to node B.

 Returns:
 :class:`.LinkQuality`: Link quality for the connection A -> B.

 .. seealso::
 | :class:`.LinkQuality`
 """
 return self.__lq_a2b

 @lq_a2b.setter
 def lq_a2b(self, new_lq_a2b):
 """
 Sets the link quality of the connection from node A to node B.

 Args:
 new_lq_a2b (:class:`.LinkQuality`): The new A -> B link quality value.

 .. seealso::
 | :class:`.LinkQuality`
 """
 self.__lq_a2b = new_lq_a2b

 @property
 def lq_b2a(self):
 """
 Returns the link quality of the connection from node B to node A.

 Returns:
 :class:`.LinkQuality`: Link quality for the connection B -> A.

 .. seealso::
 | :class:`.LinkQuality`
 """
 return self.__lq_b2a

 @lq_b2a.setter
 def lq_b2a(self, new_lq_b2a):
 """
 Sets the link quality of the connection from node B to node A.

 Args:
 new_lq_b2a (:class:`.LinkQuality`): The new B -> A link quality value.

 .. seealso::
 | :class:`.LinkQuality`
 """
 self.__lq_b2a = new_lq_b2a

 @property
 def status_a2b(self):
 """
 Returns the status of this connection from node A to node B.

 Returns:
 :class:`.RouteStatus`: The status for A -> B connection.

 .. seealso::
 | :class:`digi.xbee.models.zdo.RouteStatus`
 """
 return self.__st_a2b

 @status_a2b.setter
 def status_a2b(self, new_status_a2b):
 """
 Sets the status of this connection from node A to node B.

 Args:
 new_status_a2b (:class:`.RouteStatus`): The new A -> B connection status.

 .. seealso::
 | :class:`digi.xbee.models.zdo.RouteStatus`
 """
 self.__st_a2b = new_status_a2b

 @property
 def status_b2a(self):
 """
 Returns the status of this connection from node B to node A.

 Returns:
 :class:`.RouteStatus`: The status for B -> A connection.

 .. seealso::
 | :class:`digi.xbee.models.zdo.RouteStatus`
 """
 return self.__st_b2a

 @status_b2a.setter
 def status_b2a(self, new_status_b2a):
 """
 Sets the status of this connection from node B to node A.

 Args:
 new_status_b2a (:class:`o.RouteStatus`): The new B -> A connection status.

 .. seealso::
 | :class:`digi.xbee.models.zdo.RouteStatus`
 """
 self.__st_b2a = new_status_b2a

 @staticmethod
 def __get_lq(lq_val, src):
 """
 Retrieves the `LinkQuality` object that corresponds to the integer provided.

 Args:
 lq_val (Integer): The link quality value.
 src (:class:`.AbstractXBeeDevice`): The node from where the connection starts.

 Returns:
 :class:`.LinkQuality`: The corresponding `LinkQuality`.

 .. seealso::
 | :class:`.AbstractXBeeDevice`
 | :class:`.LinkQuality`
 """
 if isinstance(lq_val, LinkQuality):
 return lq_val
 if isinstance(lq_val, int):
 return LinkQuality(lq=lq_val,
 is_rssi=src.get_protocol() in (XBeeProtocol.DIGI_MESH,
 XBeeProtocol.XTEND_DM,
 XBeeProtocol.XLR_DM,
 XBeeProtocol.SX))
 return LinkQuality.UNKNOWN

 @property
 def scan_counter_a2b(self):
 """
 Returns the scan counter for this connection, discovered by its A node.

 Returns:
 Integer: The scan counter for this connection, discovered by its A node.
 """
 return self.__scan_counter_a2b

 @scan_counter_a2b.setter
 def scan_counter_a2b(self, new_scan_counter_a2b):
 """
 Configures the scan counter for this connection, discovered by its A node.

 Args:
 new_scan_counter_a2b (Integer): The scan counter for this
 connection, discovered by its A node.
 """
 self.__scan_counter_a2b = new_scan_counter_a2b

 @property
 def scan_counter_b2a(self):
 """
 Returns the scan counter for this connection, discovered by its B node.

 Returns:
 Integer: The scan counter for this connection, discovered by its B node.
 """
 return self.__scan_counter_b2a

 @scan_counter_b2a.setter
 def scan_counter_b2a(self, new_scan_counter_b2a):
 """
 Configures the scan counter for this connection, discovered by its B node.

 Args:
 new_scan_counter_b2a (Integer): The scan counter for this
 connection, discovered by its B node.
 """
 self.__scan_counter_b2a = new_scan_counter_b2a

 Source code for digi.xbee.exception

Copyright 2017-2020, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

[docs]class XBeeException(Exception):
 """
 Generic XBee API exception. This class and its subclasses indicate
 conditions that an application might want to catch.

 All functionality of this class is the inherited of `Exception
 <https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception>`_.
 """

[docs]class CommunicationException(XBeeException):
 """
 This exception will be thrown when any problem related to the communication
 with the XBee device occurs.

 All functionality of this class is the inherited of `Exception
 <https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception>`_.
 """

[docs]class ATCommandException(CommunicationException):
 """
 This exception will be thrown when a response of a packet is not success or OK.

 All functionality of this class is the inherited of `Exception
 <https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception>`_.
 """
 __DEFAULT_MESSAGE = "There was a problem sending the AT command packet."

 def __init__(self, message=__DEFAULT_MESSAGE, cmd_status=None):
 super().__init__(message)
 self.status = cmd_status

[docs]class ConnectionException(XBeeException):
 """
 This exception will be thrown when any problem related to the connection
 with the XBee device occurs.

 All functionality of this class is the inherited of `Exception
 <https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception>`_.
 """

[docs]class XBeeDeviceException(XBeeException):
 """
 This exception will be thrown when any problem related to the XBee device
 occurs.

 All functionality of this class is the inherited of `Exception
 <https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception>`_.
 """

[docs]class InvalidConfigurationException(ConnectionException):
 """
 This exception will be thrown when trying to open an interface with an
 invalid configuration.

 All functionality of this class is the inherited of `Exception
 <https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception>`_.
 """
 __DEFAULT_MESSAGE = "The configuration used to open the interface is invalid."

 def __init__(self, message=__DEFAULT_MESSAGE):
 super().__init__(message)

[docs]class InvalidOperatingModeException(ConnectionException):
 """
 This exception will be thrown if the operating mode is different than
 OperatingMode.API_MODE and *OperatingMode.API_MODE*

 All functionality of this class is the inherited of `Exception
 <https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception>`_.
 """
 __DEFAULT_MESSAGE = "The operating mode of the XBee device is not supported by the library."
 __DEFAULT_MSG_FORMAT = "Unsupported operating mode: %s (%d)"

 def __init__(self, message=None, op_mode=None):
 if op_mode and not message:
 message = InvalidOperatingModeException.__DEFAULT_MSG_FORMAT \
 % (op_mode.description, op_mode.code)
 elif not message:
 message = InvalidOperatingModeException.__DEFAULT_MESSAGE

 super().__init__(message)
 self.__op_mode = op_mode

[docs]class InvalidPacketException(CommunicationException):
 """
 This exception will be thrown when there is an error parsing an API packet
 from the input stream.

 All functionality of this class is the inherited of `Exception
 <https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception>`_.
 """
 __DEFAULT_MESSAGE = "The XBee API packet is not properly formed."

 def __init__(self, message=__DEFAULT_MESSAGE):
 super().__init__(message)

[docs]class OperationNotSupportedException(XBeeDeviceException):
 """
 This exception will be thrown when the operation performed is not supported
 by the XBee device.

 All functionality of this class is the inherited of `Exception
 <https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception>`_.
 """
 __DEFAULT_MESSAGE = "The requested operation is not supported by either " \
 "the connection interface or the XBee device."

 def __init__(self, message=__DEFAULT_MESSAGE):
 super().__init__(message)

[docs]class TimeoutException(CommunicationException):
 """
 This exception will be thrown when performing synchronous operations and
 the configured time expires.

 All functionality of this class is the inherited of `Exception
 <https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception>`_.
 """
 __DEFAULT_MESSAGE = "There was a timeout while executing the requested operation."

 def __init__(self, message=__DEFAULT_MESSAGE):
 super().__init__(message)

[docs]class TransmitException(CommunicationException):
 """
 This exception will be thrown when receiving a transmit status different
 than *TransmitStatus.SUCCESS* after sending an XBee API packet.

 All functionality of this class is the inherited of `Exception
 <https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception>`_.
 """
 __DEFAULT_MESSAGE = "There was a problem with a transmitted packet response (status not ok)"

 def __init__(self, message=__DEFAULT_MESSAGE, transmit_status=None):
 super().__init__(message)
 self.status = transmit_status

[docs]class XBeeSocketException(XBeeException):
 """
 This exception will be thrown when there is an error performing any socket operation.

 All functionality of this class is the inherited of `Exception
 <https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception>`_.
 """
 __DEFAULT_MESSAGE = "There was a socket error"
 __DEFAULT_STATUS_MESSAGE = "There was a socket error: %s (%d)"

 def __init__(self, message=__DEFAULT_MESSAGE, status=None):
 super().__init__(self.__DEFAULT_STATUS_MESSAGE % (
 status.description, status.code) if status is not None else message)
 self.status = status

[docs]class FirmwareUpdateException(XBeeException):
 """
 This exception will be thrown when any problem related to the firmware update
 process of the XBee device occurs.

 All functionality of this class is the inherited of `Exception
 <https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception>`_.
 """

[docs]class RecoveryException(XBeeException):
 """
 This exception will be thrown when any problem related to the auto-recovery
 process of the XBee device occurs.

 All functionality of this class is the inherited of `Exception
 <https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception>`_.
 """

 Source code for digi.xbee.filesystem

Copyright 2019-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

import functools
import logging
import os
import re
import string
import threading
import time
from abc import ABCMeta, abstractmethod
from enum import Enum
from os import listdir
from os.path import isfile
from pathlib import PurePosixPath
from serial.serialutil import SerialException

from digi.xbee.exception import XBeeException, OperationNotSupportedException
from digi.xbee.models.atcomm import ATStringCommand
from digi.xbee.models.filesystem import FSCmd, GetPathIdCmdRequest, \
 CreateDirCmdRequest, OpenDirCmdRequest, DeleteCmdRequest, VolStatCmdRequest, \
 VolFormatCmdRequest, HashFileCmdRequest, ReadDirCmdRequest, \
 OpenFileCmdRequest, CloseFileCmdRequest, ReadFileCmdRequest, \
 WriteFileCmdRequest, CloseDirCmdRequest, RenameCmdRequest
from digi.xbee.models.hw import HardwareVersion
from digi.xbee.models.options import TransmitOptions, DirResponseFlag, FileOpenRequestOption
from digi.xbee.models.protocol import XBeeProtocol
from digi.xbee.models.status import TransmitStatus, FSCommandStatus
from digi.xbee.packets.filesystem import RemoteFSRequestPacket, FSRequestPacket
from digi.xbee.util import xmodem, utils
from digi.xbee.util.xmodem import XModemException

_ANSWER_ATFS = "AT%s" % ATStringCommand.FS.command
_ANSWER_SHA256 = "sha256"

_COMMAND_AT = "AT\r"
_COMMAND_ATFS = "AT%s %s" % (ATStringCommand.FS.command, "%s\r")
_COMMAND_FILE_SYSTEM = "AT%s\r" % ATStringCommand.FS.command
_COMMAND_MODE_ANSWER_OK = "OK"
_COMMAND_MODE_CHAR = "+"
_COMMAND_MODE_EXIT = "AT%s\r" % ATStringCommand.CN.command
_COMMAND_MODE_TIMEOUT = 2

_ERROR_CONNECT_FILESYSTEM = "Error connecting file system manager: %s"
_ERROR_ENTER_CMD_MODE = "Could not enter AT command mode"
_ERROR_EXECUTE_COMMAND = "Error executing command '%s': %s"
_ERROR_FUNCTION_NOT_SUPPORTED = "Function not supported: %s"
_ERROR_TIMEOUT = "Timeout executing command"
ERROR_FILESYSTEM_NOT_SUPPORTED = "The device does not support file system feature"

_FORMAT_TIMEOUT = 10 # Seconds.

_FUNCTIONS_SEPARATOR = " "

_GUARD_TIME = 2 # In seconds.

_NAK_TIMEOUT = 10 # Seconds.

_PATH_SEPARATOR = "/"
_PATTERN_FILE_SYSTEM_DIRECTORY = "^ +<DIR> (.+)/$"
_PATTERN_FILE_SYSTEM_ERROR = "^(.*\\s)?(E[A-Z0-9]+)(.*)?\\s*$"
_PATTERN_FILE_SYSTEM_FILE = "^ +([0-9]+) (.+)$"
_PATTERN_FILE_SYSTEM_FUNCTIONS = "^.*AT%s %s" % (ATStringCommand.FS.command, "commands: (.*)$")
_PATTERN_FILE_SYSTEM_INFO = "^ *([0-9]*) (.*)$"

_READ_BUFFER = 256
_READ_DATA_TIMEOUT = 3 # Seconds.
_READ_EMPTY_DATA_RETRIES = 10
_READ_EMPTY_DATA_RETRIES_DEFAULT = 1
_READ_PORT_TIMEOUT = 0.05 # Seconds.

_SECURE_ELEMENT_SUFFIX = "#"

SUPPORTED_HW_VERSIONS = (HardwareVersion.XBEE3.code,
 HardwareVersion.XBEE3_SMT.code,
 HardwareVersion.XBEE3_TH.code)

XB3_MIN_FW_VERSION_FS_API_SUPPORT = {
 XBeeProtocol.ZIGBEE: 0x100C,
 XBeeProtocol.DIGI_MESH: 0x300C,
 XBeeProtocol.RAW_802_15_4: 0x200D
}

XB3_MAX_FW_VERSION_FS_OTA_SUPPORT = {
 XBeeProtocol.ZIGBEE: 0x100B,
 XBeeProtocol.DIGI_MESH: 0x300B,
 XBeeProtocol.RAW_802_15_4: 0x200C
}

_DEFAULT_BLOCK_SIZE = 64

_TRANSFER_TIMEOUT = 5 # Seconds.

_log = logging.getLogger(__name__)
_printable_ascii_bytes = string.printable.encode(encoding='utf8')

class _FilesystemFunction(Enum):
 """
 This class lists the available file system functions for XBee devices.

 | Inherited properties:
 | **name** (String): The name of this _FilesystemFunction.
 | **value** (Integer): The ID of this _FilesystemFunction.
 """
 PWD = ("PWD", "pwd")
 CD = ("CD", "cd %s")
 MD = ("MD", "md %s")
 LS = ("LS", "ls")
 LS_DIR = ("LS", "ls %s")
 PUT = ("PUT", "put %s")
 XPUT = ("XPUT", "xput %s")
 GET = ("GET", "get %s")
 MV = ("MV", "mv %s %s")
 RM = ("RM", "rm %s")
 HASH = ("HASH", "hash %s")
 INFO = ("INFO", "info")
 FORMAT = ("FORMAT", "format confirm")

 def __init__(self, name, command):
 self.__name = name
 self.__command = command

 @classmethod
 def get(cls, name):
 """
 Returns the `_FilesystemFunction` for the given name.

 Args:
 name (String): Name of the `_FilesystemFunction` to get.

 Returns:
 :class:`._FilesystemFunction`: `_FilesystemFunction` with the given
 name, `None` if there is not a `_FilesystemFunction` with the
 provided name.
 """
 for value in _FilesystemFunction:
 if value.name == name:
 return value

 return None

 @property
 def name(self):
 """
 Returns the name of the `_FilesystemFunction` element.

 Returns:
 String: Name of the `_FilesystemFunction` element.
 """
 return self.__name

 @property
 def command(self):
 """
 Returns the command of the `_FilesystemFunction` element.

 Returns:
 String: Command of the `_FilesystemFunction` element.
 """
 return self.__command

[docs]class FileSystemElement:
 """
 Class used to represent XBee file system elements (files and directories).
 """

 def __init__(self, name, path=None, is_dir=False, size=0, is_secure=False):
 """
 Class constructor. Instantiates a new :class:`.FileSystemElement`
 object with the given parameters.

 Args:
 name (String or bytearray): Name of the file system element.
 path (String or bytearray, optional, default=`None`): Absolute path
 of the element.
 is_dir (Boolean, optional, default=`True`): `True` if the
 element is a directory, `False` for a file.
 size (Integer, optional, default=0): Element size in bytes.
 Only for files.
 is_secure (Boolean, optional, default=`False`): `True` for a secure
 element, `False` otherwise.

 Raises:
 ValueError: If any of the parameters are invalid.
 """
 if not name or not isinstance(name, (str, bytearray, bytes)):
 raise ValueError("Name must be a non-empty string or bytearray")
 if not isinstance(size, int):
 raise ValueError("Size must be a integer")
 if path and not isinstance(path, (str, bytearray, bytes)):
 raise ValueError("Path must be a string or bytearray")

 if isinstance(name, str):
 self._name = name.encode('utf8', errors='ignore')
 else:
 self._name = name
 if isinstance(path, str):
 self._path = path.encode('utf8', errors='ignore')
 else:
 self._path = path if path is not None else bytearray()
 self._is_dir = is_dir
 self._size = size if not is_dir else 0
 self._is_secure = is_secure

 def __str__(self):
 return "{:s} {:10s} {:25s} {:s}".format(
 "d" if self._is_dir else "*" if self._is_secure else "-", self.size_pretty,
 self.name, self.path)

 @property
 def name(self):
 """
 Returns the file system element name.

 Returns:
 String: File system element name.
 """
 return self._name.decode(encoding='utf8', errors='ignore')

 @property
 def path(self):
 """
 Returns the file system element absolute path.

 Returns:
 String: File system element absolute path.
 """
 return self._path.decode(encoding='utf8', errors='ignore')

 @path.setter
 def path(self, element_path):
 """
 Sets the file system element absolute path.

 Args:
 element_path (String): File system element absolute path.
 """
 self._path = element_path

 @property
 def is_dir(self):
 """
 Returns whether the file system element is a directory.

 Returns:
 Boolean: `True` for a directory, `False` otherwise.
 """
 return self._is_dir

 @property
 def size(self):
 """
 Returns the size in bytes of the element.

 Returns:
 Integer: The size in bytes of the file, 0 for a directory.
 """
 return self._size

 @property
 def size_pretty(self):
 """
 Returns a human readable size (e.g., 1K 234M 2G).

 Returns:
 String: Human readable size.
 """
 units = [(1 << 50, 'PB'), (1 << 40, 'TB'), (1 << 30, 'GB'),
 (1 << 20, 'MB'), (1 << 10, 'KB'), (1, 'B')]

 factor, suffix = units[len(units) - 1]
 for factor, suffix in units:
 if self._size >= factor:
 break
 amount = round(self._size / factor, 2)

 return "%5.2f%s" % (amount, suffix)

 @property
 def is_secure(self):
 """
 Returns whether the element is secure.

 Returns:
 Boolean: `True` for a secure element, `False` otherwise.
 """
 return self._is_secure

[docs] @staticmethod
 def from_data(name, size, flags, path=None):
 """
 Creates a file element from its name and the bytearray with info and
 size.

 Args:
 name (String or bytearray): The name of the element to create.
 size (Bytearray): Byte array containing file size.
 flags (Integer): Integer with file system element information.
 path (String or bytearray, optional, default=`None`): The absolute
 path of the element (without its name).

 Returns:
 :class:`.FileSystemElement`: The new file system element.
 """
 return FileSystemElement(
 name, path=path, is_dir=bool(flags & DirResponseFlag.IS_DIR),
 size=utils.bytes_to_int(size),
 is_secure=bool(flags & DirResponseFlag.IS_SECURE))

[docs]class FileSystemException(XBeeException):
 """
 This exception will be thrown when any problem related with the XBee
 file system occurs.

 All functionality of this class is the inherited from `Exception
 <https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception>`_.
 """

 def __init__(self, message, fs_status=None):
 super().__init__(message)
 self.status = fs_status

[docs]class FileSystemNotSupportedException(FileSystemException):
 """
 This exception will be thrown when the file system feature is not supported
 in the device.

 All functionality of this class is the inherited from `Exception
 <https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception>`_.
 """

class _FSFrameSender:
 """
 Helper class used to send file system frames and wait for the response.
 """

 def __init__(self, xbee):
 """
 Class constructor. Instantiates a new :class:`._FSFrameSender` with
 the given parameters.

 Args:
 xbee (:class:`.AbstractXBeeDevice`): Destination XBee.
 """
 self.__xbee = xbee
 self.__lock = threading.Event()
 self.__frame = None
 self.__resp_cmd = None
 self.__rec_opts = None

 def __str__(self):
 return "File system sender (dst: %s)" % self.__xbee

 def _fs_frame_cb(self, xbee, frame_id, cmd, receive_opts):
 """
 Callback to execute when a new frame id is received.

 Args:
 xbee (:class:`.AbstractXBeeDevice`): The node that sent the file
 system frame.
 frame_id (Integer): The received frame id.
 cmd (:class:`.FSCmd`): The file system command.
 receive_opts (Integer): Bitfield indicating receive options.
 See :class:`.ReceiveOptions`.
 """
 if (frame_id != self.__frame.frame_id
 or cmd.type != self.__frame.command.type
 or xbee != self.__xbee):
 return

 self.__resp_cmd = cmd
 self.__rec_opts = receive_opts
 self.__lock.set()

 def send(self, frame_to_send, timeout=10):
 """
 Sends the file system frame to the provided XBee and waits for its
 response.

 Args:
 frame_to_send (:class:`XBeeAPIPacket`): The file system frame to
 send.
 timeout (Float): Maximum number of seconds to wait for the response.

 Returns:
 Tuple: Tuple containing route data:
 - rv_status (Integer): Status of the file system command
 execution. See :class:`.FSCommandStatus`.
 - resp_cmd (:class:`.FSCmd`): The response command.
 - rv_opts (Integer): Bitfield indicating the receive options.
 See :class:`.ReceiveOptions`.
 """
 local_xb = self.__xbee
 if self.__xbee.is_remote():
 local_xb = self.__xbee.get_local_xbee_device()
 tr_status = None
 self.__lock.clear()
 self.__frame = frame_to_send
 self.__resp_cmd = None
 self.__rec_opts = None

 log_msg_fmt = "%s: %s: %s" % (str(self), self.__frame.command.type.description, "%s")

 local_xb.add_fs_frame_received_callback(self._fs_frame_cb)

 try:
 #start = time.time()

 if self.__xbee.is_remote():
 _log.debug(log_msg_fmt, "Sending remote frame")
 local_xb.send_packet(self.__frame)
 if not self.__lock.wait(timeout):
 self._throw_fs_exc(self.__frame.command,
 "Timeout waiting for remote response")
 tr_status = TransmitStatus.SUCCESS
 # Transmit status frame is never received for Zigbee,
 # DigiMesh is receiving it, 802.15.4
 # https://jira.digi.com/browse/XBHAWK-530
 #st_frame = local_xb.send_packet_sync_and_get_response(
 # self.__frame, timeout=timeout)
 #tr_status = st_frame.transmit_status if st_frame else None
 #if tr_status in (TransmitStatus.SUCCESS,
 # TransmitStatus.SELF_ADDRESSED):
 # if not self.__lock.wait(timeout - (time.time() - start)):
 # self._throw_fs_exc(self.__frame.command,
 # "Timeout waiting for remote response")
 #else:
 # self._throw_fs_exc(self.__frame.command,
 # "Remote frame not sent (tr status: %s)" % tr_status)
 else:
 _log.debug(log_msg_fmt, "Sending local frame")
 local_xb.send_packet(self.__frame)
 if not self.__lock.wait(timeout):
 self._throw_fs_exc(self.__frame.command,
 "Timeout waiting for local response")
 tr_status = TransmitStatus.SUCCESS
 except FileSystemException:
 pass
 except XBeeException as exc:
 self._throw_fs_exc(self.__frame.command, str(exc))
 finally:
 local_xb.del_fs_frame_received_callback(self._fs_frame_cb)

 if not tr_status or not self.__resp_cmd:
 self._throw_fs_exc(self.__frame.command,
 "Response not received in timeout")

 status = self.__resp_cmd.status_value
 if status != FSCommandStatus.SUCCESS.code:
 fs_status = FSCommandStatus.get(status)
 msg = str(fs_status) if fs_status else "Unknown file system status (0x%0.2X)" % status
 _log.error("%s: %s: %s", str(self), self.__frame.command.type.description, msg)

 return status, self.__resp_cmd, self.__rec_opts

 def _throw_fs_exc(self, cmd, msg, status=None):
 exc_msg_fmt = "%s error: %s" % (cmd.type.description, "%s")
 log_msg_fmt = "%s: %s: %s" % (str(self), cmd.type.description, "%s")

 _log.error(log_msg_fmt, msg)
 raise FileSystemException(exc_msg_fmt % msg, fs_status=status)

[docs]class FileProcess(metaclass=ABCMeta):
 """
 This class represents a file process.
 """

 def __init__(self, f_mng, file, timeout):
 """
 Class constructor. Instantiates a new :class:`._FileProcess` object
 with the provided parameters.

 Args:
 f_mng (class:`.FileSystemManager`): The file system manager.
 file (:class:`.FileSystemElement` or String): File or its absolute path.
 timeout(Float): Timeout in seconds.
 """
 if not isinstance(file, (str, FileSystemElement)):
 raise ValueError("File must be a string or a FileSystemElement")
 if isinstance(file, FileSystemElement):
 if file.is_dir:
 raise ValueError("File cannot be a directory")
 if file.path in ("/", "\\", ".", ".."):
 raise ValueError("Invalid file path")
 if isinstance(file, str) and file in ("/", "\\", ".", ".."):
 raise ValueError("Invalid file path")

 # Sanitize path
 file_path = file
 if isinstance(file, FileSystemElement):
 file_path = file.path
 file_path = os.path.normpath(file_path.replace('\\', '/'))

 self._f_mng = f_mng
 self._f_path = file_path
 self._timeout = timeout

 self._fid = None
 self._fsize = None
 self._cpid = None

 self._running = False
 self._opened = False
 self._status = None
 self._cb = None

 @property
 def running(self):
 """
 Returns if this file command is running.

 Returns:
 Boolean: `True` if it is running, `False` otherwise.
 """
 return self._running

 @property
 def status(self):
 """
 Returns the status code.

 Returns:
 Integer: The status.
 """
 return self._status

 @property
 def block_size(self):
 """
 Returns the size of the block for this file operation.

 Returns:
 Integer: Size of the block for this file operation.
 """
 return self._get_block_size(0)

 def _next(self, last=True):
 """
 Executes the next action.
 """
 error = bool(self._status not in (None, FSCommandStatus.SUCCESS.code))

 if not self._fid and not self._opened and not error:
 self._start_process()
 if self._fid is None or self._cpid is None:
 return

 r_last = False
 if not error:
 r_last = self._exec_specific_cmd()

 if self._opened and (last or r_last or error):
 self._end_process()

 def _start_process(self):
 """
 Starts the file process.
 """
 self._running = True
 self._status = None
 self._cpid = 0

 # Check length of path, if is too big try to change to a parent
 self._cpid, f_path = self._f_mng._cd_to_execute(self._f_path,
 self._cpid, self._timeout)

 self._status, self._fid, self._fsize = self._f_mng.popen_file(
 f_path, options=self._get_open_flags(), path_id=self._cpid,
 timeout=self._timeout)

 self._opened = bool(self._status == FSCommandStatus.SUCCESS.code)
 if not self._opened:
 if self._cpid:
 self._f_mng.prelease_path_id(self._cpid, self._timeout)
 self._running = False
 self._notify_process_finished()

 def _end_process(self):
 """
 Closes the file and releases the path id.
 """
 cl_st = None
 # Close file and release directory path id
 if self._fid:
 cl_st = self._f_mng.pclose_file(self._fid, timeout=self._timeout)
 if self._cpid:
 self._f_mng.prelease_path_id(self._cpid, self._timeout)

 self._opened = False
 self._running = False

 self._status = self._status if self._status else cl_st
 if self._status:
 self._notify_process_finished()

 def _get_block_size(self, extra_data_len):
 xbee = self._f_mng.xbee

 n_bytes = self._f_mng.np_value
 if not n_bytes:
 n_bytes = _DEFAULT_BLOCK_SIZE
 else:
 n_bytes = self._f_mng.np_value - extra_data_len
 if xbee.is_remote():
 cfg_max = xbee.get_ota_max_block_size()
 n_bytes = min(cfg_max, n_bytes) if cfg_max else n_bytes

 # If max block is not configured and NP cannot be read, set 64
 if n_bytes < 1:
 n_bytes = _DEFAULT_BLOCK_SIZE

 return n_bytes

 @abstractmethod
 def _get_open_flags(self):
 """
 Bitmask that specifies the options to open the file.

 Returns:
 :class:`.FileOpenRequestOption`: Options to open the file.
 """

 @abstractmethod
 def _exec_specific_cmd(self):
 """
 Executes the specific file process (read or write).
 """

 @abstractmethod
 def _notify_process_finished(self):
 """
 Notifies that the file process has finished its execution.
 """

 def _log_str(self, msg, *args):
 return "%s: %s" % (str(self), msg % args)

class _ReadFileProcess(FileProcess):

 def __init__(self, f_mng, file, offset, timeout, read_callback=None):
 """
 Override.

 Args:
 offset (Integer): File offset to start reading.
 read_callback (Function, optional, default=`None`): Method called
 when new data is read. Receives three arguments:

 * The read chunk of data.
 * The progress percentage as float.
 * The total size of the file.
 * The completion status code (integer). See `.FSCommandStatus`.
 """
 if offset is not None and not isinstance(offset, int) or offset < 0:
 raise ValueError("Offset must be 0 or greater")

 super().__init__(f_mng, file, timeout)
 self.__offset = offset
 self.__l_off = offset
 self._cb = read_callback
 self.__size = 0
 self.__data = bytearray()

 _log.debug(self._log_str("Reading file '%s' (offset: %d)",
 self._f_path, offset))

 def __str__(self):
 return "Read file command ('%s')" % self._f_path

 @property
 def block_size(self):
 """
 Returns the size of the block for this file operation.

 Returns:
 Integer: The size of the block for this file operation.
 """
 # cmd_id (1) + f_id (2) + offset (4) + size (2) = 9
 return self._get_block_size(9)

 def next(self, size=-1, last=True):
 """
 Reads from the current offset the provided amount of data. The process
 blocks until all data is read.
 Set `last` to `False` to use subsequents calls to `next` to read more
 data. When no more read is required, close the file setting `last` to
 `True`. If the end of the file is reached it is close independently of
 `last` value.

 Args:
 size (Integer, optional, default=-1): Number of bytes to read.
 -1 for the complete file.
 last (Boolean, optional, default=`True'): `True` if this is the
 last step, `False` otherwise.

 Returns:
 Bytearray: The total read data bytearray.

 Raises:
 FileSystemException: If there is any error performing the operation
 and `progress_cb` is `None`.
 ValueError: If any of the parameters is invalid.
 """
 if not isinstance(size, int) or size < -1:
 raise ValueError("Size must be -1 or greater")

 if not size or self._fsize and self.__l_off >= self._fsize:
 return bytearray()

 self.__size = size

 super()._next(last=last)

 if self._status == FSCommandStatus.SUCCESS.code:
 return self.__data

 if not self._cb:
 _raise_exception(self._status,
 "Error reading file '%s'" % self._f_path)

 return bytearray()

 def _get_open_flags(self):
 """
 Override.

 .. seealso::
 | :meth:`._FileProcess._get_open_flags`
 """
 return FileOpenRequestOption.READ

 def _exec_specific_cmd(self):
 """
 Override.

 .. seealso::
 | :meth:`._FileProcess._exec_specific_cmd`
 """
 self._status = FSCommandStatus.SUCCESS.code
 self.__data = bytearray()

 # Calculate total size to read in file
 total_in_file = self._fsize - self.__offset
 if total_in_file <= 0:
 return True

 # Calculate remaining (not read) size in file
 remain_in_file = self._fsize - self.__l_off
 if not remain_in_file:
 return True

 # Calculate total size to read
 total_to_read = min(self.__size, total_in_file)
 if total_to_read == -1:
 total_to_read = total_in_file

 # Calculate remaining (not read) to read
 remain_to_read = min(self.__size, remain_in_file)
 if remain_to_read == -1:
 remain_to_read = remain_in_file

 # Calculate chunk length
 chunk_len = min(self.block_size, remain_to_read)
 _log.debug(self._log_str("Block size: %d", chunk_len))

 while (chunk_len and len(self.__data) < remain_to_read
 and self.__l_off < self._fsize):
 _log.debug(self._log_str("Reading, offset: %d, size: %d",
 self.__l_off, chunk_len))
 self._status, _fid, _offst, chunk = self._f_mng.pread_file(
 self._fid, offset=self.__l_off, size=chunk_len,
 timeout=self._timeout)

 if self._status != FSCommandStatus.SUCCESS.code:
 return True

 self.__data += chunk

 _log.debug(self._log_str("Read %d (%d/%d)", len(chunk),
 len(self.__data), remain_to_read))

 if self._cb:
 self._cb(chunk, len(self.__data) * 100 / remain_to_read,
 self._fsize, self._status)

 # Recalculate offset
 self.__l_off += len(chunk)

 # Recalculate chunk length
 chunk_len = min(chunk_len, remain_to_read - len(self.__data))

 return self.__l_off >= self._fsize

 def _notify_process_finished(self):
 """
 Override.

 .. seealso::
 | :meth:`._FileProcess._notify_process_finished`
 """
 if self._cb:
 self._cb(bytearray(), 0, self._fsize, self._status)

class _WriteFileProcess(FileProcess):

 def __init__(self, f_mng, file, offset, options, timeout, write_callback=None):
 """
 Override.

 Args:
 write_callback (Function, optional, default=`None`): Method called
 when data is written. Receives three arguments:

 * The amount of bytes written in the chunk.
 * The progress percentage as float.
 * The completion status code (integer). See `.FSCommandStatus`.
 """
 if offset is not None and not isinstance(offset, int) or offset < 0:
 raise ValueError("Offset must be 0 or greater")

 super().__init__(f_mng, file, timeout)
 self.__offset = offset
 self.__options = options
 self._cb = write_callback
 self.__n_bytes = 0
 self.__data = bytearray()

 _log.debug(self._log_str("Writing to file '%s' (offset: %d)",
 self._f_path, offset))

 def __str__(self):
 return "Write file command ('%s')" % self._f_path

 @property
 def block_size(self):
 """
 Returns the size of the block for this file operation.

 Returns:
 Integer: Size of the block for this file operation.
 """
 # cmd_id (1) + f_id (2) + offset (4) = 7
 return self._get_block_size(7)

 def next(self, data, last=True):
 """
 Writes the provided data in the current file offset. The process blocks
 until all requested data is written.
 Set `last` to `False` to use subsequents calls to `next` to write more
 data. When no more write is required, close the file setting `last` to
 `True`. If the end of the file is reached it is close independently of
 `last` value.

 Args:
 data (Bytearray, bytes, String): Data to write.
 last (Boolean, optional, default=`True'): 'True' if this is the
 last chunk to write, `False` otherwise.

 Returns:
 Integer: The total size written (in bytes).

 Raises:
 FileSystemException: If there is any error performing the operation
 and `progress_cb` is `None`.
 ValueError: If any of the parameters is invalid.
 """
 if not isinstance(data, (bytearray, bytes, str)):
 raise ValueError("Data must be a bytearray, bytes or a string")

 self.__data = data
 if isinstance(data, str):
 self.__data = bytearray(data, encoding='utf8')

 super()._next(last=last)

 if self._status == FSCommandStatus.SUCCESS.code:
 return self.__n_bytes

 if not self._cb:
 _raise_exception(self._status,
 "Error writing file '%s'" % self._f_path)

 return None

 def _get_open_flags(self):
 """
 Override.

 .. seealso::
 | :meth:`._FileProcess._get_open_flags`
 """
 return self.__options

 def _exec_specific_cmd(self):
 """
 Override.

 .. seealso::
 | :meth:`._FileProcess._exec_specific_cmd`
 """
 self._status = FSCommandStatus.SUCCESS.code
 if not self.__data or self.__offset + 1 >= self._fsize:
 return True

 last_offset = self.__offset
 data_offset = 0

 # Calculate chunk length
 chunk_len = min(self.block_size, len(self.__data))
 _log.debug(self._log_str("Block size: %d", chunk_len))

 while chunk_len and data_offset < len(self.__data):
 _log.debug(self._log_str("Writing, offset: %d, size: %d",
 last_offset, chunk_len))
 self._status, _fid, last_offset = self._f_mng.pwrite_file(
 self._fid, data=self.__data[data_offset:data_offset + chunk_len],
 offset=last_offset, timeout=self._timeout)

 if self._status != FSCommandStatus.SUCCESS.code:
 return True

 data_offset += chunk_len
 self.__n_bytes += chunk_len

 if self._cb:
 self._cb(chunk_len, self.__n_bytes * 100 / len(self.__data),
 self._status)

 # Recalculate chunk length
 chunk_len = min(chunk_len, len(self.__data) - data_offset)

 self.__offset = last_offset
 self.__n_bytes = 0

 return False

 def _notify_process_finished(self):
 """
 Override.

 .. seealso::
 | :meth:`._FileProcess._notify_process_finished`
 """
 if self._cb:
 self._cb(0, self.__n_bytes, self._status)

[docs]class FileSystemManager:
 """
 Helper class used to manage local or remote XBee file system.
 """

 DEFAULT_TIMEOUT = 20
 DEFAULT_FORMAT_TIMEOUT = 30

 _LOCAL_READ_CHUNK = 1024

 def __init__(self, xbee):
 """
 Class constructor. Instantiates a new :class:`.FileSystemManager` with
 the given parameters.

 Args:
 xbee (:class:`.AbstractXBeeDevice`): XBee to manage its file system.

 Raises:
 FileSystemNotSupportedException: If the XBee does not support
 filesystem.
 """
 from digi.xbee.devices import AbstractXBeeDevice
 if not isinstance(xbee, AbstractXBeeDevice):
 raise ValueError("XBee must be an XBee class")

 if not check_fs_support(xbee, min_fw_vers=XB3_MIN_FW_VERSION_FS_API_SUPPORT):
 raise FileSystemNotSupportedException(ERROR_FILESYSTEM_NOT_SUPPORTED)

 self.__xbee = xbee
 self.__np_val = None
 self.__root = FileSystemElement(name="/", path="/", is_dir=True,
 size=0, is_secure=False)

 def __str__(self):
 return "File system (%s)" % self.__xbee

 @property
 def xbee(self):
 """
 Returns the XBee of this file system manager.

 Returns:
 :class:`.AbstractXBeeDevice`: XBee to manage its file system.
 """
 return self.__xbee

 @property
 def np_value(self):
 """
 The 'NP' parameter value of the local XBee.

 Returns:
 Integer: The 'NP' value.
 """
 return self._get_np()

[docs] def get_root(self):
 """
 Returns the root directory.

 Returns:
 :class:`.FileSystemElement`: The root directory.

 Raises:
 FileSystemException: If there is any error performing the operation
 or the function is not supported.
 """
 return self.__root

[docs] def make_directory(self, dir_path, base=None, mk_parents=True, timeout=DEFAULT_TIMEOUT):
 """
 Creates the provided directory.

 Args:
 dir_path (String): Path of the new directory to create. It is
 relative to the directory specify in base.
 base (:class:`.FileSystemElement`, optional, default=`None): Base
 directory. If not specify it refers to '/flash'.
 mk_parents (Boolean, optional, default=`True`): `True` to make
 parent directories as needed, `False` otherwise.
 timeout (Float, optional, default=`DEFAULT_TIMEOUT`): Maximum number
 of seconds to wait for the operation completion. If `mk_parents`
 this is the timeout per directory creation.

 Returns:
 List: List of :class:`.FileSystemElement` created directories.

 Raises:
 FileSystemException: If there is any error performing the operation
 or the function is not supported.
 ValueError: If any of the parameters is invalid.
 """
 if not isinstance(dir_path, str):
 raise ValueError("Directory path must be a non empty string")
 if dir_path in ("/", "\\", ".", ".."):
 raise ValueError("Invalid directory path")
 if base and not isinstance(base, FileSystemElement):
 raise ValueError("Base must be a FileSystemElement")
 if not isinstance(timeout, int):
 timeout = self.DEFAULT_TIMEOUT

 # Sanitize path
 path_id = 0
 path = os.path.normpath(dir_path.replace('\\', '/'))

 base_path = "/flash"
 if base:
 base_path = os.path.normpath(base.path.replace('\\', '/'))

 comp_path = os.path.join(base_path, path)

 _log.debug(self._log_str("Creating directory '%s' (base: %s)",
 path, base_path))
 path = PurePosixPath(comp_path)
 dirs = []

 start = time.time()

 try:
 # XBee create directory command does not make intermediate dir, this
 # method generates them recursively:
 # https://jira.digi.com/browse/XBHAWK-523
 if mk_parents and str(path.parent) not in (path.root, '.', '/flash'):
 dirs += self.make_directory(str(path.parent), mk_parents=True,
 timeout=timeout)

 # Check length of path, if is too big try to change to a parent
 path_id, to_create = self._cd_to_execute(
 comp_path, path_id, timeout - (time.time() - start))

 # Create the directory
 status = self.pmake_directory(to_create, path_id=path_id,
 timeout=(timeout - (time.time() - start)))
 finally:
 if path_id:
 self.prelease_path_id(path_id, timeout)

 if status not in (FSCommandStatus.SUCCESS.code,
 FSCommandStatus.ALREADY_EXISTS.code):
 _raise_exception(status, "Error making directory '%s'" % comp_path)

 dirs.append(
 FileSystemElement(os.path.basename(comp_path), path=comp_path,
 is_dir=True, size=0, is_secure=False))

 return dirs

[docs] def list_directory(self, directory=None, timeout=DEFAULT_TIMEOUT):
 """
 Lists the contents of the given directory.

 Args:
 directory (:class:`.FileSystemElement` or String): Directory to
 list or its absolute path.
 timeout (Float, optional, default=`DEFAULT_TIMEOUT`): Maximum
 number of seconds to wait for the operation completion.

 Returns:
 List: List of `:class:`.FilesystemElement` objects contained in
 the given directory, empty list if status is not 0.

 Raises:
 FileSystemException: If there is any error performing the operation
 or the function is not supported.
 ValueError: If any of the parameters is invalid.
 """
 if directory:
 if not isinstance(directory, (str, FileSystemElement)):
 raise ValueError("Directory must be a string or a FileSystemElement")
 if isinstance(directory, FileSystemElement) and not directory.is_dir:
 raise ValueError("Directory must be a directory")
 if not isinstance(timeout, int):
 timeout = self.DEFAULT_TIMEOUT

 # Sanitize path
 path_id = 0
 dir_path = directory
 if isinstance(directory, FileSystemElement):
 dir_path = directory.path

 if dir_path in ("", ".", None):
 dir_path = "/flash"
 elif dir_path == "..":
 dir_path = "/"
 dir_path = os.path.normpath(dir_path.replace('\\', '/'))

 _log.debug(self._log_str("Listing directory '%s'", dir_path))

 start = time.time()

 try:
 # Check length of path, if is too big try to change to a parent
 path_id, to_list = self._cd_to_execute(dir_path, path_id, timeout)

 status, files = self.plist_directory(
 to_list, path_id=path_id, timeout=(timeout - (time.time() - start)))

 # This will store the absolute path of the contents
 for entry in files:
 entry.path = os.path.join(dir_path, entry.name)
 finally:
 if path_id:
 self.prelease_path_id(path_id, timeout)

 if status != FSCommandStatus.SUCCESS.code:
 _raise_exception(status, "Error listing directory '%s'" % dir_path)

 return files

[docs] def remove(self, entry, rm_children=True, timeout=DEFAULT_TIMEOUT):
 """
 Removes the given file system entry.

 All files in a directory must be deleted before removing the directory.
 On XBee 3 802.15.4, DigiMesh, and Zigbee, deleted files are marked as
 unusable space unless they are at the "end" of the file system
 (most-recently created). On these products, deleting a file triggers
 recovery of any deleted file space at the end of the file system, and
 can lead to a delayed response.

 Args:
 entry (:class:`.FileSystemElement` or String): File system entry to
 remove or its absolute path.
 rm_children (Boolean, optional, default=`True`): `True` to remove
 directory children if they exist, `False` otherwise.
 timeout (Float, optional, default=`DEFAULT_TIMEOUT`): Maximum
 number of seconds to wait for the operation completion.

 Raises:
 FileSystemException: If there is any error performing the operation
 or the function is not supported.
 ValueError: If any of the parameters is invalid.
 """
 if not isinstance(entry, (str, FileSystemElement)):
 raise ValueError("Entry must be a string or a FileSystemElement")
 if not isinstance(timeout, int):
 timeout = self.DEFAULT_TIMEOUT

 # Sanitize path
 path_id = 0
 entry_path = entry
 if isinstance(entry, FileSystemElement):
 entry_path = entry.path

 if entry_path in ("", ".", None):
 entry_path = "/flash"
 elif entry_path == "..":
 entry_path = "/"
 entry_path = os.path.normpath(entry_path.replace('\\', '/'))

 _log.debug(self._log_str("Removing entry '%s'", entry_path))

 start = time.time()

 try:
 # Check length of path, if is too big try to change to a parent
 path_id, to_rm = self._cd_to_execute(entry_path, path_id, timeout)

 status = self.premove(to_rm, path_id=path_id,
 timeout=(timeout - (time.time() - start)))

 # To remove a directory, it must be empty beforehand:
 # https://jira.digi.com/browse/XBHAWK-525
 if rm_children and status == FSCommandStatus.DIR_NOT_EMPTY.code:
 # Release the path id
 if path_id:
 self.prelease_path_id(path_id, timeout)
 path_id = 0
 # Remove the directory content
 files = self.list_directory(
 entry_path, timeout=(timeout - (time.time() - start)))
 for file in files:
 self.remove(file, rm_children=True,
 timeout=(timeout - (time.time() - start)))
 # Remove the directory
 path_id, to_rm = self._cd_to_execute(entry_path, path_id,
 timeout, refresh=False)
 status = self.premove(to_rm, path_id=path_id,
 timeout=(timeout - (time.time() - start)))
 finally:
 if path_id:
 self.prelease_path_id(path_id, timeout)

 if status != FSCommandStatus.SUCCESS.code:
 _raise_exception(status, "Error removing entry '%s'" % entry_path)

[docs] def read_file(self, file, offset=0, progress_cb=None):
 """
 Reads from the provided file starting at the given offset.
 If there is no progress callback the function blocks
 until the required amount of bytes is read.

 Args:
 file (:class:`.FileSystemElement` or String): File to read or its
 absolute path.
 offset (Integer, optional, default=0): File offset to start
 reading.
 progress_cb (Function, optional, default=`None`): Function called
 when new data is read. Receives four arguments:

 * The chunk of data read as byte array.
 * The progress percentage as float.
 * The total size of the file.
 * The status when process finishes.

 Returns:
 :class:`.FileProcess`: The process to read data from the file.

 Raises:
 FileSystemException: If there is any error performing the operation
 and `progress_cb` is `None`.
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :meth:`.get_file`
 """
 return _ReadFileProcess(self, file, offset, self.DEFAULT_TIMEOUT,
 read_callback=progress_cb)

[docs] def write_file(self, file, offset=0, secure=False, options=None, progress_cb=None):
 """
 Writes to the provided file the data starting at the given offset. The
 function blocks until the all data is written.

 Args:
 file (:class:`.FileSystemElement` or String): File to write or its
 absolute path.
 offset (Integer, optional, default=0): File offset to start writing.
 secure (Boolean, optional, default=`False`): `True` to store the
 file securely (no read access), `False` otherwise.
 options (Dictionary, optional): Other write options as list:
 `exclusive`, `truncate`, `append`.
 progress_cb (Function, optional, default=`None`): Function call
 when data is written. Receives three arguments:

 * The amount of bytes written (for each chunk).
 * The progress percentage as float.
 * The status when process finishes.

 Raises:
 FileSystemException: If there is any error performing the operation
 and `progress_cb` is `None`.
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :meth:`.put_file`
 """
 if options is None:
 options = []

 wr_options = FileOpenRequestOption.WRITE
 if secure:
 wr_options |= FileOpenRequestOption.SECURE
 if "exclusive" in options:
 wr_options |= FileOpenRequestOption.EXCLUSIVE
 else:
 wr_options |= FileOpenRequestOption.CREATE
 if "truncate" in options:
 wr_options |= FileOpenRequestOption.TRUNCATE
 if "append" in options:
 wr_options |= FileOpenRequestOption.APPEND

 return _WriteFileProcess(self, file, offset, wr_options,
 self.DEFAULT_TIMEOUT, write_callback=progress_cb)

[docs] def get_file(self, src, dest, progress_cb=None):
 """
 Downloads the given XBee file in the specified destination path.

 Args:
 src (:class:`.FileSystemElement` or String): File to download or
 its absolute path.
 dest (String): The absolute path of the destination file.
 progress_cb (Function, optional): Function call when data is being
 downloaded. Receives three arguments:

 * The progress percentage as float.
 * Destination file path.
 * Source file path.

 Raises:
 FileSystemException: If there is any error performing the operation
 and `progress_cb` is `None`.
 ValueError: If any of the parameters is invalid.
 """
 if not isinstance(dest, str):
 raise ValueError("Destination path must be a non-empty string")

 src_path = src
 if isinstance(src, FileSystemElement):
 src_path = src.path
 src_path = os.path.normpath(src_path.replace('\\', '/'))

 total_read = 0

 def p_cb(chunk, _perc, size, status):
 nonlocal total_read
 if status not in (None, FSCommandStatus.SUCCESS.code):
 _raise_exception(status, "Error getting file '%s'" % src_path)
 total_read += len(chunk)
 if progress_cb:
 progress_cb(total_read * 100.0 / size, dest, src_path)

 with open(dest, "wb+") as dst_file:
 r_proc = self.read_file(src, offset=0, progress_cb=p_cb)
 size = r_proc.block_size
 while True:
 try:
 data = r_proc.next(size=size, last=False)
 if not data:
 break
 dst_file.write(data)
 except EnvironmentError as exc:
 r_proc.next(size=0, last=True)
 raise exc

[docs] def put_file(self, src, dest, secure=False, overwrite=False,
 mk_parents=True, progress_cb=None):
 """
 Uploads the given file to the specified destination path of the XBee.

 Args:
 src (String): Absolute path of the file to upload.
 dest (:class:`.FileSystemElement` or String): The file in the XBee
 or its absolute path.
 secure (Boolean, optional, default=`False`): `True` if the file
 should be stored securely, `False` otherwise.
 overwrite (Boolean, optional, default=`False`): `True` to overwrite
 the file if it exists, `False` otherwise.
 mk_parents (Boolean, optional, default=`True`): `True` to make
 parent directories as needed, `False` otherwise.
 progress_cb (Function, optional): Function call when data is being
 uploaded. Receives two arguments:

 * The progress percentage as float.
 * Destination file path.
 * Source file path.

 Returns:
 :class:`.FileSystemElement`: The new created file.

 Raises:
 FileSystemException: If there is any error performing the operation
 and `progress_cb` is `None`.
 ValueError: If any of the parameters is invalid.
 """
 if not isinstance(src, str):
 raise ValueError("Source path must be a non-empty string")

 dst_path = dest
 if isinstance(dest, FileSystemElement):
 dst_path = dest.path
 dst_path = os.path.normpath(dst_path.replace('\\', '/'))

 f_size = os.stat(src).st_size
 wr_bytes = 0

 def p_cb(n_bytes, _percent, status):
 nonlocal wr_bytes
 if status not in (None, FSCommandStatus.SUCCESS.code):
 _raise_exception(status, "Error putting file '%s'" % src)
 wr_bytes += n_bytes
 if progress_cb:
 progress_cb(wr_bytes * 100.0 / f_size, dst_path, src)

 # Create intermediate directories if required
 dest_parent = os.path.dirname(dst_path)
 if mk_parents and dest_parent != "/flash":
 self.make_directory(dest_parent, mk_parents=True)

 with open(src, "rb+") as src_file:
 wr_opts = []
 if overwrite:
 wr_opts.append("truncate")
 w_proc = self.write_file(dest, offset=0, secure=secure,
 options=wr_opts, progress_cb=p_cb)
 try:
 size = w_proc.block_size
 data = src_file.read(size)
 while data:
 try:
 w_proc.next(data, last=False)
 except FileSystemException as exc:
 # If write options worked as they are described, we
 # would not need to remove the file previously
 # https://jira.digi.com/browse/XBHAWK-531
 if not overwrite or exc.status != FSCommandStatus.ALREADY_EXISTS.code:
 raise exc
 self.remove(dest, rm_children=False)
 w_proc = self.write_file(dest, offset=0, secure=secure,
 options=wr_opts, progress_cb=p_cb)
 w_proc.next(data, last=False)
 data = src_file.read(size)
 finally:
 w_proc.next("", last=True)

 return FileSystemElement(os.path.basename(dst_path), path=dst_path,
 is_dir=False, size=os.stat(src).st_size,
 is_secure=secure)

[docs] def put_dir(self, src, dest="/flash", verify=True, progress_cb=None):
 """
 Uploads the given source directory contents into the given destination
 directory in the XBee.

 Args:
 src (String): Local directory to upload its contents.
 dest (:class:`.FileSystemElement` or String): The destination dir
 in the XBee or its absolute path. Defaults to '/flash'.
 verify (Boolean, optional, default=`True`): `True` to check the
 hash of the uploaded content.
 progress_cb (Function, optional): Function call when data is being
 uploaded. Receives three argument:

 * The progress percentage as float.
 * Destination file path.
 * The absolute path of the local being uploaded as string.
 Raises:
 FileSystemException: If there is any error performing the operation
 and `progress_cb` is `None`.
 ValueError: If any of the parameters is invalid.
 """
 if not isinstance(src, str):
 raise ValueError("Source path must be a non-empty string")

 if isinstance(dest, FileSystemElement):
 if not dest.is_dir:
 raise ValueError("Destination must be a directory")
 dest_path = dest.path
 elif isinstance(dest, str):
 dest_path = dest
 elif not dest:
 dest_path = "/flash"
 else:
 raise ValueError("Destination must be string or a FileSystemElement")

 # Create destination directory
 if dest_path != "/flash":
 self.make_directory(dest_path, mk_parents=True)

 # Upload directory contents
 for file in listdir(src):
 src_file_path = os.path.join(src, file)
 dst_file_path = os.path.join(dest_path, file)
 if isfile(src_file_path):
 self.put_file(src_file_path, dst_file_path, overwrite=True,
 mk_parents=True, progress_cb=progress_cb)
 if not verify:
 continue
 xb_hash = self.get_file_hash(dst_file_path)
 local_hash = get_local_file_hash(src_file_path)
 if xb_hash == local_hash:
 continue
 msg = "Error uploading file '%s': Local hash different from " \
 "remote hash (%s != %s)" % \
 (src_file_path, utils.hex_to_string(local_hash, pretty=False),
 utils.hex_to_string(xb_hash, pretty=False))
 _log.error(msg)
 _raise_exception(None, msg)
 else:
 self.put_dir(src_file_path, dst_file_path, progress_cb=progress_cb)

[docs] def get_file_hash(self, file, timeout=DEFAULT_TIMEOUT):
 """
 Returns the SHA256 hash of the given file.

 Args:
 file (:class:`.FileSystemElement` or String): File to get its hash
 or its absolute path.
 timeout (Float, optional, default=`DEFAULT_TIMEOUT`): Maximum
 number of seconds to wait for the operation completion.

 Returns:
 Bytearray: SHA256 hash of the given file.

 Raises:
 FileSystemException: If there is any error performing the operation
 or the function is not supported.
 ValueError: If any of the parameters is invalid.
 """
 if not isinstance(file, (str, FileSystemElement)):
 raise ValueError("File must be a string or a FileSystemElement")
 if isinstance(file, FileSystemElement):
 if not file.is_dir:
 raise ValueError("Cannot hash a directory")
 if file.path in ("/", "\\", ".", ".."):
 raise ValueError("Invalid file path")
 if isinstance(file, str) and file in ("/", "\\", ".", ".."):
 raise ValueError("Invalid file path")
 if not isinstance(timeout, int):
 timeout = self.DEFAULT_TIMEOUT

 # Sanitize path
 path_id = 0
 file_path = file
 if isinstance(file, FileSystemElement):
 file_path = file.path
 file_path = os.path.normpath(file_path.replace('\\', '/'))

 _log.debug(self._log_str("Retrieving SHA256 hash of '%s'", file_path))

 start = time.time()

 try:
 # Check length of path, if is too big try to change to a parent
 path_id, to_hash = self._cd_to_execute(file_path, path_id, timeout)

 status, hash_val = self.pget_file_hash(
 to_hash, path_id=path_id, timeout=(timeout - (time.time() - start)))
 finally:
 if path_id:
 self.prelease_path_id(path_id, timeout)

 if status != FSCommandStatus.SUCCESS.code:
 _raise_exception(status,
 "Error getting hash of file '%s'" % file_path)

 return hash_val

[docs] def move(self, source, dest, timeout=DEFAULT_TIMEOUT):
 """
 Moves the given source element to the given destination path.

 Args:
 source (:class:`.FileSystemElement` or String): Source entry to move.
 dest (String): Destination path of the element to move.
 timeout (Float, optional, default=`DEFAULT_TIMEOUT`): Maximum number
 of seconds to wait for the operation completion.

 Raises:
 FileSystemException: If there is any error performing the operation
 or the function is not supported.
 ValueError: If any of the parameters is invalid.
 """
 if not isinstance(source, (str, FileSystemElement)):
 raise ValueError("Source must be a string or a FileSystemElement")
 if not isinstance(dest, str) or not dest:
 raise ValueError("Destination must be a non-empty string")
 src_path = source
 if isinstance(source, FileSystemElement):
 src_path = source.path
 if src_path in ("/", "\\", ".", ".."):
 raise ValueError("Invalid source path")
 if not isinstance(timeout, int):
 timeout = self.DEFAULT_TIMEOUT

 # Sanitize path
 path_id = 0
 src_path = os.path.normpath(src_path.replace('\\', '/'))
 dst_path = os.path.normpath(src_path.replace('\\', '/'))
 common_dir = os.path.normpath(os.path.commonprefix([src_path, dst_path]))

 _log.debug(self._log_str("Moving '%s' to '%s' (path id: %d)", src_path,
 dst_path, path_id))

 start = time.time()

 # Change to a common directory
 if common_dir not in ('.', '/'):
 status, path_id, _f_path = self.pget_path_id(
 common_dir, path_id=path_id, timeout=timeout)
 if status != FSCommandStatus.SUCCESS.code:
 _raise_exception(status,
 "Error changing to directory '%s'" % common_dir)

 src_path = os.path.relpath(src_path, common_dir)
 dst_path = os.path.relpath(dst_path, common_dir)

 status = self.prename(src_path, dst_path, path_id=path_id,
 timeout=(timeout - (time.time() - start)))
 if path_id:
 self.prelease_path_id(path_id, timeout)

 if status != FSCommandStatus.SUCCESS.code:
 _raise_exception(
 status, "Error moving file '%s' to '%s'" % (src_path, dst_path))

[docs] def get_volume_info(self, vol="/flash", timeout=DEFAULT_TIMEOUT):
 """
 Returns the file system volume information.
 Currently '/flash' is the only supported value.

 Args:
 vol (:class:`.FileSystemElement`or String, optional, default=`/flash`): Volume name.
 timeout (Float, optional, default=`DEFAULT_TIMEOUT`): Maximum
 number of seconds to wait for the operation completion.

 Returns:
 Dictionary: Collection of pair values describing volume information.

 Raises:
 FileSystemException: If there is any error performing the operation
 or the function is not supported.
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FSCommandStatus`
 """
 if not isinstance(vol, (str, FileSystemElement)):
 raise ValueError("Volume must be a string or a FileSystemElement")

 if not isinstance(timeout, int):
 timeout = self.DEFAULT_TIMEOUT

 # Sanitize path
 name = vol
 if isinstance(vol, FileSystemElement):
 name = vol.path
 name = os.path.normpath(name.replace('\\', '/'))

 _log.info(self._log_str("Reading volume information '%s'", name))

 to_send = FileSystemManager._create_fs_frame(self.__xbee,
 VolStatCmdRequest(name))

 sender = _FSFrameSender(self.__xbee)
 status, r_cmd, _rv_opts = sender.send(to_send, timeout=timeout)

 if status != FSCommandStatus.SUCCESS.code:
 _raise_exception(status, "Error getting volume info '%s'" % name)

 _log.info(self._log_str(
 "Volume info '%s': %s (used), %s (free), %s (bad)",
 name, r_cmd.bytes_used, r_cmd.bytes_free, r_cmd.bytes_bad))

 return {"used": r_cmd.bytes_used,
 "free": r_cmd.bytes_free,
 "bad": r_cmd.bytes_bad}

[docs] def format(self, vol="/flash", timeout=DEFAULT_FORMAT_TIMEOUT):
 """
 Formats provided volume.
 Currently '/flash' is the only supported value.
 Formatting the file system takes time, and any other requests will fail
 until it completes and sends a response.

 Args:
 vol (:class:`.FileSystemElement`or String, optional, default=`/flash`): Volume name.
 timeout (Float, optional, default=`DEFAULT_FORMAT_TIMEOUT`):
 Maximum number Of seconds to wait for the operation completion.

 Returns:
 Dictionary: Collection of pair values describing volume information.

 Raises:
 FileSystemException: If there is any error performing the operation
 or the function is not supported.
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FSCommandStatus`
 """
 if not isinstance(vol, (str, FileSystemElement)):
 raise ValueError("Volume must be a string or a FileSystemElement")

 if not isinstance(timeout, int):
 timeout = self.DEFAULT_FORMAT_TIMEOUT

 # Sanitize path
 name = vol
 if isinstance(vol, FileSystemElement):
 name = vol.path
 name = os.path.normpath(name.replace('\\', '/'))

 _log.info(self._log_str("Formatting volume '%s'", name))

 to_send = FileSystemManager._create_fs_frame(self.__xbee,
 VolFormatCmdRequest(name))

 sender = _FSFrameSender(self.__xbee)
 status, r_cmd, _rv_opts = sender.send(to_send, timeout=timeout)

 if status != FSCommandStatus.SUCCESS.code:
 _raise_exception(status, "Error formatting volume '%s'" % name)

 _log.info(self._log_str(
 "After format, volume info '%s': %s (used), %s (free), %s (bad)",
 name, r_cmd.bytes_used, r_cmd.bytes_free, r_cmd.bytes_bad))

 return {"used": r_cmd.bytes_used,
 "free": r_cmd.bytes_free,
 "bad": r_cmd.bytes_bad}

[docs] def pget_path_id(self, dir_path, path_id=0, timeout=DEFAULT_TIMEOUT):
 """
 Returns the directory path id of the given path. Returned directory
 path id expires if not referenced in 2 minutes.

 Args:
 dir_path (String): Path of the directory to get its id. It is
 relative to the directory path id.
 path_id (Integer, optional, default=0): Directory path id. 0 for
 the root directory.
 timeout (Float, optional, default=`DEFAULT_TIMEOUT`): Maximum
 number of seconds to wait for the operation completion.

 Returns:
 Tuple (Integer, Integer, String): Status of the file system command
 execution, new directory path id (-1 if status is not 0) and
 its absolute path (empty if status is not 0). The full path
 may be `None` or empty if it is too long and exceeds the
 communication frames length.

 Raises:
 FileSystemException: If there is any error performing the operation
 or the function is not supported.
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FSCommandStatus`
 """
 if not isinstance(dir_path, str):
 raise ValueError("Directory path must be a non empty string")
 if not isinstance(path_id, int) or path_id < 0:
 raise ValueError("Directory path id must be a positive integer")
 if not isinstance(timeout, int):
 timeout = self.DEFAULT_TIMEOUT

 # Sanitize path
 if dir_path not in (".", ".."):
 dir_path = os.path.normpath(dir_path.replace('\\', '/'))

 _log.info(self._log_str("Getting ID of directory '%s' (path id: %d)",
 dir_path, path_id))

 # Check length of path, if is too big try to change to a parent
 to_cd = self._get_fit_parent_path(dir_path)

 # Change to directory
 to_send = FileSystemManager._create_fs_frame(
 self.__xbee, GetPathIdCmdRequest(path_id, to_cd))
 sender = _FSFrameSender(self.__xbee)
 status, r_cmd, _rv_opts = sender.send(to_send, timeout=timeout)
 if status != FSCommandStatus.SUCCESS.code:
 return status, -1, ""

 f_id = r_cmd.fs_id
 f_path = r_cmd.full_path

 # If we changed to a parent dir, change now to the final dir
 if len(dir_path) > len(to_cd):
 rel_path = os.path.relpath(dir_path, to_cd)
 status, f_id, f_path = self.pget_path_id(rel_path, path_id=f_id,
 timeout=timeout)
 if status != FSCommandStatus.SUCCESS.code:
 return status, -1, ""

 _log.info(self._log_str("Path id '%d' (%s)", f_id, f_path))

 return status, f_id, f_path

[docs] def pmake_directory(self, dir_path, path_id=0, timeout=DEFAULT_TIMEOUT):
 """
 Creates the provided directory. Parent directories of the one to be
 created must exist. Separate requests must be dane to make intermediate
 directories.

 Args:
 dir_path (String): Path of the new directory to create. It is
 relative to the directory path id.
 path_id (Integer, optional, default=0): Directory path id. 0 for
 the root directory.
 timeout (Float, optional, default=`DEFAULT_TIMEOUT`): Maximum
 number of seconds to wait for the operation completion. If
 `mk_parents` this is the timeout per directory creation.

 Returns:
 Integer: Status of the file system command execution
 (see :class:`.FSCommandStatus`).

 Raises:
 FileSystemException: If there is any error performing the operation
 or the function is not supported.
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FSCommandStatus`
 """
 if not isinstance(dir_path, str):
 raise ValueError("Directory path must be a non empty string")
 if dir_path in ("/", "\\", ".", ".."):
 raise ValueError("Invalid directory path")
 if not isinstance(path_id, int) or path_id < 0:
 raise ValueError("Directory path id must be a positive integer")
 if not isinstance(timeout, int):
 timeout = self.DEFAULT_TIMEOUT

 # Sanitize path
 path = PurePosixPath(os.path.normpath(dir_path.replace('\\', '/')))

 _log.info(self._log_str("Creating directory '%s' (path id: %d)",
 str(path), path_id))

 to_send = FileSystemManager._create_fs_frame(
 self.__xbee, CreateDirCmdRequest(path_id, str(path)))

 sender = _FSFrameSender(self.__xbee)
 rv_status, _r_cmd, _rv_opts = sender.send(to_send, timeout=timeout)

 return rv_status

[docs] def plist_directory(self, dir_path, path_id=0, timeout=DEFAULT_TIMEOUT):
 """
 Lists the contents of the given directory.

 Args:
 dir_path (String): Path of the directory to list. It is relative to
 the directory path id.
 path_id (Integer, optional, default=0): Directory path id. 0 for
 the root directory.
 timeout (Float, optional, default=`DEFAULT_TIMEOUT`): Maximum
 number of seconds to wait for the operation completion.

 Returns:
 Tuple (Integer, List): Status of the file system command execution
 and a list of `:class:`.FilesystemElement` objects contained in
 the given directory, empty list if status is not 0.

 Raises:
 FileSystemException: If there is any error performing the operation
 or the function is not supported.
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FSCommandStatus`
 """
 if not isinstance(dir_path, str):
 raise ValueError("Directory path must be a non empty string")
 if not isinstance(path_id, int) or path_id < 0:
 raise ValueError("Directory path id must be a positive integer")
 if not isinstance(timeout, int):
 timeout = self.DEFAULT_TIMEOUT

 # Sanitize path
 if dir_path not in (".", ".."):
 dir_path = os.path.normpath(dir_path.replace('\\', '/'))

 _log.info(self._log_str("Listing directory '%s' (path id: %d)",
 dir_path, path_id))

 to_send = FileSystemManager._create_fs_frame(
 self.__xbee, OpenDirCmdRequest(path_id, dir_path))

 sender = _FSFrameSender(self.__xbee)
 start = time.time()
 rv_status, r_cmd, _rv_opts = sender.send(to_send, timeout=timeout)

 if rv_status != FSCommandStatus.SUCCESS.code:
 return rv_status, []

 dir_list = r_cmd.fs_entries
 while not r_cmd.is_last:
 to_send = FileSystemManager._create_fs_frame(
 self.__xbee, ReadDirCmdRequest(r_cmd.fs_id))
 rv_status, r_cmd, _rv_opts = sender.send(
 to_send, timeout=(timeout - (time.time() - start)))
 if rv_status != FSCommandStatus.SUCCESS.code:
 # Try to close the directory
 to_send = FileSystemManager._create_fs_frame(
 self.__xbee, CloseDirCmdRequest(r_cmd.fs_id))
 sender.send(to_send,
 timeout=(timeout - (time.time() - start)))
 return rv_status, []
 dir_list += r_cmd.fs_entries

 # This will store the path relative to the directory path id
 for entry in dir_list:
 entry.path = os.path.join(dir_path.replace('\\', '/'), entry.name)

 _log.info(self._log_str("List directory '%s' (%d):\n%s", dir_path,
 path_id, '\n'.join(map(str, dir_list))))

 return rv_status, dir_list

[docs] def premove(self, entry_path, path_id=0, timeout=DEFAULT_TIMEOUT):
 """
 Removes the given file system entry.

 All files in a directory must be deleted before removing the directory.
 On XBee 3 802.15.4, DigiMesh, and Zigbee, deleted files are marked as
 as unusable space unless they are at the "end" of the file system
 (most-recently created). On these products, deleting a file triggers
 recovery of any deleted file space at the end of the file system, and
 can lead to a delayed response.

 Args:
 entry_path (String): Path of the entry to remove. It is relative to
 the directory path id.
 path_id (Integer, optional, default=0): Directory path id. 0 for
 the root directory.
 timeout (Float, optional, default=`DEFAULT_TIMEOUT`): Maximum
 number of seconds to wait for the operation completion.

 Returns:
 Integer: Status of the file system command execution
 (see :class:`.FSCommandStatus`).

 Raises:
 FileSystemException: If there is any error performing the operation
 or the function is not supported.
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FSCommandStatus`
 """
 if not isinstance(entry_path, str):
 raise ValueError("Entry path must be a non empty string")
 if not isinstance(path_id, int) or path_id < 0:
 raise ValueError("Directory path id must be a positive integer")
 if not isinstance(timeout, int):
 timeout = self.DEFAULT_TIMEOUT

 # Sanitize path
 if entry_path not in (".", ".."):
 entry_path = os.path.normpath(entry_path.replace('\\', '/'))

 _log.info(self._log_str("Removing entry '%s' (path id: %d)", entry_path,
 path_id))

 to_send = FileSystemManager._create_fs_frame(
 self.__xbee, DeleteCmdRequest(path_id, entry_path))

 sender = _FSFrameSender(self.__xbee)
 rv_status, _r_cmd, _rv_opts = sender.send(to_send, timeout=timeout)

 return rv_status

[docs] def popen_file(self, file_path, path_id=0,
 options=FileOpenRequestOption.READ, timeout=DEFAULT_TIMEOUT):
 """
 Open a file for reading and/or writing. Use the
 `FileOpenRequestOption.SECURE` (0x80) bitmask for options to upload a
 write-only file (one that cannot be downloaded or viewed), useful for
 protecting files on the device.
 Returned file id expires if not referenced in 2 minutes.

 Args:
 file_path (String): Path of the file to open. It is relative to the
 directory path id.
 path_id (Integer, optional, default=0): Directory path id. 0 for
 the root directory.
 options (Integer, optional, default=`FileOpenRequestOption.READ`):
 Bitmask that specifies the options to open the file. It defaults
 to `FileOpenRequestOption.READ` which means open for reading.
 See :class:`.FileOpenRequestOption` for more options.
 timeout (Float, optional, default=`DEFAULT_TIMEOUT`): Maximum
 number of seconds to wait for the operation completion.

 Returns:
 Tuple (Integer, Integer, Integer): Status of the file system
 command execution (see :class:`.FSCommandStatus`), the file id
 to use in later requests, and the size of the file (in bytes),
 0xFFFFFFFF if unknown.

 Raises:
 FileSystemException: If there is any error performing the operation
 or the function is not supported.
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FileOpenRequestOption`
 | :class:`.FSCommandStatus`
 | :meth:`.pclose_file`
 """
 if not isinstance(file_path, str):
 raise ValueError("File path must be a string")
 if file_path in ("/", "\\", ".", ".."):
 raise ValueError("Invalid file path")
 if not isinstance(path_id, int) or path_id < 0:
 raise ValueError("Directory path id must be a positive integer")
 if not options:
 options = FileOpenRequestOption.READ
 if not isinstance(timeout, int):
 timeout = self.DEFAULT_TIMEOUT

 # Sanitize path
 path = PurePosixPath(os.path.normpath(file_path.replace('\\', '/')))

 _log.info(self._log_str("Opening file '%s' (path id: %d) options: 0x%0.2X",
 str(path), path_id, options))

 to_send = FileSystemManager._create_fs_frame(
 self.__xbee, OpenFileCmdRequest(path_id, str(path), options))

 sender = _FSFrameSender(self.__xbee)
 rv_status, r_cmd, _rv_opts = sender.send(to_send, timeout=timeout)

 _log.info(self._log_str("File open '%s' (%d) options 0x%0.2X",
 str(path), path_id, options))

 return rv_status, r_cmd.fs_id, r_cmd.size

[docs] def pclose_file(self, file_id, timeout=DEFAULT_TIMEOUT):
 """
 Closes an open file and releases its file handle.

 Args:
 file_id (Integer): File id returned when opening.
 timeout (Float, optional, default=`DEFAULT_TIMEOUT`): Maximum
 number of seconds to wait for the operation completion.

 Returns:
 Integer: Status of the file system command execution
 (see :class:`.FSCommandStatus`).

 Raises:
 FileSystemException: If there is any error performing the operation
 or the function is not supported.
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FSCommandStatus`
 | :meth:`.popen_file`
 """
 if not isinstance(file_id, int):
 raise ValueError("File id must be an integer")
 if not isinstance(timeout, int):
 timeout = self.DEFAULT_TIMEOUT

 _log.info(self._log_str("Closing file '%d'", file_id))

 to_send = FileSystemManager._create_fs_frame(
 self.__xbee, CloseFileCmdRequest(file_id))

 sender = _FSFrameSender(self.__xbee)
 rv_status, _r_cmd, _rv_opts = sender.send(to_send, timeout=timeout)

 _log.info(self._log_str("File closed (%d)", file_id))

 return rv_status

[docs] def pread_file(self, file_id, offset=-1, size=-1, timeout=DEFAULT_TIMEOUT):
 """
 Reads from the provided file the given amount of bytes starting at the
 given offset. The file must be opened for reading first.

 Args:
 file_id (Integer): File id returned when opening.
 offset (Integer, optional, default=-1): File offset to start reading.
 -1 to use current position.
 size (Integer, optional, default=-1): Number of bytes to read.
 -1 to read as many as possible.
 timeout (Float, optional, default=`DEFAULT_TIMEOUT`): Maximum
 number of seconds to wait for the operation completion.

 Returns:
 Tuple (Integer, Integer, Integer, Bytearray): Status of the file
 system command execution (see :class:`.FSCommandStatus`), the
 file id, the offset of the read data, and the read data.

 Raises:
 FileSystemException: If there is any error performing the operation
 or the function is not supported.
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FSCommandStatus`
 | :meth:`.popen_file`
 """
 if not isinstance(file_id, int):
 raise ValueError("File id must be an integer")
 if offset is not None and not isinstance(offset, int) or offset < -1:
 raise ValueError("Offset must be -1 or greater")
 if not isinstance(size, int) or not size or size < -1:
 raise ValueError("Size must be -1 or greater than 0")
 if not isinstance(timeout, int):
 timeout = self.DEFAULT_TIMEOUT

 _log.info(self._log_str("Reading file '%d' (offset: %d, size: %d)",
 file_id, offset, size))

 if offset == -1:
 offset = ReadFileCmdRequest.USE_CURRENT_OFFSET
 if size == -1:
 size = ReadFileCmdRequest.READ_AS_MANY

 to_send = FileSystemManager._create_fs_frame(
 self.__xbee, ReadFileCmdRequest(file_id, offset, size))

 sender = _FSFrameSender(self.__xbee)
 rv_status, r_cmd, _rv_opts = sender.send(to_send, timeout=timeout)

 _log.info(self._log_str("Read %d bytes from '%d' (offset: %d)",
 len(r_cmd.data), file_id, r_cmd.offset))

 return rv_status, r_cmd.fs_id, r_cmd.offset, r_cmd.data

[docs] def pwrite_file(self, file_id, data, offset=-1, timeout=DEFAULT_TIMEOUT):
 """
 Writes to the provided file the given data bytes starting at the given
 offset. The file must be opened for writing first.

 Args:
 file_id (Integer): File id returned when opening.
 data (Bytearray, bytes or String): Data to write.
 offset (Integer, optional, default=-1): File offset to start writing.
 -1 to use current position.
 timeout (Float, optional, default=`DEFAULT_TIMEOUT`): Maximum
 number of seconds to wait for the operation completion.

 Returns:
 Tuple (Integer, Integer, Integer): Status of the file system
 command execution (see :class:`.FSCommandStatus`), the file id,
 and the current offset after writing.

 Raises:
 FileSystemException: If there is any error performing the operation
 or the function is not supported.
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FSCommandStatus`
 | :meth:`.popen_file`
 """
 if not isinstance(file_id, int):
 raise ValueError("File id must be an integer")
 if not isinstance(data, (bytearray, bytes, str)):
 raise ValueError("Data must be a bytearray, bytes or a string")
 if not data:
 raise ValueError("Data cannot be empty")
 if offset is not None and not isinstance(offset, int) or offset < -1:
 raise ValueError("Offset must be -1 or greater")
 if not isinstance(timeout, int):
 timeout = self.DEFAULT_TIMEOUT

 if isinstance(data, str):
 data = bytearray(data, encoding='utf8')
 elif isinstance(data, bytes):
 data = bytearray(data)

 _log.info(self._log_str("Writing to file '%d' (offset: %d, size: %d)",
 file_id, offset, len(data)))

 if offset == -1:
 offset = ReadFileCmdRequest.USE_CURRENT_OFFSET

 to_send = FileSystemManager._create_fs_frame(
 self.__xbee, WriteFileCmdRequest(file_id, offset, data=data))

 sender = _FSFrameSender(self.__xbee)
 rv_status, r_cmd, _rv_opts = sender.send(to_send, timeout=timeout)

 if rv_status == FSCommandStatus.SUCCESS.code:
 _log.info(self._log_str("Written %d bytes to '%d' (offset: %d)",
 len(data), file_id, r_cmd.actual_offset))

 return rv_status, r_cmd.fs_id, r_cmd.actual_offset

[docs] def pget_file_hash(self, file_path, path_id=0, timeout=DEFAULT_TIMEOUT):
 """
 Returns the SHA256 hash of the given file.

 Args:
 file_path (String): Path of the file to get its hash. It is
 relative to the directory path id.
 path_id (Integer, optional, default=0): Directory path id. 0 for
 the root directory.
 timeout (Float, optional, default=`DEFAULT_TIMEOUT`): Maximum
 number of seconds to wait for the operation completion.

 Returns:
 Tuple (Integer, Bytearray): Status of the file system command
 execution and SHA256 hash of the given file (empty bytearray if
 status is not 0).

 Raises:
 FileSystemException: If there is any error performing the operation
 or the function is not supported.
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FSCommandStatus`
 """
 if not isinstance(file_path, str):
 raise ValueError("File path must be a non empty string")
 if file_path in ("/", "\\", ".", ".."):
 raise ValueError("Invalid file path")
 if not isinstance(path_id, int) or path_id < 0:
 raise ValueError("Directory path id must be a positive integer")
 if not isinstance(timeout, int):
 timeout = self.DEFAULT_TIMEOUT

 # Sanitize path
 file_path = os.path.normpath(file_path.replace('\\', '/'))

 _log.info(self._log_str("Retrieving SHA256 hash of '%s' (path id: %d)",
 file_path, path_id))

 to_send = FileSystemManager._create_fs_frame(
 self.__xbee, HashFileCmdRequest(path_id, file_path))

 sender = _FSFrameSender(self.__xbee)
 rv_status, r_cmd, _rv_opts = sender.send(to_send, timeout=timeout)

 if rv_status != FSCommandStatus.SUCCESS.code:
 return rv_status, bytearray()

 _log.info(self._log_str("'%s' hash: %s", file_path,
 utils.hex_to_string(r_cmd.file_hash, pretty=False)))

 return rv_status, r_cmd.file_hash

[docs] def prename(self, current_path, new_path, path_id=0, timeout=DEFAULT_TIMEOUT):
 """
 Rename provided file.

 Args:
 current_path (String): Current path name. It is relative to the
 directory path id.
 new_path (String): New name. It is relative to the directory path id.
 path_id (Integer, optional, default=0): Directory path id. 0 for
 the root directory.
 timeout (Float, optional, default=`DEFAULT_TIMEOUT`): Maximum
 number of seconds to wait for the operation completion.

 Returns:
 Integer: Status of the file system command execution
 (see :class:`.FSCommandStatus`).

 Raises:
 FileSystemException: If there is any error performing the operation
 or the function is not supported.
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FSCommandStatus`
 """
 if not isinstance(current_path, str):
 raise ValueError("Current path name must be a non empty string")
 if not isinstance(new_path, str):
 raise ValueError("New path name must be a non empty string")
 if not isinstance(path_id, int) or path_id < 0:
 raise ValueError("Directory path id must be a positive integer")
 if not isinstance(timeout, int):
 timeout = self.DEFAULT_TIMEOUT

 # Sanitize path
 if current_path not in (".", ".."):
 current_path = os.path.normpath(current_path.replace('\\', '/'))
 if new_path not in (".", ".."):
 new_path = os.path.normpath(new_path.replace('\\', '/'))

 _log.info(self._log_str("Renaming entry '%s' to '%s' (path id: %d)",
 current_path, new_path, path_id))

 to_send = FileSystemManager._create_fs_frame(
 self.__xbee, RenameCmdRequest(path_id, current_path, new_path))

 sender = _FSFrameSender(self.__xbee)
 rv_status, _r_cmd, _rv_opts = sender.send(to_send, timeout=timeout)

 return rv_status

[docs] def prelease_path_id(self, path_id, timeout=DEFAULT_TIMEOUT):
 """
 Releases the provided directory path id.

 Args:
 path_id (Integer): Directory path id to release.
 timeout (Float, optional, default=`DEFAULT_TIMEOUT`): Maximum
 number of seconds to wait for the operation completion.

 Returns:
 Integer: Status of the file system command execution.

 Raises:
 FileSystemException: If there is any error performing the operation
 or the function is not supported.
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FSCommandStatus`
 """
 if not isinstance(path_id, int) or path_id < 0:
 raise ValueError("Directory path id must be a positive integer")
 if not isinstance(timeout, int):
 timeout = self.DEFAULT_TIMEOUT

 status, _, _ = self.pget_path_id("/", path_id=path_id, timeout=timeout)
 if status != FSCommandStatus.SUCCESS.code:
 _log.error(self._log_str("Error releasing path id '%d'", path_id))

 return status

 def _cd_to_execute(self, path, path_id, timeout, refresh=True):
 """
 Changes to another directory in path if its longer than the allowed
 length for the frame transmission.

 Args:
 path (String): The path to check and to use for changing.
 path_id (Integer): Current directory path id.
 timeout (Float): Maximum number of seconds to wait for the
 operation completion.
 refresh (Boolean, optional, default=`True`): `True` to read the
 NP value of the local XBee, `False` to use the cached one.

 Returns:
 Tuple (Integer, String): The new directory path id and the
 relative path of given path to that new directory path id.

 Raises:
 FileSystemException: If there is any error performing the operation
 or the function is not supported.
 """
 max_len = self._get_np(refresh=refresh)
 if not max_len:
 max_len = _DEFAULT_BLOCK_SIZE
 if len(path) <= max_len:
 return path_id, path

 rel_path = path
 start = time.time()
 while len(rel_path) > max_len:
 to_cd = self._get_fit_parent_path(rel_path)
 rel_path = os.path.relpath(rel_path, to_cd)
 status, path_id, _f_path = self.pget_path_id(
 to_cd, path_id=path_id, timeout=(timeout - (time.time() - start)))
 if status != FSCommandStatus.SUCCESS.code:
 _raise_exception(status,
 "Error changing to directory '%s'" % to_cd)

 return path_id, rel_path

 def _get_np(self, refresh=False):
 """
 Returns the 'NP' value of the local XBee.

 Args:
 refresh (Boolean, optional, default=`False`): `True` to read the
 NP value of the local XBee, `False` to use the cached one.

 Returns:
 Integer: 'NP' value.
 """
 if self.__np_val and not refresh:
 return self.__np_val

 xbee = self.__xbee
 n_extra_bytes = 0
 if xbee.is_remote():
 xbee = xbee.get_local_xbee_device()
 # 64-bit address (8), send/receive opts (1), and status (1) length
 n_extra_bytes = 10

 cmd = ATStringCommand.NP
 try:
 # Reserve 5 bytes for other frame data
 self.__np_val = utils.bytes_to_int(xbee.get_parameter(cmd, apply=False)) - 5
 # Subtract extra bytes of remote frames
 self.__np_val -= n_extra_bytes
 except XBeeException as exc:
 _log.error(self._log_str(
 "Error getting maximum number of transmission bytes ('%s'): %s",
 cmd, str(exc)))
 self.__np_val = 0

 return self.__np_val

 def _get_fit_parent_path(self, path, refresh=False):
 """
 Returns a parent which length fits the maximum allowed size.

 Args:
 path (String): Path to get a fit parent.
 refresh (Boolean, optional, default=`False`): `True` to read the
 NP value of the local XBee, `False` to use the cached one.

 Returns:
 String: The path that fits the maximum allowed size.
 """
 np_val = self._get_np(refresh=refresh)
 if not np_val:
 np_val = _DEFAULT_BLOCK_SIZE
 if len(path) <= np_val:
 return path

 # Reduce the path until is less than 'NP'
 path = PurePosixPath(path)
 for parent in path.parents:
 if len(str(parent)) <= np_val:
 return str(parent)

 return path

 @staticmethod
 def _create_fs_frame(xbee, cmd, transmit_options=TransmitOptions.NONE.value):
 """
 Creates a local or remote File System Request packet.

 Args:
 xbee (:class:`.AbstractXBeeDevice`): The destination XBee.
 cmd (:class:`.FSCmd` or Bytearray): The command to send.
 transmit_options (Integer, optional, default=`TransmitOptions.NONE.value`):
 Options to transmit the packet if `xbee` is remote.

 Returns:
 :class:`.XBeeAPIPacket`: class:`.FSRequestPacket` or
 class:`.RemoteFSRequestPacket` already formed.

 Raises:
 ValueError: If `xbee` or `cmd` are invalid.
 """
 from digi.xbee.devices import AbstractXBeeDevice
 if not isinstance(xbee, AbstractXBeeDevice):
 raise ValueError("XBee must be a local or remote XBee class")
 if not isinstance(cmd, (bytearray, FSCmd)):
 raise ValueError("Command must be a bytearray or a FSCmd")

 if xbee.is_remote():
 if xbee.get_protocol() in (XBeeProtocol.DIGI_MESH, XBeeProtocol.SX):
 transmit_options |= TransmitOptions.DIGIMESH_MODE.value
 elif xbee.get_protocol() == XBeeProtocol.DIGI_POINT:
 transmit_options |= TransmitOptions.POINT_MULTIPOINT_MODE.value

 return RemoteFSRequestPacket(
 xbee.get_local_xbee_device().get_next_frame_id(),
 xbee.get_64bit_addr(), cmd, transmit_options=transmit_options)

 return FSRequestPacket(xbee.get_next_frame_id(), cmd)

 def _log_str(self, msg, *args):
 return "%s: %s" % (str(self), msg % args)

[docs]class LocalXBeeFileSystemManager:
 """
 Helper class used to manage the local XBee file system.
 """

 def __init__(self, xbee_device):
 """
 Class constructor. Instantiates a new
 :class:`.LocalXBeeFileSystemManager` with the given parameters.

 Args:
 xbee_device (:class:`.XBeeDevice`): The local XBee to manage its
 file system.
 """
 if not xbee_device.serial_port:
 raise OperationNotSupportedException(
 message="Only supported in local XBee connected by serial.")

 # Check target compatibility.
 if not check_fs_support(xbee_device,
 max_fw_vers=XB3_MAX_FW_VERSION_FS_OTA_SUPPORT):
 raise FileSystemNotSupportedException(
 "LocalXBeeFileSystemManager is not supported, use FileSystemManager")

 self._xbee_device = xbee_device
 self._serial_port = xbee_device.serial_port
 self._supported_functions = []
 self._device_was_connected = False
 self._is_connected = False
 self._old_read_timeout = _READ_PORT_TIMEOUT

 def _read_data(self, timeout=_READ_DATA_TIMEOUT,
 empty_retries=_READ_EMPTY_DATA_RETRIES_DEFAULT):
 """
 Reads data from the serial port waiting for the provided timeout.

 Args:
 timeout (Integer, optional): The maximum time to wait for data
 (seconds). Defaults to 1 second.
 empty_retries (Integer, optional): The number of consecutive
 zero-bytes read before considering no more data is available.

 Returns:
 String: The read data as string.

 Raises:
 SerialException: If there is any problem reading data from the
 serial port.
 """
 answer_string = ""
 empty_attempts = 0
 deadline = _get_milliseconds() + (timeout * 1000)
 read_bytes = self._serial_port.read(_READ_BUFFER)
 while ((len(answer_string) == 0 or empty_attempts < empty_retries)
 and _get_milliseconds() < deadline):
 read_string = _filter_non_printable(read_bytes)
 answer_string += read_string
 # Continue reading, maybe there is more data.
 read_bytes = self._serial_port.read(_READ_BUFFER)
 if len(read_string) == 0:
 empty_attempts += 1
 else:
 empty_attempts = 0

 return answer_string

 def _is_in_atcmd_mode(self):
 """
 Returns whether the command mode is active or not.

 Returns:
 Boolean: `True` if the AT command mode is active, `False` otherwise.
 """
 _log.debug("Checking AT command mode...")
 try:
 self._serial_port.write(str.encode(_COMMAND_AT, encoding='utf8'))
 answer = self._read_data(timeout=_GUARD_TIME)

 return answer is not None and _COMMAND_MODE_ANSWER_OK in answer
 except SerialException as exc:
 _log.exception(exc)
 return False

 def _enter_atcmd_mode(self):
 """
 Enters in AT command mode.

 Returns:
 Boolean: `True` if entered command mode successfully, `False`
 otherwise.
 """
 _log.debug("Entering AT command mode...")
 try:
 # In some scenarios where the read buffer is constantly being
 # filled with remote data, it is almost impossible to read the
 # 'enter command mode' answer, so purge port before.
 self._serial_port.purge_port()
 for _ in range(3):
 self._serial_port.write(str.encode(_COMMAND_MODE_CHAR,
 encoding='utf8'))
 answer = self._read_data(timeout=_GUARD_TIME,
 empty_retries=_READ_EMPTY_DATA_RETRIES)

 return answer is not None and _COMMAND_MODE_ANSWER_OK in answer
 except SerialException as exc:
 _log.exception(exc)
 return False

 def _exit_atcmd_mode(self):
 """
 Exits from AT command mode.
 """
 _log.debug("Exiting AT command mode...")
 try:
 self._serial_port.write(str.encode(_COMMAND_MODE_EXIT, encoding='utf8'))
 except SerialException as exc:
 _log.exception(exc)
 finally:
 # It is necessary to wait the guard time before sending data again
 time.sleep(_GUARD_TIME)

 def _check_atcmd_mode(self):
 """
 Checks whether AT command mode is active and if not tries to enter AT
 command mode.

 Returns:
 Boolean: `True` if AT command mode is active or entered
 successfully, `False` otherwise.
 """
 if not self._is_connected:
 return False

 if not self._is_in_atcmd_mode():
 time.sleep(_GUARD_TIME)
 return self._enter_atcmd_mode()

 return True

 def _supports_filesystem(self):
 """
 Returns whether the device supports file system or not.

 Returns:
 Boolean: `True` if the device supports file system, `False` otherwise.
 """
 _log.debug("Checking if device supports file system...")
 if not self._check_atcmd_mode():
 return False

 try:
 self._serial_port.write(str.encode(_COMMAND_FILE_SYSTEM, encoding='utf8'))
 answer = self._read_data()
 if answer and _ANSWER_ATFS in answer.upper():
 self._parse_filesystem_functions(answer.replace("\r", ""))
 return True

 return False
 except SerialException as exc:
 _log.exception(exc)
 return False

 def _parse_filesystem_functions(self, filesystem_answer):
 """
 Parses the file system command response to obtain a list of supported
 file system functions.

 Args:
 filesystem_answer (String): The file system command answer to parse.
 """
 result = re.match(_PATTERN_FILE_SYSTEM_FUNCTIONS, filesystem_answer,
 flags=re.M | re.DOTALL)
 if result is None or result.string is not result.group(0) or len(result.groups()) < 1:
 return

 self._supported_functions = result.groups()[0].split(_FUNCTIONS_SEPARATOR)

 def _is_function_supported(self, function):
 """
 Returns whether the specified file system function is supported or not.

 Args:
 function (:class:`._FilesystemFunction`): The file system function
 to check.

 Returns:
 Boolean: `True` if the specified file system function is supported,
 `False` otherwise.
 """
 if not isinstance(function, _FilesystemFunction):
 return False

 return function.name in self._supported_functions

 @staticmethod
 def _check_function_error(answer, command):
 """
 Checks the given file system command answer and throws an exception if
 it contains an error.

 Args:
 answer (String): The file system command answer to check for errors.
 command (String): The file system command executed.

 Raises:
 FileSystemException: If any error is found in the answer.
 """
 result = re.match(_PATTERN_FILE_SYSTEM_ERROR, answer, flags=re.M | re.DOTALL)
 if result is not None and len(result.groups()) > 1:
 if len(result.groups()) > 2:
 raise FileSystemException(
 _ERROR_EXECUTE_COMMAND % (
 command.replace("\r", ""),
 result.groups()[1] + " >" + result.groups()[2]))

 raise FileSystemException(_ERROR_EXECUTE_COMMAND % (
 command.replace("\r", ""), result.groups()[1]))

 def _xmodem_write_cb(self, data):
 """
 Callback function used to write data to the serial port when requested
 from the XModem transfer.

 Args:
 data (Bytearray): The data to write to serial port from the XModem
 transfer.

 Returns:
 Boolean: `True` if the data was successfully written, `False`
 otherwise.
 """
 try:
 self._serial_port.purge_port()
 self._serial_port.write(data)
 self._serial_port.flush()
 return True
 except SerialException as exc:
 _log.exception(exc)

 return False

 def _xmodem_read_cb(self, size, timeout=_READ_DATA_TIMEOUT):
 """
 Callback function used to read data from the serial port when
 requested from the XModem transfer.

 Args:
 size (Integer): Size of the data to read.
 timeout (Integer, optional): Maximum time to wait to read the
 requested data (seconds).

 Returns:
 Bytearray: the read data, `None` if data could not be read.
 """
 deadline = _get_milliseconds() + (timeout * 1000)
 data = bytearray()
 try:
 while len(data) < size and _get_milliseconds() < deadline:
 read_bytes = self._serial_port.read(size - len(data))
 if len(read_bytes) > 0:
 data.extend(read_bytes)
 return data
 except SerialException as exc:
 _log.exception(exc)

 return None

 def _execute_command(self, cmd_type, *args, wait_for_answer=True):
 """
 Executes the given command type with its arguments.

 Args:
 cmd_type (:class:`._FilesystemFunction`): Command type to execute.
 args (): Command arguments
 wait_for_answer (Boolean): `True` to wait for command answer,
 `False` otherwise.

 Returns:
 String: the command answer.

 Raises:
 FileSystemException: If there is any error executing the command.
 """
 # Sanity checks.
 if not self._is_function_supported(cmd_type):
 raise FileSystemException(_ERROR_FUNCTION_NOT_SUPPORTED % cmd_type.name)
 if not self._check_atcmd_mode():
 raise FileSystemException(_ERROR_ENTER_CMD_MODE)

 command = _COMMAND_ATFS % (cmd_type.command % args)
 try:
 self._serial_port.write(str.encode(command, encoding='utf8', errors='ignore'))
 answer = None
 if wait_for_answer:
 answer = self._read_data()
 if not answer:
 raise FileSystemException(_ERROR_TIMEOUT)
 self._check_function_error(answer, command)

 return answer
 except SerialException as exc:
 raise FileSystemException(_ERROR_EXECUTE_COMMAND %
 (command.replace("\r", ""), str(exc)))

 @property
 def is_connected(self):
 """
 Returns whether the file system manager is connected or not.

 Returns:
 Boolean: `True` if the file system manager is connected, `False`
 otherwise.
 """
 return self._is_connected

[docs] def connect(self):
 """
 Connects the file system manager.

 Raises:
 FileSystemException: If there is any error connecting the file
 system manager.
 FileSystemNotSupportedException: If the device does not support
 filesystem feature.
 """
 if self._is_connected:
 return

 # The file system manager talks directly with the serial port in raw
 # mode, so disconnect the device. Not disconnecting the device will
 # cause the internal XBee device frame reader to consume the data
 # required by the file system manager from the serial port.
 if self._xbee_device.is_open:
 self._xbee_device.close()
 self._device_was_connected = True

 self._old_read_timeout = self._serial_port.get_read_timeout()
 try:
 self._serial_port.set_read_timeout(_READ_PORT_TIMEOUT)
 self._serial_port.open()
 self._is_connected = True
 if not self._supports_filesystem():
 raise FileSystemNotSupportedException(ERROR_FILESYSTEM_NOT_SUPPORTED)
 except (SerialException, FileSystemNotSupportedException) as exc:
 # Close port if it is open.
 if self._serial_port.isOpen():
 self._serial_port.close()
 self._is_connected = False

 try:
 # Restore serial port timeout.
 self._serial_port.set_read_timeout(self._old_read_timeout)
 except SerialException:
 # Ignore this error as it is not critical and will not provide
 # much info but confusion.
 pass
 if isinstance(exc, SerialException):
 raise FileSystemException(_ERROR_CONNECT_FILESYSTEM % str(exc))
 raise exc

[docs] def disconnect(self):
 """
 Disconnects the file system manager and restores the device connection.

 Raises:
 XBeeException: If there is any error restoring the XBee connection.
 """
 if not self._is_connected:
 return

 # Exit AT command mode.
 self._exit_atcmd_mode()

 # Restore serial port timeout.
 try:
 self._serial_port.set_read_timeout(self._old_read_timeout)
 except SerialException:
 pass
 self._serial_port.close()
 self._is_connected = False
 if self._device_was_connected:
 time.sleep(0.3)
 self._xbee_device.open()

[docs] def get_current_directory(self):
 """
 Returns the current device directory.

 Returns:
 String: Current device directory.

 Raises:
 FileSystemException: If there is any error getting the current
 directory or the function is not supported.
 """
 _log.info("Retrieving working directory")
 return self._execute_command(_FilesystemFunction.PWD).replace("\r", "")

[docs] def change_directory(self, directory):
 """
 Changes the current device working directory to the given one.

 Args:
 directory (String): New directory to change to.

 Returns:
 String: Current device working directory after the directory change.

 Raises:
 FileSystemException: If there is any error changing the current
 directory or the function is not supported.
 """
 # Sanity checks.
 if not directory:
 return self.get_current_directory()

 # Sanitize path.
 directory = directory.replace('\\', '/')

 _log.info("Navigating to directory '%s'", directory)
 return self._execute_command(_FilesystemFunction.CD, directory).replace("\r", "")

[docs] def make_directory(self, directory):
 """
 Creates the provided directory.

 Args:
 directory (String): New directory to create.

 Raises:
 FileSystemException: If there is any error creating the directory
 or the function is not supported.
 """
 # Sanity checks.
 if not directory or directory == "/" or directory == "\\":
 return

 # Sanitize path.
 directory = directory.replace('\\', '/')

 current_dir = self.get_current_directory()
 try:
 # Create intermediate directories in case it is required.
 temp_path = "/" if directory.startswith("/") else current_dir
 directory_chunks = directory.split("/")
 for chunk in directory_chunks:
 if not chunk:
 continue
 if not temp_path.endswith("/"):
 temp_path += "/"
 temp_path += chunk
 # Check if directory exists by navigating to it.
 try:
 self.change_directory(temp_path)
 except FileSystemException:
 # Directory does not exist, create it.
 _log.info("Creating directory '%s'", temp_path)
 self._execute_command(_FilesystemFunction.MD, temp_path)
 finally:
 self.change_directory(current_dir)

[docs] def list_directory(self, directory=None):
 """
 Lists the contents of the given directory.

 Args:
 directory (String, optional): the directory to list its contents.
 If not provided, the current directory contents are listed.

 Returns:
 List: list of `:class:`.FilesystemElement` objects contained in
 the given (or current) directory.

 Raises:
 FileSystemException: if there is any error listing the directory
 contents or the function is not supported.
 """
 if not directory:
 _log.info("Listing directory contents of current dir")
 answer = self._execute_command(_FilesystemFunction.LS)
 else:
 # Sanitize path.
 directory = directory.replace('\\', '/')
 _log.info("Listing directory contents of '%s'", directory)
 answer = self._execute_command(_FilesystemFunction.LS_DIR, directory)

 path = self.get_current_directory() if directory is None else directory
 if path != _PATH_SEPARATOR:
 path += _PATH_SEPARATOR
 filesystem_elements = []
 lines = answer.split("\r")
 for line in lines:
 # Ignore empty lines.
 if len(str.strip(line)) == 0:
 continue
 result = re.match(_PATTERN_FILE_SYSTEM_DIRECTORY, line)
 if result is not None and len(result.groups()) > 0:
 name = result.groups()[0]
 filesystem_elements.append(FileSystemElement(
 name, path + name, is_dir=True,
 is_secure=name.endswith(_SECURE_ELEMENT_SUFFIX)))
 else:
 result = re.match(_PATTERN_FILE_SYSTEM_FILE, line)
 if result is not None and len(result.groups()) > 1:
 name = result.groups()[1]
 size = int(result.groups()[0])
 filesystem_elements.append(FileSystemElement(
 name, path + name, size=size,
 is_secure=name.endswith(_SECURE_ELEMENT_SUFFIX)))
 else:
 _log.warning("Unknown filesystem element entry: %s", line)

 return filesystem_elements

[docs] def remove_element(self, element_path):
 """
 Removes the given file system element path.

 Args:
 element_path (String): Path of the file system element to remove.

 Raises:
 FileSystemException: If there is any error removing the element or
 the function is not supported.
 """
 # Sanity checks.
 if not element_path:
 return

 # Sanitize path.
 element_path = element_path.replace('\\', '/')

 _log.info("Removing file '%s'", element_path)
 self._execute_command(_FilesystemFunction.RM, element_path)

[docs] def move_element(self, source_path, dest_path):
 """
 Moves the given source element to the given destination path.

 Args:
 source_path (String): Source path of the element to move.
 dest_path (String): Destination path of the element to move.

 Raises:
 FileSystemException: If there is any error moving the element or
 the function is not supported.
 """
 # Sanity checks.
 if not source_path or not dest_path:
 return

 # Sanitize paths.
 source_path = source_path.replace('\\', '/')
 dest_path = dest_path.replace('\\', '/')

 _log.info("Moving file '%s' to '%s'", source_path, dest_path)
 self._execute_command(_FilesystemFunction.MV, source_path, dest_path)

[docs] def put_file(self, source_path, dest_path, secure=False, progress_callback=None):
 """
 Transfers the given file in the specified destination path of the XBee.

 Args:
 source_path (String): the path of the file to transfer.
 dest_path (String): the destination path to put the file in.
 secure (Boolean, optional, default=`False`): `True` if the file
 should be stored securely, `False` otherwise.
 progress_callback (Function, optional): Function to execute to
 receive progress information. Takes the following arguments:

 * The progress percentage as integer.

 Raises:
 FileSystemException: If there is any error transferring the file or
 the function is not supported.
 """
 # Sanity checks.
 if secure and not self._is_function_supported(_FilesystemFunction.XPUT):
 raise FileSystemException(_ERROR_FUNCTION_NOT_SUPPORTED
 % _FilesystemFunction.XPUT.name)
 if not secure and not self._is_function_supported(_FilesystemFunction.PUT):
 raise FileSystemException(_ERROR_FUNCTION_NOT_SUPPORTED
 % _FilesystemFunction.PUT.name)

 # Sanitize destination path.
 dest_path = dest_path.replace('\\', '/')

 # Create intermediate directories if required.
 dest_parent = os.path.dirname(dest_path)
 if len(dest_parent) == 0:
 dest_parent = self.get_current_directory()
 self.make_directory(dest_parent)

 # Initial XBee3 firmware does not allow to overwrite existing files.
 # If the file to upload already exists, remove it first.
 if not self._is_function_supported(_FilesystemFunction.MV):
 dest_name = os.path.basename(dest_path)
 elements = self.list_directory(dest_parent)
 for element in elements:
 if not element.is_dir and element.name == dest_name:
 self.remove_element(element.path)
 break

 _log.info("Uploading file '%s' to '%s'", source_path, dest_path)
 command = _COMMAND_ATFS % (_FilesystemFunction.XPUT.command % dest_path) if secure else \
 _COMMAND_ATFS % (_FilesystemFunction.PUT.command % dest_path)
 answer = self._execute_command(_FilesystemFunction.XPUT, dest_path) if secure else \
 self._execute_command(_FilesystemFunction.PUT, dest_path)
 if not answer.endswith(xmodem.XMODEM_CRC):
 raise FileSystemException(_ERROR_EXECUTE_COMMAND %
 (command.replace("\r", ""),
 "Transfer not ready"))
 # Transfer the file.
 try:
 xmodem.send_file_ymodem(
 source_path, self._xmodem_write_cb, self._xmodem_read_cb,
 progress_cb=progress_callback, log=_log)
 except XModemException as exc:
 raise FileSystemException(_ERROR_EXECUTE_COMMAND %
 (command.replace("\r", ""), str(exc)))
 # Read operation result.
 answer = self._read_data(timeout=_READ_DATA_TIMEOUT,
 empty_retries=_READ_EMPTY_DATA_RETRIES)
 if not answer:
 raise FileSystemException(_ERROR_TIMEOUT)
 self._check_function_error(answer, command)

[docs] def put_dir(self, source_dir, dest_dir=None, progress_callback=None):
 """
 Uploads the given source directory contents into the given destination
 directory in the device.

 Args:
 source_dir (String): Local directory to upload its contents.
 dest_dir (String, optional): Remote directory to upload the
 contents to. Defaults to current directory.
 progress_callback (Function, optional): Function to execute to
 receive progress information. Takes the following arguments:

 * The file being uploaded as string.
 * The progress percentage as integer.

 Raises:
 FileSystemException: If there is any error uploading the directory
 or the function is not supported.
 """
 # Sanity checks.
 if not source_dir:
 return

 # First make sure destination directory exists.
 if dest_dir is None:
 dest_dir = self.get_current_directory()
 else:
 self.make_directory(dest_dir)
 # Upload directory contents.
 for file in listdir(source_dir):
 if isfile(os.path.join(source_dir, file)):
 bound_callback = None if progress_callback is None \
 else functools.partial(progress_callback,
 *[str(os.path.join(dest_dir, file))])
 self.put_file(str(os.path.join(source_dir, file)),
 str(os.path.join(dest_dir, file)),
 progress_callback=bound_callback)
 else:
 self.put_dir(str(os.path.join(source_dir, file)),
 str(os.path.join(dest_dir, file)),
 progress_callback=progress_callback)

[docs] def get_file(self, source_path, dest_path, progress_callback=None):
 """
 Downloads the given XBee device file in the specified destination path.

 Args:
 source_path (String): Path of the XBee device file to download.
 dest_path (String): Destination path to store the file in.
 progress_callback (Function, optional): Function to execute to
 receive progress information. Takes the following arguments:

 * The progress percentage as integer.

 Raises:
 FileSystemException: If there is any error downloading the file or
 the function is not supported.
 """
 command = _COMMAND_ATFS % (_FilesystemFunction.GET.command % source_path)
 # Sanitize path.
 source_path = source_path.replace('\\', '/')
 _log.info("Downloading file '%s' to '%s'", source_path, dest_path)
 self._execute_command(_FilesystemFunction.GET, source_path,
 wait_for_answer=False)
 try:
 # Consume data until 'NAK' is received.
 deadline = _get_milliseconds() + (_NAK_TIMEOUT * 1000)
 nak_received = False
 while not nak_received and _get_milliseconds() < deadline:
 data = self._xmodem_read_cb(1, timeout=_TRANSFER_TIMEOUT)
 if data and data[0] == xmodem.XMODEM_NAK:
 nak_received = True
 if not nak_received:
 raise FileSystemException(_ERROR_EXECUTE_COMMAND %
 (command.replace("\r", ""),
 "Transfer not ready"))
 except SerialException as exc:
 raise FileSystemException(_ERROR_EXECUTE_COMMAND %
 (command.replace("\r", ""), str(exc)))
 # Receive the file.
 try:
 xmodem.get_file_ymodem(dest_path, self._xmodem_write_cb, self._xmodem_read_cb,
 progress_cb=progress_callback, log=_log)
 except XModemException as exc:
 raise FileSystemException(_ERROR_EXECUTE_COMMAND %
 (command.replace("\r", ""), str(exc)))
 # Read operation result.
 answer = self._read_data()
 if not answer:
 raise FileSystemException(_ERROR_TIMEOUT)
 self._check_function_error(answer, command)

[docs] def format_filesystem(self):
 """
 Formats the device file system.

 Raises:
 FileSystemException: If there is any error formatting the file system.
 """
 command = _COMMAND_ATFS % _FilesystemFunction.FORMAT.command
 _log.info("Formatting file system...")
 self._execute_command(_FilesystemFunction.FORMAT, wait_for_answer=False)
 try:
 deadline = _get_milliseconds() + (_FORMAT_TIMEOUT * 1000)
 ok_received = False
 while not ok_received and _get_milliseconds() < deadline:
 answer = self._read_data()
 self._check_function_error(answer, command)
 if _COMMAND_MODE_ANSWER_OK in answer:
 ok_received = True
 if not ok_received:
 raise FileSystemException(_ERROR_TIMEOUT)
 except SerialException as exc:
 raise FileSystemException(_ERROR_EXECUTE_COMMAND %
 (command.replace("\r", ""), str(exc)))

[docs] def get_usage_information(self):
 """
 Returns the file system usage information.

 Returns:
 Dictionary: Collection of pair values describing the usage information.

 Raises:
 FileSystemException: If there is any error retrieving the file
 system usage information.
 """
 _log.info("Reading file system usage information...")
 answer = self._execute_command(_FilesystemFunction.INFO)
 info = {}
 parts = str.strip(answer).split("\r")
 for part in parts:
 result = re.match(_PATTERN_FILE_SYSTEM_INFO, part)
 if result is not None and len(result.groups()) > 1:
 info[result.groups()[1]] = result.groups()[0]

 return info

[docs] def get_file_hash(self, file_path):
 """
 Returns the SHA256 hash of the given file path.

 Args:
 file_path (String): Path of the file to get its hash.

 Returns:
 String: SHA256 hash of the given file path.

 Raises:
 FileSystemException: If there is any error retrieving the file hash.
 """
 # Sanitize path.
 file_path = file_path.replace('\\', '/')
 _log.info("Retrieving SHA256 hash of file '%s'...", file_path)
 answer = self._execute_command(_FilesystemFunction.HASH, file_path)
 parts = answer.split(_ANSWER_SHA256)
 if len(parts) <= 1:
 raise FileSystemException(
 _ERROR_EXECUTE_COMMAND % (
 (_COMMAND_ATFS % (_FilesystemFunction.HASH.command %
 file_path)).replace("\r", ""),
 "Invalid hash received"))

 return str.strip(parts[1])

[docs]def update_remote_filesystem_image(remote_device, ota_filesystem_file,
 max_block_size=0, timeout=None,
 progress_callback=None, _prepare=True):
 """
 Performs a remote filesystem update operation in the given target.

 Args:
 remote_device (:class:`.RemoteXBeeDevice`): Remote XBee to update its
 filesystem image.
 ota_filesystem_file (String): Path of the OTA filesystem file to upload.
 max_block_size (Integer, optional): Maximum size of the ota block to send.
 timeout (Integer, optional): Timeout to wait for remote frame requests.
 progress_callback (Function, optional): Function to execute to receive
 progress information. Receives two arguments:

 * The current update task as a String
 * The current update task percentage as an Integer

 Raises:
 FileSystemNotSupportedException: If the target does not support
 filesystem update.
 FileSystemException: If there is any error updating the remote
 filesystem image.
 """
 # Import required firmware update components.
 from digi.xbee.firmware import FirmwareUpdateException, update_remote_filesystem

 # Check target compatibility.
 if not check_fs_support(remote_device, max_fw_vers=XB3_MAX_FW_VERSION_FS_OTA_SUPPORT):
 raise FileSystemNotSupportedException(
 "Filesystem image support update is not supported")

 try:
 update_remote_filesystem(
 remote_device, ota_filesystem_file, max_block_size=max_block_size,
 timeout=timeout, progress_callback=progress_callback, _prepare=_prepare)
 except FirmwareUpdateException as exc:
 _log.error("ERROR: %s", str(exc))
 raise FileSystemException(str(exc))

[docs]def check_fs_support(xbee, min_fw_vers=None, max_fw_vers=None):
 """
 Checks if filesystem API feature is supported.

 Args:
 xbee (:class:`:AbstractXBeeDevice`): The XBee to check.
 min_fw_vers (Dictionary, optional, default=`None`): A dictionary with
 protocol as key, and minimum firmware version with filesystem
 support as value.
 max_fw_vers (Dictionary, optional, default=`None`): A dictionary with
 protocol as key, and maximum firmware version with filesystem
 support as value.

 Returns:
 Boolean: `True` if filesystem is supported, `False` otherwise.
 """
 hw_version = xbee.get_hardware_version()
 fw_version = xbee.get_firmware_version()
 if not hw_version or (not fw_version and (min_fw_vers or max_fw_vers)):
 try:
 xbee.read_device_info(init=True, fire_event=False)
 hw_version = xbee.get_hardware_version()
 fw_version = xbee.get_firmware_version()
 except XBeeException as exc:
 _log.error(
 "Unable to read XBee hardware/firmware version to check "
 "filesystem support: %s", str(exc))

 # Check compatibility
 if hw_version and hw_version.code not in SUPPORTED_HW_VERSIONS:
 return False

 if not fw_version:
 return True

 min_fw_version = min_fw_vers[xbee.get_protocol()] if min_fw_vers else None
 max_fw_version = max_fw_vers[xbee.get_protocol()] if max_fw_vers else None

 version = utils.bytes_to_int(fw_version)
 if min_fw_version and version < min_fw_version:
 return False
 if max_fw_version and version > max_fw_version:
 return False

 return True

[docs]def get_local_file_hash(local_path):
 """
 Returns the SHA256 hash of the given local file.

 Args:
 local_path (String): Absolute path of the file to get its hash.

 Returns:
 Bytearray: SHA256 hash of the given file.
 """
 import hashlib
 sha256_hash = hashlib.sha256()
 with open(local_path, "rb") as file:
 # Read and update hash string value in blocks of 4K
 for byte_block in iter(lambda: file.read(4096), b""):
 sha256_hash.update(byte_block)

 return sha256_hash.digest()

def _raise_exception(status, msg):
 st_msg = ""
 if status is not None:
 fs_st = FSCommandStatus.get(status)
 st_msg = ": %s" % str(fs_st) if fs_st else "Unknown status (0x%0.2X)" % status
 raise FileSystemException("%s%s" % (msg, st_msg), fs_status=status)

def _get_milliseconds():
 """
 Returns the current time in milliseconds.

 Returns:
 Integer: Current time in milliseconds.
 """
 return int(time.time() * 1000.0)

def _filter_non_printable(byte_array):
 """
 Filters the non printable characters of the given byte array and returns
 the resulting string.

 Args:
 byte_array (Bytearray): Byte array to filter.

 Return:
 String: Resulting string after filtering non printable characters of
 the byte array.
 """
 return bytes(x for x in byte_array if x in _printable_ascii_bytes).decode(encoding='utf8')

 Source code for digi.xbee.firmware

Copyright 2019-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

import logging
import os
import re
import time

from abc import ABC, abstractmethod
from enum import Enum, unique
from itertools import repeat
from pathlib import Path
from threading import Event
from threading import Thread
from xml.etree import ElementTree
from xml.etree.ElementTree import ParseError

import serial

from serial.serialutil import SerialException

from digi.xbee.exception import XBeeException, FirmwareUpdateException, \
 TimeoutException, OperationNotSupportedException
from digi.xbee.devices import XBeeDevice, RemoteXBeeDevice,\
 NetworkEventReason, AbstractXBeeDevice
from digi.xbee.models.address import XBee16BitAddress
from digi.xbee.models.atcomm import ATStringCommand
from digi.xbee.models.hw import HardwareVersion
from digi.xbee.models.mode import APIOutputModeBit
from digi.xbee.models.options import RemoteATCmdOptions
from digi.xbee.models.protocol import XBeeProtocol, Role
from digi.xbee.models.status import TransmitStatus, ATCommandStatus, \
 EmberBootloaderMessageType, ModemStatus
from digi.xbee.packets.aft import ApiFrameType
from digi.xbee.packets.common import ExplicitAddressingPacket, \
 TransmitStatusPacket, RemoteATCommandPacket, RemoteATCommandResponsePacket
from digi.xbee.serial import FlowControl
from digi.xbee.serial import XBeeSerialPort
from digi.xbee.util import utils
from digi.xbee.util import xmodem
from digi.xbee.util.xmodem import XModemException, XModemCancelException

_BOOTLOADER_TIMEOUT = 60 # seconds
_BOOTLOADER_VERSION_SEPARATOR = "."
_BOOTLOADER_VERSION_SIZE = 3
_BOOTLOADER_XBEE3_RESET_ENV_VERSION = bytearray([1, 6, 6])

_GECKO_BOOTLOADER_INIT_TIME = 3 # Seconds
_GECKO_BOOTLOADER_OPTION_RUN_FW = "2"
_GECKO_BOOTLOADER_OPTION_UPLOAD_GBL = "1"
_GECKO_BOOTLOADER_PORT_PARAMS = {"baudrate": 115200,
 "bytesize": serial.EIGHTBITS,
 "parity": serial.PARITY_NONE,
 "stopbits": serial.STOPBITS_ONE,
 "xonxoff": False,
 "dsrdtr": False,
 "rtscts": False,
 "timeout": 0.1,
 "write_timeout": None,
 "inter_byte_timeout": None
 }
_GECKO_BOOTLOADER_PROMPT = "BL >"
_GECKO_BOOTLOADER_TEST_CHAR = "\n"

_PATTERN_GECKO_BOOTLOADER_COMPATIBILITY_FULL = \
 "^.*Gecko Bootloader.*\\(([0-9a-fA-F]{4})-([0-9a-fA-F]{2})(.*)\\).*$"
_PATTERN_GECKO_BOOTLOADER_VERSION = \
 "^.*Gecko Bootloader v([0-9a-fA-F]{1}\\.[0-9a-fA-F]{1}\\.[0-9a-fA-F]{1}).*$"

_XBEE3_BOOTLOADER_FILE_PREFIX = "xb3-boot-rf_"

_GEN3_BOOTLOADER_ERROR_CHECKSUM = 0x12
_GEN3_BOOTLOADER_ERROR_VERIFY = 0x13
_GEN3_BOOTLOADER_FLASH_CHECKSUM_RETRIES = 3
_GEN3_BOOTLOADER_FLASH_VERIFY_RETRIES = 3
_GEN3_BOOTLOADER_PORT_PARAMS = {"baudrate": 38400,
 "bytesize": serial.EIGHTBITS,
 "parity": serial.PARITY_NONE,
 "stopbits": serial.STOPBITS_ONE,
 "xonxoff": False,
 "dsrdtr": False,
 "rtscts": False,
 "timeout": 0.1,
 "write_timeout": None,
 "inter_byte_timeout": None
 }
_GEN3_BOOTLOADER_PROMPT = "U"
_GEN3_BOOTLOADER_PROTOCOL_VERSION_0 = 0
_GEN3_BOOTLOADER_TEST_CHAR = "\n"
_GEN3_BOOTLOADER_TRANSFER_ACK = 0x55

_BUFFER_SIZE_SHORT = 2
_BUFFER_SIZE_INT = 4
_BUFFER_SIZE_IEEE_ADDR = 8
_BUFFER_SIZE_STR = 32

_READ_BUFFER_LEN = 256
_READ_DATA_TIMEOUT = 3 # Seconds.

_DEVICE_BREAK_RESET_TIMEOUT = 10 # seconds
_DEVICE_CONNECTION_RETRIES = 3

_ERROR_BOOTLOADER_MODE = "Could not enter in bootloader mode"
_ERROR_BOOTLOADER_NOT_SUPPORTED = "XBee does not support firmware update process"
_ERROR_COMPATIBILITY_NUMBER = "Device compatibility number (%d) is greater " \
 "than the firmware one (%d)"
_ERROR_COMMUNICATION_LOST = "Communication with the device was lost"
_ERROR_COMMUNICATION_TEST = "Communication test with the remote device failed"
_ERROR_CONNECT_DEVICE = "Could not connect with XBee device after %s retries"
_ERROR_CONNECT_SERIAL_PORT = "Could not connect with serial port: %s"
_ERROR_DEFAULT_RESPONSE_UNKNOWN_ERROR = "Unknown error"
_ERROR_DETERMINE_BOOTLOADER_TYPE = "Could not determine the bootloader type: %s"
_ERROR_DEVICE_PROGRAMMING_MODE = "Could not put XBee device into programming mode"
_ERROR_END_DEVICE_ORPHAN = "Could not find the parent node of the end device"
_ERROR_FILE_OTA_FS_NOT_FOUND = "OTA filesystem image file does not exist"
_ERROR_FILE_OTA_FS_NOT_SPECIFIED = "OTA filesystem image file must be specified"
_ERROR_FILE_XBEE_FW_NOT_FOUND = "Could not find XBee binary firmware file '%s'"
_ERROR_FILE_XML_FW_NOT_FOUND = "XML firmware file does not exist"
_ERROR_FILE_XML_FW_NOT_SPECIFIED = "XML firmware file must be specified"
_ERROR_FILE_BOOTLOADER_FW_NOT_FOUND = "Could not find bootloader binary " \
 "firmware file '%s'"
_ERROR_FINISH_PROCESS = "Could not finish firmware update process"
_ERROR_FW_START = "Could not start the new firmware"
_ERROR_FW_UPDATE_BOOTLOADER = "Bootloader update error: %s"
_ERROR_FW_UPDATE_RETRIES = "Firmware update failed after %s retries"
_ERROR_FW_UPDATE_XBEE = "XBee firmware update error: %s"
_ERROR_GPM_ERASE_CMD = "An error occurred erasing the device flash"
_ERROR_GPM_INFO_CMD = "An error occurred getting the platform information"
_ERROR_GPM_VERIFY_AND_INSTALL_CMD = "An error occurred while installing the " \
 "new firmware in the device"
_ERROR_GPM_VERIFY_CMD = "An error occurred while verifying firmware " \
 "image in the device"
_ERROR_GPM_WRITE_CMD = "An error occurred while writing data in the device"
_ERROR_HW_VERSION_DIFFER = "Device hardware version (%d) differs from the " \
 "firmware one (%d)"
_ERROR_IMAGE_VERIFICATION = "Image verification error"
_ERROR_INITIALIZE_PROCESS = "Could not initialize firmware update process"
_ERROR_INVALID_OTA_FILE = "Invalid OTA file: %s"
_ERROR_INVALID_BLOCK = "Requested block index '%s' does not exits"
_ERROR_INVALID_GPM_ANSWER = "Invalid GPM frame answer"
_ERROR_NO_UPDATER_AVAILABLE = "No valid updater available to perform the " \
 "remote firmware update"
_ERROR_NOT_OTA_FILE = "File '%s' is not an OTA file"
_ERROR_PAGE_CHECKSUM = "Checksum error for page %d"
_ERROR_PAGE_VERIFICATION = "Verification error for page %d"
_ERROR_PARSING_OTA_FILE = "Error parsing OTA file: %s"
_ERROR_RECEIVE_FRAME_TIMEOUT = "Timeout waiting for response"
_ERROR_RECOVERY_MODE = "Could not put updater device in recovery mode"
_ERROR_READ_OTA_FILE = "Error reading OTA file: %s"
_ERROR_REGION_LOCK = "Device region (%d) differs from the firmware one (%d)"
_ERROR_REMOTE_DEVICE_INVALID = "Invalid remote XBee device"
_ERROR_RESTORE_TARGET_CONNECTION = "Could not restore target connection: %s"
_ERROR_RESTORE_UPDATER_DEVICE = "Error restoring updater device: %s"
_ERROR_SEND_FRAME = "Error sending frame: transmit status not received or invalid"
_ERROR_SEND_FRAME_RESPONSE = "Error sending '%s' frame: %s"
_ERROR_SEND_OTA_BLOCK = "Error sending OTA block '%s' frame: %s"
_ERROR_SERIAL_COMMUNICATION = "Serial port communication error: %s"
_ERROR_TARGET_INVALID = "Invalid update target"
_ERROR_TRANSFER_OTA_FILE = "Error transferring OTA file: %s"
_ERROR_UPDATE_FROM_S2C = "An S2C device can be only updated from another S2C device"
_ERROR_UPDATE_TARGET_INFO = "Error reading new target information: %s"
_ERROR_UPDATE_TARGET_TIMEOUT = "Timeout communicating with target device " \
 "after the firmware update"
_ERROR_UPDATER_READ_PARAM = "Error reading updater '%s' parameter"
_ERROR_UPDATER_SET_PARAM = "Error setting updater '%s' parameter"
_ERROR_XML_PARSE = "Could not parse XML firmware file %s"
_ERROR_XMODEM_COMMUNICATION = "XModem serial port communication error: %s"
_ERROR_XMODEM_RESTART = "Could not restart firmware transfer sequence"
_ERROR_XMODEM_START = "Could not start XModem firmware upload process"
_ERROR_HW_VERSION_NOT_SUPPORTED = "XBee hardware version (%d) does not " \
 "support firmware update process"

_EXPL_PACKET_BROADCAST_RADIUS_MAX = 0x00
_EXPL_PACKET_CLUSTER_DATA = 0x0011
_EXPL_PACKET_CLUSTER_ID = 0x0019
_EXPL_PACKET_CLUSTER_GPM = 0x0023
_EXPL_PACKET_CLUSTER_LINK = 0x0014
_EXPL_PACKET_CLUSTER_LINK_ANSWER = 0x0094
_EXPL_PACKET_CLUSTER_LOOPBACK = 0x0012
_EXPL_PACKET_CLUSTER_UPDATE_LOCAL_UPDATER = 0x71FE
_EXPL_PACKET_CLUSTER_UPDATE_REMOTE_UPDATER = 0x71FF
_EXPL_PACKET_ENDPOINT_DATA = 0xE8
_EXPL_PACKET_ENDPOINT_DIGI_DEVICE = 0xE6
_EXPL_PACKET_PROFILE_DIGI = 0xC105
_EXPL_PACKET_EXTENDED_TIMEOUT = 0x40

EXTENSION_EBIN = ".ebin"
EXTENSION_EBL = ".ebl"
EXTENSION_GBL = ".gbl"
EXTENSION_EHX2 = ".ehx2"
EXTENSION_OTA = ".ota"
EXTENSION_OTB = ".otb"
EXTENSION_XML = ".xml"

_IMAGE_BLOCK_REQUEST_PACKET_PAYLOAD_SIZE = 17

_NOTIFY_PACKET_PAYLOAD_SIZE = 12
Payload type indicates which fields are present:
* 0: No optional fields (Query Jitter only)
* 1: Query Jitter, Manufacturer Code
* 2: Query Jitter, Manufacturer Code, Image Type
* 3: Query Jitter, Manufacturer Code, Image Type, File Version
_NOTIFY_PACKET_PAYLOAD_TYPE = 0x03
A number between 0-100.
100 to ensure all the XBees receiving the notify replies.
_NOTIFY_PACKET_DEFAULT_QUERY_JITTER = 0x64

_OTA_FILE_IDENTIFIER = 0x0BEEF11E
_OTA_DEFAULT_BLOCK_SIZE = 64
_OTA_GBL_SIZE_BYTE_COUNT = 6

_PACKET_DEFAULT_SEQ_NUMBER = 0x01

Answer examples: 01 81 -> 1.8.1 - 0F 3E -> 15.3.14
_PARAM_BOOTLOADER_VERSION = ATStringCommand.VH.command
_PARAM_READ_RETRIES = 3
_PARAM_SET_RETRIES = 3

_PROGRESS_TASK_UPDATE_BOOTLOADER = "Updating bootloader"
_PROGRESS_TASK_UPDATE_REMOTE_XBEE = "Updating remote XBee firmware"
_PROGRESS_TASK_UPDATE_REMOTE_FILESYSTEM = "Updating remote XBee filesystem"
_PROGRESS_TASK_UPDATE_XBEE = "Updating XBee firmware"

_REGION_ALL = 0

_REMOTE_FW_UPDATE_DEFAULT_TIMEOUT = 20 # Seconds

_SEND_BLOCK_RETRIES = 5

_TIME_DAYS_1970TO_2000 = 10957
_TIME_SECONDS_1970_TO_2000 = _TIME_DAYS_1970TO_2000 * 24 * 60 * 60

_IMAGE_BLOCK_RESPONSE_PAYLOAD_DECREMENT = 1
_UPGRADE_END_REQUEST_PACKET_PAYLOAD_SIZE = 12

_VALUE_API_OUTPUT_MODE_EXPLICIT = 0x01
_VALUE_END_OF_FILE_DATA = bytearray([0x01, 0x04])
_VALUE_INITIALIZATION_DATA = bytearray([0x01, 0x51])
_VALUE_PRESERVE_NETWORK_SETTINGS = bytearray([0x54, 0x41])
_VALUE_UNICAST_RETRIES_MEDIUM = 0x06

_XML_BOOTLOADER_VERSION = "firmware/bootloader_version"
_XML_COMPATIBILITY_NUMBER = "firmware/compatibility_number"
_XML_FIRMWARE = "firmware"
_XML_FIRMWARE_VERSION_ATTRIBUTE = "fw_version"
_XML_FLASH_PAGE_SIZE = "firmware/flash_page_size"
_XML_HARDWARE_VERSION = "firmware/hw_version"
_XML_REGION_LOCK = "firmware/region"
_XML_UPDATE_TIMEOUT = "firmware/update_timeout_ms"

_XMODEM_READY_TO_RECEIVE_CHAR = "C"
_XMODEM_START_TIMEOUT = 3 # seconds

_ZCL_CMD_ID_IMG_NOTIFY_REQ = 0x00
_ZCL_CMD_ID_QUERY_NEXT_IMG_REQ = 0x01
_ZCL_CMD_ID_QUERY_NEXT_IMG_RESP = 0x02
_ZCL_CMD_ID_IMG_BLOCK_REQ = 0x03
_ZCL_CMD_ID_IMG_BLOCK_RESP = 0x05
_ZCL_CMD_ID_UPGRADE_END_REQ = 0x06
_ZCL_CMD_ID_UPGRADE_END_RESP = 0x07
_ZCL_CMD_ID_DEFAULT_RESP = 0x0B

_ZCL_FRAME_CONTROL_CLIENT_TO_SERVER = 0x01

Since the following versions (they included), the XBee firmware includes
client retries for the same block offset if, for any reason, the block is not
received (or it is corrupted)
_XB3_FW_VERSION_LIMIT_FOR_CLIENT_RETRIES = {
 XBeeProtocol.ZIGBEE: 0x1009,
 XBeeProtocol.DIGI_MESH: 0x300A,
 XBeeProtocol.RAW_802_15_4: 0x200A
}

Since the following versions (they included) the complete OTA file (including
the header) must be sent to the client when blocks are requested.
_XB3_FW_VERSION_LIMIT_SKIP_OTA_HEADER = {
 XBeeProtocol.ZIGBEE: 0x100A,
 XBeeProtocol.DIGI_MESH: 0x300A,
 XBeeProtocol.RAW_802_15_4: 0x200A
}

_XB3_PROTOCOL_FROM_FW_VERSION = {
 0x1: XBeeProtocol.ZIGBEE,
 0x2: XBeeProtocol.RAW_802_15_4,
 0x3: XBeeProtocol.DIGI_MESH
}

_POLYNOMINAL_DIGI_BL = 0x8005

S2C_HW_VERSIONS = (HardwareVersion.XBP24C.code,
 HardwareVersion.XB24C.code,
 HardwareVersion.XBP24C_S2C_SMT.code,
 HardwareVersion.XBP24C_TH_DIP.code,
 HardwareVersion.XB24C_TH_DIP.code)

SX_HW_VERSIONS = (HardwareVersion.SX.code,
 HardwareVersion.SX_PRO.code,
 HardwareVersion.XB8X.code)

XBEE3_HW_VERSIONS = (HardwareVersion.XBEE3.code,
 HardwareVersion.XBEE3_SMT.code,
 HardwareVersion.XBEE3_TH.code)

LOCAL_SUPPORTED_HW_VERSIONS = SX_HW_VERSIONS + XBEE3_HW_VERSIONS
REMOTE_SUPPORTED_HW_VERSIONS = SX_HW_VERSIONS + XBEE3_HW_VERSIONS + S2C_HW_VERSIONS

_log = logging.getLogger(__name__)

class _EbinFile:
 """
 Helper class that represents a local firmware file in 'ebin' format.
 """

 def __init__(self, file_path, page_size):
 """
 Class constructor. Instantiates a new :class:`._EbinFile` with the
 given parameters.

 Args:
 file_path (String): Path of the ebin file.
 page_size (Integer): Size of the memory pages of the file.
 """
 self._file_path = file_path
 self._page_size = page_size
 self._page_index = 0
 self._num_pages = os.path.getsize(file_path) // self._page_size
 if os.path.getsize(file_path) % self._page_size != 0:
 self._num_pages += 1

 def get_next_mem_page(self):
 """
 Returns the next memory page of this file.

 Returns:
 Bytearray: Next memory page of the file as byte array.
 """
 with open(self._file_path, "rb") as file:
 while True:
 read_bytes = file.read(self._page_size)
 if not read_bytes:
 break
 # Protocol states that empty pages (pages filled with 0xFF)
 # must not be sent. Check if this page is empty.
 page_is_empty = True
 for byte in read_bytes:
 if byte != 0xFF:
 page_is_empty = False
 break
 # Skip empty page. Still increase page index.
 if not page_is_empty:
 # Page must have always full size.
 # If not, extend with 0xFF until it is complete.
 if len(read_bytes) < self._page_size:
 padded_array = bytearray(read_bytes)
 padded_array.extend(repeat(0xFF, self._page_size - len(read_bytes)))
 read_bytes = bytes(padded_array)
 yield read_bytes
 self._page_index += 1

 @property
 def num_pages(self):
 """
 Returns the total number of memory pages of this file.

 Returns:
 Integer: Total number of data chunks of this file.
 """
 return self._num_pages

 @property
 def page_index(self):
 """
 Returns the current memory page index.

 Returns:
 Integer: Current memory page index.
 """
 return self._page_index

 @property
 def percent(self):
 """
 Returns the transfer progress percent.

 Returns:
 Integer: Transfer progress percent.
 """
 return ((self._page_index + 1) * 100) // self._num_pages

class _EBLFile:
 """
 Helper class that represents a local firmware file in 'ebl' format.
 """

 def __init__(self, file_path, page_size):
 """
 Class constructor. Instantiates a new :class:`._EBLFile` with the
 given parameters.

 Args:
 file_path (String): Path of the ebl file.
 page_size (Integer): Size of the memory pages of the file.
 """
 self._file_path = file_path
 self._page_size = page_size
 self._page_index = 0
 self._num_pages = os.path.getsize(file_path) // self._page_size
 if os.path.getsize(file_path) % self._page_size != 0:
 self._num_pages += 1

 def get_next_mem_page(self):
 """
 Returns the next memory page of this file.

 Returns:
 Bytearray: Next memory page of the file as byte array.
 """
 with open(self._file_path, "rb") as file:
 while True:
 read_bytes = file.read(self._page_size)
 if not read_bytes:
 break
 # Page must have always full size.
 # If not, extend with 0xFF until it is complete.
 if len(read_bytes) < self._page_size:
 padded_array = bytearray(read_bytes)
 padded_array.extend(repeat(0xFF, self._page_size - len(read_bytes)))
 read_bytes = bytes(padded_array)
 yield read_bytes
 self._page_index += 1

 @property
 def num_pages(self):
 """
 Returns the total number of memory pages of this file.

 Returns:
 Integer: Total number of data chunks of this file.
 """
 return self._num_pages

 @property
 def page_index(self):
 """
 Returns the current memory page index.

 Returns:
 Integer: Current memory page index.
 """
 return self._page_index

 @property
 def percent(self):
 """
 Returns the transfer progress percent.

 Returns:
 Integer: Transfer progress percent.
 """
 return ((self._page_index + 1) * 100) // self._num_pages

class _OTAFile:
 """
 Helper class that represents an OTA firmware file to be used in remote
 firmware updates.
 """

 def __init__(self, file_path):
 """
 Class constructor. Instantiates a new :class:`._OTAFile` with the
 given parameters.

 Args:
 file_path (String): Path of the OTA file.
 """
 self._file_path = file_path
 self._header_version = None
 self._header_length = None
 self._header_field_control = None
 self._manufacturer_code = None
 self._image_type = None
 self._file_version = None
 self._zb_stack_version = None
 self._header_str = None
 self._total_size = None
 self._ota_size = None
 self._discard_size = 0
 self._file = None
 self._min_hw_version = 0
 self._max_hw_version = 0xFFFF

 def parse_file(self):
 """
 Parses the OTA file and stores useful information of the file.

 Raises:
 _ParsingOTAException: If there is any problem parsing the OTA file.
 """
 _log.debug("Parsing OTA firmware file %s:", self._file_path)
 if (not _file_exists(self._file_path)
 or (not self._file_path.endswith(EXTENSION_OTA)
 and not self._file_path.endswith(EXTENSION_OTB))):
 raise _ParsingOTAException(_ERROR_INVALID_OTA_FILE % self._file_path)

 try:
 with open(self._file_path, "rb") as file:
 identifier = utils.bytes_to_int(_reverse_bytearray(file.read(_BUFFER_SIZE_INT)))
 if identifier != _OTA_FILE_IDENTIFIER:
 raise _ParsingOTAException(_ERROR_NOT_OTA_FILE % self._file_path)
 _log.debug(" - Identifier: %04X (%d)", identifier, identifier)
 h_version = _reverse_bytearray(file.read(_BUFFER_SIZE_SHORT))
 self._header_version = utils.bytes_to_int(h_version)
 _log.debug(" - Header version: %d.%d (%04X - %d)", h_version[0], h_version[1],
 self._header_version, self._header_version)
 self._header_length = utils.bytes_to_int(
 _reverse_bytearray(file.read(_BUFFER_SIZE_SHORT)))
 _log.debug(" - Header length: %d", self._header_length)
 # Bit mask to indicate whether additional information are included in the OTA image:
 # * Bit 0: Security credential version present
 # * Bit 1: Device specific file
 # * Bit 2: Hardware versions presents
 self._header_field_control = utils.bytes_to_int(
 _reverse_bytearray(file.read(_BUFFER_SIZE_SHORT)))
 _log.debug(" - Header field control: %d", self._header_field_control)
 self._manufacturer_code = utils.bytes_to_int(
 _reverse_bytearray(file.read(_BUFFER_SIZE_SHORT)))
 _log.debug(" - Manufacturer code: %04X (%d)",
 self._manufacturer_code, self._manufacturer_code)
 self._image_type = utils.bytes_to_int(
 _reverse_bytearray(file.read(_BUFFER_SIZE_SHORT)))
 _log.debug(" - Image type: %s (%d)",
 "Firmware" if not self._image_type else "File system", self._image_type)
 f_version = _reverse_bytearray(file.read(_BUFFER_SIZE_INT))
 self._file_version = utils.bytes_to_int(f_version)
 _log.debug(" - File version: %s (%d)",
 utils.hex_to_string(f_version), self._file_version)
 _log.debug(" - Compatibility: %d", f_version[0])
 _log.debug(" - Firmware version: %s",
 utils.hex_to_string(f_version[1:], pretty=False))
 self._zb_stack_version = utils.bytes_to_int(
 _reverse_bytearray(file.read(_BUFFER_SIZE_SHORT)))
 _log.debug(" - Zigbee stack version: %d", self._zb_stack_version)
 if (utils.bytes_to_int(f_version[1:])
 < _XB3_FW_VERSION_LIMIT_SKIP_OTA_HEADER[_XB3_PROTOCOL_FROM_FW_VERSION[f_version[2] >> 4]]):
 self._header_str = str(_reverse_bytearray(
 file.read(_BUFFER_SIZE_STR)), encoding="utf8", errors="ignore")
 else:
 self._header_str = str(file.read(_BUFFER_SIZE_STR),
 encoding="utf8", errors="ignore")
 _log.debug(" - Header string: %s", self._header_str)
 bad_ota_size = utils.bytes_to_int(
 _reverse_bytearray(file.read(_BUFFER_SIZE_INT)))
 _log.debug(" - Discard OTA size field: %d", bad_ota_size)
 if self._header_field_control & 0x01:
 _log.debug(" - Security credential version: %d",
 utils.bytes_to_int(file.read(1)))
 if self._header_field_control & 0x02:
 _log.debug(" - Upgrade file destination: %s", utils.hex_to_string(
 _reverse_bytearray(file.read(_BUFFER_SIZE_IEEE_ADDR))))
 if self._header_field_control & 0x04:
 self._min_hw_version = utils.bytes_to_int(
 _reverse_bytearray(file.read(_BUFFER_SIZE_SHORT)))
 self._max_hw_version = utils.bytes_to_int(
 _reverse_bytearray(file.read(_BUFFER_SIZE_SHORT)))
 _log.debug(" - Minimum hardware version: %02X (%d)",
 self._min_hw_version, self._min_hw_version)
 _log.debug(" - Maximum hardware version: %02X (%d)",
 self._max_hw_version, self._max_hw_version)
 file.seek(self._header_length + 2, 0)
 self._ota_size = utils.bytes_to_int(
 _reverse_bytearray(file.read(_BUFFER_SIZE_INT)))
 _log.debug(" - OTA size: %d", self._ota_size)
 self._total_size = os.path.getsize(self._file_path)
 _log.debug(" - File size: %d", self._total_size)
 self._discard_size = self._header_length + _OTA_GBL_SIZE_BYTE_COUNT
 _log.debug(" - Discard size: %d", self._discard_size)
 except IOError as exc:
 raise _ParsingOTAException(_ERROR_PARSING_OTA_FILE % str(exc))

 def get_next_data_chunk(self, offset, size):
 """
 Returns the next data chunk of this file.

 Args:
 offset (Integer): Starting offset to read.
 size (Integer): The number of bytes to read.

 Returns:
 Bytearray: Next data chunk of the file as byte array.

 Raises:
 _ParsingOTAException: If there is any error reading the OTA file.
 """
 try:
 if self._file is None:
 self._file = open(self._file_path, "rb")
 self._file.seek(offset)
 return self._file.read(size)
 except IOError as exc:
 self.close_file()
 raise _ParsingOTAException(str(exc))

 def close_file(self):
 """
 Closes the file.
 """
 if self._file:
 self._file.close()

 @property
 def file_path(self):
 """
 Returns the OTA file path.

 Returns:
 String: OTA file path.
 """
 return self._file_path

 @property
 def header_version(self):
 """
 Returns the OTA file header version.

 Returns:
 Integer: OTA file header version.
 """
 return self._header_version

 @property
 def header_length(self):
 """
 Returns the OTA file header length.

 Returns:
 Integer: OTA file header length.
 """
 return self._header_length

 @property
 def header_field_control(self):
 """
 Returns the OTA file header field control.

 Returns:
 Integer: OTA file header field control.
 """
 return self._header_field_control

 @property
 def manufacturer_code(self):
 """
 Returns the OTA file manufacturer code.

 Returns:
 Integer: OTA file manufacturer code.
 """
 return self._manufacturer_code

 @property
 def image_type(self):
 """
 Returns the OTA file image type: 0x0000 for firmware,
 0x0100 for file system.

 Returns:
 Integer: OTA file image type.
 """
 return self._image_type

 @property
 def file_version(self):
 """
 Returns the OTA file version.

 Returns:
 Integer: OTA file version.
 """
 return self._file_version

 @property
 def zigbee_stack_version(self):
 """
 Returns the OTA file zigbee stack version.

 Returns:
 Integer: OTA file zigbee stack version.
 """
 return self._zb_stack_version

 @property
 def header_string(self):
 """
 Returns the OTA file header string.

 Returns:
 String: OTA file header string.
 """
 return self._header_str

 @property
 def total_size(self):
 """
 Returns the OTA file total size.

 Returns:
 Integer: OTA file total size.
 """
 return self._total_size

 @property
 def discard_size(self):
 """
 Returns the number of bytes to discard of the OTA file.

 Returns:
 Integer: Number of bytes.
 """
 return self._discard_size

 @property
 def ota_size(self):
 """
 Returns the number of bytes to transmit over the air.

 Returns:
 Integer: Number of bytes.
 """
 return self._ota_size

 @property
 def min_hw_version(self):
 """
 Returns the minimum hardware version this file is for.

 Returns:
 Integer: The minimum firmware version.
 """
 return self._min_hw_version

 @property
 def max_hw_version(self):
 """
 Returns the maximum hardware version this file is for.

 Returns:
 Integer: The maximum firmware version.
 """
 return self._max_hw_version

class _ParsingOTAException(Exception):
 """
 This exception will be thrown when any problem related with the parsing of
 OTA files occurs.

 All functionality of this class is the inherited from `Exception
 <https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception>`_.
 """

@unique
class _XBee3OTAStatus(Enum):
 """
 This class lists the available file XBee3 OTA status codes.

 | Inherited properties:
 | **name** (String): The name of this _XBee3OTAStatus.
 | **value** (Integer): The ID of this _XBee3OTAStatus.
 """
 SUCCESS = (0x00, "Success")
 OUT_OF_SEQUENCE = (0x01, "ZCL OTA message out of sequence")
 ERASE_FAILED = (0x05, "Storage erase failed")
 REQUEST_DENIED = (0x70, "OTA updates have been disabled on the remote")
 NOT_AUTHORIZED = (0x7E, "Server is not authorized to update the client")
 MALFORMED_CMD = (0x80, "Received is badly formatted or has incorrect parameters")
 UNSUP_CLUSTER_CMD = (0x81, "Unsupported cluster command")
 INVALID_FIELD = (0x85, "Attempting to update to incompatible firmware")
 INVALID_VALUE = (0x87, "Upgrade File Mismatch")
 INSUFFICIENT_SPACE = (0x89, "Image size is too big")
 DUPLICATE_EXISTS = (0x8A, "Please ensure that the image you are attempting to "
 "update has a different version than the current version")
 TIMEOUT = (0x94, "Client timed out")
 ABORT = (0x95, "Client or server aborted the update")
 INVALID_IMAGE = (0x96, "Invalid OTA update image")
 WAIT_FOR_DATA = (0x97, "Server does not have data block available yet")
 NO_IMAGE_AVAILABLE = (0x98, "No OTA update image available")
 REQUIRE_MORE_IMAGE = (0x99, "Client requires more image files to successfully update")

 def __init__(self, identifier, description):
 self.__id = identifier
 self.__desc = description

 @classmethod
 def get(cls, identifier):
 """
 Returns the _XBee3OTAStatus for the given identifier.

 Args:
 identifier (Integer): Identifier of the _XBee3OTAStatus to get.

 Returns:
 :class:`._XBee3OTAStatus`: _XBee3OTAStatus with the given
 identifier, `None` if there is not found.
 """
 for value in _XBee3OTAStatus:
 if value.identifier == identifier:
 return value

 return None

 @property
 def identifier(self):
 """
 Returns the identifier of the _XBee3OTAStatus element.

 Returns:
 Integer: Identifier of the _XBee3OTAStatus element.
 """
 return self.__id

 @property
 def description(self):
 """
 Returns the command of the _XBee3OTAStatus element.

 Returns:
 String: Description of the _XBee3OTAStatus element.
 """
 return self.__desc

class _BreakThread(Thread):
 """
 Helper class used to manage serial port break line in a parallel thread.
 """

 _break_running = False

 def __init__(self, serial_port, duration):
 """
 Class constructor. Instantiates a new :class:`._BreakThread` with the
 given parameters.

 Args:
 serial_port (:class:`.XBeeSerialPort`): The serial port to send the
 break signal to.
 duration (Integer): Duration of the break in seconds.
 """
 super().__init__()
 self._xbee_serial_port = serial_port
 self.duration = duration
 self.lock = Event()

 def run(self):
 """
 Override.

 .. seealso::
 | :meth:`.Thread.run`
 """
 if self._xbee_serial_port is None or _BreakThread.is_running():
 return

 _log.debug("Break thread started")
 _BreakThread._break_running = True
 self._xbee_serial_port.break_condition = True
 self.lock.wait(self.duration)
 self._xbee_serial_port.break_condition = False
 _BreakThread._break_running = False
 _log.debug("Break thread finished")

 def stop_break(self):
 """
 Stops the break thread.
 """
 if not self.is_running:
 return

 self.lock.set()
 # Wait until thread finishes.
 self.join()

 @staticmethod
 def is_running():
 """
 Returns whether the break thread is running or not.

 Returns:
 Boolean: `True` if the break thread is running, `False` otherwise.
 """
 return _BreakThread._break_running

@unique
class _BootloaderType(Enum):
 """
 This class lists the available bootloader types

 | Inherited properties:
 | **name** (String): The name of this _BootloaderType.
 | **value** (Integer): The ID of this _BootloaderType.
 """
 GEN3_BOOTLOADER = (0x01, "Generation 3 bootloader")
 GECKO_BOOTLOADER = (0x02, "Gecko bootloader")
 EMBER_BOOTLOADER = (0x03, "Ember bootloader")

 def __init__(self, identifier, description):
 self.__id = identifier
 self.__desc = description

 @classmethod
 def get(cls, identifier):
 """
 Returns the _BootloaderType for the given identifier.

 Args:
 identifier (Integer): Identifier of the _BootloaderType to get.

 Returns:
 :class:`._BootloaderType`: _BootloaderType with the given
 identifier, `None` if not found.
 """
 for value in _BootloaderType:
 if value.identifier == identifier:
 return value

 return None

 @classmethod
 def determine_bootloader_type(cls, hw_version):
 """
 Determines the _BootloaderType for the given hardware version.

 Args:
 hw_version (Integer): Hardware version to retrieve its bootloader type.

 Returns:
 :class:`._BootloaderType`: _BootloaderType of the given hardware
 version, `None` if not found.
 """
 if hw_version in SX_HW_VERSIONS:
 return _BootloaderType.GEN3_BOOTLOADER
 if hw_version in XBEE3_HW_VERSIONS:
 return _BootloaderType.GECKO_BOOTLOADER
 if hw_version in S2C_HW_VERSIONS:
 return _BootloaderType.EMBER_BOOTLOADER

 return None

 @property
 def identifier(self):
 """
 Returns the identifier of the _BootloaderType element.

 Returns:
 Integer: Identifier of the _BootloaderType element.
 """
 return self.__id

 @property
 def description(self):
 """
 Returns the description of the _BootloaderType element.

 Returns:
 String: Description of the _BootloaderType element.
 """
 return self.__desc

@unique
class _Gen3BootloaderCmd(Enum):
 """
 This class lists the available Gen3 bootloader commands.

 | Inherited properties:
 | **name** (String): The name of this _Gen3BootloaderCommand.
 | **value** (Integer): The ID of this _Gen3BootloaderCommand.
 """
 BOOTLOADER_VERSION = (0x01, "Retrieve the bootloader version", "B", 6, 200)
 HW_VERSION = (0x02, "Retrieve hardware version", "V", 17, 1000)
 REGION_LOCK = (0x03, "Retrieve region lock number", "N", 1, 300)
 PROTOCOL_VERSION = (0x04, "Retrieve firmware update protocol version", "L", 1, 500)
 INIT_UPDATE = (0x05, "Initialize firmware update process", "I", 1, 4000)
 FINISH_UPDATE = (0x06, "Finish firmware update process", "F", 1, 100)
 CHANGE_BAUDRATE = (0x07, "Change serial baudrate", "R", 6, 300)
 # Negative timeout means do not wait for answer.
 PROGRAM_PAGE = (0x08, "Program firmware memory page", "P", 1, -1)
 VERIFY = (0x09, "Verify the transferred image", "C", 1, 30000)

 def __init__(self, identifier, desc, cmd, answer_len, timeout):
 self.__id = identifier
 self.__desc = desc
 self.__cmd = cmd
 self.__answer_len = answer_len
 self.__timeout = timeout

 @classmethod
 def get(cls, identifier):
 """
 Returns the _Gen3BootloaderCommand for the given identifier.

 Args:
 identifier (Integer): Identifier of the _Gen3BootloaderCommand to get.

 Returns:
 :class:`._Gen3BootloaderCommand`: _Gen3BootloaderCommand with the
 given identifier, `None` if not found.
 """
 for value in _BootloaderType:
 if value.identifier == identifier:
 return value

 return None

 @property
 def identifier(self):
 """
 Returns the identifier of the _Gen3BootloaderCommand element.

 Returns:
 Integer: Identifier of the _Gen3BootloaderCommand element.
 """
 return self.__id

 @property
 def description(self):
 """
 Returns the description of the _Gen3BootloaderCommand element.

 Returns:
 String: Description of the _Gen3BootloaderCommand element.
 """
 return self.__desc

 @property
 def command(self):
 """
 Returns the command of the _Gen3BootloaderCommand element.

 Returns:
 String: Command of the _Gen3BootloaderCommand element.
 """
 return self.__cmd

 @property
 def answer_length(self):
 """
 Returns the answer length of the _Gen3BootloaderCommand element.

 Returns:
 Integer: Answer length of the _Gen3BootloaderCommand element.
 """
 return self.__answer_len

 @property
 def timeout(self):
 """
 Returns the timeout of the _Gen3BootloaderCommand element.

 Returns:
 Integer: Timeout of the _Gen3BootloaderCommand element (milliseconds).
 """
 return self.__timeout

@unique
class _GPMCmd(Enum):
 """
 This class lists the available GPM (General Purpose Memory) commands.

 | Inherited properties:
 | **name** (String): The name of this _GPMCommand.
 | **value** (Integer): The ID of this _GPMCommand.
 """
 GET_PLATFORM_INFO = (0x01, "Reads the device information",
 0x00, 0x80, _ERROR_GPM_INFO_CMD)
 ERASE_FLASH = (0x02, "Erases the device flash",
 0x01, 0x81, _ERROR_GPM_ERASE_CMD)
 WRITE_DATA = (0x03, "Writes data in the device",
 0x02, 0x82, _ERROR_GPM_WRITE_CMD)
 VERIFY_IMAGE = (0x04, "Verifies the firmware image in the device",
 0x05, 0x85, _ERROR_GPM_VERIFY_CMD)
 VERIFY_AND_INSTALL = (0x05, "Verifies and installs the firmware image in the device",
 0x06, 0x86, _ERROR_GPM_VERIFY_AND_INSTALL_CMD)

 def __init__(self, identifier, desc, cmd_id, answer_id, execution_error):
 self.__id = identifier
 self.__desc = desc
 self.__cmd_id = cmd_id
 self.__answer_id = answer_id
 self.__exec_error = execution_error

 @classmethod
 def get(cls, identifier):
 """
 Returns the _GPMCommand for the given identifier.

 Args:
 identifier (Integer): Identifier of the _GPMCommand to get.

 Returns:
 :class:`._GPMCommand`: _GPMCommand with the given identifier,
 `None` if not found.
 """
 for value in _GPMCmd:
 if value.identifier == identifier:
 return value

 return None

 @property
 def identifier(self):
 """
 Returns the identifier of the _GPMCommand element.

 Returns:
 Integer: Identifier of the _GPMCommand element.
 """
 return self.__id

 @property
 def description(self):
 """
 Returns the description of the _GPMCommand element.

 Returns:
 String: Description of the _GPMCommand element.
 """
 return self.__desc

 @property
 def command_id(self):
 """
 Returns the command identifier of the _GPMCommand element.

 Returns:
 Integer: Command identifier of the _GPMCommand element.
 """
 return self.__cmd_id

 @property
 def answer_id(self):
 """
 Returns the answer identifier of the _GPMCommand element.

 Returns:
 Integer: Answer identifier of the _GPMCommand element.
 """
 return self.__answer_id

 @property
 def execution_error(self):
 """
 Returns the execution error message of the _GPMCommand element.

 Returns:
 String: Execution error message of the _GPMCommand element.
 """
 return self.__exec_error

class _LoopbackTest:
 """
 Helper class used to perform a loopback test between a local and a remote
 device.
 """

 _LOOPBACK_DATA = "Loopback test %s"

 def __init__(self, local, remote, loops=10, failures_allowed=2, timeout=2):
 """
 Class constructor. Instantiates a new :class:`._LoopbackTest` with the
 given parameters.

 Args:
 local (:class:`.XBeeDevice`): Local device to perform the test.
 remote (:class:`.RemoteXBeeDevice`): Remote device to perform the test.
 loops (Integer, optional, default=10): Number of loops to execute in the test.
 failures_allowed (Integer, optional, default=2): Number of allowed
 failed loops before considering the test failed.
 timeout (Integer, optional, default=2): Timeout in seconds to wait
 for the loopback answer.
 """
 self._local = local
 self._remote = remote
 self._num_loops = loops
 self._failures_allowed = failures_allowed
 self._loopback_timeout = timeout
 self._receive_lock = Event()
 self._packet_sent = False
 self._packet_received = False
 self._loop_failed = False
 self._total_loops_failed = 0
 self._frame_id = 1

 def _generate_loopback_packet(self):
 return ExplicitAddressingPacket(
 self._frame_id, self._remote.get_64bit_addr(),
 self._remote.get_16bit_addr(), _EXPL_PACKET_ENDPOINT_DATA,
 _EXPL_PACKET_ENDPOINT_DATA, _EXPL_PACKET_CLUSTER_LOOPBACK,
 _EXPL_PACKET_PROFILE_DIGI, _EXPL_PACKET_BROADCAST_RADIUS_MAX,
 _EXPL_PACKET_EXTENDED_TIMEOUT if self._local.get_protocol() == XBeeProtocol.ZIGBEE else 0x00,
 (self._LOOPBACK_DATA % self._frame_id).encode(encoding='utf8'))

 def _loopback_callback(self, frame):
 f_type = frame.get_frame_type()
 if f_type == ApiFrameType.TRANSMIT_STATUS and frame.frame_id == self._frame_id:
 if frame.transmit_status == TransmitStatus.SUCCESS:
 self._packet_sent = True
 else:
 self._receive_lock.set()
 elif (f_type == ApiFrameType.EXPLICIT_RX_INDICATOR
 and frame.source_endpoint == _EXPL_PACKET_ENDPOINT_DATA
 and frame.dest_endpoint == _EXPL_PACKET_ENDPOINT_DATA
 and frame.cluster_id == _EXPL_PACKET_CLUSTER_DATA
 and frame.profile_id == _EXPL_PACKET_PROFILE_DIGI
 and frame.x64bit_source_addr == self._remote.get_64bit_addr()):
 # If frame was already received, ignore this frame, just notify.
 if self._packet_received:
 self._receive_lock.set()
 return
 # Check received payload.
 if not frame.rf_data:
 return
 if str(frame.rf_data, encoding='utf8', errors='ignore') == \
 (self._LOOPBACK_DATA % self._frame_id):
 self._packet_received = True
 self._receive_lock.set()

 def execute_test(self):
 """
 Performs the loopback test.

 Returns:
 Boolean: `True` if the test succeed, `False` otherwise.
 """
 _log.debug("Executing loopback test against %s", self._remote)
 # Clear vars.
 self._frame_id = 1
 self._total_loops_failed = 0
 # Store AO value.
 success, old_ao = _enable_explicit_mode(self._local)
 if not success:
 return False
 # Perform the loops test.
 for loop in range(self._num_loops):
 # Clear vars
 self._receive_lock.clear()
 self._packet_sent = False
 self._packet_received = False
 self._loop_failed = False
 # Add loopback callback.
 self._local.add_packet_received_callback(self._loopback_callback)
 try:
 # Send frame.
 self._local.send_packet(self._generate_loopback_packet())
 # Wait for answer.
 self._receive_lock.wait(self._loopback_timeout)
 except XBeeException as exc:
 _log.warning("Could not send loopback test packet %s: %s", loop, str(exc))
 self._loop_failed = True
 finally:
 # Remove frame listener.
 self._local.del_packet_received_callback(self._loopback_callback)
 # Check if packet was sent and answer received.
 if not self._packet_sent or not self._packet_received:
 self._loop_failed = True
 # Increase failures count in case of failure.
 if self._loop_failed:
 self._total_loops_failed += 1
 # Do no continue with the test if there are already too many failures.
 if self._total_loops_failed > self._failures_allowed:
 break
 self._frame_id += 1
 # Restore AO value.
 if old_ao is not None and not _set_parameter_with_retries(
 self._local, ATStringCommand.AO, old_ao, apply=True):
 return False
 # Return test result.
 _log.debug("Loopback test result: %s loops failed out of %s",
 self._total_loops_failed, self._num_loops)
 return self._total_loops_failed <= self._failures_allowed

class _TraceRouteTest:
 """
 Helper class used to perform a trace route test between a local device and
 a remote device to verify that a third device is not in the route between
 them in DigiMesh networks.
 """

 def __init__(self, local, remote, test_device, timeout=20):
 """
 Class constructor. Instantiates a new :class:`._TraceRouteTest` with the given parameters.

 Args:
 local (:class:`.XBeeDevice`): Local node to initiate the
 trace route test.
 remote (:class:`.RemoteXBeeDevice`): Remote node to perform
 the trace route test.
 test_device (:class:`.RemoteXBeeDevice`): Remote node to verify that
 is not part of the route.
 timeout (Integer, optional, default=20): Timeout in seconds to wait
 for the trace route answer.
 """
 self._local = local
 self._remote = remote
 self._test_device = test_device
 self._timeout = timeout

 def execute_test(self):
 """
 Performs the trace route test.

 Returns:
 Boolean: `True` if the test succeed, `False` otherwise.
 """
 _log.debug("Executing trace route test against %s", self._remote)
 status, route = self._local.get_route_to_node(self._remote, timeout=self._timeout)
 if not status:
 _log.warning("Could not send trace route test packet")
 return False
 if status != TransmitStatus.SUCCESS:
 _log.warning(
 "Error sending trace route test packet: %s", status.description)
 return False
 if not route or len(route) < 3:
 _log.warning("Route not received")
 return False
 return self._test_device not in route[2]

class _LinkTest:
 """
 Helper class used to perform a link test between the updater device and a
 remote device to verify connectivity in DigiMesh networks.
 """

 _LINK_TEST_ANSWER_PAYLOAD_LEN = 21

 def __init__(self, local, target, updater, loops=10, data_len=16, failures_allowed=1,
 timeout=20):
 """
 Class constructor. Instantiates a new :class:`._LinkTest` with the
 given parameters.

 Args:
 local (:class:`.XBeeDevice`): Local device to initiate the test.
 target (:class:`.RemoteXBeeDevice`): Remote device to communicate with.
 updater (:class:`.RemoteXBeeDevice`): Remote device that will
 communicate with the target node.
 loops (Integer, optional, default=10): Number of loops to execute in the test.
 data_len (Integer, optional, default=16): Number of data bytes to use.
 failures_allowed (Integer, optional, default=1): Number of allowed
 failed loops before considering the test failed.
 timeout (Integer, optional, default=20): Timeout in seconds to wait
 for the link test answer.
 """
 self._local = local
 self._target = target
 self._updater = updater
 self._num_loops = loops
 self._data_len = data_len
 self._failures_allowed = failures_allowed
 self._timeout = timeout
 self._receive_lock = Event()
 self._packet_received = False
 self._test_succeed = False
 self._total_loops_failed = 0

 def _generate_link_test_packet(self):
 payload = bytearray()
 payload.extend(self._target.get_64bit_addr().address)
 payload.extend(utils.int_to_bytes(self._data_len, 2))
 payload.extend(utils.int_to_bytes(self._num_loops, 2))
 return ExplicitAddressingPacket(
 1, self._updater.get_64bit_addr(), self._updater.get_16bit_addr(),
 _EXPL_PACKET_ENDPOINT_DIGI_DEVICE, _EXPL_PACKET_ENDPOINT_DIGI_DEVICE,
 _EXPL_PACKET_CLUSTER_LINK, _EXPL_PACKET_PROFILE_DIGI,
 _EXPL_PACKET_BROADCAST_RADIUS_MAX, 0x00, payload)

 def _link_test_callback(self, frame):
 if (frame.get_frame_type() == ApiFrameType.EXPLICIT_RX_INDICATOR
 and frame.source_endpoint == _EXPL_PACKET_ENDPOINT_DIGI_DEVICE
 and frame.dest_endpoint == _EXPL_PACKET_ENDPOINT_DIGI_DEVICE
 and frame.cluster_id == _EXPL_PACKET_CLUSTER_LINK_ANSWER
 and frame.profile_id == _EXPL_PACKET_PROFILE_DIGI
 and frame.x64bit_source_addr == self._updater.get_64bit_addr()):
 # If frame was already received, ignore this frame, just notify.
 if self._packet_received:
 self._receive_lock.set()
 return
 # Check received payload.
 payload = frame.rf_data
 if not payload or len(payload) < self._LINK_TEST_ANSWER_PAYLOAD_LEN:
 return
 self._test_succeed = payload[16] == 0
 self._total_loops_failed = self._num_loops - utils.bytes_to_int(payload[12:14])
 self._packet_received = True
 self._receive_lock.set()

 def execute_test(self):
 """
 Performs the link test.

 Returns:
 Boolean: `True` if the test succeed, `False` otherwise.
 """
 _log.debug("Executing link test between %s and %s", self._updater, self._target)
 # Clear vars.
 self._packet_received = False
 self._test_succeed = False
 self._total_loops_failed = 0
 # Store AO value.
 success, old_ao = _enable_explicit_mode(self._local)
 if not success:
 return False
 # Add trace route callback.
 self._local.add_packet_received_callback(self._link_test_callback)
 try:
 # Send frame.
 self._local.send_packet(self._generate_link_test_packet())
 # Wait for answer.
 self._receive_lock.wait(self._timeout)
 except XBeeException as exc:
 _log.error("Could not send Link test packet: %s", str(exc))
 self._test_succeed = False
 finally:
 # Remove frame listener.
 self._local.del_packet_received_callback(self._link_test_callback)
 # Restore AO value.
 if old_ao is not None and not _set_parameter_with_retries(
 self._local, ATStringCommand.AO, old_ao, apply=True):
 return False
 if not self._packet_received or not self._test_succeed:
 return False
 # Return test result.
 _log.debug("Link test result: %s loops failed out of %s",
 self._total_loops_failed, self._num_loops)
 return self._total_loops_failed <= self._failures_allowed

[docs]class UpdateConfigurer:
 """
 For internal use only. Helper class used to prepare nodes and/or network
 for an update.
 """

 TASK_PREPARE = "Preparing for update"
 TASK_RESTORE = "Restoring after update"

 _DM_SYNC_WAKE_TIME = 30

 def __init__(self, node, timeout=None, callback=None):
 """
 Class constructor. Instantiates a new :class:`.UpdateConfigurer` with
 the given parameters.

 Args:
 node (:class:`.AbstractXBeeDevice`): Target being updated.
 timeout (Float, optional, default=`None`): Operations timeout.
 callback (Function): Function to notify about the progress.
 """
 self._xbee = node
 self._timeout = timeout
 self._callback = callback
 self._op_timeout = None
 self._sync_sleep = None
 self._task_done = {self.TASK_PREPARE: 0,
 self.TASK_RESTORE: 0}
 self._task_total = {self.TASK_PREPARE: 3,
 self.TASK_RESTORE: 2}
 self.cmd_dict = {}

 @property
 def sync_sleep(self):
 """
 Returns whether node is part of a DigiMesh synchronous sleeping network.

 Returns:
 Boolean: `True` if it synchronous sleeps, `False` otherwise.
 """
 if self._sync_sleep is None:
 self._sync_sleep = self._is_sync_sleep()
 return self._sync_sleep

 @property
 def prepare_total(self):
 """
 Returns the total work for update preparation step.

 Returns:
 Integer: Total prepare work.
 """
 return self._task_total[self.TASK_PREPARE]

 @prepare_total.setter
 def prepare_total(self, total):
 """
 Sets the total work for update preparation step.

 Args:
 total (Integer): Total prepare work.
 """
 self._task_total[self.TASK_PREPARE] = total

 @property
 def restore_total(self):
 """
 Returns the total work for update restoration step.

 Returns:
 Integer: Total restore work.
 """
 return self._task_total[self.TASK_RESTORE]

 @restore_total.setter
 def restore_total(self, total):
 """
 Sets the total work for update restoration step.

 Args:
 total (Integer): Total restore work.
 """
 self._task_total[self.TASK_RESTORE] = total

[docs] def prepare_for_update(self, prepare_node=True, prepare_net=True, restore_later=True):
 """
 Prepares the node for an update process.

 Args:
 prepare_node (Boolean, optional, default=`True`): `True` to prepare
 the node.
 prepare_net (Boolean, optional, default=`True`): `True` to prepare
 the network.
 restore_later (Boolean, optional, default=`True`): `True` to
 restore node original values when finish the update process.
 """
 _log.info("'%s' - %s", self._xbee, self.TASK_PREPARE)

 # Change sync ops timeout
 self._op_timeout = self._xbee.get_sync_ops_timeout()
 if self._timeout:
 self._xbee.set_sync_ops_timeout(max(self._op_timeout, self._timeout))

 if not prepare_node and not prepare_net:
 return

 self.cmd_dict.clear()
 self._task_done[self.TASK_PREPARE] = 0
 self.progress_cb(self.TASK_PREPARE)

 if prepare_node:
 # Try to read information
 if not self._xbee.is_device_info_complete():
 try:
 self._xbee.read_device_info(init=True, fire_event=False)
 except XBeeException:
 pass

 self.progress_cb(self.TASK_PREPARE)

 if prepare_node:
 self._prepare_node_for_update(restore_later=restore_later)
 self.progress_cb(self.TASK_PREPARE)

 if prepare_net and self._xbee.is_remote():
 self._prepare_network_for_update()
 self.progress_cb(self.TASK_PREPARE)

[docs] def restore_after_update(self, restore_settings=True, port_settings=None):
 """
 Restores the node after an update process.

 Args:
 restore_settings(Boolean, optional, default=`True`): `True` to
 restore stored settings, `False` otherwise.
 port_settings(Dictionary, optional, default=`None`): Dictionary
 with the new serial port configuration, `None` for remote node
 or if the serial config has not changed.
 """
 _log.info("'%s' - %s", self._xbee, self.TASK_RESTORE)

 if restore_settings and self.cmd_dict:
 self.progress_cb(self.TASK_RESTORE)
 self._restore_node_after_update(self._xbee, port_settings=port_settings)

 self.progress_cb(self.TASK_RESTORE)
 self._restore_network_after_update()
 self.progress_cb(self.TASK_RESTORE)

 if self._op_timeout is not None:
 self._xbee.set_sync_ops_timeout(self._op_timeout)

[docs] @staticmethod
 def exec_at_cmd(func, node, cmd, value=None, retries=5, apply=False):
 """
 Reads the given parameter from the XBee with the given number of retries.

 Args:
 func (Function): Function to execute.
 node (:class:`.AbstractXBeeDevice`): XBee to get/set parameter.
 cmd (String or :class: `ATStringCommand`): Parameter to get/set.
 value (Bytearray, optional, default=`None`): Value to set.
 retries (Integer, optional, default=5): Number of retries to perform.
 apply (Boolean, optional, default=`False`): `True` to apply.

 Returns:
 Bytearray: Read parameter value.

 Raises:
 XBeeException: If the value could be get/set after the retries.
 """
 if func not in (AbstractXBeeDevice.get_parameter,
 AbstractXBeeDevice.set_parameter,
 XBeeDevice.get_parameter, XBeeDevice.set_parameter,
 RemoteXBeeDevice.get_parameter, RemoteXBeeDevice.set_parameter):
 raise ValueError("Invalid function")

 error_msg = None

 total = retries
 for retry in range(retries):
 try:
 if value:
 _log.debug("'%s' Setting parameter '%s' to '%s' (%d/%d)", node,
 cmd.command, utils.hex_to_string(value, pretty=False),
 (retry + 1), total)
 return func(node, cmd, value, apply=apply)
 return func(node, cmd, apply=apply)
 except XBeeException as exc:
 error_msg = ("Unable to %s command '%s': %s"
 % ("set" if value else "get", cmd.command, str(exc)))
 time.sleep(0.2)

 if error_msg:
 raise XBeeException(error_msg)

[docs] def progress_cb(self, task, done=0):
 """
 If a callback was provided in the constructor, notifies it with the
 provided task and the corresponding percentage.

 Args:
 task (String): The task to inform about, it must be `TASK_PREPARE`
 or `TASK_RESTORE`.
 done (Integer, optional, default=0): Total amount of done job. If 0,
 it is increased by one.

 Returns:
 Integer: Total work done for the task.
 """
 if not self._callback and not _log.isEnabledFor(logging.DEBUG):
 return 0

 percentage = 0
 total_done = 0
 active_task = None

 if task.startswith(self.TASK_PREPARE):
 active_task = self.TASK_PREPARE
 elif task.startswith(self.TASK_RESTORE):
 active_task = self.TASK_RESTORE

 if active_task:
 if done > 0:
 self._task_done[active_task] = done
 percentage = self._task_done[active_task] * 100 // self._task_total[active_task]
 total_done = self._task_done[active_task]
 if done == 0:
 self._task_done[active_task] += 1
 percentage = max(min(percentage, 100), 0)

 _log.debug("%s: %d", task, percentage)
 if self._callback:
 self._callback(task, percentage)

 return total_done

 def _is_sync_sleep(self):
 """
 Checks if the network is a DigiMesh synchronous sleeping network.

 Returns:
 Boolean: `True` if is a sync sleeping network, `False` otherwise.
 """
 if self._xbee.is_remote():
 local = self._xbee.get_local_xbee_device()
 else:
 local = self._xbee

 if local.get_protocol() != XBeeProtocol.DIGI_MESH:
 return False

 try:
 value = self.exec_at_cmd(AbstractXBeeDevice.get_parameter, local, ATStringCommand.SM)
 return int.from_bytes(value, "big") in (7, 8)
 except XBeeException as exc:
 _log.debug("Could not read '%s': %s", ATStringCommand.SM.command, str(exc))
 return False

 def _prepare_node_for_update(self, restore_later=True):
 """
 Prepares the node for an update. It reconfigures 'SP' and 'SN' params
 to their minimum value, in asynchronous sleep nodes.

 Args:
 restore_later (Boolean, optional, default=`True`): `True` to store
 'SP' and 'SN' original values to restore them later.
 """
 _log.debug("'%s' - %s: node", self._xbee, self.TASK_PREPARE)

 self.cmd_dict = {self._xbee: {}}

 if self._xbee.get_protocol() == XBeeProtocol.ZIGBEE:
 # For end devices, sleep the minimum possible
 if self._xbee.get_role() not in (Role.END_DEVICE, Role.UNKNOWN, None):
 return
 elif self._xbee.get_protocol() == XBeeProtocol.DIGI_MESH:
 # For sync sleeping routers, do nothing
 if self.sync_sleep:
 return
 elif self._xbee.get_protocol() == XBeeProtocol.RAW_802_15_4:
 # Read SM value, if not enabled is not a sleeping device
 sm_val = None
 try:
 sm_val = self.exec_at_cmd(AbstractXBeeDevice.get_parameter,
 self._xbee, ATStringCommand.SM)
 if sm_val is not None and int.from_bytes(sm_val, "big") == 0:
 return
 except XBeeException as exc:
 _log.info("Unable to read '%s' configuration: %s", self._xbee, str(exc))

 default_sp = self._get_min_value(ATStringCommand.SP, self._xbee.get_protocol())
 default_sn = self._get_min_value(ATStringCommand.SN, self._xbee.get_protocol())
 to_prepare = {
 ATStringCommand.SP: bytearray([default_sp]),
 ATStringCommand.SN: bytearray([default_sn])
 }

 if restore_later:
 sp_val = None
 sn_val = None
 try:
 sp_val = self.exec_at_cmd(AbstractXBeeDevice.get_parameter, self._xbee,
 ATStringCommand.SP)
 sn_val = self.exec_at_cmd(AbstractXBeeDevice.get_parameter, self._xbee,
 ATStringCommand.SN)
 except XBeeException as exc:
 _log.info("Unable to read '%s' configuration: %s", self._xbee, str(exc))
 if sp_val is not None and int.from_bytes(sp_val, "big") != default_sp:
 self.cmd_dict[self._xbee][ATStringCommand.SP] = sp_val
 if sn_val is not None and int.from_bytes(sn_val, "big") != default_sn:
 self.cmd_dict[self._xbee][ATStringCommand.SN] = sn_val

 try:
 for cmd, val in to_prepare.items():
 self.exec_at_cmd(AbstractXBeeDevice.set_parameter, self._xbee, cmd,
 value=val, apply=True)
 if restore_later:
 self.exec_at_cmd(AbstractXBeeDevice.set_parameter, self._xbee,
 ATStringCommand.WR, value=bytearray([0]),
 apply=True)
 except XBeeException as exc:
 _log.info("Unable to set '%s' to minimum sleep temporally: %s",
 self._xbee, str(exc))

 def _prepare_network_for_update(self):
 """
 Prepares a DigiMesh sync sleep network for an update process. It changes
 the sleep time of the network to the minimum value (1) by modifying the
 'SP' value of the local XBee and waits a maximum of original sleep cycle
 to start the update process.
 It also modifies 'SO' of the local XBee to be eligible to be a sleep
 coordinator (bit 1 = 0) and enable modem status network sleep frames
 (bit 2 = 1). It stores original values to restore them later.
 """
 if not self.sync_sleep:
 return

 _log.debug("'%s' - %s: network", self._xbee, self.TASK_PREPARE)

 if self._xbee.is_remote():
 local = self._xbee.get_local_xbee_device()
 else:
 local = self._xbee

 old_timeout = local.get_sync_ops_timeout()
 if self._timeout:
 local.set_sync_ops_timeout(max(old_timeout, self._timeout))

 error_format = "Unable to perform update: %s"

 # Read the sleep time
 try:
 os_val = self.exec_at_cmd(AbstractXBeeDevice.get_parameter, local,
 ATStringCommand.OS)
 ow_val = self.exec_at_cmd(AbstractXBeeDevice.get_parameter, local,
 ATStringCommand.OW)
 if os_val is None or ow_val is None:
 msg = error_format % "Cannot get network synchronous sleep configuration"
 _log.error(msg)
 raise XBeeException(msg)

 # Read the sleep options
 so_val = self.exec_at_cmd(AbstractXBeeDevice.get_parameter, local,
 ATStringCommand.SO)
 orig_so_val = so_val
 if so_val is None:
 msg = error_format % "Cannot get network synchronous sleep configuration"
 _log.error(msg)
 raise XBeeException(msg)

 so_val = utils.int_to_bytes(utils.bytes_to_int(so_val), 2)
 # Ensure the local node can be a sleep coordinator:
 # SO bit 1: Non-sleep coordinator (0)
 so_val[1] = so_val[1] & ~0x02 if so_val[1] & 0x02 else so_val[1]

 # SO bit 2: Enable API sleep status messages (1)
 so_val[1] = so_val[1] | 0x04 if so_val[1] & 0x04 != 4 else so_val[1]

 self.cmd_dict.update({local: {}})

 to_apply = {}
 # Configure SO
 if utils.bytes_to_int(orig_so_val) != utils.bytes_to_int(so_val):
 to_apply[ATStringCommand.SO] = so_val
 self.cmd_dict[local][ATStringCommand.SO] = orig_so_val

 sleep_time = utils.bytes_to_int(os_val) / 100
 wake_time = utils.bytes_to_int(ow_val) / 1000

 # Configure SP with the minimum value
 if sleep_time != 0.01: # 10 ms
 to_apply[ATStringCommand.SP] = bytearray([1])
 self.cmd_dict[local][ATStringCommand.ST] = ow_val
 self.cmd_dict[local][ATStringCommand.SP] = os_val

 # Configure ST with a minimum value of 30 seconds
 if wake_time != self._DM_SYNC_WAKE_TIME:
 to_apply[ATStringCommand.ST] = utils.int_to_bytes(self._DM_SYNC_WAKE_TIME*1000)
 self.cmd_dict[local][ATStringCommand.ST] = ow_val

 msg = ""
 for cmd, val in to_apply.items():
 try:
 self.exec_at_cmd(AbstractXBeeDevice.set_parameter, local, cmd,
 value=val)
 except XBeeException:
 msg = error_format % "Cannot prepare local XBee for update"

 try:
 self.exec_at_cmd(AbstractXBeeDevice.set_parameter, local,
 ATStringCommand.AC, value=bytearray([0]), apply=True)
 except XBeeException:
 pass

 if not msg:
 self.progress_cb(
 "%s: %s" % (self.TASK_PREPARE, "waiting for network to wake"))
 if not self._wait_for_dm_network_up(sleep_time + wake_time):
 msg = error_format % "Network is not awake"

 # Restore in case of error
 if msg:
 self._restore_network_after_update()
 _log.error(msg)
 raise XBeeException(msg)
 if so_val[1] & 0x04 != 4:
 # Restore SO not to have so many modem status frames
 # SO bit 2: Disable API sleep status messages (0)
 so_val[1] = so_val[1] & ~0x04
 try:
 self.exec_at_cmd(AbstractXBeeDevice.set_parameter, local,
 ATStringCommand.SO, value=so_val, apply=True)
 except XBeeException:
 pass
 finally:
 local.set_sync_ops_timeout(old_timeout)

 def _restore_node_after_update(self, node, port_settings=None):
 """
 Restores the node parameters after an update process.

 Args:
 node (:class: `.AbstractXBeeDevice): The node to restore.
 port_settings(Dictionary, optional, default=`None`): Dictionary
 with the new serial port configuration, `None` for remote node
 or if the serial config has not changed.
 """
 to_restore = self.cmd_dict.pop(node, {})
 if not to_restore:
 self._update_node_info(node, self.TASK_RESTORE)
 return

 _log.debug("'%s' - %s: node", node, self.TASK_RESTORE)

 # Set stored parameter values
 for cmd, val in to_restore.items():
 try:
 self.exec_at_cmd(AbstractXBeeDevice.set_parameter, node, cmd, value=val)
 except XBeeException as exc:
 _log.info("'%s' - %s: Unable to restore configuration: %s", node,
 self.TASK_RESTORE, str(exc))

 # Write to flash changed values
 try:
 self.exec_at_cmd(AbstractXBeeDevice.set_parameter, node,
 ATStringCommand.WR, value=bytearray([0]), apply=False)
 except XBeeException as exc:
 _log.info("'%s' - %s: Unable to restore configuration: %s", node,
 self.TASK_RESTORE, str(exc))

 # For DigiMesh sync sleep network, calculate sleep period to wait to
 # properly apply final sleep settings
 wait_time = 0
 if self.sync_sleep and self._must_wait_for_network(node, to_restore):
 if node.is_remote():
 wait_time = self._DM_SYNC_WAKE_TIME + 1
 else:
 try:
 sp_val = self.exec_at_cmd(AbstractXBeeDevice.get_parameter,
 node, ATStringCommand.OS)
 except XBeeException:
 sp_val = [1]
 try:
 st_val = self.exec_at_cmd(AbstractXBeeDevice.get_parameter,
 node, ATStringCommand.OW)
 except XBeeException:
 st_val = [self._DM_SYNC_WAKE_TIME]

 wait_time = (utils.bytes_to_int(sp_val) / 100
 + utils.bytes_to_int(st_val) / 1000)

 error_applying = False
 # Apply changed values
 try:
 self.exec_at_cmd(AbstractXBeeDevice.set_parameter, node,
 ATStringCommand.AC, value=bytearray([0]), apply=True)
 except XBeeException as exc:
 _log.info("'%s' - %s: Unable to restore configuration: %s", node,
 self.TASK_RESTORE, str(exc))
 error_applying = True

 # Check if port settings have changed on local devices.
 if not error_applying and port_settings and not node.is_remote():
 # Apply the new port configuration.
 try:
 node.close() # This is necessary to stop the frames read thread.
 node.serial_port.apply_settings(port_settings)
 node.open()
 except (XBeeException, SerialException) as exc:
 _log.info("Error re-configuring XBee serial port: %s", str(exc))
 error_applying = True

 if not error_applying and not node.is_remote():
 self._update_node_info(node, self.TASK_RESTORE)

 # Wait for sync sleep configuration to apply
 if wait_time:
 _log.debug("'%s' - %s: Waiting for network to awake", node, self.TASK_RESTORE)
 if not self._wait_for_dm_network_up(wait_time):
 _log.info("'%s' - %s: Network is not awake", node, self.TASK_RESTORE)

 def _restore_network_after_update(self):
 """
 Restores a network previously configured for update.
 """
 if not self.cmd_dict:
 return

 _log.debug("'%s' - %s: network", self._xbee, self.TASK_RESTORE)

 if self._xbee.is_remote():
 local = self._xbee.get_local_xbee_device()
 else:
 local = self._xbee

 old_timeout = local.get_sync_ops_timeout()
 if self._timeout:
 local.set_sync_ops_timeout(max(old_timeout, self._timeout))

 self._restore_node_after_update(local)

 local.set_sync_ops_timeout(old_timeout)

 def _must_wait_for_network(self, node, node_config):
 """
 Checks which sync sleep values must be restored, the stored ones or
 new ones from the node.

 Args:
 node (:class: `.AbstractXBeeDevice`): The node that has just been
 updated.
 node_config (Dictionary): The dictionary with the restored node
 configuration.

 Returns:
 Boolean: `True` if must wait for network to wake up, `False`
 otherwise.
 """
 if not self.sync_sleep:
 return False
 # If no SP nor ST are configured, do not wait
 sp_val = node_config.get(ATStringCommand.SP, None)
 st_val = node_config.get(ATStringCommand.ST, None)
 if sp_val is None and st_val is None:
 return False
 # If SM is modified and is not a synchronous sleep mode, do not wait
 sm_val = node_config.get(ATStringCommand.SM, None)
 if sm_val is not None and int.from_bytes(sm_val, "big") not in (7, 8):
 return False

 if node.is_remote():
 # If the node is not eligible as sleep coordinator, do not remove
 # already stored values
 so_val = node_config.get(ATStringCommand.SO, None)
 if so_val is None:
 try:
 so_val = self.exec_at_cmd(AbstractXBeeDevice.get_parameter,
 node, ATStringCommand.SO)
 except XBeeException:
 pass

 if so_val is None:
 remove_stored = False
 else:
 so_val = utils.int_to_bytes(utils.bytes_to_int(so_val), 2)
 remove_stored = bool(so_val[1] & 0x02 != 0x02)

 if remove_stored:
 local_cmds = self.cmd_dict.get(node.get_local_xbee_device(), {})
 # Do not restore stored values, the already configured values
 # for the node are the valid ones
 if sp_val:
 local_cmds.pop(ATStringCommand.SP, None)
 if st_val:
 local_cmds.pop(ATStringCommand.ST, None)

 return True

 def _update_node_info(self, node, task):
 """
 Tries to read the node information.
 """
 retries = _PARAM_READ_RETRIES
 while retries > 0:
 _log.debug("'%s' - %s: Reading node info (%d/%d)", node, task,
 (_PARAM_READ_RETRIES + 1 - retries),
 _PARAM_READ_RETRIES)
 try:
 node.read_device_info(init=True, fire_event=True)
 break
 except XBeeException as exc:
 retries -= 1
 if not retries:
 _log.info("'%s' - %s: %s", self._xbee, task,
 _ERROR_UPDATE_TARGET_INFO % str(exc))
 break
 time.sleep(0.2 if not self._xbee.is_remote else 5)

 def _wait_for_dm_network_up(self, timeout):
 """
 Waits for a sync sleep DigiMesh network to update the maximum provided
 timeout. It returns when the network wakes up or when the timeout
 expires.

 Args:
 timeout(Float): Maximum number of seconds to wait.

 Returns:
 Boolean: `True` when the network is awake, `False` if the timeout
 expired.
 """
 if not self._xbee.is_remote() or not self._sync_sleep:
 return True

 local = self._xbee.get_local_xbee_device()

 wait_timeout = timeout * 1.2 # 20% more

 awake = Event()

 # Register a callback to check if the local XBee is configured to
 # 'Enable API sleep status messages' (bit 2 of 'SO')
 def modem_st_cb(modem_status):
 if modem_status == ModemStatus.NETWORK_WOKE_UP:
 local.del_modem_status_received_callback(modem_st_cb)
 awake.set()

 local.add_modem_status_received_callback(modem_st_cb)
 return awake.wait(timeout=wait_timeout)

 @staticmethod
 def _get_min_value(cmd, protocol):
 """
 Returns the minimum value.
 TODO: A class with firmware XML file parsed should be provided. These
 values are stored there and we do not need to hardcode them.
 """
 min_values = {
 ATStringCommand.SN: {XBeeProtocol.ZIGBEE: 1,
 XBeeProtocol.DIGI_MESH: 1,
 XBeeProtocol.RAW_802_15_4: 1},
 ATStringCommand.SP: {XBeeProtocol.ZIGBEE: 0x20,
 XBeeProtocol.DIGI_MESH: 1,
 XBeeProtocol.RAW_802_15_4: 0}
 }
 return min_values.get(cmd, {}).get(protocol, None)

class _XBeeFirmwareUpdater(ABC):
 """
 Helper class used to handle XBee firmware update processes.
 """

 def __init__(self, xml_fw_file, timeout=_READ_DATA_TIMEOUT, progress_cb=None):
 """
 Class constructor. Instantiates a new :class:`._XBeeFirmwareUpdater`
 with the given parameters.

 Args:
 xml_fw_file (String): Location of the XML firmware file.
 timeout (Integer, optional, default=3): Process operations timeout.
 progress_cb (Function, optional): Function to receive progress
 information. Receives two arguments:

 * The current update task as a String
 * The current update task percentage as an Integer
 """
 self._xml_fw_file = xml_fw_file
 self._progress_callback = progress_cb
 self._progress_task = None
 self._xml_hw_version = None
 self._xml_fw_version = None
 self._xml_compat_number = None
 self._xml_bootloader_version = None
 self._xml_region_lock = None
 self._xml_update_timeout_ms = None
 self._xml_flash_page_size = None
 self._bootloader_update_required = False
 self._timeout = timeout
 self._protocol_changed = False
 self._updated = False
 self._bootloader_updated = False
 self._bootloader_reset_settings = False
 self._target_fw_version = None
 self._target_hw_version = None
 self._target_compat_number = None
 self._target_region_lock = None
 self._target_bootloader_version = None

 def _parse_xml_firmware_file(self):
 """
 Parses the XML firmware file and stores the required parameters.

 Raises:
 FirmwareUpdateException: If there is any error parsing the XML
 firmware file.
 """
 _log.debug("Parsing XML firmware file %s:", self._xml_fw_file)
 try:
 root = ElementTree.parse(self._xml_fw_file).getroot()
 # Firmware version, required.
 element = root.find(_XML_FIRMWARE)
 if element is None:
 self._exit_with_error(_ERROR_XML_PARSE % self._xml_fw_file, restore_updater=False)
 self._xml_fw_version = int(element.get(_XML_FIRMWARE_VERSION_ATTRIBUTE), 16)
 _log.debug(" - Firmware version: %s",
 utils.hex_to_string([self._xml_fw_version], pretty=False)
 if self._xml_fw_version is not None else "-")
 # Hardware version, required.
 element = root.find(_XML_HARDWARE_VERSION)
 if element is None:
 self._exit_with_error(_ERROR_XML_PARSE % self._xml_fw_file, restore_updater=False)
 self._xml_hw_version = int(element.text, 16)
 _log.debug(" - Hardware version: %s",
 utils.hex_to_string([self._xml_hw_version], pretty=False)
 if self._xml_hw_version is not None else "-")
 # Compatibility number, required.
 element = root.find(_XML_COMPATIBILITY_NUMBER)
 if element is None:
 self._exit_with_error(_ERROR_XML_PARSE % self._xml_fw_file, restore_updater=False)
 self._xml_compat_number = int(element.text)
 _log.debug(" - Compatibility number: %d", self._xml_compat_number)
 # Bootloader version, optional.
 element = root.find(_XML_BOOTLOADER_VERSION)
 if element is not None:
 self._xml_bootloader_version = _bootloader_version_to_bytearray(element.text)
 _log.debug(" - Bootloader version: %s", self._xml_bootloader_version)
 # Region lock, required.
 element = root.find(_XML_REGION_LOCK)
 if element is None:
 self._exit_with_error(_ERROR_XML_PARSE % self._xml_fw_file, restore_updater=False)
 self._xml_region_lock = int(element.text)
 _log.debug(" - Region lock: %d", self._xml_region_lock)
 # Update timeout, optional.
 element = root.find(_XML_UPDATE_TIMEOUT)
 if element is not None:
 self._xml_update_timeout_ms = int(element.text)
 _log.debug(" - Update timeout: %s", self._xml_update_timeout_ms)
 # Flash page size, optional.
 element = root.find(_XML_FLASH_PAGE_SIZE)
 if element is not None:
 self._xml_flash_page_size = int(element.text, 16)
 _log.debug(" - Flash page size: %s bytes", self._xml_flash_page_size)
 except ParseError as exc:
 _log.exception(exc)
 self._exit_with_error(_ERROR_XML_PARSE % self._xml_fw_file, restore_updater=False)

 def _exit_with_error(self, msg, restore_updater=True):
 """
 Finishes the process raising a :class`.FirmwareUpdateException` and
 leaves updater in the initial state.

 Args:
 msg (String): Error message of the exception to raise.
 restore_updater (Boolean): `True` to restore updater configuration
 before exiting, `False` otherwise.

 Raises:
 FirmwareUpdateException: Exception is always thrown in this method.
 """
 # Check if updater restore is required.
 if restore_updater:
 try:
 self._restore_updater()
 except (SerialException, XBeeException) as exc:
 _log.error("ERROR: %s", _ERROR_RESTORE_TARGET_CONNECTION % str(exc))
 _log.error("ERROR: %s", msg)
 raise FirmwareUpdateException(msg)

 def _check_target_compatibility(self):
 """
 Checks whether the target device is compatible with the firmware to
 update by checking:
 - Bootloader version.
 - Compatibility number.
 - Region lock.
 - Hardware version.

 Raises:
 FirmwareUpdateException: If the target device is not compatible
 with the firmware to update.
 """
 # At the moment the target checks are the same for local and remote
 # updates since only XBee3 devices are supported. This might need to be
 # changed in the future if other hardware is supported.

 # Read device values required for verification steps prior to firmware update.
 _log.debug("Reading device settings:")
 self._target_fw_version = self._get_target_fw_version()
 _log.debug(" - Firmware version: %s",
 utils.hex_to_string([self._target_fw_version], pretty=False)
 if self._target_fw_version is not None else "-")
 self._target_hw_version = self._get_target_hw_version()
 _log.debug(" - Hardware version: %s",
 utils.hex_to_string([self._target_hw_version], pretty=False)
 if self._target_hw_version is not None else "-")
 self._target_compat_number = self._get_target_compatibility_number()
 _log.debug(" - Compatibility number: %s", self._target_compat_number)
 self._target_bootloader_version = self._get_target_bootloader_version()
 _log.debug(" - Bootloader version: %s", self._target_bootloader_version)
 self._target_region_lock = self._get_target_region_lock()
 _log.debug(" - Region lock: %s", self._target_region_lock)

 # Check if the hardware version is compatible with the firmware update process.
 if (self._target_hw_version
 and self._target_hw_version not in LOCAL_SUPPORTED_HW_VERSIONS + REMOTE_SUPPORTED_HW_VERSIONS):
 self._exit_with_error(_ERROR_HW_VERSION_NOT_SUPPORTED % self._target_hw_version)

 # Check if device hardware version is compatible with the firmware.
 if self._target_hw_version and self._target_hw_version != self._xml_hw_version:
 self._exit_with_error(_ERROR_HW_VERSION_DIFFER %
 (self._target_hw_version, self._xml_hw_version))

 # Check compatibility number.
 if self._target_compat_number and self._target_compat_number > \
 self._xml_compat_number:
 self._exit_with_error(_ERROR_COMPATIBILITY_NUMBER %
 (self._target_compat_number, self._xml_compat_number))

 # Check region lock for compatibility numbers greater than 1.
 if self._target_compat_number and self._target_compat_number > 1 and \
 self._target_region_lock is not None:
 if (self._target_region_lock != _REGION_ALL
 and self._target_region_lock != self._xml_region_lock):
 self._exit_with_error(
 _ERROR_REGION_LOCK % (self._target_region_lock, self._xml_region_lock))

 # Check whether bootloader update is required.
 self._bootloader_update_required = self._check_bootloader_update_required()

 # Check whether bootloader reset the device settings.
 self._bootloader_reset_settings = self._check_bootloader_reset_settings()

 def _check_bootloader_update_required(self):
 """
 Checks whether the bootloader needs to be updated.

 Returns:
 Boolean: `True` if the bootloader needs to be updated, `False` otherwise.
 """
 # If any bootloader version is None (the XML firmware file one or the
 # device one), update is not required.
 if None in (self._xml_bootloader_version, self._target_bootloader_version):
 return False

 # At this point we can ensure both bootloader versions are not None and
 # they are 3 bytes long. Since the bootloader cannot be downgraded, the
 # XML specifies the minimum required bootloader version to update the
 # firmware. Return `True` only if the specified XML bootloader version
 # is greater than the target one.
 return self._xml_bootloader_version > self._target_bootloader_version

 def _check_bootloader_reset_settings(self):
 """
 Checks whether the bootloader performed a reset of the device settings.

 Returns:
 Boolean: `True` if the bootloader performed a reset of the device
 settings, `False` otherwise
 """
 if not self._bootloader_update_required:
 return False

 # On XBee 3 devices with a bootloader version below 1.6.6, updating the
 # bootloader implies a reset of the module settings. Return True if the
 # device bootloader version was below 1.6.6.
 return self._target_bootloader_version < _BOOTLOADER_XBEE3_RESET_ENV_VERSION

 @abstractmethod
 def _get_default_reset_timeout(self):
 """
 Returns the default timeout to wait for reset.
 """

 def _wait_for_target_reset(self):
 """
 Waits for the device to reset using the xml firmware file specified
 timeout or the default one.
 """
 if self._xml_update_timeout_ms is not None:
 time.sleep(self._xml_update_timeout_ms / 1000.0)
 else:
 time.sleep(self._get_default_reset_timeout())

 def update_firmware(self):
 """
 Updates the firmware of the XBee.
 """
 # Start by parsing the XML firmware file.
 self._parse_xml_firmware_file()

 # Verify that the binary firmware file exists.
 self._check_fw_binary_file()

 # Check whether protocol will change or not.
 self._protocol_changed = self._will_protocol_change()

 # Configure the updater device.
 self._configure_updater()

 # Check if updater is able to perform firmware updates.
 self._check_updater_compatibility()

 # Check if target is compatible with the firmware to update.
 self._check_target_compatibility()

 # Check bootloader update file exists if required.
 _log.debug("Bootloader update required? %s", self._bootloader_update_required)
 if self._bootloader_update_required:
 self._check_bootloader_binary_file()

 # Start the firmware update process.
 self._start_firmware_update()

 # Transfer firmware file(s).
 self._transfer_firmware()

 # Finish the firmware update process.
 self._finish_firmware_update()

 # Wait for target to reset.
 self._wait_for_target_reset()

 # Flag the device as updated.
 self._updated = True

 # Leave updater in its original state.
 try:
 self._restore_updater()
 except Exception as exc:
 raise FirmwareUpdateException(_ERROR_RESTORE_TARGET_CONNECTION % str(exc))

 # Update target information.
 self._update_target_information()

 _log.info("Update process finished successfully")

 def check_protocol_changed_by_fw(self, orig_protocol):
 """
 Determines whether the XBee protocol will change after the firmware
 update.

 Args:
 orig_protocol (:class: `.XBeeProtocol): The original protocol
 before the update.

 Returns:
 Boolean: `True` if the protocol will change after the firmware
 update, `False` otherwise.
 """
 new_protocol = XBeeProtocol.determine_protocol(
 self._xml_hw_version, utils.int_to_bytes(self._xml_fw_version))
 return orig_protocol != new_protocol

 @abstractmethod
 def _check_updater_compatibility(self):
 """
 Verifies whether the updater device is compatible with firmware update.
 """

 @abstractmethod
 def _check_fw_binary_file(self):
 """
 Verifies that the firmware binary file exists.

 Raises:
 FirmwareUpdateException: If the firmware binary file does not
 exist or is invalid.
 """

 @abstractmethod
 def _check_bootloader_binary_file(self):
 """
 Verifies that the bootloader binary file exists.

 Raises:
 FirmwareUpdateException: If the bootloader binary file does not
 exist or is invalid.
 """

 @abstractmethod
 def _get_target_bootloader_version(self):
 """
 Returns the update target bootloader version.

 Returns:
 Bytearray: Update target version as byte array, `None` if it could
 not be read.
 """

 @abstractmethod
 def _get_target_compatibility_number(self):
 """
 Returns the update target compatibility number.

 Returns:
 Integer: Update target compatibility number as integer, `None` if
 it could not be read.
 """

 @abstractmethod
 def _get_target_region_lock(self):
 """
 Returns the update target region lock number.

 Returns:
 Integer: Update target region lock number as integer, `None` if it
 could not be read.
 """

 @abstractmethod
 def _get_target_hw_version(self):
 """
 Returns the update target hardware version.

 Returns:
 Integer: Update target hardware version as integer, `None` if it
 could not be read.
 """

 @abstractmethod
 def _get_target_fw_version(self):
 """
 Returns the update target firmware version.

 Returns:
 Integer: Update target firmware version as integer, `None` if it
 could not be read.
 """

 @abstractmethod
 def _configure_updater(self):
 """
 Configures the updater device before performing the firmware update
 operation.

 Raises:
 FirmwareUpdateException: If there is any error configuring the
 updater device.
 """

 @abstractmethod
 def _restore_updater(self):
 """
 Leaves the updater device to its original state before the update operation.

 Raises:
 SerialException: If there is any error restoring the serial port connection.
 XBeeException: If there is any error restoring the device connection.
 """

 @abstractmethod
 def _start_firmware_update(self):
 """
 Starts the firmware update process. Called just before the transfer
 firmware operation.

 Raises:
 FirmwareUpdateException: If there is any error configuring the target device.
 """

 @abstractmethod
 def _transfer_firmware(self):
 """
 Transfers the firmware file(s) to the target.

 Raises:
 FirmwareUpdateException: If there is any error transferring the
 firmware to the target device.
 """

 @abstractmethod
 def _finish_firmware_update(self):
 """
 Finishes the firmware update process. Called just after the transfer
 firmware operation.

 Raises:
 FirmwareUpdateException: If there is any error finishing the
 firmware update process.
 """

 @abstractmethod
 def _update_target_information(self):
 """
 Updates the target information after the firmware update.
 """

 @abstractmethod
 def _will_protocol_change(self):
 """
 Determines whether the XBee protocol will change after the update.

 Returns:
 Boolean: `True` if the protocol will change after the update,
 `False` otherwise.
 """

class _LocalFirmwareUpdater(_XBeeFirmwareUpdater):
 """
 Helper class used to handle the local firmware update process.
 """

 __DEVICE_RESET_TIMEOUT = 3 # seconds

 def __init__(self, target, xml_fw_file, xbee_fw_file=None,
 timeout=_READ_DATA_TIMEOUT, progress_cb=None):
 """
 Class constructor. Instantiates a new :class:`._LocalFirmwareUpdater`
 with the given parameters.

 Args:
 target (String or :class:`.XBeeDevice`): Target of the firmware upload operation.
 String: serial port identifier.
 :class:`.XBeeDevice`: XBee to upload its firmware.
 xml_fw_file (String): Location of the XML firmware file.
 xbee_fw_file (String, optional): Location of the XBee binary firmware file.
 timeout (Integer, optional): Serial port read data operation timeout.
 progress_cb (Function, optional): Function to receive progress
 information. Receives two arguments:

 * The current update task as a String
 * The current update task percentage as an Integer
 """
 super().__init__(xml_fw_file, timeout=timeout, progress_cb=progress_cb)

 self._fw_file = xbee_fw_file
 self._serial_port = None
 self._port_params = None
 self._updater_was_connected = False
 if isinstance(target, str):
 self._port = target
 self._xbee = None
 else:
 self._port = None
 self._xbee = target

 def _check_fw_binary_file(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._check_fw_binary_file`
 """
 # If not already specified, the binary firmware file is usually in the
 # same folder as the XML firmware file.
 if self._fw_file is None:
 path = Path(self._xml_fw_file)
 self._fw_file = str(Path(path.parent).joinpath(
 path.stem + self._get_fw_binary_file_extension()))

 if not _file_exists(self._fw_file):
 self._exit_with_error(_ERROR_FILE_XBEE_FW_NOT_FOUND % self._fw_file,
 restore_updater=False)

 def _enter_bootloader_mode_with_break(self):
 """
 Attempts to put the device in bootloader mode using the Break line.

 Returns:
 Boolean: `True` if the device was set in bootloader mode,
 `False` otherwise.
 """
 _log.debug("Setting device in bootloader mode using the Break line")
 # The process requires RTS line to be disabled and Break line to be
 # asserted during some time.
 self._serial_port.rts = 0
 break_thread = _BreakThread(self._serial_port, _DEVICE_BREAK_RESET_TIMEOUT)
 break_thread.start()
 # Loop during some time looking for the bootloader header.
 deadline = _get_milliseconds() + (_BOOTLOADER_TIMEOUT * 1000)
 while _get_milliseconds() < deadline:
 if self._is_bootloader_active():
 if break_thread.is_running():
 break_thread.stop_break()
 return True

 # Re-assert lines to try break process again until timeout expires.
 if not break_thread.is_running():
 self._serial_port.rts = 0
 break_thread = _BreakThread(self._serial_port,
 _DEVICE_BREAK_RESET_TIMEOUT)
 break_thread.start()

 # Restore break condition.
 if break_thread.is_running():
 break_thread.stop_break()

 return False

 def _get_target_bootloader_version(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._get_target_bootloader_version`
 """
 if self._serial_port is not None:
 return self._get_target_bootloader_version_bootloader()
 return _get_bootloader_version(self._xbee)

 def _get_target_compatibility_number(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._get_target_compatibility_number`
 """
 if self._serial_port is not None:
 return self._get_target_compatibility_number_bootloader()
 return _get_compatibility_number(self._xbee)

 def _get_target_region_lock(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._get_target_region_lock`
 """
 if self._serial_port is not None:
 return self._get_target_region_lock_bootloader()
 return _get_region_lock(self._xbee)

 def _get_target_hw_version(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._get_target_hw_version`
 """
 if self._serial_port is not None:
 return self._get_target_hw_version_bootloader()
 return _get_hw_version(self._xbee)

 def _get_target_fw_version(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._get_target_fw_version`
 """
 if self._serial_port is not None:
 # Firmware version cannot be read from bootloader.
 return None
 return _get_fw_version(self._xbee)

 def _check_updater_compatibility(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._check_updater_compatibility`
 """
 # In local firmware updates, the updater device and target device are
 # the same. Just return and use the target function check instead.

 def _configure_updater(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._configure_updater`
 """
 # For local updates, target and update device is the same.
 # Depending on the given target, process has a different flow
 # (serial port or XBee).
 if self._xbee is None:
 # Configure serial port connection with bootloader parameters.
 try:
 _log.debug("Opening port '%s'", self._port)
 self._serial_port = _create_serial_port(
 self._port, self._get_bootloader_serial_params())
 self._serial_port.open()
 except SerialException as exc:
 _log.error(_ERROR_CONNECT_SERIAL_PORT, str(exc))
 raise FirmwareUpdateException(_ERROR_CONNECT_SERIAL_PORT % str(exc))

 # Check if device is in bootloader mode.
 _log.debug("Checking if bootloader is active")
 if not self._is_bootloader_active():
 # If the bootloader is not active, enter in bootloader mode.
 if not self._enter_bootloader_mode_with_break():
 self._exit_with_error(_ERROR_BOOTLOADER_MODE)
 else:
 self._updater_was_connected = self._xbee.is_open()
 _log.debug("Connecting device '%s'", self._xbee)
 if not _connect_device_with_retries(self._xbee, _DEVICE_CONNECTION_RETRIES):
 if not self._set_device_in_programming_mode():
 self._exit_with_error(_ERROR_CONNECT_DEVICE % _DEVICE_CONNECTION_RETRIES)

 def _restore_updater(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._restore_updater`
 """
 # For local updates, target and update device is the same.
 if self._xbee is not None:
 if self._serial_port is not None:
 if self._serial_port.isOpen():
 self._serial_port.close()
 if self._port_params is not None:
 self._serial_port.apply_settings(self._port_params)
 if (self._updated and self._protocol_changed) or \
 (self._bootloader_updated and self._bootloader_reset_settings):
 # Since the protocol has changed or an old bootloader was
 # updated, a forced port open is required because all the
 # configured settings are restored to default values, including
 # the serial communication ones.
 self._xbee.close()
 self._xbee.open(force_settings=True)
 if self._updater_was_connected and not self._xbee.is_open():
 self._xbee.open()
 elif not self._updater_was_connected and self._xbee.is_open():
 self._xbee.close()
 elif self._serial_port is not None and self._serial_port.isOpen():
 self._serial_port.close()

 def _start_firmware_update(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._start_firmware_update`
 """
 if self._xbee is not None and not self._set_device_in_programming_mode():
 self._exit_with_error(_ERROR_DEVICE_PROGRAMMING_MODE)

 def _update_target_information(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._update_target_information`
 """
 _log.debug("Updating target information...")
 if not self._xbee:
 return

 # If the protocol of the device has changed, clear the network.
 if self._protocol_changed:
 self._xbee.get_network()._clear(NetworkEventReason.FIRMWARE_UPDATE)
 # Read device information again.
 was_open = self._xbee.is_open()
 try:
 if not was_open:
 self._xbee.open()
 self._xbee._read_device_info(NetworkEventReason.FIRMWARE_UPDATE,
 init=True, fire_event=True)
 except XBeeException as exc:
 raise FirmwareUpdateException(_ERROR_UPDATE_TARGET_INFO % str(exc))
 finally:
 if not was_open:
 self._xbee.close()

 def _will_protocol_change(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._will_protocol_change`
 """
 if not self._xbee:
 return False # No matter what we return here, it won't be used.

 orig_protocol = self._xbee.get_protocol()
 new_protocol = XBeeProtocol.determine_protocol(
 self._xml_hw_version, utils.int_to_bytes(self._xml_fw_version))
 return orig_protocol != new_protocol

 def _set_device_in_programming_mode(self):
 """
 Attempts to put the XBee into programming mode (bootloader).

 Returns:
 Boolean: `True` if the device was set into programming mode,
 `False` otherwise.
 """
 if self._xbee is None:
 return False

 if self._serial_port is not None and self._is_bootloader_active():
 return True

 _log.debug("Setting device in programming mode")
 force_reset_sent = False
 try:
 self._xbee.execute_command(ATStringCommand.PERCENT_P, apply=False)
 except XBeeException:
 # If the command failed, try with 'FR' command
 try:
 self._xbee.execute_command(ATStringCommand.FR, apply=False)
 force_reset_sent = True
 except XBeeException:
 # We can ignore this error as at last instance we will attempt
 # a Break method.
 pass

 self._serial_port = self._xbee.serial_port
 self._port_params = self._serial_port.get_settings()
 try:
 self._serial_port.apply_settings(self._get_bootloader_serial_params())
 if force_reset_sent:
 # If we sent a force reset command, play with the serial lines
 # so that device boots in bootloader.
 self._serial_port.rts = 0
 self._serial_port.dtr = 1
 self._serial_port.break_condition = True
 time.sleep(2)
 self._serial_port.break_condition = False
 self._serial_port.rts = 0
 self._xbee.close()
 self._serial_port.open()
 except SerialException as exc:
 _log.exception(exc)
 return False
 if not self._is_bootloader_active():
 # This will force the Break mechanism to reboot in bootloader mode
 # in case previous methods failed.
 return self._enter_bootloader_mode_with_break()

 return True

 def _get_default_reset_timeout(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._get_default_reset_timeout`
 """
 return self.__DEVICE_RESET_TIMEOUT

 @abstractmethod
 def _get_bootloader_serial_params(self):
 """
 Returns a dictionary with the serial port parameters required to
 communicate with the bootloader.

 Returns:
 Dictionary: Dictionary with the serial port parameters required to
 communicate with the bootloader.
 """

 @abstractmethod
 def _is_bootloader_active(self):
 """
 Returns whether the device is in bootloader mode or not.

 Returns:
 Boolean: `True` if the device is in bootloader mode, `False` otherwise.
 """

 @abstractmethod
 def _get_target_bootloader_version_bootloader(self):
 """
 Returns the update target bootloader version from bootloader.

 Returns:
 Bytearray: Update target bootloader version as byte array read from
 bootloader, `None` if it could not be read.
 """

 @abstractmethod
 def _get_target_compatibility_number_bootloader(self):
 """
 Returns the update target compatibility number from bootloader.

 Returns:
 Integer: Update target compatibility number as integer read from
 bootloader, `None` if it could not be read.
 """

 @abstractmethod
 def _get_target_region_lock_bootloader(self):
 """
 Returns the update target region lock number from the bootloader.

 Returns:
 Integer: Update target region lock number as integer read from the
 bootloader, `None` if it could not be read.
 """

 @abstractmethod
 def _get_target_hw_version_bootloader(self):
 """
 Returns the update target hardware version from bootloader.

 Returns:
 Integer: Update target hardware version as integer read from
 bootloader, `None` if it could not be read.
 """

 @abstractmethod
 def _get_fw_binary_file_extension(self):
 """
 Returns the firmware binary file extension.

 Returns:
 String: Firmware binary file extension.
 """

class _RemoteFirmwareUpdater(_XBeeFirmwareUpdater):
 """
 Helper class used to handle the remote firmware update process.
 """

 def __init__(self, remote, xml_fw_file, timeout=_READ_DATA_TIMEOUT,
 progress_cb=None):
 """
 Class constructor. Instantiates a new :class:`._RemoteFirmwareUpdater`
 with the given parameters.

 Args:
 remote (:class:`.RemoteXBeeDevice`): Remote XBee to upload.
 xml_fw_file (String): Location of the XML firmware file.
 timeout (Integer, optional): Timeout to wait for remote frame requests.
 progress_cb (Function, optional): Function to receive progress
 information. Receives two arguments:

 * The current update task as a String
 * The current update task percentage as an Integer
 """
 super().__init__(xml_fw_file, timeout=timeout, progress_cb=progress_cb)

 self._remote = remote
 self._local = remote.get_local_xbee_device()
 self._receive_lock = Event()
 self._old_sync_ops_timeout = None
 self._updater_was_connected = False
 self._updater_ao_val = None

 def _get_target_bootloader_version(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._get_target_bootloader_version`
 """
 return _get_bootloader_version(self._remote)

 def _get_target_compatibility_number(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._get_target_compatibility_number`
 """
 return _get_compatibility_number(self._remote)

 def _get_target_region_lock(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._get_target_region_lock`
 """
 return _get_region_lock(self._remote)

 def _get_target_hw_version(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._get_target_hw_version`
 """
 return _get_hw_version(self._remote)

 def _get_target_fw_version(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._get_target_fw_version`
 """
 return _get_fw_version(self._remote)

 def _configure_updater(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._configure_updater`
 """
 # Change sync ops timeout.
 self._old_sync_ops_timeout = self._local.get_sync_ops_timeout()
 self._local.set_sync_ops_timeout(self._timeout)
 # Connect device.
 self._updater_was_connected = self._local.is_open()
 _log.debug("Connecting device '%s'", self._local)
 if not _connect_device_with_retries(self._local, _DEVICE_CONNECTION_RETRIES):
 self._exit_with_error(_ERROR_CONNECT_DEVICE % _DEVICE_CONNECTION_RETRIES)
 if self._configure_ao_parameter():
 # Store AO value.
 success, self._updater_ao_val = _enable_explicit_mode(self._local)
 if not success:
 self._exit_with_error(
 _ERROR_UPDATER_READ_PARAM % ATStringCommand.AO.command)
 # Perform extra configuration.
 self._configure_updater_extra()

 def _restore_updater(self, raise_exception=False):
 """
 Leaves the updater device to its original state before the update operation.

 Args:
 raise_exception (Boolean, optional): `True` to raise exceptions if
 they occur, `False` otherwise.

 Raises:
 XBeeException: If there is any error restoring the device connection.
 """
 # Restore sync ops timeout.
 if self._old_sync_ops_timeout is not None:
 self._local.set_sync_ops_timeout(self._old_sync_ops_timeout)
 # Restore updater params.
 try:
 if not self._local.is_open():
 self._local.open()
 # Restore AO.
 if self._configure_ao_parameter() and self._updater_ao_val is not None:
 _set_parameter_with_retries(self._local, ATStringCommand.AO,
 self._updater_ao_val, apply=True)
 # Restore extra configuration.
 self._restore_updater_extra()
 except XBeeException as exc:
 if raise_exception:
 raise exc
 if self._updater_was_connected and not self._local.is_open():
 self._local.open()
 elif not self._updater_was_connected and self._local.is_open():
 self._local.close()

 def _check_updater_compatibility(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._check_updater_compatibility`
 """
 if self._local.get_hardware_version().code not in REMOTE_SUPPORTED_HW_VERSIONS:
 self._exit_with_error(_ERROR_HW_VERSION_NOT_SUPPORTED % self._target_hw_version)

 def _update_target_information(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._update_target_information`
 """
 _log.debug("Updating target information...")
 # If the protocol of the device has changed, just skip this step and
 # remove device from the network, it is no longer reachable.
 if self._protocol_changed:
 self._local.get_network()._remove_device(
 self._remote, NetworkEventReason.FIRMWARE_UPDATE)
 return

 was_open = self._local.is_open()
 try:
 # Change sync options timeout. Remote device might be an end device,
 # so use the firmware update timeout instead of the default one for
 # this operation.
 self._old_sync_ops_timeout = self._local.get_sync_ops_timeout()
 self._local.set_sync_ops_timeout(self._timeout)
 if not was_open:
 self._local.open()
 # We need to update target information. Give it some time to be
 # back into the network.
 deadline = _get_milliseconds() + 3 * self._timeout * 1000
 initialized = False
 while _get_milliseconds() < deadline and not initialized:
 try:
 self._remote._read_device_info(NetworkEventReason.FIRMWARE_UPDATE,
 init=True, fire_event=True)
 initialized = True
 except XBeeException as exc:
 _log.warning("Could not initialize remote device: %s", str(exc))
 time.sleep(1)
 if not initialized:
 self._exit_with_error(_ERROR_UPDATE_TARGET_TIMEOUT)
 except XBeeException as exc:
 raise FirmwareUpdateException(_ERROR_UPDATE_TARGET_INFO % str(exc))
 finally:
 if self._old_sync_ops_timeout is not None:
 self._local.set_sync_ops_timeout(self._old_sync_ops_timeout)
 if not was_open:
 self._local.close()

 def _will_protocol_change(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._will_protocol_change`
 """
 orig_protocol = self._remote.get_protocol()
 new_protocol = XBeeProtocol.determine_protocol(
 self._xml_hw_version, utils.int_to_bytes(self._xml_fw_version))
 return orig_protocol != new_protocol

 @abstractmethod
 def _configure_ao_parameter(self):
 """
 Determines whether the AO parameter should be configured during
 updater configuration.

 Returns:
 Boolean: `True` if AO parameter should be configured,
 `False` otherwise.
 """

 @abstractmethod
 def _configure_updater_extra(self):
 """
 Performs extra updater device configuration before the firmware
 update operation.

 Raises:
 FirmwareUpdateException: If there is any error configuring the
 updater device.
 """

 @abstractmethod
 def _restore_updater_extra(self):
 """
 Performs extra updater configuration to leave it in its original state
 as it was before the update operation.

 Raises:
 XBeeException: If there is any error restoring the device connection.
 """

class _LocalXBee3FirmwareUpdater(_LocalFirmwareUpdater):
 """
 Helper class used to handle the local firmware update process of XBee 3 devices.
 """

 def __init__(self, target, xml_fw_file, xbee_fw_file=None, bootloader_fw_file=None,
 timeout=_READ_DATA_TIMEOUT, progress_cb=None):
 """
 Class constructor. Instantiates a new
 :class:`._LocalXBee3FirmwareUpdater` with the given parameters.

 Args:
 target (String or :class:`.XBeeDevice`): Target of the firmware upload operation.
 String: serial port identifier.
 :class:`.XBeeDevice`: XBee to upload its firmware.
 xml_fw_file (String): Location of the XML firmware file.
 xbee_fw_file (String, optional): Location of the XBee binary firmware file.
 bootloader_fw_file (String, optional): Location of the bootloader binary firmware file.
 timeout (Integer, optional): Serial port read data operation timeout.
 progress_cb (Function, optional): Function to receive progress
 information. Receives two arguments:

 * The current update task as a String
 * The current update task percentage as an Integer
 """
 super().__init__(target, xml_fw_file, xbee_fw_file=xbee_fw_file,
 timeout=timeout, progress_cb=progress_cb)

 self._bootloader_fw_file = bootloader_fw_file

 def _is_bootloader_active(self):
 """
 Override.

 .. seealso::
 | :meth:`._LocalFirmwareUpdater._is_bootloader_active`
 """
 return _is_bootloader_active_generic(
 self._serial_port, _GECKO_BOOTLOADER_TEST_CHAR, _GECKO_BOOTLOADER_PROMPT)

 def _read_bootloader_header(self):
 """
 Attempts to read the bootloader header.

 Returns:
 String: the bootloader header, `None` if it could not be read.
 """
 return _read_bootloader_header_generic(self._serial_port,
 _GECKO_BOOTLOADER_TEST_CHAR)

 def _get_bootloader_serial_params(self):
 """
 Override.

 .. seealso::
 | :meth:`._LocalFirmwareUpdater._get_bootloader_serial_params`
 """
 return _GECKO_BOOTLOADER_PORT_PARAMS

 def _get_target_bootloader_version_bootloader(self):
 """
 Override.

 .. seealso::
 | :meth:`._LocalFirmwareUpdater._get_target_bootloader_version_bootloader`
 """
 bootloader_header = self._read_bootloader_header()
 if bootloader_header is None:
 return None
 res = re.match(_PATTERN_GECKO_BOOTLOADER_VERSION,
 bootloader_header, flags=re.M | re.DOTALL)
 if res is None or res.string is not res.group(0) or len(res.groups()) < 1:
 return None

 return _bootloader_version_to_bytearray(res.groups()[0])

 def _get_target_compatibility_number_bootloader(self):
 """
 Override.

 .. seealso::
 | :meth:`._LocalFirmwareUpdater._get_target_compatibility_number_bootloader`
 """
 # Assume the device is already in bootloader mode.
 bootloader_header = self._read_bootloader_header()
 if bootloader_header is None:
 return None
 res = re.match(_PATTERN_GECKO_BOOTLOADER_COMPATIBILITY_FULL,
 bootloader_header, flags=re.M | re.DOTALL)
 if res is None or res.string is not res.group(0) or len(res.groups()) < 2:
 return None

 return int(res.groups()[1])

 def _get_target_region_lock_bootloader(self):
 """
 Override.

 .. seealso::
 | :meth:`._LocalFirmwareUpdater._get_target_region_lock_bootloader`
 """
 # There is no way to retrieve this number from bootloader.
 return None

 def _get_target_hw_version_bootloader(self):
 """
 Override.

 .. seealso::
 | :meth:`._LocalFirmwareUpdater._get_target_hw_version_bootloader`
 """
 # Assume the device is already in bootloader mode.
 bootloader_header = self._read_bootloader_header()
 if bootloader_header is None:
 return None
 res = re.match(_PATTERN_GECKO_BOOTLOADER_COMPATIBILITY_FULL,
 bootloader_header, flags=re.M | re.DOTALL)
 if res is None or res.string is not res.group(0) or len(res.groups()) < 1:
 return None

 return int(res.groups()[0][:2], 16)

 def _get_fw_binary_file_extension(self):
 """
 Override.

 .. seealso::
 | :meth:`._LocalFirmwareUpdater._get_fw_binary_file_extension`
 """
 return EXTENSION_GBL

 def _check_bootloader_binary_file(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._check_bootloader_binary_file`
 """
 # If not already specified, the bootloader firmware file is usually in
 # the same folder as the XML firmware file.
 # The file filename starts with a fixed prefix and includes the
 # bootloader version to update to.
 if self._bootloader_fw_file is None:
 path = Path(self._xml_fw_file)
 self._bootloader_fw_file = str(Path(path.parent).joinpath(
 _XBEE3_BOOTLOADER_FILE_PREFIX + str(self._xml_bootloader_version[0])
 + _BOOTLOADER_VERSION_SEPARATOR + str(self._xml_bootloader_version[1])
 + _BOOTLOADER_VERSION_SEPARATOR + str(self._xml_bootloader_version[2])
 + EXTENSION_GBL))

 if not _file_exists(self._bootloader_fw_file):
 self._exit_with_error(_ERROR_FILE_BOOTLOADER_FW_NOT_FOUND %
 self._bootloader_fw_file)

 def _transfer_firmware(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._transfer_firmware`
 """
 # Update the bootloader using XModem protocol if required.
 if self._bootloader_update_required:
 _log.info("%s - %s", self._xbee if self._xbee is not None else self._port,
 _PROGRESS_TASK_UPDATE_BOOTLOADER)
 self._progress_task = _PROGRESS_TASK_UPDATE_BOOTLOADER
 try:
 self._transfer_firmware_file_xmodem(self._bootloader_fw_file)
 except FirmwareUpdateException as exc:
 self._exit_with_error(_ERROR_FW_UPDATE_BOOTLOADER % str(exc))
 # Wait some time to initialize the bootloader.
 _log.debug("Setting up bootloader...")
 time.sleep(_GECKO_BOOTLOADER_INIT_TIME)
 # Execute the run operation so that new bootloader is applied and
 # executed. Give it some time afterwards.
 self._run_fw_operation()
 time.sleep(_GECKO_BOOTLOADER_INIT_TIME)
 self._bootloader_updated = True

 # Update the XBee firmware using XModem protocol.
 _log.info("%s - %s", self._xbee if self._xbee is not None else self._port,
 _PROGRESS_TASK_UPDATE_XBEE)
 self._progress_task = _PROGRESS_TASK_UPDATE_XBEE
 try:
 self._transfer_firmware_file_xmodem(self._fw_file)
 except FirmwareUpdateException as exc:
 self._exit_with_error(_ERROR_FW_UPDATE_XBEE % str(exc))

 def _finish_firmware_update(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._finish_firmware_update`
 """
 # Start firmware.
 if not self._run_fw_operation():
 self._exit_with_error(_ERROR_FW_START)

 def _start_firmware_upload_operation(self):
 """
 Starts the firmware upload operation by selecting option '1' of the
 bootloader.

 Returns:
 Boolean: `True` if the upload process started successfully,
 `False` otherwise.
 """
 try:
 # Display bootloader menu and consume it.
 self._serial_port.write(str.encode(_GECKO_BOOTLOADER_TEST_CHAR, encoding='utf8'))
 time.sleep(1)
 self._serial_port.purge_port()
 # Write '1' to execute bootloader option '1': Upload gbl and consume answer.
 self._serial_port.write(
 str.encode(_GECKO_BOOTLOADER_OPTION_UPLOAD_GBL, encoding='utf8'))
 time.sleep(0.5)
 self._serial_port.purge_port()
 # Look for the 'C' character during some time, it indicates device
 # is ready to receive firmware pages.
 self._serial_port.set_read_timeout(0.5)
 deadline = _get_milliseconds() + (_XMODEM_START_TIMEOUT * 1000)
 while _get_milliseconds() < deadline:
 read_bytes = self._serial_port.read(1)
 if len(read_bytes) > 0 and read_bytes[0] == ord(_XMODEM_READY_TO_RECEIVE_CHAR):
 return True
 time.sleep(0.1)
 return False
 except SerialException as exc:
 _log.exception(exc)
 return False

 def _run_fw_operation(self):
 """
 Runs the firmware by selecting option '2' of the bootloader.

 If XBee firmware is flashed, it will boot. If no firmware is flashed,
 the bootloader will be reset.

 Returns:
 Boolean: `True` if the run firmware operation was executed,
 `False` otherwise
 """
 try:
 _log.debug("Sending bootloader run operation...")
 # Display bootloader menu and consume it.
 self._serial_port.write(str.encode(_GECKO_BOOTLOADER_TEST_CHAR, encoding='utf8'))
 time.sleep(1)
 self._serial_port.purge_port()
 # Write '2' to execute bootloader option '2': Run.
 self._serial_port.write(str.encode(_GECKO_BOOTLOADER_OPTION_RUN_FW, encoding='utf8'))

 # Look for the '2' character during some time, it indicates firmware was executed.
 read_bytes = self._serial_port.read(1)
 while (len(read_bytes) > 0
 and not read_bytes[0] == ord(_GECKO_BOOTLOADER_OPTION_RUN_FW)):
 read_bytes = self._serial_port.read(1)
 return True
 except SerialException as exc:
 _log.exception(exc)
 return False

 def _xmodem_write_cb(self, data):
 """
 Callback function used to write data to the serial port when requested
 from the XModem transfer.

 Args:
 data (Bytearray): Data to write to serial port from the XModem transfer.

 Returns:
 Boolean: `True` if the data was successfully written, `False` otherwise.
 """
 try:
 self._serial_port.purge_port()
 self._serial_port.write(data)
 except SerialException as exc:
 _log.exception(exc)
 return False

 return True

 def _xmodem_read_cb(self, size, timeout=None):
 """
 Callback function used to read data from the serial port when requested
 from the XModem transfer.

 Args:
 size (Integer): Size of the data to read.
 timeout (Integer, optional): Maximum time to wait to read the
 requested data (seconds).

 Returns:
 Bytearray: Read data, `None` if data could not be read.
 """
 if not timeout:
 timeout = self._timeout
 deadline = _get_milliseconds() + (timeout * 1000)
 data = bytearray()
 try:
 while len(data) < size and _get_milliseconds() < deadline:
 read_bytes = self._serial_port.read(size - len(data))
 if len(read_bytes) > 0:
 data.extend(read_bytes)
 return data
 except SerialException as exc:
 _log.exception(exc)

 return None

 def _xmodem_progress_cb(self, percent):
 """
 Callback function used to be notified about XModem transfer progress.

 Args:
 percent (Integer): XModem transfer percentage.
 """
 if self._progress_callback is not None:
 self._progress_callback(self._progress_task, percent)

 def _transfer_firmware_file_xmodem(self, fw_file_path):
 """
 Transfers the firmware to the device using XModem protocol.

 Args:
 fw_file_path (String): Path of the firmware file to transfer.

 Returns:
 Boolean: `True` if the firmware was transferred successfully,
 `False` otherwise

 Raises:
 FirmwareUpdateException: If there is any error transferring the
 firmware file.
 """
 # Start XModem communication.
 if not self._start_firmware_upload_operation():
 raise FirmwareUpdateException(_ERROR_XMODEM_START)

 # Transfer file.
 try:
 xmodem.send_file_xmodem(fw_file_path, self._xmodem_write_cb,
 self._xmodem_read_cb,
 progress_cb=self._xmodem_progress_cb, log=_log)
 except XModemCancelException:
 # Retry at least once after resetting device.
 _log.info("File transfer was cancelled by the remote end, retrying...")
 if (not self._run_fw_operation()
 and not (self._is_bootloader_active()
 or self._enter_bootloader_mode_with_break())):
 raise FirmwareUpdateException(_ERROR_XMODEM_RESTART)
 try:
 self._serial_port.purge_port()
 except SerialException as exc:
 raise FirmwareUpdateException(_ERROR_XMODEM_COMMUNICATION % str(exc))
 self._start_firmware_upload_operation()
 try:
 xmodem.send_file_xmodem(fw_file_path, self._xmodem_write_cb,
 self._xmodem_read_cb,
 progress_cb=self._xmodem_progress_cb, log=_log)
 except XModemException:
 raise
 except XModemException as exc:
 raise FirmwareUpdateException(str(exc))

class _LocalXBeeGEN3FirmwareUpdater(_LocalFirmwareUpdater):
 """
 Helper class used to handle the local firmware update process of GEN3 XBee
 devices.
 """

 def __init__(self, target, xml_fw_file, xbee_fw_file=None,
 timeout=_READ_DATA_TIMEOUT, progress_cb=None):
 """
 Class constructor. Instantiates a new
 :class:`._LocalXBeeGEN3FirmwareUpdater` with the given parameters.

 Args:
 target (String or :class:`.XBeeDevice`): Target of the firmware upload operation.
 String: serial port identifier.
 :class:`.XBeeDevice`: XBee to upload its firmware.
 xml_fw_file (String): Location of the XML firmware file.
 xbee_fw_file (String, optional): Location of the XBee binary firmware file.
 timeout (Integer, optional): Serial port read data operation timeout.
 progress_cb (Function, optional): Function to receive progress
 information. Receives two arguments:

 * The current update task as a String
 * The current update task percentage as an Integer
 """
 super().__init__(target, xml_fw_file, xbee_fw_file=xbee_fw_file,
 timeout=timeout, progress_cb=progress_cb)

 self._protocol_version = None

 def _is_bootloader_active(self):
 """
 Override.

 .. seealso::
 | :meth:`._LocalFirmwareUpdater._is_bootloader_active`
 """
 return _is_bootloader_active_generic(
 self._serial_port, _GEN3_BOOTLOADER_TEST_CHAR, _GEN3_BOOTLOADER_PROMPT)

 def _read_bootloader_header(self):
 """
 Attempts to read the bootloader header.

 Returns:
 String: Bootloader header, `None` if it could not be read.
 """
 return _read_bootloader_header_generic(self._serial_port, _GEN3_BOOTLOADER_TEST_CHAR)

 def _get_bootloader_serial_params(self):
 """
 Override.

 .. seealso::
 | :meth:`._LocalFirmwareUpdater._get_bootloader_serial_params`
 """
 return _GEN3_BOOTLOADER_PORT_PARAMS

 def _get_fw_binary_file_extension(self):
 """
 Override.

 .. seealso::
 | :meth:`._LocalFirmwareUpdater._get_fw_binary_file_extension`
 """
 return EXTENSION_EBIN

 def _check_bootloader_binary_file(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._check_bootloader_binary_file`
 """
 # SX XBee family does not support bootloader update.

 def _execute_bootloader_cmd(self, cmd):
 """
 Attempts to execute the given bootloader command and read a number of bytes.

 Args:
 cmd (:class:`._Gen3BootloaderCommand`:): Bootloader command to execute.

 Returns:
 Bytearray: Bootloader command execution answer, `None` if it could
 not be read.
 """
 deadline = _get_milliseconds() + cmd.timeout
 data = bytearray()
 try:
 self._serial_port.purge_port()
 self._serial_port.write(str.encode(cmd.command, encoding='utf8'))
 while len(data) < cmd.answer_length and _get_milliseconds() < deadline:
 read_bytes = self._serial_port.read(cmd.answer_length - len(data))
 if len(read_bytes) > 0:
 data.extend(read_bytes)
 return data
 except SerialException as exc:
 _log.exception(exc)
 return None

 def _get_target_bootloader_version_bootloader(self):
 """
 Override.

 .. seealso::
 | :meth:`._LocalFirmwareUpdater._get_target_bootloader_version_bootloader`
 """
 # GEN3 bootloader does not support retrieving its version.
 version = self._execute_bootloader_cmd(_Gen3BootloaderCmd.BOOTLOADER_VERSION)
 if not version:
 return None
 version_byte_array = bytearray()
 for byte in version:
 try:
 if _GEN3_BOOTLOADER_PROMPT == \
 bytes([byte]).decode(encoding='utf8', errors='ignore'):
 break
 version_byte_array.append(byte)
 except TypeError:
 pass
 return version_byte_array

 def _get_target_compatibility_number_bootloader(self):
 """
 Override.

 .. seealso::
 | :meth:`._LocalFirmwareUpdater._get_target_compatibility_number_bootloader`
 """
 # Assume the device is already in bootloader mode.
 version_information = self._execute_bootloader_cmd(_Gen3BootloaderCmd.HW_VERSION)
 if not version_information or len(version_information) < 5:
 return 0

 return version_information[4]

 def _get_target_region_lock_bootloader(self):
 """
 Override.

 .. seealso::
 | :meth:`._LocalFirmwareUpdater._get_target_region_lock_bootloader`
 """
 # Assume the device is already in bootloader mode.
 region_info = self._execute_bootloader_cmd(_Gen3BootloaderCmd.REGION_LOCK)
 if not region_info:
 return _REGION_ALL

 return region_info[0]

 def _get_target_hw_version_bootloader(self):
 """
 Override.

 .. seealso::
 | :meth:`._LocalFirmwareUpdater._get_target_hw_version_bootloader`
 """
 # Assume the device is already in bootloader mode.
 version_info = self._execute_bootloader_cmd(_Gen3BootloaderCmd.HW_VERSION)
 if not version_info or len(version_info) < 2:
 return None

 return version_info[1]

 def _get_bootloader_protocol_version(self):
 """
 Returns the bootloader protocol version.

 Returns:
 Integer: Bootloader protocol version.
 """
 # Assume the device is already in bootloader mode.
 answer = self._execute_bootloader_cmd(_Gen3BootloaderCmd.PROTOCOL_VERSION)
 if not answer:
 return _GEN3_BOOTLOADER_PROTOCOL_VERSION_0
 try:
 answer_str = answer.decode(encoding='utf8', errors='ignore')
 if _GEN3_BOOTLOADER_PROMPT in answer_str:
 return _GEN3_BOOTLOADER_PROTOCOL_VERSION_0
 return int(answer_str)
 except (TypeError, ValueError):
 return _GEN3_BOOTLOADER_PROTOCOL_VERSION_0

 def _send_change_baudrate_cmd(self):
 """
 Sends the "R" command to attempt a baudrate change of the serial port
 in order to improve the firmware transfer speed.
 """
 answer = self._execute_bootloader_cmd(_Gen3BootloaderCmd.CHANGE_BAUDRATE)
 if not answer:
 return
 try:
 # Change baudrate only if a new value was given and it is different
 # from the current one.
 answer_str = str(answer, encoding='utf8', errors='ignore')
 if _GEN3_BOOTLOADER_PROMPT in answer_str:
 return
 new_baudrate = int(answer_str)
 if new_baudrate != _GEN3_BOOTLOADER_PORT_PARAMS["baudrate"]:
 self._serial_port.set_baudrate(new_baudrate)
 _log.debug("Changed port baudrate to %s", new_baudrate)
 except (TypeError, ValueError):
 # Do nothing, device did not change its baudrate if an invalid value is read.
 pass

 def _send_initialize_cmd(self):
 """
 Initializes the firmware update operation by sending the command "I"
 to erase the current firmware.

 Raises:
 FirmwareUpdateException: If the initialization command could not
 be sent.
 """
 _log.debug("Sending Initialize command...")
 answer = self._execute_bootloader_cmd(_Gen3BootloaderCmd.INIT_UPDATE)
 if not answer:
 raise FirmwareUpdateException(_ERROR_INITIALIZE_PROCESS)
 try:
 answer_str = str(answer, encoding='utf8', errors='ignore')
 if _GEN3_BOOTLOADER_PROMPT not in answer_str:
 raise FirmwareUpdateException(_ERROR_INITIALIZE_PROCESS)
 except TypeError:
 raise FirmwareUpdateException(_ERROR_INITIALIZE_PROCESS)

 def _send_finish_cmd(self):
 """
 Finishes the firmware update operation by sending the command "F".

 Raises:
 FirmwareUpdateException: If the finish command could not be sent.
 """
 _log.debug("Sending finish command...")
 answer = self._execute_bootloader_cmd(_Gen3BootloaderCmd.FINISH_UPDATE)
 if not answer:
 raise FirmwareUpdateException(_ERROR_FINISH_PROCESS)
 try:
 answer_str = str(answer, encoding='utf8', errors='ignore')
 if _GEN3_BOOTLOADER_PROMPT not in answer_str:
 raise FirmwareUpdateException(_ERROR_FINISH_PROCESS)
 except TypeError:
 raise FirmwareUpdateException(_ERROR_FINISH_PROCESS)

 def _send_verify_cmd(self):
 """
 Verifies the firmware image sent by sending the command "C".

 Raises:
 FirmwareUpdateException: If the verify command fails.
 """
 _log.debug("Sending verify command...")
 answer = self._execute_bootloader_cmd(_Gen3BootloaderCmd.VERIFY)
 if not answer:
 raise FirmwareUpdateException(_ERROR_COMMUNICATION_LOST)
 if answer[0] != _GEN3_BOOTLOADER_TRANSFER_ACK:
 raise FirmwareUpdateException(_ERROR_IMAGE_VERIFICATION)

 def _transfer_firmware(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._transfer_firmware`
 """
 self._protocol_version = self._get_bootloader_protocol_version()
 _log.debug("Bootloader protocol version: %s", self._protocol_version)

 self._send_change_baudrate_cmd()
 self._send_initialize_cmd()
 _log.info("%s - %s",
 self._xbee if self._xbee is not None else self._port,
 _PROGRESS_TASK_UPDATE_XBEE)
 self._progress_task = _PROGRESS_TASK_UPDATE_XBEE
 # Perform file transfer.
 ebin_file = _EbinFile(self._fw_file, self._xml_flash_page_size)
 previous_percent = None
 for page in ebin_file.get_next_mem_page():
 if self._progress_callback is not None and ebin_file.percent != previous_percent:
 self._progress_callback(self._progress_task, ebin_file.percent)
 previous_percent = ebin_file.percent
 self._send_memory_page(page, ebin_file)

 def _send_memory_page(self, page, ebin_file):
 """
 Sends the given memory page to the target device.

 Args:
 page (Bytearray): Memory page to send.
 ebin_file (:class:`._EbinFile`): Ebin file being transferred.

 Raises:
 FirmwareUpdateException: If there is any error sending the memory page.
 """
 page_flashed = False
 checksum_retries = _GEN3_BOOTLOADER_FLASH_CHECKSUM_RETRIES
 verify_retries = _GEN3_BOOTLOADER_FLASH_VERIFY_RETRIES
 retry = 1
 while not page_flashed and checksum_retries > 0 and verify_retries > 0:
 _log.debug("Sending page %d/%d %d%% - retry %d",
 ebin_file.page_index + 1, ebin_file.num_pages,
 ebin_file.percent, retry)
 try:
 # Send program page command.
 self._serial_port.write(
 str.encode(_Gen3BootloaderCmd.PROGRAM_PAGE.command, encoding='utf8'))
 # Write page index. This depends on the protocol version.
 if self._protocol_version == _GEN3_BOOTLOADER_PROTOCOL_VERSION_0:
 # Truncate to one byte.
 self._serial_port.write(bytes([ebin_file.page_index & 0xFF]))
 else:
 # Truncate to two bytes.
 page_index = ebin_file.page_index & 0xFFFF
 page_index_bytes = utils.int_to_bytes(page_index, num_bytes=2)
 # Swap the array order.
 page_index_bytes = bytearray(reversed(page_index_bytes))
 self._serial_port.write(page_index_bytes)
 # Write the page data.
 self._serial_port.write(page)
 # Write the page verification. This depends on the protocol version.
 self._serial_port.write(self._calculate_page_verification(page))
 # Read the programming answer.
 deadline = _get_milliseconds() + 500
 answer = None
 while not answer and _get_milliseconds() < deadline:
 answer = self._serial_port.read(1)
 if not answer:
 raise FirmwareUpdateException(_ERROR_COMMUNICATION_LOST)
 if answer == _GEN3_BOOTLOADER_ERROR_CHECKSUM:
 checksum_retries -= 1
 retry += 1
 if checksum_retries == 0:
 raise FirmwareUpdateException(
 _ERROR_PAGE_CHECKSUM % ebin_file.page_index)
 elif answer == _GEN3_BOOTLOADER_ERROR_VERIFY:
 verify_retries -= 1
 retry += 1
 if verify_retries == 0:
 raise FirmwareUpdateException(
 _ERROR_PAGE_VERIFICATION % ebin_file.page_index)
 else:
 page_flashed = True
 except SerialException as exc:
 raise FirmwareUpdateException(_ERROR_SERIAL_COMMUNICATION % str(exc))

 def _calculate_page_verification(self, page):
 """
 Calculates and returns the verification sequence for the given memory page.

 Args:
 page (Bytearray): Memory page to calculate its verification sequence.

 Returns
 Bytearray: Calculated verification sequence for the given memory page.
 """
 if self._protocol_version == _GEN3_BOOTLOADER_PROTOCOL_VERSION_0:
 value = 0x00
 for byte in page:
 value += byte
 value = value & 0xFF
 return bytearray([((~value & 0xFF) - len(page)) & 0xFF])

 crc = 0x0000
 for i in range(0, len(page)):
 crc ^= page[i] << 8
 for _ in range(0, 8):
 if (crc & 0x8000) > 0:
 crc = (crc << 1) ^ _POLYNOMINAL_DIGI_BL
 else:
 crc = crc << 1
 crc &= 0xFFFF
 return (crc & 0xFFFF).to_bytes(2, byteorder='little')

 def _finish_firmware_update(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._finish_firmware_update`
 """
 self._send_finish_cmd()
 self._send_verify_cmd()

class _RemoteXBee3FirmwareUpdater(_RemoteFirmwareUpdater):
 """
 Helper class used to handle the remote firmware update process on XBee 3
 devices.
 """

 __DEVICE_RESET_TIMEOUT_ZB = 3 # seconds
 __DEVICE_RESET_TIMEOUT_DM = 20 # seconds
 __DEVICE_RESET_TIMEOUT_802 = 28 # seconds

 def __init__(self, remote, xml_fw_file, ota_fw_file=None, otb_fw_file=None,
 timeout=_READ_DATA_TIMEOUT, max_block_size=0, progress_cb=None):
 """
 Class constructor. Instantiates a new
 :class:`._RemoteXBee3FirmwareUpdater` with the given parameters.

 Args:
 remote (:class:`.RemoteXBeeDevice`): Remote XBee to upload its firmware.
 xml_fw_file (String): Path of the XML file that describes the firmware.
 ota_fw_file (String, optional): Path of the OTA firmware file to upload.
 otb_fw_file (String, optional): Path of the OTB firmware file to
 upload (bootloader bundle).
 timeout (Integer, optional): Timeout to wait for remote frame requests.
 max_block_size (Integer, optional): Maximum size in bytes of the
 ota block to send.
 progress_cb (Function, optional): Function to receive progress
 information. Receives two arguments:

 * The current update task as a String
 * The current update task percentage as an Integer

 Raises:
 FirmwareUpdateException: If there is any error performing the
 remote firmware update.
 """
 super().__init__(remote, xml_fw_file, timeout=timeout, progress_cb=progress_cb)

 self._ota_fw_file = ota_fw_file
 self._otb_fw_file = otb_fw_file
 self._updater_my_val = None
 self._updater_rr_val = None
 self._ota_file = None
 self._transfer_lock = Event()
 self._img_req_received = False
 self._img_notify_sent = False
 self._transfer_status = None
 self._response_str = None
 self._requested_offset = -1
 self._max_chunk_size = _OTA_DEFAULT_BLOCK_SIZE
 self._seq_number = 1
 self._cfg_max_block_size = max_block_size
 self._update_task = _PROGRESS_TASK_UPDATE_REMOTE_XBEE
 if not self._cfg_max_block_size:
 self._cfg_max_block_size = 0xFFFFFFFF

 def _check_fw_binary_file(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._check_fw_binary_file`
 """
 # If not already specified, the binary firmware file is usually in the
 # same folder as the XML firmware file.
 if self._ota_fw_file is None:
 path = Path(self._xml_fw_file)
 self._ota_fw_file = str(Path(path.parent).joinpath(path.stem + EXTENSION_OTA))

 if not _file_exists(self._ota_fw_file):
 self._exit_with_error(_ERROR_FILE_XBEE_FW_NOT_FOUND % self._ota_fw_file,
 restore_updater=False)

 self._ota_file = _OTAFile(self._ota_fw_file)
 try:
 self._ota_file.parse_file()
 except _ParsingOTAException as exc:
 self._exit_with_error(str(exc))

 def _check_bootloader_binary_file(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._check_bootloader_binary_file`
 """
 if self._otb_fw_file is None:
 path = Path(self._xml_fw_file)
 self._otb_fw_file = str(Path(path.parent).joinpath(path.stem + EXTENSION_OTB))

 if not _file_exists(self._otb_fw_file):
 self._exit_with_error(_ERROR_FILE_XBEE_FW_NOT_FOUND % self._otb_fw_file)

 # If asked to check the bootloader file, replace the OTA file with the
 # .otb one.
 # Unlike local firmware updates, remote firmware updates only transfer
 # one file for fw + bootloader.
 self._ota_file = _OTAFile(self._otb_fw_file)
 try:
 self._ota_file.parse_file()
 except _ParsingOTAException as exc:
 self._exit_with_error(str(exc))

 def _configure_ao_parameter(self):
 """
 Override.

 .. seealso::
 | :meth:`._RemoteFirmwareUpdater._configure_ao_parameter`
 """
 return True

 def _configure_updater_extra(self):
 """
 Override.

 .. seealso::
 | :meth:`._RemoteFirmwareUpdater._configure_updater_extra`
 """
 # Specific settings per protocol.
 if self._local.get_protocol() == XBeeProtocol.DIGI_MESH:
 # Store RR value.
 self._updater_rr_val = _get_parameter_with_retries(
 self._local, ATStringCommand.RR)
 if self._updater_rr_val is None:
 self._exit_with_error(
 _ERROR_UPDATER_READ_PARAM % ATStringCommand.RR.command)
 # Set new RR value.
 if not _set_parameter_with_retries(
 self._local, ATStringCommand.RR,
 bytearray([_VALUE_UNICAST_RETRIES_MEDIUM]), apply=True):
 self._exit_with_error(
 _ERROR_UPDATER_SET_PARAM % ATStringCommand.RR.command)
 elif self._local.get_protocol() == XBeeProtocol.RAW_802_15_4:
 # Store MY value.
 self._updater_my_val = _get_parameter_with_retries(
 self._local, ATStringCommand.MY)
 if self._updater_my_val is None:
 self._exit_with_error(
 _ERROR_UPDATER_READ_PARAM % ATStringCommand.MY.command)
 # Set new MY value.
 if not _set_parameter_with_retries(
 self._local, ATStringCommand.MY,
 XBee16BitAddress.BROADCAST_ADDRESS.address, apply=True):
 self._exit_with_error(
 _ERROR_UPDATER_SET_PARAM % ATStringCommand.MY.command)

 def _restore_updater_extra(self):
 """
 Override.

 .. seealso::
 | :meth:`._RemoteFirmwareUpdater._restore_updater_extra`
 """
 # Close OTA file.
 if self._ota_file:
 self._ota_file.close_file()
 # Specific settings per protocol.
 if self._local.get_protocol() == XBeeProtocol.DIGI_MESH:
 # Restore RR value.
 _set_parameter_with_retries(self._local, ATStringCommand.RR,
 self._updater_rr_val, apply=True)
 elif self._updater_my_val and self._local.get_protocol() == XBeeProtocol.RAW_802_15_4:
 # Restore MY value.
 _set_parameter_with_retries(self._local, ATStringCommand.MY,
 self._updater_my_val, apply=True)

 def _create_explicit_frame(self, payload):
 """
 Creates and returns an explicit addressing frame using the given payload.

 Args:
 payload (Bytearray): Payload for the explicit addressing frame.

 Returns:
 :class:`.ExplicitAddressingPacket`: Explicit addressing frame with
 the given payload.
 """
 return ExplicitAddressingPacket(
 self._local.get_next_frame_id(), self._remote.get_64bit_addr(),
 self._remote.get_16bit_addr(), _EXPL_PACKET_ENDPOINT_DATA,
 _EXPL_PACKET_ENDPOINT_DATA, _EXPL_PACKET_CLUSTER_ID,
 _EXPL_PACKET_PROFILE_DIGI, _EXPL_PACKET_BROADCAST_RADIUS_MAX,
 _EXPL_PACKET_EXTENDED_TIMEOUT if self._local.get_protocol() == XBeeProtocol.ZIGBEE else 0x00,
 payload)

 def _create_zcl_frame(self, frame_control, seq_number, cmd_id, payload):
 """
 Creates and returns a ZCL frame with the given parameters.

 Args:
 frame_control (Integer): ZCL object frame control.
 seq_number (Integer): ZCL object sequence number.
 cmd_id (Integer): ZCL object command ID.
 payload (Bytearray): Payload for the ZDO object.

 Returns:
 Bytearray: ZCL frame.
 """
 zcl_payload = bytearray()
 zcl_payload.append(frame_control & 0xFF)
 zcl_payload.append(seq_number & 0xFF)
 zcl_payload.append(cmd_id & 0xFF)
 zcl_payload.extend(payload)

 return self._create_explicit_frame(zcl_payload)

 @staticmethod
 def _calculate_frame_control(frame_type=1, manufac_specific=False,
 dir_srv_to_cli=True, disable_def_resp=True):
 """
 Calculates the value of the frame control field based on the provided
 parameters.

 Args:
 frame_type (Integer, optional, default=1): 1 if command is global
 for all clusters, 0 if it is specific or local to a cluster.
 manufac_specific (Boolean, optional, default=`False`): `True` if
 manufacturer code is present in the ZCL header (does not refer
 to the code in the ZCL payload). `False` otherwise.
 dir_srv_to_cli (Boolean, optional, default=`True`): `True` if the
 command is sent from the server to the client. `False` if sent
 from the client to the server.
 disable_def_resp (Boolean, optional, default=`True`): `True` to
 disable default response.

 Returns:
 Integer: The value of the frame control field.
 """
 # Frame control field format:
 # * Bits 0-1: Frame type
 # * Bit 2: Manufacturer specific
 # * Bit 3: Direction
 # * Bit 4: Disable default response
 # * Bits 5-7: Reserved

 # Frame type:
 # * 00: Command is global for all clusters, including manufacturer
 # specific clusters
 # * 01: Command is specific or local to a cluster
 # * Other values: Reserved
 frame_control = frame_type
 # Manufacturer specific:
 # * False (0): manufacturer code is not present in the ZCL header
 # (does not refer to the ZCL payload)
 # * True (1): manufacturer code is present in the ZCL header
 # (does not refer to the ZCL payload)
 if manufac_specific:
 frame_control |= 0x04
 # Direction:
 # * False (0): sent from client to server
 # * True (1): sent from server to client
 if dir_srv_to_cli:
 frame_control |= 0x08
 # Disable default response:
 # * False (0): Default response is enabled
 # * True (1): Default response is disabled
 if disable_def_resp:
 frame_control |= 0x10

 return frame_control

 def _create_image_notify_request_frame(self):
 """
 Creates and returns an image notify request frame for the firmware to transfer.

 Returns:
 Bytearray: Image notify request frame.
 """
 payload = bytearray()
 # Indicate which fields are present: Query Jitter, Manufacturer Code,
 # Image Type, File Version
 payload.append(_NOTIFY_PACKET_PAYLOAD_TYPE & 0xFF)
 # Query jitter: 0-100. If the parameters in the received notify
 # command (manufacturer and image type) matches with the client owns
 # values, it determines whether query the server by randomly choosing a
 # number between 1 and 100 and comparing with the received query jitter:
 # * If client number <= query jitter then it continues the process
 # * If client number > query jitter then it discards the command and
 # do not continue
 # For unicast (the only one we currently support) we choose the maximum
 # value 100, although the client shall always send a Query Next Image
 # request to the server on receipt of a unicast Image Notify command.
 payload.append(_NOTIFY_PACKET_DEFAULT_QUERY_JITTER & 0xFF)
 payload.extend(_reverse_bytearray(
 utils.int_to_bytes(self._ota_file.manufacturer_code, 2)))
 payload.extend(_reverse_bytearray(
 utils.int_to_bytes(self._ota_file.image_type, 2)))
 payload.extend(_reverse_bytearray(
 utils.int_to_bytes(self._ota_file.file_version, 4)))

 return self._create_zcl_frame(
 self._calculate_frame_control(frame_type=1, manufac_specific=False,
 dir_srv_to_cli=True, disable_def_resp=False),
 _PACKET_DEFAULT_SEQ_NUMBER, _ZCL_CMD_ID_IMG_NOTIFY_REQ, payload)

 def _create_query_next_image_response_frame(self, status=_XBee3OTAStatus.SUCCESS):
 """
 Creates and returns a query next image response frame.

 Args:
 status (:class:`._XBee3OTAStatus`, optional, default=`_XBee3OTAStatus.SUCCESS`): The
 status to send. It can be: `_XBee3OTAStatus.SUCCESS`,
 `_XBee3OTAStatus.NOT_AUTHORIZED`, `_XBee3OTAStatus.NO_IMG_AVAILABLE`

 Returns:
 Bytearray: Query next image response frame.
 """
 payload = bytearray()

 # The status could be:
 # * _XBee3OTAStatus.SUCCESS (0x00): An image is available
 # * _XBee3OTAStatus.NOT_AUTHORIZED (0x7E): This server is not
 # authorized to perform an upgrade
 # * _XBee3OTAStatus.NO_IMG_AVAILABLE (0x98): No upgrade image is available
 payload.append(status.identifier & 0xFF)
 # Following fields only for _XBee3OTAStatus.SUCCESS
 if status == _XBee3OTAStatus.SUCCESS:
 payload.extend(_reverse_bytearray(
 utils.int_to_bytes(self._ota_file.manufacturer_code, 2)))
 payload.extend(_reverse_bytearray(
 utils.int_to_bytes(self._ota_file.image_type, 2)))
 payload.extend(_reverse_bytearray(
 utils.int_to_bytes(self._ota_file.file_version, 4)))
 payload.extend(_reverse_bytearray(
 utils.int_to_bytes(self._get_ota_size(), 4)))

 return self._create_zcl_frame(
 self._calculate_frame_control(frame_type=1, manufac_specific=False,
 dir_srv_to_cli=True, disable_def_resp=True),
 self._seq_number, _ZCL_CMD_ID_QUERY_NEXT_IMG_RESP, payload)

 def _create_image_block_response_frame(self, file_offset, size, seq_number,
 status=_XBee3OTAStatus.SUCCESS):
 """
 Creates and returns an image block response frame.

 Args:
 file_offset (Integer): File offset to send.
 size (Integer): Number of bytes to send.
 seq_number (Integer): Sequence number to be used for the response.
 status (:class:`._XBee3OTAStatus`, optional, default=`_XBee3OTAStatus.SUCCESS`): The
 status to send. It can be: `_XBee3OTAStatus.SUCCESS`,
 `_XBee3OTAStatus.ABORT`, `_XBee3OTAStatus.WAIT_FOR_DATA`
 (this last is not supported)

 Returns:
 Bytearray: Image block response frame.

 Raises:
 FirmwareUpdateException: If there is any error generating the image
 block response frame.
 """
 try:
 data_block = self._ota_file.get_next_data_chunk(
 self._get_ota_offset(file_offset), size)
 except _ParsingOTAException as exc:
 raise FirmwareUpdateException(_ERROR_READ_OTA_FILE % str(exc))
 payload = bytearray()
 # This status could be:
 # * _XBee3OTAStatus.SUCCESS (0x00): Image data is available
 # * _XBee3OTAStatus.ABORT (0x95): Instructs the client to abort the
 # download
 # * _XBee3OTAStatus.WAIT_FOR_DATA (0x97) is not supported
 # (see ZCL Spec §11.13.8.1)
 payload.append(status.identifier & 0xFF)
 # Following fields only if status is not _XBee3OTAStatus.ABORT
 if status != _XBee3OTAStatus.ABORT:
 payload.extend(_reverse_bytearray(
 utils.int_to_bytes(self._ota_file.manufacturer_code, 2)))
 payload.extend(_reverse_bytearray(
 utils.int_to_bytes(self._ota_file.image_type, 2)))
 payload.extend(_reverse_bytearray(
 utils.int_to_bytes(self._ota_file.file_version, 4)))
 payload.extend(_reverse_bytearray(
 utils.int_to_bytes(file_offset, 4)))
 if data_block:
 payload.append(len(data_block) & 0xFF)
 payload.extend(data_block)
 else:
 payload.extend(utils.int_to_bytes(0))
 _log.debug("Sending 'Image block response' frame for offset %s/%s (size %d)",
 file_offset, self._get_ota_size(), len(data_block))
 else:
 _log.debug("Sending 'Image block response' frame for with status %d (%s)",
 status.identifier, status.description)

 return self._create_zcl_frame(
 self._calculate_frame_control(frame_type=1, manufac_specific=False,
 dir_srv_to_cli=True, disable_def_resp=True),
 seq_number, _ZCL_CMD_ID_IMG_BLOCK_RESP, payload)

 def _create_upgrade_end_response_frame(self):
 """
 Creates and returns an upgrade end response frame.

 Returns:
 Bytearray: Upgrade end response frame.
 """
 current_time = utils.int_to_bytes(int(time.time()) - _TIME_SECONDS_1970_TO_2000, 4)

 payload = bytearray()
 payload.extend(_reverse_bytearray(
 utils.int_to_bytes(self._ota_file.manufacturer_code, 2)))
 payload.extend(_reverse_bytearray(
 utils.int_to_bytes(self._ota_file.image_type, 2)))
 payload.extend(_reverse_bytearray(
 utils.int_to_bytes(self._ota_file.file_version, 4)))
 # The current time, used for scheduled upgrades
 payload.extend(_reverse_bytearray(current_time))
 # The scheduled upgrade time, used for scheduled upgrades
 payload.extend(_reverse_bytearray(current_time))

 return self._create_zcl_frame(
 self._calculate_frame_control(frame_type=1, manufac_specific=False,
 dir_srv_to_cli=True, disable_def_resp=True),
 self._seq_number, _ZCL_CMD_ID_UPGRADE_END_RESP, payload)

 def _image_request_frame_cb(self, frame):
 """
 Callback used to be notified when the image request frame is received by
 the target device and it is ready to start receiving image frames.

 Args:
 frame (:class:`.XBeeAPIPacket`): Received packet
 """
 f_type = frame.get_frame_type()
 if f_type == ApiFrameType.TRANSMIT_STATUS:
 _log.debug("Received 'Image notify' status frame: %s",
 frame.transmit_status.description)
 if frame.transmit_status == TransmitStatus.SUCCESS:
 self._img_notify_sent = True
 # Sometimes the transmit status frame is received after the
 # explicit frame indicator. Notify only if the transmit status
 # frame was also received.
 if self._img_req_received:
 # Continue execution.
 self._receive_lock.set()
 else:
 # Remove explicit frame indicator received flag if it was set.
 if self._img_req_received:
 self._img_req_received = False
 # Continue execution, it exits with error as received flags are not set.
 self._receive_lock.set()
 elif (f_type == ApiFrameType.EXPLICIT_RX_INDICATOR
 and frame.source_endpoint == _EXPL_PACKET_ENDPOINT_DATA
 and frame.dest_endpoint == _EXPL_PACKET_ENDPOINT_DATA
 and frame.cluster_id == _EXPL_PACKET_CLUSTER_ID
 and frame.profile_id == _EXPL_PACKET_PROFILE_DIGI
 and frame.x64bit_source_addr == self._remote.get_64bit_addr()):
 if self._img_req_received:
 return
 if self._is_next_img_req_frame(frame):
 _log.debug("Received 'Query next image' request frame")
 self._img_req_received = True
 server_status, self._seq_number = self._parse_next_img_req_frame(frame)
 elif self._is_default_response_frame(frame, self._seq_number):
 _log.debug("Received 'Default response' frame")
 # If the received frame is a 'default response' frame, set the corresponding error.
 ota_cmd, status = self._parse_default_response_frame(frame, self._seq_number)
 self._response_str = (status.description if status is not None
 else _ERROR_DEFAULT_RESPONSE_UNKNOWN_ERROR)
 else:
 # This is not the explicit frame we were expecting, keep on listening.
 return

 # Sometimes the transmit status frame is received after the
 # explicit frame indicator. Notify only if the transmit status
 # frame was also received.
 if self._img_notify_sent:
 # Continue execution.
 self._receive_lock.set()

 def _fw_receive_frame_cb(self, frame):
 """
 Callback used to be notified of image block requests and upgrade end
 request frames during the firmware transfer operation.

 Args:
 frame (:class:`.XBeeAPIPacket`): Received packet
 """
 if (frame.get_frame_type() != ApiFrameType.EXPLICIT_RX_INDICATOR
 or frame.source_endpoint != _EXPL_PACKET_ENDPOINT_DATA
 or frame.dest_endpoint != _EXPL_PACKET_ENDPOINT_DATA
 or frame.cluster_id != _EXPL_PACKET_CLUSTER_ID
 or frame.profile_id != _EXPL_PACKET_PROFILE_DIGI
 or frame.x64bit_source_addr != self._remote.get_64bit_addr()):
 return

 # Check the type of frame received.
 if self._is_image_block_request_frame(frame):
 name = "Image block request"
 # If the received frame is an 'image block request' frame,
 # retrieve the requested index.
 server_status, max_data_size, f_offset, self._seq_number = self._parse_image_block_request_frame(frame)
 if server_status == _XBee3OTAStatus.SUCCESS:
 # Check if OTA file chunk size must be updated.
 if max_data_size != self._max_chunk_size:
 self._max_chunk_size = min(max_data_size, self._cfg_max_block_size)
 self._requested_offset = f_offset
 _log.debug("Received '%s' frame for file offset %s", name, f_offset)
 else:
 _log.debug("Received bad '%s' frame, status to send: %s (%d)", name,
 server_status.description, server_status.identifier)
 elif self._is_upgrade_end_request_frame(frame):
 name = "Upgrade end request"
 _log.debug("Received '%s' frame", name)
 # If the received frame is an 'upgrade end request' frame, set transfer status.
 server_status, status, self._seq_number = self._parse_upgrade_end_request_frame(frame)
 if server_status == _XBee3OTAStatus.SUCCESS:
 self._transfer_status = status
 else:
 _log.debug("Received bad '%s' frame, status to send: %s (%d)", name,
 server_status.description, server_status.identifier)
 elif self._is_default_response_frame(frame, self._seq_number):
 _log.debug("Received 'Default response' frame")
 # If the received frame is a 'default response' frame, set the corresponding error.
 ota_cmd, status = self._parse_default_response_frame(frame, self._seq_number)
 self._response_str = (status.description if status is not None
 else _ERROR_DEFAULT_RESPONSE_UNKNOWN_ERROR)
 else:
 return
 # Notify transfer thread to continue.
 self._transfer_lock.set()

 def _check_img_data(self, payload):
 """
 Checks if the manufacturer code, image type, and firmware version in the
 provided payload are valid.

 Args:
 payload (Bytearray): Payload to check.

 Returns:
 :class:`_XBee3OTAStatus`: Status after parsing the values.
 """
 server_status = _XBee3OTAStatus.SUCCESS
 man_code = utils.bytes_to_int(_reverse_bytearray(payload[4:6]))
 img_type = utils.bytes_to_int(_reverse_bytearray(payload[6:8]))
 fw_version = utils.bytes_to_int(_reverse_bytearray(payload[8:11]))
 compatibility_number = payload[11] & 0xFF

 # Check manufacturer:
 if man_code != self._ota_file.manufacturer_code:
 server_status = _XBee3OTAStatus.NO_IMAGE_AVAILABLE
 # Check image type:
 # 0x0000: firmware upgrade
 # 0x0100: file system upgrade
 elif img_type != self._ota_file.image_type:
 server_status = _XBee3OTAStatus.NO_IMAGE_AVAILABLE
 # Check compatibility number
 elif compatibility_number > utils.int_to_bytes(self._ota_file.file_version,
 _BUFFER_SIZE_INT)[0]:
 server_status = _XBee3OTAStatus.NO_IMAGE_AVAILABLE

 return server_status

 @staticmethod
 def _is_next_img_req_frame(frame):
 """
 Returns whether the given payload is valid for an image request received frame.

 Args:
 frame (:class:`.XBeeAPIPacket`): XBee frame to check.

 Returns:
 Boolean: `True` if the frame is a next image request frame,
 `False` otherwise.
 """
 payload = frame.rf_data
 return (len(payload) > 2 and payload[0] == _ZCL_FRAME_CONTROL_CLIENT_TO_SERVER
 and payload[2] == _ZCL_CMD_ID_QUERY_NEXT_IMG_REQ)

 def _parse_next_img_req_frame(self, frame):
 """
 Parses the given next image request frame and returns the frame values.

 Args:
 frame (:class:`.XBeeAPIPacket`): XBee frame to parse.

 Returns:
 Tuple (:class:`_XBee3OTAStatus`, Integer): The status after parsing
 the values and the sequence number of the block request frame.
 `None` if parsing failed.
 """
 if not self._is_next_img_req_frame(frame):
 return None

 payload = frame.rf_data
 sequence_number = payload[1] & 0xFF

 if (len(payload) < _NOTIFY_PACKET_PAYLOAD_SIZE
 # Includes the hardware version
 or (payload[3] & 0xFF == 1 and len(payload) != _NOTIFY_PACKET_PAYLOAD_SIZE + 2)
 # Does not include the hardware version
 or (payload[3] & 0xFF == 0 and len(payload) != _NOTIFY_PACKET_PAYLOAD_SIZE)):
 return _XBee3OTAStatus.MALFORMED_CMD, sequence_number

 server_status = self._check_img_data(payload)
 # Field control: indicates if hardware version is available
 if server_status == _XBee3OTAStatus.SUCCESS and payload[3] & 0xFF:
 hw_version = utils.bytes_to_int(_reverse_bytearray(payload[12:14]))
 if (hw_version < self._ota_file.min_hw_version
 or hw_version > self._ota_file.max_hw_version):
 server_status = _XBee3OTAStatus.NO_IMAGE_AVAILABLE

 return server_status, sequence_number

 @staticmethod
 def _is_image_block_request_frame(frame):
 """
 Returns whether the given frame is an image block request frame.

 Args:
 frame (:class:`.XBeeAPIPacket`): XBee frame to check.

 Returns:
 Boolean: `True` if the frame is an image block request frame,
 `False` otherwise.
 """
 payload = frame.rf_data
 return (len(payload) > 2 and payload[0] == _ZCL_FRAME_CONTROL_CLIENT_TO_SERVER
 and payload[2] == _ZCL_CMD_ID_IMG_BLOCK_REQ)

 def _parse_image_block_request_frame(self, frame):
 """
 Parses the given image block request frame and returns the frame values.

 Args:
 frame (:class:`.XBeeAPIPacket`): XBee frame to parse.

 Returns:
 Tuple (:class:`_XBee3OTAStatus`, Integer, Integer, Integer): Status
 after parsing the values, the max data size, the file offset
 and the sequence number of the block request frame. `None` if
 parsing failed.
 """
 if not self._is_image_block_request_frame(frame):
 return None

 payload = frame.rf_data
 sequence_number = payload[1] & 0xFF

 # The frame control indicates if there are additional optional fields
 # Currently XBee 3 does not use any of those fields
 if len(payload) != _IMAGE_BLOCK_REQUEST_PACKET_PAYLOAD_SIZE:
 server_status = _XBee3OTAStatus.MALFORMED_CMD
 server_status.cmd = _ZCL_CMD_ID_IMG_BLOCK_REQ
 return server_status, 0, 0, sequence_number

 server_status = self._check_img_data(payload)

 file_offset = utils.bytes_to_int(_reverse_bytearray(payload[12:16]))
 if (server_status == _XBee3OTAStatus.SUCCESS
 and file_offset >= self._get_ota_size()):
 server_status = _XBee3OTAStatus.MALFORMED_CMD
 server_status.cmd = _ZCL_CMD_ID_IMG_BLOCK_REQ

 max_data_size = payload[16] & 0xFF

 return server_status, max_data_size, file_offset, sequence_number

 @staticmethod
 def _is_upgrade_end_request_frame(frame):
 """
 Returns whether the given frame is an upgrade end request frame.

 Args:
 frame (:class:`.XBeeAPIPacket`): XBee frame to check.

 Returns:
 Boolean: `True` if the frame is an upgrade end request frame,
 `False` otherwise.
 """
 payload = frame.rf_data
 return (len(payload) > 2
 and payload[0] == _ZCL_FRAME_CONTROL_CLIENT_TO_SERVER
 and payload[2] == _ZCL_CMD_ID_UPGRADE_END_REQ)

 def _parse_upgrade_end_request_frame(self, frame):
 """
 Parses the given upgrade end request frame and returns the frame values.

 Args:
 frame (:class:`.XBeeAPIPacket`): the XBee frame to parse.

 Returns:
 Tuple (:class:`_XBee3OTAStatus`, :class:`_XBee3OTAStatus`, Integer): Status
 after parsing the values, the upgrade end request status and
 the sequence number of the block request frame, `None` if
 parsing failed.
 """
 if not self._is_upgrade_end_request_frame(frame):
 return None

 payload = frame.rf_data
 sequence_number = payload[1] & 0xFF

 if len(payload) != _UPGRADE_END_REQUEST_PACKET_PAYLOAD_SIZE:
 server_status = _XBee3OTAStatus.MALFORMED_CMD
 server_status.cmd = _ZCL_CMD_ID_UPGRADE_END_REQ
 return _XBee3OTAStatus.MALFORMED_CMD, 0, sequence_number

 server_status = self._check_img_data(payload)

 status = _XBee3OTAStatus.get(payload[3] & 0xFF)
 if not status:
 server_status = _XBee3OTAStatus.MALFORMED_CMD
 server_status.cmd = _ZCL_CMD_ID_UPGRADE_END_REQ
 else:
 status.cmd = _ZCL_CMD_ID_UPGRADE_END_REQ

 return server_status, status, sequence_number

 @staticmethod
 def _is_default_response_frame(frame, seq_number):
 """
 Returns whether the given frame is a default response frame.

 Args:
 frame (:class:`.XBeeAPIPacket`): XBee frame to check.
 seq_number (Integer): Sequence number of the last frame sent.

 Returns:
 Boolean: `True` if the frame is a default response frame, `False`
 otherwise.
 """
 payload = frame.rf_data
 disable_def_resp = _RemoteXBee3FirmwareUpdater._calculate_frame_control(
 frame_type=0, manufac_specific=False, dir_srv_to_cli=False,
 disable_def_resp=True)
 enable_def_resp = _RemoteXBee3FirmwareUpdater._calculate_frame_control(
 frame_type=0, manufac_specific=False, dir_srv_to_cli=False,
 disable_def_resp=False)
 return (len(payload) > 2
 and (payload[0] in [disable_def_resp, enable_def_resp])
 and payload[1] == seq_number
 and payload[2] == _ZCL_CMD_ID_DEFAULT_RESP)

 def _parse_default_response_frame(self, frame, seq_number):
 """
 Parses the given image block request frame and returns the frame values.

 Args:
 frame (:class:`.XBeeAPIPacket`): XBee frame to parse.
 seq_number (Integer): Sequence number of the last frame sent.

 Returns:
 Tuple (Integer, :class:`._XBee3OTAStatus`): OTA command and the
 status of the default response frame. `None` if parsing failed.
 """
 if not self._is_default_response_frame(frame, seq_number):
 return None

 payload = frame.rf_data
 ota_cmd = payload[3] & 0xFF
 status = _XBee3OTAStatus.get(payload[4] & 0xFF)

 return ota_cmd, status

 def _send_query_next_img_response(self, status=_XBee3OTAStatus.SUCCESS):
 """
 Sends the query next image response frame.

 Args:
 status (:class:`._XBee3OTAStatus`, optional, default=`_XBee3OTAStatus.SUCCESS`): The
 status to send.

 Raises:
 FirmwareUpdateException: If there is any error sending the next
 image response frame.
 """
 name = "Query next image response"
 retries = _SEND_BLOCK_RETRIES
 resp_frame = self._create_query_next_image_response_frame(status=status)
 while retries > 0:
 try:
 _log.debug("Sending '%s' frame", name)
 st_frame = self._local.send_packet_sync_and_get_response(resp_frame)
 if not isinstance(st_frame, TransmitStatusPacket):
 retries -= 1
 continue
 _log.debug("Received '%s' status frame: %s", name,
 st_frame.transmit_status.description)
 if st_frame.transmit_status != TransmitStatus.SUCCESS:
 # DigiMesh: Updating from 3004 to 300A/300B, we are
 # receiving Transmit status responses with 0x25 error
 # (Route not found). If we wait a little between retries,
 # the response contains a 0x00 (success) after 3 retries
 time.sleep(2)
 retries -= 1
 continue
 return
 except XBeeException as exc:
 retries -= 1
 if not retries:
 raise FirmwareUpdateException(_ERROR_SEND_FRAME_RESPONSE %
 (name, str(exc)))
 time.sleep(2)

 raise FirmwareUpdateException(
 _ERROR_SEND_FRAME_RESPONSE % (name, "Timeout sending frame"))

 def _send_ota_block(self, file_offset, size, seq_number):
 """
 Sends the next OTA block frame.

 Args:
 file_offset (Integer): File offset to send.
 size (Integer): Number of bytes to send.
 seq_number (Integer): Protocol sequence number.

 Returns:
 Integer: Number of bytes sent.

 Raises:
 FirmwareUpdateException: If there is any error sending the next OTA
 block frame.
 """
 name = "Image block response"
 retries = _SEND_BLOCK_RETRIES
 while retries > 0:
 next_ota_block_frame = self._create_image_block_response_frame(
 file_offset, size, seq_number)
 # Use 15s as a maximum value to wait for transmit status frames
 # If 'self._timeout' is too big we can lose any optimization waiting
 # waiting for a transmit status, that could be received but
 self._local.set_sync_ops_timeout(min(self._timeout, 15))
 try:
 status_frame = self._local.send_packet_sync_and_get_response(
 next_ota_block_frame)
 if not isinstance(status_frame, TransmitStatusPacket):
 retries -= 1
 continue
 if status_frame.transmit_status == TransmitStatus.PAYLOAD_TOO_LARGE:
 # Do not decrease 'retries' here, as we are calculating the
 # maximum payload
 size -= _IMAGE_BLOCK_RESPONSE_PAYLOAD_DECREMENT
 _log.debug(
 "'%s' status for offset %s: size too large, retrying with size %d",
 name, file_offset, size)
 continue
 if status_frame.transmit_status not in [TransmitStatus.SUCCESS,
 TransmitStatus.SELF_ADDRESSED]:
 retries -= 1
 _log.debug(
 "Received '%s' status frame for offset %s: %s, retrying (%d/%d)",
 name, file_offset, status_frame.transmit_status.description,
 _SEND_BLOCK_RETRIES - retries + 1, _SEND_BLOCK_RETRIES)
 continue
 _log.debug("Received '%s' status frame for offset %s: %s",
 name, file_offset, status_frame.transmit_status.description)
 return size
 except TimeoutException:
 # If the transmit status is not received, let's try again
 retries -= 1
 _log.debug("Not received '%s' status frame for offset %s, %s",
 name, file_offset, "aborting" if retries == 0 else
 "retrying (%d/%d)" % (_SEND_BLOCK_RETRIES - retries + 1,
 _SEND_BLOCK_RETRIES))
 if not retries:
 return size
 except XBeeException as exc:
 retries -= 1
 if not retries:
 raise FirmwareUpdateException(_ERROR_SEND_OTA_BLOCK
 % (file_offset, str(exc)))
 finally:
 # Restore the configured timeout
 self._local.set_sync_ops_timeout(self._timeout)

 raise FirmwareUpdateException(_ERROR_SEND_OTA_BLOCK
 % (file_offset, "Timeout sending frame"))

 def _start_firmware_update(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._start_firmware_update`
 """
 name = "Image notify"
 image_notify_request_frame = self._create_image_notify_request_frame()
 self._local.add_packet_received_callback(self._image_request_frame_cb)
 retries = _SEND_BLOCK_RETRIES
 error = None
 while retries > 0:
 _log.debug("Sending '%s' frame", name)
 try:
 self._local.send_packet(image_notify_request_frame)
 self._receive_lock.wait(self._timeout)
 except XBeeException as exc:
 retries -= 1
 if not retries:
 error = _ERROR_SEND_FRAME_RESPONSE % (name, str(exc))
 continue

 if not self._img_notify_sent:
 retries -= 1
 if not retries:
 error = _ERROR_SEND_FRAME_RESPONSE \
 % (name, "Transmit status not received")
 elif self._response_str:
 retries -= 1
 if not retries:
 error = _ERROR_TRANSFER_OTA_FILE % self._response_str
 elif not self._img_req_received:
 retries -= 1
 if not retries:
 error = _ERROR_SEND_FRAME_RESPONSE\
 % (name, "Timeout waiting for 'Query next image request'")
 else:
 break

 self._local.del_packet_received_callback(self._image_request_frame_cb)

 if error:
 self._exit_with_error(error)

 def _transfer_firmware(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._transfer_firmware`
 """
 self._transfer_status = None
 self._response_str = None
 self._requested_offset = -1
 self._progress_task = self._update_task
 last_offset_sent = self._requested_offset
 # Dictionary to store block size used for each provided maximum size
 last_size_sent = {self._max_chunk_size: self._max_chunk_size}
 previous_percent = None
 retries = self._get_block_response_max_retries()

 self._transfer_lock.clear()

 # Add a packet listener to wait for block request packets and send them.
 self._local.add_packet_received_callback(self._fw_receive_frame_cb)
 try:
 self._send_query_next_img_response()
 except FirmwareUpdateException as exc:
 self._local.del_packet_received_callback(self._fw_receive_frame_cb)
 self._exit_with_error(str(exc))
 # Wait for answer.
 if self._requested_offset == -1:
 # If offset is different from -1 it means callback was executed.
 self._transfer_lock.wait(self._timeout)

 while (self._requested_offset != -1 and self._transfer_status is None
 and self._response_str is None and retries > 0):
 self._transfer_lock.clear()

 last_offset_sent = self._requested_offset
 previous_seq_number = self._seq_number
 # Check that the requested offset is valid.
 if self._requested_offset >= self._get_ota_size():
 self._local.del_packet_received_callback(self._fw_receive_frame_cb)
 self._exit_with_error(_ERROR_INVALID_BLOCK % self._requested_offset)
 # Calculate percentage and notify.
 percent = (self._requested_offset * 100) // self._get_ota_size()
 if percent != previous_percent and self._progress_callback:
 self._progress_callback(self._progress_task, percent)
 previous_percent = percent

 # Send the data block.
 try:
 size_sent = self._send_ota_block(
 self._requested_offset,
 min(last_size_sent.get(self._max_chunk_size, self._max_chunk_size),
 self._max_chunk_size),
 previous_seq_number)
 last_size_sent[self._max_chunk_size] = size_sent
 except FirmwareUpdateException as exc:
 self._local.del_packet_received_callback(self._fw_receive_frame_cb)
 self._exit_with_error(str(exc))
 # Wait for next request.
 if not self._transfer_lock.wait(max(self._timeout, 120)):
 retries -= 1
 if retries > 0:
 _log.debug("Chunk %s not sent, retrying... (%d/%d)",
 self._requested_offset, _SEND_BLOCK_RETRIES - retries + 1,
 _SEND_BLOCK_RETRIES)
 else:
 retries = self._get_block_response_max_retries()

 # Transfer finished, remove callback.
 self._local.del_packet_received_callback(self._fw_receive_frame_cb)
 # Close OTA file.
 self._ota_file.close_file()
 # Check if there was a transfer timeout.
 if self._transfer_status is None and self._response_str is None:
 if last_offset_sent + last_size_sent[self._max_chunk_size] == self._get_ota_size():
 self._exit_with_error(_ERROR_TRANSFER_OTA_FILE
 % "Timeout waiting for 'Upgrade end request' frame")
 else:
 self._exit_with_error(_ERROR_TRANSFER_OTA_FILE
 % "Timeout waiting for next 'Image block request' frame")
 # Check if there was a transfer error.
 if self._transfer_status and self._transfer_status != _XBee3OTAStatus.SUCCESS:
 self._exit_with_error(_ERROR_TRANSFER_OTA_FILE % self._transfer_status.description)
 # Check if the client reported an error.
 if self._response_str:
 self._exit_with_error(_ERROR_TRANSFER_OTA_FILE % self._response_str)
 # Reaching this point means the transfer was successful, notify 100% progress.
 if self._progress_callback:
 self._progress_callback(self._progress_task, 100)

 def _finish_firmware_update(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._finish_firmware_update`
 """
 name = "Upgrade end response"
 retries = _SEND_BLOCK_RETRIES
 error_msg = None
 upgrade_end_response_frame = self._create_upgrade_end_response_frame()
 while retries > 0:
 try:
 _log.debug("Sending '%s' frame (%d/%d)", name,
 _SEND_BLOCK_RETRIES - retries + 1, _SEND_BLOCK_RETRIES)
 error_msg = None
 st_frame = self._local.send_packet_sync_and_get_response(upgrade_end_response_frame)
 if not isinstance(st_frame, TransmitStatusPacket):
 retries -= 1
 continue
 _log.debug("Received '%s' status frame: %s", name,
 st_frame.transmit_status.description)

 #
 # Workaround for XBHAWKDM-796
 #
 # - 'No ack' error on XBee 3 DigiMesh remote firmware update
 # - 'Route not found' error on XBee 3 DigiMesh remote firmware
 # update from 3004 to 300A/300B
 # - 'Address not found' on XBee 3 ZB remote firmware update
 #
 # The workaround considers those TX status as valid.
 #
 # See https://jira.digi.com/browse/XBHAWKDM-796
 #
 dm_ack_error = (st_frame.transmit_status in (TransmitStatus.NO_ACK,
 TransmitStatus.ROUTE_NOT_FOUND)
 and self._remote.get_protocol() == XBeeProtocol.DIGI_MESH
 and self._target_fw_version <= 0x3004)
 zb_addr_error = (st_frame.transmit_status == TransmitStatus.ADDRESS_NOT_FOUND
 and self._remote.get_protocol() == XBeeProtocol.ZIGBEE
 and self._target_fw_version <= 0x1009)

 if (st_frame.transmit_status == TransmitStatus.SUCCESS
 or dm_ack_error or zb_addr_error):
 try:
 self._restore_updater(raise_exception=True)
 return
 except Exception as exc:
 self._exit_with_error(_ERROR_RESTORE_UPDATER_DEVICE % str(exc))
 except XBeeException as exc:
 error_msg = str(exc)
 retries -= 1
 time.sleep(1.5) # Wait some time between timeout retries.

 if error_msg:
 self._exit_with_error(_ERROR_SEND_FRAME_RESPONSE % (name, error_msg))
 else:
 self._exit_with_error(_ERROR_SEND_FRAME_RESPONSE % (name, "Timeout sending frame"))

 def _get_default_reset_timeout(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._get_default_reset_timeout`
 """
 protocol = self._remote.get_protocol()
 if protocol == XBeeProtocol.ZIGBEE:
 return self.__DEVICE_RESET_TIMEOUT_ZB
 if protocol == XBeeProtocol.DIGI_MESH:
 return self.__DEVICE_RESET_TIMEOUT_DM
 if protocol == XBeeProtocol.RAW_802_15_4:
 return self.__DEVICE_RESET_TIMEOUT_802

 return max([self.__DEVICE_RESET_TIMEOUT_ZB,
 self.__DEVICE_RESET_TIMEOUT_DM,
 self.__DEVICE_RESET_TIMEOUT_802])

 def _get_block_response_max_retries(self):
 """
 Returns the maximum number of retries for a block response.

 Returns:
 Integer: The maximum number of retries for a block response.
 """
 protocol = self._remote.get_protocol()
 if self._target_fw_version < _XB3_FW_VERSION_LIMIT_FOR_CLIENT_RETRIES[protocol]:
 return _SEND_BLOCK_RETRIES

 return 1

 def _get_ota_size(self):
 """
 Returns the ota file size to transmit. This value depends on the remote
 firmware version.

 Returns:
 Integer: The ota file size.
 """
 # For firmware version x00A or higher, OTA header must be also sent for
 # the firmware/file system update, not just the image in the OTA file.
 # (although firmware update is compatible backwards)
 return (self._ota_file.ota_size
 if (self._target_fw_version <
 _XB3_FW_VERSION_LIMIT_SKIP_OTA_HEADER[self._remote.get_protocol()])
 else self._ota_file.total_size)

 def _get_ota_offset(self, offset):
 """
 Returns the offset to read from the ota file. This value depends on the
 remote firmware version.

 Args:
 offset (Integer): Received offset to get from the ota file.

 Returns:
 Integer: The real offset of the ota file based on the remote
 firmware version.
 """
 # For firmware version x00A or higher, OTA header must be also sent for
 # the firmware/file system update, not just the image in the OTA file.
 # (although firmware update is compatible backwards)
 return (offset + self._ota_file.discard_size
 if (self._target_fw_version <
 _XB3_FW_VERSION_LIMIT_SKIP_OTA_HEADER[self._remote.get_protocol()])
 else offset)

class _RemoteFilesystemUpdater(_RemoteXBee3FirmwareUpdater):
 """
 Helper class used to handle the remote filesystem update process.
 """

 def __init__(self, remote, fs_ota_file, timeout=_READ_DATA_TIMEOUT,
 max_block_size=0, progress_cb=None):
 """
 Class constructor. Instantiates a new :class:`._RemoteFilesystemUpdater`
 with the given parameters.

 Args:
 remote (:class:`.RemoteXBeeDevice`): Remote XBee to update its filesystem.
 fs_ota_file (String): Path of the filesystem OTA file.
 timeout (Integer, optional): Timeout to wait for remote frame requests.
 max_block_size (Integer, optional): Maximum size in bytes of the ota block to send.
 progress_cb (Function, optional): Function to receive progress
 information. Receives two arguments:

 * The current update task as a String
 * The current update task percentage as an Integer

 Raises:
 FirmwareUpdateException: If there is any error performing the
 remote filesystem update.
 """
 super().__init__(remote, None, timeout=timeout,
 max_block_size=max_block_size, progress_cb=progress_cb)
 self._fs_ota_file = fs_ota_file
 self._update_task = _PROGRESS_TASK_UPDATE_REMOTE_FILESYSTEM

 def _parse_xml_firmware_file(self):
 """
 Override method.
 .. seealso::
 | :meth:`._RemoteFirmwareUpdater._parse_xml_firmware_file`
 """
 # Filesystem update process does not require to parse any XML file.

 def _check_fw_binary_file(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._check_fw_binary_file`
 """
 # Verify the filesystem OTA image file.
 if not _file_exists(self._fs_ota_file):
 self._exit_with_error(_ERROR_FILE_OTA_FS_NOT_FOUND, restore_updater=False)

 self._ota_file = _OTAFile(self._fs_ota_file)
 try:
 self._ota_file.parse_file()
 except _ParsingOTAException as exc:
 self._exit_with_error(str(exc))

 def _will_protocol_change(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._will_protocol_change`
 """
 # Updating the filesystem image does not imply any protocol change.
 return False

 def _check_target_compatibility(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._check_target_compatibility`
 """
 # Read device values required for verification steps prior to filesystem update.
 _log.debug("Reading device settings:")
 self._target_fw_version = self._get_target_fw_version()
 _log.debug(" - Firmware version: %s",
 utils.hex_to_string([self._target_fw_version], pretty=False)
 if self._target_fw_version is not None else "-")
 self._target_hw_version = self._get_target_hw_version()
 _log.debug(" - Hardware version: %s",
 utils.hex_to_string([self._target_hw_version], pretty=False)
 if self._target_hw_version is not None else "-")

 # Check if the hardware version is compatible with the filesystem update process.
 if self._target_hw_version and self._target_hw_version not in XBEE3_HW_VERSIONS:
 self._exit_with_error(_ERROR_HW_VERSION_NOT_SUPPORTED % self._target_hw_version)

 def _update_target_information(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._update_target_information`
 """
 # Remote filesystem update does not require to update target information after the update.

class _RemoteGPMFirmwareUpdater(_RemoteFirmwareUpdater):
 """
 Helper class used to handle the remote firmware update process of general
 purpose memory (GPM) devices.
 """

 __DEVICE_RESET_TIMEOUT = 10 # seconds
 __DEFAULT_PAGE_SIZE = 128
 __DEFAULT_TIMEOUT = 20 # Seconds.

 def __init__(self, remote, xml_fw_file, xbee_fw_file=None,
 timeout=__DEFAULT_TIMEOUT, progress_cb=None):
 """
 Class constructor. Instantiates a new
 :class:`._RemoteGPMFirmwareUpdater` with the given parameters.

 Args:
 remote (:class:`.RemoteXBeeDevice`): Remote XBee to upload its firmware.
 xml_fw_file (String): Path of the XML file that describes the firmware.
 xbee_fw_file (String, optional): Path of the binary firmware file.
 timeout (Integer, optional): Timeout to wait for remote frame answers.
 progress_cb (Function, optional): Function to receive progress
 information. Receives two arguments:

 * The current update task as a String
 * The current update task percentage as an Integer

 Raises:
 FirmwareUpdateException: If there is any error performing the
 remote firmware update.
 """
 super().__init__(remote, xml_fw_file, timeout=timeout, progress_cb=progress_cb)

 self._fw_file = xbee_fw_file
 self._gpm_answer_payload = None
 self._gpm_frame_sent = False
 self._gpm_frame_received = False
 self._num_bytes_per_blocks = 0

 def _get_default_reset_timeout(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._get_default_reset_timeout`
 """
 return self.__DEVICE_RESET_TIMEOUT

 def _check_fw_binary_file(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._check_fw_binary_file`
 """
 # If not already specified, the binary firmware file is usually in the
 # same folder as the XML firmware file.
 if self._fw_file is None:
 path = Path(self._xml_fw_file)
 self._fw_file = str(Path(path.parent).joinpath(path.stem + EXTENSION_EBIN))

 if not _file_exists(self._fw_file):
 self._exit_with_error(_ERROR_FILE_XBEE_FW_NOT_FOUND
 % self._fw_file, restore_updater=False)

 def _check_bootloader_binary_file(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._check_bootloader_binary_file`
 """
 # General Purpose Memory devices do not have bootloader update file.

 def _configure_ao_parameter(self):
 """
 Determines whether the AO parameter should be configured during updater
 configuration or not.

 Returns:
 Boolean: `True` if AO parameter should be configured, `False` otherwise.
 """
 return True

 def _configure_updater_extra(self):
 """
 Override.

 .. seealso::
 | :meth:`._RemoteFirmwareUpdater._configure_updater_extra`
 """
 # GPM devices do not require extra configuration prior to firmware update process.

 def _restore_updater_extra(self):
 """
 Override.

 .. seealso::
 | :meth:`._RemoteFirmwareUpdater._restore_updater_extra`
 """
 # GPM devices do not require extra configuration to restore it to its original state.

 def _create_explicit_frame(self, payload):
 """
 Creates and returns an explicit addressing GPM frame using the given payload.

 Args:
 payload (Bytearray): Payload for the explicit addressing GPM frame.

 Returns:
 :class:`.ExplicitAddressingPacket`: Explicit addressing GPM frame
 with the given payload.
 """
 return ExplicitAddressingPacket(
 self._local.get_next_frame_id(), self._remote.get_64bit_addr(),
 self._remote.get_16bit_addr(), _EXPL_PACKET_ENDPOINT_DIGI_DEVICE,
 _EXPL_PACKET_ENDPOINT_DIGI_DEVICE, _EXPL_PACKET_CLUSTER_GPM,
 _EXPL_PACKET_PROFILE_DIGI, _EXPL_PACKET_BROADCAST_RADIUS_MAX,
 0x00, payload)

 def _create_gpm_cmd_frame(self, cmd, options=0, block_index=0, byte_index=0, gpm_data=None):
 """
 Creates and returns a GPM command frame with the given parameters.

 Args:
 cmd (:class:`.GPMCommand`): GPM command to create the frame for.
 options (Integer, optional, default=0): Command options byte.
 block_index (Integer, optional, default=0): Block number addressed in the GPM command.
 byte_index (Integer, optional, default=0): Byte index within the addressed GPM command.
 gpm_data (Bytearray, optional, default=`None`): Command GPM data.

 Returns:
 :class:`.ExplicitAddressingPacket`: GPM command frame.
 """
 payload = bytearray()
 payload.append(cmd.command_id) # Command ID.
 payload.append(options & 0xFF) # Command options
 payload.extend(utils.int_to_bytes(block_index & 0xFFFF, 2)) # Block index
 payload.extend(utils.int_to_bytes(byte_index & 0xFFFF, 2)) # Byte index
 if gpm_data:
 payload.extend(utils.int_to_bytes(len(gpm_data) & 0xFFFF, 2)) # Data length
 payload.extend(gpm_data) # Data
 else:
 payload.extend(bytearray([0x00, 0x00])) # Data length
 return self._create_explicit_frame(payload)

 def _gpm_receive_frame_callback(self, frame):
 """
 Callback used to be notified on GPM frame reception.

 Args:
 frame (:class:`.XBeeAPIPacket`): Received frame
 """
 f_type = frame.get_frame_type()
 if f_type == ApiFrameType.TRANSMIT_STATUS:
 if frame.transmit_status == TransmitStatus.SUCCESS:
 self._gpm_frame_sent = True
 # Sometimes the transmit status frame is received after the
 # explicit frame indicator.
 # Notify only if the transmit status frame was also received.
 if self._gpm_frame_received:
 # Continue execution.
 self._receive_lock.set()
 else:
 # Remove explicit frame indicator received flag if it was set.
 if self._gpm_frame_received:
 self._gpm_frame_received = False
 # Continue execution, it will exit with error as received flags are not set.
 self._receive_lock.set()
 elif (f_type == ApiFrameType.EXPLICIT_RX_INDICATOR
 and frame.source_endpoint == _EXPL_PACKET_ENDPOINT_DIGI_DEVICE
 and frame.dest_endpoint == _EXPL_PACKET_ENDPOINT_DIGI_DEVICE
 and frame.cluster_id == _EXPL_PACKET_CLUSTER_GPM
 and frame.profile_id == _EXPL_PACKET_PROFILE_DIGI
 and frame.x64bit_source_addr == self._remote.get_64bit_addr()):
 # If GPM frame was already received, ignore this frame.
 if self._gpm_frame_received:
 return
 # Store GPM answer payload.
 self._gpm_answer_payload = frame.rf_data
 # Flag frame as received.
 self._gpm_frame_received = True
 # Sometimes the transmit status frame is received after the
 # explicit frame indicator. Notify only if the transmit status
 # frame was also received.
 if self._gpm_frame_sent:
 # Continue execution.
 self._receive_lock.set()

 def _send_explicit_gpm_frame(self, frame, expect_answer=True):
 """
 Sends the given explicit GPM frame to the remote device.

 Args:
 frame (:class:`.ExplicitAddressingPacket`): Explicit GPM frame to send.
 expect_answer (Boolean, optional, default=`True`): `True` if after
 sending the frame an answer is expected, `False` otherwise.

 Raises:
 FirmwareUpdateException: If there is any error sending the explicit GPM frame.
 """
 # Clear vars.
 self._receive_lock.clear()
 self._gpm_answer_payload = None
 self._gpm_frame_sent = False
 self._gpm_frame_received = False

 # Add a frame listener to wait for answer.
 self._local.add_packet_received_callback(self._gpm_receive_frame_callback)
 try:
 # Send frame.
 self._local.send_packet(frame)
 # Wait for answer.
 self._receive_lock.wait(self._timeout)
 except XBeeException as exc:
 self._exit_with_error(_ERROR_SERIAL_COMMUNICATION % str(exc))
 finally:
 # Remove frame listener.
 self._local.del_packet_received_callback(self._gpm_receive_frame_callback)

 # Check if packet was correctly sent.
 if not self._gpm_frame_sent:
 raise FirmwareUpdateException(_ERROR_SEND_FRAME)
 if not self._gpm_frame_received and expect_answer:
 raise FirmwareUpdateException(_ERROR_RECEIVE_FRAME_TIMEOUT)

 def _execute_gpm_cmd(self, cmd, options=0, block_index=0, byte_index=0,
 gpm_data=None, retries=1, expect_answer=True):
 """
 Executes the given GPM command.

 Args:
 cmd (:class:`.GPMCommand`): GPM command to execute.
 options (Integer, optional, default=0): Command options byte, defaults to 0.
 block_index (Integer, optional, default=0): Block number addressed in the GPM command.
 byte_index (Integer, optional, default=0): Byte index within the addressed GPM command.
 gpm_data (Bytearray, optional, default=`None`): Command GPM data.
 retries (Integer, optional, default=1): Number of retries to execute the command.
 expect_answer (Boolean, optional, default=`True`): `True` if the
 command execution should expect an answer, `False` otherwise.

 Raises:
 FirmwareUpdateException: If there is any error executing the GPM command.
 """
 error = None
 while retries > 0:
 error = None
 try:
 self._send_explicit_gpm_frame(
 self._create_gpm_cmd_frame(
 cmd, options=options, block_index=block_index,
 byte_index=byte_index, gpm_data=gpm_data),
 expect_answer=expect_answer)
 if not expect_answer:
 break
 # Check for communication error.
 if (not self._gpm_answer_payload
 or len(self._gpm_answer_payload) < 8
 or self._gpm_answer_payload[0] != cmd.answer_id):
 error = _ERROR_INVALID_GPM_ANSWER
 retries -= 1
 elif (self._gpm_answer_payload[1] & 0x1) == 1: # Check for command error.
 error = cmd.execution_error
 retries -= 1
 else:
 break
 except FirmwareUpdateException as exc:
 error = str(exc)
 retries -= 1
 if error:
 self._exit_with_error(error)

 def _read_device_gpm_info(self):
 """
 Reads specific GPM device information required to perform the remote
 firmware update.
 The relevant information to retrieve is the number of blocks and bytes
 per block of the flash.

 Raises:
 FirmwareUpdateException: If there is any error reading the GPM
 device flash information.
 """
 _log.debug("Reading GPM device info")
 self._execute_gpm_cmd(_GPMCmd.GET_PLATFORM_INFO)
 # Store relevant values.
 num_gpm_blocks = utils.bytes_to_int(self._gpm_answer_payload[2:4])
 _log.debug(" - Number of memory blocks: %s", num_gpm_blocks)
 self._num_bytes_per_blocks = utils.bytes_to_int(self._gpm_answer_payload[4:6])
 _log.debug(" - Number of bytes per block: %s", self._num_bytes_per_blocks)

 def _erase_flash(self):
 """
 Erases the device flash.

 Raises:
 FirmwareUpdateException: If there is any error erasing the device flash.
 """
 _log.debug("Erasing device flash")
 self._execute_gpm_cmd(_GPMCmd.ERASE_FLASH)

 def _write_data(self, block_index, byte_index, data, retries):
 """
 Writes data to the device.

 Args:
 block_index (Integer): Block index to write data to.
 byte_index (Integer): Byte index in the block to write data to.
 data (Bytearray): Data to write.
 retries (Integer): Number of retries to write data.

 Raises:
 FirmwareUpdateException: If there is any error writing the given data.
 """
 self._execute_gpm_cmd(_GPMCmd.WRITE_DATA, block_index=block_index,
 byte_index=byte_index, gpm_data=data, retries=retries)

 def _verify_firmware(self):
 """
 Verifies the firmware image in the device.

 Raises:
 FirmwareUpdateException: If there is any error verifying the
 firmware in the device.
 """
 _log.debug("Verifying firmware")
 self._execute_gpm_cmd(_GPMCmd.VERIFY_IMAGE)

 def _install_firmware(self):
 """
 Installs the firmware in the device.

 Raises:
 FirmwareUpdateException: If there is any error installing the
 firmware in the device.
 """
 _log.debug("Installing firmware")
 self._execute_gpm_cmd(_GPMCmd.VERIFY_AND_INSTALL, expect_answer=False)

 def _start_firmware_update(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._start_firmware_update`
 """
 self._read_device_gpm_info()
 self._erase_flash()

 def _transfer_firmware(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._transfer_firmware`
 """
 _log.info("%s - %s", self._remote, _PROGRESS_TASK_UPDATE_REMOTE_XBEE)
 self._progress_task = _PROGRESS_TASK_UPDATE_REMOTE_XBEE
 # Perform file transfer.
 ebin_file = _EbinFile(self._fw_file, self.__DEFAULT_PAGE_SIZE)
 previous_percent = None
 block_index = 0
 byte_index = 0
 for data_chunk in ebin_file.get_next_mem_page():
 if self._progress_callback is not None and ebin_file.percent != previous_percent:
 self._progress_callback(self._progress_task, ebin_file.percent)
 previous_percent = ebin_file.percent
 _log.debug("Sending chunk %d/%d %d%%", ebin_file.page_index + 1,
 ebin_file.num_pages, ebin_file.percent)
 self._write_data(block_index, byte_index, data_chunk, 3)
 byte_index += len(data_chunk)
 # Increment block index if required.
 if byte_index >= self._num_bytes_per_blocks:
 byte_index = 0
 block_index += 1

 def _finish_firmware_update(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._finish_firmware_update`
 """
 self._verify_firmware()
 self._install_firmware()

class _RemoteEmberFirmwareUpdater(_RemoteFirmwareUpdater):
 """
 Helper class used to handle the remote firmware update process of Ember devices.
 """
 __DEVICE_RESET_TIMEOUT = 10 # seconds
 __DEFAULT_PAGE_SIZE = 64
 __DEFAULT_TIMEOUT = 20 # Seconds.
 __FW_UPDATE_RETRIES = 2
 __INIT_RETRIES = 2
 __FW_DATA_RETRIES = 5
 __CLEAR_UPDATER_RECOVERY_RETRIES = 3
 __SET_UPDATER_RECOVERY_RETRIES = 3

 def __init__(self, remote, xml_fw_file, xbee_fw_file=None,
 timeout=__DEFAULT_TIMEOUT, force_update=True, progress_cb=None):
 """
 Class constructor. Instantiates a new
 :class:`._RemoteEmberFirmwareUpdater` with the given parameters.

 Args:
 remote (:class:`.RemoteXBeeDevice`): Remote XBee to upload its firmware.
 xml_fw_file (String): Path of the XML file that describes the firmware.
 xbee_fw_file (String, optional): Path of the binary firmware file.
 timeout (Integer, optional): Timeout to wait for remote frame answers.
 force_update (Boolean, optional, default=`True`): `True` to force
 firmware update even if connectivity tests fail, `False` otherwise.
 progress_cb (Function, optional): Function to receive progress
 information. Receives two arguments:

 * The current update task as a String
 * The current update task percentage as an Integer

 Raises:
 FirmwareUpdateException: If there is any error performing the
 remote firmware update.
 """
 super().__init__(remote, xml_fw_file, timeout=timeout, progress_cb=progress_cb)

 self._fw_file = xbee_fw_file
 self._force_update = force_update
 self._updater = None
 self._updater_dh_val = None
 self._updater_dl_val = None
 self._ota_packet_received = False
 self._expected_ota_block = -1
 self._ota_msg_type = None
 self._any_data_sent = False
 self._packet_received = False
 self._updater_configurer = None

 def _get_default_reset_timeout(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._get_default_reset_timeout`
 """
 return self.__DEVICE_RESET_TIMEOUT

 def _check_fw_binary_file(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._check_fw_binary_file`
 """
 # If not already specified, the binary firmware file is usually in the
 # same folder as the XML firmware file.
 if self._fw_file is None:
 path = Path(self._xml_fw_file)
 self._fw_file = str(Path(path.parent).joinpath(path.stem + EXTENSION_EBL))

 if not _file_exists(self._fw_file):
 self._exit_with_error(_ERROR_FILE_XBEE_FW_NOT_FOUND % self._fw_file,
 restore_updater=False)

 def _check_bootloader_binary_file(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._check_bootloader_binary_file`
 """
 # Ember devices do not have bootloader update file.

 def _configure_ao_parameter(self):
 """
 Determines whether the AO parameter should be configured during updater
 configuration or not.

 Returns:
 Boolean: `True` if AO parameter should be configured, `False` otherwise.
 """
 # AO parameter is configured in the updater device instead of the local
 # one and only for 802.15.4 devices. Return False and configure it in
 # the extra step, once local device connection is open and we can
 # determine the real updater device.
 return False

 def _configure_updater_extra(self):
 """
 Override.

 .. seealso::
 | :meth:`._RemoteFirmwareUpdater._configure_updater_extra`
 """
 # Determine updater device.
 _log.debug("Looking for best updater device")
 if self._local.get_protocol() == XBeeProtocol.ZIGBEE:
 self._updater = self._determine_updater_device_zigbee()
 elif self._local.get_protocol() == XBeeProtocol.DIGI_MESH:
 self._updater = self._determine_updater_device_digimesh()
 elif self._local.get_protocol() == XBeeProtocol.RAW_802_15_4:
 self._updater = self._determine_updater_device_802()
 else:
 self._updater = self._local
 if not self._updater:
 self._exit_with_error(_ERROR_NO_UPDATER_AVAILABLE, restore_updater=True)
 _log.debug("Updater device: %s", self._updater)
 # For async sleep devices: reconfigure updater to stay awake the maximum time
 self._updater_configurer = UpdateConfigurer(self._updater, timeout=self._timeout)
 self._updater_configurer.prepare_for_update(
 prepare_node=True, prepare_net=False, restore_later=True)

 # Save DH parameter.
 self._updater_dh_val = _get_parameter_with_retries(self._updater,
 ATStringCommand.DH)
 if self._updater_dh_val is None:
 self._exit_with_error(_ERROR_UPDATER_READ_PARAM % ATStringCommand.DH.command)
 # Set new DH value.
 if not _set_parameter_with_retries(
 self._updater, ATStringCommand.DH,
 self._remote.get_64bit_addr().address[0:4], apply=True):
 self._exit_with_error(_ERROR_UPDATER_SET_PARAM % ATStringCommand.DH.command)
 # Save DL parameter.
 self._updater_dl_val = _get_parameter_with_retries(self._updater,
 ATStringCommand.DL)
 if self._updater_dl_val is None:
 self._exit_with_error(_ERROR_UPDATER_READ_PARAM % ATStringCommand.DL.command)
 # Set new DL value.
 if not _set_parameter_with_retries(
 self._updater, ATStringCommand.DL,
 self._remote.get_64bit_addr().address[4:], apply=True):
 self._exit_with_error(_ERROR_UPDATER_SET_PARAM % ATStringCommand.DL.command)

 def _restore_updater_extra(self):
 """
 Override.

 .. seealso::
 | :meth:`._RemoteFirmwareUpdater._restore_updater_extra`
 """
 # Restore DH parameter
 if self._updater_dh_val:
 _set_parameter_with_retries(self._updater, ATStringCommand.DH,
 self._updater_dh_val,
 apply=bool(not self._updater_dl_val))
 # Restore DL parameter
 if self._updater_dl_val:
 _set_parameter_with_retries(self._updater, ATStringCommand.DL,
 self._updater_dl_val, apply=True)

 if self._updater_configurer:
 self._updater_configurer.restore_after_update(restore_settings=True)

 def _determine_updater_device_zigbee(self):
 """
 Determines the updater device that will handle the update process of
 the remote node in a Zigbee network.

 Returns:
 :class:`.RemoteXBeeDevice`: Updater device that will handle the
 update process in a Zigbee network.

 Raises:
 FirmwareUpdateException: If there is any error determining the
 updater device.
 """
 # Check if the remote node is an end device and has a parent that will
 # be the updater. If it has no parent, then the node cannot be updated.
 if self._remote.get_role() == Role.END_DEVICE:
 updater = self._remote.parent
 if not updater:
 # Discover parent device.
 parent_16bit = _get_parameter_with_retries(self._remote,
 ATStringCommand.MP)
 xnet = self._local.get_network()
 if not parent_16bit:
 # The end device node is orphan, we cannot update it.
 self._exit_with_error(_ERROR_END_DEVICE_ORPHAN, restore_updater=True)
 updater = xnet.get_device_by_16(XBee16BitAddress(parent_16bit))
 if not updater:
 xnet.start_discovery_process()
 while xnet.is_discovery_running():
 time.sleep(0.5)
 updater = xnet.get_device_by_16(XBee16BitAddress(parent_16bit))
 if not updater:
 # The end device node is orphan, we cannot update it.
 self._exit_with_error(_ERROR_END_DEVICE_ORPHAN, restore_updater=True)
 # Verify the updater hardware version.
 if not updater.get_hardware_version():
 updater_hw_version = _get_parameter_with_retries(updater, ATStringCommand.HV)
 else:
 updater_hw_version = [updater.get_hardware_version().code]
 if not updater_hw_version or updater_hw_version[0] not in S2C_HW_VERSIONS:
 self._exit_with_error(_ERROR_UPDATE_FROM_S2C, restore_updater=True)
 return updater
 # Look for updater using the current network connections.
 candidates = self._get_updater_candidates(net_discover=False)
 updater = self._determine_best_updater_from_candidates_list_zigbee(candidates)
 if updater:
 return updater
 # Could not retrieve updater from current network connections, try discovering neighbors.
 candidates = self._get_updater_candidates(net_discover=True)
 updater = self._determine_best_updater_from_candidates_list_zigbee(candidates)
 return updater

 def _determine_updater_device_digimesh(self):
 """
 Determines the updater device that will handle the update process of
 the remote node in a DigiMesh network.

 Returns:
 :class:`.RemoteXBeeDevice`: Updater device that will handle the
 update process in a DigiMesh network.

 Raises:
 FirmwareUpdateException: If there is any error determining the
 updater device.
 """
 # Look for updater using the current network connections.
 candidates = self._get_updater_candidates(net_discover=False)
 updater = self._determine_best_updater_from_candidates_list_digimesh(candidates)
 if updater:
 return updater
 # Could not retrieve updater from current network connections, try discovering neighbors.
 candidates = self._get_updater_candidates(net_discover=True)
 updater = self._determine_best_updater_from_candidates_list_digimesh(candidates)
 return updater

 def _determine_updater_device_802(self):
 """
 Determines the updater device that will handle the update process of
 the remote node in a 802.15.4 network.

 Returns:
 :class:`.RemoteXBeeDevice`: Updater device that will handle the
 update process in a 802.15.4 network.

 Raises:
 FirmwareUpdateException: If there is any error determining the
 updater device.
 """
 # In a 802.15.4 network, the updater device is the local device. The
 # only restriction is that local and remote devices mut be of the same
 # hardware type (S2C <> S2C)
 if self._local.get_hardware_version().code in S2C_HW_VERSIONS and \
 self._get_target_hw_version() in S2C_HW_VERSIONS:
 return self._local
 self._exit_with_error(_ERROR_UPDATE_FROM_S2C, restore_updater=True)

 def _get_updater_candidates(self, net_discover=False):
 """
 Returns a list of updater candidates extracted from the current
 network connections or from a neighbor discover.

 Params:
 net_discover (Boolean, optional, default=False): `True` to perform
 a neighbor discover, `False` to use current network connections.

 Returns:
 List: List of possible XBee updater devices.
 """
 from digi.xbee.models.zdo import Neighbor
 from digi.xbee.devices import Connection

 def get_lq(element):
 if isinstance(element, Connection):
 dest_node = element.node_b
 lq = element.lq_a2b.lq
 if dest_node == self._remote:
 dest_node = element.node_a
 lq = element.lq_b2a.lq
 elif isinstance(element, Neighbor):
 lq = element.lq
 dest_node = element.node
 else:
 return 0

 return lq * (Role.UNKNOWN.id - dest_node.get_role().id + 1)

 if net_discover:
 neighbor_list = self._remote.get_neighbors()
 if not neighbor_list:
 return None
 neighbor_list.sort(key=lambda neighbor: get_lq(neighbor))
 node_list = (neighbor.node for neighbor in neighbor_list)
 else:
 conn_list = self._local.get_network().get_node_connections(self._remote)
 if not conn_list:
 return None
 conn_list.sort(key=lambda conn: get_lq(conn))
 node_list = (conn.node_a
 if conn.node_a != self._remote else conn.node_b
 for conn in conn_list)

 candidates = []
 for candidate in node_list:
 if not self._is_valid_updater_candidate(candidate):
 continue
 # If the candidate is the local device, return only it
 if candidate == self._local:
 candidates.append(self._local)
 break
 candidates.append(candidate)

 return candidates if candidates else None

 def _is_valid_updater_candidate(self, node):
 """
 Checks if the provided node is a valid candidate to be the updater node
 for the update process of the remote.

 Params:
 node (:class: `.RemoteXBeeDevice`): The node to check if it is a
 possible updater.
 """
 # Updater cannot be the remote node itself
 if node == self._remote:
 return False
 # Updater cannot be an end device
 if node.get_role() == Role.END_DEVICE:
 return False
 # Updater must be an S2C device
 if not node.get_hardware_version():
 hw_version = _get_parameter_with_retries(node, ATStringCommand.HV)
 else:
 hw_version = [node.get_hardware_version().code]
 if not hw_version or hw_version[0] not in S2C_HW_VERSIONS:
 return False

 return True

 def _determine_best_updater_from_candidates_list_zigbee(self, candidates):
 """
 Determines which is the best updater node of the given list for a
 Zigbee network.

 Params:
 candidates (List): List of possible XBee updater devices.

 Returns:
 :class:`.AbstractXBeeDevice`: Best updater XBee, `None` if no
 candidate found.
 """
 if candidates:
 # Check if it is the local device.
 if len(candidates) == 1 and candidates[0] == self._local:
 return self._local
 # Iterate the list of updater candidates performing a loopback test.
 # Return the first successful one.
 for candidate in candidates:
 loopback_test = _LoopbackTest(self._local, candidate)
 if loopback_test.execute_test():
 return candidate
 return None

 def _determine_best_updater_from_candidates_list_digimesh(self, candidates):
 """
 Determines which is the best updater node of the given list for a
 DigiMesh network.

 Params:
 candidates (List): List of possible XBee updater devices.

 Returns:
 :class:`.AbstractXBeeDevice`: Best updater XBee, `None` if no
 candidate found.
 """
 if candidates:
 # Check if it is the local device.
 if len(candidates) == 1 and candidates[0] == self._local:
 return self._local
 # Iterate the list of updater candidates and test each one.
 for candidate in candidates:
 # First perform a Trace Route test and skip the candidate if
 # the remote device is in the route.
 traceroute_test = _TraceRouteTest(self._local, candidate, self._remote)
 if not traceroute_test.execute_test():
 continue
 # Second perform a loopback test against the candidate and
 # return it if the test passes.
 loopback_test = _LoopbackTest(self._local, candidate)
 if loopback_test.execute_test():
 return candidate
 return None

 def _clear_updater_recovery_mode(self):
 """
 Clears the recovery mode of the updater device.

 Returns:
 Boolean: `True` if recovery mode was successfully cleared in
 updater, `False` otherwise.
 """
 _log.debug("Clearing recovery mode from updater device...")
 # Frame ID must be greater than 2 for OTA commands, otherwise response
 # will be processed incorrectly.
 packet = RemoteATCommandPacket(
 3, self._updater.get_64bit_addr(), self._updater.get_16bit_addr(),
 RemoteATCmdOptions.NONE.value, ATStringCommand.PERCENT_U.command,
 parameter=bytearray([0]))
 retries = self.__CLEAR_UPDATER_RECOVERY_RETRIES
 recovery_cleared = False
 while not recovery_cleared and retries > 0:
 try:
 response = self._local.send_packet_sync_and_get_response(packet)
 if (not response
 or not isinstance(response, RemoteATCommandResponsePacket)
 or response.status != ATCommandStatus.OK):
 _log.warning("Invalid 'clear recovery' command answer: %s",
 response.status.description)
 retries -= 1
 time.sleep(1)
 else:
 recovery_cleared = True
 except XBeeException as exc:
 _log.warning("Could not send 'clear recovery' command: %s", str(exc))
 retries -= 1
 time.sleep(1)
 if not recovery_cleared:
 _log.warning("Could not send 'clear recovery' command after %s retries",
 self.__CLEAR_UPDATER_RECOVERY_RETRIES)
 return recovery_cleared

 def _set_updater_recovery_mode(self):
 """
 Puts the updater device in recovery mode.

 Returns:
 Boolean: `True` if recovery mode was successfully set in updater,
 `False` otherwise.
 """
 _log.debug("Setting updater device in recovery mode...")
 # Frame ID must be greater than 2 for OTA commands, otherwise response
 # are incorrectly processed.
 packet = RemoteATCommandPacket(
 3, self._updater.get_64bit_addr(), self._updater.get_16bit_addr(),
 RemoteATCmdOptions.NONE.value, ATStringCommand.PERCENT_U.command,
 self._remote.get_64bit_addr().address)
 retries = self.__SET_UPDATER_RECOVERY_RETRIES
 recovery_set = False
 while not recovery_set and retries > 0:
 # Clear vars.
 self._receive_lock.clear()
 self._ota_packet_received = False
 self._expected_ota_block = -1
 self._ota_msg_type = None
 try:
 response = self._local.send_packet_sync_and_get_response(packet)
 if (not response
 or not isinstance(response, RemoteATCommandResponsePacket)
 or response.status != ATCommandStatus.OK):
 if not response:
 _log.warning("Answer for 'set recovery' command not received")
 else:
 _log.warning("Invalid 'set recovery' command answer: %s",
 response.status.description)
 return False
 # Register OTA callback.
 self._local.add_packet_received_callback(self._ota_callback)
 # Wait for answer.
 self._receive_lock.wait(self._timeout)
 # Remove frame listener.
 self._local.del_packet_received_callback(self._ota_callback)
 # Check if OTA answer was received.
 if (self._packet_received
 and self._ota_msg_type == EmberBootloaderMessageType.QUERY_RESPONSE):
 recovery_set = True
 else:
 _log.warning(
 "Invalid OTA message type for 'set recovery' command: %s",
 self._ota_msg_type.description if self._ota_msg_type else "no OTA message")
 retries -= 1
 except XBeeException as exc:
 _log.warning("Could not send 'set recovery' command: %s", str(exc))
 return False
 if not recovery_set:
 _log.warning("Could not send 'set recovery' command after %s retries",
 self.__SET_UPDATER_RECOVERY_RETRIES)
 return recovery_set

 def _set_remote_programming_mode(self):
 """
 Puts the remote (target) device in programming mode.

 Returns:
 Boolean: `True` if programming mode was successfully set in
 remote device, `False` otherwise.
 """
 _log.debug("Setting remote device in programming mode...")
 # Frame ID must be greater than 2 for OTA commands, otherwise response
 # will be processed incorrectly.
 packet = RemoteATCommandPacket(
 3, self._remote.get_64bit_addr(), self._remote.get_16bit_addr(),
 RemoteATCmdOptions.NONE.value, ATStringCommand.PERCENT_P.command,
 _VALUE_PRESERVE_NETWORK_SETTINGS)
 try:
 response = self._local.send_packet_sync_and_get_response(packet)
 if (not response
 or not isinstance(response, RemoteATCommandResponsePacket)
 or response.status != ATCommandStatus.OK):
 if not response:
 _log.warning("Answer for 'programming mode' command not received")
 else:
 _log.warning("Invalid 'programming mode' command answer: %s",
 response.status.description)
 return False
 return True
 except XBeeException as exc:
 _log.warning("Could not send 'programming mode' command: %s", str(exc))
 return False

 def _ota_callback(self, frame):
 """
 Callback used to receive OTA firmware update process status frames.

 Params:
 frame (:class:`.XBeePacket`): Received XBee packet.
 """
 # If frame was already received, ignore this frame, just notify.
 if self._packet_received:
 self._receive_lock.set()
 return
 f_type = frame.get_frame_type()
 if f_type == ApiFrameType.OTA_FIRMWARE_UPDATE_STATUS:
 # Check received data.
 self._ota_msg_type = frame.bootloader_msg_type
 received_ota_block = frame.block_number
 elif f_type in (ApiFrameType.RECEIVE_PACKET,
 ApiFrameType.EXPLICIT_RX_INDICATOR):
 # Check received data.
 data = frame.rf_data
 if len(data) < 10:
 return
 self._ota_msg_type = EmberBootloaderMessageType.get(data[0])
 received_ota_block = data[1]
 else:
 return
 if self._expected_ota_block != -1:
 if self._expected_ota_block == received_ota_block:
 self._packet_received = True
 else:
 return
 else:
 self._packet_received = True
 self._receive_lock.set()

 def _create_ota_explicit_packet(self, frame_id, payload):
 """
 Creates and returns an OTA firmware update explicit packet using the
 given parameters.

 Params:
 frame_id (Integer): Frame ID of the packet.
 payload (Bytearray): Packet payload.

 Returns:
 :class:.`ExplicitAddressingPacket`: Generated OTA packet.
 """
 return ExplicitAddressingPacket(
 frame_id, self._updater.get_64bit_addr(), self._updater.get_16bit_addr(),
 _EXPL_PACKET_ENDPOINT_DATA, _EXPL_PACKET_ENDPOINT_DATA,
 _EXPL_PACKET_CLUSTER_UPDATE_LOCAL_UPDATER
 if self._updater == self._local else _EXPL_PACKET_CLUSTER_UPDATE_REMOTE_UPDATER,
 _EXPL_PACKET_PROFILE_DIGI, _EXPL_PACKET_BROADCAST_RADIUS_MAX,
 _EXPL_PACKET_EXTENDED_TIMEOUT if self._local.get_protocol() == XBeeProtocol.ZIGBEE else 0x00,
 payload)

 def _send_initialization_cmd(self):
 """
 Sends the firmware transfer initialization command to the updater device.

 Returns:
 Boolean: `True` if the initialization command was sent successfully,
 `False` otherwise.
 """
 _log.debug("Sending firmware update initialization command...")
 # Clear vars.
 retries = self.__INIT_RETRIES
 init_succeed = False
 # Generate initialization packet.
 packet = self._create_ota_explicit_packet(0, _VALUE_INITIALIZATION_DATA)
 # Send initialization command.
 while not init_succeed and retries > 0:
 # Clear vars.
 self._receive_lock.clear()
 self._packet_received = False
 self._expected_ota_block = -1
 self._ota_msg_type = None
 # Register OTA callback.
 self._local.add_packet_received_callback(self._ota_callback)
 try:
 # Send frame.
 self._local.send_packet(packet)
 # Wait for answer.
 self._receive_lock.wait(self._timeout)
 except XBeeException as exc:
 _log.warning("Could not send initialization command: %s", str(exc))
 return False
 finally:
 # Remove frame listener.
 self._local.del_packet_received_callback(self._ota_callback)
 # Check if OTA answer was received.
 if (not self._packet_received
 or self._ota_msg_type != EmberBootloaderMessageType.QUERY_RESPONSE):
 if not self._packet_received:
 _log.warning("Answer for data initialization command not received")
 else:
 _log.warning(
 "Invalid answer for initialization command: %s",
 self._ota_msg_type.description if self._ota_msg_type else "no OTA message")
 retries -= 1
 if retries > 0:
 time.sleep(2)
 else:
 init_succeed = True
 if not init_succeed:
 _log.warning("Could not send initialization command after %s retries",
 self.__INIT_RETRIES)
 return init_succeed

 def _send_firmware(self):
 """
 Sends the firmware to the updater device.

 Returns:
 Boolean: `True` if the firmware was sent successfully, `False` otherwise.
 """
 # Initialize vars.
 previous_percent = None
 ebl_file = _EBLFile(self._fw_file, self.__DEFAULT_PAGE_SIZE)
 # Send firmware in chunks.
 for data_chunk in ebl_file.get_next_mem_page():
 if self._progress_callback is not None and ebl_file.percent != previous_percent:
 self._progress_callback(self._progress_task, ebl_file.percent)
 previous_percent = ebl_file.percent
 _log.debug("Sending chunk %d/%d %d%%", ebl_file.page_index + 1,
 ebl_file.num_pages, ebl_file.percent)
 if not self._send_firmware_data(data_chunk, ebl_file):
 return False
 self._any_data_sent = True
 return True

 def _send_firmware_data(self, data, ebl_file):
 """
 Sends the given firmware data to the updater device.

 Params:
 Bytearray: Firmware data to send.
 ebl_file (:class:`._EBLFile`): Ebl file being transferred.

 Returns:
 Boolean: `True` if the firmware data was sent successfully,
 `False` otherwise.
 """
 # Clear vars.
 retries = self.__FW_DATA_RETRIES
 data_sent = False
 ota_block_number = (ebl_file.page_index + 1) & 0xFF # Block number matches page index + 1
 # Build payload.
 payload = bytearray([0x1]) # This byte is always 1.
 payload.append(ota_block_number & 0xFF) # This byte is the block number.
 payload.extend(data) # Append the given data.
 # Build the packet.
 packet = self._create_ota_explicit_packet((payload[1] + 2) & 0xFF, payload)
 # Send the data.
 while not data_sent and retries > 0:
 # Clear vars.
 self._receive_lock.clear()
 self._packet_received = False
 self._expected_ota_block = ota_block_number
 self._ota_msg_type = None
 # Register OTA callback.
 self._local.add_packet_received_callback(self._ota_callback)
 try:
 # Send frame.
 self._local.send_packet(packet)
 # Wait for answer.
 self._receive_lock.wait(self._timeout)
 except XBeeException as exc:
 _log.warning("Could not send firmware data block %s: %s",
 ota_block_number, str(exc))
 return False
 finally:
 # Remove frame listener.
 self._local.del_packet_received_callback(self._ota_callback)
 # Check if OTA answer was received.
 if (not self._packet_received
 or self._ota_msg_type != EmberBootloaderMessageType.ACK):
 if not self._packet_received:
 _log.warning("Answer for data block %s not received", ota_block_number)
 else:
 _log.warning(
 "Invalid answer for data block %s: %s", ota_block_number,
 self._ota_msg_type.description if self._ota_msg_type else "no OTA message")
 retries -= 1
 if retries > 0:
 time.sleep(0.5)
 else:
 data_sent = True
 if not data_sent:
 _log.warning("Could not send data block %s after %s retries",
 ota_block_number, self.__FW_DATA_RETRIES)
 return data_sent

 def _start_firmware_update(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._start_firmware_update`
 """
 # Test connectivity with remote device.
 if self._local.get_protocol() == XBeeProtocol.RAW_802_15_4:
 # There is not a test for 802.15.4, assume connection with device works.
 connectivity_test_success = True
 elif self._local.get_protocol() == XBeeProtocol.DIGI_MESH:
 link_test = _LinkTest(self._local, self._remote, self._updater)
 connectivity_test_success = link_test.execute_test()
 else:
 loopback_test = _LoopbackTest(self._local, self._remote)
 connectivity_test_success = loopback_test.execute_test()
 if not connectivity_test_success:
 if not self._force_update:
 self._exit_with_error(_ERROR_COMMUNICATION_TEST, restore_updater=True)
 else:
 _log.warning("Communication test with remote device failed, forcing update...")
 # Clear recovery mode in updater device, ignore answer.
 self._clear_updater_recovery_mode()
 # Put remote device in programming mode, ignore answer.
 self._set_remote_programming_mode()
 # Wait some time for Ember bootloader to start.
 time.sleep(5)

 def _transfer_firmware(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._transfer_firmware`
 """
 _log.info("%s - %s", self._remote, _PROGRESS_TASK_UPDATE_REMOTE_XBEE)
 # Reset variables.
 self._progress_task = _PROGRESS_TASK_UPDATE_REMOTE_XBEE
 retries = self.__FW_UPDATE_RETRIES
 firmware_updated = False
 while not firmware_updated and retries > 0:
 # Reset variables.
 self._any_data_sent = False
 # Initialize transfer.
 if not self._send_initialization_cmd():
 self._exit_with_error(_ERROR_INITIALIZE_PROCESS, restore_updater=True)
 # Send the firmware.
 if not self._send_firmware():
 # Recover the module.
 if self._any_data_sent:
 # Wait for the bootloader to reset.
 time.sleep(6)
 if not self._set_updater_recovery_mode():
 self._clear_updater_recovery_mode()
 self._exit_with_error(_ERROR_RECOVERY_MODE, restore_updater=True)
 retries -= 1
 else:
 firmware_updated = True
 if not firmware_updated:
 self._exit_with_error(_ERROR_FW_UPDATE_RETRIES % self.__FW_UPDATE_RETRIES,
 restore_updater=True)

 def _finish_firmware_update(self):
 """
 Override.

 .. seealso::
 | :meth:`._XBeeFirmwareUpdater._finish_firmware_update`
 """
 _log.debug("Finishing firmware update...")
 # Clear vars.
 both_frames_sent = True
 # Generate finish packet 1.
 packet_1 = self._create_ota_explicit_packet(5, _VALUE_INITIALIZATION_DATA)
 # Generate finish packet 2.
 packet_2 = self._create_ota_explicit_packet(5, _VALUE_END_OF_FILE_DATA)
 # Send first frame, do not wait for answer.
 try:
 self._local.send_packet(packet_1)
 except XBeeException as exc:
 _log.warning("Could not send first finalize update frame: %s", str(exc))
 both_frames_sent = False
 # Wait some time before sending the second frame.
 time.sleep(2)
 # Send second frame, do not wait for answer.
 try:
 self._local.send_packet(packet_2)
 except XBeeException as exc:
 _log.warning("Could not send second finalize update frame: %s", str(exc))
 both_frames_sent = False
 if not both_frames_sent:
 self._exit_with_error(_ERROR_FINISH_PROCESS, restore_updater=True)

[docs]def update_local_firmware(target, xml_fw_file, xbee_firmware_file=None,
 bootloader_firmware_file=None, timeout=None,
 progress_callback=None):
 """
 Performs a local firmware update operation in the given target.

 Args:
 target (String or :class:`.XBeeDevice`): Target of the firmware upload operation.
 String: serial port identifier.
 :class:`.XBeeDevice`: XBee to upload its firmware.
 xml_fw_file (String): Path of the XML file that describes the firmware.
 xbee_firmware_file (String, optional): Location of the XBee binary firmware file.
 bootloader_firmware_file (String, optional): Location of the bootloader
 binary firmware file.
 timeout (Integer, optional): Serial port read data timeout.
 progress_callback (Function, optional): Function to receive progress
 information. Receives two arguments:

 * The current update task as a String
 * The current update task percentage as an Integer

 Raises:
 FirmwareUpdateException: If there is any error performing the firmware update.
 """
 # Sanity checks.
 if not isinstance(target, str) and not isinstance(target, XBeeDevice):
 _log.error("ERROR: %s", _ERROR_TARGET_INVALID)
 raise FirmwareUpdateException(_ERROR_TARGET_INVALID)
 if xml_fw_file is None:
 _log.error("ERROR: %s", _ERROR_FILE_XML_FW_NOT_SPECIFIED)
 raise FirmwareUpdateException(_ERROR_FILE_XML_FW_NOT_SPECIFIED)
 if not _file_exists(xml_fw_file):
 _log.error("ERROR: %s", _ERROR_FILE_XML_FW_NOT_FOUND)
 raise FirmwareUpdateException(_ERROR_FILE_XML_FW_NOT_FOUND)
 if xbee_firmware_file is not None and not _file_exists(xbee_firmware_file):
 _log.error("ERROR: %s", _ERROR_FILE_XBEE_FW_NOT_FOUND % xbee_firmware_file)
 raise FirmwareUpdateException(_ERROR_FILE_XBEE_FW_NOT_FOUND % xbee_firmware_file)
 if bootloader_firmware_file is not None and not _file_exists(bootloader_firmware_file):
 _log.error("ERROR: %s", _ERROR_FILE_BOOTLOADER_FW_NOT_FOUND)
 raise FirmwareUpdateException(_ERROR_FILE_BOOTLOADER_FW_NOT_FOUND)

 if isinstance(target, XBeeDevice):
 hw_version = target.get_hardware_version()
 if hw_version and hw_version.code not in LOCAL_SUPPORTED_HW_VERSIONS:
 raise OperationNotSupportedException(
 "Firmware update only supported in XBee 3 and XBee SX 868/900")

 # Launch the update process.
 if not timeout:
 timeout = _READ_DATA_TIMEOUT

 if (isinstance(target, XBeeDevice) and target.comm_iface
 and target.comm_iface.supports_update_firmware()):
 target.comm_iface.update_firmware(
 target, xml_fw_file, xbee_fw_file=xbee_firmware_file,
 bootloader_fw_file=bootloader_firmware_file, timeout=timeout,
 progress_callback=progress_callback)
 return

 bootloader_type = _determine_bootloader_type(target)
 if bootloader_type == _BootloaderType.GECKO_BOOTLOADER:
 update_process = _LocalXBee3FirmwareUpdater(
 target, xml_fw_file, xbee_fw_file=xbee_firmware_file,
 bootloader_fw_file=bootloader_firmware_file,
 timeout=timeout, progress_cb=progress_callback)
 elif bootloader_type == _BootloaderType.GEN3_BOOTLOADER:
 update_process = _LocalXBeeGEN3FirmwareUpdater(
 target, xml_fw_file, xbee_fw_file=xbee_firmware_file,
 timeout=timeout, progress_cb=progress_callback)
 else:
 # Bootloader not supported.
 _log.error("ERROR: %s", _ERROR_BOOTLOADER_NOT_SUPPORTED)
 raise FirmwareUpdateException(_ERROR_BOOTLOADER_NOT_SUPPORTED)
 update_process.update_firmware()

[docs]def update_remote_firmware(remote, xml_fw_file, firmware_file=None, bootloader_file=None,
 max_block_size=0, timeout=None, progress_callback=None, _prepare=True):
 """
 Performs a remote firmware update operation in the given target.

 Args:
 remote (:class:`.RemoteXBeeDevice`): Remote XBee to upload.
 xml_fw_file (String): Path of the XML file that describes the firmware.
 firmware_file (String, optional): Path of the binary firmware file.
 bootloader_file (String, optional): Path of the bootloader firmware file.
 max_block_size (Integer, optional): Maximum size of the ota block to send.
 timeout (Integer, optional): Timeout to wait for remote frame requests.
 progress_callback (Function, optional): Function to receive progress
 information. Receives two arguments:

 * The current update task as a String
 * The current update task percentage as an Integer

 Raises:
 FirmwareUpdateException: if there is any error performing the remote
 firmware update.
 """
 # Sanity checks.
 if not isinstance(remote, RemoteXBeeDevice):
 _log.error("ERROR: %s", _ERROR_REMOTE_DEVICE_INVALID)
 raise FirmwareUpdateException(_ERROR_TARGET_INVALID)
 if xml_fw_file is None:
 _log.error("ERROR: %s", _ERROR_FILE_XML_FW_NOT_SPECIFIED)
 raise FirmwareUpdateException(_ERROR_FILE_XML_FW_NOT_SPECIFIED)
 if not _file_exists(xml_fw_file):
 _log.error("ERROR: %s", _ERROR_FILE_XML_FW_NOT_FOUND)
 raise FirmwareUpdateException(_ERROR_FILE_XML_FW_NOT_FOUND)
 if firmware_file is not None and not _file_exists(firmware_file):
 _log.error("ERROR: %s", _ERROR_FILE_XBEE_FW_NOT_FOUND % firmware_file)
 raise FirmwareUpdateException(_ERROR_FILE_XBEE_FW_NOT_FOUND % firmware_file)
 if bootloader_file is not None and not _file_exists(bootloader_file):
 _log.error("ERROR: %s", _ERROR_FILE_XBEE_FW_NOT_FOUND % bootloader_file)
 raise FirmwareUpdateException(_ERROR_FILE_XBEE_FW_NOT_FOUND % bootloader_file)
 if not isinstance(max_block_size, int):
 raise ValueError("Maximum block size must be an integer")
 if max_block_size < 0 or max_block_size > 255:
 raise ValueError("Maximum block size must be between 0 and 255")

 hw_version = remote.get_hardware_version()
 if hw_version and hw_version.code not in REMOTE_SUPPORTED_HW_VERSIONS:
 raise OperationNotSupportedException(
 "Firmware update only supported in XBee 3, XBee SX 868/900, and XBee S2C devices")

 # Launch the update process.
 if not timeout:
 timeout = _REMOTE_FW_UPDATE_DEFAULT_TIMEOUT

 comm_iface = remote.get_comm_iface()
 if comm_iface and comm_iface.supports_update_firmware():
 comm_iface.update_firmware(
 remote, xml_fw_file, xbee_fw_file=firmware_file,
 bootloader_fw_file=bootloader_file, timeout=timeout,
 progress_callback=progress_callback)
 return

 bootloader_type = _determine_bootloader_type(remote)
 if bootloader_type == _BootloaderType.GECKO_BOOTLOADER:
 update_process = _RemoteXBee3FirmwareUpdater(
 remote, xml_fw_file, ota_fw_file=firmware_file,
 otb_fw_file=bootloader_file, timeout=timeout,
 max_block_size=max_block_size, progress_cb=progress_callback)
 elif bootloader_type == _BootloaderType.GEN3_BOOTLOADER:
 update_process = _RemoteGPMFirmwareUpdater(
 remote, xml_fw_file, xbee_fw_file=firmware_file,
 timeout=timeout, progress_cb=progress_callback)
 elif bootloader_type == _BootloaderType.EMBER_BOOTLOADER:
 update_process = _RemoteEmberFirmwareUpdater(
 remote, xml_fw_file, xbee_fw_file=firmware_file,
 timeout=timeout, force_update=True, progress_cb=progress_callback)
 else:
 # Bootloader not supported.
 _log.error("ERROR: %s", _ERROR_BOOTLOADER_NOT_SUPPORTED)
 raise FirmwareUpdateException(_ERROR_BOOTLOADER_NOT_SUPPORTED)

 orig_protocol = remote.get_protocol()
 configurer = UpdateConfigurer(remote, timeout=timeout,
 callback=progress_callback)
 if _prepare:
 configurer.prepare_for_update(restore_later=False)
 try:
 update_process.update_firmware()
 finally:
 configurer.restore_after_update(
 restore_settings=not update_process.check_protocol_changed_by_fw(orig_protocol))

[docs]def update_remote_filesystem(remote, ota_fs_file, max_block_size=0, timeout=None,
 progress_callback=None, _prepare=True):
 """
 Performs a remote filesystem update operation in the given target.

 Args:
 remote (:class:`.RemoteXBeeDevice`): Remote XBee to update its filesystem.
 ota_fs_file (String): Path of the OTA filesystem image file.
 max_block_size (Integer, optional): Maximum size of the ota block to send.
 timeout (Integer, optional): Timeout to wait for remote frame requests.
 progress_callback (Function, optional): Function to receive progress
 information. Receives two arguments:

 * The current update task as a String
 * The current update task percentage as an Integer

 Raises:
 FirmwareUpdateException: If there is any error updating the remote
 filesystem image.
 """
 # Sanity checks.
 if not isinstance(remote, RemoteXBeeDevice):
 _log.error("ERROR: %s", _ERROR_REMOTE_DEVICE_INVALID)
 raise FirmwareUpdateException(_ERROR_REMOTE_DEVICE_INVALID)
 if ota_fs_file is None:
 _log.error("ERROR: %s", _ERROR_FILE_OTA_FS_NOT_SPECIFIED)
 raise FirmwareUpdateException(_ERROR_FILE_OTA_FS_NOT_SPECIFIED)
 if not _file_exists(ota_fs_file):
 _log.error("ERROR: %s", _ERROR_FILE_OTA_FS_NOT_FOUND)
 raise FirmwareUpdateException(_ERROR_FILE_OTA_FS_NOT_FOUND)
 if not isinstance(max_block_size, int):
 raise ValueError("Maximum block size must be an integer")
 if max_block_size < 0 or max_block_size > 255:
 raise ValueError("Maximum block size must be between 0 and 255")

 # Launch the update process.
 if not timeout:
 timeout = _REMOTE_FW_UPDATE_DEFAULT_TIMEOUT
 update_process = _RemoteFilesystemUpdater(
 remote, ota_fs_file, timeout=timeout, max_block_size=max_block_size,
 progress_cb=progress_callback)
 configurer = UpdateConfigurer(remote, timeout=timeout,
 callback=progress_callback)
 if _prepare:
 configurer.prepare_for_update(restore_later=False)
 try:
 update_process.update_firmware()
 finally:
 configurer.restore_after_update()

def _file_exists(file):
 """
 Returns whether the given file path exists or not.

 Args:
 file (String): File path to check.

 Returns:
 Boolean: `True` if the path exists, `False` otherwise
 """
 if file is None:
 return False

 return os.path.isfile(file)

def _bootloader_version_to_bytearray(bootloader_version):
 """
 Transforms the given bootloader version in string format into a byte array.

 Args:
 bootloader_version (String): Bootloader version as string.

 Returns:
 Bytearray: Bootloader version as byte array, `None` if transformation failed.
 """
 bootloader_version_array = bytearray(_BOOTLOADER_VERSION_SIZE)
 version_split = bootloader_version.split(_BOOTLOADER_VERSION_SEPARATOR)
 if len(version_split) < _BOOTLOADER_VERSION_SIZE:
 return None

 for i in range(_BOOTLOADER_VERSION_SIZE):
 bootloader_version_array[i] = utils.int_to_bytes((int(version_split[i])))[0]

 return bootloader_version_array

def _get_milliseconds():
 """
 Returns the current time in milliseconds.

 Returns:
 Integer: Current time in milliseconds.
 """
 return int(time.time() * 1000.0)

def _connect_device_with_retries(xbee_device, retries):
 """
 Attempts to connect the XBee with the given number of retries.

 Args:
 xbee_device (:class:`.AbstractXBeeDevice`): XBee to connect.
 retries (Integer): Number of connection retries.

 Returns:
 Boolean: `True` if the device connected, `False` otherwise.
 """
 if xbee_device is None:
 return False

 if xbee_device.is_open():
 return True

 while retries > 0:
 try:
 xbee_device.open()
 return True
 except XBeeException:
 retries -= 1
 if retries != 0:
 time.sleep(1)
 except SerialException:
 return False

 return False

def _get_parameter_with_retries(xbee, parameter, retries=_PARAM_READ_RETRIES):
 """
 Reads the given parameter from the XBee with the given number of retries.

 Args:
 xbee (:class:`.AbstractXBeeDevice`): XBee to read the parameter from.
 parameter (String or :class: `ATStringCommand`): Parameter to read.
 retries (Integer, optional): Number of retries to perform after a
 :class:`.TimeoutException`

 Returns:
 Bytearray: Read parameter value, `None` if the parameter could not be read.
 """
 if xbee is None:
 return None

 while retries > 0:
 try:
 return xbee.get_parameter(parameter, apply=False)
 except XBeeException:
 retries -= 1
 if retries != 0:
 time.sleep(1)

 return None

def _set_parameter_with_retries(xbee, parameter, value,
 apply=False, retries=_PARAM_SET_RETRIES):
 """
 Reads the given parameter from the XBee with the given number of retries.

 Args:
 xbee (:class:`.AbstractXBeeDevice`): XBee to read the parameter from.
 parameter (String or :class: `ATStringCommand`): Parameter to set.
 value (Bytearray): Parameter value.
 apply (Boolean, optional, default=`False`): `True` to apply changes,
 `False` otherwise, `None` to use `is_apply_changes_enabled()`
 returned value.
 retries (Integer, optional): Number of retries to perform after a
 :class:`.TimeoutException`

 Returns:
 Boolean: `True` if the parameter was correctly set, `False` otherwise.
 """
 if xbee is None:
 return False

 while retries > 0:
 try:
 xbee.set_parameter(parameter, value, apply=apply)
 return True
 except XBeeException:
 retries -= 1
 if retries != 0:
 time.sleep(1)
 return False

def _get_bootloader_version(xbee):
 """
 Returns the bootloader version of the given XBee

 Args:
 xbee (:class:`.AbstractXBeeDevice`): XBee to read the parameter from.

 Returns:
 Bytearray: XBee bootloader version as byte array, `None` if it could not be read.
 """
 bootloader_version_array = bytearray(3)
 bootloader_version = _get_parameter_with_retries(xbee, _PARAM_BOOTLOADER_VERSION,
 _PARAM_READ_RETRIES)
 if bootloader_version is None or len(bootloader_version) < 2:
 return None
 bootloader_version_array[0] = bootloader_version[0] & 0x0F
 bootloader_version_array[1] = (bootloader_version[1] & 0xF0) >> 4
 bootloader_version_array[2] = bootloader_version[1] & 0x0F

 return bootloader_version_array

def _get_compatibility_number(xbee):
 """
 Returns the compatibility number of the given XBee.

 Args:
 xbee (:class:`.AbstractXBeeDevice`): XBee to read the parameter from.

 Returns:
 Integer: XBee compatibility number as integer, `None` if it could not be read.
 """
 compatibility_number = _get_parameter_with_retries(
 xbee, ATStringCommand.PERCENT_C, _PARAM_READ_RETRIES)
 if compatibility_number is None:
 return None
 compatibility_number = utils.hex_to_string(compatibility_number)[0:2]

 return int(compatibility_number)

def _get_region_lock(xbee):
 """
 Returns the region lock number of the given XBee.

 Args:
 xbee (:class:`.AbstractXBeeDevice`): XBee to read the parameter from.

 Returns:
 Integer: XBee region lock number as integer, `None` if it could not be read.
 """
 region_lock = _get_parameter_with_retries(
 xbee, ATStringCommand.R_QUESTION, _PARAM_READ_RETRIES)
 if region_lock is None:
 return None

 return int(region_lock[0])

def _get_hw_version(xbee):
 """
 Returns the hardware version of the given XBee.

 Args:
 xbee (:class:`.AbstractXBeeDevice`): XBee to read the parameter from.

 Returns:
 Integer: XBee hardware version as integer, `None` if it could not be read.
 """
 hardware_version = _get_parameter_with_retries(
 xbee, ATStringCommand.HV, _PARAM_READ_RETRIES)
 if hardware_version is None:
 return None

 return int(hardware_version[0])

def _get_fw_version(xbee):
 """
 Returns the firmware version of the given XBee.

 Args:
 xbee (:class:`.AbstractXBeeDevice`): XBee to read the parameter from.

 Returns:
 Integer: XBee firmware version as integer, `None` if it could not be read.
 """
 firmware_version = _get_parameter_with_retries(
 xbee, ATStringCommand.VR, _PARAM_READ_RETRIES)
 if firmware_version is None:
 return None

 return utils.bytes_to_int(firmware_version)

def _reverse_bytearray(byte_array):
 """
 Reverses the given byte array order.

 Args:
 byte_array (Bytearray): Byte array to reverse.

 Returns:
 Bytearray: Reversed byte array.
 """
 return bytearray(list(reversed(byte_array)))

def _create_serial_port(port_name, serial_params):
 """
 Creates a serial port object with the given parameters.

 Args:
 port_name (String): Name of the serial port.
 serial_params (Dictionary): Serial port parameters as a dictionary.

 Returns:
 :class:`.XBeeSerialPort`: Serial port created with the given parameters.
 """
 return XBeeSerialPort(serial_params["baudrate"],
 port_name,
 data_bits=serial_params["bytesize"],
 stop_bits=serial_params["stopbits"],
 parity=serial_params["parity"],
 flow_control=FlowControl.NONE if not serial_params["rtscts"] else
 FlowControl.HARDWARE_RTS_CTS,
 timeout=serial_params["timeout"])

def _read_bootloader_header_generic(serial_port, test_char):
 """
 Attempts to read the bootloader header.

 Args:
 serial_port (:class:`.XBeeSerialPort`): Serial port to communicate with.
 test_char (String): Test character to send and check bootloader is active.

 Returns:
 String: Bootloader header, `None` if it could not be read.
 """
 try:
 serial_port.purge_port()
 serial_port.write(str.encode(test_char, encoding='utf8', errors='ignore'))
 read_bytes = serial_port.read(_READ_BUFFER_LEN)
 except SerialException as exc:
 _log.exception(exc)
 return None

 if not read_bytes:
 return None

 try:
 return str(read_bytes, encoding='utf8', errors='strict')
 except UnicodeDecodeError:
 return None

def _is_bootloader_active_generic(serial_port, test_char, bootloader_prompt):
 """
 Returns whether the device is in bootloader mode or not.

 Args:
 serial_port (:class:`.XBeeSerialPort`): Serial port to communicate with.
 test_char (String): Test character to send and check bootloader is active.
 bootloader_prompt (String): Expected bootloader prompt.

 Returns:
 Boolean: `True` if the device is in bootloader mode, `False` otherwise.
 """
 for _ in range(3):
 bootloader_header = _read_bootloader_header_generic(serial_port, test_char)
 # Look for the Ember/Gecko bootloader prompt.
 if bootloader_header is not None and bootloader_prompt in bootloader_header:
 return True
 time.sleep(0.2)

 return False

def _determine_bootloader_type(target):
 """
 Determines the bootloader type of the given update target.

 Update process varies depending on the bootloader. This method determines the
 bootloader type of the connected device so that a specific update method is used.

 Args:
 target (String or :class:`.AbstractXBeeDevice`): Target of the firmware
 upload operation.
 String: serial port identifier.
 :class:`.AbstractXBeeDevice`: XBee to upload its firmware.

 Return:
 :class:`._BootloaderType`: Bootloader type of the connected target.
 """
 if not isinstance(target, str):
 # An XBee was given. Bootloader type is determined using the device hardware version.
 try:
 was_connected = True
 if not target.is_remote() and not target.is_open():
 target.open()
 was_connected = False
 hardware_version = _get_hw_version(target)
 if not target.is_remote() and not was_connected:
 target.close()
 return _BootloaderType.determine_bootloader_type(hardware_version)
 except XBeeException as exc:
 raise FirmwareUpdateException(_ERROR_DETERMINE_BOOTLOADER_TYPE % str(exc))
 else:
 # A serial port was given, determine the bootloader by testing prompts and baud rates.
 # -- 1 -- Check if bootloader is active.
 # Create a serial port object. Start with 38400 bps for GEN3 bootloaders.
 try:
 port = _create_serial_port(target, _GEN3_BOOTLOADER_PORT_PARAMS)
 port.open()
 except SerialException as exc:
 _log.error(_ERROR_CONNECT_SERIAL_PORT, str(exc))
 raise FirmwareUpdateException(_ERROR_DETERMINE_BOOTLOADER_TYPE % str(exc))
 # Check if GEN3 bootloader is active.
 if _is_bootloader_active_generic(
 port, _GEN3_BOOTLOADER_TEST_CHAR, _GEN3_BOOTLOADER_PROMPT):
 port.close()
 return _BootloaderType.GEN3_BOOTLOADER
 # Check if GECKO bootloader is active.
 port.apply_settings(_GECKO_BOOTLOADER_PORT_PARAMS)
 if _is_bootloader_active_generic(
 port, _GECKO_BOOTLOADER_TEST_CHAR, _GECKO_BOOTLOADER_PROMPT):
 port.close()
 return _BootloaderType.GECKO_BOOTLOADER

 # -- 2 -- Bootloader is not active, force bootloader mode.
 break_thread = _BreakThread(port, _DEVICE_BREAK_RESET_TIMEOUT)
 break_thread.start()
 # Loop during some time looking for the bootloader prompt.
 deadline = _get_milliseconds() + (_BOOTLOADER_TIMEOUT * 1000)
 bootloader_type = None
 while _get_milliseconds() < deadline:
 # Check GEN3 bootloader prompt.
 port.apply_settings(_GEN3_BOOTLOADER_PORT_PARAMS)
 if _is_bootloader_active_generic(
 port, _GEN3_BOOTLOADER_TEST_CHAR, _GEN3_BOOTLOADER_PROMPT):
 bootloader_type = _BootloaderType.GEN3_BOOTLOADER
 break
 # Check GECKO bootloader prompt.
 port.apply_settings(_GECKO_BOOTLOADER_PORT_PARAMS)
 if _is_bootloader_active_generic(
 port, _GECKO_BOOTLOADER_TEST_CHAR, _GECKO_BOOTLOADER_PROMPT):
 bootloader_type = _BootloaderType.GECKO_BOOTLOADER
 break
 # Re-assert lines to try break process again until timeout expires.
 if not break_thread.is_running():
 port.rts = 0
 break_thread = _BreakThread(port, _DEVICE_BREAK_RESET_TIMEOUT)
 break_thread.start()
 # Restore break condition.
 if break_thread.is_running():
 break_thread.stop_break()

 port.close()
 return bootloader_type

def _enable_explicit_mode(xbee):
 """
 Enables explicit mode by modifying the value of 'AO' parameter if it is
 needed.

 Args:
 xbee (:class:`.AbstractXBeeDevice`): XBee to configure.

 Returns:
 Tuple (Boolean, Bytearray): A tuple with a boolean value indicating
 if the operation finished successfully, and a bytearray with the
 original value of 'AO' parameter. If the last is `None` means the
 value has not been changed.
 """
 # Store AO value.
 ao_value = _get_parameter_with_retries(xbee, ATStringCommand.AO)
 if ao_value is None:
 return False, None

 # Set new AO value.
 # Do not configure AO if it is already:
 # * Bit 0: Native/Explicit API output (1)
 # * Bit 5: Prevent ZDO msgs from going out the serial port (0)
 value = bytearray([ao_value[0]])
 protocol = xbee.get_protocol()
 if protocol == XBeeProtocol.ZIGBEE:
 if (value[0] & APIOutputModeBit.EXPLICIT.code
 and not value[0] & APIOutputModeBit.SUPPRESS_ALL_ZDO_MSG.code):
 return True, None
 # Set new AO value.
 value[0] = value[0] | APIOutputModeBit.EXPLICIT.code
 value[0] = value[0] & ~APIOutputModeBit.SUPPRESS_ALL_ZDO_MSG.code
 else:
 if value[0] == APIOutputModeBit.EXPLICIT.code:
 return True, None
 # Set new AO value.
 value[0] = APIOutputModeBit.EXPLICIT.code

 if not _set_parameter_with_retries(
 xbee, ATStringCommand.AO, value, apply=True):
 return False, ao_value

 return True, ao_value

 Source code for digi.xbee.io

Copyright 2017-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
from enum import Enum, unique

from digi.xbee.util import utils
from digi.xbee.exception import OperationNotSupportedException

[docs]@unique
class IOLine(Enum):
 """
 Enumerates the different IO lines that can be found in the XBee devices.

 Depending on the hardware and firmware of the device, the number of lines
 that can be used as well as their functionality may vary. Refer to the
 product manual to learn more about the IO lines of your XBee device.
 """

 DIO0_AD0 = ("DIO0/AD0", 0, "D0")
 DIO1_AD1 = ("DIO1/AD1", 1, "D1")
 DIO2_AD2 = ("DIO2/AD2", 2, "D2")
 DIO3_AD3 = ("DIO3/AD3", 3, "D3")
 DIO4_AD4 = ("DIO4/AD4", 4, "D4")
 DIO5_AD5 = ("DIO5/AD5", 5, "D5")
 DIO6 = ("DIO6", 6, "D6")
 DIO7 = ("DIO7", 7, "D7")
 DIO8 = ("DIO8", 8, "D8")
 DIO9 = ("DIO9", 9, "D9")
 DIO10_PWM0 = ("DIO10/PWM0", 10, "P0", "M0")
 DIO11_PWM1 = ("DIO11/PWM1", 11, "P1", "M1")
 DIO12 = ("DIO12", 12, "P2")
 DIO13 = ("DIO13", 13, "P3")
 DIO14 = ("DIO14", 14, "P4")
 DIO15 = ("DIO15", 15, "P5")
 DIO16 = ("DIO16", 16, "P6")
 DIO17 = ("DIO17", 17, "P7")
 DIO18 = ("DIO18", 18, "P8")
 DIO19 = ("DIO19", 19, "P9")

 def __init__(self, description, index, at_command, pwm_command=None):
 self.__description = description
 self.__index = index
 self.__at_command = at_command
 self.__pwm_command = pwm_command

 @property
 def description(self):
 """
 Returns the description of the IOLine element.

 Returns:
 String: The description of the IOLine element.
 """
 return self.__description

 @property
 def index(self):
 """
 Returns the index of the IOLine element.

 Returns:
 Integer: The index of the IOLine element.
 """
 return self.__index

 @property
 def at_command(self):
 """
 Returns the AT command of the IOLine element.

 Returns:
 String: The AT command of the IOLine element.
 """
 return self.__at_command

 @property
 def pwm_at_command(self):
 """
 Returns the PWM AT command associated to the IOLine element.

 Returns:
 String: The PWM AT command associated to the IO line, `None` if
 the IO line does not have a PWM AT command associated.
 """
 return self.__pwm_command

[docs] def has_pwm_capability(self):
 """
 Returns whether the IO line has PWM capability or not.

 Returns:
 Boolean: `True` if the IO line has PWM capability, `False` otherwise.
 """
 return self.__pwm_command is not None

 @classmethod
 def get(cls, index):
 """
 Returns the :class:`.IOLine` for the given index.

 Args:
 index (Integer): Returns the :class:`.IOLine` for the given index.

 Returns:
 :class:`.IOLine`: :class:`.IOLine` with the given code, `None` if
 there is not any line with that index.
 """
 try:
 return cls.lookupTable[index]
 except KeyError:
 return None

IOLine.lookupTable = {x.index: x for x in IOLine}
IOLine.__doc__ += utils.doc_enum(IOLine)

[docs]@unique
class IOValue(Enum):
 """
 Enumerates the possible values of a :class:`.IOLine` configured as digital I/O.
 """

 LOW = 4
 HIGH = 5

 def __init__(self, code):
 self.__code = code

 @property
 def code(self):
 """
 Returns the code of the IOValue element.

 Returns:
 String: The code of the IOValue element.
 """
 return self.__code

 @classmethod
 def get(cls, code):
 """
 Returns the IOValue for the given code.

 Args:
 code (Integer): The code corresponding to the IOValue to get.

 Returns:
 :class:`.IOValue`: The IOValue with the given code, `None` if there
 is not any IOValue with that code.
 """
 try:
 return cls.lookupTable[code]
 except KeyError:
 return None

IOValue.lookupTable = {x.code: x for x in IOValue}
IOValue.__doc__ += utils.doc_enum(IOValue)

[docs]class IOSample:
 """
 This class represents an IO Data Sample. The sample is built using the
 the constructor. The sample contains an analog and digital mask indicating
 which IO lines are configured with that functionality.

 Depending on the protocol the XBee device is executing, the digital and
 analog masks are retrieved in separated bytes (2 bytes for the digital mask
 and 1 for the analog mask) or merged contained (digital and analog masks
 are contained in 2 bytes).

 Digital and analog channels masks
 Indicates which digital and ADC IO lines are configured in the module. Each
 bit corresponds to one digital or ADC IO line on the module:
 ::

 bit 0 = DIO01
 bit 1 = DIO10
 bit 2 = DIO20
 bit 3 = DIO31
 bit 4 = DIO40
 bit 5 = DIO51
 bit 6 = DIO60
 bit 7 = DIO70
 bit 8 = DIO80
 bit 9 = AD00
 bit 10 = AD11
 bit 11 = AD21
 bit 12 = AD30
 bit 13 = AD40
 bit 14 = AD50
 bit 15 = NA0

 Example: mask of 0x0C29 means DIO0, DIO3, DIO5, AD1 and AD2 enabled.
 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1

 Digital Channel Mask
 Indicates which digital IO lines are configured in the module. Each bit
 corresponds to one digital IO line on the module:
 ::

 bit 0 = DIO0AD0
 bit 1 = DIO1AD1
 bit 2 = DIO2AD2
 bit 3 = DIO3AD3
 bit 4 = DIO4AD4
 bit 5 = DIO5AD5ASSOC
 bit 6 = DIO6RTS
 bit 7 = DIO7CTS
 bit 8 = DIO8DTRSLEEP_RQ
 bit 9 = DIO9ON_SLEEP
 bit 10 = DIO10PWM0RSSI
 bit 11 = DIO11PWM1
 bit 12 = DIO12CD
 bit 13 = DIO13
 bit 14 = DIO14
 bit 15 = NA

 Example: mask of 0x040B means DIO0, DIO1, DIO2, DIO3 and DIO10 enabled.
 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1

 Analog Channel Mask
 Indicates which lines are configured as ADC. Each bit in the analog
 channel mask corresponds to one ADC line on the module.
 ::

 bit 0 = AD0DIO0
 bit 1 = AD1DIO1
 bit 2 = AD2DIO2
 bit 3 = AD3DIO3
 bit 4 = AD4DIO4
 bit 5 = AD5DIO5ASSOC
 bit 6 = NA
 bit 7 = Supply Voltage Value

 Example: mask of 0x03 means AD0, and AD1 enabled.
 0 0 0 0 0 0 1 1
 """

 __pattern = "[{key}: {value}], "
 """Pattern for digital and analog values in __str__ method."""

 __pattern2 = "[Power supply voltage: {value}], "
 """Pattern for power supply voltage in __str__ method."""

 __MIN_IO_SAMPLE_PAYLOAD_LENGTH = 5

 def __init__(self, io_sample_payload):
 """
 Class constructor. Instantiates a new :class:`.IOSample` object with
 the provided parameters.

 Args:
 io_sample_payload (Bytearray): The payload corresponding to an IO sample.

 Raises:
 ValueError: If io_sample_payload length is less than 5.
 """
 # dictionaries
 self.__digital_values_map = {} # {IOLine : IOValue}
 self.__analog_values_map = {} # {IOLine : Integer}

 # Integers:
 self.__digital_hsb_mask = None
 self.__digital_lsb_mask = None
 self.__digital_mask = None
 self.__analog_mask = None
 self.__digital_hsb_values = None
 self.__digital_lsb_values = None
 self.__digital_values = None
 self.__power_supply_voltage = None

 if len(io_sample_payload) < IOSample.__MIN_IO_SAMPLE_PAYLOAD_LENGTH:
 raise ValueError("IO sample payload must be longer than 4.")

 self.__io_sample_payload = io_sample_payload

 if len(self.__io_sample_payload) % 2 != 0:
 self.__parse_raw_io_sample()
 else:
 self.__parse_io_sample()

 def __str__(self):
 string = "{"
 if self.has_digital_values():
 string += (''.join([
 self.__pattern.format(key=x, value=y)
 for x, y in self.__digital_values_map.items()]))
 if self.has_analog_values():
 string += (''.join([
 self.__pattern.format(key=x, value=y)
 for x, y in self.__analog_values_map.items()]))
 if self.has_power_supply_value():
 try:
 string += self.__pattern2.format(value=self.__power_supply_voltage)
 except OperationNotSupportedException:
 pass
 string += "}"

 return string.replace(", }", "}")

[docs] @staticmethod
 def min_io_sample_payload():
 """
 Returns the minimum IO sample payload length.

 Returns:
 Integer: The minimum IO sample payload length.
 """
 return IOSample.__MIN_IO_SAMPLE_PAYLOAD_LENGTH

 def __parse_raw_io_sample(self):
 """
 Parses the information contained in the IO sample bytes reading the
 value of each configured DIO and ADC. (802.15.4 only)
 """
 data_index = 3

 # Obtain the digital mask. # Available digital IOs in 802.15.4
 self.__digital_hsb_mask = self.__io_sample_payload[1] & 0x01 # 0 0 0 0 0 0 0 1
 self.__digital_lsb_mask = self.__io_sample_payload[2] & 0xFF # 1 1 1 1 1 1 1 1
 # Combine the masks.
 self.__digital_mask = (self.__digital_hsb_mask << 8) + self.__digital_lsb_mask
 # Obtain the analog mask.
 self.__analog_mask = ((self.__io_sample_payload[1] << 8) # Available analog IOs in 802.15.4
 + self.__io_sample_payload[2]) & 0x7E00 # 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

 # Read the digital values (if any). There are 9 possible digital lines in
 # 802.15.4 protocol. The digital mask indicates if there is any digital
 # line enabled to read its value. If 0, no digital values are received.
 if self.__digital_mask > 0:
 # Obtain the digital values.
 self.__digital_hsb_values = self.__io_sample_payload[3] & 0x7F
 self.__digital_lsb_values = self.__io_sample_payload[4] & 0xFF
 # Combine the values.
 self.__digital_values = (self.__digital_hsb_values << 8) + self.__digital_lsb_values

 for i in range(16):
 if not utils.is_bit_enabled(self.__digital_mask, i):
 continue
 if utils.is_bit_enabled(self.__digital_values, i):
 self.__digital_values_map[IOLine.get(i)] = IOValue.HIGH
 else:
 self.__digital_values_map[IOLine.get(i)] = IOValue.LOW

 # Increase the data index to read the analog values.
 data_index += 2

 # Read the analog values (if any). There are 6 possible analog lines.
 # The analog mask indicates if there is any analog line enabled to read
 # its value. If 0, no analog values are received.
 adc_index = 9
 while (len(self.__io_sample_payload) - data_index) > 1 and adc_index < 16:
 if not utils.is_bit_enabled(self.__analog_mask, adc_index):
 adc_index += 1
 continue

 # 802.15.4 protocol does not provide power supply value, so get
 # just the ADC data.
 self.__analog_values_map[IOLine.get(adc_index - 9)] = \
 ((self.__io_sample_payload[data_index] & 0xFF) << 8) \
 + (self.__io_sample_payload[data_index + 1] & 0xFF)
 # Increase the data index to read the next analog values.
 data_index += 2
 adc_index += 1

 def __parse_io_sample(self):
 """
 Parses the information contained in the IO sample bytes reading the
 value of each configured DIO and ADC.
 """
 data_index = 4

 # Obtain the digital masks. # Available digital IOs
 self.__digital_hsb_mask = self.__io_sample_payload[1] & 0x7F # 0 1 1 1 1 1 1 1
 self.__digital_lsb_mask = self.__io_sample_payload[2] & 0xFF # 1 1 1 1 1 1 1 1
 # Combine the masks.
 self.__digital_mask = (self.__digital_hsb_mask << 8) + self.__digital_lsb_mask
 # Obtain the analog mask. # Available analog IOs
 self.__analog_mask = self.__io_sample_payload[3] & 0xBF # 1 0 1 1 1 1 1 1

 # Read the digital values (if any). There are 16 possible digital lines.
 # The digital mask indicates if there is any digital line enabled to read
 # its value. If 0, no digital values are received.
 if self.__digital_mask > 0:
 # Obtain the digital values.
 self.__digital_hsb_values = self.__io_sample_payload[4] & 0x7F
 self.__digital_lsb_values = self.__io_sample_payload[5] & 0xFF
 # Combine the values.
 self.__digital_values = (self.__digital_hsb_values << 8) + self.__digital_lsb_values

 for i in range(16):
 if not utils.is_bit_enabled(self.__digital_mask, i):
 continue
 if utils.is_bit_enabled(self.__digital_values, i):
 self.__digital_values_map[IOLine.get(i)] = IOValue.HIGH
 else:
 self.__digital_values_map[IOLine.get(i)] = IOValue.LOW
 # Increase the data index to read the analog values.
 data_index += 2

 # Read the analog values (if any). There are 6 possible analog lines.
 # The analog mask indicates if there is any analog line enabled to read
 # its value. If 0, no analog values are received.
 adc_index = 0
 while (len(self.__io_sample_payload) - data_index) > 1 and adc_index < 8:
 if not utils.is_bit_enabled(self.__analog_mask, adc_index):
 adc_index += 1
 continue
 # When analog index is 7, it means that the analog value
 # corresponds to the power supply voltage, therefore this value
 # should be stored in a different value.
 if adc_index == 7:
 self.__power_supply_voltage = \
 (((self.__io_sample_payload[data_index] & 0xFF) << 8)
 + (self.__io_sample_payload[data_index + 1] & 0xFF))
 else:
 self.__analog_values_map[IOLine.get(adc_index)] = \
 ((self.__io_sample_payload[data_index] & 0xFF) << 8) + \
 (self.__io_sample_payload[data_index + 1] & 0xFF)
 # Increase the data index to read the next analog values.
 data_index += 2
 adc_index += 1

 @property
 def digital_hsb_mask(self):
 """
 Returns the High Significant Byte (HSB) of the digital mask.

 Returns:
 Integer: The HSB of the digital mask.
 """
 return self.__digital_hsb_mask

 @property
 def digital_lsb_mask(self):
 """
 Returns the Low Significant Byte (HSB) of the digital mask.

 Returns:
 Integer: The LSB of the digital mask.
 """
 return self.__digital_lsb_mask

 @property
 def digital_mask(self):
 """
 Returns the combined (HSB + LSB) of the digital mask.

 Returns:
 Integer: The digital mask.
 """
 return self.__digital_mask

 @property
 def digital_values(self):
 """
 Returns the digital values map.

 To verify if this sample contains a valid digital values, use the
 method :meth:`.IOSample.has_digital_values`.

 Returns:
 Dictionary: The digital values map.
 """
 return self.__digital_values_map.copy()

 @property
 def analog_mask(self):
 """
 Returns the analog mask.

 Returns:
 Integer: the analog mask.
 """
 return self.__analog_mask

 @property
 def analog_values(self):
 """
 Returns the analog values map.

 To verify if this sample contains a valid analog values, use the
 method :meth:`.IOSample.has_analog_values`.

 Returns:
 Dictionary: The analog values map.
 """
 return self.__analog_values_map.copy()

 @property
 def power_supply_value(self):
 """
 Returns the value of the power supply voltage.

 To verify if this sample contains the power supply voltage, use the
 method :meth:`.IOSample.has_power_supply_value`.

 Returns:
 Integer: The power supply value, `None` if the sample does not
 contain power supply value.
 """
 return self.__power_supply_voltage if self.has_power_supply_value() else None

[docs] def has_digital_values(self):
 """
 Checks whether the IOSample has digital values or not.

 Returns:
 Boolean: `True` if the sample has digital values, `False` otherwise.
 """
 return len(self.__digital_values_map) > 0

[docs] def has_digital_value(self, io_line):
 """
 Returns whether th IO sample contains a digital value for the provided
 IO line or not.

 Args:
 io_line (:class:`IOLine`): The IO line to check if it has a digital
 value.

 Returns:
 Boolean: `True` if the given IO line has a digital value, `False`
 otherwise.
 """
 return io_line in self.__digital_values_map.keys()

[docs] def has_analog_value(self, io_line):
 """
 Returns whether the given IOLine has an analog value or not.

 Returns:
 Boolean: `True` if the given IOLine has an analog value, `False`
 otherwise.
 """
 return io_line in self.__analog_values_map.keys()

[docs] def has_analog_values(self):
 """
 Returns whether the {@code IOSample} has analog values or not.

 Returns:
 Boolean. `True` if there are analog values, `False` otherwise.
 """
 return len(self.__analog_values_map) > 0

[docs] def has_power_supply_value(self):
 """
 Returns whether the IOSample has power supply value or not.

 Returns:
 Boolean. `True` if the given IOLine has a power supply value,
 `False` otherwise.
 """
 return (utils.is_bit_enabled(self.__analog_mask, 7)
 and self.__power_supply_voltage is not None)

[docs] def get_digital_value(self, io_line):
 """
 Returns the digital value of the provided IO line.

 To verify if this sample contains a digital value for the given
 :class:`.IOLine`, use the method :meth:`.IOSample.has_digital_value`.

 Args:
 io_line (:class:`.IOLine`): The IO line to get its digital value.

 Returns:
 :class:`.IOValue`: The :class:`.IOValue` of the given IO line or
 `None` if the IO sample does not contain a digital value for
 the given IO line.

 .. seealso::
 | :class:`.IOLine`
 | :class:`.IOValue`
 """
 if io_line in self.__digital_values_map:
 return self.__digital_values_map[io_line]
 return None

[docs] def get_analog_value(self, io_line):
 """
 Returns the analog value of the provided IO line.

 To verify if this sample contains an analog value for the given
 :class:`.IOLine`, use the method :meth:`.IOSample.has_analog_value`.

 Args:
 io_line (:class:`.IOLine`): The IO line to get its analog value.

 Returns:
 Integer: The analog value of the given IO line or `None` if the IO
 sample does not contain an analog value for the given IO line.

 .. seealso::
 | :class:`.IOLine`
 """
 if io_line in self.__analog_values_map:
 return self.__analog_values_map[io_line]
 return None

[docs]class IOMode(Enum):
 """
 Enumerates the different Input/Output modes that an IO line can be
 configured with.
 """

 DISABLED = 0
 """Disabled"""

 SPECIAL_FUNCTIONALITY = 1
 """Firmware special functionality"""

 PWM = 2
 """PWM output"""

 ADC = 2
 """Analog to Digital Converter"""

 DIGITAL_IN = 3
 """Digital input"""

 DIGITAL_OUT_LOW = 4
 """Digital output, Low"""

 DIGITAL_OUT_HIGH = 5
 """Digital output, High"""

 I2C_FUNCTIONALITY = 6
 """I2C functionality"""

 Source code for digi.xbee.profile

Copyright 2019-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

import fnmatch
import logging
import os
import shutil
import tempfile
import time

from enum import Enum, unique
from pathlib import Path
from xml.etree import ElementTree
from xml.etree.ElementTree import ParseError

import zipfile
import serial

from digi.xbee.firmware import UpdateConfigurer, EXTENSION_GBL, EXTENSION_XML, \
 EXTENSION_EBIN, EXTENSION_EHX2, EXTENSION_OTB, EXTENSION_OTA, \
 EXTENSION_EBL, update_local_firmware, update_remote_firmware
from digi.xbee.devices import XBeeDevice, RemoteXBeeDevice
from digi.xbee.exception import XBeeException, FirmwareUpdateException, \
 InvalidOperatingModeException
from digi.xbee.filesystem import LocalXBeeFileSystemManager, \
 FileSystemException, FileSystemNotSupportedException, check_fs_support, \
 XB3_MIN_FW_VERSION_FS_API_SUPPORT, update_remote_filesystem_image
from digi.xbee.models.atcomm import ATStringCommand
from digi.xbee.models.hw import HardwareVersion, LegacyHardwareVersion
from digi.xbee.models.mode import OperatingMode
from digi.xbee.models.protocol import XBeeProtocol
from digi.xbee.util import utils

_ERROR_TARGET_INVALID = "Invalid update target"
_ERROR_FS_NOT_SUPPORTED = "XBee device does not have file system support"
_ERROR_FW_FOLDER_NOT_EXIST = "Firmware folder does not exist"
_ERROR_FW_NOT_COMPATIBLE = "The XBee profile is not compatible with the device firmware"
_ERROR_FW_XML_INVALID = "Invalid firmware XML file contents: %s"
_ERROR_FW_XML_NOT_EXIST = "Firmware XML file does not exist"
_ERROR_FW_XML_PARSE = "Error parsing firmware XML file: %s"
_ERROR_HW_NOT_COMPATIBLE = "The XBee profile is not compatible with the device hardware"
_ERROR_OPEN_DEVICE = "Error opening XBee device: %s"
_ERROR_PROFILE_NOT_VALID = "The XBee profile is not valid"
_ERROR_PROFILE_INVALID = "Invalid XBee profile: %s"
_ERROR_PROFILE_PATH_INVALID = "Profile path '%s' is not valid"
_ERROR_PROFILE_READ = "Error reading profile: %s"
_ERROR_PROFILE_UNCOMPRESS = "Error opening profile: %s"
_ERROR_PROFILE_OPEN = "Error opening profile, unable to create temporary directory: %s"
_ERROR_PROFILE_XML_NOT_EXIST = "Profile XML file does not exist"
_ERROR_PROFILE_XML_INVALID = "Invalid profile XML file contents: %s"
_ERROR_PROFILE_XML_PARSE = "Error parsing profile XML file: %s"
_ERROR_READ_REMOTE_PARAMETER = "Error reading remote parameter: %s"
_ERROR_UPDATE_FS = "Error updating XBee filesystem: %s"
_ERROR_UPDATE_FW = "Error updating XBee firmware: %s"
_ERROR_UPDATE_SETTINGS = "Error updating XBee settings: %s"
_ERROR_PROTOCOL_CHANGE = "Cannot %s as the protocol changed and it is no" \
 " longer reachable"

_REMOTE_DEFAULT_TIMEOUT = 20 # Seconds
_LOCAL_DEFAULT_TIMEOUT = 3 # Seconds.

_LOCAL_FS_DIR = "filesystem"
_REMOTE_FS_DIR = "remote_filesystem"

_FW_DIR_NAME = "radio_fw"

_IPV4_SEPARATOR = "."
_IPV6_SEPARATOR = ":"

_PARAM_READ_RETRIES = 3
_PARAM_WRITE_RETRIES = 3
_PARAMS_SERIAL_PORT = [ATStringCommand.BD.command,
 ATStringCommand.NB.command,
 ATStringCommand.SB.command,
 ATStringCommand.D7.command]
_PARAMS_CACHE = [ATStringCommand.NI.command,
 ATStringCommand.CE.command,
 ATStringCommand.SM.command,
 ATStringCommand.BR.command, # This may affect the role
 ATStringCommand.MY.command]
_PARAMS_NETWORK = [ATStringCommand.ID.command,
 ATStringCommand.CH.command,
 ATStringCommand.HP.command,
 ATStringCommand.CM.command,
 ATStringCommand.BR.command,
 ATStringCommand.EE.command,
 ATStringCommand.KY.command]

_PROFILE_XML_FILE_NAME = "profile%s" % EXTENSION_XML

_TASK_CONNECT_FILESYSTEM = "Connecting with device filesystem"
_TASK_FORMAT_FILESYSTEM = "Formatting filesystem"
_TASK_UPDATE_FILE = "Updating file '%s'"
_TASK_UPDATE_SETTINGS = "Updating XBee settings"

_VALUE_CTS_ON = "1"

_WILDCARD_BOOTLOADER = "xb3-boot*%s" % EXTENSION_GBL
_WILDCARD_CELLULAR_FIRMWARE = "fw_.*"
_WILDCARD_CELLULAR_BOOTLOADER = "bl_.*"
_WILDCARD_XML = "*%s" % EXTENSION_XML
_WILDCARDS_FW_LOCAL_BINARY_FILES = (EXTENSION_EBIN, EXTENSION_EHX2, EXTENSION_GBL)
_WILDCARDS_FW_REMOTE_BINARY_FILES = (EXTENSION_OTA, EXTENSION_OTB, EXTENSION_EBL)

_XML_COMMAND = "command"
_XML_CONTROL_TYPE = "control_type"
_XML_DEFAULT_VALUE = "default_value"
_XML_FW_FIRMWARE = "firmware"
_XML_FW_FIRMWARE_VERSION = "fw_version"
_XML_FW_HARDWARE_VERSION = "firmware/hw_version"
_XML_COMPATIBILITY_NUMBER = "firmware/compatibility_number"
_XML_REGION_LOCK = "firmware/region"
_XML_FW_SETTING = ".//setting"
_XML_FORMAT = "format"
_XML_PROFILE_AT_SETTING = "profile/settings/setting"
_XML_PROFILE_DESC = "profile/description"
_XML_PROFILE_FLASH_FW_OPTION = "profile/flash_fw_action"
_XML_PROFILE_RESET_SETTINGS = "profile/reset_settings"
_XML_PROFILE_VERSION = "profile/profile_version"
_XML_PROFILE_XML_FW_FILE = "profile/description_file"

_log = logging.getLogger(__name__)

[docs]@unique
class FirmwareBaudrate(Enum):
 """
 This class lists the available firmware baudrate options for XBee Profiles.

 | Inherited properties:
 | **name** (String): The name of this `FirmwareBaudrate`.
 | **value** (Integer): The ID of this `FirmwareBaudrate`.
 """
 BD_1200 = (0x0, 1200)
 BD_2400 = (0x1, 2400)
 BD_4800 = (0x2, 4800)
 BD_9600 = (0x3, 9600)
 BD_19200 = (0x4, 19200)
 BD_38400 = (0x5, 38400)
 BD_57600 = (0x6, 57600)
 BD_115200 = (0x7, 115200)
 BD_230400 = (0x8, 230400)
 BD_460800 = (0x9, 460800)
 BD_921600 = (0xA, 921600)

 def __init__(self, index, baudrate):
 self.__index = index
 self.__baudrate = baudrate

 @classmethod
 def get(cls, index):
 """
 Returns the `FirmwareBaudrate` for the given index.

 Args:
 index (Integer): Index of the `FirmwareBaudrate` to get.

 Returns:
 :class:`.FirmwareBaudrate`: `FirmwareBaudrate` with the given
 index, `None` if there is not a `FirmwareBaudrate` with that
 index.
 """
 if index is None:
 return FirmwareBaudrate.BD_9600
 for value in FirmwareBaudrate:
 if value.index == index:
 return value

 return None

 @classmethod
 def get_by_baudrate(cls, baudrate):
 """
 Returns the `FirmwareBaudrate` for the given baudrate.

 Args:
 baudrate (Integer): Baudrate value of the `FirmwareBaudrate` to get.

 Returns:
 :class:`.FirmwareBaudrate`: `FirmwareBaudrate` with the given
 baudrate, `None` if there is not a `FirmwareBaudrate` with that
 baudrate.
 """
 if baudrate is None:
 return FirmwareBaudrate.BD_9600
 for value in FirmwareBaudrate:
 if value.baudrate == baudrate:
 return value

 return None

 @property
 def index(self):
 """
 Returns the index of the `FirmwareBaudrate` element.

 Returns:
 Integer: Index of the `FirmwareBaudrate` element.
 """
 return self.__index

 @property
 def baudrate(self):
 """
 Returns the baudrate of the `FirmwareBaudrate` element.

 Returns:
 Integer: Baudrate of the `FirmwareBaudrate` element.
 """
 return self.__baudrate

FirmwareBaudrate.__doc__ += utils.doc_enum(FirmwareBaudrate)

[docs]@unique
class FirmwareParity(Enum):
 """
 This class lists the available firmware parity options for XBee Profiles.

 | Inherited properties:
 | **name** (String): The name of this `FirmwareParity`.
 | **value** (Integer): The ID of this `FirmwareParity`.
 """
 NONE = (0, serial.PARITY_NONE)
 EVEN = (1, serial.PARITY_EVEN)
 ODD = (2, serial.PARITY_ODD)
 MARK = (3, serial.PARITY_MARK)
 SPACE = (4, serial.PARITY_SPACE)

 def __init__(self, index, parity):
 self.__index = index
 self.__parity = parity

 @classmethod
 def get(cls, index):
 """
 Returns the `FirmwareParity` for the given index.

 Args:
 index (Integer): the index of the `FirmwareParity` to get.

 Returns:
 :class:`.FirmwareParity`: `FirmwareParity` with the given index,
 `None` if there is not a `FirmwareParity` with that index.
 """
 if index is None:
 return FirmwareParity.NONE
 for value in FirmwareParity:
 if value.index == index:
 return value

 return None

 @classmethod
 def get_by_parity(cls, parity):
 """
 Returns the `FirmwareParity` for the given parity.

 Args:
 parity (String): Parity value of the `FirmwareParity` to get.

 Returns:
 :class:`.FirmwareParity`: `FirmwareParity` with the given parity,
 `None` if there is not a `FirmwareParity` with that parity.
 """
 if parity is None:
 return FirmwareParity.NONE
 for value in FirmwareParity:
 if value.parity == parity:
 return value

 return None

 @property
 def index(self):
 """
 Returns the index of the `FirmwareParity` element.

 Returns:
 Integer: Index of the `FirmwareParity` element.
 """
 return self.__index

 @property
 def parity(self):
 """
 Returns the parity of the `FirmwareParity` element.

 Returns:
 String: Parity of the `FirmwareParity` element.
 """
 return self.__parity

FirmwareParity.__doc__ += utils.doc_enum(FirmwareParity)

[docs]@unique
class FirmwareStopbits(Enum):
 """
 This class lists the available firmware stop bits options for XBee Profiles.

 | Inherited properties:
 | **name** (String): The name of this `FirmwareStopbits`.
 | **value** (Integer): The ID of this `FirmwareStopbits`.
 """
 SB_1 = (0, serial.STOPBITS_ONE)
 SB_2 = (1, serial.STOPBITS_TWO)
 SB_1_5 = (2, serial.STOPBITS_ONE_POINT_FIVE)

 def __init__(self, index, stop_bits):
 self.__index = index
 self.__stop_bits = stop_bits

 @classmethod
 def get(cls, index):
 """
 Returns the `FirmwareStopbits` for the given index.

 Args:
 index (Integer): Index of the `FirmwareStopbits` to get.

 Returns:
 :class:`.FirmwareStopbits`: `FirmwareStopbits` with the given
 index, `None` if there is not a `FirmwareStopbits` with that
 index.
 """
 if index is None:
 return FirmwareStopbits.SB_1
 for value in FirmwareStopbits:
 if value.index == index:
 return value

 return None

 @classmethod
 def get_by_stopbits(cls, stopbits):
 """
 Returns the `FirmwareStopbits` for the given number of stop bits.

 Args:
 stopbits (Integer): Stop bis value of the `FirmwareStopbits` to get.

 Returns:
 :class:`.FirmwareStopbits`: `FirmwareStopbits` with the given stop
 bits, `None` if there is not a `FirmwareStopbits` with that value.
 """
 if stopbits is None:
 return FirmwareStopbits.SB_1
 for value in FirmwareStopbits:
 if value.stop_bits == stopbits:
 return value

 return None

 @property
 def index(self):
 """
 Returns the index of the `FirmwareStopbits` element.

 Returns:
 Integer: Index of the `FirmwareStopbits` element.
 """
 return self.__index

 @property
 def stop_bits(self):
 """
 Returns the stop bits of the `FirmwareStopbits` element.

 Returns:
 Float: Stop bits of the `FirmwareStopbits` element.
 """
 return self.__stop_bits

FirmwareStopbits.__doc__ += utils.doc_enum(FirmwareStopbits)

[docs]@unique
class FlashFirmwareOption(Enum):
 """
 This class lists the available flash firmware options for XBee Profiles.

 | Inherited properties:
 | **name** (String): The name of this `FlashFirmwareOption`.
 | **value** (Integer): The ID of this `FlashFirmwareOption`.
 """
 FLASH_ALWAYS = (0, "Flash always")
 FLASH_DIFFERENT = (1, "Flash firmware if it is different")
 DONT_FLASH = (2, "Do not flash firmware")

 def __init__(self, code, description):
 self.__code = code
 self.__description = description

 @classmethod
 def get(cls, code):
 """
 Returns the `FlashFirmwareOption` for the given code.

 Args:
 code (Integer): Code of the flash firmware option to get.

 Returns:
 :class:`.FlashFirmwareOption`: `FlashFirmwareOption` with the
 given code, `None` if there is not a `FlashFirmwareOption` with
 that code.
 """
 for value in FlashFirmwareOption:
 if value.code == code:
 return value

 return None

 @property
 def code(self):
 """
 Returns the code of the `FlashFirmwareOption` element.

 Returns:
 Integer: Code of the `FlashFirmwareOption` element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the `FlashFirmwareOption` element.

 Returns:
 String: Description of the `FlashFirmwareOption` element.
 """
 return self.__description

FlashFirmwareOption.__doc__ += utils.doc_enum(FlashFirmwareOption)

[docs]@unique
class XBeeSettingType(Enum):
 """
 This class lists the available firmware setting types.

 | Inherited properties:
 | **name** (String): The name of this `XBeeSettingType`.
 | **value** (Integer): The ID of this `XBeeSettingType`.
 """
 NUMBER = ("number", "Number")
 COMBO = ("combo", "Combo")
 TEXT = ("text", "Text")
 BUTTON = ("button", "Button")
 NO_TYPE = ("none", "No type")

 def __init__(self, tag, description):
 self.__tag = tag
 self.__description = description

 @classmethod
 def get(cls, tag):
 """
 Returns the `XBeeSettingType` for the given tag.

 Args:
 tag (String): Tag of the `XBeeSettingType` to get.

 Returns:
 :class:`.XBeeSettingType`: `XBeeSettingType` with the given tag,
 `None` if there is not a `XBeeSettingType` with that tag.
 """
 for value in XBeeSettingType:
 if value.tag == tag:
 return value

 return None

 @property
 def tag(self):
 """
 Returns the tag of the `XBeeSettingType` element.

 Returns:
 String: Tag of the `XBeeSettingType` element.
 """
 return self.__tag

 @property
 def description(self):
 """
 Returns the description of the `XBeeSettingType` element.

 Returns:
 String: Description of the `XBeeSettingType` element.
 """
 return self.__description

XBeeSettingType.__doc__ += utils.doc_enum(XBeeSettingType)

[docs]@unique
class XBeeSettingFormat(Enum):
 """
 This class lists the available text firmware setting formats.

 | Inherited properties:
 | **name** (String): The name of this `XBeeSettingFormat`.
 | **value** (Integer): The ID of this `XBeeSettingFormat`.
 """
 HEX = ("HEX", "Hexadecimal")
 ASCII = ("ASCII", "ASCII")
 IPV4 = ("IPV4", "IPv4")
 IPV6 = ("IPV6", "IPv6")
 PHONE = ("PHONE", "phone")
 NO_FORMAT = ("none", "No format")

 def __init__(self, tag, description):
 self.__tag = tag
 self.__description = description

 @classmethod
 def get(cls, tag):
 """
 Returns the `XBeeSettingFormat` for the given tag.

 Args:
 tag (String): Tag of the `XBeeSettingFormat` to get.

 Returns:
 :class:`.XBeeSettingFormat`: `XBeeSettingFormat` with the given
 tag, `None` if there is not a `XBeeSettingFormat` with that tag.
 """
 for value in XBeeSettingFormat:
 if value.tag == tag:
 return value

 return None

 @property
 def tag(self):
 """
 Returns the tag of the `XBeeSettingFormat` element.

 Returns:
 String: Tag of the `XBeeSettingFormat` element.
 """
 return self.__tag

 @property
 def description(self):
 """
 Returns the description of the `XBeeSettingFormat` element.

 Returns:
 String: Description of the `XBeeSettingFormat` element.
 """
 return self.__description

XBeeSettingFormat.__doc__ += utils.doc_enum(XBeeSettingFormat)

[docs]class XBeeProfileSetting:
 """
 This class represents an XBee profile setting and provides information like
 the setting name, type, format and value.
 """

 def __init__(self, name, setting_type, setting_format, value):
 """
 Class constructor. Instantiates a new :class:`.XBeeProfileSetting`
 with the given parameters.

 Args:
 name (String): Setting name.
 setting_type (:class:`.XBeeSettingType`): Setting type.
 setting_format (:class:`.XBeeSettingType`): Setting format.
 value (String): Setting value.
 """
 self._name = name
 self._type = setting_type
 self._format = setting_format
 self._value = value
 self._bytearray_value = self._setting_value_to_bytearray()

 def _setting_value_to_bytearray(self):
 """
 Transforms the setting value to a byte array to be written in the XBee.

 Returns:
 (Bytearray): Setting value formatted as byte array
 """
 if self._type in (XBeeSettingType.COMBO, XBeeSettingType.NUMBER):
 return utils.hex_string_to_bytes(self._value)
 if self._type is XBeeSettingType.TEXT:
 if self._format in (XBeeSettingFormat.ASCII, XBeeSettingFormat.PHONE):
 return bytearray(self._value, encoding='utf8')
 if self._format in (XBeeSettingFormat.HEX, XBeeSettingFormat.NO_FORMAT):
 return utils.hex_string_to_bytes(self._value)
 if self._format is XBeeSettingFormat.IPV4:
 octets = list(map(int, self._value.split(_IPV4_SEPARATOR)))
 return bytearray(octets)
 if (self._format is XBeeSettingFormat.IPV6
 and _IPV6_SEPARATOR in self._value):
 return bytearray(self._value, encoding='utf8')
 elif self._type in (XBeeSettingType.BUTTON, XBeeSettingType.NO_TYPE):
 return bytearray(0)

 return self._value

 @property
 def name(self):
 """
 Returns the XBee setting name.

 Returns:
 String: XBee setting name.
 """
 return self._name

 @property
 def type(self):
 """
 Returns the XBee setting type.

 Returns:
 :class:`.XBeeSettingType`: XBee setting type.
 """
 return self._type

 @property
 def format(self):
 """
 Returns the XBee setting format.

 Returns:
 :class:`.XBeeSettingFormat`: XBee setting format.
 """
 return self._format

 @property
 def value(self):
 """
 Returns the XBee setting value as string.

 Returns:
 String: XBee setting value as string.
 """
 return self._value

 @property
 def bytearray_value(self):
 """
 Returns the XBee setting value as bytearray to be set in the device.

 Returns:
 Bytearray: XBee setting value as bytearray to be set in the device.
 """
 return self._bytearray_value

[docs]class ReadProfileException(XBeeException):
 """
 This exception will be thrown when any problem reading the XBee profile
 occurs.

 All functionality of this class is the inherited from `Exception
 <https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception>`_.
 """

[docs]class UpdateProfileException(XBeeException):
 """
 This exception will be thrown when any problem updating the XBee profile
 into a device occurs.

 All functionality of this class is the inherited from `Exception
 <https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception>`_.
 """

[docs]class XBeeProfile:
 """
 Helper class used to manage serial port break line in a parallel thread.
 """

 def __init__(self, profile_file):
 """
 Class constructor. Instantiates a new :class:`.XBeeProfile` with the
 given parameters.

 Args:
 profile_file (String): Path of the '.xpro' profile file.

 Raises:
 ProfileReadException: If there is any error reading the profile file.
 ValueError: If the provided profile file is not valid
 """
 if not os.path.isfile(profile_file):
 raise ValueError(_ERROR_PROFILE_PATH_INVALID % profile_file)
 self._profile_file = profile_file
 self._profile_xml_file = None
 self._fw_xml_filename = None

 self._profile_dir = None
 self._fw_xml_file = None
 self._fs_path = None
 self._remote_fs_image = None
 self._bootloader_file = None
 self._cellular_fw_files = []
 self._cellular_bootloader_files = []

 self._version = 0
 self._flash_fw_option = FlashFirmwareOption.FLASH_DIFFERENT
 self._description = None
 self._reset_settings = True
 self._raw_settings = {}
 self._profile_settings = {}
 self._fw_version = None
 self._hw_version = None
 self._compatibility_number = None
 self._region_lock = None
 self._has_local_fs = False
 self._has_remote_fs = False
 self._has_local_fw = False
 self._has_remote_fw = False
 self._protocol = XBeeProtocol.UNKNOWN

 self._initialize_profile()

 self._profile_dir = None
 self._profile_xml_file = None
 self._fw_xml_file = None
 self._fs_path = None
 self._remote_fs_image = None
 self._bootloader_file = None
 self._cellular_fw_files = []
 self._cellular_bootloader_files = []

[docs] def open(self):
 """
 Opens the profile so its components are accessible from properties
 `firmware_description_file`, `file_system_path`,
 `remote_file_system_image`, and `bootloader_file`.

 The user is responsible for closing the profile when done with it.

 Raises:
 ProfileReadException: If there is any error opening the profile.

 .. seealso::
 | :meth:`.close`
 | :meth:`.is_open`
 """
 # If already open, just return
 if self._profile_dir:
 return
 try:
 self._profile_dir = tempfile.mkdtemp()
 except (PermissionError, FileExistsError) as exc:
 self._throw_read_exception(_ERROR_PROFILE_OPEN % str(exc))

 _log.debug("Extracting profile into '%s'", self._profile_dir)
 try:
 with zipfile.ZipFile(self._profile_file, "r") as zip_ref:
 zip_ref.extractall(self._profile_dir)
 except (zipfile.BadZipFile, zipfile.LargeZipFile) as exc:
 self.close()
 self._throw_read_exception(_ERROR_PROFILE_UNCOMPRESS % str(exc))
 # Fill paths.
 firmware_path = Path(os.path.join(self._profile_dir, _FW_DIR_NAME))
 # Firmware XML file.
 self._fw_xml_file = os.path.join(firmware_path, self._fw_xml_filename)
 # Profile XML file.
 self._profile_xml_file = os.path.join(self._profile_dir, _PROFILE_XML_FILE_NAME)
 # Local filesystem folder.
 if self._has_local_fs:
 self._fs_path = os.path.join(self._profile_dir, _LOCAL_FS_DIR)
 # Remote filesystem OTA file.
 if self._has_remote_fs:
 self._remote_fs_image = os.path.join(
 self._profile_dir, _LOCAL_FS_DIR,
 os.listdir(os.path.join(self._profile_dir, _LOCAL_FS_DIR))[0])
 # Bootloader file.
 if len(list(firmware_path.rglob(_WILDCARD_BOOTLOADER))) != 0:
 self._bootloader_file = str(
 list(firmware_path.rglob(_WILDCARD_BOOTLOADER))[0])
 # Cellular firmware files.
 for file in list(firmware_path.rglob(_WILDCARD_CELLULAR_FIRMWARE)):
 self._cellular_fw_files.append(str(file))
 # Cellular bootloader files.
 for file in list(firmware_path.rglob(_WILDCARD_CELLULAR_BOOTLOADER)):
 self._cellular_bootloader_files.append(str(file))

 return self._profile_dir

[docs] def close(self):
 """
 Closes the profile. Its components are no more accessible.

 .. seealso::
 | :meth:`.open`
 | :meth:`.is_open`
 """
 if self._profile_dir and os.path.isdir(self._profile_dir):
 shutil.rmtree(self._profile_dir)

 self._profile_dir = None
 self._profile_xml_file = None
 self._fw_xml_file = None
 self._fs_path = None
 self._remote_fs_image = None
 self._bootloader_file = None
 self._cellular_fw_files.clear()
 self._cellular_bootloader_files.clear()

[docs] def is_open(self):
 """
 Returns `True` if the profile is opened, `False` otherwise.

 .. seealso::
 | :meth:`.open`
 | :meth:`.close`
 """
 return self._profile_dir is not None

[docs] def get_setting_default_value(self, setting_name):
 """
 Returns the default value of the given firmware setting.

 Args:
 setting_name (String or :class:`.ATStringCommand`): Name of the
 setting to retrieve its default value.

 Returns:
 String: Default value of the setting, `None` if the setting is not
 found or it has no default value.
 """
 if isinstance(setting_name, ATStringCommand):
 setting_name = setting_name.command

 try:
 with zipfile.ZipFile(self._profile_file, "r") as zip_file:
 xml_file = zip_file.open(os.path.join(_FW_DIR_NAME, self._fw_xml_filename))
 fw_root = ElementTree.parse(xml_file).getroot()
 for fw_setting_element in fw_root.findall(_XML_FW_SETTING):
 if fw_setting_element.get(_XML_COMMAND) != setting_name:
 continue
 def_value_element = fw_setting_element.find(_XML_DEFAULT_VALUE)
 if def_value_element is None:
 return None
 return def_value_element.text
 except (ParseError, zipfile.BadZipFile, zipfile.LargeZipFile) as exc:
 _log.exception(exc)

 return None

 def _parse_xml_profile_file(self, zip_file):
 """
 Parses the XML profile file and stores the required parameters.

 Args:
 zip_file (ZipFile): Profile read as zip file.

 Raises:
 ProfileReadException: If there is any error parsing the XML
 profile file.
 """
 _log.debug("Parsing XML profile file")
 try:
 root = ElementTree.parse(zip_file.open(_PROFILE_XML_FILE_NAME)).getroot()
 # XML firmware file. Mandatory.
 fw_xml_file_element = root.find(_XML_PROFILE_XML_FW_FILE)
 if fw_xml_file_element is None:
 self._throw_read_exception(_ERROR_PROFILE_XML_INVALID
 % "missing firmware file element")
 self._fw_xml_filename = fw_xml_file_element.text
 # Store XML firmware file name.
 self._fw_xml_file = os.path.join(_FW_DIR_NAME, self._fw_xml_filename)
 _log.debug(" - XML firmware file: %s", self._fw_xml_file)
 # Version. Optional.
 version_element = root.find(_XML_PROFILE_VERSION)
 if version_element is not None:
 self._version = int(version_element.text)
 _log.debug(" - Version: %d", self._version)
 # Flash firmware option. Required.
 flash_fw_element = root.find(_XML_PROFILE_FLASH_FW_OPTION)
 if flash_fw_element is not None:
 self._flash_fw_option = FlashFirmwareOption.get(int(flash_fw_element.text))
 if self._flash_fw_option is None:
 self._throw_read_exception(
 _ERROR_PROFILE_XML_INVALID % "invalid flash firmware option")
 _log.debug(" - Flash firmware option: %s", self._flash_fw_option.description)
 # Description. Optional.
 description_element = root.find(_XML_PROFILE_DESC)
 if description_element is not None:
 self._description = description_element.text
 _log.debug(" - Description: %s", self._description)
 # Reset settings. Optional.
 reset_settings_element = root.find(_XML_PROFILE_RESET_SETTINGS)
 if reset_settings_element is not None:
 self._reset_settings = reset_settings_element.text in ("True", "true", "1")
 _log.debug(" - Reset settings: %s", self._reset_settings)
 # Read AT settings.
 setting_elements = root.findall(_XML_PROFILE_AT_SETTING)
 if not setting_elements:
 return
 for setting_element in setting_elements:
 setting_name = setting_element.get(_XML_COMMAND)
 setting_value = setting_element.text
 self._raw_settings[setting_name] = setting_value
 except ParseError as exc:
 self._throw_read_exception(_ERROR_PROFILE_XML_PARSE % str(exc))

 def _initialize_profile(self):
 """
 Initializes the profile information by checking its integrity and
 parsing the XML files.

 Raises:
 ProfileReadException: If there is any error checking the profile
 integrity.
 """
 try:
 with zipfile.ZipFile(self._profile_file, "r") as zip_file:
 self._check_profile_integrity(zip_file)
 self._parse_xml_profile_file(zip_file)
 self._parse_xml_firmware_file(zip_file)
 files = [name for name in zip_file.namelist() if
 name.endswith(_WILDCARDS_FW_LOCAL_BINARY_FILES)]
 self._has_local_fw = bool(files)
 files = [name for name in zip_file.namelist() if
 name.endswith(_WILDCARDS_FW_REMOTE_BINARY_FILES)]
 self._has_remote_fw = bool(files)
 except Exception as exc:
 self._throw_read_exception(_ERROR_PROFILE_READ % str(exc))

 def _check_profile_integrity(self, zip_file):
 """
 Checks the profile integrity.

 Args:
 zip_file (ZipFile): Profile read as zip file.

 Raises:
 ProfileReadException: If there is any error checking the profile
 integrity.
 """
 # Profile XML file.
 files = list(map(lambda f: f.filename, zip_file.filelist))
 # Profile XML file.
 if _PROFILE_XML_FILE_NAME not in files:
 self._throw_read_exception(_ERROR_PROFILE_XML_NOT_EXIST)
 # Firmware folder.
 if not any(f.startswith(_FW_DIR_NAME) for f in files):
 self._throw_read_exception(_ERROR_FW_FOLDER_NOT_EXIST)
 # Firmware XML file.
 if len(fnmatch.filter(files, _FW_DIR_NAME + _WILDCARD_XML)) == 0:
 self._throw_read_exception(_ERROR_FW_XML_NOT_EXIST)
 # Check local file system.
 self._has_local_fs = any(f.startswith(_LOCAL_FS_DIR) for f in files)
 # Check remote file system.
 self._has_remote_fs = any(f.startswith(_REMOTE_FS_DIR) for f in files)

 def _parse_xml_firmware_file(self, zip_file):
 """
 Parses the XML firmware file and stores the required parameters.

 Args:
 zip_file (ZipFile): Profile read as zip file.

 Raises:
 ProfileReadException: If there is any error parsing the XML
 firmware file.
 """
 _log.debug("Parsing XML firmware file %s:", self._fw_xml_file)
 try:
 root = ElementTree.parse(zip_file.open(self._fw_xml_file)).getroot()
 # Firmware version.
 element = root.find(_XML_FW_FIRMWARE)
 if element is None:
 self._throw_read_exception(
 _ERROR_FW_XML_INVALID % "missing firmware element")
 self._fw_version = int(element.get(_XML_FW_FIRMWARE_VERSION), 16)
 if self._fw_version is None:
 self._throw_read_exception(
 _ERROR_FW_XML_INVALID % "missing firmware version")
 _log.debug(" - Firmware version: %s",
 utils.hex_to_string([self._fw_version], pretty=False))
 # Hardware version.
 element = root.find(_XML_FW_HARDWARE_VERSION)
 if element is None:
 self._throw_read_exception(
 _ERROR_FW_XML_INVALID % "missing hardware version element")
 try:
 self._hw_version = int(element.text, 16)
 except ValueError:
 self._hw_version = LegacyHardwareVersion.get_by_letter(
 element.text).code if \
 LegacyHardwareVersion.get_by_letter(element.text) else None
 _log.debug(" - Hardware version: %s",
 utils.hex_to_string([self._hw_version], pretty=False))
 # Compatibility number.
 element = root.find(_XML_COMPATIBILITY_NUMBER)
 if element is None:
 self._compatibility_number = None
 else:
 self._compatibility_number = int(element.text)
 _log.debug(" - Compatibility number: %d", self._compatibility_number)
 # Region lock, required.
 element = root.find(_XML_REGION_LOCK)
 if element is None:
 self._region_lock = None
 else:
 self._region_lock = int(element.text)
 # 99: Unknown region
 if self._region_lock == 99:
 fw_version_str = utils.hex_to_string(
 utils.int_to_bytes(self._fw_version, num_bytes=2), pretty=False)
 if len(fw_version_str) != 4:
 # 0: All regions
 self._region_lock = 0
 else:
 self._region_lock = int(fw_version_str[1:2], base=0)
 _log.debug(" - Region lock: %d", self._region_lock)
 # Determine protocol.
 br_value = self._raw_settings.get(ATStringCommand.BR.command, None)
 if br_value is None:
 br_value = 1 # It may be different but for the protocol it does not matter
 self._protocol = XBeeProtocol.determine_protocol(
 self._hw_version, utils.int_to_bytes(self._fw_version), br_value=int(br_value))
 _log.debug(" - Protocol: %s",
 self._protocol.description if self.protocol else "None")
 # Parse AT settings.
 _log.debug(" - AT settings:")
 if not self._raw_settings:
 _log.debug(" - None")
 return
 for name, value in self._raw_settings.items():
 for setting_element in root.findall(_XML_FW_SETTING):
 if setting_element.get(_XML_COMMAND) != name:
 continue
 type_element = setting_element.find(_XML_CONTROL_TYPE)
 setting_type = XBeeSettingType.NO_TYPE
 if type_element is not None:
 setting_type = XBeeSettingType.get(type_element.text)
 format_element = setting_element.find(_XML_FORMAT)
 setting_format = XBeeSettingFormat.NO_FORMAT
 if format_element is not None:
 setting_format = XBeeSettingFormat.get(format_element.text)
 profile_setting = XBeeProfileSetting(
 name.upper(), setting_type, setting_format, value)
 _log.debug(
 " - Setting '%s' - type: %s - format: %s - value: %s",
 profile_setting.name, profile_setting.type.description,
 profile_setting.format.description, profile_setting.value)
 self._profile_settings.update({profile_setting.name: profile_setting})
 except ParseError as exc:
 self._throw_read_exception(_ERROR_FW_XML_PARSE % str(exc))

 @staticmethod
 def _throw_read_exception(message):
 """
 Throws an XBee profile read exception with the given message and logs it.

 Args:
 message (String): Exception message

 Raises:
 ProfileReadException: Exception thrown wit the given message.
 """
 _log.error("ERROR: %s", message)
 raise ReadProfileException(message)

 @property
 def profile_file(self):
 """
 Returns the profile file.

 Returns:
 String: Profile file.
 """
 return self._profile_file

 @property
 def version(self):
 """
 Returns the profile version.

 Returns:
 String: Profile version.
 """
 return self._version

 @property
 def flash_firmware_option(self):
 """
 Returns the profile flash firmware option.

 Returns:
 :class:`.FlashFirmwareOption`: Profile flash firmware option.

 .. seealso::
 | :class:`.FlashFirmwareOption`
 """
 return self._flash_fw_option

 @property
 def description(self):
 """
 Returns the profile description.

 Returns:
 String: Profile description.
 """
 return self._description

 @property
 def reset_settings(self):
 """
 Returns whether the settings of the XBee will be reset before applying
 the profile ones or not.

 Returns:
 Boolean: `True` if the settings of the XBee will be reset before
 applying the profile ones, `False` otherwise.
 """
 return self._reset_settings

 @property
 def has_local_filesystem(self):
 """
 Returns whether the profile has local filesystem information or not.

 Returns:
 Boolean: `True` if the profile has local filesystem information,
 `False` otherwise.
 """
 return self._has_local_fs

 @property
 def has_remote_filesystem(self):
 """
 Returns whether the profile has remote filesystem information or not.

 Returns:
 Boolean: `True` if the profile has remote filesystem information,
 `False` otherwise.
 """
 return self._has_remote_fs

 @property
 def has_filesystem(self):
 """
 Returns whether the profile has filesystem information (local or
 remote) or not.

 Returns:
 Boolean: `True` if the profile has filesystem information (local or
 remote), `False` otherwise.
 """
 return self._has_local_fs or self._has_remote_fs

 @property
 def has_local_firmware_files(self):
 """
 Returns whether the profile has local firmware binaries.

 Returns:
 Boolean: `True` if the profile has local firmware files,
 `False` otherwise.
 """
 return self._has_local_fw

 @property
 def has_remote_firmware_files(self):
 """
 Returns whether the profile has remote firmware binaries.

 Returns:
 Boolean: `True` if the profile has remote firmware files,
 `False` otherwise.
 """
 return self._has_remote_fw

 @property
 def has_firmware_files(self):
 """
 Returns whether the profile has firmware binaries (local or remote).

 Returns:
 Boolean: `True` if the profile has local or remote firmware files,
 `False` otherwise.
 """
 return self.has_local_firmware_files or self.has_remote_firmware_files

 @property
 def profile_settings(self):
 """
 Returns all the firmware settings that the profile configures.

 Returns:
 Dict: List with all the firmware settings that the profile
 configures (:class:`.XBeeProfileSetting`).
 """
 return self._profile_settings

 @property
 def firmware_version(self):
 """
 Returns the compatible firmware version of the profile.

 Returns:
 Integer: Compatible firmware version of the profile.
 """
 return self._fw_version

 @property
 def hardware_version(self):
 """
 Returns the compatible hardware version of the profile.

 Returns:
 Integer: Compatible hardware version of the profile.
 """
 return self._hw_version

 @property
 def compatibility_number(self):
 """
 Returns the compatibility number of the profile.

 Returns:
 Integer: The compatibility number, `None` if not defined.
 """
 return self._compatibility_number

 @property
 def region_lock(self):
 """
 Returns the region lock of the profile.

 Returns:
 Integer: The region lock, `None` if not defined.
 """
 return self._region_lock

 @property
 def profile_description_file(self):
 """
 Returns the path of the profile description file.

 Returns:
 String: Path of the profile description file.
 """
 return self._profile_xml_file

 @property
 def firmware_description_file(self):
 """
 Returns the path of the profile firmware description file.

 Returns:
 String: Path of the profile firmware description file.
 """
 return self._fw_xml_file

 @property
 def file_system_path(self):
 """
 Returns the profile file system path.
 `None` until the profile is extracted.

 Returns:
 String: Path of the profile file system directory.
 """
 return self._fs_path

 @property
 def remote_file_system_image(self):
 """
 Returns the path of the remote OTA file system image.
 `None` until the profile is extracted.

 Returns:
 String: Path of the remote OTA file system image.
 """
 return self._remote_fs_image

 @property
 def bootloader_file(self):
 """
 Returns the profile bootloader file path.
 `None` until the profile is extracted.

 Returns:
 String: Path of the profile bootloader file.
 """
 return self._bootloader_file

 @property
 def protocol(self):
 """
 Returns the profile XBee protocol.

 Returns:
 XBeeProtocol: Profile XBee protocol.
 """
 return self._protocol

 @protocol.setter
 def protocol(self, protocol):
 """
 Sets the profile XBee protocol.

 Args:
 protocol (:class: `.XBeeProtocol`): Profile XBee protocol.
 """
 self._protocol = protocol

class _UpdateConfigurer:
 """
 Class to store and restore an XBee configuration for the update process.
 """

 def __init__(self, node, timeout=None, callback=None):
 """
 Class constructor. Instantiates a new :class:`._UpdateConfigurer` with
 the given parameters.

 Args:
 node (:class:`.AbstractXBeeDevice`): Target being updated.
 timeout (Integer, optional, default=`None`): Operations timeout.
 callback (Function): Function to notify about the progress.
 """
 self._configurer = UpdateConfigurer(node, timeout=timeout, callback=callback)
 self._xbee = node

 @property
 def cmd_dict(self):
 """
 Returns the dictionary to store values to be configured at the end
 of the update process.

 Returns:
 Dictionary: The dictionary with the values to restore at the end
 of the process.
 """
 return self._configurer.cmd_dict

 def prepare_for_update(self):
 """
 Prepares the node for an update process. This implies to store some
 configuration values so they can be restored later.
 """
 self._configurer.prepare_for_update(restore_later=True)

 def restore_after_update(self, net_changed, protocol_changed_by_settings, port_settings):
 """
 Restores the node configuration.

 Args:
 net_changed (Boolean): `True` if any network parameter has changed
 after the update, `False` otherwise.
 protocol_changed_by_settings (Boolean): `True` if the protocol of
 the node changed after the update, `False` otherwise.
 port_settings (Dictionary): Dictionary with the serial port
 configuration after applying settings, `None` for remote node
 or if the serial config has not changed.
 """
 self._configurer.restore_total = self._configurer.restore_total + 3

 self._configurer.progress_cb(self._configurer.TASK_RESTORE)

 ap_val = self._configurer.cmd_dict.get(self._xbee, {}).pop(ATStringCommand.AP, None)
 # Restore AP mode only for local XBees and valid operating modes.
 # If the value is not 1 (API mode) or 2 (escaped API mode)
 restore_ap = (ap_val and not self._xbee.is_remote()
 and ap_val[0] != self._xbee.operating_mode.code
 and (ap_val[0] in (OperatingMode.API_MODE.code,
 OperatingMode.ESCAPED_API_MODE.code)))
 if restore_ap:
 self._configurer.cmd_dict.get(self._xbee, {}).update({ATStringCommand.AP: ap_val})

 self._configurer.progress_cb(self._configurer.TASK_RESTORE)

 self._configurer.restore_after_update(
 restore_settings=not self._xbee.is_remote() or not protocol_changed_by_settings,
 port_settings=port_settings)

 # Check if network or cache settings have changed.
 if net_changed or protocol_changed_by_settings:
 if not self._xbee.is_remote():
 # Clear the full network as it is no longer valid.
 self._xbee.get_network().clear()
 else:
 # Remove node from the network as it might be no longer part of it.
 self._xbee.get_local_xbee_device().get_network(). \
 remove_device(self._xbee)

 self._configurer.progress_cb(self._configurer.TASK_RESTORE,
 done=self._configurer.restore_total)

class _ProfileUpdater:
 """
 Helper class used to handle the update XBee profile process.
 """

 def __init__(self, target, xbee_profile, timeout=None, progress_callback=None):
 """
 Class constructor. Instantiates a new :class:`._ProfileUpdater` with
 the given parameters.

 Args:
 target (String or :class:`.AbstractXBeeDevice`): Target to apply
 profile to. String: serial port identifier.
 :class:`.AbstractXBeeDevice`: XBee to apply the profile.
 xbee_profile (:class:`.XBeeProfile`): XBee profile to apply.
 timeout (Integer, optional): Maximum time to wait for target
 read operations during the apply profile.
 progress_callback (Function, optional): Function to execute to
 receive progress information. Receives two arguments:

 * The current update task as a String
 * The current update task percentage as an Integer
 """
 self._profile = xbee_profile
 self._target = target
 self._xbee = None
 self._configurer = None
 if not isinstance(target, str):
 self._xbee = target
 self._configurer = _UpdateConfigurer(self._xbee, timeout=timeout,
 callback=progress_callback)
 self._timeout = timeout
 self._progress_callback = progress_callback
 self._was_connected = True
 self._device_fw_version = None
 self._device_hw_version = None
 self._protocol_changed_by_fw = False
 self._is_local = bool(not isinstance(self._xbee, RemoteXBeeDevice))

 @property
 def progress_cb(self):
 """
 Retrieves the function to receive progress information.

 Returns:
 Function: The function to receive progress info.
 """
 return self._progress_callback

 def _progress_callback(self, task, percent):
 """
 Receives update progress information.

 Args:
 task (String): Current update task.
 percent (Integer): Current update progress percent.
 """
 if self._progress_callback is not None:
 self._progress_callback(task, percent)

 def _update_firmware(self):
 """
 Updates the XBee device firmware.

 Raises:
 UpdateProfileException: If there is any error updating the XBee
 firmware.
 """
 _log.info("%s - Updating XBee firmware",
 self._xbee if self._xbee is not None else self._target)
 try:
 if self._xbee and self._xbee.is_remote():
 if not self._profile.has_remote_firmware_files:
 raise UpdateProfileException(
 _ERROR_UPDATE_FW % "Profile does not contain remote firmware")
 update_remote_firmware(
 self._xbee, self._profile.firmware_description_file,
 bootloader_file=self._profile.bootloader_file, timeout=self._timeout,
 max_block_size=self._xbee.get_ota_max_block_size(),
 progress_callback=self._progress_callback, _prepare=False)
 else:
 if not self._profile.has_local_firmware_files:
 raise UpdateProfileException(
 _ERROR_UPDATE_FW % "Profile does not contain local firmware")
 update_local_firmware(
 self._target, self._profile.firmware_description_file,
 bootloader_firmware_file=self._profile.bootloader_file,
 timeout=self._timeout, progress_callback=self._progress_callback)
 except FirmwareUpdateException as exc:
 raise UpdateProfileException(_ERROR_UPDATE_FW % str(exc))

 def _check_port_settings_changed(self):
 """
 Checks whether the port settings of the device have changed in order
 to update serial port connection.

 Returns:
 Dictionary: A dictionary with the new serial port configuration,
 `None` if no serial parameter has changed.

 Raises:
 UpdateProfileException: If there is any error checking serial port
 settings changes.
 """
 port_params = self._xbee.serial_port.get_settings()
 baudrate_changed = False
 parity_changed = False
 stop_bits_changed = False
 cts_flow_control_changed = False
 for setting in self._profile.profile_settings.values():
 if setting.name.upper() not in _PARAMS_SERIAL_PORT:
 continue
 if setting.name.upper() == ATStringCommand.BD.command:
 baudrate_changed = True
 port_params["baudrate"] = FirmwareBaudrate.get(
 int(setting.value, 16)).baudrate
 elif setting.name.upper() == ATStringCommand.NB.command:
 parity_changed = True
 port_params["parity"] = FirmwareParity.get(
 int(setting.value, 16)).parity
 elif setting.name.upper() == ATStringCommand.SB.command:
 stop_bits_changed = True
 port_params["stopbits"] = FirmwareStopbits.get(
 int(setting.value, 16)).stop_bits
 elif setting.name.upper() == ATStringCommand.D7.command:
 cts_flow_control_changed = True
 port_params["rtscts"] = bool(setting.value == _VALUE_CTS_ON)
 if self._profile.reset_settings or isinstance(self._target, str):
 if not baudrate_changed:
 baudrate_changed = True
 default_baudrate = self._profile.get_setting_default_value(
 ATStringCommand.BD.command)
 port_params["baudrate"] = FirmwareBaudrate.get(
 int(default_baudrate, 16)).baudrate
 if not parity_changed:
 parity_changed = True
 default_parity = self._profile.get_setting_default_value(
 ATStringCommand.NB.command)
 port_params["parity"] = FirmwareParity.get(
 int(default_parity, 16)).parity
 if not stop_bits_changed:
 stop_bits_changed = True
 default_stop_bits = self._profile.get_setting_default_value(
 ATStringCommand.SB.command)
 port_params["stopbits"] = FirmwareStopbits.get(
 int(default_stop_bits, 16)).stop_bits
 if not cts_flow_control_changed:
 cts_flow_control_changed = True
 port_params["rtscts"] = True # Default CTS value is always on.

 if baudrate_changed or parity_changed or stop_bits_changed or cts_flow_control_changed:
 return port_params

 return None

 def _check_protocol_changed_by_fw(self):
 """
 Determines whether the XBee protocol will change after the
 firmware update.

 Returns:
 Boolean: `True` if the protocol will change after the firmware
 update, `False` otherwise.
 """
 orig_protocol = self._xbee.get_protocol()
 new_protocol = XBeeProtocol.determine_protocol(
 self._profile.hardware_version,
 utils.int_to_bytes(self._profile.firmware_version))
 return (orig_protocol != new_protocol
 and self._profile.flash_firmware_option.code < 2)

 def _check_protocol_changed_by_settings(self):
 """
 Determines whether the XBee protocol will change after the application
 of profiles settings.

 Returns:
 Boolean: `True` if the protocol will change after the application
 of profiles settings, `False` otherwise.
 """
 if self._profile.protocol is XBeeProtocol.DIGI_MESH:
 self._profile.protocol = self._xbee.determine_protocol(
 self._profile.hardware_version,
 utils.int_to_bytes(self._profile.firmware_version))

 return (self._xbee.get_protocol() != self._profile.protocol
 and self._profile.flash_firmware_option.code < 2)

 def _update_device_settings(self):
 """
 Updates the device settings using the profile.

 Returns:
 Tuple (Boolean, Boolean, Dictionary):
 - `True` if network settings changed, `False` otherwise.
 - `True` if cache settings changed, `False` otherwise.
 - A dictionary with the new serial port configuration if it
 it is a local XBee and the port configuration has changed,
 `None` otherwise.

 Raises:
 UpdateProfileException: If there is any error updating device
 settings from the profile.
 """
 # If there are no settings to apply or reset, skip this method.
 if (len(self._profile.profile_settings) == 0
 and not self._profile.reset_settings
 and not isinstance(self._target, str)):
 return False, False

 # For remote nodes that changed the protocol, raise an exception if
 # there are settings to apply or reset as the node is no longer reachable.
 if (self._xbee.is_remote() and self._protocol_changed_by_fw
 and (len(self._profile.profile_settings) > 0
 or self._profile.reset_settings)):
 raise UpdateProfileException(_ERROR_PROTOCOL_CHANGE % "apply profile settings")

 _log.info("'%s' - %s", self._xbee, _TASK_UPDATE_SETTINGS)
 network_settings_changed = False
 cache_settings_changed = False
 try:
 previous_percent = 0
 percent = 0
 setting_index = 1
 # 1 more setting for 'WR'
 num_settings = len(self._profile.profile_settings) + 1

 if self._progress_callback is not None:
 self._progress_callback(_TASK_UPDATE_SETTINGS, percent)
 # Check if reset settings is required or if we are applying to a
 # serial port (recovery).
 cmd_dict = self._configurer.cmd_dict.get(self._xbee, None)
 if cmd_dict is None:
 cmd_dict = {}
 self._configurer.cmd_dict[self._xbee] = cmd_dict
 if self._profile.reset_settings or isinstance(self._target, str):
 num_settings += 1 # One more setting for 'RE'
 percent = setting_index * 100 // num_settings
 if self._progress_callback is not None and percent != previous_percent:
 self._progress_callback(_TASK_UPDATE_SETTINGS, percent)
 previous_percent = percent
 self.set_parameter_with_retries(ATStringCommand.RE, bytearray(0),
 _PARAM_WRITE_RETRIES, apply=False)
 setting_index += 1
 # Reset settings to defaults implies network and cache settings have changed
 network_settings_changed = True
 cache_settings_changed = True

 cmd_dict[ATStringCommand.SM] = utils.hex_string_to_bytes(
 self._profile.get_setting_default_value(ATStringCommand.SM))
 # 'SN' parameter does not exist in all firmwares
 sn_def = self._profile.get_setting_default_value(ATStringCommand.SN)
 if sn_def is not None:
 cmd_dict[ATStringCommand.SN] = utils.hex_string_to_bytes(sn_def)
 cmd_dict[ATStringCommand.SO] = utils.hex_string_to_bytes(
 self._profile.get_setting_default_value(ATStringCommand.SO))
 cmd_dict[ATStringCommand.SP] = utils.hex_string_to_bytes(
 self._profile.get_setting_default_value(ATStringCommand.SP))
 cmd_dict[ATStringCommand.ST] = utils.hex_string_to_bytes(
 self._profile.get_setting_default_value(ATStringCommand.ST))
 if self._is_local:
 cmd_dict[ATStringCommand.AP] = utils.hex_string_to_bytes(
 self._profile.get_setting_default_value(ATStringCommand.AP))
 # Restore the previous operating mode to be able to continue
 self.set_parameter_with_retries(
 ATStringCommand.AP,
 bytearray([self._xbee.operating_mode.code]),
 _PARAM_WRITE_RETRIES, apply=False)
 # Set settings.
 for setting in self._profile.profile_settings.values():
 percent = setting_index * 100 // num_settings
 if self._progress_callback is not None and percent != previous_percent:
 self._progress_callback(_TASK_UPDATE_SETTINGS, percent)
 previous_percent = percent
 name = setting.name.upper()
 # Do not apply wake up period until the end of the process
 if name in ATStringCommand.ST.command:
 cmd_dict[ATStringCommand.ST] = setting.bytearray_value
 # Do not apply sleep period until the end of the process
 if name in ATStringCommand.SP.command:
 cmd_dict[ATStringCommand.SP] = setting.bytearray_value
 # Do not apply number of sleep periods until the end of the process
 elif name == ATStringCommand.SN.command:
 cmd_dict[ATStringCommand.SN] = setting.bytearray_value
 # Do not apply sleep mode until the end of the process
 elif name == ATStringCommand.SM.command:
 cmd_dict[ATStringCommand.SM] = setting.bytearray_value
 # Do not apply sleep options until the end of the process
 elif name == ATStringCommand.SO.command:
 cmd_dict[ATStringCommand.SO] = setting.bytearray_value
 # Do not apply operating mode until the end of the process
 elif name == ATStringCommand.AP.command and self._is_local:
 cmd_dict[ATStringCommand.AP] = setting.bytearray_value
 # Do not apply auto-start of MicroPython until the end of the process
 elif (name == ATStringCommand.PS.command
 and int.from_bytes(setting.bytearray_value, "big")):
 cmd_dict[ATStringCommand.PS] = setting.bytearray_value
 else:
 self.set_parameter_with_retries(
 name, setting.bytearray_value, _PARAM_WRITE_RETRIES,
 apply=False)
 setting_index += 1
 # Check if the setting was sensitive for network or cache information
 if name in _PARAMS_NETWORK:
 network_settings_changed = True
 if name in _PARAMS_CACHE:
 cache_settings_changed = True

 # Write settings.
 percent = setting_index * 100 // num_settings
 if self._progress_callback is not None and percent != previous_percent:
 self._progress_callback(_TASK_UPDATE_SETTINGS, percent)
 self.set_parameter_with_retries(ATStringCommand.WR, bytearray(0),
 _PARAM_WRITE_RETRIES, apply=bool(not cmd_dict))
 except XBeeException as exc:
 raise UpdateProfileException(_ERROR_UPDATE_SETTINGS % str(exc))

 # Check if port settings have changed on local devices.
 port_params = None
 if self._is_local:
 port_params = self._check_port_settings_changed()

 # If the target is a serial port, we do not need to continue
 if isinstance(self._target, str):
 return False, False, port_params

 return network_settings_changed, cache_settings_changed, port_params

 def _update_file_system(self):
 """
 Updates the device file system.

 Raises:
 UpdateProfileException: If there is any error during updating the
 device file system.
 """
 _log.info("%s - Uploading file system", self._xbee)

 if (self._profile.has_local_filesystem
 and check_fs_support(self._xbee,
 min_fw_vers=XB3_MIN_FW_VERSION_FS_API_SUPPORT)):
 # For remote nodes that changed the protocol, raise an exception if
 # there is a filesystem to update as the node is no longer reachable
 if self._xbee.is_remote() and self._protocol_changed_by_fw:
 raise UpdateProfileException(_ERROR_PROTOCOL_CHANGE % "update filesystem")

 try:
 fs_mng = self._xbee.get_file_manager()
 # Format file system to ensure resulting file system is exactly
 # the same as the profile one.
 if self._progress_callback is not None:
 self._progress_callback(_TASK_FORMAT_FILESYSTEM, 0)
 fs_mng.format()
 if self._progress_callback is not None:
 self._progress_callback(_TASK_FORMAT_FILESYSTEM, 100)
 # Transfer the file system folder.
 fs_mng.put_dir(
 self._profile.file_system_path, dest=None, verify=True,
 progress_cb=lambda percent, src, _:
 self._progress_callback(_TASK_UPDATE_FILE % src, percent)
 if self._progress_callback is not None else None)
 except FileSystemNotSupportedException:
 raise UpdateProfileException(_ERROR_FS_NOT_SUPPORTED)
 except FileSystemException as exc:
 raise UpdateProfileException(_ERROR_UPDATE_FS % str(exc))
 else:
 self._legacy_update_file_system()

 def _legacy_update_file_system(self):
 """
 Updates the device file system using the legacy mode, with AT commands
 for local XBee and a OTA update for remote XBee modules.

 Raises:
 UpdateProfileException: If there is any error during updating the
 device file system.
 """
 if self._is_local and self._profile.has_local_filesystem:
 fs_manager = None
 try:
 fs_manager = LocalXBeeFileSystemManager(self._xbee)
 if self._progress_callback is not None:
 self._progress_callback(_TASK_CONNECT_FILESYSTEM, 0)
 time.sleep(0.2)
 fs_manager.connect()
 if self._progress_callback is not None:
 self._progress_callback(_TASK_CONNECT_FILESYSTEM, 100)
 # Format file system to ensure resulting file system is exactly
 # the same as the profile one.
 if self._progress_callback is not None:
 self._progress_callback(_TASK_FORMAT_FILESYSTEM, 0)
 fs_manager.format_filesystem()
 if self._progress_callback is not None:
 self._progress_callback(_TASK_FORMAT_FILESYSTEM, 100)
 # Transfer the file system folder.
 fs_manager.put_dir(
 self._profile.file_system_path, dest_dir=None,
 progress_callback=lambda file, percent:
 self._progress_callback(_TASK_UPDATE_FILE % file, percent)
 if self._progress_callback is not None else None)
 except FileSystemNotSupportedException:
 raise UpdateProfileException(_ERROR_FS_NOT_SUPPORTED)
 except FileSystemException as exc:
 raise UpdateProfileException(_ERROR_UPDATE_FS % str(exc))
 finally:
 if fs_manager:
 try:
 fs_manager.disconnect()
 except InvalidOperatingModeException:
 # This exception is thrown while trying to reconnect the
 # device after finishing with the FileSystem Manager but
 # the device Operating Mode was changed to '0' or '4'. Just
 # ignore it, profile has been successfully applied.
 pass

 elif not self._is_local and self._profile.has_remote_filesystem:
 # For remote nodes that changed the protocol, raise an exception if
 # there is a filesystem to update as the node is no longer reachable
 if self._xbee.is_remote() and self._protocol_changed_by_fw:
 raise UpdateProfileException(_ERROR_PROTOCOL_CHANGE % "update filesystem")
 try:
 update_remote_filesystem_image(
 self._xbee, self._profile.remote_file_system_image,
 max_block_size=self._xbee.get_ota_max_block_size(),
 timeout=self._timeout, progress_callback=self._progress_callback)
 except FileSystemException as exc:
 raise UpdateProfileException(_ERROR_UPDATE_FS % str(exc))

 def _should_update_fw(self):
 """
 Returns if firmware should be updated based on the flash firmware option
 in the XBee profile.

 Returns:
 Boolean: `True` if firmware should be update, `False` otherwise.

 Raises:
 UpdateProfileException: If the profile is configured not to update
 firmware but the profile is for a version different from the
 current version running in the target XBee.
 """
 # Check flash firmware option.
 firmware_is_the_same = self._device_fw_version == self._profile.firmware_version
 if self._profile.flash_firmware_option == FlashFirmwareOption.FLASH_ALWAYS:
 return True
 if self._profile.flash_firmware_option == FlashFirmwareOption.FLASH_DIFFERENT:
 return not firmware_is_the_same
 if (self._profile.flash_firmware_option == FlashFirmwareOption.DONT_FLASH
 and not firmware_is_the_same):
 raise UpdateProfileException(_ERROR_FW_NOT_COMPATIBLE)

 return False

 def read_device_parameters(self):
 """
 Reads and stores the required XBee parameters in order to apply the
 XBee profile.

 Raises:
 UpdateProfileException: If there is any error reading the required
 XBee parameters.
 """
 _log.debug("Reading device parameters")
 if self._is_local:
 # Connect the device.
 if not self._xbee.is_open():
 self._was_connected = False
 try:
 self._xbee.open()
 except XBeeException as exc:
 raise UpdateProfileException(_ERROR_OPEN_DEVICE % str(exc))
 # For local devices, required parameters are read on 'open()'
 # method, just use them.
 self._device_fw_version = self._xbee.get_firmware_version()
 self._device_hw_version = self._xbee.get_hardware_version()
 else:
 # For remote devices, parameters are read with 'get_parameter()' method.
 try:
 self._device_fw_version = self.read_parameter_with_retries(
 ATStringCommand.VR, _PARAM_READ_RETRIES)
 self._device_hw_version = HardwareVersion.get(
 self.read_parameter_with_retries(
 ATStringCommand.HV, _PARAM_READ_RETRIES)[0])
 except XBeeException as exc:
 raise UpdateProfileException(_ERROR_READ_REMOTE_PARAMETER % str(exc))

 # Sanitize firmware version.
 self._device_fw_version = int(utils.hex_to_string(
 self._device_fw_version).replace(" ", ""), 16)
 _log.debug(" - Firmware version: %s",
 utils.hex_to_string([self._device_fw_version], pretty=False))
 _log.debug(" - Hardware version: %s",
 utils.hex_to_string([self._device_hw_version.code], pretty=False))

 def read_parameter_with_retries(self, parameter, retries):
 """
 Reads a parameter from the XBee within the given number of retries.

 Args:
 parameter (String or :class: `ATStringCommand`): Parameter to read.
 retries (Integer): Number of retries to read the parameter.

 Returns:
 Bytearray: Read parameter value.

 Raises:
 XBeeException: If there is any error reading the parameter.
 """
 while retries > 0:
 try:
 return self._xbee.get_parameter(parameter, apply=False)
 except XBeeException:
 retries -= 1
 time.sleep(0.2)

 at_str = parameter.command if isinstance(parameter, ATStringCommand) else parameter
 raise XBeeException("Timeout reading parameter '%s'" % at_str)

 def set_parameter_with_retries(self, parameter, value, retries, apply=False):
 """
 Sets the given parameter in the XBee within the given number of retries.

 Args:
 parameter (String or :class: `ATStringCommand`): Parameter to set.
 value (Bytearray): Parameter value to set.
 retries (Integer): Number of retries to set the parameter.
 apply (Boolean, optional, default=`False`): `True` to apply changes,
 `False` otherwise, `None` to use `is_apply_changes_enabled()`
 returned value.

 Raises:
 XBeeException: If there is any error setting the parameter.
 """
 msg = ""
 total = retries
 while retries > 0:
 try:
 at_str = parameter.command if isinstance(parameter, ATStringCommand) else parameter
 _log.debug("Setting parameter '%s' to '%s' (%d/%d)",
 at_str, utils.hex_to_string(value, pretty=False),
 (total + 1 - retries), total)
 return self._xbee.set_parameter(parameter, value, apply=apply)
 except XBeeException as exc:
 msg = str(exc)
 retries -= 1
 if retries:
 time.sleep(0.2 if self._is_local else 5)

 raise XBeeException("Error setting parameter '%s': %s" % (parameter, msg))

 def update_profile(self):
 """
 Starts the update profile process.

 Raises:
 UpdateProfileException: If there is any error during the update
 XBee profile operation.
 """
 net_changed = False
 protocol_changed_by_settings = False
 port_settings = None
 try:
 if self._xbee:
 # Retrieve device parameters.
 self._configurer.prepare_for_update()

 self.read_device_parameters()

 # Verify hardware compatibility of the profile.
 if self._device_hw_version.code != self._profile.hardware_version:
 raise UpdateProfileException(_ERROR_HW_NOT_COMPATIBLE)
 # Determine if protocol will be changed.
 self._protocol_changed_by_fw = self._check_protocol_changed_by_fw()
 protocol_changed_by_settings = self._check_protocol_changed_by_settings()
 else:
 # Serial port given (recovery)
 self._was_connected = False
 self._device_fw_version = 0
 self._device_hw_version = None
 self._protocol_changed_by_fw = False

 flash_firmware = self._should_update_fw()

 # Update firmware if required.
 if not self._xbee or flash_firmware:
 self._profile.open()
 self._update_firmware()
 if not self._xbee:
 self._xbee = XBeeDevice(port=self._target, baud_rate=9600)
 self._configurer = _UpdateConfigurer(self._xbee, timeout=self._timeout,
 callback=self._progress_callback)
 self._xbee.open(force_settings=True)
 self._device_hw_version = self._xbee.get_hardware_version()
 # Update the file system if required.
 if self._profile.has_filesystem:
 if not self._profile.is_open():
 self._profile.open()
 self._update_file_system()
 # Update the settings.
 net_changed, _info_changed, port_settings = self._update_device_settings()
 finally:
 if self._configurer:
 self._configurer.restore_after_update(
 net_changed, protocol_changed_by_settings, port_settings)

 self._profile.close()

 if self._is_local and self._xbee:
 if self._was_connected and not self._xbee.is_open():
 self._xbee.open()
 elif not self._was_connected and self._xbee.is_open():
 self._xbee.close()

[docs]def apply_xbee_profile(target, profile_path, timeout=None, progress_callback=None):
 """
 Applies the given XBee profile into the given XBee.
 If a serial port is provided as `target`, the XBee profile must include
 the firmware binaries, that are always programmed. In this case, a restore
 defaults is also performed before applying settings in the profile (no
 matter if the profile is configured to do so or not). If the value of 'AP'
 (operating mode) in the profile is not an API mode or it is not defined,
 XBee is configured to use API 1.

 Args:
 target (String or :class:`.AbstractXBeeDevice`): Target to apply
 profile to. String: serial port identifier.
 :class:`.AbstractXBeeDevice`: XBee to apply the profile.
 profile_path (String): path of the XBee profile file to apply.
 timeout (Integer, optional): Maximum time to wait for target read
 operations during the apply profile.
 progress_callback (Function, optional): Function to execute to receive
 progress information. Receives two arguments:

 * The current update task as a String
 * The current update task percentage as an Integer

 Raises:
 ValueError: If the XBee profile or the XBee device is not valid.
 UpdateProfileException: If there is any error during the update XBee
 profile operation.
 """
 # Sanity checks.
 if not isinstance(target, (str, XBeeDevice, RemoteXBeeDevice)):
 _log.error("ERROR: %s", _ERROR_TARGET_INVALID)
 raise ValueError(_ERROR_TARGET_INVALID)
 if not isinstance(profile_path, str):
 _log.error("ERROR: %s", _ERROR_PROFILE_NOT_VALID)
 raise ValueError(_ERROR_PROFILE_NOT_VALID)

 try:
 xbee_profile = XBeeProfile(profile_path)
 except (ValueError, ReadProfileException) as exc:
 error = _ERROR_PROFILE_INVALID % str(exc)
 _log.error("ERROR: %s", error)
 raise UpdateProfileException(error)

 if not timeout:
 timeout = _REMOTE_DEFAULT_TIMEOUT \
 if (isinstance(target, str) or target.is_remote()) else _LOCAL_DEFAULT_TIMEOUT

 # With a serial port as target the profile must include the firmware file
 if isinstance(target, str) and not xbee_profile.has_local_firmware_files:
 error = _ERROR_PROFILE_INVALID % " Profile must include the firmware " \
 "binary files to use with a serial port"
 _log.error("ERROR: %s", error)
 raise UpdateProfileException(error)

 if not isinstance(target, str):
 comm_iface = target.get_comm_iface() if target.is_remote() else target.comm_iface
 if comm_iface and comm_iface.supports_apply_profile():
 comm_iface.apply_profile(target, profile_path, timeout=timeout,
 progress_callback=progress_callback)
 return

 profile_updater = _ProfileUpdater(target, xbee_profile, timeout=timeout,
 progress_callback=progress_callback)
 profile_updater.update_profile()

 Source code for digi.xbee.reader

Copyright 2017-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

from concurrent.futures import ThreadPoolExecutor
from queue import Queue, Empty
from threading import Event
import logging
import threading
import time

import digi.xbee.devices
from digi.xbee.models.address import XBee64BitAddress, XBee16BitAddress
from digi.xbee.models.atcomm import ATStringCommand
from digi.xbee.models.hw import HardwareVersion
from digi.xbee.models.message import XBeeMessage, ExplicitXBeeMessage, IPMessage, \
 SMSMessage, UserDataRelayMessage
from digi.xbee.models.mode import OperatingMode
from digi.xbee.models.options import XBeeLocalInterface
from digi.xbee.models.protocol import XBeeProtocol
from digi.xbee.models.status import ATCommandStatus
from digi.xbee.packets import factory
from digi.xbee.packets.aft import ApiFrameType
from digi.xbee.packets.common import ReceivePacket, IODataSampleRxIndicatorPacket
from digi.xbee.packets.raw import RX64Packet, RX16Packet
from digi.xbee.util import utils
from digi.xbee.exception import TimeoutException, InvalidPacketException
from digi.xbee.io import IOSample

Maximum number of parallel callbacks.
MAX_PARALLEL_CALLBACKS = 50

EXECUTOR = ThreadPoolExecutor(max_workers=MAX_PARALLEL_CALLBACKS)

[docs]class XBeeEvent(list):
 """
 This class represents a generic XBee event.

 New event callbacks can be added here following this prototype:

 ::

 def callback_prototype(*args, **kwargs):
 #do something...

 All of them will be executed when the event is fired.

 .. seealso::
 | list (Python standard class)
 """
 def __call__(self, *args, **kwargs):
 for func in self:
 future = EXECUTOR.submit(func, *args, **kwargs)
 future.add_done_callback(self.__execution_finished)

 def __repr__(self):
 return "Event(%s)" % list.__repr__(self)

 def __iadd__(self, other):
 self.append(other)
 return self

 def __isub__(self, other):
 self.remove(other)
 return self

 def __execution_finished(self, future):
 """
 Called when the execution of the callable has finished.

 Args:
 future (:class:`.Future`): Future associated to the execution of
 the callable.

 Raises:
 Exception: If the execution of the callable raised any exception.
 """
 if future.exception():
 raise future.exception()

[docs]class PacketReceived(XBeeEvent):
 """
 This event is fired when an XBee receives any packet, independent of
 its frame type.

 The callbacks for handle this events will receive the following arguments:
 1. received_packet (:class:`.XBeeAPIPacket`): Received packet.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 | :class:`.XBeeEvent`
 """

[docs]class PacketReceivedFrom(XBeeEvent):
 """
 This event is fired when an XBee receives any packet, independent of
 its frame type.

 The callbacks for handle this events will receive the following arguments:
 1. received_packet (:class:`.XBeeAPIPacket`): Received packet.
 2. sender (:class:`.RemoteXBeeDevice`): Remote XBee who sent the packet.

 .. seealso::
 | :class:`.RemoteXBeeDevice`
 | :class:`.XBeeAPIPacket`
 | :class:`.XBeeEvent`
 """

[docs]class DataReceived(XBeeEvent):
 """
 This event is fired when an XBee receives data.

 The callbacks for handle this events will receive the following arguments:
 1. message (:class:`.XBeeMessage`): Message containing the data
 received, the sender and the time.

 .. seealso::
 | :class:`.XBeeEvent`
 | :class:`.XBeeMessage`
 """

[docs]class ModemStatusReceived(XBeeEvent):
 """
 This event is fired when a XBee receives a modem status packet.

 The callbacks for handle this events will receive the following arguments:
 1. modem_status (:class:`.ModemStatus`): Modem status received.

 .. seealso::
 | :class:`.XBeeEvent`
 | :class:`.ModemStatus`
 """

[docs]class IOSampleReceived(XBeeEvent):
 """
 This event is fired when a XBee receives an IO packet.

 This includes:

 1. IO data sample RX indicator packet.
 2. RX IO 16 packet.
 3. RX IO 64 packet.

 The callbacks that handle this event will receive the following arguments:
 1. io_sample (:class:`.IOSample`): Received IO sample.
 2. sender (:class:`.RemoteXBeeDevice`): Remote XBee who sent the packet.
 3. time (Integer): the time in which the packet was received.

 .. seealso::
 | :class:`.IOSample`
 | :class:`.RemoteXBeeDevice`
 | :class:`.XBeeEvent`
 """

[docs]class NetworkModified(XBeeEvent):
 """
 This event is fired when the network is being modified by the addition of a
 new node, an existing node information is updated, a node removal, or when
 the network items are cleared.

 The callbacks that handle this event will receive the following arguments:
 1. event_type (:class:`digi.xbee.devices.NetworkEventType`): Network
 event type.
 2. reason (:class:`digi.xbee.devices.NetworkEventReason`): Reason of
 the event.
 3. node (:class:`digi.xbee.devices.XBeeDevice` or
 :class:`digi.xbee.devices.RemoteXBeeDevice`): Node added, updated
 or removed from the network.

 .. seealso::
 | :class:`digi.xbee.devices.NetworkEventReason`
 | :class:`digi.xbee.devices.NetworkEventType`
 | :class:`digi.xbee.devices.RemoteXBeeDevice`
 | :class:`digi.xbee.devices.XBeeDevice`
 | :class:`.XBeeEvent`
 """

[docs]class DeviceDiscovered(XBeeEvent):
 """
 This event is fired when an XBee discovers another remote XBee
 during a discovering operation.

 The callbacks that handle this event will receive the following arguments:
 1. discovered_device (:class:`.RemoteXBeeDevice`): Discovered remote XBee.

 .. seealso::
 | :class:`.RemoteXBeeDevice`
 | :class:`.XBeeEvent`
 """

[docs]class DiscoveryProcessFinished(XBeeEvent):
 """
 This event is fired when the discovery process finishes, either
 successfully or due to an error.

 The callbacks that handle this event will receive the following arguments:
 1. status (:class:`.NetworkDiscoveryStatus`): Network discovery status.
 2. description (String, optional): Description of the discovery status.

 .. seealso::
 | :class:`.NetworkDiscoveryStatus`
 | :class:`.XBeeEvent`
 """

[docs]class ExplicitDataReceived(XBeeEvent):
 """
 This event is fired when an XBee receives an explicit data packet.

 The callbacks for handle this events will receive the following arguments:
 1. message (:class:`.ExplicitXBeeMessage`): Message containing the
 received data, the sender, the time, and explicit data message
 parameters.

 .. seealso::
 | :class:`.XBeeEvent`
 | :class:`.XBeeMessage`
 """

[docs]class IPDataReceived(XBeeEvent):
 """
 This event is fired when an XBee receives IP data.

 The callbacks for handle this events will receive the following arguments:
 1. message (:class:`.IPMessage`): Message containing containing the IP
 address the message belongs to, source and destination ports, IP
 protocol, and the content (data) of the message.

 .. seealso::
 | :class:`.XBeeEvent`
 | :class:`.IPMessage`
 """

[docs]class SMSReceived(XBeeEvent):
 """
 This event is fired when an XBee receives an SMS.

 The callbacks for handle this events will receive the following arguments:
 1. message (:class:`.SMSMessage`): Message containing the phone number
 that sent the message and the content (data) of the message.

 .. seealso::
 | :class:`.XBeeEvent`
 | :class:`.SMSMessage`
 """

[docs]class RelayDataReceived(XBeeEvent):
 """
 This event is fired when an XBee receives a user data relay output packet.

 The callbacks to handle these events will receive the following arguments:
 1. message (:class:`.UserDataRelayMessage`): Message containing the
 source interface and the content (data) of the message.

 .. seealso::
 | :class:`.XBeeEvent`
 | :class:`.UserDataRelayMessage`
 """

[docs]class BluetoothDataReceived(XBeeEvent):
 """
 This event is fired when an XBee receives data from the Bluetooth interface.

 The callbacks to handle these events will receive the following arguments:
 1. data (Bytearray): Received Bluetooth data.

 .. seealso::
 | :class:`.XBeeEvent`
 """

[docs]class MicroPythonDataReceived(XBeeEvent):
 """
 This event is fired when an XBee receives data from the MicroPython interface.

 The callbacks to handle these events will receive the following arguments:
 1. data (Bytearray): Received MicroPython data.

 .. seealso::
 | :class:`.XBeeEvent`
 """

[docs]class SocketStateReceived(XBeeEvent):
 """
 This event is fired when an XBee receives a socket state packet.

 The callbacks to handle these events will receive the following arguments:
 1. socket_id (Integer): Socket ID for state reported.
 2. state (:class:`.SocketState`): Received state.

 .. seealso::
 | :class:`.XBeeEvent`
 """

[docs]class SocketDataReceived(XBeeEvent):
 """
 This event is fired when an XBee receives a socket receive data packet.

 The callbacks to handle these events will receive the following arguments:
 1. socket_id (Integer): ID of the socket that received the data.
 2. payload (Bytearray): Received data.

 .. seealso::
 | :class:`.XBeeEvent`
 """

[docs]class SocketDataReceivedFrom(XBeeEvent):
 """
 This event is fired when an XBee receives a socket receive from data packet.

 The callbacks to handle these events will receive the following arguments:
 1. socket_id (Integer): ID of the socket that received the data.
 2. address (Tuple): Pair (host, port) of the source address where
 host is a string representing an IPv4 address like '100.50.200.5',
 and port is an integer.
 3. payload (Bytearray): Received data.

 .. seealso::
 | :class:`.XBeeEvent`
 """

[docs]class RouteRecordIndicatorReceived(XBeeEvent):
 """
 This event is fired when a route record packet is received.

 The callbacks to handle these events will receive the following arguments:
 1. Source (:class:`.RemoteXBeeDevice`): Remote node that sent the
 route record.
 2. Hops (List): List of intermediate hops 16-bit addresses from closest
 to source (who sent the route record) to closest to destination
 (:class:`.XBee16BitAddress`).

 .. seealso::
 | :class:`.XBeeEvent`
 """

[docs]class RouteInformationReceived(XBeeEvent):
 """
 This event is fired when a route information packet is received.

 The callbacks to handle these events will receive the following arguments:
 1. Source event (Integer): Source event (0x11: NACK, 0x12: Trace route)
 2. Timestamp (Integer): System timer value on the node generating
 this package. The timestamp is in microseconds.
 3. ACK timeout count (Integer): Number of MAC ACK timeouts that occur.
 4. TX blocked count (Integer): Number of times the transmissions was
 blocked due to reception in progress.
 5. Destination address (:class:`.XBee64BitAddress`): 64-bit address of
 the final destination node.
 6. Source address (:class:`.XBee64BitAddress`): 64-bit address of
 the source node.
 7. Responder address (:class:`.XBee64BitAddress`): 64-bit address of
 of the node that generates this packet after it sends (or attempts
 to send) the packet to the next hop (successor node)
 8. Successor address (:class:`.XBee64BitAddress`): 64-bit address of
 of the next node after the responder in the route towards the
 destination.

 .. seealso::
 | :class:`.XBeeEvent`
 """

[docs]class RouteReceived(XBeeEvent):
 """
 This event is fired when a route is received.

 The callbacks to handle these events will receive the following arguments:
 1. source (:class:`.XBeeDevice`): Local node.
 2. destination (:class:`.RemoteXBeeDevice`): Remote node.
 3. hops (List): List of intermediate hops from source node to
 closest to destination (:class:`.RemoteXBeeDevice`).

 .. seealso::
 | :class:`.XBeeEvent`
 """

[docs]class InitDiscoveryScan(XBeeEvent):
 """
 This event is fired when a new network discovery scan is about to start.

 The callbacks to handle these events will receive the following arguments:
 1. Number of scan to start (starting with 1).
 2. Total number of scans.

 .. seealso::
 | :class:`.XBeeEvent`
 """

[docs]class EndDiscoveryScan(XBeeEvent):
 """
 This event is fired when a network discovery scan has just finished.

 The callbacks to handle these events will receive the following arguments:
 1. Number of scan that has finished (starting with 1).
 2. Total number of scans.

 .. seealso::
 | :class:`.XBeeEvent`
 """

[docs]class FileSystemFrameReceived(XBeeEvent):
 """
 This event is fired when a file system packet is received.

 The callbacks to handle these events will receive the following arguments:
 1. Source (:class:`.AbstractXBeeDevice`): Node that sent the file
 system frame.
 2. Frame id (Integer): Received frame id.
 3. Command (:class:`.FSCmd`): File system command.
 4. Status (:class: `.FSCommandStatus`): Status code.
 5. Receive options (Integer): Bitfield indicating receive options.
 See :class:`.ReceiveOptions`.

 .. seealso::
 | :class:`.XBeeEvent`
 """

[docs]class PacketListener(threading.Thread):
 """
 This class represents a packet listener, which is a thread that's always
 listening for incoming packets to the XBee.

 When it receives a packet, this class throws an event depending on which
 packet it is. You can add your own callbacks for this events via certain
 class methods. This callbacks must have a certain header, see each event
 documentation.

 This class has fields that are events. Its recommended to use only the
 append() and remove() method on them, or -= and += operators.
 If you do something more with them, it's for your own risk.

 Here are the parameters which will be received by the event callbacks,
 depending on which event it is in each case:

 The following parameters are passed via **kwargs to event callbacks of:

 1. PacketReceived:
 1.1 received_packet (:class:`.XBeeAPIPacket`): Received packet.
 2. DataReceived
 2.1 message (:class:`.XBeeMessage`): Message containing the data
 received, the sender and the time.
 3. ModemStatusReceived
 3.1 modem_status (:class:`.ModemStatus`): Modem status received.
 """

 __DEFAULT_QUEUE_MAX_SIZE = 40
 """
 Default max. size that the queue has.
 """

 _LOG_PATTERN = "{comm_iface:s} - {event:s} - {fr_type:s}: {sender:s} - {more_data:s}"
 """
 Generic pattern for display received messages (high-level) with logger.
 """

 _LOG_PACKET_PATTERN = "{comm_iface:s} - {event:s} - {opmode:s}: {content:s}"
 """
 Pattern used to log packet events.
 """

 _log = logging.getLogger(__name__)
 """
 Logger.
 """

 def __init__(self, comm_iface, xbee_device, queue_max_size=None):
 """
 Class constructor. Instantiates a new :class:`.PacketListener` object
 with the provided parameters.

 Args:
 comm_iface (:class:`.XBeeCommunicationInterface`): Hardware
 interface to listen to.
 xbee_device (:class:`.XBeeDevice`): XBee that is the listener owner.
 queue_max_size (Integer): Maximum size of the XBee queue.
 """
 threading.Thread.__init__(self)

 self.daemon = True

 # User callbacks:
 self.__packet_received = PacketReceived()
 self.__packet_received_from = PacketReceivedFrom()
 self.__data_received = DataReceived()
 self.__modem_status_received = ModemStatusReceived()
 self.__io_sample_received = IOSampleReceived()
 self.__explicit_packet_received = ExplicitDataReceived()
 self.__ip_data_received = IPDataReceived()
 self.__sms_received = SMSReceived()
 self.__relay_data_received = RelayDataReceived()
 self.__bluetooth_data_received = BluetoothDataReceived()
 self.__micropython_data_received = MicroPythonDataReceived()
 self.__socket_state_received = SocketStateReceived()
 self.__socket_data_received = SocketDataReceived()
 self.__socket_data_received_from = SocketDataReceivedFrom()
 self.__route_record_indicator_received_from = RouteRecordIndicatorReceived()
 self.__dm_route_information_received_from = RouteInformationReceived()
 self.__fs_frame_received = FileSystemFrameReceived()

 # API internal callbacks:
 self.__packet_received_api = xbee_device.get_xbee_device_callbacks()

 self.__xbee = xbee_device
 self.__comm_iface = comm_iface
 self.__stop = True
 self.__started = Event()

 self.__queue_max_size = (queue_max_size if queue_max_size is not None
 else self.__DEFAULT_QUEUE_MAX_SIZE)
 self.__xbee_queue = XBeeQueue(self.__queue_max_size)
 self.__data_xbee_queue = XBeeQueue(self.__queue_max_size)
 self.__explicit_xbee_queue = XBeeQueue(self.__queue_max_size)
 self.__ip_xbee_queue = XBeeQueue(self.__queue_max_size)

[docs] def wait_until_started(self, timeout=None):
 """
 Blocks until the thread has fully started. If already started, returns
 immediately.

 Args:
 timeout (Float): Timeout for the operation in seconds.
 """

 self.__started.wait(timeout)

[docs] def run(self):
 """
 This is the method that will be executing for listening packets.

 For each packet, it will execute the proper callbacks.
 """
 try:
 self.__stop = False
 self.__started.set()
 while not self.__stop:
 # Try to read a packet. Read packet is unescaped.
 raw_packet = self.__comm_iface.wait_for_frame(
 self.__xbee.operating_mode)

 if raw_packet is not None:
 # If the current protocol is 802.15.4, the packet may hav
 # to be discarded.
 if (self.__xbee.get_protocol() == XBeeProtocol.RAW_802_15_4
 and not self.__check_packet_802_15_4(raw_packet)):
 continue

 # Build the packet.
 try:
 read_packet = factory.build_frame(
 raw_packet, self.__xbee.operating_mode)
 except InvalidPacketException as exc:
 if self.__xbee.is_open():
 self._log.error("Error processing packet '%s': %s",
 utils.hex_to_string(raw_packet), str(exc))
 continue

 self._log.debug(self._LOG_PACKET_PATTERN.format(
 comm_iface=str(self.__xbee.comm_iface),
 event="RECEIVED", opmode=self.__xbee.operating_mode,
 content=utils.hex_to_string(raw_packet)))

 # Add the packet to the queue.
 self.__add_packet_queue(read_packet)

 # If the packet has information about a remote device,
 # extract it and add/update this remote device to/in this
 # XBee's network.
 remote = self.__try_add_remote_device(read_packet)

 # Execute API internal callbacks.
 self.__packet_received_api(read_packet)

 # Execute all user callbacks.
 self.__execute_user_callbacks(read_packet, remote)
 except Exception as exc:
 if not self.__stop:
 self._log.exception(exc)
 finally:
 if not self.__stop:
 self.__stop = True
 if self.__comm_iface.is_interface_open:
 self.__comm_iface.close()

[docs] def stop(self):
 """
 Stops listening.
 """
 self.__stop = True
 self.__comm_iface.quit_reading()
 # Wait until thread fully stops.
 self.join()

[docs] def is_running(self):
 """
 Returns whether this instance is running or not.

 Returns:
 Boolean: `True` if this instance is running, `False` otherwise.
 """
 return not self.__stop

[docs] def get_queue(self):
 """
 Returns the packets queue.

 Returns:
 :class:`.XBeeQueue`: Packets queue.
 """
 return self.__xbee_queue

[docs] def get_data_queue(self):
 """
 Returns the data packets queue.

 Returns:
 :class:`.XBeeQueue`: Data packets queue.
 """
 return self.__data_xbee_queue

[docs] def get_explicit_queue(self):
 """
 Returns the explicit packets queue.

 Returns:
 :class:`.XBeeQueue`: Explicit packets queue.
 """
 return self.__explicit_xbee_queue

[docs] def get_ip_queue(self):
 """
 Returns the IP packets queue.

 Returns:
 :class:`.XBeeQueue`: IP packets queue.
 """
 return self.__ip_xbee_queue

[docs] def add_packet_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.PacketReceived`.

 Args:
 callback (Function or List of functions): Callback.
 Receives one argument.

 * The received packet as a :class:`.XBeeAPIPacket`
 """
 if isinstance(callback, list):
 self.__packet_received.extend(callback)
 elif callback:
 self.__packet_received += callback

[docs] def add_packet_received_from_callback(self, callback):
 """
 Adds a callback for the event :class:`.PacketReceivedFrom`.

 Args:
 callback (Function or List of functions): Callback. Receives
 two arguments.

 * The received packet as a :class:`.XBeeAPIPacket`
 * The remote XBee device who has sent the packet as a
 :class:`.RemoteXBeeDevice`
 """
 if isinstance(callback, list):
 self.__packet_received_from.extend(callback)
 elif callback:
 self.__packet_received_from += callback

[docs] def add_data_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.DataReceived`.

 Args:
 callback (Function or List of functions): Callback. Receives one
 argument.

 * The data received as an :class:`.XBeeMessage`
 """
 if isinstance(callback, list):
 self.__data_received.extend(callback)
 elif callback:
 self.__data_received += callback

[docs] def add_modem_status_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.ModemStatusReceived`.

 Args:
 callback (Function or List of functions): Callback. Receives one
 argument.

 * The modem status as a :class:`.ModemStatus`
 """
 if isinstance(callback, list):
 self.__modem_status_received.extend(callback)
 elif callback:
 self.__modem_status_received += callback

[docs] def add_io_sample_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.IOSampleReceived`.

 Args:
 callback (Function or List of functions): Callback. Receives three
 arguments.

 * The received IO sample as an :class:`.IOSample`
 * The remote XBee device who has sent the packet as a
 :class:`.RemoteXBeeDevice`
 * The time in which the packet was received as an Integer
 """
 if isinstance(callback, list):
 self.__io_sample_received.extend(callback)
 elif callback:
 self.__io_sample_received += callback

[docs] def add_explicit_data_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.ExplicitDataReceived`.

 Args:
 callback (Function or List of functions): Callback. Receives one
 argument.

 * The explicit data received as an :class:`.ExplicitXBeeMessage`
 """
 if isinstance(callback, list):
 self.__explicit_packet_received.extend(callback)
 elif callback:
 self.__explicit_packet_received += callback

[docs] def add_ip_data_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.IPDataReceived`.

 Args:
 callback (Function or List of functions): Callback. Receives one
 argument.

 * The data received as an :class:`.IPMessage`
 """
 if isinstance(callback, list):
 self.__ip_data_received.extend(callback)
 elif callback:
 self.__ip_data_received += callback

[docs] def add_sms_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.SMSReceived`.

 Args:
 callback (Function or List of functions): Callback. Receives one
 argument.

 * The data received as an :class:`.SMSMessage`
 """
 if isinstance(callback, list):
 self.__sms_received.extend(callback)
 elif callback:
 self.__sms_received += callback

[docs] def add_user_data_relay_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.RelayDataReceived`.

 Args:
 callback (Function or List of functions): Callback. Receives one
 argument.

 * The data received as a :class:`.UserDataRelayMessage`
 """
 if isinstance(callback, list):
 self.__relay_data_received.extend(callback)
 elif callback:
 self.__relay_data_received += callback

[docs] def add_bluetooth_data_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.BluetoothDataReceived`.

 Args:
 callback (Function or List of functions): Callback. Receives one
 argument.

 * The data received as a Bytearray
 """
 if isinstance(callback, list):
 self.__bluetooth_data_received.extend(callback)
 elif callback:
 self.__bluetooth_data_received += callback

[docs] def add_micropython_data_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.MicroPythonDataReceived`.

 Args:
 callback (Function or List of functions): Callback. Receives one
 argument.

 * The data received as a Bytearray
 """
 if isinstance(callback, list):
 self.__micropython_data_received.extend(callback)
 elif callback:
 self.__micropython_data_received += callback

[docs] def add_socket_state_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.SocketStateReceived`.

 Args:
 callback (Function or List of functions): Callback. Receives two
 arguments.

 * The socket ID as an Integer.
 * The state received as a :class:`.SocketState`
 """
 if isinstance(callback, list):
 self.__socket_state_received.extend(callback)
 elif callback:
 self.__socket_state_received += callback

[docs] def add_socket_data_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.SocketDataReceived`.

 Args:
 callback (Function or List of functions): Callback. Receives two
 arguments.

 * The socket ID as an Integer.
 * The status received as a :class:`.SocketStatus`
 """
 if isinstance(callback, list):
 self.__socket_data_received.extend(callback)
 elif callback:
 self.__socket_data_received += callback

[docs] def add_socket_data_received_from_callback(self, callback):
 """
 Adds a callback for the event :class:`.SocketDataReceivedFrom`.

 Args:
 callback (Function or List of functions): Callback. Receives three
 arguments.

 * The socket ID as an Integer.
 * A pair (host, port) of the source address where host is a
 string representing an IPv4 address like '100.50.200.5',
 and port is an integer.
 * The status received as a :class:`.SocketStatus`
 """
 if isinstance(callback, list):
 self.__socket_data_received_from.extend(callback)
 elif callback:
 self.__socket_data_received_from += callback

[docs] def add_route_record_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.RouteRecordIndicatorReceived`.

 Args:
 callback (Function or List of functions): Callback. Receives two
 arguments.

 * Source (:class:`.RemoteXBeeDevice`): Remote node that sent
 the route record.
 * Hops (List): List of intermediate hops 16-bit addresses from
 closest to source (who sent the route record) to closest to
 destination.
 """
 if isinstance(callback, list):
 self.__route_record_indicator_received_from.extend(callback)
 elif callback:
 self.__route_record_indicator_received_from += callback

[docs] def add_route_info_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.RouteInformationReceived`.

 Args:
 callback (Function or List of functions): Callback. Receives eight
 arguments.

 * Source event (Integer): Source event (0x11: NACK,
 0x12: Trace route)
 * Timestamp (Integer): System timer value on the node
 generating this package. The timestamp is in microseconds.
 * ACK timeout count (Integer): Number of MAC ACK timeouts that occur.
 * TX blocked count (Integer): Number of times the transmissions
 was blocked due to reception in progress.
 * Destination address (:class:`.XBee64BitAddress`): 64-bit
 address of the final destination node.
 * Source address (:class:`.XBee64BitAddress`): 64-bit address
 of the source node.
 * Responder address (:class:`.XBee64BitAddress`): 64-bit
 address of the node that generated this packet after it sent
 (or attempted to send) the packet to the next hop
 (successor node)
 * Successor address (:class:`.XBee64BitAddress`): 64-bit
 address of the next node after the responder in the route
 towards the destination.
 """
 if isinstance(callback, list):
 self.__dm_route_information_received_from.extend(callback)
 elif callback:
 self.__dm_route_information_received_from += callback

[docs] def add_fs_frame_received_callback(self, callback):
 """
 Adds a callback for the event :class:`.FileSystemFrameReceived`.

 Args:
 callback (Function or List of functions): Callback. Receives four
 arguments.

 * Source (:class:`.AbstractXBeeDevice`): Node that sent the
 file system frame.
 * Frame id (Integer): Received frame id.
 * Command (:class:`.FSCmd`): File system command.
 * Receive options (Integer): Bitfield indicating receive
 options. See :class:`.ReceiveOptions`.
 """
 if isinstance(callback, list):
 self.__fs_frame_received.extend(callback)
 elif callback:
 self.__fs_frame_received += callback

[docs] def del_packet_received_callback(self, callback):
 """
 Deletes a callback for the callback list of :class:`.PacketReceived`
 event.

 Args:
 callback (Function): Callback to delete.

 Raises:
 ValueError: If `callback` is not in the callback list of
 :class:`.PacketReceived` event.
 """
 self.__packet_received -= callback

[docs] def del_packet_received_from_callback(self, callback):
 """
 Deletes a callback for the callback list of
 :class:`.PacketReceivedFrom` event.

 Args:
 callback (Function): Callback to delete.

 Raises:
 ValueError: If `callback` is not in the callback list of
 :class:`.PacketReceivedFrom` event.
 """
 self.__packet_received_from -= callback

[docs] def del_data_received_callback(self, callback):
 """
 Deletes a callback for the callback list of :class:`.DataReceived`
 event.

 Args:
 callback (Function): Callback to delete.

 Raises:
 ValueError: If `callback` is not in the callback list of
 :class:`.DataReceived` event.
 """
 self.__data_received -= callback

[docs] def del_modem_status_received_callback(self, callback):
 """
 Deletes a callback for the callback list of
 :class:`.ModemStatusReceived` event.

 Args:
 callback (Function): Callback to delete.

 Raises:
 ValueError: If `callback` is not in the callback list of
 :class:`.ModemStatusReceived` event.
 """
 self.__modem_status_received -= callback

[docs] def del_io_sample_received_callback(self, callback):
 """
 Deletes a callback for the callback list of
 :class:`.IOSampleReceived` event.

 Args:
 callback (Function): Callback to delete.

 Raises:
 ValueError: If `callback` is not in the callback list of
 :class:`.IOSampleReceived` event.
 """
 self.__io_sample_received -= callback

[docs] def del_explicit_data_received_callback(self, callback):
 """
 Deletes a callback for the callback list of
 :class:`.ExplicitDataReceived` event.

 Args:
 callback (Function): Callback to delete.

 Raises:
 ValueError: If `callback` is not in the callback list of
 :class:`.ExplicitDataReceived` event.
 """
 self.__explicit_packet_received -= callback

[docs] def del_ip_data_received_callback(self, callback):
 """
 Deletes a callback for the callback list of
 :class:`.IPDataReceived` event.

 Args:
 callback (Function): Callback to delete.

 Raises:
 ValueError: If `callback` is not in the callback list of
 :class:`.IPDataReceived` event.
 """
 self.__ip_data_received -= callback

[docs] def del_sms_received_callback(self, callback):
 """
 Deletes a callback for the callback list of :class:`.SMSReceived` event.

 Args:
 callback (Function): Callback to delete.

 Raises:
 ValueError: If `callback` is not in the callback list of
 :class:`.SMSReceived` event.
 """
 self.__sms_received -= callback

[docs] def del_user_data_relay_received_callback(self, callback):
 """
 Deletes a callback for the callback list of
 :class:`.RelayDataReceived` event.

 Args:
 callback (Function): Callback to delete.

 Raises:
 ValueError: If `callback` is not in the callback list of
 :class:`.RelayDataReceived` event.
 """
 self.__relay_data_received -= callback

[docs] def del_bluetooth_data_received_callback(self, callback):
 """
 Deletes a callback for the callback list of
 :class:`.BluetoothDataReceived` event.

 Args:
 callback (Function): Callback to delete.

 Raises:
 ValueError: If `callback` is not in the callback list of
 :class:`.BluetoothDataReceived` event.
 """
 self.__bluetooth_data_received -= callback

[docs] def del_micropython_data_received_callback(self, callback):
 """
 Deletes a callback for the callback list of
 :class:`.MicroPythonDataReceived` event.

 Args:
 callback (Function): Callback to delete.

 Raises:
 ValueError: If `callback` is not in the callback list of
 :class:`.MicroPythonDataReceived` event.
 """
 self.__micropython_data_received -= callback

[docs] def del_socket_state_received_callback(self, callback):
 """
 Deletes a callback for the callback list of
 :class:`.SocketStateReceived` event.

 Args:
 callback (Function): Callback to delete.

 Raises:
 ValueError: If `callback` is not in the callback list of
 :class:`.SocketStateReceived` event.
 """
 self.__socket_state_received -= callback

[docs] def del_socket_data_received_callback(self, callback):
 """
 Deletes a callback for the callback list of
 :class:`.SocketDataReceived` event.

 Args:
 callback (Function): Callback to delete.

 Raises:
 ValueError: If `callback` is not in the callback list of
 :class:`.SocketDataReceived` event.
 """
 self.__socket_data_received -= callback

[docs] def del_socket_data_received_from_callback(self, callback):
 """
 Deletes a callback for the callback list of
 :class:`.SocketDataReceivedFrom` event.

 Args:
 callback (Function): Callback to delete.

 Raises:
 ValueError: If `callback` is not in the callback list of
 :class:`.SocketDataReceivedFrom` event.
 """
 self.__socket_data_received_from -= callback

[docs] def del_route_record_received_callback(self, callback):
 """
 Deletes a callback for the callback list of
 :class:`.RouteRecordIndicatorReceived` event.

 Args:
 callback (Function): Callback to delete.

 Raises:
 ValueError: If `callback` is not in the callback list of
 :class:`.RouteRecordIndicatorReceived` event.
 """
 self.__route_record_indicator_received_from -= callback

[docs] def del_route_info_callback(self, callback):
 """
 Deletes a callback for the callback list of
 :class:`.RouteInformationReceived` event.

 Args:
 callback (Function): Callback to delete.

 Raises:
 ValueError: If `callback` is not in the callback list of
 :class:`.RouteInformationReceived` event.
 """
 self.__dm_route_information_received_from -= callback

[docs] def del_fs_frame_received_callback(self, callback):
 """
 Deletes a callback for the callback list of
 :class:`.FileSystemFrameReceived` event.

 Args:
 callback (Function): Callback to delete.

 Raises:
 ValueError: If `callback` is not in the callback list of
 :class:`.FileSystemFrameReceived` event.
 """
 self.__fs_frame_received -= callback

[docs] def get_packet_received_callbacks(self):
 """
 Returns the list of registered callbacks for received packets.

 Returns:
 List: List of :class:`.PacketReceived` events.
 """
 return self.__packet_received

[docs] def get_packet_received_from_callbacks(self):
 """
 Returns the list of registered callbacks for received packets.

 Returns:
 List: List of :class:`.PacketReceivedFrom` events.
 """
 return self.__packet_received_from

[docs] def get_data_received_callbacks(self):
 """
 Returns the list of registered callbacks for received data.

 Returns:
 List: List of :class:`.DataReceived` events.
 """
 return self.__data_received

[docs] def get_modem_status_received_callbacks(self):
 """
 Returns the list of registered callbacks for received modem status.

 Returns:
 List: List of :class:`.ModemStatusReceived` events.
 """
 return self.__modem_status_received

[docs] def get_io_sample_received_callbacks(self):
 """
 Returns the list of registered callbacks for received IO samples.

 Returns:
 List: List of :class:`.IOSampleReceived` events.
 """
 return self.__io_sample_received

[docs] def get_explicit_data_received_callbacks(self):
 """
 Returns the list of registered callbacks for received explicit data.

 Returns:
 List: List of :class:`.ExplicitDataReceived` events.
 """
 return self.__explicit_packet_received

[docs] def get_ip_data_received_callbacks(self):
 """
 Returns the list of registered callbacks for received IP data.

 Returns:
 List: List of :class:`.IPDataReceived` events.
 """
 return self.__ip_data_received

[docs] def get_sms_received_callbacks(self):
 """
 Returns the list of registered callbacks for received SMS.

 Returns:
 List: List of :class:`.SMSReceived` events.
 """
 return self.__sms_received

[docs] def get_user_data_relay_received_callbacks(self):
 """
 Returns the list of registered callbacks for received user data relay.

 Returns:
 List: List of :class:`.RelayDataReceived` events.
 """
 return self.__relay_data_received

[docs] def get_bluetooth_data_received_callbacks(self):
 """
 Returns the list of registered callbacks for received Bluetooth data.

 Returns:
 List: List of :class:`.BluetoothDataReceived` events.
 """
 return self.__bluetooth_data_received

[docs] def get_micropython_data_received_callbacks(self):
 """
 Returns the list of registered callbacks for received MicroPython data.

 Returns:
 List: List of :class:`.MicroPythonDataReceived` events.
 """
 return self.__micropython_data_received

[docs] def get_socket_state_received_callbacks(self):
 """
 Returns the list of registered callbacks for received socket state.

 Returns:
 List: List of :class:`.SocketStateReceived` events.
 """
 return self.__socket_state_received

[docs] def get_socket_data_received_callbacks(self):
 """
 Returns the list of registered callbacks for received socket data.

 Returns:
 List: List of :class:`.SocketDataReceived` events.
 """
 return self.__socket_data_received

[docs] def get_socket_data_received_from_callbacks(self):
 """
 Returns the list of registered callbacks for received socket data from.

 Returns:
 List: List of :class:`.SocketDataReceivedFrom` events.
 """
 return self.__socket_data_received_from

[docs] def get_route_record_received_callbacks(self):
 """
 Returns the list of registered callbacks for received route records.

 Returns:
 List: List of :class:`.RouteRecordIndicatorReceived` events.
 """
 return self.__route_record_indicator_received_from

[docs] def get_route_info_callbacks(self):
 """
 Returns the list of registered callbacks for received route information
 packets.

 Returns:
 List: List of :class:`.RouteInformationReceived` events.
 """
 return self.__dm_route_information_received_from

[docs] def get_fs_frame_received_callbacks(self):
 """
 Returns the list of registered callbacks for received file system
 packets.

 Returns:
 List: List of :class:`.FileSystemFrameReceived` events.
 """
 return self.__fs_frame_received

 def __execute_user_callbacks(self, packet, remote=None):
 """
 Executes callbacks corresponding to the received packet.

 Args:
 packet (:class:`.XBeeAPIPacket`): Received packet.
 remote (:class:`.RemoteXBeeDevice`): XBee that sent the packet.
 """
 # All packets callback.
 self.__packet_received(packet)
 if remote:
 self.__packet_received_from(packet, remote)

 # Data reception callbacks
 f_type = packet.get_frame_type()
 if f_type in (ApiFrameType.RX_64, ApiFrameType.RX_16,
 ApiFrameType.RECEIVE_PACKET):
 data = packet.rf_data
 is_broadcast = packet.is_broadcast()
 self.__data_received(
 XBeeMessage(data, remote, time.time(), broadcast=is_broadcast))
 self._log.debug(self._LOG_PATTERN.format(
 comm_iface=str(self.__xbee.comm_iface),
 event="RECEIVED", fr_type="DATA",
 sender=str(remote.get_64bit_addr()) if remote is not None else "None",
 more_data=utils.hex_to_string(data)))

 # Modem status callbacks
 elif f_type == ApiFrameType.MODEM_STATUS:
 self.__modem_status_received(packet.modem_status)
 self._log.debug(self._LOG_PATTERN.format(
 comm_iface=str(self.__xbee.comm_iface),
 event="RECEIVED", fr_type="MODEM STATUS",
 sender=str(remote.get_64bit_addr()) if remote is not None else "None",
 more_data=packet.modem_status))

 # IO_sample callbacks
 elif f_type in (ApiFrameType.RX_IO_16, ApiFrameType.RX_IO_64,
 ApiFrameType.IO_DATA_SAMPLE_RX_INDICATOR):
 self.__io_sample_received(packet.io_sample, remote, time.time())
 self._log.debug(self._LOG_PATTERN.format(
 comm_iface=str(self.__xbee.comm_iface),
 event="RECEIVED", fr_type="IOSAMPLE",
 sender=str(remote.get_64bit_addr()) if remote is not None else "None",
 more_data=str(packet.io_sample)))

 # Explicit packet callbacks
 elif f_type == ApiFrameType.EXPLICIT_RX_INDICATOR:
 data = packet.rf_data
 is_broadcast = packet.is_broadcast()
 # If it's 'special' packet, notify the data_received callbacks too:
 if self.__is_explicit_data_packet(packet):
 self.__data_received(XBeeMessage(data, remote, time.time(),
 broadcast=is_broadcast))
 elif self.__is_explicit_io_packet(packet):
 self.__io_sample_received(IOSample(data), remote, time.time())
 self.__explicit_packet_received(PacketListener.__expl_to_message(
 remote, is_broadcast, packet))
 self._log.debug(self._LOG_PATTERN.format(
 comm_iface=str(self.__xbee.comm_iface),
 event="RECEIVED", fr_type="EXPLICIT DATA",
 sender=str(remote.get_64bit_addr()) if remote is not None else "None",
 more_data=utils.hex_to_string(data)))

 # IP data
 elif f_type == ApiFrameType.RX_IPV4:
 self.__ip_data_received(
 IPMessage(packet.source_address, packet.source_port,
 packet.dest_port, packet.ip_protocol, packet.data))
 self._log.debug(self._LOG_PATTERN.format(
 comm_iface=str(self.__xbee.comm_iface), event="RECEIVED",
 fr_type="IP DATA", sender=str(packet.source_address),
 more_data=utils.hex_to_string(packet.data)))

 # SMS
 elif f_type == ApiFrameType.RX_SMS:
 self.__sms_received(SMSMessage(packet.phone_number, packet.data))
 self._log.debug(self._LOG_PATTERN.format(
 comm_iface=str(self.__xbee.comm_iface), event="RECEIVED",
 fr_type="SMS", sender=str(packet.phone_number),
 more_data=packet.data))

 # Relay
 elif f_type == ApiFrameType.USER_DATA_RELAY_OUTPUT:
 # Notify generic callbacks.
 self.__relay_data_received(
 UserDataRelayMessage(packet.src_interface, packet.data))
 # Notify specific callbacks.
 if packet.src_interface == XBeeLocalInterface.BLUETOOTH:
 self.__bluetooth_data_received(packet.data)
 elif packet.src_interface == XBeeLocalInterface.MICROPYTHON:
 self.__micropython_data_received(packet.data)
 self._log.debug(self._LOG_PATTERN.format(
 comm_iface=str(self.__xbee.comm_iface), event="RECEIVED",
 fr_type="RELAY DATA", sender=packet.src_interface.description,
 more_data=utils.hex_to_string(packet.data)))

 # Socket state
 elif f_type == ApiFrameType.SOCKET_STATE:
 self.__socket_state_received(packet.socket_id, packet.state)
 self._log.debug(self._LOG_PATTERN.format(
 comm_iface=str(self.__xbee.comm_iface), event="RECEIVED",
 fr_type="SOCKET STATE", sender=str(packet.socket_id),
 more_data=packet.state))

 # Socket receive data
 elif f_type == ApiFrameType.SOCKET_RECEIVE:
 self.__socket_data_received(packet.socket_id, packet.payload)
 self._log.debug(self._LOG_PATTERN.format(
 comm_iface=str(self.__xbee.comm_iface), event="RECEIVED",
 fr_type="SOCKET DATA", sender=str(packet.socket_id),
 more_data=utils.hex_to_string(packet.payload)))

 # Socket receive data from
 elif f_type == ApiFrameType.SOCKET_RECEIVE_FROM:
 address = (str(packet.source_address), packet.source_port)
 self.__socket_data_received_from(packet.socket_id, address, packet.payload)
 self._log.debug(self._LOG_PATTERN.format(
 comm_iface=str(self.__xbee.comm_iface), event="RECEIVED",
 fr_type="SOCKET DATA", sender=str(packet.socket_id),
 more_data="%s - %s" % (address, utils.hex_to_string(packet.payload))))

 # Route record indicator
 elif f_type == ApiFrameType.ROUTE_RECORD_INDICATOR:
 self.__route_record_indicator_received_from(remote,
 packet.hops)
 self._log.debug(self._LOG_PATTERN.format(
 comm_iface=str(self.__xbee.comm_iface), event="RECEIVED",
 fr_type="ROUTE RECORD INDICATOR",
 sender=str(remote.get_64bit_addr()) if remote else "None",
 more_data="Hops: %s" % ' - '.join(map(str, packet.hops))))

 # Route information
 elif f_type == ApiFrameType.DIGIMESH_ROUTE_INFORMATION:
 self.__dm_route_information_received_from(
 packet.src_event, packet.timestamp,
 packet.ack_timeout_count, packet.tx_block_count,
 packet.dst_addr, packet.src_addr,
 packet.responder_addr, packet.successor_addr)
 self._log.debug(self._LOG_PATTERN.format(
 comm_iface=str(self.__xbee.comm_iface), event="RECEIVED",
 fr_type="ROUTE INFORMATION", sender=str(packet.responder_addr),
 more_data="src: %s - dst: %s - responder: %s - successor: %s - "
 "src event: %d - timestamp: %d - ack timeouts: %d - "
 "tx blocked: %d" % (packet.src_addr,
 packet.dst_addr,
 packet.responder_addr,
 packet.successor_addr,
 packet.src_event,
 packet.timestamp,
 packet.ack_timeout_count,
 packet.tx_block_count)))
 # File system frame
 elif f_type in (ApiFrameType.FILE_SYSTEM_RESPONSE,
 ApiFrameType.REMOTE_FILE_SYSTEM_RESPONSE):
 node = self.__xbee
 rcv_opts = None
 if f_type == ApiFrameType.REMOTE_FILE_SYSTEM_RESPONSE:
 node = remote
 rcv_opts = packet.receive_options
 self.__fs_frame_received(node, packet.frame_id, packet.command, rcv_opts)

 self._log.debug(self._LOG_PATTERN.format(
 comm_iface=str(self.__xbee.comm_iface),
 event="RECEIVED", fr_type="FILE SYSTEM RESPONSE",
 sender=str(remote.get_64bit_addr()) if remote else "Local",
 more_data="frame id: %d - command: %s, status: %d (%s), "
 "receive options: %s" % (packet.frame_id,
 packet.command,
 packet.command.status_value,
 packet.command.status,
 rcv_opts)))

 @staticmethod
 def __get_remote_device_data_from_packet(packet):
 """
 Extracts the 64 bit-address, the 16 bit-address, node identifier,
 hardware version, and firmware version from `packet` if is possible.
 """
 # Do not get information from a Remote AT Command response with a
 # TX failure: it is not possible to know if the remote does not exists
 # or is sleeping
 f_type = packet.get_frame_type()
 if (f_type == ApiFrameType.REMOTE_AT_COMMAND_RESPONSE
 and packet.status == ATCommandStatus.TX_FAILURE):
 return None, None, None, None, None, None

 x64bit_addr = None
 x16bit_addr = None
 node_id = None
 hw_version = None
 fw_version = None
 op_mode = None

 if hasattr(packet, "x64bit_source_addr"):
 x64bit_addr = packet.x64bit_source_addr
 if hasattr(packet, "x16bit_source_addr"):
 x16bit_addr = packet.x16bit_source_addr

 # Check if NI, HV, VR, MY values are included in the response
 if (f_type in (ApiFrameType.AT_COMMAND_RESPONSE,
 ApiFrameType.REMOTE_AT_COMMAND_RESPONSE)
 and packet.status == ATCommandStatus.OK
 and packet.command_value):
 cmd = packet.command.upper()
 val = packet.command_value

 # Mark data is coming from the local XBee
 if f_type == ApiFrameType.AT_COMMAND_RESPONSE:
 x64bit_addr = "local"

 if cmd == ATStringCommand.NI.command:
 node_id = val.decode(encoding='utf8', errors='ignore')
 elif cmd == ATStringCommand.HV.command:
 hw_version = HardwareVersion.get(val[0])
 elif cmd == ATStringCommand.VR.command:
 fw_version = val
 elif cmd == ATStringCommand.MY.command:
 if not x16bit_addr:
 x16bit_addr = XBee16BitAddress(val)
 elif (cmd == ATStringCommand.AP.command
 and f_type == ApiFrameType.AT_COMMAND_RESPONSE):
 op_mode = OperatingMode.get(val[0])

 return x64bit_addr, x16bit_addr, node_id, hw_version, fw_version, op_mode

 @staticmethod
 def __check_packet_802_15_4(raw_data):
 """
 If the current XBee's protocol is 802.15.4 and the user sends many 'ND'
 commands, the device could return an RX 64 IO packet with an invalid
 payload (length < 5).

 In this case the packet must be discarded, or an exception must be raised.

 This method checks a received raw_data and returns `False` if the
 the packet should not be processed.

 Args:
 raw_data (Bytearray): Received data.

 Returns:
 Boolean: `True` if the packet must be processed, `False` otherwise.
 """
 if (raw_data[3] == ApiFrameType.RX_IO_64
 and len(raw_data[14:-1]) < IOSample.min_io_sample_payload()):
 return False
 return True

 def __try_add_remote_device(self, packet):
 """
 If the packet has information about a remote device, this method
 extracts that information from the packet, creates a remote device, and
 adds it (if not exist yet) to the network.

 Args:
 packet (:class:`.XBeeAPIPacket`): Packet to check.

 Returns:
 :class:`.RemoteXBeeDevice`: Remote XBee extracted from the packet,
 `None` if the packet has not information about a remote device.
 """
 remote = None
 x64, x16, n_id, hw_ver, fw_ver, op_mode = \
 self.__get_remote_device_data_from_packet(packet)
 if (x64 == "local" or XBee64BitAddress.is_known_node_addr(x64)
 or XBee16BitAddress.is_known_node_addr(x16)):
 remote = self.__xbee.get_network()._add_remote_from_attr(
 digi.xbee.devices.NetworkEventReason.RECEIVED_MSG,
 x64bit_addr=x64, x16bit_addr=x16, node_id=n_id,
 hw_version=hw_ver, fw_version=fw_ver, op_mode=op_mode)
 return remote

 @staticmethod
 def __is_explicit_data_packet(packet):
 """
 Checks if the provided explicit data packet is directed to the data cluster.

 This means that this XBee has its API Output Mode distinct than Native
 (it's expecting explicit data packets), but some device has sent it a
 non-explicit data packet (TransmitRequest f.e.).
 In this case, this XBee receives a explicit data packet with the
 following values:

 1. Source endpoint = 0xE8
 2. Destination endpoint = 0xE8
 3. Cluster ID = 0x0011
 4. Profile ID = 0xC105

 Args:
 packet (:class:`.XBeeAPIPacket`): Packet to check.

 Returns:
 Boolean: `True` if the packet is a explicit data packet, `False`
 otherwise.
 """
 return (packet.source_endpoint == 0xE8 and packet.dest_endpoint == 0xE8
 and packet.cluster_id == 0x0011 and packet.profile_id == 0xC105)

 @staticmethod
 def __is_explicit_io_packet(packet):
 """
 Checks if the provided explicit data packet is directed to the IO cluster.

 This means that this XBee has its API Output Mode distinct than Native
 (it's expecting explicit data packets), but some device has sent an IO
 sample packet (IODataSampleRxIndicatorPacket f.e.).
 In this case, this XBee receives a explicit data packet with the
 following values:

 1. Source endpoint = 0xE8
 2. Destination endpoint = 0xE8
 3. Cluster ID = 0x0092
 4. Profile ID = 0xC105

 Args:
 packet (:class:`.XBeeAPIPacket`): Packet to check.

 Returns:
 Boolean: `True` if the packet is a explicit IO packet, `False`
 otherwise.
 """
 return (packet.source_endpoint == 0xE8 and packet.dest_endpoint == 0xE8
 and packet.cluster_id == 0x0092 and packet.profile_id == 0xC105)

 def __expl_to_no_expl(self, packet):
 """
 Creates a non-explicit data packet from the given explicit packet
 depending on this listener's XBee device protocol.

 Args:
 packet (:class:`.XBeeAPIPacket`): Packet to convert.

 Returns:
 :class:`.XBeeAPIPacket`: Proper receive packet depending on the
 current protocol and the available information (inside the
 packet).
 """
 x64 = packet.x64bit_source_addr
 x16 = packet.x16bit_source_addr
 if self.__xbee.get_protocol() != XBeeProtocol.RAW_802_15_4:
 return ReceivePacket(x64, x16, packet.receive_options,
 rf_data=packet.rf_data)

 if x64 != XBee64BitAddress.UNKNOWN_ADDRESS:
 return RX64Packet(x64, 0, packet.receive_options,
 rf_data=packet.rf_data)
 if x16 != XBee16BitAddress.UNKNOWN_ADDRESS:
 return RX16Packet(x16, 0, packet.receive_options,
 rf_data=packet.rf_data)

 # both address UNKNOWN
 return RX64Packet(x64, 0, packet.receive_options, rf_data=packet.rf_data)

 def __expl_to_io(self, packet):
 """
 Creates a IO packet from the given explicit packet depending on this
 listener's XBee protocol.

 Args:
 packet (:class:`.XBeeAPIPacket`): Packet to convert.

 Returns:
 :class:`.XBeeAPIPacket`: Proper receive packet depending on the
 current protocol and the available information (inside the packet).
 """
 return IODataSampleRxIndicatorPacket(
 packet.x64bit_source_addr, packet.x16bit_source_addr,
 packet.receive_options, rf_data=packet.rf_data)

 def __add_packet_queue(self, packet):
 """
 Adds a packet to the queue. If the queue is full, the first packet of
 the queue is removed and the given packet is added.

 Args:
 packet (:class:`.XBeeAPIPacket`): Packet to be added.
 """
 # Data packets.
 f_type = packet.get_frame_type()
 if f_type in (ApiFrameType.RECEIVE_PACKET, ApiFrameType.RX_64,
 ApiFrameType.RX_16):
 if self.__data_xbee_queue.full():
 self.__data_xbee_queue.get()
 self.__data_xbee_queue.put_nowait(packet)
 # Explicit packets.
 elif f_type == ApiFrameType.EXPLICIT_RX_INDICATOR:
 if self.__explicit_xbee_queue.full():
 self.__explicit_xbee_queue.get()
 self.__explicit_xbee_queue.put_nowait(packet)
 # Check if the explicit packet is 'special'.
 if self.__is_explicit_data_packet(packet):
 # Create the non-explicit version of this packet and add it to
 # the queue.
 self.__add_packet_queue(self.__expl_to_no_expl(packet))
 elif self.__is_explicit_io_packet(packet):
 # Create the IO packet corresponding to this packet and add it
 # to the queue.
 self.__add_packet_queue(self.__expl_to_io(packet))
 # IP packets.
 elif f_type == ApiFrameType.RX_IPV4:
 if self.__ip_xbee_queue.full():
 self.__ip_xbee_queue.get()
 self.__ip_xbee_queue.put_nowait(packet)
 # Rest of packets.
 else:
 if self.__xbee_queue.full():
 self.__xbee_queue.get()
 self.__xbee_queue.put_nowait(packet)

 @staticmethod
 def __expl_to_message(remote, broadcast, packet):
 """
 Converts an explicit packet in an explicit message.

 Args:
 remote (:class:`.RemoteXBeeDevice`): Remote XBee that sent the packet.
 broadcast (Boolean, optional, default=`False`): Flag indicating
 whether the message is broadcast (`True`) or not (`False`).
 packet (:class:`.XBeeAPIPacket`): Packet to be converted.

 Returns:
 :class:`.ExplicitXBeeMessage`: Explicit message generated from the
 provided parameters.
 """
 return ExplicitXBeeMessage(packet.rf_data, remote, time.time(),
 packet.source_endpoint, packet.dest_endpoint,
 packet.cluster_id, packet.profile_id,
 broadcast=broadcast)

[docs]class XBeeQueue(Queue):
 """
 This class represents an XBee queue.
 """

 def __init__(self, maxsize=10):
 """
 Class constructor. Instantiates a new :class:`.XBeeQueue` with the
 provided parameters.

 Args:
 maxsize (Integer, optional, default=10): Maximum size of the queue.
 """
 Queue.__init__(self, maxsize)

[docs] def get(self, block=True, timeout=None):
 """
 Returns the first element of the queue if there is some element ready
 before timeout expires, in case of the timeout is not `None`.

 If timeout is `None`, this method is non-blocking. In this case, if
 there is not any element available, it returns `None`, otherwise it
 returns an :class:`.XBeeAPIPacket`.

 Args:
 block (Boolean): `True` to block during `timeout` waiting for a
 packet, `False` to not block.
 timeout (Integer, optional): timeout in seconds.

 Returns:
 :class:`.XBeeAPIPacket`: Packet if there is any packet available
 before `timeout` expires. If `timeout` is `None`, the returned
 value may be `None`.

 Raises:
 TimeoutException: If `timeout` is not `None` and there is not any
 packet available before the timeout expires.
 """
 if timeout is None:
 try:
 return Queue.get(self, block=False)
 except (Empty, ValueError):
 return None

 try:
 return Queue.get(self, True, timeout)
 except Empty:
 raise TimeoutException()

[docs] def get_by_remote(self, remote, timeout=None):
 """
 Returns the first element of the queue that had been sent by
 `remote`, if there is some in the specified timeout.

 If timeout is `None`, this method is non-blocking. In this case, if
 there is not any packet sent by `remote` in the queue, it returns
 `None`, otherwise it returns an :class:`.XBeeAPIPacket`.

 Args:
 remote (:class:`.RemoteXBeeDevice`): Remote XBee to get its first
 element from queue.
 timeout (Integer, optional, default=`None`): Timeout in seconds.

 Returns:
 :class:`.XBeeAPIPacket`: If there is any packet available before
 the timeout expires. If timeout is `None`, the returned value
 may be `None`.

 Raises:
 TimeoutException: If timeout is not `None` and there is not any
 packet available that was sent by `remote` before the timeout
 expires.
 """
 if timeout is None:
 with self.mutex:
 for packet in self.queue:
 if self.__remote_device_match(packet, remote):
 self.queue.remove(packet)
 return packet
 return None

 packet = self.get_by_remote(remote)
 dead_line = time.time() + timeout
 while packet is None and dead_line > time.time():
 time.sleep(0.1)
 packet = self.get_by_remote(remote)
 if packet is None:
 raise TimeoutException()

 return packet

[docs] def get_by_ip(self, ip_addr, timeout=None):
 """
 Returns the first IP data packet from the queue whose IP address
 matches the provided address.

 If timeout is `None`, this method is non-blocking. In this case, if
 there is not any packet sent by `ip_addr` in the queue, it returns
 `None`, otherwise it returns an :class:`.XBeeAPIPacket`.

 Args:
 ip_addr (:class:`ipaddress.IPv4Address`): IP address to look for in
 the list of packets.
 timeout (Integer, optional, default=`None`): Timeout in seconds.

 Returns:
 :class:`.XBeeAPIPacket`: If there is any packet available before the
 timeout expires. If timeout is `None`, the returned value may
 be `None`.

 Raises:
 TimeoutException: If timeout is not `None` and there is not any
 packet available that was sent by `ip_addr` before the timeout
 expires.
 """
 if timeout is None:
 with self.mutex:
 for packet in self.queue:
 if self.__ip_addr_match(packet, ip_addr):
 self.queue.remove(packet)
 return packet
 return None

 packet = self.get_by_ip(ip_addr)
 dead_line = time.time() + timeout
 while packet is None and dead_line > time.time():
 time.sleep(0.1)
 packet = self.get_by_ip(ip_addr)
 if packet is None:
 raise TimeoutException()

 return packet

[docs] def get_by_id(self, frame_id, timeout=None):
 """
 Returns the first packet from the queue whose frame ID matches the
 provided one.

 If timeout is `None`, this method is non-blocking. In this case, if
 there is not any received packet with the provided frame ID in the
 queue, it returns `None`, otherwise it returns an
 :class:`.XBeeAPIPacket`.

 Args:
 frame_id (Integer): Frame ID to look for in the list of packets.
 timeout (Integer, optional, default=`None`): Timeout in seconds.

 Returns:
 :class:`.XBeeAPIPacket`: If there is any packet available before
 the timeout expires. If timeout is `None`, the returned value
 may be `None`.

 Raises:
 TimeoutException: If timeout is not `None` and there is not any
 packet available that matches the provided frame ID before the
 timeout expires.
 """
 if timeout is None:
 with self.mutex:
 for packet in self.queue:
 if packet.needs_id() and packet.frame_id == frame_id:
 self.queue.remove(packet)
 return packet
 return None

 packet = self.get_by_id(frame_id)
 dead_line = time.time() + timeout
 while packet is None and dead_line > time.time():
 time.sleep(0.1)
 packet = self.get_by_id(frame_id)
 if packet is None:
 raise TimeoutException()

 return packet

[docs] def flush(self):
 """
 Clears the queue.
 """
 with self.mutex:
 self.queue.clear()

 @staticmethod
 def __remote_device_match(packet, remote):
 """
 Returns whether or not the source address of the provided XBee packet
 matches the address of the given remote XBee device.

 Args:
 packet (:class:`.XBeePacket`): XBee packet to get the address to compare.
 remote (:class:`.RemoteXBeeDevice`): Remote XBee to get the address
 to compare.

 Returns:
 Boolean: `True` if the remote device matches, `False` otherwise.
 """
 f_type = packet.get_frame_type()
 if f_type == ApiFrameType.RECEIVE_PACKET:
 if packet.x64bit_source_addr == remote.get_64bit_addr():
 return True
 return (remote.get_16bit_addr() != XBee16BitAddress.UNKNOWN_ADDRESS
 and packet.x16bit_source_addr == remote.get_16bit_addr())

 if f_type == ApiFrameType.REMOTE_AT_COMMAND_RESPONSE:
 if packet.x64bit_source_addr == remote.get_64bit_addr():
 return True
 return (remote.get_16bit_addr() != XBee16BitAddress.UNKNOWN_ADDRESS
 and packet.x16bit_source_addr == remote.get_16bit_addr())

 if f_type == ApiFrameType.RX_16:
 return packet.x16bit_source_addr == remote.get_16bit_addr()

 if f_type == ApiFrameType.RX_64:
 return packet.x64bit_source_addr == remote.get_64bit_addr()

 if f_type == ApiFrameType.RX_IO_16:
 return packet.x16bit_source_addr == remote.get_16bit_addr()

 if f_type == ApiFrameType.RX_IO_64:
 return packet.x64bit_source_addr == remote.get_64bit_addr()

 if f_type == ApiFrameType.EXPLICIT_RX_INDICATOR:
 return packet.x64bit_source_addr == remote.get_64bit_addr()

 return False

 @staticmethod
 def __ip_addr_match(packet, ip_addr):
 """
 Returns whether or not the IP address of the XBee packet matches the
 provided one.

 Args:
 packet (:class:`.XBeePacket`): XBee packet to get the address to compare.
 ip_addr (:class:`ipaddress.IPv4Address`): IP address to be compared
 with the XBee packet's one.

 Returns:
 Boolean: `True` if the IP address matches, `False` otherwise.
 """
 return (packet.get_frame_type() == ApiFrameType.RX_IPV4
 and packet.source_address == ip_addr)

 Source code for digi.xbee.recovery

Copyright 2019, 2020, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

import logging
import time

from serial import EIGHTBITS, STOPBITS_ONE, PARITY_NONE
from serial.serialutil import SerialException

from digi.xbee.devices import XBeeDevice
from digi.xbee.models.atcomm import ATStringCommand
from digi.xbee.models.hw import HardwareVersion
from digi.xbee.models.mode import OperatingMode
from digi.xbee.profile import FirmwareBaudrate, FirmwareParity, FirmwareStopbits
from digi.xbee.exception import RecoveryException, XBeeException
from digi.xbee.serial import FlowControl
from digi.xbee.util import utils

SUPPORTED_HARDWARE_VERSIONS = (HardwareVersion.XBEE3.code,
 HardwareVersion.XBEE3_SMT.code,
 HardwareVersion.XBEE3_TH.code)

_BAUDRATE_KEY = "baudrate"
_PARITY_KEY = "parity"
_STOPBITS_KEY = "stopbits"
_FLOW_CTRL_KEY = "flow_ctrl"
_CTS_KEY = "cts"
_RTS_KEY = "rts"
_API_ENABLE_KEY = "api_enable"
_CMD_SEQ_CHAR_KEY = "cmd_seq_char"
_GUARD_TIME_KEY = "guard_time"
_APPLY_CHANGES_KEY = "apply_changes"
_WRITE_REGISTER_KEY = "write_register"
_EXIT_MODE_KEY = "exit_mode"

_RECOVERY_PORT_PARAMETERS = {_BAUDRATE_KEY: 38400,
 "bytesize": EIGHTBITS,
 _PARITY_KEY: PARITY_NONE,
 _STOPBITS_KEY: STOPBITS_ONE,
 "xonxoff": False,
 "dsrdtr": False,
 "rtscts": False,
 "timeout": 0.1,
 "write_timeout": None,
 "inter_byte_timeout": None
 }

_RECOVERY_CHAR_TO_BAUDRATE = {
 0x00: [230400, 4800, 2400, 1200], # When receiving data (explicit, io), 230400 (io)
 0xf8: [9600, 19200], # When receiving data (explicit, io)
 0x80: [9600], # When receiving data (explicit, io)
 0xfe: [19200, 921600], # 921600 (explicit, io)
 0x30: [38400],
 0x7e: [38400], # When receiving data (explicit, io)
 0x2f: [57600], # When receiving data (explicit, io)
 0x63: [115200],
 0xa3: [115200], # When receiving data (explicit)
 0xe3: [115200], # When receiving data (io)
 0x02: [230400], # When receiving data (explicit)
 0x09: [460800], # When receiving data (explicit, io)
 0x12: [460800], # When receiving data (explicit, io)
 0xfc: [921600], # When receiving data (explicit)
}

_DEFAULT_GUARD_TIME = 1 # seconds
_DEVICE_BREAK_RESET_TIMEOUT = 10 # seconds
_BOOTLOADER_CONTINUE_KEY = "2"
_RECOVERY_DETECTION_TRIES = 2
_BOOTLOADER_BAUDRATE = 115200
_AT_COMMANDS = {_BAUDRATE_KEY: "at%s" % ATStringCommand.BD.command,
 _PARITY_KEY: "at%s" % ATStringCommand.NB.command,
 _STOPBITS_KEY: "at%s" % ATStringCommand.SB.command,
 _CTS_KEY: "at%s" % ATStringCommand.D7.command,
 _RTS_KEY: "at%s" % ATStringCommand.D6.command,
 _API_ENABLE_KEY: "at%s" % ATStringCommand.AP.command,
 _CMD_SEQ_CHAR_KEY: "at%s" % ATStringCommand.CC.command,
 _GUARD_TIME_KEY: "at%s" % ATStringCommand.GT.command,
 _APPLY_CHANGES_KEY: "at%s\r" % ATStringCommand.AC.command,
 _WRITE_REGISTER_KEY: "at%s\r" % ATStringCommand.WR.command,
 _EXIT_MODE_KEY: "at%s\r" % ATStringCommand.CN.command
 }
AT_OK_RESPONSE = b'OK\r'

_log = logging.getLogger(__name__)

class _LocalRecoverDevice:
 """
 Helper class used to handle the local recovery process.
 """

 def __init__(self, target):
 """
 Class constructor. Instantiates a new :class:`._LocalRecoverDevice`
 with the given parameters.

 Args:
 target (String or :class:`.XBeeDevice`): Target of the recovery operation.
 String: serial port identifier.
 :class:`.XBeeDevice`: the XBee device.
 """
 self._xbee_serial_port = None
 if isinstance(target, XBeeDevice):
 self._xbee_device = target
 self._device_was_connected = self._xbee_device.is_open()
 self._xbee_serial_port = self._xbee_device.serial_port
 else:
 self._xbee_serial_port = target
 self._xbee_device = None
 self._device_was_connected = False

 self._desired_cfg = self._xbee_serial_port.get_settings()

 self._desired_cfg[_FLOW_CTRL_KEY] = FlowControl.NONE
 if self._desired_cfg["rtscts"]:
 self._desired_cfg[_FLOW_CTRL_KEY] = FlowControl.HARDWARE_RTS_CTS
 elif self._desired_cfg["dsrdtr"]:
 self._desired_cfg[_FLOW_CTRL_KEY] = FlowControl.HARDWARE_DSR_DTR
 elif self._desired_cfg["xonxoff"]:
 self._desired_cfg[_FLOW_CTRL_KEY] = FlowControl.SOFTWARE

 self._desired_cfg[_CMD_SEQ_CHAR_KEY] = hex(ord('+'))[2:]
 self._desired_cfg[_GUARD_TIME_KEY] = hex(1000)[2:] # 1000ms in hex

 if isinstance(target, XBeeDevice) \
 and self._xbee_device.operating_mode in \
 (OperatingMode.API_MODE, OperatingMode.ESCAPED_API_MODE):
 self._desired_cfg[_API_ENABLE_KEY] = self._xbee_device.operating_mode.code
 else:
 self._desired_cfg[_API_ENABLE_KEY] = OperatingMode.API_MODE.code

 def autorecover_device(self):
 """
 Recovers the XBee from an unknown state.

 Raises:
 RecoveryException: If there is any error performing the recovery action.
 """
 if self._xbee_device and self._xbee_device.is_open:
 self._xbee_device.close()

 self._xbee_serial_port.open()
 self._xbee_serial_port.purge_port()

 _log.debug("Autorecovering the device by entering in recovery mode")
 recovery_baudrate = self._get_recovery_baudrate(_RECOVERY_DETECTION_TRIES)

 # If we couldn't enter in recovery mode, assume we are in bootloader
 # and retry
 if recovery_baudrate is None:
 _log.error("Could not determine the baudrate in recovery mode, "
 "assuming device is in bootloader mode and retrying")
 # Only for XBee 3 modules
 self._xbee_serial_port.apply_settings({_BAUDRATE_KEY: _BOOTLOADER_BAUDRATE})
 self._xbee_serial_port.write(str.encode(_BOOTLOADER_CONTINUE_KEY, encoding="utf8"))

 _log.debug("Retrying to determine the baudrate in recovery mode")
 recovery_baudrate = self._get_recovery_baudrate(_RECOVERY_DETECTION_TRIES)

 if recovery_baudrate is None:
 self._do_exception("Could not determine the baudrate in recovery mode")

 error = None
 for baudrate in recovery_baudrate:
 error = self._try_baudrate(baudrate)
 if not error:
 break

 if error:
 self._do_exception(error)

 def _try_baudrate(self, recovery_baudrate):
 # Here we are in recovery mode
 _log.debug("Reconfiguring the serial port to recovery baudrate of %d",
 recovery_baudrate)
 self._xbee_serial_port.apply_settings({_BAUDRATE_KEY: recovery_baudrate})

 # Set the desired configuration permanently.
 _log.debug("Forcing the current setup to %s", self._desired_cfg)

 bauds = FirmwareBaudrate.get_by_baudrate(self._desired_cfg[_BAUDRATE_KEY])
 if bauds:
 bauds = format(bauds.index, 'x')
 else:
 bauds = format(self._desired_cfg[_BAUDRATE_KEY], 'x')

 parity = FirmwareParity.get_by_parity(self._desired_cfg[_PARITY_KEY])
 if not parity:
 parity = FirmwareParity.NONE
 parity = format(parity.index, 'x')

 stop_bits = FirmwareStopbits.get_by_stopbits(self._desired_cfg[_STOPBITS_KEY])
 if not stop_bits:
 stop_bits = FirmwareStopbits.SB_1
 stop_bits = format(stop_bits.index, 'x')

 cts = -1
 rts = -1
 if self._desired_cfg[_FLOW_CTRL_KEY] == FlowControl.HARDWARE_RTS_CTS:
 cts = 1
 rts = 1
 elif self._desired_cfg[_FLOW_CTRL_KEY] == FlowControl.NONE:
 # In fact, this should be any value but 1 in any of them
 # For that, we should read the value and change to 0 only if it is 1
 cts = 0
 rts = 0

 _log.debug("In command mode: %s", enter_at_command_mode(self._xbee_serial_port))

 for command in (
 "%s%s\r" % (_AT_COMMANDS[_BAUDRATE_KEY], bauds),
 "%s%s\r" % (_AT_COMMANDS[_PARITY_KEY], parity),
 "%s%s\r" % (_AT_COMMANDS[_STOPBITS_KEY], stop_bits),
 "%s%s\r" % (_AT_COMMANDS[_CTS_KEY], cts),
 "%s%s\r" % (_AT_COMMANDS[_RTS_KEY], rts),
 "%s%s\r" % (_AT_COMMANDS[_API_ENABLE_KEY],
 self._desired_cfg[_API_ENABLE_KEY]),
 "%s%s\r" % (_AT_COMMANDS[_CMD_SEQ_CHAR_KEY],
 self._desired_cfg[_CMD_SEQ_CHAR_KEY]),
 "%s%s\r" % (_AT_COMMANDS[_GUARD_TIME_KEY],
 self._desired_cfg[_GUARD_TIME_KEY]),
 _AT_COMMANDS[_APPLY_CHANGES_KEY],
 _AT_COMMANDS[_WRITE_REGISTER_KEY],
 _AT_COMMANDS[_EXIT_MODE_KEY]):
 self._xbee_serial_port.write(str.encode(command, encoding="utf8"))
 if command == _AT_COMMANDS[_EXIT_MODE_KEY]:
 time.sleep(_DEFAULT_GUARD_TIME)
 timeout = time.time() + 2
 while self._xbee_serial_port.inWaiting() == 0 and time.time() < timeout:
 time.sleep(0.1)
 read = self._xbee_serial_port.read(self._xbee_serial_port.inWaiting())
 _log.debug("command %s = %s", command[:-1], read)
 if AT_OK_RESPONSE not in read:
 return "Command {!r} failed, non OK returned value of {!r}".format(command, read)
 # self._do_exception(
 # "Command {!r} failed, non OK returned value of {!r}".format(command, read))
 if command == _AT_COMMANDS[_APPLY_CHANGES_KEY]:
 self._xbee_serial_port.apply_settings(self._desired_cfg)

 self._restore_target_connection()
 return None

 def _get_recovery_baudrate(self, retries):
 """
 Tries to get the recovery baudrate of the XBee.

 Args:
 retries (Integer): Number of retries to guess the baudrate.

 Returns:
 Integer: The baudrate if success, `None` in case of failure.
 """
 for retry in range(retries):
 recovery_baudrate = self._enter_in_recovery()
 if recovery_baudrate is not None:
 _log.debug("XBee baudrate is %s", recovery_baudrate)
 return recovery_baudrate

 _log.debug("[try %d] Could not determine the baudrate to get the "
 "values in recovery mode", retry)

 def _enter_in_recovery(self):
 """
 Enters the device in recovery mode.

 Returns:
 Integer: The baudrate if success, `None` in case of failure.
 """

 # Set break line and baudrate
 self._xbee_serial_port.apply_settings(_RECOVERY_PORT_PARAMETERS)
 self._xbee_serial_port.purge_port()
 self._xbee_serial_port.break_condition = True

 recovery_baudrate = None
 timeout = time.time() + _DEVICE_BREAK_RESET_TIMEOUT
 while time.time() < timeout:
 time.sleep(0.2)
 try:
 # The first byte indicates the baudrate
 if self._xbee_serial_port.in_waiting > 0:
 read_bytes = self._xbee_serial_port.read(self._xbee_serial_port.in_waiting)
 _log.debug("Databytes read from recovery are %s",
 repr(utils.hex_to_string(read_bytes)))
 if read_bytes[0] in _RECOVERY_CHAR_TO_BAUDRATE.keys():
 recovery_baudrate = _RECOVERY_CHAR_TO_BAUDRATE[read_bytes[0]]
 # The valid byte is only the first one, so do not retry the loop
 break
 except SerialException as exc:
 _log.exception(exc)

 self._xbee_serial_port.break_condition = False
 return recovery_baudrate

 def _do_exception(self, msg):
 """
 Logs the "msg" at error level and restores the target connection

 Args:
 msg (String): Message to log.

 Raises:
 RecoveryException: If the restore of the connection was successful.
 XBeeException: If there is any error restoring the device connection.
 """
 _log.error(msg)
 try:
 self._restore_target_connection()
 except XBeeException as exc:
 _log.error("Could not restore connection: %s", exc)
 raise RecoveryException(msg)

 def _restore_target_connection(self):
 """
 Leaves the firmware update target connection (XBee device or serial
 port) in its original state.

 Raises:
 SerialException: If there is an error restoring the serial port connection.
 XBeeException: If there is an error restoring the device connection.
 """
 if self._xbee_device is not None:
 if self._xbee_serial_port is not None:
 if self._xbee_serial_port.isOpen():
 self._xbee_serial_port.close()
 if self._device_was_connected and not self._xbee_device.is_open():
 self._xbee_device.open()
 elif not self._device_was_connected and self._xbee_device.is_open():
 self._xbee_device.close()
 elif self._xbee_serial_port is not None and self._xbee_serial_port.isOpen():
 self._xbee_serial_port.close()
 _log.debug("Restored target connection")

[docs]def recover_device(target):
 """
 Recovers the XBee from an unknown state and leaves if configured for normal
 operations.

 Args:
 target (String or :class:`.XBeeDevice`): Target of the recovery operation.

 Raises:
 RecoveryException: If there is any error performing the recovery action.
 """
 # Launch the recover process.
 recovery_process = _LocalRecoverDevice(target)
 recovery_process.autorecover_device()

[docs]def enter_at_command_mode(port):
 """
 Attempts to put this device in AT Command mode.

 Args:
 port: The serial port where the XBee is connected to.

 Returns:
 Boolean: `True` if the XBee has entered in AT command mode, `False`
 otherwise.

 Raises:
 SerialTimeoutException: If there is any error trying to write to
 the serial port.
 InvalidOperatingModeException: If the XBee is in API mode.
 """
 if not port:
 raise ValueError("A valid serial port must be provided")

 port.flushInput()

 # We must wait at least 1 second to enter in command mode after sending
 # any data to the device
 time.sleep(1)
 # Send the command mode sequence
 b_array = bytearray('+', encoding="utf8")
 port.write(b_array)
 port.write(b_array)
 port.write(b_array)
 # Read data from the device (it should answer with 'OK\r')
 deadline = time.time() + 2
 while time.time() < deadline:
 data = port.read_existing()
 if data and AT_OK_RESPONSE in data:
 return True

 return False

 Source code for digi.xbee.sender

Copyright 2020, 2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
import logging
import threading

from digi.xbee.exception import TimeoutException
from digi.xbee.models.address import XBee64BitAddress, XBee16BitAddress
from digi.xbee.models.atcomm import ATStringCommand
from digi.xbee.models.mode import OperatingMode
from digi.xbee.models.options import RemoteATCmdOptions
from digi.xbee.models.status import ATCommandStatus
from digi.xbee.packets.aft import ApiFrameType
from digi.xbee.packets.base import XBeeAPIPacket
from digi.xbee.util import utils

[docs]class PacketSender:
 """
 Class to send XBee packets.
 """

 _LOG_PATTERN = "{comm_iface:s} - {event:s} - {opmode:s}: {content:s}"
 """
 Pattern used to log packet events.
 """

 _log = logging.getLogger(__name__)
 """
 Logger.
 """

 def __init__(self, xbee):
 """
 Class constructor. Instantiates a new :class:`.PacketSender` object
 with the provided parameters.

 Args:
 xbee (:class:`.XBeeDevice`): The XBee.
 """
 self.__xbee = xbee
 self._at_cmds_sent = {}
 self._future_apply = {}

[docs] def send_packet(self, packet):
 """
 Sends a packet to the XBee. The packet to send is escaped depending on
 the current operating mode.

 Args:
 packet (:class:`.XBeePacket`): The packet to send.

 Raises:
 InvalidOperatingModeException: If the XBee device's operating mode
 is not API or ESCAPED API. This method only checks the cached
 value of the operating mode.
 XBeeException: if the XBee device's communication interface is closed.

 .. seealso::
 | :class:`.XBeePacket`
 """
 f_type = packet.get_frame_type()
 # Do not allow to set a non API operating mode in the local XBee
 if (f_type in (ApiFrameType.AT_COMMAND, ApiFrameType.AT_COMMAND_QUEUE)
 and packet.parameter
 and packet.command.upper() == ATStringCommand.AP.command
 and not self.is_op_mode_valid(packet.parameter)):
 return

 comm_iface = self.__xbee.comm_iface
 op_mode = self.__xbee.operating_mode

 out = packet.output(escaped=op_mode == OperatingMode.ESCAPED_API_MODE)
 comm_iface.write_frame(out)
 self._log.debug(self._LOG_PATTERN.format(comm_iface=str(comm_iface),
 event="SENT",
 opmode=op_mode,
 content=utils.hex_to_string(out)))

 # Refresh cached parameters if this method modifies some of them.
 if self.__xbee.serial_port and f_type in (ApiFrameType.AT_COMMAND,
 ApiFrameType.AT_COMMAND_QUEUE,
 ApiFrameType.REMOTE_AT_COMMAND_REQUEST):
 node = self.__xbee
 # Get remote node in case of a remote at command
 if (f_type == ApiFrameType.REMOTE_AT_COMMAND_REQUEST
 and XBee64BitAddress.is_known_node_addr(packet.x64bit_dest_addr)):
 node = self.__xbee.get_network().get_device_by_64(packet.x64bit_dest_addr)

 # Store the sent AT command packet
 if node:
 if not node.get_64bit_addr():
 return
 key = str(node.get_64bit_addr())
 if key not in self._at_cmds_sent:
 self._at_cmds_sent[key] = {}

 self._at_cmds_sent[key].update({packet.frame_id: packet})

[docs] def is_op_mode_valid(self, value):
 """
 Returns `True` if the provided value is a valid operating mode for
 the library.

 Args:
 value (Bytearray): The value to check.

 Returns:
 Boolean: `True` for a valid value, `False` otherwise.
 """
 op_mode_value = utils.bytes_to_int(value)
 op_mode = OperatingMode.get(op_mode_value)
 if op_mode not in (OperatingMode.API_MODE,
 OperatingMode.ESCAPED_API_MODE):
 self._log.error(
 "Operating mode '%d' (%s) not set not to loose XBee connection",
 op_mode_value, op_mode.description if op_mode else "Unknown")
 return False

 return True

[docs] def at_response_received_cb(self, response):
 """
 Callback to deal with AT command responses and update the
 corresponding node. Only for internal use.

 Args:
 response (:class: `.XBeeAPIPacket`): The received API packet.
 """
 f_type = response.get_frame_type()
 if f_type not in (ApiFrameType.AT_COMMAND_RESPONSE,
 ApiFrameType.REMOTE_AT_COMMAND_RESPONSE):
 return

 node = self.__xbee
 # Get remote node in case of a remote at command
 if (f_type == ApiFrameType.REMOTE_AT_COMMAND_RESPONSE
 and XBee64BitAddress.is_known_node_addr(response.x64bit_source_addr)):
 node = self.__xbee.get_network().get_device_by_64(response.x64bit_source_addr)

 if not node:
 return

 key = str(node.get_64bit_addr())
 requests = self._at_cmds_sent.get(key, {})
 req = requests.pop(response.frame_id, None)

 if not req or response.status != ATCommandStatus.OK:
 return

 def is_req_apply(at_req):
 fr_type = at_req.get_frame_type()
 return (at_req.command.upper() == ATStringCommand.AC.command
 or fr_type == ApiFrameType.AT_COMMAND
 or (fr_type == ApiFrameType.REMOTE_AT_COMMAND_REQUEST
 and at_req.transmit_options & RemoteATCmdOptions.APPLY_CHANGES.value))

 def is_node_info_param(at_pkt):
 at_cmd = at_pkt.command.upper()
 return at_cmd in (ATStringCommand.NI.command,
 ATStringCommand.MY.command)

 def is_port_param(at_pkt):
 at_cmd = at_pkt.command.upper()
 return at_cmd in (ATStringCommand.AP.command,
 ATStringCommand.BD.command,
 ATStringCommand.NB.command,
 ATStringCommand.SB.command)

 apply = is_req_apply(req)
 if apply:
 if key not in self._future_apply:
 self._future_apply[key] = {}

 node_fut_apply = self._future_apply.get(key, {})
 node_fut_apply.pop(req.command.upper(), None)
 for key, value in list(node_fut_apply.items()):
 self._refresh_if_cached(node, key, value, apply=True)

 if req.parameter and (is_port_param(req) or is_node_info_param(req)):
 self._refresh_if_cached(node, req.command.upper(), req.parameter,
 apply=apply)

 def _refresh_if_cached(self, node, parameter, value, apply=True):
 """
 Refreshes the proper cached parameter depending on `parameter` value.

 If `parameter` is not a cached parameter, this method does nothing.

 Args:
 node (:class:`.AbstractXBeeDevice`): The XBee to refresh.
 parameter (String): the parameter to refresh its value.
 value (Bytearray): the new value of the parameter.
 apply (Boolean, optional, default=`True`): `True` to apply
 immediately, `False` otherwise.
 """
 updated = False
 param = parameter.upper()

 key = str(node.get_64bit_addr())
 if key not in self._future_apply:
 self._future_apply[key] = {}

 node_fut_apply = self._future_apply.get(key, {})

 # Node identifier
 if param == ATStringCommand.NI.command:
 node_id = str(value, encoding='utf8', errors='ignore')
 changed = node.get_node_id() != node_id
 updated = changed and apply
 if updated:
 node._node_id = node_id
 node_fut_apply.pop(param, None)
 elif changed:
 node_fut_apply.update({param: value})
 # 16-bit address
 elif param == ATStringCommand.MY.command:
 x16bit_addr = XBee16BitAddress(value)
 changed = node.get_16bit_addr() != x16bit_addr
 updated = changed and apply
 if updated:
 node._16bit_addr = x16bit_addr
 node_fut_apply.pop(param, None)
 elif changed:
 node_fut_apply.update({param: value})
 elif not node.is_remote():
 updated = self._refresh_serial_params(node, param, value, apply=apply)

 if updated:
 network = node.get_local_xbee_device().get_network() if node.is_remote() \
 else node.get_network()
 if (network
 and (not node.is_remote()
 or network.get_device_by_64(node.get_64bit_addr())
 or network.get_device_by_16(node.get_16bit_addr()))):
 from digi.xbee.devices import NetworkEventType, NetworkEventReason
 network._network_modified(
 NetworkEventType.UPDATE, NetworkEventReason.READ_INFO, node=node)

 def _refresh_serial_params(self, node, parameter, value, apply=True):
 """
 Refreshes the proper cached parameter depending on `parameter` value.

 If `parameter` is not a cached parameter, this method does nothing.

 Args:
 node (:class:`.AbstractXBeeDevice`): The XBee to refresh.
 parameter (String): the parameter to refresh its value.
 value (Bytearray): the new value of the parameter.
 apply (Boolean, optional, default=`True`): `True` to apply
 immediately, `False` otherwise.

 Returns:
 Boolean: `True` if a network event must be sent, `False` otherwise.
 """
 node_fut_apply = self._future_apply.get(str(node.get_64bit_addr()), {})

 if parameter == ATStringCommand.AP.command:
 new_op_mode = OperatingMode.get(utils.bytes_to_int(value))
 changed = bool(
 new_op_mode != node.operating_mode
 and new_op_mode in (OperatingMode.API_MODE,
 OperatingMode.ESCAPED_API_MODE))

 if changed and apply:
 node._operating_mode = new_op_mode
 node_fut_apply.pop(parameter, None)
 elif changed:
 node_fut_apply.update({parameter: value})

 return changed and apply

 if not node.serial_port or parameter not in (ATStringCommand.BD.command,
 ATStringCommand.NB.command,
 ATStringCommand.SB.command):
 return False

 if parameter == ATStringCommand.BD.command:
 from digi.xbee.profile import FirmwareBaudrate
 new_bd = utils.bytes_to_int(value)
 baudrate = FirmwareBaudrate.get(new_bd)
 new_bd = baudrate.baudrate if baudrate else new_bd
 changed = new_bd != node.serial_port.baudrate
 parameter = "baudrate" if changed and apply else parameter
 value = new_bd if changed and apply else value
 elif parameter == ATStringCommand.NB.command:
 from digi.xbee.profile import FirmwareParity
 new_parity = FirmwareParity.get(utils.bytes_to_int(value))
 new_parity = new_parity.parity if new_parity else None
 changed = new_parity != node.serial_port.parity
 parameter = "parity" if changed and apply else parameter
 value = new_parity if changed and apply else value
 else:
 from digi.xbee.profile import FirmwareStopbits
 new_sbits = FirmwareStopbits.get(utils.bytes_to_int(value))
 new_sbits = new_sbits.stop_bits if new_sbits else None
 changed = new_sbits != node.serial_port.stopbits
 parameter = "stopbits" if changed and apply else parameter
 value = new_sbits if changed and apply else value

 if changed and apply:
 node.serial_port.apply_settings({parameter: value})
 node_fut_apply.pop(parameter, None)
 elif changed:
 node_fut_apply.update({parameter: value})

 return False

[docs]class SyncRequestSender:
 """
 Class to synchronously send XBee packets. This means after sending
 the packet it waits for its response, if the package includes a frame ID,
 otherwise it does not wait.
 """

 def __init__(self, xbee, packet_to_send, timeout):
 """
 Class constructor. Instantiates a new :class:`.SyncRequestSender` object
 with the provided parameters.

 Args:
 xbee (:class:`.XBeeDevice`): The local XBee to send the packet.
 packet_to_send (:class:`.XBeePacket`): The packet to transmit.
 timeout (Integer): Number of seconds to wait. -1 to wait indefinitely.
 """
 self._xbee = xbee
 self._packet = packet_to_send
 self._timeout = timeout
 self._lock = threading.Condition()
 self._response_list = list()

[docs] def send(self):
 """
 Sends the packet and waits for its corresponding response.

 Returns:
 :class:`.XBeePacket`: Received response packet.

 Raises:
 InvalidOperatingModeException: If the XBee device's operating mode
 is not API or ESCAPED API. This method only checks the cached
 value of the operating mode.
 TimeoutException: If the response is not received in the configured
 timeout.
 XBeeException: If the XBee device's communication interface is closed.

 .. seealso::
 | :class:`.XBeePacket`
 """
 # Add the packet received callback.
 if self._packet.needs_id():
 self._xbee.add_packet_received_callback(self._packet_received_cb)

 try:
 # Send the packet.
 self._xbee.send_packet(self._packet, sync=False)

 if not self._packet.needs_id():
 return None

 # Wait for response or timeout.
 self._lock.acquire()
 if self._timeout == -1:
 self._lock.wait()
 else:
 self._lock.wait(self._timeout)
 self._lock.release()
 # After waiting check if we received any response, if not throw a
 # timeout exception.
 if not self._response_list:
 raise TimeoutException(
 message="Response not received in the configured timeout.")
 # Return the received packet.
 return self._response_list[0]
 finally:
 # Always remove the packet listener from the list.
 if self._packet.needs_id():
 self._xbee.del_packet_received_callback(self._packet_received_cb)

 @property
 def xbee(self):
 """
 Returns the local XBee to send the packet.

 Returns:
 :class:`.XBeeDevice`: Local XBee device.
 """
 return self._xbee

 @property
 def packet(self):
 """
 Returns the packet to send.

 Returns:
 :class:`.XBeePacket`: Packet to send.
 """
 return self._packet

 @property
 def timeout(self):
 """
 Returns the maximum number of seconds to wait for a response.

 Returns:
 Integer: Timeout to wait for a response.
 """
 return self._timeout

 def _packet_received_cb(self, rcv_packet):
 """
 Callback to receive XBee packets. It filters the received packets to
 find the response that corresponds to the sent packet: by id, by
 command (for local or remote AT commands), by socket ID, etc.

 Args:
 rcv_packet (:class:`.XBeePacket`): Received packet.
 """
 # Verify that the sent packet is not the received one!
 # This can happen when the echo mode is enabled in the serial port.
 if self._packet == rcv_packet:
 return

 if (not isinstance(self._packet, XBeeAPIPacket)
 or not isinstance(rcv_packet, XBeeAPIPacket)):
 return

 # Check if it is the packet we are waiting for.
 if (not rcv_packet.needs_id()
 or rcv_packet.frame_id != self._packet.frame_id):
 return

 s_f_type = self._packet.get_frame_type()
 r_f_type = rcv_packet.get_frame_type()
 if s_f_type in (ApiFrameType.AT_COMMAND, ApiFrameType.AT_COMMAND_QUEUE):
 received_response = self._is_valid_at_response(rcv_packet)
 elif s_f_type == ApiFrameType.REMOTE_AT_COMMAND_REQUEST:
 received_response = self._is_valid_remote_at_response(rcv_packet)
 elif s_f_type in (ApiFrameType.TRANSMIT_REQUEST,
 ApiFrameType.EXPLICIT_ADDRESSING):
 received_response = (r_f_type == ApiFrameType.TRANSMIT_STATUS)
 elif s_f_type in (ApiFrameType.TX_64, ApiFrameType.TX_16,
 ApiFrameType.USER_DATA_RELAY_REQUEST):
 # User data relay requests only receive a tx status frame for errors
 # This means successful user data relay requests throw a
 # TimeoutException using this method
 received_response = (r_f_type == ApiFrameType.TX_STATUS)
 elif s_f_type in ApiFrameType.FILE_SYSTEM_REQUEST:
 received_response = self._is_valid_fs_response(rcv_packet)
 elif s_f_type in ApiFrameType.REMOTE_FILE_SYSTEM_REQUEST:
 # A remote file system request may receive 2 frames: the remote file
 # system response and a transmit status
 received_response = self._is_valid_remote_fs_response(rcv_packet)
 elif s_f_type == ApiFrameType.SOCKET_CREATE:
 received_response = (r_f_type == ApiFrameType.SOCKET_CREATE_RESPONSE)
 elif s_f_type == ApiFrameType.SOCKET_OPTION_REQUEST:
 received_response = self._is_valid_socket_opt_response(rcv_packet)
 elif s_f_type == ApiFrameType.SOCKET_CONNECT:
 received_response = self._is_valid_socket_conn_response(rcv_packet)
 elif s_f_type == ApiFrameType.SOCKET_CLOSE:
 received_response = self._is_valid_socket_close_response(rcv_packet)
 elif s_f_type == ApiFrameType.SOCKET_BIND:
 received_response = self._is_valid_socket_bind_response(rcv_packet)
 elif s_f_type == ApiFrameType.REGISTER_JOINING_DEVICE:
 received_response = (
 r_f_type == ApiFrameType.REGISTER_JOINING_DEVICE_STATUS)
 else:
 received_response = True

 if received_response:
 # Add the received packet to the list and notify the lock.
 self._lock.acquire()
 self._response_list.append(rcv_packet)
 self._lock.notify()
 self._lock.release()

 def _is_valid_at_response(self, packet):
 """
 Checks if the provided packet is the AT command response packet that
 matches the sent package.

 Args:
 packet (:class:`.XBeeAPIPacket`): Packet to check.

 Returns:
 Boolean: `True` if packet is the AT command response packet
 corresponding to the sent package, `False` otherwise.
 """
 # If the sent packet is an AT command, verify that the received one is
 # an AT command response and the command matches in both packets.
 return (packet.get_frame_type() == ApiFrameType.AT_COMMAND_RESPONSE
 and self._packet.command.upper() == packet.command.upper())

 def _is_valid_remote_at_response(self, packet):
 """
 Checks if the provided packet is the remote AT command response packet
 that matches the sent package.

 Args:
 packet (:class:`.XBeeAPIPacket`): Packet to check.

 Returns:
 Boolean: `True` if packet is the remote AT command response packet
 corresponding to the sent package, `False` otherwise.
 """
 # If the sent packet is a remote AT command, verify that the received
 # one is a remote AT command response and their commands match.
 return (packet.get_frame_type() == ApiFrameType.REMOTE_AT_COMMAND_RESPONSE
 and self._packet.command.upper() == packet.command.upper()
 and (not XBee64BitAddress.is_known_node_addr(self._packet.x64bit_dest_addr)
 or self._packet.x64bit_dest_addr == packet.x64bit_source_addr)
 and (not XBee16BitAddress.is_known_node_addr(self._packet.x16bit_dest_addr)
 or not XBee16BitAddress.is_known_node_addr(packet.x16bit_source_addr)
 or self._packet.x16bit_dest_addr == packet.x16bit_source_addr))

 def _is_valid_fs_response(self, packet):
 """
 Checks if the provided packet is the file system response packet that
 matches the sent package.

 Args:
 packet (:class:`.XBeeAPIPacket`): Packet to check.

 Returns:
 Boolean: `True` if packet is the file system response packet
 corresponding to the sent package, `False` otherwise.
 """
 # If the sent packet is a file system command, verify that the received
 # one is a file system response and their commands match.
 return (packet.get_frame_type() == ApiFrameType.FILE_SYSTEM_RESPONSE
 and self._packet.command.type == packet.command.type)

 def _is_valid_remote_fs_response(self, packet):
 """
 Checks if the provided packet is the remote file system response packet
 that matches the sent package.

 Args:
 packet (:class:`.XBeeAPIPacket`): Packet to check.

 Returns:
 Boolean: `True` if packet is the remote file system response packet
 corresponding to the sent package, `False` otherwise.
 """
 # If the sent packet is a remote file system command, verify that the
 # received one is a remote file system response and their commands match.
 return (packet.get_frame_type() == ApiFrameType.REMOTE_FILE_SYSTEM_RESPONSE
 and self._packet.command.type == packet.command.type
 and (not XBee64BitAddress.is_known_node_addr(self._packet.x64bit_dest_addr)
 or self._packet.x64bit_dest_addr == packet.x64bit_source_addr))

 def _is_valid_socket_opt_response(self, packet):
 """
 Checks if the provided packet is the Socket Option Response packet
 that matches the sent package.

 Args:
 packet (:class:`.XBeeAPIPacket`): Packet to check.

 Returns:
 Boolean: `True` if packet is the Socket Option Response packet
 corresponding to the sent package, `False` otherwise.
 """
 # If the sent packet is a Socket Option request, verify that the
 # received one is a Socket Option response and their commands match.
 return (packet.get_frame_type() == ApiFrameType.SOCKET_OPTION_RESPONSE
 and self._packet.socket_id == packet.socket_id)

 def _is_valid_socket_conn_response(self, packet):
 """
 Checks if the provided packet is the Socket Connect Response packet
 that matches the sent package.

 Args:
 packet (:class:`.XBeeAPIPacket`): Packet to check.

 Returns:
 Boolean: `True` if packet is the Socket Connect Response packet
 corresponding to the sent package, `False` otherwise.
 """
 # If the sent packet is a Socket Connect, verify that the received one
 # is a Socket Connect Response and their socket IDs match.
 return (packet.get_frame_type() == ApiFrameType.SOCKET_CONNECT_RESPONSE
 and self._packet.socket_id == packet.socket_id)

 def _is_valid_socket_close_response(self, packet):
 """
 Checks if the provided packet is the Socket Close Response packet that
 matches the sent package.

 Args:
 packet (:class:`.XBeeAPIPacket`): Packet to check.

 Returns:
 Boolean: `True` if packet is the Socket Close Response packet
 corresponding to the sent package, `False` otherwise.
 """
 # If the sent packet is a Socket Close, verify that the received one is
 # a Socket Close Response and their socket IDs match.
 return (packet.get_frame_type() == ApiFrameType.SOCKET_CLOSE_RESPONSE
 and self._packet.socket_id == packet.socket_id)

 def _is_valid_socket_bind_response(self, packet):
 """
 Checks if the provided packet is the Socket Listen Response packet that
 matches the sent package.

 Args:
 packet (:class:`.XBeeAPIPacket`): Packet to check.

 Returns:
 Boolean: `True` if packet is the Socket Listen Response packet
 corresponding to the sent package, `False` otherwise.
 """
 # If the sent packet is a Socket Bind, verify that the received one is
 # a Socket Listen Response and their socket IDs match.
 return (packet.get_frame_type() == ApiFrameType.SOCKET_LISTEN_RESPONSE
 and self._packet.socket_id == packet.socket_id)

 Source code for digi.xbee.serial

Copyright 2017-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

import enum
import os
import time

from serial import Serial, EIGHTBITS, STOPBITS_ONE, PARITY_NONE

import digi.xbee.exception
from digi.xbee.comm_interface import XBeeCommunicationInterface
from digi.xbee.models.atcomm import SpecialByte
from digi.xbee.models.mode import OperatingMode
from digi.xbee.packets.base import XBeeAPIPacket, XBeePacket
from digi.xbee.util import utils

[docs]class FlowControl(enum.Enum):
 """
 This class represents all available flow controls.
 """

 NONE = None
 SOFTWARE = 0
 HARDWARE_RTS_CTS = 1
 HARDWARE_DSR_DTR = 2
 UNKNOWN = 99

[docs]class XBeeSerialPort(Serial, XBeeCommunicationInterface):
 """
 This class extends the functionality of Serial class (PySerial).

 It also introduces a minor change in its behaviour: the serial port is not
 automatically open when instantiated, only when calling open().

 .. seealso::
 | _PySerial: https://github.com/pyserial/pyserial
 """

 __DEFAULT_PORT_TIMEOUT = 0.1 # seconds
 __DEFAULT_DATA_BITS = EIGHTBITS
 __DEFAULT_STOP_BITS = STOPBITS_ONE
 __DEFAULT_PARITY = PARITY_NONE
 __DEFAULT_FLOW_CONTROL = FlowControl.NONE

 def __init__(self, baud_rate, port, data_bits=__DEFAULT_DATA_BITS,
 stop_bits=__DEFAULT_STOP_BITS, parity=__DEFAULT_PARITY,
 flow_control=__DEFAULT_FLOW_CONTROL,
 timeout=__DEFAULT_PORT_TIMEOUT):
 """
 Class constructor. Instantiates a new `XBeeSerialPort` object with the
 given port parameters.

 Args:
 baud_rate (Integer): Serial port baud rate.
 port (String): Serial port name to use.
 data_bits (Integer, optional, default=8): Serial data bits.
 stop_bits (Float, optional, default=1): sSerial stop bits.
 parity (Char, optional, default=`N`): Parity. Default to 'N' (None).
 flow_control (Integer, optional, default=`None`): Flow control.
 timeout (Integer, optional, default=0.1): Read timeout (seconds).

 .. seealso::
 | _PySerial: https://github.com/pyserial/pyserial
 """
 if flow_control == FlowControl.SOFTWARE:
 Serial.__init__(self, port=None, baudrate=baud_rate,
 bytesize=data_bits, stopbits=stop_bits,
 parity=parity, timeout=timeout, xonxoff=True)
 elif flow_control == FlowControl.HARDWARE_DSR_DTR:
 Serial.__init__(self, port=None, baudrate=baud_rate,
 bytesize=data_bits, stopbits=stop_bits,
 parity=parity, timeout=timeout, dsrdtr=True)
 elif flow_control == FlowControl.HARDWARE_RTS_CTS:
 Serial.__init__(self, port=None, baudrate=baud_rate,
 bytesize=data_bits, stopbits=stop_bits,
 parity=parity, timeout=timeout, rtscts=True)
 else:
 Serial.__init__(self, port=None, baudrate=baud_rate,
 bytesize=data_bits, stopbits=stop_bits,
 parity=parity, timeout=timeout)
 self.setPort(port)
 self._is_reading = False

 def __str__(self):
 return '{name} {p.portstr!r}'.format(name=self.__class__.__name__, p=self)

 @property
 def is_interface_open(self):
 """
 Returns whether the underlying hardware communication interface is active.

 Returns:
 Boolean. `True` if the interface is active, `False` otherwise.
 """
 return self.isOpen()

[docs] def write_frame(self, frame):
 """
 Writes an XBee frame to the underlying hardware interface.

 Subclasses may throw specific exceptions to signal implementation
 specific hardware errors.

 Args:
 frame (Bytearray): The XBee API frame packet to write. If the
 bytearray does not correctly represent an XBee frame, the
 behaviour is undefined.
 """
 self.write(frame)

[docs] def read_byte(self):
 """
 Synchronous. Reads one byte from serial port.

 Returns:
 Integer: The read byte.

 Raises:
 TimeoutException: If there is no bytes ins serial port buffer.
 """
 byte = bytearray(self.read(1))
 if len(byte) == 0:
 raise digi.xbee.exception.TimeoutException()

 return byte[0]

[docs] def read_bytes(self, num_bytes):
 """
 Synchronous. Reads the specified number of bytes from the serial port.

 Args:
 num_bytes (Integer): the number of bytes to read.

 Returns:
 Bytearray: the read bytes.

 Raises:
 TimeoutException: if the number of bytes read is less than `num_bytes`.
 """
 read_bytes = bytearray(self.read(num_bytes))
 if len(read_bytes) != num_bytes:
 raise digi.xbee.exception.TimeoutException()
 return read_bytes

 def __read_next_byte(self, operating_mode=OperatingMode.API_MODE):
 """
 Returns the next byte in bytearray format. If the operating mode is
 OperatingMode.ESCAPED_API_MODE, the bytearray could contain 2 bytes.

 If in escaped API mode and the byte that was read was the escape byte,
 it will also read the next byte.

 Args:
 operating_mode (:class:`.OperatingMode`): The operating mode in
 which the byte should be read.

 Returns:
 Bytearray: The read byte or bytes as bytearray, `None` otherwise.
 """
 read_data = bytearray()
 read_byte = self.read_byte()
 read_data.append(read_byte)
 # Read escaped bytes in API escaped mode.
 if operating_mode == OperatingMode.ESCAPED_API_MODE and read_byte == XBeePacket.ESCAPE_BYTE:
 read_data.append(self.read_byte())

 return read_data

[docs] def quit_reading(self):
 """
 Makes the thread (if any) blocking on wait_for_frame return.

 If a thread was blocked on wait_for_frame, this method blocks (for a
 maximum of 'timeout' seconds) until the blocked thread is resumed.
 """
 if self._is_reading:
 # As this is the only way to stop reading, self._isReading is
 # reused to signal the stop reading request.
 self._is_reading = False

 if os.name in ('nt', 'posix'):
 self.cancel_read()
 else:
 # Ensure we block until the reading thread resumes.
 # (could be improved using locks in the future)
 time.sleep(self.timeout)

[docs] def wait_for_frame(self, operating_mode):
 """
 Reads the next packet. Starts to read when finds the start delimiter.
 The last byte read is the checksum.

 If there is something in the COM buffer after the
 start delimiter, this method discards it.

 If the method can't read a complete and correct packet,
 it will return `None`.

 Args:
 operating_mode (:class:`.OperatingMode`): The operating mode in
 which the packet should be read.

 Returns:
 Bytearray: The read packet as bytearray if a packet is read, `None`
 otherwise.
 """
 self._is_reading = True

 try:
 xbee_packet = bytearray(1)
 # Add packet delimiter.
 xbee_packet[0] = self.read_byte()
 while xbee_packet[0] != SpecialByte.HEADER_BYTE.value:
 # May be set to false by self.quit_reading() as a stop reading
 # request.
 if not self._is_reading:
 return None
 xbee_packet[0] = self.read_byte()

 # Add packet length.
 packet_length_byte = bytearray()
 for _ in range(2):
 packet_length_byte += self.__read_next_byte(operating_mode)
 xbee_packet += packet_length_byte
 # Length needs to be un-escaped in API escaped mode to obtain its
 # integer equivalent.
 if operating_mode == OperatingMode.ESCAPED_API_MODE:
 length = utils.length_to_int(
 XBeeAPIPacket.unescape_data(packet_length_byte))
 else:
 length = utils.length_to_int(packet_length_byte)

 # Add packet payload.
 for _ in range(length):
 xbee_packet += self.__read_next_byte(operating_mode)

 # Add packet checksum.
 xbee_packet += self.__read_next_byte(operating_mode)

 # Return the packet unescaped.
 if operating_mode == OperatingMode.ESCAPED_API_MODE:
 return XBeeAPIPacket.unescape_data(xbee_packet)

 return xbee_packet
 except digi.xbee.exception.TimeoutException:
 return None

[docs] def read_existing(self):
 """
 Asynchronous. Reads all bytes in the serial port buffer. May read 0 bytes.

 Returns:
 Bytearray: The bytes read.
 """
 return bytearray(self.read(self.inWaiting()))

[docs] def get_read_timeout(self):
 """
 Returns the serial port read timeout.

 Returns:
 Integer: Read timeout in seconds.
 """
 return self.timeout

[docs] def set_read_timeout(self, read_timeout):
 """
 Sets the serial port read timeout in seconds.

 Args:
 read_timeout (Integer): The new serial port read timeout in seconds.
 """
 self.timeout = read_timeout

[docs] def set_baudrate(self, new_baudrate):
 """
 Changes the serial port baudrate.

 Args:
 new_baudrate (Integer): The new baudrate to set.
 """
 if new_baudrate is None:
 return

 port_settings = self.get_settings()
 port_settings["baudrate"] = new_baudrate
 self.apply_settings(port_settings)

[docs] def purge_port(self):
 """
 Purges the serial port by cleaning the input and output buffers.
 """

 self.reset_input_buffer()
 self.reset_output_buffer()

 Source code for digi.xbee.xsocket

Copyright 2019-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

import threading
import time
from collections import OrderedDict
from ipaddress import IPv4Address

from digi.xbee.devices import CellularDevice
from digi.xbee.exception import TimeoutException, XBeeSocketException, XBeeException
from digi.xbee.models.protocol import IPProtocol
from digi.xbee.models.status import SocketState, SocketStatus, TransmitStatus
from digi.xbee.packets.raw import TXStatusPacket
from digi.xbee.packets.socket import SocketConnectPacket, SocketCreatePacket, \
 SocketSendPacket, SocketClosePacket, SocketBindListenPacket, \
 SocketNewIPv4ClientPacket, SocketOptionRequestPacket, SocketSendToPacket

[docs]class socket:
 """
 This class represents an XBee socket and provides methods to create,
 connect, bind and close a socket, as well as send and receive data with it.
 """

 __DEFAULT_TIMEOUT = 5
 __MAX_PAYLOAD_BYTES = 1500

 def __init__(self, xbee_device, ip_protocol=IPProtocol.TCP):
 """
 Class constructor. Instantiates a new XBee socket object for the given
 XBee device.

 Args:
 xbee_device (:class:`.XBeeDevice`): XBee device of the socket.
 ip_protocol (:class:`.IPProtocol`): protocol of the socket.

 Raises:
 ValueError: if `xbee_device` is `None` or if `xbee_device` is not
 an instance of `CellularDevice`.
 ValueError: if `ip_protocol` is `None`.
 XBeeException: if the connection with the XBee device is not open.
 """
 if xbee_device is None:
 raise ValueError("XBee device cannot be None")
 if not isinstance(xbee_device, CellularDevice):
 raise ValueError("XBee device must be a Cellular device")
 if ip_protocol is None:
 raise ValueError("IP protocol cannot be None")
 if not xbee_device.is_open():
 raise XBeeException("XBee device must be open")

 # Initialize internal vars.
 self.__xbee = xbee_device
 self.__ip_protocol = ip_protocol
 self.__socket_id = None
 self.__connected = False
 self.__src_port = None
 self.__is_listening = False
 self.__backlog = None
 self.__timeout = self.__DEFAULT_TIMEOUT
 self.__data_received = bytearray()
 self.__data_received_lock = threading.Lock()
 self.__data_received_from_dict = OrderedDict()
 self.__data_received_from_dict_lock = threading.Lock()
 # Initialize socket callbacks.
 self.__socket_state_cb = None
 self.__data_received_cb = None
 self.__data_received_from_cb = None

 def __enter__(self):
 return self

 def __exit__(self, exc_type, exc_val, exc_tb):
 self.close()

[docs] def connect(self, address):
 """
 Connects to a remote socket at the given address.

 Args:
 address (Tuple): A pair `(host, port)` where `host` is the domain
 name or string representation of an IPv4 and `port` is the
 numeric port value.

 Raises:
 TimeoutException: If the connect response is not received in the
 configured timeout.
 ValueError: If `address` is `None` or not a pair `(host, port)`.
 ValueError: If `port` is less than 1 or greater than 65535.
 XBeeException: If the connection with the XBee device is not open.
 XBeeSocketException: If the connect status is not `SUCCESS`.
 """
 # Check address and its contents.
 if address is None or len(address) != 2:
 raise ValueError("Invalid address, it must be a pair (host, port)")

 host = address[0]
 port = address[1]
 if isinstance(host, IPv4Address):
 host = str(host)
 if port < 1 or port > 65535:
 raise ValueError("Port number must be between 1 and 65535")

 # If the socket is not created, create it first.
 if self.__socket_id is None:
 self.__create_socket()

 lock = threading.Condition()
 received_state = list()

 # Define the socket state received callback.
 def socket_state_received_callback(socket_id, state):
 # Check the socket ID.
 if socket_id != self.__socket_id:
 return

 # Add the state to the list and notify the lock.
 received_state.append(state)
 lock.acquire()
 lock.notify()
 lock.release()

 # Add the socket state received callback.
 self.__xbee.add_socket_state_received_callback(
 socket_state_received_callback)

 try:
 # Create, send and check the socket connect packet.
 connect_packet = SocketConnectPacket(
 self.__xbee.get_next_frame_id(), self.__socket_id, port,
 SocketConnectPacket.DEST_ADDRESS_STRING, host)
 response_packet = self.__xbee.send_packet_sync_and_get_response(
 connect_packet, timeout=self.__get_timeout())
 self.__check_response(response_packet)

 # Wait until the socket state frame is received confirming the connection.
 if not received_state:
 lock.acquire()
 lock.wait(self.__timeout)
 lock.release()

 # Check if the socket state has been received.
 if not received_state:
 raise TimeoutException(
 message="Timeout waiting for the socket connection")

 # Check if the socket is connected successfully.
 if received_state[0] != SocketState.CONNECTED:
 raise XBeeSocketException(status=received_state[0])

 self.__connected = True

 # Register internal socket state and data reception callbacks.
 self.__register_state_callback()
 self.__register_data_received_callback()
 finally:
 # Always remove the socket state callback.
 self.__xbee.del_socket_state_received_callback(socket_state_received_callback)

[docs] def bind(self, address):
 """
 Binds the socket to the given address. The socket must not already be bound.

 Args:
 address (Tuple): A pair `(host, port)` where `host` is the local
 interface (not used) and `port` is the numeric port value.

 Raises:
 TimeoutException: If the bind response is not received in the
 configured timeout.
 ValueError: If `address` is `None` or not a pair `(host, port)`.
 ValueError: If `port` is less than 1 or greater than 65535.
 XBeeException: If the connection with the XBee device is not open.
 XBeeSocketException: If the bind status is not `SUCCESS`.
 XBeeSocketException: If the socket is already bound.
 """
 # Check address and its contents.
 if address is None or len(address) != 2:
 raise ValueError("Invalid address, it must be a pair (host, port)")

 port = address[1]
 if port < 1 or port > 65535:
 raise ValueError("Port number must be between 1 and 65535")
 if self.__src_port:
 raise XBeeSocketException(status=SocketStatus.ALREADY_CONNECTED)

 # If the socket is not created, create it first.
 if self.__socket_id is None:
 self.__create_socket()

 # Create, send and check the socket create packet.
 bind_packet = SocketBindListenPacket(self.__xbee.get_next_frame_id(),
 self.__socket_id, port)
 response_packet = self.__xbee.send_packet_sync_and_get_response(
 bind_packet, timeout=self.__get_timeout())
 self.__check_response(response_packet)

 # Register the internal data 'reception from' callback.
 self.__register_data_received_from_callback()

 # Store the source port.
 self.__src_port = port

[docs] def listen(self, backlog=1):
 """
 Enables a server to accept connections.

 Args:
 backlog (Integer, optional): The number of unaccepted connections
 that the system will allow before refusing new connections. If
 specified, it must be at least 0 (if it is lower, it is set to 0).

 Raises:
 XBeeSocketException: If the socket is not bound.
 """
 if self.__src_port is None:
 raise XBeeSocketException(message="Socket must be bound")

 self.__is_listening = True
 self.__backlog = backlog

[docs] def accept(self):
 """
 Accepts a connection. The socket must be bound to an address and
 listening for connections.

 Returns:
 Tuple: A pair `(conn, address)` where `conn` is a new socket object
 usable to send and receive data on the connection, and
 `address` is a pair `(host, port)` with the address bound to
 the socket on the other end of the connection.

 Raises:
 XBeeException: If the connection with the XBee device is not open.
 XBeeSocketException: If the socket is not bound or not listening.
 """
 if self.__src_port is None:
 raise XBeeSocketException(message="Socket must be bound")
 if not self.__is_listening:
 raise XBeeSocketException(message="Socket must be listening")

 lock = threading.Condition()
 received_packet = list()

 # Define the IPv4 client callback.
 def ipv4_client_callback(packet):
 if (not isinstance(packet, SocketNewIPv4ClientPacket)
 or packet.socket_id != self.__socket_id):
 return

 # Add the packet to the list and notify the lock.
 received_packet.append(packet)
 lock.acquire()
 lock.notify()
 lock.release()

 # Add the socket IPv4 client callback.
 self.__xbee.add_packet_received_callback(ipv4_client_callback)

 try:
 # Wait until an IPv4 client packet is received.
 lock.acquire()
 lock.wait()
 lock.release()

 conn = socket(self.__xbee, self.__ip_protocol)
 conn.__socket_id = received_packet[0].client_socket_id
 conn.__connected = True

 # Register internal socket state and data reception callbacks.
 conn.__register_state_callback()
 conn.__register_data_received_callback()

 return conn, (received_packet[0].remote_address, received_packet[0].remote_port)
 finally:
 # Always remove the socket IPv4 client callback.
 self.__xbee.del_packet_received_callback(ipv4_client_callback)

[docs] def gettimeout(self):
 """
 Returns the configured socket timeout in seconds.

 Returns:
 Integer: The configured timeout in seconds.
 """
 return self.__timeout

[docs] def settimeout(self, timeout):
 """
 Sets the socket timeout in seconds.

 Args:
 timeout (Integer): The new socket timeout in seconds.
 """
 self.__timeout = timeout

[docs] def getblocking(self):
 """
 Returns whether the socket is in blocking mode or not.

 Returns:
 Boolean: `True` if the socket is in blocking mode, `False` otherwise.
 """
 return self.gettimeout() is None

[docs] def setblocking(self, flag):
 """
 Sets the socket in blocking or non-blocking mode.

 Args:
 flag (Boolean): `True` to set the socket in blocking mode, `False`
 to set it in no blocking mode and configure the timeout with
 the default value (`5` seconds).
 """
 self.settimeout(None if flag else self.__DEFAULT_TIMEOUT)

[docs] def recv(self, bufsize):
 """
 Receives data from the socket.

 Args:
 bufsize (Integer): The maximum amount of data to be received at once.

 Returns:
 Bytearray: The data received.

 Raises:
 ValueError: If `bufsize` is less than `1`.
 """
 if bufsize < 1:
 raise ValueError("Number of bytes to receive must be grater than 0")

 data_received = bytearray()

 # Wait until data is available or the timeout configured in the socket expires.
 if self.getblocking():
 while len(self.__data_received) == 0:
 time.sleep(0.1)
 else:
 dead_line = time.time() + self.__timeout
 while len(self.__data_received) == 0 and dead_line > time.time():
 time.sleep(0.1)
 # Get the number of bytes specified in 'bufsize' from the internal var.
 if len(self.__data_received) > 0:
 self.__data_received_lock.acquire()
 data_received = self.__data_received[0:bufsize].copy()
 self.__data_received = self.__data_received[bufsize:]
 self.__data_received_lock.release()
 # Return the data received.
 return data_received

[docs] def recvfrom(self, bufsize):
 """
 Receives data from the socket.

 Args:
 bufsize (Integer): The maximum amount of data to be received at once.

 Returns:
 Tuple (Bytearray, Tuple): Pair containing the data received
 (Bytearray) and the address of the socket sending the data. The
 address is also a pair `(host, port)` where `host` is the string
 representation of an IPv4 and `port` is the numeric port value.

 Raises:
 ValueError: If `bufsize` is less than `1`.
 """
 if bufsize < 1:
 raise ValueError("Number of bytes to receive must be grater than 0")

 data_received = bytearray()
 addr = None

 # Wait until data is received from any address or the timeout
 # configured in the socket expires.
 if self.getblocking():
 while len(self.__data_received_from_dict) == 0:
 time.sleep(0.1)
 else:
 dead_line = time.time() + self.__timeout
 while len(self.__data_received_from_dict) == 0 and dead_line > time.time():
 time.sleep(0.1)
 # Get the number of bytes specified in 'bufsize' from the first address stored.
 if len(self.__data_received_from_dict) > 0:
 self.__data_received_from_dict_lock.acquire()
 # Get 'bufsize' bytes from the first stored address in the internal dict.
 addr = list(self.__data_received_from_dict)[0]
 data_received = self.__data_received_from_dict[addr][0:bufsize].copy()
 # Update the number of bytes left for 'address' in the dictionary.
 self.__data_received_from_dict[addr] = self.__data_received_from_dict[addr][bufsize:]
 # If the number of bytes left for 'address' is 0, remove it from the dictionary.
 if len(self.__data_received_from_dict[addr]) == 0:
 self.__data_received_from_dict.pop(addr)
 self.__data_received_from_dict_lock.release()
 # Return the data received for 'address'.
 return data_received, addr

[docs] def send(self, data):
 """
 Sends data to the socket and returns the number of bytes sent. The
 socket must be connected to a remote socket. Applications are
 responsible for checking that all data has been sent; if only some of
 the data was transmitted, the application needs to attempt delivery of
 the remaining data.

 Args:
 data (Bytearray): The data to send.

 Returns:
 Integer: The number of bytes sent.

 Raises:
 ValueError: If the data to send is `None`.
 ValueError: If the number of bytes to send is `0`.
 XBeeException: If the connection with the XBee device is not open.
 XBeeSocketException: If the socket is not valid.
 XBeeSocketException: If the socket is not open.
 """
 self.__send(data, False)

[docs] def sendall(self, data):
 """
 Sends data to the socket. The socket must be connected to a remote
 socket. Unlike `send()`, this method continues to send data from bytes
 until either all data has been sent or an error occurs. `None` is
 returned on success. On error, an exception is raised, and there is no
 way to determine how much data, if any, was successfully sent.

 Args:
 data (Bytearray): The data to send.

 Raises:
 TimeoutException: If the send status response is not received in
 the configured timeout.
 ValueError: If the data to send is `None`.
 ValueError: If the number of bytes to send is `0`.
 XBeeException: If the connection with the XBee device is not open.
 XBeeSocketException: If the socket is not valid.
 XBeeSocketException: If the send status is not `SUCCESS`.
 XBeeSocketException: If the socket is not open.
 """
 self.__send(data)

[docs] def sendto(self, data, address):
 """
 Sends data to the socket. The socket should not be connected to a
 remote socket, since the destination socket is specified by `address`.

 Args:
 data (Bytearray): The data to send.
 address (Tuple): The address of the destination socket. It must be
 a pair `(host, port)` where `host` is the domain name or string
 representation of an IPv4 and `port` is the numeric port value.

 Returns:
 Integer: The number of bytes sent.

 Raises:
 TimeoutException: If the send status response is not received in
 the configured timeout.
 ValueError: If the data to send is `None`.
 ValueError: If the number of bytes to send is `0`.
 XBeeException: If the connection with the XBee device is not open.
 XBeeSocketException: If the socket is already open.
 XBeeSocketException: If the send status is not `SUCCESS`.
 """
 if data is None:
 raise ValueError("Data to send cannot be None")
 if len(data) == 0:
 raise ValueError("The number of bytes to send must be at least 1")
 if not self.__xbee.is_open():
 raise XBeeException("XBee device must be open")
 if self.__connected:
 raise XBeeSocketException(message="Socket is already connected")

 sent_bytes = 0

 # If the socket is not created, create it first.
 if self.__socket_id is None:
 self.__create_socket()
 # Send as many packets as needed to deliver all the provided data.
 for chunk in self.__split_payload(data):
 send_packet = SocketSendToPacket(
 self.__xbee.get_next_frame_id(), self.__socket_id,
 IPv4Address(address[0]), address[1], chunk)
 response_packet = self.__xbee.send_packet_sync_and_get_response(
 send_packet, timeout=self.__get_timeout())
 self.__check_response(response_packet)
 sent_bytes += len(chunk)
 # Return the number of bytes sent.
 return sent_bytes

[docs] def close(self):
 """
 Closes the socket.

 Raises:
 TimeoutException: If the close response is not received in the
 configured timeout.
 XBeeException: If the connection with the XBee device is not open.
 XBeeSocketException: If the close status is not `SUCCESS`.
 """
 if self.__socket_id is None or (not self.__connected and not self.__src_port):
 return
 if not self.__xbee.is_open():
 raise XBeeException("XBee device must be open")

 close_packet = SocketClosePacket(self.__xbee.get_next_frame_id(), self.__socket_id)
 response_packet = self.__xbee.send_packet_sync_and_get_response(
 close_packet, timeout=self.__get_timeout())
 self.__check_response(response_packet)

 self.__connected = False
 self.__socket_id = None
 self.__src_port = None
 self.__data_received = bytearray()
 self.__data_received_from_dict = OrderedDict()
 self.__unregister_state_callback()
 self.__unregister_data_received_callback()
 self.__unregister_data_received_from_callback()

[docs] def setsocketopt(self, option, value):
 """
 Sets the value of the given socket option.

 Args:
 option (:class:`.SocketOption`): The socket option to set its value.
 value (Bytearray): The new value of the socket option.

 Raises:
 TimeoutException: If the socket option response is not received in
 the configured timeout.
 ValueError: If the option to set is `None`.
 ValueError: If the value of the option is `None`.
 XBeeException: If the connection with the XBee device is not open.
 XBeeSocketException: If the socket option response status is not `SUCCESS`.
 """
 if option is None:
 raise ValueError("Option to set cannot be None")
 if value is None:
 raise ValueError("Option value cannot be None")
 if not self.__xbee.is_open():
 raise XBeeException("XBee device must be open")

 # If the socket is not created, create it first.
 if self.__socket_id is None:
 self.__create_socket()

 # Create, send and check the socket option packet.
 option_packet = SocketOptionRequestPacket(
 self.__xbee.get_next_frame_id(), self.__socket_id, option, value)
 response_packet = self.__xbee.send_packet_sync_and_get_response(
 option_packet, timeout=self.__get_timeout())
 self.__check_response(response_packet)

[docs] def getsocketopt(self, option):
 """
 Returns the value of the given socket option.

 Args:
 option (:class:`.SocketOption`): The socket option to get its value.

 Returns:
 Bytearray: The value of the socket option.

 Raises:
 TimeoutException: If the socket option response is not received in
 the configured timeout.
 ValueError: If the option to set is `None`.
 XBeeException: If the connection with the XBee device is not open.
 XBeeSocketException: If the socket option response status is not `SUCCESS`.
 """
 if option is None:
 raise ValueError("Option to get cannot be None")
 if not self.__xbee.is_open():
 raise XBeeException("XBee device must be open")

 # If the socket is not created, create it first.
 if self.__socket_id is None:
 self.__create_socket()

 # Create, send and check the socket option packet.
 option_packet = SocketOptionRequestPacket(
 self.__xbee.get_next_frame_id(), self.__socket_id, option)
 response_packet = self.__xbee.send_packet_sync_and_get_response(
 option_packet, timeout=self.__get_timeout())
 self.__check_response(response_packet)

 # Return the option data.
 return response_packet.option_data

[docs] def add_socket_state_callback(self, callback):
 """
 Adds a callback for the event :class:`digi.xbee.reader.SocketStateReceived`.

 Args:
 callback (Function): The callback. Receives two arguments.

 * The socket ID as an Integer.
 * The state received as a :class:`.SocketState`
 """
 self.__xbee.add_socket_state_received_callback(callback)

[docs] def del_socket_state_callback(self, callback):
 """
 Deletes a callback for the callback list of
 :class:`digi.xbee.reader.SocketStateReceived` event.

 Args:
 callback (Function): The callback to delete.

 Raises:
 ValueError: If `callback` is not in the callback list of
 :class:`digi.xbee.reader.SocketStateReceived` event.
 """
 self.__xbee.del_socket_state_received_callback(callback)

[docs] def get_sock_info(self):
 """
 Returns the information of this socket.

 Returns:
 :class:`.SocketInfo`: The socket information.

 Raises:
 InvalidOperatingModeException: If the XBee device's operating mode
 is not API or ESCAPED API. This method only checks the cached
 value of the operating mode.
 TimeoutException: If the response is not received before the read
 timeout expires.
 XBeeException: If the XBee device's communication interface is closed.

 .. seealso::
 | :class:`.SocketInfo`
 """
 return self.__xbee.get_socket_info(self.__socket_id)

 def __create_socket(self):
 """
 Creates a new socket by sending a :class:`.SocketCreatePacket`.

 Raises:
 TimeoutException: If the response is not received in the configured timeout.
 XBeeSocketException: If the response contains any error.
 """
 # Create, send and check the socket create packet.
 create_packet = SocketCreatePacket(
 self.__xbee.get_next_frame_id(), self.__ip_protocol)
 response_packet = self.__xbee.send_packet_sync_and_get_response(
 create_packet, timeout=self.__get_timeout())
 self.__check_response(response_packet)

 # Store the received socket ID.
 self.__socket_id = response_packet.socket_id

 def __register_state_callback(self):
 """
 Registers the socket state callback to be notified when an error occurs.
 """
 if self.__socket_state_cb is not None:
 return

 def socket_state_callback(socket_id, state):
 if self.__socket_id != socket_id:
 return
 if state != SocketState.CONNECTED:
 self.__connected = False
 self.__socket_id = None
 self.__src_port = None
 self.__data_received = bytearray()
 self.__data_received_from_dict = OrderedDict()
 self.__unregister_state_callback()
 self.__unregister_data_received_callback()
 self.__unregister_data_received_from_callback()

 self.__socket_state_cb = socket_state_callback
 self.__xbee.add_socket_state_received_callback(socket_state_callback)

 def __unregister_state_callback(self):
 """
 Unregisters the socket state callback.
 """
 if self.__socket_state_cb is None:
 return

 self.__xbee.del_socket_state_received_callback(self.__socket_state_cb)
 self.__socket_state_cb = None

 def __register_data_received_callback(self):
 """
 Registers the data received callback to be notified when data is
 received in the socket.
 """
 if self.__data_received_cb is not None:
 return

 def data_received_callback(socket_id, payload):
 if self.__socket_id != socket_id:
 return

 self.__data_received_lock.acquire()
 self.__data_received += payload
 self.__data_received_lock.release()

 self.__data_received_cb = data_received_callback
 self.__xbee.add_socket_data_received_callback(data_received_callback)

 def __unregister_data_received_callback(self):
 """
 Unregisters the data received callback.
 """
 if self.__data_received_cb is None:
 return

 self.__xbee.del_socket_data_received_callback(self.__data_received_cb)
 self.__data_received_cb = None

 def __register_data_received_from_callback(self):
 """
 Registers the data received from callback to be notified when data from
 a specific address is received in the socket.
 """
 if self.__data_received_from_cb is not None:
 return

 def data_received_from_callback(socket_id, address, payload):
 if self.__socket_id != socket_id:
 return

 payload_added = False
 # Check if the address already exists in the dictionary to append
 # the payload or insert a new entry.
 self.__data_received_from_dict_lock.acquire()
 for addr in self.__data_received_from_dict.keys():
 if addr[0] == address[0] and addr[1] == address[1]:
 self.__data_received_from_dict[addr] += payload
 payload_added = True
 break
 if not payload_added:
 self.__data_received_from_dict[address] = payload
 self.__data_received_from_dict_lock.release()

 self.__data_received_from_cb = data_received_from_callback
 self.__xbee.add_socket_data_received_from_callback(data_received_from_callback)

 def __unregister_data_received_from_callback(self):
 """
 Unregisters the data received from callback.
 """
 if self.__data_received_from_cb is None:
 return

 self.__xbee.del_socket_data_received_from_callback(self.__data_received_from_cb)
 self.__data_received_from_cb = None

 def __send(self, data, send_all=True):
 """
 Sends data to the socket. The socket must be connected to a remote
 socket. Depending on the value of `send_all`, the method will raise an
 exception or return the number of bytes sent when there is an error
 sending a data packet.

 Args:
 data (Bytearray): The data to send.
 send_all (Boolean): `True` to raise an exception when there is an
 error sending a data packet. `False` to return the number of
 bytes sent when there is an error sending a data packet.

 Raises:
 TimeoutException: If the send status response is not received in
 the configured timeout.
 ValueError: If the data to send is `None`.
 ValueError: If the number of bytes to send is `0`.
 XBeeException: If the connection with the XBee device is not open.
 XBeeSocketException: If the socket is not valid.
 XBeeSocketException: If the send status is not `SUCCESS`.
 XBeeSocketException: If the socket is not open.
 """
 if data is None:
 raise ValueError("Data to send cannot be None")
 if len(data) == 0:
 raise ValueError("The number of bytes to send must be at least 1")
 if self.__socket_id is None:
 raise XBeeSocketException(status=SocketStatus.BAD_SOCKET)
 if not self.__xbee.is_open():
 raise XBeeException("XBee device must be open")
 if not self.__connected:
 raise XBeeSocketException(message="Socket is not connected")

 sent_bytes = None if send_all else 0

 # Send as many packets as needed to deliver all the provided data.
 for chunk in self.__split_payload(data):
 send_packet = SocketSendPacket(self.__xbee.get_next_frame_id(),
 self.__socket_id, chunk)
 try:
 response_packet = self.__xbee.send_packet_sync_and_get_response(
 send_packet, timeout=self.__get_timeout())
 self.__check_response(response_packet)
 except (TimeoutException, XBeeSocketException) as exc:
 # Raise the exception only if 'send_all' flag is set, otherwise
 # return the number of bytes sent.
 if send_all:
 raise exc
 return sent_bytes
 # Increase the number of bytes sent.
 if not send_all:
 sent_bytes += len(chunk)
 # Return the number of bytes sent.
 return sent_bytes

 @property
 def is_connected(self):
 """
 Returns whether the socket is connected or not.

 Returns:
 Boolean: `True` if the socket is connected `False` otherwise.
 """
 return self.__connected

 @staticmethod
 def __check_response(response_packet):
 """
 Checks the status of the given response packet and throws an
 :class:`.XBeeSocketException` if it is not :attr:`SocketStatus.SUCCESS`.

 Args:
 response_packet (:class:`.XBeeAPIPacket`): The socket response packet.

 Raises:
 XBeeSocketException: If the socket status is not `SUCCESS`.
 """
 if isinstance(response_packet, TXStatusPacket):
 if response_packet.transmit_status != TransmitStatus.SUCCESS:
 raise XBeeSocketException(status=response_packet.transmit_status)
 elif response_packet.status != SocketStatus.SUCCESS:
 raise XBeeSocketException(status=response_packet.status)

 @staticmethod
 def __split_payload(payload, size=__MAX_PAYLOAD_BYTES):
 """
 Splits the given array of bytes in chunks of the specified size.

 Args:
 payload (Bytearray): The data to split.
 size (Integer, Optional): The size of the chunks.

 Returns:
 Generator: The generator with all the chunks.
 """
 for i in range(0, len(payload), size):
 yield payload[i:i + size]

 def __get_timeout(self):
 """
 Returns the socket timeout in seconds based on the blocking state.

 Returns:
 Integer: The socket timeout in seconds if the socket is configured
 to be non blocking or `-1` if the socket is configured to be blocking.
 """
 return -1 if self.getblocking() else self.__timeout

 Source code for digi.xbee.models.accesspoint

Copyright 2017-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

from enum import Enum, unique
from digi.xbee.util import utils

[docs]class AccessPoint:
 """
 This class represents an Access Point for the Wi-Fi protocol. It contains
 SSID, the encryption type and the link quality between the Wi-Fi module and
 the access point.

 This class is used within the library to list the access points
 and connect to a specific one in the Wi-Fi protocol.

 .. seealso::
 | :class:`.WiFiEncryptionType`
 """

 __ERROR_CHANNEL = "Channel cannot be negative."
 __ERROR_SIGNAL_QUALITY = "Signal quality must be between 0 and 100."

 def __init__(self, ssid, encryption_type, channel=0, signal_quality=0):
 """
 Class constructor. Instantiates a new :class:`.AccessPoint` object
 with the provided parameters.

 Args:
 ssid (String): the SSID of the access point.
 encryption_type (:class:`.WiFiEncryptionType`): the encryption type
 configured in the access point.
 channel (Integer, optional): operating channel of the access point.
 signal_quality (Integer, optional): signal quality with the access
 point in %.

 Raises:
 ValueError: if length of `ssid` is 0.
 ValueError: if `channel` is less than 0.
 ValueError: if `signal_quality` is less than 0 or greater than 100.

 .. seealso::
 | :class:`.WiFiEncryptionType`
 """
 if len(ssid) == 0:
 raise ValueError("SSID cannot be empty.")
 if channel < 0:
 raise ValueError(self.__ERROR_CHANNEL)
 if signal_quality < 0 or signal_quality > 100:
 raise ValueError(self.__ERROR_SIGNAL_QUALITY)

 self.__ssid = ssid
 self.__enc_type = encryption_type
 self.__channel = channel
 self.__signal_quality = signal_quality

 def __str__(self):
 """
 Returns the string representation of the access point.

 Returns:
 String: representation of the access point.
 """
 return "%s (%s) - CH: %s - Signal: %s%%" % (self.__ssid, self.__enc_type.description,
 self.__channel, self.__signal_quality)

 @property
 def ssid(self):
 """
 Returns the SSID of the access point.

 Returns:
 String: the SSID of the access point.
 """
 return self.__ssid

 @property
 def encryption_type(self):
 """
 Returns the encryption type of the access point.

 Returns:
 :class:`.WiFiEncryptionType`: the encryption type of the access point.

 .. seealso::
 | :class:`.WiFiEncryptionType`
 """
 return self.__enc_type

 @property
 def channel(self):
 """
 Returns the channel of the access point.

 Returns:
 Integer: the channel of the access point.

 .. seealso::
 | :func:`.AccessPoint.set_channel`
 """
 return self.__channel

 @channel.setter
 def channel(self, channel):
 """
 Sets the channel of the access point.

 Args:
 channel (Integer): the new channel of the access point

 Raises:
 ValueError: if `channel` is less than 0.

 .. seealso::
 | :func:`.AccessPoint.get_channel`
 """
 if channel < 0:
 raise ValueError(self.__ERROR_CHANNEL)
 self.__channel = channel

 @property
 def signal_quality(self):
 """
 Returns the signal quality with the access point in %.

 Returns:
 Integer: the signal quality with the access point in %.

 .. seealso::
 | :func:`.AccessPoint.__set_signal_quality`
 """
 return self.__signal_quality

 @signal_quality.setter
 def signal_quality(self, signal_quality):
 """
 Sets the signal quality with the access point (percentage).

 Args:
 signal_quality (Integer): the new signal quality with the access point.

 Raises:
 ValueError: if `signal_quality` is less than 0 or greater than 100.

 .. seealso::
 | :func:`.AccessPoint.__get_signal_quality`
 """
 if signal_quality < 0 or signal_quality > 100:
 raise ValueError(self.__ERROR_SIGNAL_QUALITY)
 self.__signal_quality = signal_quality

[docs]@unique
class WiFiEncryptionType(Enum):
 """
 Enumerates the different Wi-Fi encryption types.
 """
 NONE = (0, "No security")
 WPA = (1, "WPA (TKIP) security")
 WPA2 = (2, "WPA2 (AES) security")
 WEP = (3, "WEP security")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the WiFiEncryptionType element.

 Returns:
 Integer: the code of the WiFiEncryptionType element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the WiFiEncryptionType element.

 Returns:
 String: the description of the WiFiEncryptionType element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the Wi-Fi encryption type for the given code.

 Args:
 code (Integer): the code of the Wi-Fi encryption type to get.

 Returns:
 :class:`.WiFiEncryptionType`: the WiFiEncryptionType with the given
 code, `None` if not found.
 """
 for enc_type in cls:
 if enc_type.code == code:
 return enc_type
 return None

WiFiEncryptionType.__doc__ += utils.doc_enum(WiFiEncryptionType)

 Source code for digi.xbee.models.address

Copyright 2017-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

import re
from digi.xbee.util import utils

[docs]class XBee16BitAddress:
 """
 This class represent a 16-bit network address.

 This address is only applicable for:

 1. 802.15.4
 2. Zigbee
 3. ZNet 2.5
 4. XTend (Legacy)

 DigiMesh and Point-to-multipoint does not support 16-bit addressing.

 Each device has its own 16-bit address which is unique in the network.
 It is automatically assigned when the radio joins the network for Zigbee
 and Znet 2.5, and manually configured in 802.15.4 radios.

 | Attributes:
 | **COORDINATOR_ADDRESS** (XBee16BitAddress): 16-bit address reserved for the coordinator.
 | **BROADCAST_ADDRESS** (XBee16BitAddress): 16-bit broadcast address.
 | **UNKNOWN_ADDRESS** (XBee16BitAddress): 16-bit unknown address.
 | **PATTERN** (String): Pattern for the 16-bit address string: `(0[xX])?[0-9a-fA-F]{1,4}`

 """

 PATTERN = "^(0[xX])?[0-9a-fA-F]{1,4}$"
 """
 16-bit address string pattern.
 """

 COORDINATOR_ADDRESS = None
 """
 16-bit address reserved for the coordinator (value: 0000).
 """

 BROADCAST_ADDRESS = None
 """
 16-bit broadcast address (value: FFFF).
 """

 UNKNOWN_ADDRESS = None
 """
 16-bit unknown address (value: FFFE).
 """

 __REGEXP = re.compile(PATTERN)

 def __init__(self, address):
 """
 Class constructor. Instantiates a new :class:`.XBee16BitAddress`
 object with the provided parameters.

 Args:
 address (Bytearray): address as byte array. Must be 1-2 digits.

 Raises:
 TypeError: if `address` is `None`.
 ValueError: if `address` is `None` or has less than 1 byte or more than 2.
 """
 if not address:
 raise ValueError("Address must contain at least 1 byte")
 if len(address) > 2:
 raise ValueError("Address can't contain more than 2 bytes")

 if len(address) == 1:
 address.insert(0, 0)
 self.__address = address

[docs] @classmethod
 def from_hex_string(cls, address):
 """
 Class constructor. Instantiates a new :`.XBee16BitAddress` object from
 the provided hex string.

 Args:
 address (String): String containing the address. Must be made by
 hex. digits without blanks. Minimum 1 character, maximum 4 (16-bit).

 Raises:
 ValueError: if `address` has less than 1 character.
 ValueError: if `address` contains non-hexadecimal characters.
 """
 if not address:
 raise ValueError("Address must contain at least 1 digit")
 if not cls.__REGEXP.match(address):
 raise ValueError("Address must follow this pattern: " + cls.PATTERN)

 return cls(utils.hex_string_to_bytes(address))

[docs] @classmethod
 def from_bytes(cls, hsb, lsb):
 """
 Class constructor. Instantiates a new :`.XBee16BitAddress` object from
 the provided high significant byte and low significant byte.

 Args:
 hsb (Integer): high significant byte of the address.
 lsb (Integer): low significant byte of the address.

 Raises:
 ValueError: if `lsb` is less than 0 or greater than 255.
 ValueError: if `hsb` is less than 0 or greater than 255.
 """
 if hsb > 255 or hsb < 0:
 raise ValueError("HSB must be between 0 and 255.")
 if lsb > 255 or lsb < 0:
 raise ValueError("LSB must be between 0 and 255.")

 return cls(bytearray([hsb, lsb]))

[docs] @classmethod
 def is_valid(cls, address):
 """
 Checks if the provided hex string is a valid 16-bit address.

 Args:
 address (String or Bytearray, or :class:`.XBee16BitAddress`):
 String: String with the address only with hex digits without
 blanks. Minimum 1 character, maximum 4 (16-bit).
 Bytearray: Address as byte array. Must be 1-2 digits.

 Returns:
 Boolean: `True` for a valid 16-bit address, `False` otherwise.
 """
 if isinstance(address, XBee16BitAddress):
 return True

 if isinstance(address, bytearray):
 return 1 <= len(address) <= 2

 if isinstance(address, str):
 return bool(cls.__REGEXP.match(address))

 return False

[docs] @classmethod
 def is_known_node_addr(cls, address):
 """
 Checks if a provided address is a known value. That is, if it is a
 valid 16-bit address and it is not the unknown or the broadcast address.

 Args:
 address (String, Bytearray, or :class:`.XBee16BitAddress`): The 16-bit
 address to check as a string, bytearray or
 :class:`.XBee16BitAddress`.

 Returns:
 Boolean: `True` for a known node 16-bit address, `False` otherwise.
 """
 if not cls.is_valid(address):
 return False

 if isinstance(address, str):
 address = XBee16BitAddress.from_hex_string(address)
 elif isinstance(address, bytearray):
 address = XBee16BitAddress(address)

 return address not in (XBee16BitAddress.BROADCAST_ADDRESS,
 XBee16BitAddress.UNKNOWN_ADDRESS)

 def __get_item__(self, index):
 """
 Operator []

 Args:
 index (Integer): index to be accessed.

 Returns:
 Integer. 'index' component of the address bytearray.
 """
 return self.__address.__get_item__(index)

 def __str__(self):
 """
 Called by the str() built-in function and by the print statement to
 compute the "informal" string representation of an object. This differs
 from __repr__() in that it does not have to be a valid Python
 expression: a more convenient or concise representation may be used instead.

 Returns:
 String: "informal" representation of this XBee16BitAddress.
 """
 return utils.hex_to_string(self.__address, pretty=False)

 def __hash__(self):
 """
 Returns a hash code value for the object.

 Returns:
 Integer: hash code value for the object.
 """
 res = 23
 for byte in self.__address:
 res = 31 * (res + byte)
 return res

 def __eq__(self, other):
 """
 Operator ==

 Args:
 other (:class`.XBee16BitAddress`): another XBee16BitAddress object.

 Returns:
 Boolean: `True` if self and other have the same value and type, `False` in other case.
 """
 if not isinstance(other, XBee16BitAddress):
 return False

 return self.address == other.address

 def __iter__(self):
 """
 Gets an iterator class of this instance address.

 Returns:
 Iterator: iterator of this address.
 """
 return self.__address.__iter__()

[docs] def get_hsb(self):
 """
 Returns the high part of the bytearray (component 0).

 Returns:
 Integer: high part of the bytearray.
 """
 return self.__address[0]

[docs] def get_lsb(self):
 """
 Returns the low part of the bytearray (component 1).

 Returns:
 Integer: low part of the bytearray.
 """
 return self.__address[1]

 @property
 def address(self):
 """
 Returns a bytearray representation of this XBee16BitAddress.

 Returns:
 Bytearray: bytearray representation of this XBee16BitAddress.
 """
 return bytearray(self.__address)

XBee16BitAddress.COORDINATOR_ADDRESS = XBee16BitAddress.from_hex_string("0000")
XBee16BitAddress.BROADCAST_ADDRESS = XBee16BitAddress.from_hex_string("FFFF")
XBee16BitAddress.UNKNOWN_ADDRESS = XBee16BitAddress.from_hex_string("FFFE")

[docs]class XBee64BitAddress:
 """
 This class represents a 64-bit address (also known as MAC address).

 The 64-bit address is a unique device address assigned during manufacturing.
 This address is unique to each physical device.
 """

 PATTERN = "^(0[xX])?[0-9a-fA-F]{1,16}$"
 """
 64-bit address string pattern.
 """

 COORDINATOR_ADDRESS = None
 """
 64-bit address reserved for the coordinator (value: 0000000000000000).
 """

 BROADCAST_ADDRESS = None
 """
 64-bit broadcast address (value: 000000000000FFFF).
 """

 UNKNOWN_ADDRESS = None
 """
 64-bit unknown address (value: FFFFFFFFFFFFFFFF).
 """

 __REGEXP = re.compile(PATTERN)
 __DEVICE_ID_SEPARATOR = "-"
 __DEVICE_ID_MAC_SEPARATOR = "FF"

 def __init__(self, address):
 """
 Class constructor. Instantiates a new :class:`.XBee64BitAddress` object
 with the provided parameters.

 Args:
 address (Bytearray): the XBee 64-bit address as byte array.

 Raise:
 ValueError: if `address` is `None` or its length less than 1 or greater than 8.
 """
 if not address:
 raise ValueError("Address must contain at least 1 byte")
 if len(address) > 8:
 raise ValueError("Address cannot contain more than 8 bytes")

 self.__address = bytearray(8)
 diff = 8 - len(address)
 for i in range(diff):
 self.__address[i] = 0
 for i in range(diff, 8):
 self.__address[i] = address[i - diff]

[docs] @classmethod
 def from_hex_string(cls, address):
 """
 Class constructor. Instantiates a new :class:`.XBee64BitAddress`
 object from the provided hex string.

 Args:
 address (String): The XBee 64-bit address as a string.

 Raises:
 ValueError: if the address' length is less than 1 or does not match
 with the pattern: `(0[xX])?[0-9a-fA-F]{1,16}`.
 """
 if not address:
 raise ValueError("Address must contain at least 1 byte")
 if not cls.__REGEXP.match(address):
 raise ValueError("Address must follow this pattern: " + cls.PATTERN)

 return cls(utils.hex_string_to_bytes(address))

[docs] @classmethod
 def from_bytes(cls, *args):
 """
 Class constructor. Instantiates a new :class:`.XBee64BitAddress`
 object from the provided bytes.

 Args:
 args (8 Integers): 8 integers that represent the bytes 1 to 8 of
 this XBee64BitAddress.

 Raises:
 ValueError: if the amount of arguments is not 8 or if any of the
 arguments is not between 0 and 255.
 """
 if len(args) != 8:
 raise ValueError("Number of bytes given as arguments must be 8.")
 for i, val in enumerate(args):
 if val > 255 or val < 0:
 raise ValueError("Byte " + str(i + 1) + " must be between 0 and 255")

 return cls(bytearray(args))

[docs] @classmethod
 def is_valid(cls, address):
 """
 Checks if the provided hex string is a valid 64-bit address.

 Args:
 address (String, Bytearray, or :class:`.XBee64BitAddress`):
 String: String with the address only with hex digits without
 blanks. Minimum 1 character, maximum 16 (64-bit).
 Bytearray: Address as byte array. Must be 1-8 digits.

 Returns
 Boolean: `True` for a valid 64-bit address, `False` otherwise.
 """
 if isinstance(address, XBee64BitAddress):
 return True

 if isinstance(address, bytearray):
 return 1 <= len(address) <= 8

 if isinstance(address, str):
 return bool(cls.__REGEXP.match(address))

 return False

[docs] @classmethod
 def is_known_node_addr(cls, address):
 """
 Checks if a provided address is a known value. That is, if it is a
 valid 64-bit address and it is not the unknown or the broadcast address.

 Args:
 address (String, Bytearray, or :class:`.XBee64BitAddress`): The 64-bit
 address to check as a string, bytearray or
 :class:`.XBee64BitAddress`.

 Returns:
 Boolean: `True` for a known node 64-bit address, `False` otherwise.
 """
 if not cls.is_valid(address):
 return False

 if isinstance(address, str):
 address = XBee64BitAddress.from_hex_string(address)
 elif isinstance(address, bytearray):
 address = XBee64BitAddress(address)

 return address not in (XBee64BitAddress.BROADCAST_ADDRESS,
 XBee64BitAddress.UNKNOWN_ADDRESS)

 def __str__(self):
 """
 Called by the str() built-in function and by the print statement to
 compute the "informal" string representation of an object. This differs
 from __repr__() in that it does not have to be a valid Python
 expression: a more convenient or concise representation may be used instead.

 Returns:
 String: "informal" representation of this XBee64BitAddress.
 """
 return "".join(["%02X" % i for i in self.__address])

 def __hash__(self):
 """
 Returns a hash code value for the object.

 Returns:
 Integer: hash code value for the object.
 """
 res = 23
 for byte in self.__address:
 res = 31 * (res + byte)
 return res

 def __eq__(self, other):
 """
 Operator ==

 Args:
 other: another XBee64BitAddress.

 Returns:
 Boolean: `True` if self and other have the same value and type, `False` in other case.
 """
 if other is None:
 return False
 if not isinstance(other, XBee64BitAddress):
 return False

 return self.address == other.address

 def __iter__(self):
 """
 Gets an iterator class of this instance address.

 Returns:
 Iterator: iterator of this address.
 """
 return self.__address.__iter__()

 @property
 def address(self):
 """
 Returns a bytearray representation of this XBee64BitAddress.

 Returns:
 Bytearray: bytearray representation of this XBee64BitAddress.
 """
 return bytearray(self.__address)

XBee64BitAddress.COORDINATOR_ADDRESS = XBee64BitAddress.from_hex_string("0000")
XBee64BitAddress.BROADCAST_ADDRESS = XBee64BitAddress.from_hex_string("FFFF")
XBee64BitAddress.UNKNOWN_ADDRESS = XBee64BitAddress.from_hex_string("F"*16)

[docs]class XBeeIMEIAddress:
 """
 This class represents an IMEI address used by cellular devices.

 This address is only applicable for Cellular protocol.
 """

 PATTERN = r"^\d{0,15}$"
 """
 IMEI address string pattern.
 """

 __REGEXP = re.compile(PATTERN)

 def __init__(self, address):
 """
 Class constructor. Instantiates a new :`.XBeeIMEIAddress` object with
 the provided parameters.

 Args:
 address (Bytearray): The XBee IMEI address as byte array.

 Raises:
 ValueError: if `address` is `None`.
 ValueError: if length of `address` greater than 8.
 """
 if address is None:
 raise ValueError("IMEI address cannot be None")
 if len(address) > 8:
 raise ValueError("IMEI address cannot be longer than 8 bytes")

 self.__address = self.__generate_byte_array(address)

[docs] @classmethod
 def from_string(cls, address):
 """
 Class constructor. Instantiates a new :`.XBeeIMEIAddress` object from the provided string.

 Args:
 address (String): The XBee IMEI address as a string.

 Raises:
 ValueError: if `address` is `None`.
 ValueError: if `address` does not match the pattern: `^\\d{0,15}$`.
 """
 if address is None:
 raise ValueError("IMEI address cannot be None")
 if not cls.__REGEXP.match(address):
 raise ValueError("Address must follow this pattern: " + cls.PATTERN)

 return cls(utils.hex_string_to_bytes(address))

[docs] @classmethod
 def is_valid(cls, address):
 """
 Checks if the provided hex string is a valid IMEI.

 Args:
 address (String or Bytearray): The XBee IMEI address as a string or bytearray.

 Returns:
 Boolean: `True` for a valid IMEI, `False` otherwise.
 """
 if isinstance(address, bytearray):
 return len(address) >= 8

 if isinstance(address, str):
 return cls.__REGEXP.match(address)

 return False

 @staticmethod
 def __generate_byte_array(byte_address):
 """
 Generates the IMEI byte address based on the given byte array.

 Args:
 byte_address (Bytearray): the byte array used to generate the final
 IMEI byte address.

 Returns:
 Bytearray: the IMEI in byte array format.
 """
 # Pad zeros in the MSB of the address
 return bytearray(8 - len(byte_address)) + byte_address

 @property
 def address(self):
 """
 Returns a string representation of this XBeeIMEIAddress.

 Returns:
 String: the IMEI address in string format.
 """
 return "".join(["%02X" % i for i in self.__address])[1:]

 def __str__(self):
 """
 Called by the str() built-in function and by the print statement to
 compute the "informal" string representation of an object. This differs
 from __repr__() in that it does not have to be a valid Python
 expression: a more convenient or concise representation may be used instead.

 Returns:
 String: "informal" representation of this XBeeIMEIAddress.
 """
 return self.address

 def __hash__(self):
 """
 Returns a hash code value for the object.

 Returns:
 Integer: hash code value for the object.
 """
 res = 23
 for byte in self.__address:
 res = 31 * (res + byte)
 return res

 def __eq__(self, other):
 """
 Operator ==

 Args:
 other (:class:`.XBeeIMEIAddress`): another XBeeIMEIAddress.

 Returns:
 Boolean: `True` if self and other have the same value and type, `False` in other case.
 """
 if other is None:
 return False
 if not isinstance(other, XBeeIMEIAddress):
 return False

 return self.address == other.address

 Source code for digi.xbee.models.atcomm

Copyright 2017-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
from enum import Enum, unique

from digi.xbee.models.status import ATCommandStatus
from digi.xbee.util import utils

[docs]@unique
class ATStringCommand(Enum):
 """
 This class represents basic AT commands.

 | Inherited properties:
 | **name** (String): name (ID) of this ATStringCommand.
 | **value** (String): value of this ATStringCommand.
 """

 AC = ("AC", "Apply changes")
 AG = ("AG", "Aggregator support")
 AI = ("AI", "Association indication")
 AO = ("AO", "API options")
 AP = ("AP", "API enable")
 AR = ("AR", "Many-to-one route broadcast time")
 AS = ("AS", "Active scan")
 BD = ("BD", "UART baudrate")
 BI = ("BI", "Bluetooth identifier")
 BL = ("BL", "Bluetooth address")
 BP = ("BP", "Bluetooth advertisement power")
 BT = ("BT", "Bluetooth enable")
 BR = ("BR", "RF data rate")
 C0 = ("C0", "Source port")
 C8 = ("C8", "Compatibility mode")
 CC = ("CC", "Command sequence character")
 CE = ("CE", "Device role")
 CH = ("CH", "Channel")
 CK = ("CK", "Configuration checksum")
 CM = ("CM", "Channel mask")
 CN = ("CN", "Exit command mode")
 DA = ("DA", "Force Disassociation")
 DB = ("DB", "RSSI")
 DD = ("DD", "Device type")
 DH = ("DH", "Destination address high")
 DJ = ("DJ", "Disable joining")
 DL = ("DL", "Destination address low")
 DM = ("DM", "Disable device functionality")
 DO = ("DO", "Device options")
 D0 = ("D0", "DIO0 configuration")
 D1 = ("D1", "DIO1 configuration")
 D2 = ("D2", "DIO2 configuration")
 D3 = ("D3", "DIO3 configuration")
 D4 = ("D4", "DIO4 configuration")
 D5 = ("D5", "DIO5 configuration")
 D6 = ("D6", "RTS configuration")
 D7 = ("D7", "CTS configuration")
 D8 = ("D8", "DIO8 configuration")
 D9 = ("D9", "DIO9 configuration")
 EE = ("EE", "Encryption enable")
 EO = ("EO", "Encryption options")
 FN = ("FN", "Find neighbors")
 FR = ("FR", "Software reset")
 FS = ("FS", "File system")
 GW = ("GW", "Gateway address")
 GT = ("GT", "Guard times")
 HV = ("HV", "Hardware version")
 HP = ("HP", "Preamble ID")
 IC = ("IC", "Digital change detection")
 ID = ("ID", "Network PAN ID/Network ID/SSID")
 IR = ("IR", "I/O sample rate")
 IS = ("IS", "Force sample")
 JN = ("JN", "Join notification")
 JV = ("JV", "Join verification")
 KY = ("KY", "Link/Encryption key")
 MA = ("MA", "IP addressing mode")
 MK = ("MK", "IP address mask")
 MP = ("MP", "16-bit parent address")
 MY = ("MY", "16-bit address/IP address")
 M0 = ("M0", "PWM0 configuration")
 M1 = ("M1", "PWM1 configuration")
 NB = ("NB", "Parity")
 NI = ("NI", "Node identifier")
 ND = ("ND", "Node discover")
 NJ = ("NJ", "Join time")
 NK = ("NK", "Trust Center network key")
 NO = ("NO", "Node discover options")
 NR = ("NR", "Network reset")
 NS = ("NS", "DNS address")
 NP = ("NP", "Maximum number of transmission bytes")
 NT = ("NT", "Node discover back-off")
 N_QUESTION = ("N?", "Network discovery timeout")
 OP = ("OP", "Operating extended PAN ID")
 OS = ("OS", "Operating sleep time")
 OW = ("OW", "Operating wake time")
 PK = ("PK", "Passphrase")
 PL = ("PL", "TX power level")
 PP = ("PP", "Output power")
 PS = ("PS", "MicroPython auto start")
 P0 = ("P0", "DIO10 configuration")
 P1 = ("P1", "DIO11 configuration")
 P2 = ("P2", "DIO12 configuration")
 P3 = ("P3", "UART DOUT configuration")
 P4 = ("P4", "UART DIN configuration")
 P5 = ("P5", "DIO15 configuration")
 P6 = ("P6", "DIO16 configuration")
 P7 = ("P7", "DIO17 configuration")
 P8 = ("P8", "DIO18 configuration")
 P9 = ("P9", "DIO19 configuration")
 RE = ("RE", "Restore defaults")
 RR = ("RR", "XBee retries")
 R_QUESTION = ("R?", "Region lock")
 SB = ("SB", "Stop bits")
 SC = ("SC", "Scan channels")
 SD = ("SD", "Scan duration")
 SH = ("SH", "Serial number high")
 SI = ("SI", "Socket info")
 SL = ("SL", "Serial number low")
 SM = ("SM", "Sleep mode")
 SN = ("SN", "Sleep count")
 SO = ("SO", "Sleep options")
 SP = ("SP", "Sleep time")
 SS = ("SS", "Sleep status")
 ST = ("ST", "Wake time")
 TP = ("TP", "Temperature")
 VH = ("VH", "Bootloader version")
 VR = ("VR", "Firmware version")
 WR = ("WR", "Write")
 DOLLAR_S = ("$S", "SRP salt")
 DOLLAR_V = ("$V", "SRP salt verifier")
 DOLLAR_W = ("$W", "SRP salt verifier")
 DOLLAR_X = ("$X", "SRP salt verifier")
 DOLLAR_Y = ("$Y", "SRP salt verifier")
 PERCENT_C = ("%C", "Hardware/software compatibility")
 PERCENT_P = ("%P", "Invoke bootloader")
 PERCENT_U = ("%U", "Recover")
 PERCENT_V = ("%V", "Supply voltage")

 def __init__(self, command, description):
 self.__cmd = command
 self.__desc = description

 @property
 def command(self):
 """
 AT command alias

 Returns:
 String: The AT command alias.
 """
 return self.__cmd

 @property
 def description(self):
 """
 AT command description.

 Returns:
 String: The AT command description.
 """
 return self.__desc

ATStringCommand.__doc__ += utils.doc_enum(ATStringCommand)

[docs]@unique
class SpecialByte(Enum):
 """
 Enumerates all the special bytes of the XBee protocol that must be escaped
 when working on API 2 mode.

 | Inherited properties:
 | **name** (String): name (ID) of this SpecialByte.
 | **value** (String): the value of this SpecialByte.
 """

 ESCAPE_BYTE = 0x7D
 HEADER_BYTE = 0x7E
 XON_BYTE = 0x11
 XOFF_BYTE = 0x13

 def __init__(self, code):
 self.__code = code

 @property
 def code(self):
 """
 Returns the code of the SpecialByte element.

 Returns:
 Integer: the code of the SpecialByte element.
 """
 return self.__code

 @classmethod
 def get(cls, value):
 """
 Returns the special byte for the given value.

 Args:
 value (Integer): value associated to the special byte.

 Returns:
 :class:`.SpecialByte`: SpecialByte with the given value.
 """
 for special_byte in cls:
 if special_byte.code == value:
 return special_byte
 return None

 @staticmethod
 def escape(value):
 """
 Escapes the byte by performing a XOR operation with 0x20 value.

 Args:
 value (Integer): value to escape.

 Returns:
 Integer: value ^ 0x20 (escaped).
 """
 return value ^ 0x20

 @staticmethod
 def is_special_byte(value):
 """
 Checks whether the given byte is special or not.

 Args:
 value (Integer): byte to check.

 Returns:
 Boolean: `True` if value is a special byte, `False` in other case.
 """
 return value in [i.value for i in SpecialByte]

SpecialByte.__doc__ += utils.doc_enum(SpecialByte)

[docs]class ATCommand:
 """
 This class represents an AT command used to read or set different
 properties of the XBee device.

 AT commands can be sent directly to the connected device or to remote
 devices and may have parameters.

 After executing an AT Command, an AT Response is received from the device.
 """

 def __init__(self, command, parameter=None):
 """
 Class constructor. Instantiates a new :class:`.ATCommand` object with
 the provided parameters.

 Args:
 command (String): AT Command, must have length 2.
 parameter (String or Bytearray, optional): The AT parameter value.
 Defaults to `None`. Optional.

 Raises:
 ValueError: if command length is not 2.
 """
 if len(command) != 2:
 raise ValueError("Command length must be 2.")

 self.__cmd = command
 if isinstance(parameter, str):
 self.__param = bytearray(parameter, encoding='utf8', errors='ignore')
 else:
 self.__param = parameter

 def __str__(self):
 """
 Returns a string representation of this ATCommand.

 Returns:
 String: representation of this ATCommand.
 """
 return "Command: %s - Parameter: %s" \
 % (self.__cmd, utils.hex_to_string(self.__param))

 def __len__(self):
 """
 Returns the length of this ATCommand.

 Returns:
 Integer: length of command + length of parameter.
 """
 if self.__param:
 return len(self.__cmd) + len(self.__param)

 return len(self.__cmd)

 @property
 def command(self):
 """
 Returns the AT command.

 Returns:
 String: the AT command.
 """
 return self.__cmd

 @property
 def parameter(self):
 """
 Returns the AT command parameter.

 Returns:
 Bytearray: the AT command parameter.
 `None` if there is no parameter.
 """
 return self.__param

[docs] def get_parameter_string(self):
 """
 Returns this ATCommand parameter as a String.

 Returns:
 String: this ATCommand parameter. `None` if there is no parameter.
 """
 if not self.__param:
 return None
 return str(self.__param, encoding='utf8', errors='ignore')

 @parameter.setter
 def parameter(self, parameter):
 """
 Sets the AT command parameter.

 Args:
 parameter (Bytearray or String): the parameter to be set.
 """
 if isinstance(parameter, str):
 self.__param = bytearray(parameter, encoding='utf8', errors='ignore')
 else:
 self.__param = parameter

[docs]class ATCommandResponse:
 """
 This class represents the response of an AT Command sent by the connected
 XBee device or by a remote device after executing an AT Command.
 """

 def __init__(self, command, response=None, status=ATCommandStatus.OK):
 """
 Class constructor.

 Args:
 command (:class:`.ATCommand`): The AT command that generated the
 response.
 response (bytearray, optional): The command response.
 Default to `None`.
 status (:class:`.ATCommandStatus`, optional): The AT command
 status. Default to ATCommandStatus.OK
 """
 self.__at_cmd = command
 self.__resp = response
 self.__comm_status = status

 @property
 def command(self):
 """
 Returns the AT command.

 Returns:
 :class:`.ATCommand`: the AT command.
 """
 return self.__at_cmd

 @property
 def response(self):
 """
 Returns the AT command response.

 Returns:
 Bytearray: the AT command response.
 """
 return self.__resp

 @property
 def status(self):
 """
 Returns the AT command response status.

 Returns:
 :class:`.ATCommandStatus`: The AT command response status.
 """
 return self.__comm_status

 Source code for digi.xbee.models.filesystem

Copyright 2020, 2021 Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
from enum import unique, Enum

from digi.xbee.exception import InvalidPacketException
from digi.xbee.models.options import DirResponseFlag
from digi.xbee.models.status import FSCommandStatus
from digi.xbee.packets.base import DictKeys
from digi.xbee.util import utils

[docs]@unique
class FSCmdType(Enum):
 """
 This enumeration lists all the available file system commands.

 | Inherited properties:
 | **name** (String): Name (id) of this FSCmdType.
 | **value** (String): Value of this FSCmdType.

 """
 FILE_OPEN = (0x01, "Open/create file")
 FILE_CLOSE = (0x02, "Close file")
 FILE_READ = (0x03, "Read file")
 FILE_WRITE = (0x04, "Write file")
 FILE_HASH = (0x08, "File hash")
 DIR_CREATE = (0x10, "Create directory")
 DIR_OPEN = (0x11, "Open directory")
 DIR_CLOSE = (0x12, "Close directory")
 DIR_READ = (0x13, "Read directory") # List?
 GET_PATH_ID = (0x1C, "Get directory path ID")
 RENAME = (0x21, "Rename")
 DELETE = (0x2F, "Delete")
 STAT = (0x40, "Stat filesystem")
 FORMAT = (0x4F, "Format filesystem")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the file system command element.

 Returns:
 Integer: Code of the file system command element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the file system command element.

 Returns:
 Integer: Description of the file system command element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Retrieves the file system command associated to the given ID.

 Args:
 code (Integer): The code of the file system command to get.

 Returns:
 :class:`.FSCmdType`: The file system command associated to the
 given code or `None` if not found.
 """
 for frame_type in cls:
 if code == frame_type.code:
 return frame_type
 return None

 def __repr__(self):
 return "%s (%d)" % (self.__desc, self.__code)

 def __str__(self):
 return "%s (%d)" % (self.__desc, self.__code)

FSCmdType.__doc__ += utils.doc_enum(FSCmdType)

[docs]class FSCmd:
 """
 This class represents a file system command.
 """

 REQUEST = 0
 RESPONSE = 1

 __HASH_SEED = 23

 def __init__(self, cmd_type, direction=REQUEST, status=None):
 """
 Class constructor. Instantiates a new :class:`.FSCmd` object with
 the provided parameters.

 Args:
 cmd_type (:class:`.FSCmdType` or Integer): The command type.
 direction (Integer, optional, default=0): If this command is a
 request (0) or a response (1).
 status (:class:`.FSCommandStatus` or Integer): Status of the file
 system command execution. Only for response commands.

 Raises:
 ValueError: If `cmd_type` is not an integer or a :class:`.FSCmdType`.
 ValueError: If `cmd_type` is invalid.

 .. seealso::
 | :class:`.FSCmdType`
 """
 if not isinstance(cmd_type, (FSCmdType, int)):
 raise ValueError(
 "Command type must be an Integer or a FSCmdType, "
 "not {!r}".format(cmd_type.__class__.__name__))

 if direction not in (self.REQUEST, self.RESPONSE):
 raise ValueError("Direction must be 0 or 1")

 if direction == self.RESPONSE:
 if not isinstance(status, (FSCommandStatus, int)):
 raise TypeError("Response status must be FSCommandStatus or int"
 " not {!r}".format(status.__class__.__name__))
 if isinstance(status, int) and status not in range(0, 256):
 raise ValueError("Status must be between 0 and 255.")

 self._cmd_type = cmd_type
 if isinstance(cmd_type, int):
 self._cmd_type = FSCmdType.get(cmd_type)

 self._dir = direction

 self._status = status
 if isinstance(status, FSCommandStatus):
 self._status = status.code

 def __len__(self):
 """
 Returns the length value of the command. The length is the number of
 bytes.

 Returns:
 Integer: Number of bytes of the command.
 """
 return len(self._get_spec_data()) + 1

 def __str__(self):
 """
 Returns the command information as dictionary.

 Returns:
 Dictionary: The command information.
 """
 return str(self.to_dict())

 def __eq__(self, other):
 """
 Returns whether the given object is equal to this one.

 Args:
 other: The object to compare.

 Returns:
 Boolean: `True` if the objects are equal, `False` otherwise.
 """
 if not isinstance(other, FSCmd):
 return False

 return other.output() == self.output()

 def __hash__(self):
 """
 Returns a hash code value for the object.

 Returns:
 Integer: Hash code value for the object.
 """
 res = self.__HASH_SEED
 for byte in self.output():
 res = 31 * (res + byte)

 return 31 * (res + self._dir)

 @property
 def type(self):
 """
 Returns the command type.

 Returns:
 :class:`.FSCmdType`: The command type.
 """
 return self._cmd_type

 @property
 def direction(self):
 """
 Returns the command direction.

 Returns:
 Integer: 0 for request, 1 for response.
 """
 return self._dir

 @property
 def status(self):
 """
 Returns the file system command response status.

 Returns:
 :class:`.FSCommandStatus`: File system command response status.

 .. seealso::
 | :class:`.FSCommandStatus`
 | :meth:`.FSCmd.status_value`
 """
 return FSCommandStatus.get(self._status)

 @property
 def status_value(self):
 """
 Returns the file system command response status of the packet.

 Returns:
 Integer: File system command response status.

 .. seealso::
 | :meth:`.FSCmd.status`
 """
 return self._status

[docs] def output(self):
 """
 Returns the raw bytearray of this command.

 Returns:
 Bytearray: Raw bytearray of the command.
 """
 frame = self.__build_command(self._get_spec_data())
 return frame

[docs] def to_dict(self):
 """
 Returns a dictionary with all information of the command fields.

 Returns:
 Dictionary: Dictionary with all info of the command fields.
 """
 ret_dict = {DictKeys.FS_CMD: self._cmd_type}
 if self._dir == self.RESPONSE:
 ret_dict.update({DictKeys.STATUS: self._status})
 ret_dict.update(self._get_spec_data_dict())

 return ret_dict

[docs] @classmethod
 def create_cmd(cls, raw, direction=REQUEST):
 """
 Creates a file system command with the given parameters.
 This method ensures that the FSCmd returned is valid and is well
 built (if not exceptions are raised).

 Args:
 raw (Bytearray): Bytearray to create the command.
 direction (Integer, optional, default=0): If this command is a
 request (0) or a response (1).

 Returns:
 :class:`.FSCmd`: The file system command created.

 Raises:
 InvalidPacketException: If something is wrong with `raw` and the
 command cannot be built.
 """
 if not isinstance(raw, bytearray):
 raise InvalidPacketException(message="Raw must be a bytearray")
 if direction == cls.RESPONSE and len(raw) < 2:
 raise InvalidPacketException(
 message="Command bytearray must have, at least, 2 bytes")
 status = raw[1] if direction == cls.RESPONSE else None
 if len(raw) < cls._get_min_len(status=status):
 raise InvalidPacketException(
 message="Command bytearray must have, at least, %d bytes"
 % cls._get_min_len(status=status))

 return FSCmd(raw[0], direction=direction, status=status)

 @staticmethod
 def _get_min_len(status=None):
 """
 Return the minimum length (in bytes) for the command request.

 Args:
 status (Integer): Status of the file system command execution.
 Only for response commands.

 Returns:
 Integer: Minimum number of bytes.
 """
 if status is None:
 return 1

 return 2

 def _get_spec_data(self):
 """
 Returns the specific data of the command as bytearray. This does not
 include the command type.

 Returns:
 Bytearray: The command specific data as bytearray.
 """
 return bytearray()

 def _get_spec_data_dict(self):
 """
 Similar to :meth:`.FSCmd._get_spec_data` but returns the data a
 dictionary.

 Returns:
 Dictionary: The command data fields as dictionary.
 """
 return {}

 def __build_command(self, data):
 """
 Builds a command from the given data.

 Args:
 data (Bytearray): The command data.

 Returns:
 Bytearray: The complete command as bytearray.
 """
 ret = bytearray([self._cmd_type.code])
 if self._dir == self.RESPONSE:
 ret.append(self._status)
 ret += data

 return ret

[docs]class UnknownFSCmd(FSCmd):
 """
 This class represents an unknown file system command.
 """

 def __init__(self, raw, direction=FSCmd.REQUEST):
 """
 Class constructor. Instantiates a new :class:`.UnknownFSCmd` object
 with the provided parameters.

 Args:
 raw (Bytearray): Data of the unknown command.
 direction (Integer, optional, default=0): If this command is a
 request (0) or a response (1).

 Raises:
 ValueError: If `data` is not a bytearray, its length is less
 than 3, or the command type is a known one.

 .. seealso::
 | :class:`.FSCmd`
 """
 if not isinstance(raw, bytearray):
 raise ValueError("Data must be a bytearray")
 if direction == FSCmd.RESPONSE and len(raw) < 2:
 raise InvalidPacketException(
 message="Command bytearray must have, at least, 2 bytes")
 status = raw[1] if direction == FSCmd.RESPONSE else None
 if len(raw) < self._get_min_len(status=status):
 raise ValueError("Command bytearray must have, at least, %d bytes"
 % self._get_min_len(status=status))

 cmd_type = FSCmdType.get(raw[0])
 if cmd_type is not None:
 raise ValueError("This is a known command: %s" % cmd_type.name)

 super().__init__(raw[0], direction=direction,
 status=raw[1] if direction == FSCmd.RESPONSE else None)

 self.__data = raw[0]
 if direction == FSCmd.RESPONSE:
 self.__data = raw[0:1] + raw[2:]

 @property
 def type(self):
 """
 Returns the command type.

 Returns:
 Integer: The command type.
 """
 return self.__data[0]

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.REQUEST):
 """
 Override method.

 Returns:
 :class:`.UnknownFSCmd`.

 Raises:
 InvalidPacketException: If `raw` is not a bytearray.
 InvalidPacketException: If `raw` length is less than 3, or the
 command type is a known one.

 .. seealso::
 | :meth:`.FSCmd.create_cmd`
 """
 try:
 return UnknownFSCmd(raw, direction=direction)
 except (ValueError, TypeError) as exc:
 raise InvalidPacketException(message=str(exc))

[docs] def output(self):
 """
 Returns the raw bytearray of this command.

 Returns:
 Bytearray: Raw bytearray of the command.
 """
 if self._dir == self.REQUEST:
 return self.__data

 ret = self.__data[0:1]
 ret.append(self._status)
 return ret + self.__data[1:]

[docs] def to_dict(self):
 """
 Returns a dictionary with all information of the command fields.

 Returns:
 Dictionary: Dictionary with all info of the command fields.
 """
 ret_dict = {DictKeys.FS_CMD: self.__data[0]}
 if self._dir == self.RESPONSE:
 ret_dict.update({DictKeys.STATUS: self._status})
 ret_dict.update({DictKeys.DATA: self.__data[1:]})

 return ret_dict

 def _get_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_spec_data`
 """
 return self.__data

[docs]class FileIdCmd(FSCmd):
 """
 This class represents a file system command request or response that
 includes a file or path id.
 """

 def __init__(self, cmd_type, fid, direction=FSCmd.REQUEST, status=None):
 """
 Class constructor. Instantiates a new :class:`.FileIdCmd` object with
 the provided parameters.

 Args:
 cmd_type (:class:`.FSCmdType` or Integer): The command type.
 fid (Integer): Id of the file/path to operate with. A file id expires
 and becomes invalid if not referenced for over 2 minutes.
 Set to 0x0000 for the root directory (/).
 direction (Integer, optional, default=0): If this command is a
 request (0) or a response (1).
 status (:class:`.FSCommandStatus` or Integer): Status of the file
 system command execution. Only for response commands.

 Raises:
 ValueError: If `fid` is invalid.

 .. seealso::
 | :class:`.FSCmd`
 | :class:`.FSCommandStatus`
 """
 if fid is not None:
 if not isinstance(fid, int):
 raise ValueError("File id must be an integer")
 if fid not in range(0, 0x10000):
 raise ValueError("Id must be between 0 and 0xFFFF")

 super().__init__(cmd_type, direction=direction, status=status)

 self._fid = fid

 @property
 def fs_id(self):
 """
 Returns the file/path identifier.

 Returns:
 Integer: The file/path id value.
 """
 return self._fid

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.REQUEST):
 """
 Override method.

 Returns:
 :class:`.FileIdCmd`.

 Raises:
 InvalidPacketException: If the bytearray length is less than the
 minimum required.

 .. seealso::
 | :meth:`.FSCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)
 id_idx = 1 if direction == FSCmd.REQUEST else 2
 return FileIdCmd(cmd.type,
 utils.bytes_to_int(raw[id_idx:id_idx + 2])
 if len(raw) > cls._get_min_len(status=cmd.status_value) else None,
 direction=direction, status=cmd.status_value)

 @staticmethod
 def _get_min_len(status=None):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_min_len`
 """
 if status is None:
 # cmd id + file/path id (2 bytes) = 3
 return 3
 if status == FSCommandStatus.SUCCESS.code:
 # cmd id + status + file/path id (2 bytes) = 4
 return 4

 # cmd id + status = 2
 return 2

 def _get_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_spec_data`
 """
 if self._dir == FSCmd.REQUEST or self._status == FSCommandStatus.SUCCESS.code:
 return utils.int_to_bytes(self._fid, num_bytes=2)

 return bytearray()

 def _get_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_spec_data_dict`
 """
 if self._dir == FSCmd.REQUEST or self._status == FSCommandStatus.SUCCESS.code:
 return {DictKeys.FILE_ID: self._fid}

 return {}

[docs]class FileIdNameCmd(FileIdCmd):
 """
 This class represents a file system command request or response that
 includes a file or path id and a name.

 The file/path id is the next byte after the command type in the frame,
 and name are the following bytes until the end of the frame.
 """

 def __init__(self, cmd_type, fid, name, direction=FSCmd.REQUEST, status=None):
 """
 Class constructor. Instantiates a new :class:`.FileIdNameCmd` object
 with the provided parameters.

 Args:
 cmd_type (:class:`.FSCmdType` or Integer): The command type.
 fid (Integer): Id of the file/path to operate with. Set to 0x0000
 for the root directory (/).
 name (String or bytearray): The path name of the file to operate
 with. Its maximum length is 252 characters.
 direction (Integer, optional, default=0): If this command is a
 request (0) or a response (1).
 status (:class:`.FSCommandStatus` or Integer): Status of the file
 system command execution. Only for response commands.

 Raises:
 ValueError: If `fid` or `name` are invalid.

 .. seealso::
 | :class:`.FSCmd`
 """
 if name is not None:
 if not isinstance(name, (str, bytearray, bytes)):
 raise ValueError("Name must be a string or bytearray")
 if not name or len(name) > self._get_name_max_len():
 raise ValueError(
 "Name cannot be empty or exceed %d chars" % self._get_name_max_len())

 super().__init__(cmd_type, fid, direction=direction, status=status)

 if isinstance(name, str):
 self._name = name.encode('utf8', errors='ignore')
 else:
 self._name = name

 @property
 def name(self):
 """
 Returns the path name of the file.

 Returns:
 String: The file path name.
 """
 return self._name.decode(encoding='utf8', errors='ignore')

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.REQUEST):
 """
 Override method.
 Direction must be 0.

 Returns:
 :class:`.FileIdNameCmd`.

 Raises:
 InvalidPacketException: If the bytearray length is less than the
 minimum required.

 .. seealso::
 | :meth:`.FSCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)

 id_idx = 1 if direction == FSCmd.REQUEST else 2
 fid = None
 if len(raw) > cls._get_min_len(status=cmd.status_value):
 fid = utils.bytes_to_int(raw[id_idx:id_idx + 2])
 name = None
 if len(raw) > cls._get_min_len(status=cmd.status_value):
 name = raw[id_idx + 2:]

 return FileIdNameCmd(
 cmd.type, fid, name, direction=direction, status=cmd.status_value)

 @staticmethod
 def _get_name_max_len():
 """
 Returns the maximum length of the name field.

 Returns:
 Integer: Name field maximum length (in bytes).
 """
 return 255 - 3 # cmd_id (1) + f_id (2) = 3

 @staticmethod
 def _get_min_len(status=None):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_min_len`
 """
 if status is None:
 # cmd id + path id (2 bytes) + name (at least 1 byte) = 4
 return 4
 if status == FSCommandStatus.SUCCESS.code:
 # cmd id + status + path id (2 bytes) + name (at least 1 byte) = 5
 return 5

 # cmd id + status = 2
 return 2

 def _get_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_spec_data`
 """
 ret = super()._get_spec_data()
 if self._dir == FSCmd.REQUEST or self._status == FSCommandStatus.SUCCESS.code:
 return ret + self._name

 return ret

 def _get_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_spec_data_dict`
 """
 dict_ret = super()._get_spec_data_dict()
 if self._dir == FSCmd.REQUEST or self._status == FSCommandStatus.SUCCESS.code:
 dict_ret.update({DictKeys.NAME: self._name})

 return dict_ret

[docs]class OpenFileCmdRequest(FileIdNameCmd):
 """
 This class represents a file open/create file system command request.
 Open a file for reading and/or writing. Use `FileOpenRequestOption.SECURE`
 bitmask to upload a write-only file (one that cannot be downloaded or
 viewed), useful for protecting MicroPython source code on the device.

 Command response is received as a :class:`.OpenFileCmdResponse`.
 """

 def __init__(self, path_id, name, flags):
 """
 Class constructor. Instantiates a new :class:`.OpenFileCmdRequest`
 object with the provided parameters.

 Args:
 path_id (Integer): Directory path id. Set to 0x0000 for the root
 directory (/).
 name (String or bytearray): The path name of the file to open/create,
 relative to `path_id`. Its maximum length is 251 chars.
 flags (:class:`.FileOpenRequestOption`): Bitfield of supported flags.
 Use :class:`.FileOpenRequestOption` to compose its value.

 Raises:
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FileIdNameCmd`
 | :class:`.FileOpenRequestOption`
 """
 if not isinstance(path_id, int):
 raise ValueError("Directory path id must be an integer")
 if not isinstance(name, (str, bytearray, bytes)):
 raise ValueError("Name must be a string or bytearray")
 if flags not in range(0, 0x100):
 raise ValueError("Flags must be between 0 and 0xFF")

 super().__init__(FSCmdType.FILE_OPEN, path_id, name,
 direction=self.REQUEST)

 self.__flags = flags

 @property
 def options(self):
 """
 Returns the options to open the file.

 Returns:
 :class:`.FileOpenRequestOption`: The options to open the file.
 """
 return self.__flags

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.REQUEST):
 """
 Override method.
 Direction must be 0.

 Returns:
 :class:`.OpenFileCmdRequest`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 5.
 (cmd id + path id (2 bytes) + flags (1 byte)
 + name (at least 1 byte) = 5 bytes).
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 0.

 .. seealso::
 | :meth:`.FileIdNameCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.FILE_OPEN:
 raise InvalidPacketException(
 message="This command is not an Open File command")
 if direction != FSCmd.REQUEST:
 raise InvalidPacketException(message="Direction must be 0")

 return OpenFileCmdRequest(utils.bytes_to_int(raw[1:3]), raw[4:],
 utils.bytes_to_int(raw[3:4]))

 @staticmethod
 def _get_name_max_len():
 """
 Override method.

 .. seealso::
 | :meth:`.FileIdNameCmd._get_name_max_len`
 """
 return 255 - 4 # cmd_id (1) + f_id (2) + options (1) = 4

 @staticmethod
 def _get_min_len(status=None):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_min_len`
 """
 # cmd id + path id (2 bytes) + flags (1 byte) + name = 5
 return 5

 def _get_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_spec_data`
 """
 ret = utils.int_to_bytes(self._fid, num_bytes=2)
 ret += utils.int_to_bytes(self.__flags.value, num_bytes=1)

 return ret + self._name

 def _get_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_spec_data_dict`
 """
 dict_ret = super()._get_spec_data_dict()
 dict_ret.update({DictKeys.FLAGS: self.__flags})

 return dict_ret

[docs]class OpenFileCmdResponse(FileIdCmd):
 """
 This class represents a file open/create file system command response.

 This is received in response of an :class:`.OpenFileCmdRequest`.
 """

 def __init__(self, status, fid=None, size=None):
 """
 Class constructor. Instantiates a new :class:`.OpenFileCmdResponse`
 object with the provided parameters.

 Args:
 status (:class:`.FSCommandStatus` or Integer): Status of the file
 system command execution.
 fid (Integer, optional, default=`None`): Id of the file that has
 been opened. It expires and becomes invalid if not referenced
 for over 2 minutes.
 size (Integer, optional, default=`None`): Size in bytes of the file.
 0xFFFFFFFF if unknown.

 Raises:
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FileIdCmd`
 """
 if size is not None and size not in range(0, 0x100000000):
 raise ValueError("Size must be between 0 and 0xFFFFFFFF")

 super().__init__(
 FSCmdType.FILE_OPEN, fid, direction=self.RESPONSE, status=status)

 self.__size = size

 @property
 def size(self):
 """
 Returns the size of the opened file. 0xFFFFFFFF if unknown.

 Returns:
 Integer: Size in bytes of the opened file.
 """
 return self.__size

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.RESPONSE):
 """
 Override method.
 Direction must be 1.

 Returns:
 :class:`.OpenFileCmdResponse`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 8.
 (cmd id + status + file id (2 bytes) + size (4 bytes) = 8).
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 1.

 .. seealso::
 | :meth:`.FileIdCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.FILE_OPEN:
 raise InvalidPacketException(
 message="This command is not an Open File command")
 if direction != FSCmd.RESPONSE:
 raise InvalidPacketException(message="Direction must be 1")

 ok_status = cmd.status == FSCommandStatus.SUCCESS
 return OpenFileCmdResponse(
 cmd.status_value,
 fid=utils.bytes_to_int(raw[2:4]) if ok_status else None,
 size=utils.bytes_to_int(raw[4:8]) if ok_status else None)

 @staticmethod
 def _get_min_len(status=FSCommandStatus.SUCCESS.code):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_min_len`
 """
 # cmd id + status + file id (2 bytes) + size (4 bytes) = 8
 return 8 if status == FSCommandStatus.SUCCESS.code else 2

 def _get_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FileIdCmd._get_spec_data`
 """
 ret = super()._get_spec_data()
 if self._status == FSCommandStatus.SUCCESS.code:
 ret += utils.int_to_bytes(self.__size, num_bytes=4)

 return ret

 def _get_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FileIdCmd._get_spec_data_dict`
 """
 dict_ret = super()._get_spec_data_dict()
 if self._status == FSCommandStatus.SUCCESS.code:
 dict_ret.update({DictKeys.SIZE: self.__size})

 return dict_ret

[docs]class CloseFileCmdRequest(FileIdCmd):
 """
 This class represents a file close file system command request.
 Close an open file and release its File Handle.

 Command response is received as a :class:`.CloseFileCmdResponse`.
 """

 def __init__(self, fid):
 """
 Class constructor. Instantiates a new :class:`.CloseFileCmdRequest`
 object with the provided parameters.

 Args:
 fid (Integer): Id of the file to close returned in Open File Response.
 It expires and becomes invalid if not referenced for over 2 minutes.

 Raises:
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FileIdCmd`
 """
 if not isinstance(fid, int):
 raise ValueError("File id must be an integer")

 super().__init__(FSCmdType.FILE_CLOSE, fid, direction=self.REQUEST)

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.REQUEST):
 """
 Override method.
 Direction must be 0.

 Returns:
 :class:`.CloseFileCmdRequest`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 3.
 (cmd id + file_id (2 bytes) = 3 bytes).
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 0.

 .. seealso::
 | :meth:`.FileIdCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.FILE_CLOSE:
 raise InvalidPacketException(
 message="This command is not a Close File command")
 if direction != FSCmd.REQUEST:
 raise InvalidPacketException(message="Direction must be 0")

 return CloseFileCmdRequest(utils.bytes_to_int(raw[1:3]))

[docs]class CloseFileCmdResponse(FSCmd):
 """
 This class represents a file close file system command response.

 Command response is received as a :class:`.CloseFileCmdRequest`.
 """

 def __init__(self, status):
 """
 Class constructor. Instantiates a new :class:`.CloseFileCmdResponse`
 object with the provided parameters.

 Args:
 status (:class:`.FSCommandStatus` or Integer): Status of the file
 system command execution.

 .. seealso::
 | :class:`.FSCmd`
 """
 super().__init__(FSCmdType.FILE_CLOSE, direction=self.RESPONSE,
 status=status)

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.RESPONSE):
 """
 Override method.
 Direction must be 1.

 Returns:
 :class:`.OpenFileCmdResponse`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 1.
 (cmd id = 1 byte).
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 1.

 .. seealso::
 | :meth:`.FSCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.FILE_CLOSE:
 raise InvalidPacketException(
 message="This command is not a Close File command")
 if direction != FSCmd.RESPONSE:
 raise InvalidPacketException(message="Direction must be 1")

 return CloseFileCmdResponse(cmd.status_value)

[docs]class ReadFileCmdRequest(FileIdCmd):
 """
 This class represents a read file system command request.

 Command response is received as a :class:`.ReadFileCmdResponse`.
 """

 USE_CURRENT_OFFSET = 0xFFFFFFFF
 """
 Use current file position to start reading.
 """

 READ_AS_MANY = 0xFFFF
 """
 Read as many bytes as possible (limited by file size or maximum response
 frame size)
 """

 def __init__(self, fid, offset, size):
 """
 Class constructor. Instantiates a new :class:`.ReadFileCmdRequest`
 object with the provided parameters.

 Args:
 fid (Integer): Id of the file to read returned in Open File Response.
 It expires and becomes invalid if not referenced for over 2 minutes.
 offset (Integer): The file offset to start reading. 0xFFFFFFFF to
 use current position (`ReadFileCmdRequest.USE_CURRENT_OFFSET`)
 size (Integer): The number of bytes to read. 0xFFFF
 (`ReadFileCmdRequest.READ_AS_MANY`) to read as many as possible
 (limited by file size or maximum response frame size)

 Raises:
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FileIdCmd`
 """
 if not isinstance(fid, int):
 raise ValueError("File id must be an integer")
 if offset not in range(0, 0x100000000):
 raise ValueError("Offset must be between 0 and 0xFFFFFFFF")
 if size not in range(0, 0x10000):
 raise ValueError("Size must be between 0 and 0xFFFF")

 super().__init__(FSCmdType.FILE_READ, fid, direction=self.REQUEST)

 self.__offset = offset
 self.__size = size

 @property
 def offset(self):
 """
 Returns the file offset to start reading. 0xFFFFFFFF to use current
 position (`ReadFileCmdRequest.0xFFFFFFFF`)

 Returns:
 Integer: The file offset.
 """
 return self.__offset

 @property
 def size(self):
 """
 Returns the number of bytes to read. 0xFFFF
 (`ReadFileCmdRequest.READ_AS_MANY`) to read as many as possible
 (limited by file size or maximum response frame size)

 Returns:
 Integer: The number of bytes to read.
 """
 return self.__size

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.REQUEST):
 """
 Override method.
 Direction must be 0.

 Returns:
 :class:`.ReadFileCmdRequest`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 9.
 (cmd id + file_id (2 bytes) + offset (4 bytes)
 + size (2 bytes) = 9 bytes).
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 0.

 .. seealso::
 | :meth:`.FileIdCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.FILE_READ:
 raise InvalidPacketException(
 message="This command is not a Read File command")
 if direction != FSCmd.REQUEST:
 raise InvalidPacketException(message="Direction must be 0")

 return ReadFileCmdRequest(utils.bytes_to_int(raw[1:3]),
 utils.bytes_to_int(raw[3:7]),
 utils.bytes_to_int(raw[7:9]))

 @staticmethod
 def _get_min_len(status=None):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_min_len`
 """
 # cmd id + file_id (2 bytes) + offset (4 bytes) + size (2 bytes) = 9
 return 9

 def _get_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_spec_data`
 """
 ret = super()._get_spec_data()
 ret += utils.int_to_bytes(self.__offset, num_bytes=4)

 return ret + utils.int_to_bytes(self.__size, num_bytes=2)

 def _get_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_spec_data_dict`
 """
 dict_ret = super()._get_spec_data_dict()
 dict_ret.update({DictKeys.OFFSET: self.__offset,
 DictKeys.SIZE: self.__size})

 return dict_ret

[docs]class ReadFileCmdResponse(FileIdCmd):
 """
 This class represents a read file system command response.

 Command response is received as a :class:`.ReadFileCmdRequest`.
 """

 def __init__(self, status, fid=None, offset=None, data=None):
 """
 Class constructor. Instantiates a new :class:`.ReadFileCmdResponse`
 object with the provided parameters.

 Args:
 status (:class:`.FSCommandStatus` or Integer): Status of the file
 system command execution.
 fid (Integer, optional, default=`None`): Id of the read file.
 offset (Integer, optional, default=`None`): The offset of the read
 data.
 data (Bytearray, optional, default=`None`): The file read data.

 Raises:
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FileIdCmd`
 """
 if offset and offset not in range(0, 0x100000000):
 raise ValueError("Offset must be between 0 and 0xFFFFFFFF")
 if data and not isinstance(data, bytearray):
 raise ValueError("Data must be a bytearray")
 max_len = 255 - 8 # cmd_id (1) + status (1) + f_id (2) + offset (4) = 8
 if len(data) > max_len:
 raise ValueError("Data cannot exceed %d chars" % max_len)

 super().__init__(FSCmdType.FILE_READ, fid, direction=self.RESPONSE,
 status=status)

 self.__offset = offset
 self.__data = data if data is not None else bytearray()

 @property
 def offset(self):
 """
 Returns the offset of the read data.

 Returns:
 Integer: The data offset.
 """
 return self.__offset

 @property
 def data(self):
 """
 Returns the read data from the file.

 Returns:
 Bytearray: Read data.
 """
 return self.__data

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.RESPONSE):
 """
 Override method.
 Direction must be 1.

 Returns:
 :class:`.ReadFileCmdResponse`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 8.
 (cmd id + status + file_id (2 bytes) + offset (4 bytes) + data = 8)
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 1.

 .. seealso::
 | :meth:`.FileIdCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.FILE_READ:
 raise InvalidPacketException(
 message="This command is not a Read File command")
 if direction != FSCmd.RESPONSE:
 raise InvalidPacketException(message="Direction must be 1")

 ok_status = cmd.status == FSCommandStatus.SUCCESS
 return ReadFileCmdResponse(
 cmd.status_value,
 fid=utils.bytes_to_int(raw[2:4]) if ok_status else None,
 offset=utils.bytes_to_int(raw[4:8]) if ok_status else None,
 data=raw[8:] if len(raw) > cls._get_min_len(status=cmd.status_value) else None)

 @staticmethod
 def _get_min_len(status=FSCommandStatus.SUCCESS.code):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_min_len`
 """
 # cmd id + status + file_id (2 bytes) + offset (4 bytes) = 8
 return 8 if status == FSCommandStatus.SUCCESS.code else 2

 def _get_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FileIdCmd._get_spec_data`
 """
 ret = super()._get_spec_data()
 if self._status == FSCommandStatus.SUCCESS.code:
 ret += utils.int_to_bytes(self.__offset, num_bytes=4)
 return ret + self.__data

 return ret

 def _get_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FileIdCmd._get_spec_data_dict`
 """
 dict_ret = super()._get_spec_data_dict()
 if self._status == FSCommandStatus.SUCCESS.code:
 dict_ret.update({DictKeys.OFFSET: self.__offset,
 DictKeys.DATA: list(self.__data)})

 return dict_ret

[docs]class WriteFileCmdRequest(FileIdCmd):
 """
 This class represents a write file system command request.

 Command response is received as a :class:`.WriteFileCmdResponse`.
 """

 USE_CURRENT_OFFSET = 0xFFFFFFFF
 """
 Use current file position to start writing.
 """

 def __init__(self, fid, offset, data=None):
 """
 Class constructor. Instantiates a new :class:`.WriteFileCmdRequest`
 object with the provided parameters.

 Args:
 fid (Integer): Id of the file to write returned in Open File Response.
 It expires and becomes invalid if not referenced for over 2 minutes.
 offset (Integer): The file offset to start writing. 0xFFFFFFFF to
 use current position (`ReadFileCmdRequest.USE_CURRENT_OFFSET`)
 data (Bytearray, optional, default=`None`): The data to write.
 If empty, frame just refreshes the File Handle timeout to keep
 the file open.

 Raises:
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FileIdCmd`
 """
 if not isinstance(fid, int):
 raise ValueError("File id must be an integer")
 if offset not in range(0, 0x100000000):
 raise ValueError("Offset must be between 0 and 0xFFFFFFFF")
 if data and not isinstance(data, bytearray):
 raise ValueError("Data must be a bytearray")
 max_len = 255 - 7 # cmd_id (1) + f_id (2) + offset (4) = 7
 if len(data) > max_len:
 raise ValueError("Data cannot exceed %d chars" % max_len)

 super().__init__(FSCmdType.FILE_WRITE, fid, direction=self.REQUEST)

 self.__offset = offset
 self.__data = data
 if data is None:
 self.__data = bytearray()

 @property
 def offset(self):
 """
 Returns the file offset to start writing.

 Returns:
 Integer: The file offset.
 """
 return self.__offset

 @property
 def data(self):
 """
 Returns the data to write. If empty, frame just refreshes the File
 Handle timeout to keep the file open.

 Returns:
 Bytearray: The data to write.
 """
 return self.__data

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.REQUEST):
 """
 Override method.
 Direction must be 0.

 Returns:
 :class:`.WriteFileCmdRequest`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 7.
 (cmd id + file_id (2 bytes) + offset (4 bytes) = 7 bytes).
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 0.

 .. seealso::
 | :meth:`.FileIdCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.FILE_WRITE:
 raise InvalidPacketException(
 message="This command is not a Write File command")
 if direction != FSCmd.REQUEST:
 raise InvalidPacketException(message="Direction must be 0")

 return WriteFileCmdRequest(utils.bytes_to_int(raw[1:3]),
 utils.bytes_to_int(raw[3:7]),
 data=raw[7:] if len(raw) > cls._get_min_len() else None)

 @staticmethod
 def _get_min_len(status=None):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_min_len`
 """
 # cmd id + file_id (2 bytes) + offset (4 bytes) = 7
 return 7

 def _get_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_spec_data`
 """
 ret = super()._get_spec_data()
 ret += utils.int_to_bytes(self.__offset, num_bytes=4)

 return ret + self.__data

 def _get_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_spec_data_dict`
 """
 dict_ret = super()._get_spec_data_dict()
 dict_ret.update({DictKeys.OFFSET: self.__offset,
 DictKeys.DATA: list(self.__data)})

 return dict_ret

[docs]class WriteFileCmdResponse(FileIdCmd):
 """
 This class represents a write file system command response.

 Command response is received as a :class:`.WriteFileCmdRequest`.
 """

 def __init__(self, status, fid=None, actual_offset=None):
 """
 Class constructor. Instantiates a new :class:`.WriteFileCmdResponse`
 object with the provided parameters.

 Args:
 status (:class:`.FSCommandStatus` or Integer): Status of the file
 system command execution.
 fid (Integer, optional, default=`None`): Id of the written file.
 actual_offset (Integer, optional, default=`None`): The current file
 offset after writing.

 Raises:
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FileIdCmd`
 """
 if actual_offset and actual_offset not in range(0, 0x100000000):
 raise ValueError("Offset must be between 0 and 0xFFFFFFFF")

 super().__init__(FSCmdType.FILE_WRITE, fid, direction=self.RESPONSE, status=status)

 self.__offset = actual_offset

 @property
 def actual_offset(self):
 """
 Returns the file offset after writing.

 Returns:
 Integer: The file offset.
 """
 return self.__offset

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.RESPONSE):
 """
 Override method.
 Direction must be 1.

 Returns:
 :class:`.WriteFileCmdResponse`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 8.
 (cmd id + status + file_id (2 bytes) + offset (4 bytes) = 8)
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 1.

 .. seealso::
 | :meth:`.FileIdCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.FILE_WRITE:
 raise InvalidPacketException(
 message="This command is not a Write File command")
 if direction != FSCmd.RESPONSE:
 raise InvalidPacketException(message="Direction must be 1")

 ok_status = cmd.status == FSCommandStatus.SUCCESS
 return WriteFileCmdResponse(
 cmd.status_value,
 fid=utils.bytes_to_int(raw[2:4]) if ok_status else None,
 actual_offset=utils.bytes_to_int(raw[4:8]) if ok_status else None)

 @staticmethod
 def _get_min_len(status=FSCommandStatus.SUCCESS.code):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_min_len`
 """
 # cmd id + status + file_id (2 bytes) + offset (4 bytes) = 8
 return 8 if status == FSCommandStatus.SUCCESS.code else 2

 def _get_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FileIdCmd._get_spec_data`
 """
 ret = super()._get_spec_data()
 if self._status == FSCommandStatus.SUCCESS.code:
 return ret + utils.int_to_bytes(self.__offset, num_bytes=4)

 return ret

 def _get_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FileIdCmd._get_spec_data_dict`
 """
 dict_ret = super()._get_spec_data_dict()
 if self._status == FSCommandStatus.SUCCESS.code:
 dict_ret.update({DictKeys.OFFSET: self.__offset})

 return dict_ret

[docs]class HashFileCmdRequest(FileIdNameCmd):
 """
 This class represents a file hash command request.
 Use this command to get a sha256 hash to verify a file's contents without
 downloading the entire file (something not even possible for secure files).
 On XBee Cellular modules, there is a response delay in order to calculate
 the hash of a non-secure file.
 Secure files on XBee Cellular and all files on XBee 3 802.15.4, DigiMesh,
 and Zigbee have a cached hash.

 Command response is received as a :class:`.HashFileCmdResponse`.
 """

 def __init__(self, path_id, name):
 """
 Class constructor. Instantiates a new :class:`.HashFileCmdRequest`
 object with the provided parameters.

 Args:
 path_id (Integer): Directory path id. Set to 0x0000 for the root
 directory (/).
 name (String or bytearray): The path name of the file to hash,
 relative to `path_id`. Its maximum length is 252 chars.

 Raises:
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FileIdNameCmd`
 """
 if not isinstance(path_id, int):
 raise ValueError("Directory path id must be an integer")
 if not isinstance(name, (str, bytearray, bytes)):
 raise ValueError("Name must be a string or bytearray")
 super().__init__(FSCmdType.FILE_HASH, path_id, name,
 direction=self.REQUEST)

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.REQUEST):
 """
 Override method.
 Direction must be 0.

 Returns:
 :class:`.HashFileCmdRequest`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 4.
 (cmd id + path id (2 bytes) + name (at least 1 byte) = 4 bytes).
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 0.

 .. seealso::
 | :meth:`.FileIdNameCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.FILE_HASH:
 raise InvalidPacketException(
 message="This command is not a Hash command")
 if direction != FSCmd.REQUEST:
 raise InvalidPacketException(message="Direction must be 0")

 return HashFileCmdRequest(utils.bytes_to_int(raw[1:3]), raw[3:])

[docs]class HashFileCmdResponse(FSCmd):
 """
 This class represents a file hash command response.

 This is received in response of an :class:`.HashFileCmdRequest`.
 """

 def __init__(self, status, file_hash=None):
 """
 Class constructor. Instantiates a new :class:`.HashFileCmdResponse`
 object with the provided parameters.

 Args:
 status (:class:`.FSCommandStatus` or Integer): Status of the file
 system command execution.
 file_hash (Bytearray, optional, default=`None`): The hash value.

 Raises:
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FSCmd`
 """
 if file_hash is not None:
 if not isinstance(file_hash, bytearray):
 raise TypeError("Hash must be a bytearray")
 if not file_hash or len(file_hash) > 32:
 raise ValueError("Hash must have at least one byte an less than 33")

 super().__init__(FSCmdType.FILE_HASH, direction=self.RESPONSE,
 status=status)

 self.__hash = file_hash

 @property
 def file_hash(self):
 """
 Returns the hash of the file.

 Returns:
 Bytearray: The hash of the file.
 """
 return self.__hash

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.RESPONSE):
 """
 Override method.
 Direction must be 1.

 Returns:
 :class:`.HashFileCmdResponse`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 34.
 (cmd id + status + hash (32 bytes) = 34).
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 1.

 .. seealso::
 | :meth:`.FSCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.FILE_HASH:
 raise InvalidPacketException(
 message="This command is not a Hash command")
 if direction != FSCmd.RESPONSE:
 raise InvalidPacketException(message="Direction must be 1")

 ok_status = cmd.status == FSCommandStatus.SUCCESS
 return HashFileCmdResponse(cmd.status_value,
 file_hash=raw[2:34] if ok_status else None)

 @staticmethod
 def _get_min_len(status=FSCommandStatus.SUCCESS.code):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_min_len`
 """
 # cmd id + status + hash (32 bytes) = 34
 return 34 if status == FSCommandStatus.SUCCESS.code else 2

 def _get_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FileIdCmd._get_spec_data`
 """
 return self.__hash if self._status == FSCommandStatus.SUCCESS.code else bytearray()

 def _get_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FileIdCmd._get_spec_data_dict`
 """
 return {DictKeys.HASH: self.__hash} \
 if self._status == FSCommandStatus.SUCCESS.code else {}

[docs]class CreateDirCmdRequest(FileIdNameCmd):
 """
 This class represents a create directory file system command request.
 Parent directories of the one to be created must exist. Separate request
 must be dane to make intermediate directories.

 Command response is received as a :class:`.CreateDirCmdResponse`.
 """

 def __init__(self, path_id, name):
 """
 Class constructor. Instantiates a new :class:`.CreateDirCmdRequest`
 object with the provided parameters.

 Args:
 path_id (Integer): Directory path id. Set to 0x0000 for the root
 directory (/).
 name (String or bytearray): The path name of the directory to
 create, relative to `path_id`. Its maximum length is 252 chars.

 Raises:
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FileIdNameCmd`
 """
 if not isinstance(path_id, int):
 raise ValueError("Directory path id must be an integer")
 super().__init__(FSCmdType.DIR_CREATE, path_id, name,
 direction=self.REQUEST)

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.REQUEST):
 """
 Override method.
 Direction must be 0.

 Returns:
 :class:`.CreateDirCmdRequest`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 4.
 (cmd id + path id (2 bytes) + name (at least 1 byte) = 4 bytes).
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 0.

 .. seealso::
 | :meth:`.FileIdNameCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.DIR_CREATE:
 raise InvalidPacketException(
 message="This command is not a Create Directory command")
 if direction != FSCmd.REQUEST:
 raise InvalidPacketException(message="Direction must be 0")

 return CreateDirCmdRequest(utils.bytes_to_int(raw[1:3]), raw[3:])

[docs]class CreateDirCmdResponse(FSCmd):
 """
 This class represents a create directory file system command response.

 Command response is received as a :class:`.CreateDirCmdRequest`.
 """

 def __init__(self, status):
 """
 Class constructor. Instantiates a new :class:`.CreateDirCmdResponse`
 object with the provided parameters.

 Args:
 status (:class:`.FSCommandStatus` or Integer): Status of the file
 system command execution.

 .. seealso::
 | :class:`.FSCmd`
 """
 super().__init__(FSCmdType.DIR_CREATE, direction=self.RESPONSE,
 status=status)

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.RESPONSE):
 """
 Override method.
 Direction must be 1.

 Returns:
 :class:`.CreateDirCmdResponse`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 2.
 (cmd id + status = 2).
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 1.

 .. seealso::
 | :meth:`.FSCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.DIR_CREATE:
 raise InvalidPacketException(
 message="This command is not a Create Directory command")
 if direction != FSCmd.RESPONSE:
 raise InvalidPacketException(message="Direction must be 1")

 return CreateDirCmdResponse(cmd.status_value)

[docs]class OpenDirCmdRequest(FileIdNameCmd):
 """
 This class represents an open directory file system command request.

 Command response is received as a :class:`.OpenDirCmdResponse`.
 """

 def __init__(self, path_id, name):
 """
 Class constructor. Instantiates a new :class:`.OpenDirCmdRequest`
 object with the provided parameters.

 Args:
 path_id (Integer): Directory path id. Set to 0x0000 for the root
 directory (/).
 name (String or bytearray): Path name of the directory to open,
 relative to `path_id`. An empty name is equivalent to '.', both
 refer to the current directory path id. Its maximum length is
 252 chars.

 Raises:
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FileIdNameCmd`
 """
 if not isinstance(path_id, int):
 raise ValueError("Directory path id must be an integer")
 if name is None or not isinstance(name, str):
 raise ValueError("Path name must be a string")
 super().__init__(FSCmdType.DIR_OPEN, path_id, name,
 direction=self.REQUEST)

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.REQUEST):
 """
 Override method.
 Direction must be 0.

 Returns:
 :class:`.OpenDirCmdRequest`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 4.
 (cmd id + path id (2 bytes) + name (at least 1 byte) = 4 bytes).
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 0.

 .. seealso::
 | :meth:`.FileIdNameCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.DIR_OPEN:
 raise InvalidPacketException(
 message="This command is not an Open Directory command")
 if direction != FSCmd.REQUEST:
 raise InvalidPacketException(message="Direction must be 0")

 return OpenDirCmdRequest(utils.bytes_to_int(raw[1:3]), raw[3:])

[docs]class OpenDirCmdResponse(FileIdCmd):
 """
 This class represents an open directory file system command response.
 If the final file system element does not have
 `DirResponseFlag.ENTRY_IS_LAST` set, send a Directory Read Request to get
 additional entries.
 A response ending with an `DirResponseFlag.ENTRY_IS_LAST` flag automatically
 closes the Directory Handle.
 An empty directory returns a single entry with just the
 `DirResponseFlag.ENTRY_IS_LAST` flag set, and a 0-byte name.

 This is received in response of an :class:`.OpenDirCmdRequest`.
 """

 def __init__(self, status, did=None, fs_entries=None):
 """
 Class constructor. Instantiates a new :class:`.OpenFileCmdResponse`
 object with the provided parameters.

 Args:
 status (:class:`.FSCommandStatus` or Integer): Status of the file
 system command execution.
 did (Integer, optional, default=`None`): Id of the directory that
 has been opened. It expires and becomes invalid if not
 referenced for over 2 minutes.
 fs_entries (List, optional, default=`None`): List of bytearrays with
 the info and name of the entries inside the opened directory.

 Raises:
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FileIdCmd`
 """
 if fs_entries and not isinstance(fs_entries, list):
 raise ValueError("File system entries must be a list")

 super().__init__(FSCmdType.DIR_OPEN, did, direction=self.RESPONSE,
 status=status)

 self._fs_entries = fs_entries

 @property
 def is_last(self):
 """
 Returns whether there are more elements not included in this response.

 Returns:
 Boolean: `True` if there are no more elements to list, `False`
 otherwise.
 """
 for item in self._fs_entries:
 if not item:
 continue
 if bool(item[0] & DirResponseFlag.IS_LAST):
 return True

 return False

 @property
 def fs_entries(self):
 """
 Returns the list of entries inside the opened directory.

 Returns:
 List: List of :class: .`FileSystemElement` inside the directory.
 """
 if not self._fs_entries:
 return []

 # Empty directory: single entry with just the
 # `DirResponseFlag.ENTRY_IS_LAST` flag set, and a 0-byte name (4 bytes)
 if (self.is_last and len(self._fs_entries) == 1
 and len(self._fs_entries[0]) == 4):
 return []

 f_list = []
 for item in self._fs_entries:
 if not item:
 continue
 from digi.xbee.filesystem import FileSystemElement
 # File size: lower 24 bits (3 bytes) of size_and_flags
 f_list.append(FileSystemElement.from_data(item[4:], item[1:4], item[0]))

 return f_list

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.RESPONSE):
 """
 Override method.
 Direction must be 1.

 Returns:
 :class:`.OpenDirCmdResponse`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 8.
 (cmd id + status + dir id (2 bytes) + filesize_and_flags (4 bytes) = 8).
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 1.

 .. seealso::
 | :meth:`.FileIdCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.DIR_OPEN:
 raise InvalidPacketException(
 message="This command is not an Open Directory command")
 if direction != FSCmd.RESPONSE:
 raise InvalidPacketException(message="Direction must be 1")

 ok_status = cmd.status == FSCommandStatus.SUCCESS

 f_list = []
 if ok_status:
 offset = 4 # cmd id + status + dir id (2)
 while offset < len(raw):
 # 4 bytes for the flags_and_size field
 null_index = raw.find(0, offset + 4)
 if null_index == -1:
 null_index = len(raw)
 f_list.append(raw[offset: null_index])
 offset = null_index + 1

 return OpenDirCmdResponse(cmd.status_value,
 did=utils.bytes_to_int(raw[2:4]) if ok_status else None,
 fs_entries=f_list)

 @staticmethod
 def _get_min_len(status=FSCommandStatus.SUCCESS.code):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_min_len`
 """
 # cmd id + status + dir id (2 bytes) + filesize_and_flags (4 bytes) = 8
 return 8 if status == FSCommandStatus.SUCCESS.code else 2

 def _get_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FileIdCmd._get_spec_data`
 """
 ret = super()._get_spec_data()
 if self._status == FSCommandStatus.SUCCESS.code and self._fs_entries:
 for item in self._fs_entries:
 ret += item + b'\0'
 # Remove the last NULL char
 ret = ret[:-1]

 return ret

 def _get_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FileIdCmd._get_spec_data_dict`
 """
 dict_ret = super()._get_spec_data_dict()

 if self._status == FSCommandStatus.SUCCESS.code:
 dict_ret.update(
 {DictKeys.ENTRY: ', '.join(str(entry) for entry in self.fs_entries)})

 return dict_ret

[docs]class CloseDirCmdRequest(FileIdCmd):
 """
 This class represents a directory close file system command request.

 Command response is received as a :class:`.CloseDirCmdResponse`.
 """

 def __init__(self, did):
 """
 Class constructor. Instantiates a new :class:`.CloseDirCmdRequest`
 object with the provided parameters.

 Args:
 did (Integer): Id of the directory to close. It expires and becomes
 invalid if not referenced for over 2 minutes.

 Raises:
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FileIdCmd`
 """
 if not isinstance(did, int):
 raise ValueError("Directory id must be an integer")
 super().__init__(FSCmdType.DIR_CLOSE, did, direction=self.REQUEST)

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.REQUEST):
 """
 Override method.
 Direction must be 0.

 Returns:
 :class:`.CloseDirCmdRequest`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 3.
 (cmd id + dir_id (2 bytes) = 3 bytes).
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 0.

 .. seealso::
 | :meth:`.FileIdCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.DIR_CLOSE:
 raise InvalidPacketException(
 message="This command is not a Close Directory command")
 if direction != FSCmd.REQUEST:
 raise InvalidPacketException(message="Direction must be 0")

 return CloseDirCmdRequest(utils.bytes_to_int(raw[1:3]))

[docs]class CloseDirCmdResponse(FSCmd):
 """
 This class represents a directory close file system command response.
 Send this command to indicate that it is done reading the directory and no
 longer needs the Directory Handle. Typical usage scenario is to use a
 Directory Open Request and additional Directory Read Requests until the
 Response includes an entry with the `DirResponseFlag.ENTRY_IS_LAST` flag set.

 Command response is received as a :class:`.CloseDirCmdRequest`.
 """

 def __init__(self, status):
 """
 Class constructor. Instantiates a new :class:`.CloseDirCmdResponse`
 object with the provided parameters.

 Args:
 status (:class:`.FSCommandStatus` or Integer): Status of the file
 system command execution.

 .. seealso::
 | :class:`.FSCmd`
 """
 super().__init__(FSCmdType.DIR_CLOSE, direction=self.RESPONSE,
 status=status)

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.RESPONSE):
 """
 Override method.
 Direction must be 1.

 Returns:
 :class:`.CloseDirCmdResponse`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 2.
 (cmd id + status = 2).
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 1.

 .. seealso::
 | :meth:`.FSCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.DIR_CLOSE:
 raise InvalidPacketException(
 message="This command is not a Close Directory command")
 if direction != FSCmd.RESPONSE:
 raise InvalidPacketException(message="Direction must be 1")

 return CloseDirCmdResponse(cmd.status_value)

[docs]class ReadDirCmdRequest(FileIdCmd):
 """
 This class represents a directory read file system command request.

 Command response is received as a :class:`.ReadDirCmdResponse`.
 """

 def __init__(self, did):
 """
 Class constructor. Instantiates a new :class:`.ReadDirCmdRequest`
 object with the provided parameters.

 Args:
 did (Integer): Id of the directory to close. It expires and becomes
 invalid if not referenced for over 2 minutes.

 Raises:
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FileIdCmd`
 """
 if not isinstance(did, int):
 raise ValueError("Directory id must be an integer")
 super().__init__(FSCmdType.DIR_READ, did, direction=self.REQUEST)

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.REQUEST):
 """
 Override method.
 Direction must be 0.

 Returns:
 :class:`.ReadDirCmdRequest`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 3.
 (cmd id + dir_id (2 bytes) = 3 bytes).
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 0.

 .. seealso::
 | :meth:`.FileIdCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.DIR_READ:
 raise InvalidPacketException(
 message="This command is not a Read Directory command")
 if direction != FSCmd.REQUEST:
 raise InvalidPacketException(message="Direction must be 0")

 return ReadDirCmdRequest(utils.bytes_to_int(raw[1:3]))

[docs]class ReadDirCmdResponse(OpenDirCmdResponse):
 """
 This class represents a read directory file system command response.
 If the final file system element does not have
 `DirResponseFlag.ENTRY_IS_LAST` set, send another Directory Read Request
 to get additional entries.
 A response ending with an `DirResponseFlag.ENTRY_IS_LAST` flag automatically
 closes the Directory Handle.

 This is received in response of an :class:`.ReadDirCmdRequest`.
 """

 def __init__(self, status, did=None, fs_entries=None):
 """
 Class constructor. Instantiates a new :class:`.ReadDirCmdResponse`
 object with the provided parameters.

 Args:
 status (:class:`.FSCommandStatus` or Integer): Status of the file
 system command execution.
 did (Integer, optional, default=`None`): Id of the directory that
 has been read.
 fs_entries (List, optional, default=`None`): List of bytearrays
 with the info and name of the entries inside the directory.

 Raises:
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FileIdCmd`
 | :class:`.DirResponseFlag`
 """
 super().__init__(status, did=did, fs_entries=fs_entries)
 self._cmd_type = FSCmdType.DIR_READ

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.RESPONSE):
 """
 Override method.
 Direction must be 1.

 Returns:
 :class:`.ReadDirCmdResponse`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 4.
 (cmd id + status + dir id (2 bytes) = 4).
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 1.

 .. seealso::
 | :meth:`.FileIdCmd.create_cmd`
 """
 cmd = FileIdCmd.create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.DIR_READ:
 raise InvalidPacketException(
 message="This command is not a Read Directory command")
 if direction != FSCmd.RESPONSE:
 raise InvalidPacketException(message="Direction must be 1")

 ok_status = cmd.status == FSCommandStatus.SUCCESS

 f_list = []
 if ok_status:
 offset = 4 # cmd id + status + dir id (2)
 while offset < len(raw):
 # 4 bytes for the flags_and_size field
 null_index = raw.find(0, offset + 4)
 if null_index == -1:
 null_index = len(raw)
 f_list.append(raw[offset: null_index])
 offset = null_index + 1

 return ReadDirCmdResponse(cmd.status_value,
 did=utils.bytes_to_int(raw[2:4]) if ok_status else None,
 fs_entries=f_list)

[docs]class GetPathIdCmdRequest(FileIdNameCmd):
 """
 This class represents a get path id file system command request.
 A directory path id (path_id) of 0x0000 in any command, means path names
 are relative to the root directory of the filesystem (/).

 * '/' as path separator
 * '..' to refer to the parent directory
 * '.' to refer to the current path directory

 Use this command to get a shortcut to a subdirectory of the file system to
 allow the use of shorter path names in the frame:

 * If the PATH ID field of this command is 0x0000, the XBee allocates a
 new PATH ID for use in later requests.
 * If the PATH ID field of this command is non-zero, the XBee updates
 the directory path of that ID.

 To release a PATH ID when no longer needed:
 * Send a request with that ID and a single slash ("/") as the pathname.
 Any Change Directory Request that resolves to the root directory
 releases the PATH ID and return a 0x0000 ID.
 * Wait for a timeout (2 minutes)

 Any file system id expires after 2 minutes if not referenced. Refresh this
 timeout by sending a Change Directory request with an empty or a single
 period ('.') as the pathname.

 Command response is received as a :class:`.GetPathIdCmdResponse`.
 """

 def __init__(self, path_id, name):
 """
 Class constructor. Instantiates a new :class:`.GetPathIdCmdRequest`
 object with the provided parameters.

 Args:
 path_id (Integer): Directory path id. Set to 0x0000 for the root
 directory (/).
 name (String or bytearray): The path name of the directory to
 change, relative to `path_id`. An empty name is equivalent to
 '.', both refer to the current directory path id. Its maximum
 length is 252 chars.

 Raises:
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FileIdNameCmd`
 """
 if not isinstance(path_id, int):
 raise ValueError("Directory path id must be an integer")
 if name is None or not isinstance(name, str):
 raise ValueError("Path name must be a string")
 super().__init__(FSCmdType.GET_PATH_ID, path_id, name,
 direction=self.REQUEST)

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.REQUEST):
 """
 Override method.
 Direction must be 0.

 Returns:
 :class:`.GetPathIdCmdRequest`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 4.
 (cmd id + path id (2 bytes) + name (at least 1 byte) = 4 bytes).
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 0.

 .. seealso::
 | :meth:`.FileIdNameCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.GET_PATH_ID:
 raise InvalidPacketException(
 message="This command is not a Directory Change command")
 if direction != FSCmd.REQUEST:
 raise InvalidPacketException(message="Direction must be 0")

 return GetPathIdCmdRequest(utils.bytes_to_int(raw[1:3]), raw[3:])

[docs]class GetPathIdCmdResponse(FileIdCmd):
 """
 This class represents a get path id file system command response.
 The full path of the new current directory is included if can fit.

 This is received in response of an :class:`.GetPathIdCmdRequest`.
 """

 def __init__(self, status, path_id=None, full_path=None):
 """
 Class constructor. Instantiates a new :class:`.GetPathIdCmdResponse`
 object with the provided parameters.

 Args:
 status (:class:`.FSCommandStatus` or Integer): Status of the file
 system command execution.
 path_id (Integer, optional, default=`None`): New directory path id.
 full_path (String or bytearray, optional, default=`None`): If short
 enough, the full path of the current directory , relative to
 `path_id`. Deep subdirectories may return an empty field
 instead of their full path name. The maximum full path length
 is 255 characters.

 Raises:
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FileIdCmd`
 """
 if full_path is not None:
 if not isinstance(full_path, (str, bytearray, bytes)):
 raise ValueError("Full path must be a string or bytearray")
 if not full_path or len(full_path) > 255:
 raise ValueError(
 "Full path cannot be empty and cannot exceed 255 chars")

 super().__init__(FSCmdType.GET_PATH_ID, path_id,
 direction=self.RESPONSE, status=status)

 if isinstance(full_path, str):
 self.__path = full_path.encode('utf8', errors='ignore')
 else:
 self.__path = full_path

 @property
 def full_path(self):
 """
 Returns the full path of the current directory.

 Returns:
 String: The directory full path.
 """
 return self.__path.decode(encoding='utf8', errors='ignore')

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.RESPONSE):
 """
 Override method.
 Direction must be 1.

 Returns:
 :class:`.GetPathIdCmdResponse`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 4.
 (cmd id + status + path id (2 bytes) = 4).
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 1.

 .. seealso::
 | :meth:`.FileIdNameCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.GET_PATH_ID:
 raise InvalidPacketException(
 message="This command is not a Change Directory command")
 if direction != FSCmd.RESPONSE:
 raise InvalidPacketException(message="Direction must be 1")

 ok_status = cmd.status == FSCommandStatus.SUCCESS
 f_path = None
 if len(raw) > cls._get_min_len(status=cmd.status_value):
 f_path = raw[4:]
 return GetPathIdCmdResponse(
 cmd.status_value,
 path_id=utils.bytes_to_int(raw[2:4]) if ok_status else None,
 full_path=f_path)

 @staticmethod
 def _get_min_len(status=FSCommandStatus.SUCCESS.code):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_min_len`
 """
 # cmd id + status + path id (2 bytes) = 4
 return 4 if status == FSCommandStatus.SUCCESS.code else 2

 def _get_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_spec_data`
 """
 ret = super()._get_spec_data()
 if self._status == FSCommandStatus.SUCCESS.code and self.__path:
 return ret + self.__path

 return ret

 def _get_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_spec_data_dict`
 """
 dict_ret = super()._get_spec_data_dict()
 if self._status == FSCommandStatus.SUCCESS.code:
 dict_ret.update({DictKeys.PATH: self.__path})

 return dict_ret

[docs]class RenameCmdRequest(FileIdNameCmd):
 """
 This class represents a file/directory rename file system command request.
 Current firmware for XBee 3 802.15.4, DigiMesh, and Zigbee do not support
 renaming files. Contact Digi International to request it as a feature in a
 future release.

 Command response is received as a :class:`.RenameCmdResponse`.
 """

 def __init__(self, path_id, name, new_name):
 """
 Class constructor. Instantiates a new :class:`.RenameCmdRequest`
 object with the provided parameters.

 Args:
 path_id (Integer): Directory path id. Set to 0x0000 for the root
 directory (/).
 name (String or bytearray): The current path name of the
 file/directory to rename relative to `path_id`. Its maximum
 length is 255 chars.
 new_name (String or bytearray): The new name of the file/directory
 relative to `path_id`. Its maximum length is 255 chars.

 Raises:
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FileIdNameCmd`
 """
 if not isinstance(path_id, int):
 raise ValueError("Directory path id must be an integer")
 if not isinstance(name, (str, bytearray, bytes)):
 raise ValueError("Name must be a string or bytearray")
 if not isinstance(new_name, (str, bytearray, bytes)):
 raise ValueError("New name must be a string or bytearray")
 if (len(name) + len(new_name)) > self._get_name_max_len():
 raise ValueError(
 "Name length plus new name length cannot exceed %d chars" % self._get_name_max_len())

 super().__init__(FSCmdType.RENAME, path_id, name, direction=self.REQUEST)

 if isinstance(name, str):
 self.__new_name = new_name.encode('utf8', errors='ignore')
 else:
 self.__new_name = new_name

 @property
 def new_name(self):
 """
 Returns the new name of the file or directory.

 Returns:
 String: The new name.
 """
 return self.__new_name.decode(encoding='utf8', errors='ignore')

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.REQUEST):
 """
 Override method.
 Direction must be 0.

 Returns:
 :class:`.RenameCmdRequest`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 6.
 (cmd id + path id (2 bytes) + name (1 byte at least) + ','
 + new name (at least 1 byte) = 6 bytes).
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 0.

 .. seealso::
 | :meth:`.FileIdNameCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.RENAME:
 raise InvalidPacketException(
 message="This command is not a Rename File command")
 if direction != FSCmd.REQUEST:
 raise InvalidPacketException(message="Direction must be 0")

 names = raw[3:].split(b',')
 if len(names) != 2:
 raise InvalidPacketException(
 "Invalid bytearray format, it must contain a ','")

 return RenameCmdRequest(utils.bytes_to_int(raw[1:3]), *names)

 @staticmethod
 def _get_min_len(status=None):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_min_len`
 """
 # cmd id + path id (2 bytes) + name (1 byte at least)
 # + ',' + new name (at least 1 byte) = 6
 return 6

 def _get_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_spec_data`
 """
 ret = super()._get_spec_data()
 ret.extend(b',')

 return ret + self.__new_name

 def _get_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_spec_data_dict`
 """
 dict_ret = super()._get_spec_data_dict()
 dict_ret.update({DictKeys.NEW_NAME: self.__new_name})

 return dict_ret

[docs]class RenameCmdResponse(FSCmd):
 """
 This class represents a rename file system command response.

 Command response is received as a :class:`.RenameCmdRequest`.
 """

 def __init__(self, status):
 """
 Class constructor. Instantiates a new :class:`.RenameCmdResponse`
 object with the provided parameters.

 Args:
 status (:class:`.FSCommandStatus` or Integer): Status of the file
 system command execution.

 .. seealso::
 | :class:`.FSCmd`
 """
 super().__init__(FSCmdType.RENAME, direction=self.RESPONSE,
 status=status)

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.RESPONSE):
 """
 Override method.
 Direction must be 1.

 Returns:
 :class:`.RenameCmdResponse`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 2.
 (cmd id + status = 2).
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 1.

 .. seealso::
 | :meth:`.FSCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.RENAME:
 raise InvalidPacketException(
 message="This command is not a Rename File command")
 if direction != FSCmd.RESPONSE:
 raise InvalidPacketException(message="Direction must be 1")

 return RenameCmdResponse(cmd.status_value)

[docs]class DeleteCmdRequest(FileIdNameCmd):
 """
 This class represents a delete file system command request.
 All files in a directory must be deleted before removing the directory.
 On XBee 3 802.15.4, DigiMesh, and Zigbee, deleted files are marked as
 as unusable space unless they are at the "end" of the file system
 (most-recently created). On these products, deleting a file triggers
 recovery of any deleted file space at the end of the file system, and can
 lead to a delayed response.

 Command response is received as a :class:`.DeleteCmdResponse`.
 """

 def __init__(self, path_id, name):
 """
 Class constructor. Instantiates a new :class:`.DeleteCmdRequest`
 object with the provided parameters.

 Args:
 path_id (Integer): Directory path id. Set to 0x0000 for the root
 directory (/).
 name (String or bytearray): The name of the file/directory to
 delete relative to `path_id`. Its maximum length is 252 chars.

 Raises:
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FileIdNameCmd`
 """
 if not isinstance(path_id, int):
 raise ValueError("Directory path id must be an integer")
 if not isinstance(name, (str, bytearray, bytes)):
 raise ValueError("Name must be a string or bytearray")
 super().__init__(FSCmdType.DELETE, path_id, name, direction=self.REQUEST)

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.REQUEST):
 """
 Override method.
 Direction must be 0.

 Returns:
 :class:`.DeleteCmdRequest`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 4.
 (cmd id + path id (2 bytes) + name (at least 1 byte) = 4 bytes).
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 0.

 .. seealso::
 | :meth:`.FileIdNameCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.DELETE:
 raise InvalidPacketException(
 message="This command is not a Delete File command")
 if direction != FSCmd.REQUEST:
 raise InvalidPacketException(message="Direction must be 0")

 return DeleteCmdRequest(utils.bytes_to_int(raw[1:3]), raw[3:])

[docs]class DeleteCmdResponse(FSCmd):
 """
 This class represents a delete file system command response.

 Command response is received as a :class:`.DeleteCmdRequest`.
 """

 def __init__(self, status):
 """
 Class constructor. Instantiates a new :class:`.DeleteCmdResponse`
 object with the provided parameters.

 Args:
 status (:class:`.FSCommandStatus` or Integer): Status of the file
 system command execution.

 .. seealso::
 | :class:`.FSCmd`
 """
 super().__init__(FSCmdType.DELETE, direction=self.RESPONSE,
 status=status)

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.RESPONSE):
 """
 Override method.
 Direction must be 1.

 Returns:
 :class:`.DeleteCmdResponse`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 2.
 (cmd id + status = 2).
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 1.

 .. seealso::
 | :meth:`.FSCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.DELETE:
 raise InvalidPacketException(
 message="This command is not a Delete File command")
 if direction != FSCmd.RESPONSE:
 raise InvalidPacketException(message="Direction must be 1")

 return DeleteCmdResponse(cmd.status_value)

[docs]class VolStatCmdRequest(FSCmd):
 """
 This class represents a volume stat file system command request.
 Formatting the file system takes time, and any other requests fails until
 it completes and sends a response.

 Command response is received as a :class:`.VolStatCmdResponse`.
 """

 def __init__(self, name):
 """
 Class constructor. Instantiates a new :class:`.VolStatCmdRequest`
 object with the provided parameters.

 Args:
 name (String or bytearray): The name of the volume. Its maximum
 length is 254 characters.

 Raises:
 ValueError: If `name` is invalid.

 .. seealso::
 | :class:`.FSCmd`
 """
 if not isinstance(name, (str, bytearray, bytes)):
 raise ValueError("Name must be a string or bytearray")
 max_len = 255 - 1 # cmd_id (1)
 if not name or len(name) > max_len:
 raise ValueError(
 "Name cannot be empty and cannot exceed %d chars" % max_len)

 super().__init__(FSCmdType.STAT, direction=self.REQUEST)

 if isinstance(name, str):
 self._name = name.encode('utf8', errors='ignore')
 else:
 self._name = name

 @property
 def name(self):
 """
 Returns the name of the volume.

 Returns:
 String: The volume name.
 """
 return self._name.decode(encoding='utf8', errors='ignore')

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.REQUEST):
 """
 Override method.
 Direction must be 0.

 Returns:
 :class:`.VolStatCmdRequest`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 2.
 (cmd id + name (at least 1 byte) = 2 bytes).
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 0.

 .. seealso::
 | :meth:`.FSCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.STAT:
 raise InvalidPacketException(
 message="This command is not a Volume Stat command")
 if direction != FSCmd.REQUEST:
 raise InvalidPacketException(message="Direction must be 0")

 return VolStatCmdRequest(raw[1:])

 @staticmethod
 def _get_min_len(status=None):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_min_len`
 """
 # cmd id + name (at least 1 byte) = 2
 return 2

 def _get_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_spec_data`
 """
 return self._name

 def _get_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_spec_data_dict`
 """
 return {DictKeys.NAME: self._name}

[docs]class VolStatCmdResponse(FSCmd):
 """
 This class represents a stat file system command response.

 Command response is received as a :class:`.VolStatCmdRequest`.
 """

 def __init__(self, status, bytes_used=None, bytes_free=None, bytes_bad=None):
 """
 Class constructor. Instantiates a new :class:`.VolStatCmdResponse`
 object with the provided parameters.

 Args:
 status (:class:`.FSCommandStatus` or Integer): Status of the file
 system command execution.
 bytes_used (Integer, optional, default=`None`): Number of used bytes.
 bytes_free (Integer, optional, default=`None`): Number of free bytes.
 bytes_bad (Integer, optional, default=`None`): Number of bad bytes.
 For XBee 3 802.15.4, DigiMesh, and Zigbee, this represents
 space used by deleted files.

 Raises:
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FSCmd`
 """
 if bytes_used and bytes_used not in range(0, 0x100000000):
 raise ValueError("Used bytes must be between 0 and 0xFFFFFFFF")
 if bytes_free and bytes_free not in range(0, 0x100000000):
 raise ValueError("Free bytes must be between 0 and 0xFFFFFFFF")
 if bytes_bad and bytes_bad not in range(0, 0x100000000):
 raise ValueError("Bad bytes must be between 0 and 0xFFFFFFFF")

 super().__init__(FSCmdType.STAT, direction=self.RESPONSE,
 status=status)

 self._bytes_used = bytes_used
 self._bytes_free = bytes_free
 self._bytes_bad = bytes_bad

 @property
 def bytes_used(self):
 """
 Returns the used space on volume.

 Returns:
 Integer: Number of used bytes.
 """
 return self._bytes_used

 @property
 def bytes_free(self):
 """
 Returns the available space on volume.

 Returns:
 Integer: Number of free bytes.
 """
 return self._bytes_free

 @property
 def bytes_bad(self):
 """
 Returns "bad" bytes on volume. For XBee 3 802.15.4, DigiMesh,
 and Zigbee, this represents space used by deleted files.

 Returns:
 Integer: Number of bad bytes.
 """
 return self._bytes_bad

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.RESPONSE):
 """
 Override method.
 Direction must be 1.

 Returns:
 :class:`.VolStatCmdResponse`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 14.
 (cmd id + status + used (4 bytes) + free (4 bytes) + bad (4 bytes) = 14)
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 1.

 .. seealso::
 | :meth:`.FileIdCmd.create_cmd`
 """
 cmd = super().create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.STAT:
 raise InvalidPacketException(
 message="This command is not a Volume Stat command")
 if direction != FSCmd.RESPONSE:
 raise InvalidPacketException(message="Direction must be 1")

 ok_status = cmd.status == FSCommandStatus.SUCCESS
 return VolStatCmdResponse(
 cmd.status_value,
 bytes_used=utils.bytes_to_int(raw[2:6]) if ok_status else None,
 bytes_free=utils.bytes_to_int(raw[6:10]) if ok_status else None,
 bytes_bad=utils.bytes_to_int(raw[10:14]) if ok_status else None)

 @staticmethod
 def _get_min_len(status=FSCommandStatus.SUCCESS.code):
 """
 Override method.

 .. seealso::
 | :meth:`.FSCmd._get_min_len`
 """
 # cmd id + status + used (4 bytes) + free (4 bytes) + bad (4 bytes) = 14
 return 14 if status == FSCommandStatus.SUCCESS.code else 2

 def _get_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FileIdCmd._get_spec_data`
 """
 ret = bytearray()
 if self._status == FSCommandStatus.SUCCESS.code:
 ret = utils.int_to_bytes(self._bytes_used, num_bytes=4)
 ret += utils.int_to_bytes(self._bytes_free, num_bytes=4)
 return ret + utils.int_to_bytes(self._bytes_bad, num_bytes=4)

 return ret

 def _get_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.FileIdCmd._get_spec_data_dict`
 """
 if self._status == FSCommandStatus.SUCCESS.code:
 return {DictKeys.BYTES_USED: self._bytes_used,
 DictKeys.BYTES_FREE: self._bytes_free,
 DictKeys.BYTES_BAD: self._bytes_bad}

 return {}

[docs]class VolFormatCmdRequest(VolStatCmdRequest):
 """
 This class represents a volume format file system command request.

 Command response is received as a :class:`.VolFormatCmdResponse`.
 """

 def __init__(self, name):
 """
 Class constructor. Instantiates a new :class:`.VolFormatCmdRequest`
 object with the provided parameters.

 Args:
 name (String or bytearray): The name of the volume. Its maximum
 length is 254 chars.

 Raises:
 ValueError: If `name` is invalid.

 .. seealso::
 | :class:`.FSCmd`
 """
 super().__init__(name)
 self._cmd_type = FSCmdType.FORMAT

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.REQUEST):
 """
 Override method.
 Direction must be 0.

 Returns:
 :class:`.VolFormatCmdRequest`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 2.
 (cmd id + name (at least 1 byte) = 2 bytes).
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 0.

 .. seealso::
 | :meth:`.FSCmd.create_cmd`
 """
 cmd = FSCmd.create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.FORMAT:
 raise InvalidPacketException(
 message="This command is not a Volume Format command")
 if direction != FSCmd.REQUEST:
 raise InvalidPacketException(message="Direction must be 0")

 return VolFormatCmdRequest(raw[1:])

[docs]class VolFormatCmdResponse(VolStatCmdResponse):
 """
 This class represents a format file system command response.

 Command response is received as a :class:`.VolStatCmdRequest`.
 """

 def __init__(self, status, bytes_used=None, bytes_free=None, bytes_bad=None):
 """
 Class constructor. Instantiates a new :class:`.VolFormatCmdResponse`
 object with the provided parameters.

 Args:
 status (:class:`.FSCommandStatus` or Integer): Status of the file
 system command execution.
 bytes_used (Integer, optional, default=`None`): Number of used bytes.
 bytes_free (Integer, optional, default=`None`): Number of free bytes.
 bytes_bad (Integer, optional, default=`None`): Number of bad bytes.

 Raises:
 ValueError: If any of the parameters is invalid.

 .. seealso::
 | :class:`.FSCmd`
 """
 super().__init__(status, bytes_used=bytes_used, bytes_free=bytes_free,
 bytes_bad=bytes_bad)
 self._cmd_type = FSCmdType.FORMAT

[docs] @classmethod
 def create_cmd(cls, raw, direction=FSCmd.RESPONSE):
 """
 Override method.
 Direction must be 1.

 Returns:
 :class:`.VolFormatCmdResponse`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 14.
 (cmd id + status + used (4 bytes) + free (4 bytes) + bad (4 bytes) = 14)
 InvalidPacketException: If the command type is not
 :class:`.FSCmdType` or direction is not 1.

 .. seealso::
 | :meth:`.FileIdCmd.create_cmd`
 """
 cmd = FSCmd.create_cmd(raw, direction=direction)
 if cmd.type != FSCmdType.FORMAT:
 raise InvalidPacketException(
 message="This command is not a Volume Format command")
 if direction != FSCmd.RESPONSE:
 raise InvalidPacketException(message="Direction must be 1")

 ok_status = cmd.status == FSCommandStatus.SUCCESS
 return VolFormatCmdResponse(
 cmd.status_value,
 bytes_used=utils.bytes_to_int(raw[2:6]) if ok_status else None,
 bytes_free=utils.bytes_to_int(raw[6:10]) if ok_status else None,
 bytes_bad=utils.bytes_to_int(raw[10:14]) if ok_status else None)

 Source code for digi.xbee.models.hw

Copyright 2017-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

from enum import Enum, unique
from digi.xbee.util import utils

[docs]@unique
class HardwareVersion(Enum):
 """
 This class lists all hardware versions.

 | Inherited properties:
 | **name** (String): The name of this HardwareVersion.
 | **value** (Integer): The ID of this HardwareVersion.
 """
 X09_009 = (0x01, "X09-009")
 X09_019 = (0x02, "X09-019")
 XH9_009 = (0x03, "XH9-009")
 XH9_019 = (0x04, "XH9-019")
 X24_009 = (0x05, "X24-009")
 X24_019 = (0x06, "X24-019")
 X09_001 = (0x07, "X09-001")
 XH9_001 = (0x08, "XH9-001")
 X08_004 = (0x09, "X08-004")
 XC09_009 = (0x0A, "XC09-009")
 XC09_038 = (0x0B, "XC09-038")
 X24_038 = (0x0C, "X24-038")
 X09_009_TX = (0x0D, "X09-009-TX")
 X09_019_TX = (0x0E, "X09-019-TX")
 XH9_009_TX = (0x0F, "XH9-009-TX")
 XH9_019_TX = (0x10, "XH9-019-TX")
 X09_001_TX = (0x11, "X09-001-TX")
 XH9_001_TX = (0x12, "XH9-001-TX")
 XT09B_XXX = (0x13, "XT09B-xxx (Attenuator version)")
 XT09_XXX = (0x14, "XT09-xxx")
 XC08_009 = (0x15, "XC08-009")
 XC08_038 = (0x16, "XC08-038")
 XB24_AXX_XX = (0x17, "XB24-Axx-xx")
 XBP24_AXX_XX = (0x18, "XBP24-Axx-xx")
 XB24_BXIX_XXX = (0x19, "XB24-BxIx-xxx and XB24-Z7xx-xxx")
 XBP24_BXIX_XXX = (0x1A, "XBP24-BxIx-xxx and XBP24-Z7xx-xxx")
 XBP09_DXIX_XXX = (0x1B, "XBP09-DxIx-xxx Digi Mesh")
 XBP09_XCXX_XXX = (0x1C, "XBP09-XCxx-xxx: S3 XSC Compatibility")
 XBP08_DXXX_XXX = (0x1D, "XBP08-Dxx-xxx 868MHz")
 XBP24B = (0x1E, "XBP24B: Low cost ZB PRO and PLUS S2B")
 XB24_WF = (0x1F, "XB24-WF: XBee 802.11 (Redpine module)")
 AMBER_MBUS = (0x20, "??????: M-Bus module made by Amber")
 XBP24C = (0x21, "XBP24C: XBee PRO SMT Ember 357 S2C PRO")
 XB24C = (0x22, "XB24C: XBee SMT Ember 357 S2C")
 XSC_GEN3 = (0x23, "XSC_GEN3: XBP9 XSC 24 dBm")
 SRD_868_GEN3 = (0x24, "SDR_868_GEN3: XB8 12 dBm")
 ABANDONATED = (0x25, "Abandonated")
 SMT_900LP = (0x26, "900LP (SMT): 900LP on 'S8 HW'")
 WIFI_ATHEROS = (0x27, "WiFi Atheros (TH-DIP) XB2S-WF")
 SMT_WIFI_ATHEROS = (0x28, "WiFi Atheros (SMT) XB2B-WF")
 SMT_475LP = (0x29, "475LP (SMT): Beta 475MHz")
 XBEE_CELL_TH = (0x2A, "XBee-Cell (TH): XBee Cellular")
 XLR_MODULE = (0x2B, "XLR Module")
 XB900HP_NZ = (0x2C, "XB900HP (New Zealand): XB9 NZ HW/SW")
 XBP24C_TH_DIP = (0x2D, "XBP24C (TH-DIP): XBee PRO DIP")
 XB24C_TH_DIP = (0x2E, "XB24C (TH-DIP): XBee DIP")
 XLR_BASEBOARD = (0x2F, "XLR Baseboard")
 XBP24C_S2C_SMT = (0x30, "XBee PRO SMT")
 SX_PRO = (0x31, "SX Pro")
 S2D_SMT_PRO = (0x32, "XBP24D: S2D SMT PRO")
 S2D_SMT_REG = (0x33, "XB24D: S2D SMT Reg")
 S2D_TH_PRO = (0x34, "XBP24D: S2D TH PRO")
 S2D_TH_REG = (0x35, "XB24D: S2D TH Reg")
 SX = (0x3E, "SX")
 XTR = (0x3F, "XTR")
 CELLULAR_CAT1_LTE_VERIZON = (0x40, "XBee Cellular Cat 1 LTE Verizon")
 XBEE3_SMT = (0x41, "XBee 3 Micro and SMT")
 XBEE3_TH = (0x42, "XBee 3 TH")
 XBEE3 = (0x43, "XBee 3 Reserved")
 CELLULAR_3G = (0x44, "XBee Cellular 3G")
 XB8X = (0x45, "XB8X")
 CELLULAR_LTE_VERIZON = (0x46, "XBee Cellular LTE-M Verizon")
 CELLULAR_LTE_ATT = (0x47, "XBee Cellular LTE-M AT&T")
 CELLULAR_NBIOT_EUROPE = (0x48, "XBee Cellular NBIoT Europe")
 CELLULAR_3_CAT1_LTE_ATT = (0x49, "XBee Cellular 3 Cat 1 LTE AT&T")
 CELLULAR_3_LTE_M_VERIZON = (0x4A, "XBee Cellular 3 LTE-M Verizon")
 CELLULAR_3_LTE_M_ATT = (0x4B, "XBee Cellular 3 LTE-M AT&T")
 CELLULAR_3_CAT1_LTE_VERIZON = (0x4D, "XBee Cellular 3 Cat 1 LTE Verizon")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the HardwareVersion element.

 Returns:
 Integer: the code of the HardwareVersion element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the HardwareVersion element.

 Returns:
 String: the description of the HardwareVersion element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the HardwareVersion for the given code.

 Args:
 code (Integer): the code of the hardware version to get.

 Returns:
 :class:`HardwareVersion`: the HardwareVersion with the given code,
 `None` if not found.
 """
 for version in cls:
 if version.code == code:
 return version
 return None

[docs]class LegacyHardwareVersion(Enum):
 """
 This class lists all legacy hardware versions.

 | Inherited properties:
 | **name** (String): The name of this LegacyHardwareVersion.
 | **value** (Integer): The ID of this LegacyHardwareVersion.
 """
 A = (0x01, "A")
 B = (0x02, "B")
 C = (0x03, "C")
 D = (0x04, "D")
 E = (0x05, "E")
 F = (0x06, "F")
 G = (0x07, "G")
 H = (0x08, "H")
 I = (0x09, "I")
 J = (0x0A, "J")
 K = (0x0B, "K")
 L = (0x0C, "L")
 M = (0x0D, "M")
 N = (0x0E, "N")
 O = (0x0F, "O")
 P = (0x10, "P")
 Q = (0x11, "Q")
 R = (0x12, "R")
 S = (0x13, "S")
 T = (0x14, "T")
 U = (0x15, "U")
 V = (0x16, "V")
 W = (0x17, "W")
 X = (0x18, "X")
 Y = (0x19, "Y")
 Z = (0x1A, "Z")

 def __init__(self, code, letter):
 self.__code = code
 self.__letter = letter

 @property
 def code(self):
 """
 Returns the code of the LegacyHardwareVersion element.

 Returns:
 Integer: the code of the LegacyHardwareVersion element.
 """
 return self.__code

 @property
 def letter(self):
 """
 Returns the letter of the LegacyHardwareVersion element.

 Returns:
 String: the letter of the LegacyHardwareVersion element.
 """
 return self.__letter

 @classmethod
 def get_by_letter(cls, letter):
 """
 Returns the LegacyHardwareVersion for the given letter.

 Args:
 letter (String): the letter of the legacy hardware version to get.

 Returns:
 :class:`LegacyHardwareVersion`: the LegacyHardwareVersion with the
 given letter, `None` if not found.
 """
 for version in cls:
 if version.letter == letter:
 return version
 return None

HardwareVersion.__doc__ += utils.doc_enum(HardwareVersion)
LegacyHardwareVersion.__doc__ += utils.doc_enum(LegacyHardwareVersion)

 Source code for digi.xbee.models.info

Copyright 2019-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

from digi.xbee.models.protocol import IPProtocol
from digi.xbee.models.status import SocketInfoState
from digi.xbee.util import utils

[docs]class SocketInfo:
 """
 This class represents the information of an XBee socket:

 * Socket ID.
 * State.
 * Protocol.
 * Local port.
 * Remote port.
 * Remote address.
 """

 __SEPARATOR = "\r"
 __LIST_LENGTH = 6

 def __init__(self, socket_id, state, protocol, local_port, remote_port,
 remote_address):
 """
 Class constructor. Instantiates a `SocketInfo` object with the given
 parameters.

 Args:
 socket_id (Integer): The ID of the socket.
 state (:class:`.SocketInfoState`): The state of the socket.
 protocol (:class:`.IPProtocol`): The protocol of the socket.
 local_port (Integer): The local port of the socket.
 remote_port (Integer): The remote port of the socket.
 remote_address (String): The remote IPv4 address of the socket.
 """
 self.__socket_id = socket_id
 self.__state = state
 self.__protocol = protocol
 self.__local_port = local_port
 self.__remote_port = remote_port
 self.__remote_addr = remote_address

[docs] @staticmethod
 def create_socket_info(raw):
 """
 Parses the given bytearray data and returns a `SocketInfo` object.

 Args:
 raw (Bytearray): received data from the `SI` command with a socket
 ID as argument.

 Returns:
 :class:`.SocketInfo`: The socket information, or `None` if the
 provided data is invalid.
 """
 info_array = bytearray.fromhex(
 utils.hex_to_string(raw)).decode("utf8").strip().split(
 SocketInfo.__SEPARATOR)
 if len(info_array) != SocketInfo.__LIST_LENGTH:
 return None
 socket_id = int(info_array[0], 0)
 state = SocketInfoState.get_by_description(info_array[1])
 protocol = IPProtocol.get_by_description(info_array[2])
 local_port = int(info_array[3], 0)
 remote_port = int(info_array[4], 0)
 remote_addr = info_array[5]
 return SocketInfo(socket_id, state, protocol, local_port,
 remote_port, remote_addr)

[docs] @staticmethod
 def parse_socket_list(raw):
 """
 Parses the given bytearray data and returns a list with the active
 socket IDs.

 Args:
 raw (Bytearray): received data from the `SI` command.

 Returns:
 List: list with the IDs of all active (open) sockets, or empty list
 if there is not any active socket.
 """
 socket_list = list()
 ids_array = bytearray.fromhex(
 utils.hex_to_string(raw)).decode("utf8").strip().split(
 SocketInfo.__SEPARATOR)
 for soc_id in ids_array:
 if soc_id != "":
 socket_list.append(int(soc_id, 0))
 return socket_list

 @property
 def socket_id(self):
 """
 Returns the ID of the socket.

 Returns:
 Integer: the ID of the socket.
 """
 return self.__socket_id

 @property
 def state(self):
 """
 Returns the state of the socket.

 Returns:
 :class:`.SocketInfoState`: the state of the socket.
 """
 return self.__state

 @property
 def protocol(self):
 """
 Returns the protocol of the socket.

 Returns:
 :class:`.IPProtocol`: the protocol of the socket.
 """
 return self.__protocol

 @property
 def local_port(self):
 """
 Returns the local port of the socket.
 This is 0 unless the socket is explicitly bound to a port.

 Returns:
 Integer: the local port of the socket.
 """
 return self.__local_port

 @property
 def remote_port(self):
 """
 Returns the remote port of the socket.

 Returns:
 Integer: the remote port of the socket.
 """
 return self.__remote_port

 @property
 def remote_address(self):
 """
 Returns the remote IPv4 address of the socket.
 This is `0.0.0.0` for an unconnected socket.

 Returns:
 String: the remote IPv4 address of the socket.
 """
 return self.__remote_addr

 def __str__(self):
 return "ID: 0x%s\n" \
 "State: %s\n" \
 "Protocol: %s\n" \
 "Local port: 0x%s\n" \
 "Remote port: 0x%s\n" \
 "Remote address: %s"\
 % (utils.hex_to_string(utils.int_to_bytes(self.__socket_id, num_bytes=1), False),
 self.__state.description, self.__protocol.description,
 utils.hex_to_string(utils.int_to_bytes(self.__local_port, num_bytes=2), False),
 utils.hex_to_string(utils.int_to_bytes(self.__remote_port, num_bytes=2), False),
 self.__remote_addr)

 Source code for digi.xbee.models.message

Copyright 2017-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

import re

[docs]class XBeeMessage:
 """
 This class represents a XBee message, which is formed by a :class:`.RemoteXBeeDevice`
 (the sender) and some data (the data sent) as a bytearray.
 """

 def __init__(self, data, remote_node, timestamp, broadcast=False):
 """
 Class constructor.

 Args:
 data (Bytearray): the data sent.
 remote_node (:class:`.RemoteXBeeDevice`): the sender.
 broadcast (Boolean, optional, default=`False`): flag indicating whether the message is
 broadcast (`True`) or not (`False`). Optional.
 timestamp: instant of time when the message was received.
 """
 self.__data = data
 self.__remote_node = remote_node
 self.__is_broadcast = broadcast
 self.__timestamp = timestamp

 @property
 def data(self):
 """
 Returns a bytearray containing the data of the message.

 Returns:
 Bytearray: the data of the message.
 """
 return self.__data

 @property
 def remote_device(self):
 """
 Returns the device which has sent the message.

 Returns:
 :class:`.RemoteXBeeDevice`: the device which has sent the message.
 """
 return self.__remote_node

 @property
 def is_broadcast(self):
 """
 Returns whether the message is broadcast or not.

 Returns:
 Boolean: `True` if the message is broadcast, `False` otherwise.
 """
 return self.__is_broadcast

 @property
 def timestamp(self):
 """
 Returns the moment when the message was received as a `time.time()`
 function returned value.

 Returns:
 Float: the returned value of using :meth:`time.time()` function
 when the message was received.
 """
 return self.__timestamp

[docs] def to_dict(self):
 """
 Returns the message information as a dictionary.
 """
 return {"Data: ": self.__data,
 "Sender: ": str(self.__remote_node.get_64bit_addr()),
 "Broadcast: ": self.__is_broadcast,
 "Received at: ": self.__timestamp}

[docs]class ExplicitXBeeMessage(XBeeMessage):
 """
 This class represents an Explicit XBee message, which is formed by all
 parameters of a common XBee message and: Source endpoint, destination
 endpoint, cluster ID, profile ID.
 """

 def __init__(self, data, remote_node, timestamp, src_endpoint,
 dest_endpoint, cluster_id, profile_id, broadcast=False):
 """
 Class constructor.

 Args:
 data (Bytearray): the data sent.
 remote_node (:class:`.RemoteXBeeDevice`): the sender device.
 timestamp: instant of time when the message was received.
 src_endpoint (Integer): source endpoint of the message. 1 byte.
 dest_endpoint (Integer): destination endpoint of the message. 1 byte.
 cluster_id (Integer): cluster id of the message. 2 bytes.
 profile_id (Integer): profile id of the message. 2 bytes.
 broadcast (Boolean, optional, default=`False`): flag indicating whether the message is
 broadcast (`True`) or not (`False`). Optional.
 """
 XBeeMessage.__init__(self, data, remote_node, timestamp, broadcast)
 self.__src_ed = src_endpoint
 self.__dest_ed = dest_endpoint
 self.__cluster_id = cluster_id
 self.__profile_id = profile_id

 @property
 def source_endpoint(self):
 """
 Returns the source endpoint of the message.

 Returns:
 Integer: the source endpoint of the message. 1 byte.
 """
 return self.__src_ed

 @property
 def dest_endpoint(self):
 """
 Returns the destination endpoint of the message.

 Returns:
 Integer: the destination endpoint of the message. 1 byte.
 """
 return self.__dest_ed

 @property
 def cluster_id(self):
 """
 Returns the cluster ID of the message.

 Returns:
 Integer: the cluster ID of the message. 2 bytes.
 """
 return self.__cluster_id

 @property
 def profile_id(self):
 """
 Returns the profile ID of the message.

 Returns:
 Integer: the profile ID of the message. 2 bytes.
 """
 return self.__profile_id

 @source_endpoint.setter
 def source_endpoint(self, source_endpoint):
 """
 Sets the source endpoint of the message.

 Args:
 source_endpoint (Integer): the new source endpoint of the message.
 """
 self.__src_ed = source_endpoint

 @dest_endpoint.setter
 def dest_endpoint(self, dest_endpoint):
 """
 Sets the destination endpoint of the message.

 Args:
 dest_endpoint (Integer): the new destination endpoint of the message.
 """
 self.__dest_ed = dest_endpoint

 @cluster_id.setter
 def cluster_id(self, cluster_id):
 """
 Sets the cluster ID of the message.

 Args:
 cluster_id (Integer): the new cluster ID of the message.
 """
 self.__cluster_id = cluster_id

 @profile_id.setter
 def profile_id(self, profile_id):
 """
 Sets the profile ID of the message.

 Args:
 profile_id (Integer): the new profile ID of the message.
 """
 self.__profile_id = profile_id

[docs] def to_dict(self):
 msg_dict = XBeeMessage.to_dict(self)
 msg_dict.update({"Src_endpoint": self.__src_ed,
 "Dest_endpoint": self.__dest_ed,
 "Cluster_id": self.__cluster_id,
 "Profile_id": self.__profile_id})
 return msg_dict

[docs]class IPMessage:
 """
 This class represents an IP message containing the IP address the message
 belongs to, the source and destination ports, the IP protocol, and the
 content (data) of the message.
 """

 def __init__(self, ip_addr, src_port, dest_port, protocol, data):
 """
 Class constructor.

 Args:
 ip_addr (:class:`ipaddress.IPv4Address`): The IP address the message comes from.
 src_port (Integer): TCP or UDP source port of the transmission.
 dest_port (Integer): TCP or UDP destination port of the transmission.
 protocol (:class:`.IPProtocol`): IP protocol used in the transmission.
 data (Bytearray): the data sent.

 Raises:
 ValueError: if `ip_addr` is `None`.
 ValueError: if `protocol` is `None`.
 ValueError: if `data` is `None`.
 ValueError: if `source_port` is less than 0 or greater than 65535.
 ValueError: if `dest_port` is less than 0 or greater than 65535.
 """
 if ip_addr is None:
 raise ValueError("IP address cannot be None")
 if protocol is None:
 raise ValueError("Protocol cannot be None")
 if data is None:
 raise ValueError("Data cannot be None")

 if not 0 <= src_port <= 65535:
 raise ValueError("Source port must be between 0 and 65535")
 if not 0 <= dest_port <= 65535:
 raise ValueError("Destination port must be between 0 and 65535")

 self.__ip_addr = ip_addr
 self.__src_port = src_port
 self.__dest_port = dest_port
 self.__protocol = protocol
 self.__data = data

 @property
 def ip_addr(self):
 """
 Returns the IPv4 address this message is associated to.

 Returns:
 :class:`ipaddress.IPv4Address`: The IPv4 address this message is associated to.
 """
 return self.__ip_addr

 @property
 def source_port(self):
 """
 Returns the source port of the transmission.

 Returns:
 Integer: The source port of the transmission.
 """
 return self.__src_port

 @property
 def dest_port(self):
 """
 Returns the destination port of the transmission.

 Returns:
 Integer: The destination port of the transmission.
 """
 return self.__dest_port

 @property
 def protocol(self):
 """
 Returns the protocol used in the transmission.

 Returns:
 :class:`.IPProtocol`: The protocol used in the transmission.
 """
 return self.__protocol

 @property
 def data(self):
 """
 Returns a bytearray containing the data of the message.

 Returns:
 Bytearray: the data of the message.
 """
 return self.__data

[docs] def to_dict(self):
 """
 Returns the message information as a dictionary.
 """
 return {"IP address: ": self.__ip_addr,
 "Source port: ": self.__src_port,
 "Destination port: ": self.__dest_port,
 "Protocol: ": self.__protocol,
 "Data: ": self.__data}

[docs]class SMSMessage:
 """
 This class represents an SMS message containing the phone number that sent
 the message and the content (data) of the message.

 This class is used within the library to read SMS sent to Cellular devices.
 """

 __PHONE_NUMBER_PATTERN = "^\+?\d+$"

 def __init__(self, phone_number, data):
 """
 Class constructor. Instantiates a new :class:`.SMSMessage` object with
 the provided parameters.

 Args:
 phone_number (String): The phone number that sent the message.
 data (String): The message text.

 Raises:
 ValueError: if `phone_number` is `None`.
 ValueError: if `data` is `None`.
 ValueError: if `phone_number` is not a valid phone number.
 """
 if phone_number is None:
 raise ValueError("Phone number cannot be None")
 if data is None:
 raise ValueError("Data cannot be None")
 if not re.compile(SMSMessage.__PHONE_NUMBER_PATTERN).match(phone_number):
 raise ValueError("Invalid phone number")

 self.__phone_number = phone_number
 self.__data = data

 @property
 def phone_number(self):
 """
 Returns the phone number that sent the message.

 Returns:
 String: The phone number that sent the message.
 """
 return self.__phone_number

 @property
 def data(self):
 """
 Returns the data of the message.

 Returns:
 String: The data of the message.
 """
 return self.__data

[docs] def to_dict(self):
 """
 Returns the message information as a dictionary.
 """
 return {"Phone number: ": self.__phone_number,
 "Data: ": self.__data}

[docs]class UserDataRelayMessage:
 """
 This class represents a user data relay message containing the source
 interface and the content (data) of the message.

 .. seealso::
 | :class:`.XBeeLocalInterface`
 """

 def __init__(self, local_iface, data):
 """
 Class constructor. Instantiates a new :class:`.UserDataRelayMessage`
 object with the provided parameters.

 Args:
 local_iface (:class:`.XBeeLocalInterface`): The source XBee local interface.
 data (Bytearray): Byte array containing the data of the message.

 Raises:
 ValueError: if `relay_interface` is `None`.

 .. seealso::
 | :class:`.XBeeLocalInterface`
 """
 if local_iface is None:
 raise ValueError("XBee local interface cannot be None")

 self.__local_iface = local_iface
 self.__data = data

 @property
 def local_interface(self):
 """
 Returns the source interface that sent the message.

 Returns:
 :class:`.XBeeLocalInterface`: The source interface that sent the message.
 """
 return self.__local_iface

 @property
 def data(self):
 """
 Returns the data of the message.

 Returns:
 Bytearray: The data of the message.
 """
 return self.__data

[docs] def to_dict(self):
 """
 Returns the message information as a dictionary.
 """
 return {"XBee local interface: ": self.__local_iface,
 "Data: ": self.__data}

 Source code for digi.xbee.models.mode

Copyright 2017-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

from enum import Enum, unique

from digi.xbee.models.protocol import XBeeProtocol
from digi.xbee.util import utils

[docs]@unique
class OperatingMode(Enum):
 """
 This class represents all operating modes available.

 | Inherited properties:
 | **name** (String): the name (id) of this OperatingMode.
 | **value** (String): the value of this OperatingMode.
 """

 AT_MODE = (0, "AT mode")
 API_MODE = (1, "API mode")
 ESCAPED_API_MODE = (2, "API mode with escaped characters")
 MICROPYTHON_MODE = (4, "MicroPython REPL")
 BYPASS_MODE = (5, "Bypass mode")
 UNKNOWN = (99, "Unknown")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the OperatingMode element.

 Returns:
 String: the code of the OperatingMode element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the OperatingMode element.

 Returns:
 String: the description of the OperatingMode element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the OperatingMode for the given code.

 Args:
 code (Integer): the code corresponding to the operating mode to get.

 Returns:
 :class:`.OperatingMode`: the OperatingMode with the given code.
 """
 for mode in cls:
 if mode.code == code:
 return mode
 return OperatingMode.UNKNOWN

OperatingMode.__doc__ += utils.doc_enum(OperatingMode)

[docs]@unique
class APIOutputMode(Enum):
 """
 Enumerates the different API output modes. The API output mode establishes
 the way data will be output through the serial interface of an XBee device.

 | Inherited properties:
 | **name** (String): the name (id) of this OperatingMode.
 | **value** (String): the value of this OperatingMode.
 """

 NATIVE = (0x00, "Native")
 EXPLICIT = (0x01, "Explicit")
 EXPLICIT_ZDO_PASSTHRU = (0x03, "Explicit with ZDO Passthru")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the APIOutputMode element.

 Returns:
 String: the code of the APIOutputMode element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the APIOutputMode element.

 Returns:
 String: the description of the APIOutputMode element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the APIOutputMode for the given code.

 Args:
 code (Integer): the code corresponding to the API output mode to get.

 Returns:
 :class:`.APIOutputMode`: the APIOutputMode with the given code,
 `None` if not found.
 """
 for mode in cls:
 if mode.code == code:
 return mode
 return None

APIOutputMode.__doc__ += utils.doc_enum(APIOutputMode)

[docs]@unique
class APIOutputModeBit(Enum):
 """
 Enumerates the different API output mode bit options. The API output mode
 establishes the way data will be output through the serial interface of an XBee.

 | Inherited properties:
 | **name** (String): the name (id) of this APIOutputModeBit.
 | **value** (String): the value of this APIOutputModeBit.
 """

 EXPLICIT = (0x01, "Output in Native/Explicit API format")
 SUPPORTED_ZDO_PASSTHRU = (0x02, "Zigbee: Supported ZDO request "
 "pass-through\n802.15.4/DigiMesh: Legacy "
 "API Indicator")
 UNSUPPORTED_ZDO_PASSTHRU = (0x04, "Unsupported ZDO request pass-through."
 " Only Zigbee")
 BINDING_PASSTHRU = (0x08, "Binding request pass-through. Only Zigbee")
 ECHO_RCV_SUPPORTED_ZDO = (0x10, "Echo received supported ZDO requests out "
 "the serial port. Only Zigbee")
 SUPPRESS_ALL_ZDO_MSG = (0x20, "Suppress all ZDO messages from being sent "
 "out the serial port and disable "
 "pass-through. Only Zigbee")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the APIOutputModeBit element.

 Returns:
 Integer: the code of the APIOutputModeBit element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the APIOutputModeBit element.

 Returns:
 String: the description of the APIOutputModeBit element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the APIOutputModeBit for the given code.

 Args:
 code (Integer): the code corresponding to the API output mode to get.

 Returns:
 :class:`.OperatingMode`: the APIOutputModeBit with the given code,
 `None` if not found.
 """
 for item in cls:
 if code == item.code:
 return item
 return None

 @classmethod
 def calculate_api_output_mode_value(cls, protocol, options):
 """
 Calculates the total value of a combination of several option bits for
 the given protocol.

 Args:
 protocol (:class:`digi.xbee.models.protocol.XBeeProtocol`): The
 `XBeeProtocol` to calculate the value of all the given API
 output options.
 options: Collection of option bits to get the final value.

 Returns:
 Integer: The value to be configured in the module depending on the
 given collection of option bits and the protocol.
 """
 if not options:
 return 0

 if protocol == XBeeProtocol.ZIGBEE:
 return sum(op.code for op in options)
 if protocol in (XBeeProtocol.DIGI_MESH, XBeeProtocol.DIGI_POINT,
 XBeeProtocol.XLR, XBeeProtocol.XLR_DM,
 XBeeProtocol.RAW_802_15_4):
 return sum(op.code for op in options
 if op < cls.UNSUPPORTED_ZDO_PASSTHRU)

 return 0

APIOutputModeBit.__doc__ += utils.doc_enum(APIOutputModeBit)

[docs]@unique
class IPAddressingMode(Enum):
 """
 Enumerates the different IP addressing modes.
 """

 DHCP = (0x00, "DHCP")
 STATIC = (0x01, "Static")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the IPAddressingMode element.

 Returns:
 String: the code of the IPAddressingMode element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the IPAddressingMode element.

 Returns:
 String: the description of the IPAddressingMode element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the IPAddressingMode for the given code.

 Args:
 code (Integer): the code corresponding to the IP addressing mode to get.

 Returns:
 :class:`.IPAddressingMode`: the IPAddressingMode with the given
 code, `None` if not found.
 """
 for mode in cls:
 if mode.code == code:
 return mode
 return None

IPAddressingMode.__doc__ += utils.doc_enum(IPAddressingMode)

[docs]@unique
class NeighborDiscoveryMode(Enum):
 """
 Enumerates the different neighbor discovery modes. This mode establishes
 the way the network discovery process is performed.

 | Inherited properties:
 | **name** (String): the name (id) of this OperatingMode.
 | **value** (String): the value of this OperatingMode.
 """

 CASCADE = (0, "Cascade")
 """
 The discovery of a node neighbors is requested once the previous request
 finishes.
 This means that just one discovery process is running at the same time.

 This mode is recommended for large networks, it might be a slower method
 but it generates less traffic than 'Flood'.
 """

 FLOOD = (1, "Flood")
 """
 The discovery of a node neighbors is requested when the node is found in
 the network. This means that several discovery processes might be running
 at the same time.
 """

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the NeighborDiscoveryMode element.

 Returns:
 String: the code of the NeighborDiscoveryMode element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the NeighborDiscoveryMode element.

 Returns:
 String: the description of the NeighborDiscoveryMode element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the NeighborDiscoveryMode for the given code.

 Args:
 code (Integer): the code corresponding to the mode to get.

 Returns:
 :class:`.NeighborDiscoveryMode`: the NeighborDiscoveryMode with
 the given code. `None` if not found.
 """
 for mode in cls:
 if mode.code == code:
 return mode
 return None

NeighborDiscoveryMode.__doc__ += utils.doc_enum(NeighborDiscoveryMode)

 Source code for digi.xbee.models.options

Copyright 2017-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

from enum import Enum, unique, IntFlag

from digi.xbee.models.protocol import XBeeProtocol
from digi.xbee.util import utils

[docs]class ReceiveOptions(Enum):
 """
 This class lists all the possible options that have been set while
 receiving an XBee packet.

 The receive options are usually set as a bitfield meaning that the
 options can be combined using the '|' operand.
 """

 NONE = 0x00
 """
 No special receive options.
 """

 PACKET_ACKNOWLEDGED = 0x01
 """
 Packet was acknowledged.

 Not valid for WiFi protocol.
 """

 BROADCAST_PACKET = 0x02
 """
 Packet was sent as a broadcast.

 Not valid for WiFi protocol.
 """

 BROADCAST_PANS_PACKET = 0x04
 """
 Packet was broadcast accros all PANs.

 Only for 802.15.4 protocol.
 """

 SECURE_SESSION_ENC = 0x10
 """
 Packet sent across a Secure Session.

 Only for XBee 3.
 """

 APS_ENCRYPTED = 0x20
 """
 Packet encrypted with APS encryption.

 Only valid for Zigbee protocol.
 """

 SENT_FROM_END_DEVICE = 0x40
 """
 Packet was sent from an end device (if known).

 Only valid for Zigbee protocol.
 """

 POINT_MULTIPOINT_MODE = 0x40
 """
 Transmission is performed using point-to-Multipoint mode.

 Only valid for DigiMesh 868/900 and Point-to-Multipoint 868/900
 protocols.
 """

 REPEATER_MODE = 0x80
 """
 Transmission is performed using repeater mode.

 Only valid for DigiMesh 868/900 and Point-to-Multipoint 868/900
 protocols.
 """

 DIGIMESH_MODE = 0xC0
 """
 Transmission is performed using DigiMesh mode.

 Only valid for DigiMesh 868/900 and Point-to-Multipoint 868/900
 protocols.
 """

ReceiveOptions.__doc__ += utils.doc_enum(ReceiveOptions)

[docs]class TransmitOptions(Enum):
 """
 This class lists all the possible options that can be set while
 transmitting an XBee packet.

 The transmit options are usually set as a bitfield meaning that the options
 can be combined using the '|' operand.

 Not all options are available for all cases, that's why there are different
 names with same values. In each moment, you must be sure that the option
 your are going to use, is a valid option in your context.
 """

 NONE = 0x00
 """
 No special transmit options.
 """

 DISABLE_ACK = 0x01
 """
 Disables acknowledgments on all unicasts.

 Only valid for Zigbee, DigiMesh, 802.15.4, and Point-to-multipoint
 protocols.
 """

 DISABLE_RETRIES_AND_REPAIR = 0x01
 """
 Disables the retries and router repair in the frame.

 Only valid for Zigbee protocol.
 """

 DONT_ATTEMPT_RD = 0x02
 """
 Doesn't attempt Route Discovery.

 Disables Route Discovery on all DigiMesh unicasts.

 Only valid for DigiMesh protocol.
 """

 BROADCAST_PAN = 0x02
 """
 Sends packet with broadcast {@code PAN ID}. Packet will be sent to all
 PANs.

 Only valid for 802.15.4 XBee 3 protocol.
 """

 USE_BROADCAST_PAN_ID = 0x04
 """
 Sends packet with broadcast {@code PAN ID}. Packet will be sent to all
 devices in the same channel ignoring the {@code PAN ID}.

 It cannot be combined with other options.

 Only valid for 802.15.4 XBee protocol.
 """

 ENABLE_UNICAST_NACK = 0x04
 """
 Enables unicast NACK messages.

 NACK message is enabled on the packet.

 Only valid for DigiMesh 868/900 protocol, and XBee 3 DigiMesh.
 """

 ENABLE_UNICAST_TRACE_ROUTE = 0x04
 """
 Enables unicast trace route messages.

 Trace route is enabled on the packets.

 Only valid for DigiMesh 868/900 protocol.
 """

 INDIRECT_TRANSMISSION = 0x04
 """
 Used for binding transmissions.

 Only valid for Zigbee protocol.
 """

 ENABLE_MULTICAST = 0x08
 """
 Enables multicast transmission request.

 Only valid for Zigbee XBee protocol.
 """

 ENABLE_TRACE_ROUTE = 0x08
 """
 Enable a unicast Trace Route on DigiMesh transmissions
 When set, the transmission will generate a Route Information - 0x8D frame.

 Only valid for DigiMesh XBee protocol.
 """

 SECURE_SESSION_ENC = 0x10
 """
 Encrypt payload for transmission across a Secure Session.
 Reduces maximum payload size by 4 bytes.

 Only for XBee 3.
 """

 ENABLE_APS_ENCRYPTION = 0x20
 """
 Enables APS encryption, only if {@code EE=1}.

 Enabling APS encryption decreases the maximum number of RF payload
 bytes by 4 (below the value reported by {@code NP}).

 Only valid for Zigbee XBee protocol.
 """

 USE_EXTENDED_TIMEOUT = 0x40
 """
 Uses the extended transmission timeout.

 Setting the extended timeout bit causes the stack to set the
 extended transmission timeout for the destination address.

 Only valid for Zigbee XBee protocol.
 """

 POINT_MULTIPOINT_MODE = 0x40
 """
 Transmission is performed using point-to-Multipoint mode.

 Only valid for DigiMesh 868/900 and Point-to-Multipoint 868/900
 protocols.
 """

 REPEATER_MODE = 0x80
 """
 Transmission is performed using repeater mode.

 Only valid for DigiMesh 868/900 and Point-to-Multipoint 868/900
 protocols.
 """

 DIGIMESH_MODE = 0xC0
 """
 Transmission is performed using DigiMesh mode.

 Only valid for DigiMesh 868/900 and Point-to-Multipoint 868/900
 protocols.
 """

TransmitOptions.__doc__ += utils.doc_enum(TransmitOptions)

[docs]class RemoteATCmdOptions(Enum):
 """
 This class lists all the possible options that can be set while
 transmitting a remote AT Command.

 These options are usually set as a bitfield meaning that the options
 can be combined using the '|' operand.
 """

 NONE = 0x00
 """
 No special transmit options
 """

 DISABLE_ACK = 0x01
 """
 Disables ACK
 """

 APPLY_CHANGES = 0x02
 """
 Applies changes in the remote device.

 If this option is not set, AC command must be sent before changes
 will take effect.
 """

 SECURE_SESSION_ENC = 0x10
 """
 Send the remote command securely.
 Requires a Secure Session be established with the destination.

 Only for XBee 3.
 """

 EXTENDED_TIMEOUT = 0x40
 """
 Uses the extended transmission timeout.

 Setting the extended timeout bit causes the stack to set the extended
 transmission timeout for the destination address.

 Only valid for ZigBee XBee protocol.
 """

RemoteATCmdOptions.__doc__ += utils.doc_enum(RemoteATCmdOptions)

[docs]@unique
class SendDataRequestOptions(Enum):
 """
 Enumerates the different options for the :class:`.SendDataRequestPacket`.
 """
 OVERWRITE = (0, "Overwrite")
 ARCHIVE = (1, "Archive")
 APPEND = (2, "Append")
 TRANSIENT = (3, "Transient data (do not store)")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the SendDataRequestOptions element.

 Returns:
 Integer: the code of the SendDataRequestOptions element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the SendDataRequestOptions element.

 Returns:
 String: the description of the SendDataRequestOptions element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the send data request option for the given code.

 Args:
 code (Integer): the code of the send data request option to get.

 Returns:
 :class:`.FrameError`: the SendDataRequestOptions with the given
 code, `None` if not found.
 """
 for option in cls:
 if option.code == code:
 return option
 return None

SendDataRequestOptions.__doc__ += utils.doc_enum(SendDataRequestOptions)

[docs]@unique
class DiscoveryOptions(Enum):
 """
 Enumerates the different options used in the discovery process.
 """

 APPEND_DD = (0x01, "Append device type identifier (DD)")
 """
 Append device type identifier (DD) to the discovery response.

 Valid for the following protocols:
 * DigiMesh
 * Point-to-multipoint (Digi Point)
 * Zigbee
 """

 DISCOVER_MYSELF = (0x02, "Local device sends response frame")
 """
 Local device sends response frame when discovery is issued.

 Valid for the following protocols:
 * DigiMesh
 * Point-to-multipoint (Digi Point)
 * Zigbee
 * 802.15.4
 """

 APPEND_RSSI = (0x04, "Append RSSI (of the last hop)")
 """
 Append RSSI of the last hop to the discovery response.

 Valid for the following protocols:
 * DigiMesh
 * Point-to-multipoint (Digi Point)
 """

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the `DiscoveryOptions` element.

 Returns:
 Integer: the code of the `DiscoveryOptions` element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the `DiscoveryOptions` element.

 Returns:
 String: the description of the `DiscoveryOptions` element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the `DiscoveryOptions` for the given code.

 Args:
 code (Integer): the code of the `DiscoveryOptions` to get.

 Returns:
 :class:`.FrameError`: the `DiscoveryOptions` with the given code,
 `None` if not found.
 """
 for option in cls:
 if option.code == code:
 return option
 return None

 @staticmethod
 def calculate_discovery_value(protocol, options):
 """
 Calculates the total value of a combination of several options for the
 given protocol.

 Args:
 protocol (:class:`.XBeeProtocol`): the `XBeeProtocol` to calculate
 the value of all the given discovery options.
 options: collection of options to get the final value.

 Returns:
 Integer: The value to be configured in the module depending on the
 given collection of options and the protocol.
 """
 value = 0
 if protocol in [XBeeProtocol.ZIGBEE, XBeeProtocol.ZNET]:
 for opt in options:
 if opt == DiscoveryOptions.APPEND_RSSI:
 continue
 value = value + opt.code
 elif protocol in [XBeeProtocol.DIGI_MESH, XBeeProtocol.DIGI_POINT,
 XBeeProtocol.XLR, XBeeProtocol.XLR_DM]:
 for opt in options:
 value = value + opt.code
 else:
 if DiscoveryOptions.DISCOVER_MYSELF in options:
 value = 1 # This is different for 802.15.4.
 return value

DiscoveryOptions.__doc__ += utils.doc_enum(DiscoveryOptions)

[docs]@unique
class XBeeLocalInterface(Enum):
 """
 Enumerates the different interfaces for the :class:`.UserDataRelayPacket`
 and :class:`.UserDataRelayOutputPacket`.

 | Inherited properties:
 | **name** (String): the name (id) of the XBee local interface.
 | **value** (String): the value of the XBee local interface.
 """
 SERIAL = (0, "Serial port (UART when in API mode, or SPI interface)")
 BLUETOOTH = (1, "BLE API interface (on XBee devices which support BLE)")
 MICROPYTHON = (2, "MicroPython")
 UNKNOWN = (255, "Unknown interface")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the `XBeeLocalInterface` element.

 Returns:
 Integer: the code of the `XBeeLocalInterface` element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the `XBeeLocalInterface` element.

 Returns:
 String: the description of the `XBeeLocalInterface` element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the XBee local interface option for the given code.

 Args:
 code (Integer): the code of the XBee local interface to get.

 Returns:
 :class:`.XBeeLocalInterface`: the `XBeeLocalInterface` with the
 given code, `UNKNOWN` if not found.
 """
 for interface in cls:
 if interface.code == code:
 return interface
 return XBeeLocalInterface.UNKNOWN

XBeeLocalInterface.__doc__ += utils.doc_enum(XBeeLocalInterface)

[docs]class RegisterKeyOptions(Enum):
 """
 This class lists all the possible options that have been set while
 receiving an XBee packet.

 The receive options are usually set as a bitfield meaning that the
 options can be combined using the '|' operand.
 """

 LINK_KEY = (0x00, "Key is a Link Key (KY on joining node)")
 INSTALL_CODE = (0x01, "Key is an Install Code (I? on joining node,"
 "DC must be set to 1 on joiner)")
 UNKNOWN = (0xFF, "Unknown key option")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the `RegisterKeyOptions` element.

 Returns:
 Integer: the code of the `RegisterKeyOptions` element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the `RegisterKeyOptions` element.

 Returns:
 String: the description of the `RegisterKeyOptions` element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the register key option for the given code.

 Args:
 code (Integer): the code of the register key option to get.

 Returns:
 :class:`.RegisterKeyOptions`: the `RegisterKeyOptions` with the
 given code, `UNKNOWN` if not found.
 """
 for option in cls:
 if option.code == code:
 return option
 return RegisterKeyOptions.UNKNOWN

RegisterKeyOptions.__doc__ += utils.doc_enum(RegisterKeyOptions)

[docs]@unique
class SocketOption(Enum):
 """
 Enumerates the different Socket Options.
 """
 TLS_PROFILE = (0x00, "TLS Profile")
 UNKNOWN = (0xFF, "Unknown")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the `SocketOption` element.

 Returns:
 Integer: the code of the `SocketOption` element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the `SocketOption` element.

 Returns:
 String: the description of the `SocketOption` element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the Socket Option for the given code.

 Args:
 code (Integer): the code of the Socket Option to get.

 Returns:
 :class:`.SocketOption`: the `SocketOption` with the given code,
 `SocketOption.UNKNOWN` if not found.
 """
 for option in cls:
 if option.code == code:
 return option
 return SocketOption.UNKNOWN

SocketOption.__doc__ += utils.doc_enum(SocketOption)

[docs]@unique
class FileOpenRequestOption(IntFlag):
 """
 This enumeration lists all the available options for `FSCmdType.FILE_OPEN`
 command requests.

 | Inherited properties:
 | **name** (String): Name (id) of this FileOpenRequestOption.
 | **value** (String): Value of this FileOpenRequestOption.
 """

 CREATE = 1 << 0
 """
 Create if file does not exist.
 """

 EXCLUSIVE = 1 << 1
 """
 Error out if file exists.
 """

 READ = 1 << 2
 """
 Open file for reading.
 """

 WRITE = 1 << 3
 """
 Open file for writing.
 """

 TRUNCATE = 1 << 4
 """
 Truncate file to 0 bytes.
 """

 APPEND = 1 << 5
 """
 Append to end of file.
 """

 SECURE = 1 << 7
 """
 Create a secure write-only file.
 """

FileOpenRequestOption.__doc__ += utils.doc_enum(FileOpenRequestOption)

[docs]@unique
class DirResponseFlag(IntFlag):
 """
 This enumeration lists all the available flags for `FSCmdType.DIR_OPEN` and
 `FSCmdType.DIR_READ` command responses.

 | Inherited properties:
 | **name** (String): Name (id) of this DirResponseFlag.
 | **value** (String): Value of this DirResponseFlag.
 """

 IS_DIR = 1 << 7
 """
 Entry is a directory.
 """

 IS_SECURE = 1 << 6
 """
 Entry is stored securely.
 """

 IS_LAST = 1 << 0
 """
 Entry is the last.
 """

DirResponseFlag.__doc__ += utils.doc_enum(DirResponseFlag)

 Source code for digi.xbee.models.protocol

Copyright 2017-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

from enum import Enum, unique
from digi.xbee.models.hw import HardwareVersion
from digi.xbee.util import utils

[docs]@unique
class XBeeProtocol(Enum):
 """
 Enumerates the available XBee protocols. The XBee protocol is determined
 by the combination of hardware and firmware of an XBee device.

 | Inherited properties:
 | **name** (String): the name (id) of this XBeeProtocol.
 | **value** (String): the value of this XBeeProtocol.
 """

 ZIGBEE = (0, "Zigbee")
 RAW_802_15_4 = (1, "802.15.4")
 XBEE_WIFI = (2, "Wi-Fi")
 DIGI_MESH = (3, "DigiMesh")
 XCITE = (4, "XCite")
 XTEND = (5, "XTend (Legacy)")
 XTEND_DM = (6, "XTend (DigiMesh)")
 SMART_ENERGY = (7, "Smart Energy")
 DIGI_POINT = (8, "Point-to-multipoint")
 ZNET = (9, "ZNet 2.5")
 XC = (10, "XSC")
 XLR = (11, "XLR")
 XLR_DM = (12, "XLR")
 SX = (13, "XBee SX")
 XLR_MODULE = (14, "XLR Module")
 CELLULAR = (15, "Cellular")
 CELLULAR_NBIOT = (16, "Cellular NB-IoT")
 UNKNOWN = (99, "Unknown")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the XBeeProtocol element.

 Returns:
 Integer: the code of the XBeeProtocol element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the XBeeProtocol element.

 Returns:
 String: the description of the XBeeProtocol element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the XBeeProtocol for the given code.

 Args:
 code (Integer): code of the XBeeProtocol to get.

 Returns:
 XBeeProtocol: XBeeProtocol for the given code.
 """
 for protocol in cls:
 if protocol.code == code:
 return protocol
 return XBeeProtocol.UNKNOWN

 @staticmethod
 def determine_protocol(hw_version, fw_version, br_value=None):
 """
 Determines the XBee protocol based on the given hardware and firmware
 versions.

 Args:
 hw_version (Integer): hardware version of the protocol to determine.
 fw_version (Bytearray): firmware version of the protocol to determine.
 br_value (Integer, optional, default=`None`): Value of BR setting
 for XBee SX 900/868.

 Returns:
 The XBee protocol corresponding to the given hardware and firmware versions.
 """
 fw_version = "".join(["%02X" % i for i in fw_version])

 if (hw_version is None or fw_version is None or hw_version < 0x09
 or HardwareVersion.get(hw_version) is None):
 return XBeeProtocol.UNKNOWN

 if hw_version in (HardwareVersion.XC09_009.code,
 HardwareVersion.XC09_038.code):
 return XBeeProtocol.XCITE

 if hw_version in (HardwareVersion.XT09_XXX.code,
 HardwareVersion.XT09B_XXX.code):
 if ((len(fw_version) == 4 and fw_version.startswith("8"))
 or (len(fw_version) == 5 and fw_version[1] == '8')):
 return XBeeProtocol.XTEND_DM
 return XBeeProtocol.XTEND

 if hw_version in (HardwareVersion.XB24_AXX_XX.code,
 HardwareVersion.XBP24_AXX_XX.code):
 if len(fw_version) == 4 and fw_version.startswith("8"):
 return XBeeProtocol.DIGI_MESH
 return XBeeProtocol.RAW_802_15_4

 if hw_version in (HardwareVersion.XB24_BXIX_XXX.code,
 HardwareVersion.XBP24_BXIX_XXX.code):
 if ((len(fw_version) == 4 and fw_version.startswith("1") and fw_version.endswith("20"))
 or (len(fw_version) == 4 and fw_version.startswith("2"))):
 return XBeeProtocol.ZIGBEE
 if len(fw_version) == 4 and fw_version.startswith("3"):
 return XBeeProtocol.SMART_ENERGY
 return XBeeProtocol.ZNET

 if hw_version == HardwareVersion.XBP09_DXIX_XXX.code:
 if ((len(fw_version) == 4 and fw_version.startswith("8") or
 (len(fw_version) == 4 and fw_version[1] == '8')) or
 (len(fw_version) == 5 and fw_version[1] == '8')):
 return XBeeProtocol.DIGI_MESH
 return XBeeProtocol.DIGI_POINT

 if hw_version == HardwareVersion.XBP09_XCXX_XXX.code:
 return XBeeProtocol.XC

 if hw_version == HardwareVersion.XBP08_DXXX_XXX.code:
 return XBeeProtocol.DIGI_POINT

 if hw_version == HardwareVersion.XBP24B.code:
 if len(fw_version) == 4 and fw_version.startswith("3"):
 return XBeeProtocol.SMART_ENERGY
 return XBeeProtocol.ZIGBEE

 if hw_version in (HardwareVersion.XB24_WF.code,
 HardwareVersion.WIFI_ATHEROS.code,
 HardwareVersion.SMT_WIFI_ATHEROS.code):
 return XBeeProtocol.XBEE_WIFI

 if hw_version in (HardwareVersion.XBP24C.code, HardwareVersion.XB24C.code):
 if (len(fw_version) == 4 and (fw_version.startswith("5"))
 or (fw_version.startswith("6"))):
 return XBeeProtocol.SMART_ENERGY
 if fw_version.startswith("2"):
 return XBeeProtocol.RAW_802_15_4
 if fw_version.startswith("9"):
 return XBeeProtocol.DIGI_MESH
 return XBeeProtocol.ZIGBEE

 if hw_version in (HardwareVersion.XSC_GEN3.code,
 HardwareVersion.SRD_868_GEN3.code):
 if len(fw_version) == 4 and fw_version.startswith("8"):
 return XBeeProtocol.DIGI_MESH
 if len(fw_version) == 4 and fw_version.startswith("1"):
 return XBeeProtocol.DIGI_POINT
 return XBeeProtocol.XC

 if hw_version == HardwareVersion.XBEE_CELL_TH.code:
 return XBeeProtocol.UNKNOWN

 if hw_version == HardwareVersion.XLR_MODULE.code:
 # This is for the old version of the XLR we have (K60), and it is
 # reporting the firmware of the module (8001), this will change in
 # future (after K64 integration) reporting the hardware and firmware
 # version of the baseboard (see the case HardwareVersion.XLR_BASEBOARD).
 # TODO maybe this should be removed in future, since this case will never be released.
 if fw_version.startswith("1"):
 return XBeeProtocol.XLR
 return XBeeProtocol.XLR_MODULE

 if hw_version == HardwareVersion.XLR_BASEBOARD.code:
 # XLR devices with K64 will report the baseboard hardware version,
 # and also firmware version (the one we have here is 1002, but this value
 # is not being reported since is an old K60 version, the module fw version
 # is reported instead).

 # TODO [XLR_DM] The next version of the XLR will add DigiMesh support should be added.
 # Probably this XLR_DM and XLR will depend on the firmware version.
 if fw_version.startswith("1"):
 return XBeeProtocol.XLR
 return XBeeProtocol.XLR_MODULE

 if hw_version == HardwareVersion.XB900HP_NZ.code:
 return XBeeProtocol.DIGI_POINT

 if hw_version in (HardwareVersion.XBP24C_TH_DIP.code,
 HardwareVersion.XB24C_TH_DIP.code,
 HardwareVersion.XBP24C_S2C_SMT.code):
 if (len(fw_version) == 4
 and (fw_version.startswith("5") or fw_version.startswith("6"))):
 return XBeeProtocol.SMART_ENERGY
 if fw_version.startswith("2"):
 return XBeeProtocol.RAW_802_15_4
 if fw_version.startswith("9"):
 return XBeeProtocol.DIGI_MESH
 return XBeeProtocol.ZIGBEE

 if hw_version in (HardwareVersion.SX_PRO.code, HardwareVersion.SX.code,
 HardwareVersion.XTR.code):
 if fw_version.startswith("2"):
 return XBeeProtocol.XTEND
 if fw_version.startswith("8"):
 return XBeeProtocol.XTEND_DM

 if hw_version in (HardwareVersion.SX.code, HardwareVersion.SX_PRO.code):
 if br_value == 0:
 return XBeeProtocol.DIGI_POINT

 return XBeeProtocol.DIGI_MESH

 if hw_version in (HardwareVersion.S2D_SMT_PRO.code,
 HardwareVersion.S2D_SMT_REG.code,
 HardwareVersion.S2D_TH_PRO.code,
 HardwareVersion.S2D_TH_REG.code):
 return XBeeProtocol.ZIGBEE

 if hw_version in (HardwareVersion.CELLULAR_CAT1_LTE_VERIZON.code,
 HardwareVersion.CELLULAR_3G.code,
 HardwareVersion.CELLULAR_LTE_ATT.code,
 HardwareVersion.CELLULAR_LTE_VERIZON.code,
 HardwareVersion.CELLULAR_3_CAT1_LTE_ATT.code,
 HardwareVersion.CELLULAR_3_LTE_M_VERIZON.code,
 HardwareVersion.CELLULAR_3_LTE_M_ATT.code,
 HardwareVersion.CELLULAR_3_CAT1_LTE_VERIZON.code):
 return XBeeProtocol.CELLULAR

 if hw_version == HardwareVersion.CELLULAR_NBIOT_EUROPE.code:
 return XBeeProtocol.CELLULAR_NBIOT

 if hw_version in (HardwareVersion.XBEE3.code,
 HardwareVersion.XBEE3_SMT.code,
 HardwareVersion.XBEE3_TH.code):
 if fw_version.startswith("2"):
 return XBeeProtocol.RAW_802_15_4
 if fw_version.startswith("3"):
 return XBeeProtocol.DIGI_MESH
 return XBeeProtocol.ZIGBEE

 if hw_version == HardwareVersion.XB8X.code:
 return (XBeeProtocol.DIGI_MESH
 if br_value != 0 else XBeeProtocol.DIGI_POINT)

 return XBeeProtocol.ZIGBEE

XBeeProtocol.__doc__ += utils.doc_enum(XBeeProtocol)

[docs]@unique
class IPProtocol(Enum):
 """
 Enumerates the available network protocols.

 | Inherited properties:
 | **name** (String): the name (id) of this IPProtocol.
 | **value** (String): the value of this IPProtocol.
 """

 UDP = (0, "UDP")
 TCP = (1, "TCP")
 TCP_SSL = (4, "TLS")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the IP protocol.

 Returns:
 Integer: code of the IP protocol.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the IP protocol.

 Returns:
 String: description of the IP protocol.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the IPProtocol for the given code.

 Args:
 code (Integer): code associated to the IP protocol.

 Returns:
 :class:`.IPProtocol`: IP protocol for the given code or `None` if
 there is not any `IPProtocol` with the given code.
 """
 for protocol in cls:
 if protocol.code == code:
 return protocol
 return None

 @classmethod
 def get_by_description(cls, description):
 """
 Returns the IP Protocol for the given description.

 Args:
 description (String): the description of the IP Protocol to get.

 Returns:
 :class:`.IPProtocol`: IP protocol for the given description or
 `None` if there is not any `IPProtocol` with the given
 description.
 """
 for prot in IPProtocol:
 if prot.description.lower() == description.lower():
 return prot
 return None

IPProtocol.__doc__ += utils.doc_enum(IPProtocol)

[docs]@unique
class Role(Enum):
 """
 Enumerates the available roles for an XBee.

 | Inherited properties:
 | **name** (String): the name (id) of this Role.
 | **value** (String): the value of this Role.
 """

 COORDINATOR = (0, "Coordinator")
 ROUTER = (1, "Router")
 END_DEVICE = (2, "End device")
 UNKNOWN = (3, "Unknown")

 def __init__(self, identifier, description):
 self.__id = identifier
 self.__desc = description

 @property
 def id(self):
 """
 Gets the identifier of the role.

 Returns:
 Integer: the role identifier.
 """
 return self.__id

 @property
 def description(self):
 """
 Gets the description of the role.

 Returns:
 String: the role description.
 """
 return self.__desc

 @classmethod
 def get(cls, identifier):
 """
 Returns the Role for the given identifier.

 Args:
 identifier (Integer): the id value of the role to get.

 Returns:
 :class:`.Role`: the Role with the given identifier. `None` if it
 does not exist.
 """
 for item in cls:
 if identifier == item.id:
 return item

 return None

Role.__doc__ += utils.doc_enum(Role)

 Source code for digi.xbee.models.status

Copyright 2017-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

from enum import Enum, unique
from digi.xbee.util import utils

[docs]@unique
class ATCommandStatus(Enum):
 """
 This class lists all the possible states of an AT command after execution.

 | Inherited properties:
 | **name** (String): the name (id) of the ATCommandStatus.
 | **value** (String): the value of the ATCommandStatus.
 """
 OK = (0x00, "Status OK")
 ERROR = (0x01, "Status Error")
 INVALID_COMMAND = (0x02, "Invalid command")
 INVALID_PARAMETER = (0x03, "Invalid parameter")
 TX_FAILURE = (0x04, "TX failure")
 NO_SECURE_SESSION = (0x0B, "No secure session: Remote command access "
 "requires a secure session be established first")
 ENC_ERROR = (0x0C, "Encryption error")
 CMD_SENT_INSECURELY = (0x0D, "Command sent insecurely: A secure session "
 "exists, but the request needs to have the "
 "appropriate command option set (bit 4)")
 UNKNOWN = (0xFF, "Unknown status")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the ATCommandStatus element.

 Returns:
 Integer: the code of the ATCommandStatus element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the ATCommandStatus element.

 Returns:
 String: the description of the ATCommandStatus element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the AT command status for the given code.

 Args:
 code (Integer): the code of the AT command status to get.

 Returns:
 :class:`.ATCommandStatus`: the AT command status with the given code.
 """
 # For ATCommResponsePacket (0x88) and RemoteATCommandResponsePacket
 # (0x97), use least significant nibble for status
 for status in cls:
 if code & 0x0F == status.code:
 return status
 return ATCommandStatus.UNKNOWN

ATCommandStatus.__doc__ += utils.doc_enum(ATCommandStatus)

[docs]@unique
class DiscoveryStatus(Enum):
 """
 This class lists all the possible states of the discovery process.

 | Inherited properties:
 | **name** (String): The name of the DiscoveryStatus.
 | **value** (Integer): The ID of the DiscoveryStatus.
 """
 NO_DISCOVERY_OVERHEAD = (0x00, "No discovery overhead")
 ADDRESS_DISCOVERY = (0x01, "Address discovery")
 ROUTE_DISCOVERY = (0x02, "Route discovery")
 ADDRESS_AND_ROUTE = (0x03, "Address and route")
 EXTENDED_TIMEOUT_DISCOVERY = (0x40, "Extended timeout discovery")
 UNKNOWN = (0xFF, "Unknown")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the DiscoveryStatus element.

 Returns:
 Integer: the code of the DiscoveryStatus element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the DiscoveryStatus element.

 Returns:
 String: The description of the DiscoveryStatus element.

 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the discovery status for the given code.

 Args:
 code (Integer): the code of the discovery status to get.

 Returns:
 :class:`.DiscoveryStatus`: the discovery status with the given code.
 """
 for status in cls:
 if code == status.code:
 return status
 return DiscoveryStatus.UNKNOWN

DiscoveryStatus.__doc__ += utils.doc_enum(DiscoveryStatus)

[docs]@unique
class TransmitStatus(Enum):
 """
 This class represents all available transmit status.

 | Inherited properties:
 | **name** (String): the name (id) of ths TransmitStatus.
 | **value** (String): the value of ths TransmitStatus.
 """
 SUCCESS = (0x00, "Success")
 NO_ACK = (0x01, "No acknowledgement received")
 CCA_FAILURE = (0x02, "CCA failure")
 PURGED = (
 0x03, "Transmission purged, it was attempted before stack was up")
 WIFI_PHYSICAL_ERROR = (
 0x04, "Transceiver was unable to complete the transmission")
 INVALID_DESTINATION = (0x15, "Invalid destination endpoint")
 NO_BUFFERS = (0x18, "No buffers")
 NETWORK_ACK_FAILURE = (0x21, "Network ACK Failure")
 NOT_JOINED_NETWORK = (0x22, "Not joined to network")
 SELF_ADDRESSED = (0x23, "Self-addressed")
 ADDRESS_NOT_FOUND = (0x24, "Address not found")
 ROUTE_NOT_FOUND = (0x25, "Route not found")
 BROADCAST_FAILED = (
 0x26, "Broadcast source failed to hear a neighbor relay the message")
 INVALID_BINDING_TABLE_INDEX = (0x2B, "Invalid binding table index")
 INVALID_ENDPOINT = (0x2C, "Invalid endpoint")
 BROADCAST_ERROR_APS = (0x2D, "Attempted broadcast with APS transmission")
 BROADCAST_ERROR_APS_EE0 = (
 0x2E, "Attempted broadcast with APS transmission, but EE=0")
 SOFTWARE_ERROR = (0x31, "A software error occurred")
 RESOURCE_ERROR = (
 0x32, "Resource error lack of free buffers, timers, etc")
 NO_SECURE_SESSION = (0x34, "No Secure session connection")
 ENC_FAILURE = (0x35, "Encryption failure")
 PAYLOAD_TOO_LARGE = (0x74, "Data payload too large")
 INDIRECT_MESSAGE_UNREQUESTED = (0x75, "Indirect message unrequested")
 SOCKET_CREATION_FAILED = (0x76, "Attempt to create a client socket failed")
 IP_PORT_NOT_EXIST = (
 0x77, "TCP connection to given IP address and port does not exist. "
 "Source port is non-zero, so a new connection is not attempted")
 UDP_SRC_PORT_NOT_MATCH_LISTENING_PORT = (
 0x78, "Source port on a UDP transmission does not match a listening "
 "port on the transmitting module")
 TCP_SRC_PORT_NOT_MATCH_LISTENING_PORT = (
 0x79, "Source port on a TCP transmission does not match a listening "
 "port on the transmitting module")
 INVALID_IP_ADDRESS = (0x7A, "Destination IPv4 address is invalid")
 INVALID_IP_PROTOCOL = (0x7B, "Protocol on an IPv4 transmission is invalid")
 RELAY_INTERFACE_INVALID = (
 0x7C, "Destination interface on a User Data Relay Frame does not exist")
 RELAY_INTERFACE_REJECTED = (
 0x7D, "Destination interface on a User Data Relay Frame exists, but "
 "the interface is not accepting data")
 MODEM_UPDATE_IN_PROGRESS = (
 0x7E, "Modem update in progress. Try again after update completion.")
 SOCKET_CONNECTION_REFUSED = (
 0x80, "Destination server refused the connection")
 SOCKET_CONNECTION_LOST = (
 0x81, "The existing connection was lost before the data was sent")
 SOCKET_ERROR_NO_SERVER = (0x82, "No server")
 SOCKET_ERROR_CLOSED = (0x83, "The existing connection was closed")
 SOCKET_ERROR_UNKNOWN_SERVER = (0x84, "The server could not be found")
 SOCKET_ERROR_UNKNOWN_ERROR = (0x85, "An unknown error occurred")
 INVALID_TLS_CONFIGURATION = (
 0x86, "TLS Profile on a 0x23 API request does not exist, or one or "
 "more certificates is invalid")
 SOCKET_NOT_CONNECTED = (0x87, "Socket not connected")
 SOCKET_NOT_BOUND = (0x88, "Socket not bound")
 KEY_NOT_AUTHORIZED = (0xBB, "Key not authorized")
 UNKNOWN = (0xFF, "Unknown")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the TransmitStatus element.

 Returns:
 Integer: the code of the TransmitStatus element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the TransmitStatus element.

 Returns:
 String: the description of the TransmitStatus element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the transmit status for the given code.

 Args:
 code (Integer): the code of the transmit status to get.

 Returns:
 :class:`.TransmitStatus`: the transmit status with the given code.
 """
 for status in cls:
 if code == status.code:
 return status
 return TransmitStatus.UNKNOWN

TransmitStatus.__doc__ += utils.doc_enum(TransmitStatus)

[docs]@unique
class ModemStatus(Enum):
 """
 Enumerates the different modem status events. This enumeration list is
 intended to be used within the :class:`.ModemStatusPacket` packet.
 """
 HARDWARE_RESET = (0x00, "Device was reset")
 WATCHDOG_TIMER_RESET = (0x01, "Watchdog timer was reset")
 JOINED_NETWORK = (0x02, "Device joined to network")
 DISASSOCIATED = (0x03, "Device disassociated")
 ERROR_SYNCHRONIZATION_LOST = (
 0x04, "Configuration error/synchronization lost")
 COORDINATOR_REALIGNMENT = (0x05, "Coordinator realignment")
 COORDINATOR_STARTED = (0x06, "The coordinator started")
 NETWORK_SECURITY_KEY_UPDATED = (0x07, "Network security key was updated")
 NETWORK_WOKE_UP = (0x0B, "Network woke up")
 NETWORK_WENT_TO_SLEEP = (0x0C, "Network went to sleep")
 VOLTAGE_SUPPLY_LIMIT_EXCEEDED = (0x0D, "Voltage supply limit exceeded")
 REMOTE_MANAGER_CONNECTED = (0x0E, "Remote Manager connected")
 REMOTE_MANAGER_DISCONNECTED = (0x0F, "Remote Manager disconnected")
 MODEM_CONFIG_CHANGED_WHILE_JOINING = (
 0x11, "Modem configuration changed while joining")
 ACCESS_FAULT = (0x12, "Access fault")
 FATAL_ERROR = (0x13, "Fatal error")
 BLUETOOTH_CONNECTED = (
 0x32, "A Bluetooth connection has been made and API mode has been "
 "unlocked")
 BLUETOOTH_DISCONNECTED = (
 0x33, "An unlocked Bluetooth connection has been disconnected")
 BANDMASK_CONFIGURATION_ERROR = (
 0x34, "LTE-M/NB-IoT bandmask configuration has failed")
 CELLULAR_UPDATE_START = (0x35, "Cellular component update started")
 CELLULAR_UPDATE_FAILED = (0x36, "Cellular component update failed")
 CELLULAR_UPDATE_SUCCESS = (0x37, "Cellular component update completed")
 FIRMWARE_UPDATE_START = (0x38, "XBee firmware update started")
 FIRMWARE_UPDATE_FAILED = (0x39, "XBee firmware update failed")
 FIRMWARE_UPDATE_APPLYING = (0x3A, "XBee firmware update applying")
 SEC_SESSION_ESTABLISHED = (0x3B, "Secure session successfully established")
 SEC_SESSION_END = (0x3C, "Secure session ended")
 SEC_SESSION_AUTH_FAILED = (0x3D, "Secure session authentication failed")
 COORD_PAN_ID_CONFLICT = (
 0x3E, "Coordinator detected a PAN ID conflict but took no action because CR=0")
 COORD_CHANGE_PAN_ID = (
 0x3F, "Coordinator changed PAN ID due to a conflict")
 ROUTER_PAN_ID_CHANGED = (
 0x40, "Router PAN ID was changed by coordinator due to a conflict")
 NET_WATCHDOG_EXPIRED = (0x42, "Network watchdog timeout expired")
 ERROR_STACK = (0x80, "Stack error")
 ERROR_AP_NOT_CONNECTED = (
 0x82, "Send/join command issued without connecting from AP")
 ERROR_AP_NOT_FOUND = (0x83, "Access point not found")
 ERROR_PSK_NOT_CONFIGURED = (0x84, "PSK not configured")
 ERROR_SSID_NOT_FOUND = (0x87, "SSID not found")
 ERROR_FAILED_JOIN_SECURITY = (0x88, "Failed to join with security enabled")
 ERROR_INVALID_CHANNEL = (0x8A, "Invalid channel")
 ERROR_FAILED_JOIN_AP = (0x8E, "Failed to join access point")
 UNKNOWN = (0xFF, "UNKNOWN")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the ModemStatus element.

 Returns:
 Integer: the code of the ModemStatus element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the ModemStatus element.

 Returns:
 String: the description of the ModemStatus element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the modem status for the given code.

 Args:
 code (Integer): the code of the modem status to get.

 Returns:
 :class:`.ModemStatus`: the ModemStatus with the given code.
 """
 for status in cls:
 if code == status.code:
 return status
 return ModemStatus.UNKNOWN

ModemStatus.__doc__ += utils.doc_enum(ModemStatus)

[docs]@unique
class PowerLevel(Enum):
 """
 Enumerates the different power levels. The power level indicates the output
 power value of a radio when transmitting data.
 """
 LEVEL_LOWEST = (0x00, "Lowest")
 LEVEL_LOW = (0x01, "Low")
 LEVEL_MEDIUM = (0x02, "Medium")
 LEVEL_HIGH = (0x03, "High")
 LEVEL_HIGHEST = (0x04, "Highest")
 LEVEL_UNKNOWN = (0xFF, "Unknown")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the PowerLevel element.

 Returns:
 Integer: the code of the PowerLevel element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the PowerLevel element.

 Returns:
 String: the description of the PowerLevel element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the power level for the given code.

 Args:
 code (Integer): the code of the power level to get.

 Returns:
 :class:`.PowerLevel`: the PowerLevel with the given code.
 """
 for level in cls:
 if code == level.code:
 return level
 return PowerLevel.LEVEL_UNKNOWN

PowerLevel.__doc__ += utils.doc_enum(PowerLevel)

[docs]@unique
class AssociationIndicationStatus(Enum):
 """
 Enumerates the different association indication statuses.
 """
 SUCCESSFULLY_JOINED = (0x00, "Successfully formed or joined a network")
 AS_TIMEOUT = (0x01, "Active Scan Timeout")
 AS_NO_PANS_FOUND = (0x02, "Active Scan found no PANs")
 AS_ASSOCIATION_NOT_ALLOWED = (
 0x03, "Active Scan found PAN, but the CoordinatorAllowAssociation bit "
 "is not set")
 AS_BEACONS_NOT_SUPPORTED = (
 0x04, "Active Scan found PAN, but Coordinator and End Device are not "
 "onfigured to support beacons")
 AS_ID_DOESNT_MATCH = (
 0x05, "Active Scan found PAN, but the Coordinator ID parameter does "
 "not match the ID parameter of the End Device")
 AS_CHANNEL_DOESNT_MATCH = (
 0x06, "Active Scan found PAN, but the Coordinator CH parameter does "
 "not match the CH parameter of the End Device")
 ENERGY_SCAN_TIMEOUT = (0x07, "Energy Scan Timeout")
 COORDINATOR_START_REQUEST_FAILED = (
 0x08, "Coordinator start request failed")
 COORDINATOR_INVALID_PARAMETER = (
 0x09, "Coordinator could not start due to invalid parameter")
 COORDINATOR_REALIGNMENT = (
 0x0A, "Coordinator Realignment is in progress")
 AR_NOT_SENT = (0x0B, "Association Request not sent")
 AR_TIMED_OUT = (
 0x0C, "Association Request timed out - no reply was received")
 AR_INVALID_PARAMETER = (
 0x0D, "Association Request had an Invalid Parameter")
 AR_CHANNEL_ACCESS_FAILURE = (
 0x0E, "Association Request Channel Access Failure. Request was not "
 "transmitted - CCA failure")
 AR_COORDINATOR_ACK_WASNT_RECEIVED = (
 0x0F, "Remote Coordinator did not send an ACK after Association "
 "Request was sent")
 AR_COORDINATOR_DIDNT_REPLY = (
 0x10, "Remote Coordinator did not reply to the Association Request, "
 "but an ACK was received after sending the request")
 SYNCHRONIZATION_LOST = (
 0x12, "Sync-Loss - Lost synchronization with a Beaconing Coordinator")
 DISASSOCIATED = (
 0x13, " Disassociated - No longer associated to Coordinator")
 NO_PANS_FOUND = (0x21, "Scan found no PANs.")
 NO_PANS_WITH_ID_FOUND = (
 0x22, "Scan found no valid PANs based on current SC and ID settings")
 NJ_EXPIRED = (
 0x23, "Valid Coordinator or Routers found, but they are not allowing "
 "joining (NJ expired)")
 NO_JOINABLE_BEACONS_FOUND = (0x24, "No joinable beacons were found")
 UNEXPECTED_STATE = (
 0x25, "Unexpected state, node should not be attempting to join at"
 " this time")
 JOIN_FAILED = (
 0x27, "Node Joining attempt failed (typically due to incompatible "
 "security settings)")
 COORDINATOR_START_FAILED = (0x2A, "Coordinator Start attempt failed")
 CHECKING_FOR_COORDINATOR = (0x2B, "Checking for an existing coordinator")
 NETWORK_LEAVE_FAILED = (0x2C, "Attempt to leave the network failed")
 DEVICE_DIDNT_RESPOND = (
 0xAB, "Attempted to join a device that did not respond")
 UNSECURED_KEY_RECEIVED = (
 0xAC, "Secure join error - network security key received unsecured")
 KEY_NOT_RECEIVED = (
 0xAD, "Secure join error - network security key not received")
 INVALID_SECURITY_KEY = (
 0xAF, "Secure join error - joining device does not have the right "
 "preconfigured link key")
 SCANNING_NETWORK = (0xFF, "Scanning for a network/Attempting to associate")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the `AssociationIndicationStatus` element.

 Returns:
 Integer: the code of the `AssociationIndicationStatus` element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the `AssociationIndicationStatus` element.

 Returns:
 String: the description of the `AssociationIndicationStatus`
 element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the `AssociationIndicationStatus` for the given code.

 Args:
 code (Integer): the `AssociationIndicationStatus` code to get.

 Returns:
 :class:`.AssociationIndicationStatus`: the
 `AssociationIndicationStatus` with the given code.
 """
 for status in cls:
 if code == status.code:
 return status
 return None

AssociationIndicationStatus.__doc__ += utils.doc_enum(AssociationIndicationStatus)

[docs]@unique
class CellularAssociationIndicationStatus(Enum):
 """
 Enumerates the different association indication statuses for the Cellular
 protocol.
 """
 SUCCESSFULLY_CONNECTED = (0x00, "Connected to the Internet")
 REGISTERING_CELLULAR_NETWORK = (0x22, "Registering to cellular network")
 CONNECTING_INTERNET = (0x23, "Connecting to the Internet")
 MODEM_FIRMWARE_CORRUPT = (
 0x24, "The cellular component requires a new firmware image")
 REGISTRATION_DENIED = (0x25, "Cellular network registration was denied")
 AIRPLANE_MODE = (0x2A, "Airplane mode is active")
 USB_DIRECT = (0x2B, "USB Direct mode is active")
 PSM_LOW_POWER = (
 0x2C, "The cellular component is in the PSM low-power state")
 BYPASS_MODE = (0x2F, "Bypass mode active")
 INITIALIZING = (0xFF, "Initializing")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the `CellularAssociationIndicationStatus` element.

 Returns:
 Integer: the code of the `CellularAssociationIndicationStatus`
 element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the `CellularAssociationIndicationStatus`
 element.

 Returns:
 String: the description of the `CellularAssociationIndicationStatus`
 element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the `CellularAssociationIndicationStatus` for the given code.

 Args:
 code (Integer): `CellularAssociationIndicationStatus` code.

 Returns:
 :class:`.CellularAssociationIndicationStatus`: the
 `CellularAssociationIndicationStatus` with the given code.
 """
 for status in cls:
 if code == status.code:
 return status
 return None

CellularAssociationIndicationStatus.__doc__ += utils.doc_enum(CellularAssociationIndicationStatus)

[docs]@unique
class DeviceCloudStatus(Enum):
 """
 Enumerates the different Device Cloud statuses.
 """
 SUCCESS = (0x00, "Success")
 BAD_REQUEST = (0x01, "Bad request")
 RESPONSE_UNAVAILABLE = (0x02, "Response unavailable")
 DEVICE_CLOUD_ERROR = (0x03, "Device Cloud error")
 CANCELED = (0x20, "Device Request canceled by user")
 TIME_OUT = (0x21, "Session timed out")
 UNKNOWN_ERROR = (0x40, "Unknown error")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the `DeviceCloudStatus` element.

 Returns:
 Integer: the code of the `DeviceCloudStatus` element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the `DeviceCloudStatus` element.

 Returns:
 String: the description of the `DeviceCloudStatus` element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the Device Cloud status for the given code.

 Args:
 code (Integer): the code of the Device Cloud status to get.

 Returns:
 :class:`.DeviceCloudStatus`: the `DeviceCloudStatus` with the given
 code, `None` if not found.
 """
 for status in cls:
 if code == status.code:
 return status
 return None

DeviceCloudStatus.__doc__ += utils.doc_enum(DeviceCloudStatus)

[docs]@unique
class FrameError(Enum):
 """
 Enumerates the different frame errors.
 """
 INVALID_TYPE = (0x02, "Invalid frame type")
 INVALID_LENGTH = (0x03, "Invalid frame length")
 INVALID_CHECKSUM = (0x04, "Erroneous checksum on last frame")
 PAYLOAD_TOO_BIG = (
 0x05, "Payload of last API frame was too big to fit into a buffer")
 STRING_ENTRY_TOO_BIG = (
 0x06, "String entry was too big on last API frame sent")
 WRONG_STATE = (0x07, "Wrong state to receive frame")
 WRONG_REQUEST_ID = (
 0x08, "Device request ID of device response do not match the number "
 "in the request")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the `FrameError` element.

 Returns:
 Integer: the code of the `FrameError` element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the `FrameError` element.

 Returns:
 String: the description of the `FrameError` element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the frame error for the given code.

 Args:
 code (Integer): the code of the frame error to get.

 Returns:
 :class:`.FrameError`: the `FrameError` with the given code, `None`
 if not found.
 """
 for error in cls:
 if code == error.code:
 return error
 return None

FrameError.__doc__ += utils.doc_enum(FrameError)

[docs]@unique
class WiFiAssociationIndicationStatus(Enum):
 """
 Enumerates the different Wi-Fi association indication statuses.
 """
 SUCCESSFULLY_JOINED = (0x00, "Successfully joined to access point")
 INITIALIZING = (0x01, "Initialization in progress")
 INITIALIZED = (0x02, "Initialized, but not yet scanning")
 DISCONNECTING = (0x13, "Disconnecting from access point")
 SSID_NOT_CONFIGURED = (0x23, "SSID not configured")
 INVALID_KEY = (0x24, "Encryption key invalid (NULL or invalid length)")
 JOIN_FAILED = (0x27, "SSID found, but join failed")
 WAITING_FOR_AUTH = (0x40, "Waiting for WPA or WPA2 authentication")
 WAITING_FOR_IP = (0x41, "Joined to a network and waiting for IP address")
 SETTING_UP_SOCKETS = (
 0x42, "Joined to a network and IP configured. "
 "Setting up listening sockets")
 SCANNING_FOR_SSID = (0xFF, "Scanning for the configured SSID")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the `WiFiAssociationIndicationStatus` element.

 Returns:
 Integer: the code of the `WiFiAssociationIndicationStatus` element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the `WiFiAssociationIndicationStatus` element.

 Returns:
 String: the description of the `WiFiAssociationIndicationStatus` element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the Wi-Fi association indication status for the given code.

 Args:
 code (Integer): the code of the Wi-Fi association indication status
 to get.

 Returns:
 :class:`.WiFiAssociationIndicationStatus`: the
 `WiFiAssociationIndicationStatus` with the given code, `None`
 if not found.
 """
 for status in cls:
 if code == status.code:
 return status
 return None

WiFiAssociationIndicationStatus.__doc__ += utils.doc_enum(WiFiAssociationIndicationStatus)

[docs]@unique
class NetworkDiscoveryStatus(Enum):
 """
 Enumerates the different statuses of the network discovery process.
 """
 SUCCESS = (0x00, "Success")
 ERROR_READ_TIMEOUT = (0x01, "Read timeout error")
 ERROR_NET_DISCOVER = (0x02, "Error executing node discovery")
 ERROR_GENERAL = (0x03, "Error while discovering network")
 CANCEL = (0x04, "Discovery process cancelled")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the `NetworkDiscoveryStatus` element.

 Returns:
 Integer: the code of the `NetworkDiscoveryStatus` element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the `NetworkDiscoveryStatus` element.

 Returns:
 String: the description of the `NetworkDiscoveryStatus` element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the network discovery status for the given code.

 Args:
 code (Integer): the code of the network discovery status to get.

 Returns:
 :class:`.NetworkDiscoveryStatus`: the `NetworkDiscoveryStatus` with
 the given code, `None` if not found.
 """
 for status in cls:
 if code == status.code:
 return status
 return None

NetworkDiscoveryStatus.__doc__ += utils.doc_enum(NetworkDiscoveryStatus)

[docs]@unique
class ZigbeeRegisterStatus(Enum):
 """
 Enumerates the different statuses of the Zigbee Device Register process.
 """
 SUCCESS = (0x00, "Success")
 KEY_TOO_LONG = (0x01, "Key too long")
 ADDRESS_NOT_FOUND = (0xB1, "Address not found in the key table")
 INVALID_KEY = (0xB2, "Key is invalid (00 and FF are reserved)")
 INVALID_ADDRESS = (0xB3, "Invalid address")
 KEY_TABLE_FULL = (0xB4, "Key table is full")
 KEY_NOT_FOUND = (0xFF, "Key not found")
 UNKNOWN = (0xEE, "Unknown")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the `ZigbeeRegisterStatus` element.

 Returns:
 Integer: the code of the `ZigbeeRegisterStatus` element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the `ZigbeeRegisterStatus` element.

 Returns:
 String: the description of the `ZigbeeRegisterStatus` element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the Zigbee Device Register status for the given code.

 Args:
 code (Integer): the code of the Zigbee Device Register status to get.

 Returns:
 :class:`.ZigbeeRegisterStatus`: the `ZigbeeRegisterStatus` with the
 given code, `ZigbeeRegisterStatus.UNKNOWN` if not found.
 """
 for status in cls:
 if code == status.code:
 return status
 return ZigbeeRegisterStatus.UNKNOWN

ZigbeeRegisterStatus.__doc__ += utils.doc_enum(ZigbeeRegisterStatus)

[docs]@unique
class EmberBootloaderMessageType(Enum):
 """
 Enumerates the different types of the Ember bootloader messages.
 """
 ACK = (0x06, "ACK message")
 NACK = (0x15, "NACK message")
 NO_MAC_ACK = (0x40, "No MAC ACK message")
 QUERY = (0x51, "Query message")
 QUERY_RESPONSE = (0x52, "Query response message")
 UNKNOWN = (0xFF, "Unknown")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the `EmberBootloaderMessageType` element.

 Returns:
 Integer: the code of the `EmberBootloaderMessageType` element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the `EmberBootloaderMessageType` element.

 Returns:
 String: the description of the `EmberBootloaderMessageType` element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the Ember bootloader message type for the given code.

 Args:
 code (Integer): the code of the Ember bootloader message type to get.

 Returns:
 :class:`.EmberBootloaderMessageType`: the `EmberBootloaderMessageType` with the
 given code, `EmberBootloaderMessageType.UNKNOWN` if not found.
 """
 for status in cls:
 if code == status.code:
 return status
 return EmberBootloaderMessageType.UNKNOWN

EmberBootloaderMessageType.__doc__ += utils.doc_enum(EmberBootloaderMessageType)

[docs]@unique
class SocketStatus(Enum):
 """
 Enumerates the different Socket statuses.
 """
 SUCCESS = (0x00, "Operation successful")
 INVALID_PARAM = (0x01, "Invalid parameters")
 FAILED_TO_READ = (0x02, "Failed to retrieve option value")
 CONNECTION_IN_PROGRESS = (0x03, "Connection already in progress")
 ALREADY_CONNECTED = (0x04, "Already connected/bound/listening")
 UNKNOWN_ERROR = (0x05, "Unknown error")
 BAD_SOCKET = (0x20, "Bad socket ID")
 NOT_REGISTERED = (0x22, "Not registered to cell network")
 INTERNAL_ERROR = (0x31, "Internal error")
 RESOURCE_ERROR = (0x32, "Resource error: retry the operation later")
 INVALID_PROTOCOL = (0x7B, "Invalid protocol")
 UNKNOWN = (0xFF, "Unknown")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the `SocketStatus` element.

 Returns:
 Integer: the code of the `SocketStatus` element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the `SocketStatus` element.

 Returns:
 String: the description of the `SocketStatus` element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the Socket status for the given code.

 Args:
 code (Integer): the code of the Socket status to get.

 Returns:
 :class:`.SocketStatus`: the `SocketStatus` with the given code,
 `SocketStatus.UNKNOWN` if there not found.
 """
 for status in cls:
 if code == status.code:
 return status
 return SocketStatus.UNKNOWN

SocketStatus.__doc__ += utils.doc_enum(SocketStatus)

[docs]@unique
class SocketState(Enum):
 """
 Enumerates the different Socket states.
 """
 CONNECTED = (0x00, "Connected")
 FAILED_DNS = (0x01, "Failed DNS lookup")
 CONNECTION_REFUSED = (0x02, "Connection refused")
 TRANSPORT_CLOSED = (0x03, "Transport closed")
 TIMED_OUT = (0x04, "Timed out")
 INTERNAL_ERROR = (0x05, "Internal error")
 HOST_UNREACHABLE = (0x06, "Host unreachable")
 CONNECTION_LOST = (0x07, "Connection lost")
 UNKNOWN_ERROR = (0x08, "Unknown error")
 UNKNOWN_SERVER = (0x09, "Unknown server")
 RESOURCE_ERROR = (0x0A, "Resource error")
 LISTENER_CLOSED = (0x0B, "Listener closed")
 UNKNOWN = (0xFF, "Unknown")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the `SocketState` element.

 Returns:
 Integer: the code of the `SocketState` element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the `SocketState` element.

 Returns:
 String: the description of the `SocketState` element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the Socket state for the given code.

 Args:
 code (Integer): the code of the Socket state to get.

 Returns:
 :class:`.SocketState`: the `SocketState` with the given code,
 `SocketState.UNKNOWN` if not found.
 """
 for state in cls:
 if code == state.code:
 return state
 return SocketState.UNKNOWN

SocketState.__doc__ += utils.doc_enum(SocketState)

[docs]@unique
class SocketInfoState(Enum):
 """
 Enumerates the different Socket info states.
 """
 ALLOCATED = (0x00, "Allocated")
 CONNECTING = (0x01, "Connecting")
 CONNECTED = (0x02, "Connected")
 LISTENING = (0x03, "Listening")
 BOUND = (0x04, "Bound")
 CLOSING = (0x05, "Closing")
 UNKNOWN = (0xFF, "Unknown")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the `SocketInfoState` element.

 Returns:
 Integer: the code of the `SocketInfoState` element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the `SocketInfoState` element.

 Returns:
 String: the description of the `SocketInfoState` element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the Socket info state for the given code.

 Args:
 code (Integer): the code of the Socket info state to get.

 Returns:
 :class:`.SocketInfoState`: the `SocketInfoState` with the given
 code, `SocketInfoState.UNKNOWN` if not found.
 """
 for state in cls:
 if code == state.code:
 return state
 return SocketInfoState.UNKNOWN

 @classmethod
 def get_by_description(cls, description):
 """
 Returns the Socket info state for the given description.

 Args:
 description (String): the description of the Socket info state to get.

 Returns:
 :class:`.SocketInfoState`: the `SocketInfoState` with the given
 description, `SocketInfoState.UNKNOWN` if not found.
 """
 for state in SocketInfoState:
 if state.description.lower() == description.lower():
 return state
 return SocketInfoState.UNKNOWN

SocketInfoState.__doc__ += utils.doc_enum(SocketInfoState)

[docs]@unique
class FSCommandStatus(Enum):
 """
 This class lists all the possible states of an file system command after
 execution.

 | Inherited properties:
 | **name** (String): Name (id) of the FSCommandStatus.
 | **value** (String): Value of the FSCommandStatus.
 """
 SUCCESS = (0x00, "Success")
 ERROR = (0x01, "Error")
 INVALID_COMMAND = (0x02, "Invalid file system command")
 INVALID_PARAMETER = (0x03, "Invalid command parameter")
 ACCESS_DENIED = (0x50, "Access denied")
 ALREADY_EXISTS = (0x51, "File or directory already exists")
 DOES_NOT_EXIST = (0x52, "File or directory does not exist")
 INVALID_NAME = (0x53, "Invalid file or directory name")
 IS_DIRECTORY = (0x54, "File operation on directory")
 DIR_NOT_EMPTY = (0x55, "Directory is not empty")
 EOF_REACHED = (0x56, "Attempt to read past EOF (end of file)")
 HW_FAILURE = (0x57, "Hardware failure")
 NO_DEVICE = (0x58, "Volume offline / format required")
 VOLUME_FULL = (0x59, "Volume full")
 TIMED_OUT = (0x5A, "Operation timed out")
 DEVICE_BUSY = (0x5B, "Busy with prior operation")
 RESOURCE_FAILURE = (
 0x5C, "Resource failure (memory allocation failed, try again)")

 def __init__(self, code, description):
 self.__code = code
 self.__desc = description

 @property
 def code(self):
 """
 Returns the code of the FSCommandStatus element.

 Returns:
 Integer: Code of the FSCommandStatus element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the FSCommandStatus element.

 Returns:
 String: Description of the FSCommandStatus element.
 """
 return self.__desc

 @classmethod
 def get(cls, code):
 """
 Returns the file system command status for the given code.

 Args:
 code (Integer): Code of the file system command status to get.

 Returns:
 :class:`.FSCommandStatus`: File system command status with the
 given code, `None` if not found.
 """
 for status in cls:
 if code == status.code:
 return status
 return None

 def __repr__(self):
 return "%s (0x%0.2X)" % (self.__desc, self.__code)

 def __str__(self):
 return "%s (0x%0.2X)" % (self.__desc, self.__code)

FSCommandStatus.__doc__ += utils.doc_enum(FSCommandStatus)

 Source code for digi.xbee.models.zdo

Copyright 2019-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
import threading
from abc import abstractmethod, ABCMeta
import logging
from enum import Enum

from digi.xbee.devices import XBeeDevice, RemoteXBeeDevice, RemoteZigBeeDevice, RemoteDigiMeshDevice
from digi.xbee.exception import XBeeException, OperationNotSupportedException
from digi.xbee.models.address import XBee64BitAddress, XBee16BitAddress
from digi.xbee.models.atcomm import ATStringCommand
from digi.xbee.models.mode import APIOutputModeBit
from digi.xbee.models.options import TransmitOptions
from digi.xbee.models.protocol import Role, XBeeProtocol
from digi.xbee.models.status import TransmitStatus, ATCommandStatus
from digi.xbee.packets.aft import ApiFrameType
from digi.xbee.packets.common import ExplicitAddressingPacket, RemoteATCommandPacket, ATCommPacket
from digi.xbee.util import utils

class _ZDOCommand(metaclass=ABCMeta):
 """
 This class represents a ZDO command.
 """

 SOURCE_ENDPOINT = 0x00
 DEST_ENDPOINT = 0x00
 PROFILE_ID = 0x0000

 STATUS_SUCCESS = 0x00

 _global_transaction_id = 1

 _logger = logging.getLogger(__name__)

 def __init__(self, xbee, cluster_id, rx_cluster_id, configure_ao, timeout):
 """
 Class constructor. Instantiates a new :class:`._ZDOCommand` object
 with the provided parameters.

 Args:
 xbee (class:`.XBeeDevice` or class:`.RemoteXBeeDevice`): XBee to
 send the ZDO command.
 cluster_id (Integer): The ZDO command cluster ID.
 rx_cluster_id (Integer): The ZDO command receive cluster ID.
 configure_ao (Boolean): `True` to configure AO value before and
 after executing this ZDO command, `False` otherwise.
 timeout(Float): The ZDO command timeout in seconds.

 Raises:
 OperationNotSupportedException: If ZDO commands are not supported
 in the XBee protocol.
 TypeError: If the `xbee` is not a `.XBeeDevice` or a
 `.RemoteXBeeDevice`.
 ValueError: If `xbee` is `None`.
 ValueError: If `cluster_id`, `receive_cluster_id`, or `timeout` are
 less than 0.
 """
 if not xbee:
 raise ValueError("XBee cannot be None")
 if isinstance(xbee, (XBeeDevice, RemoteXBeeDevice)):
 self._xbee = xbee
 else:
 raise TypeError("The xbee must be an XBeeDevice or a RemoteXBeeDevice"
 "not {!r}".format(xbee.__class__.__name__))
 if xbee.get_protocol() not in [XBeeProtocol.ZIGBEE, XBeeProtocol.SMART_ENERGY]:
 raise OperationNotSupportedException(
 message="ZDO commands are not supported in %s"
 % xbee.get_protocol().description)
 if cluster_id < 0:
 raise ValueError("Cluster id cannot be negative")
 if rx_cluster_id < 0:
 raise ValueError("Receive cluster id cannot be negative")
 if timeout < 0:
 raise ValueError("Timeout cannot be negative")

 self.__cluster_id = cluster_id
 self.__rx_cluster_id = rx_cluster_id
 self.__configure_ao = configure_ao
 self.__timeout = timeout

 self.__saved_ao = None
 self._running = False
 self._error = None
 self.__zdo_thread = None
 self._lock = threading.Event()
 self._received_status = False
 self._received_answer = False
 self._data_parsed = False

 self._current_transaction_id = self.__class__._global_transaction_id
 self.__class__._global_transaction_id = self.__class__._global_transaction_id + 1
 if self.__class__._global_transaction_id == 0xFF:
 self.__class__._global_transaction_id = 1

 @property
 def running(self):
 """
 Returns if this ZDO command is running.

 Returns:
 Boolean: `True` if it is running, `False` otherwise.
 """
 return self._running

 @property
 def error(self):
 """
 Returns the error string if any.

 Returns:
 String: The error string.
 """
 return self._error

 def stop(self):
 """
 Stops the ZDO command process if it is running.
 """
 if not self._lock.is_set():
 self._lock.set()

 if self.__zdo_thread and self._running:
 self.__zdo_thread.join()
 self.__zdo_thread = None

 def _start_process(self, sync=True, zdo_cb=None):
 """
 Starts the ZDO command process. It can be a blocking method depending
 on `sync`.

 Args:
 sync (Boolean): `True` for a blocking method, `False` to run
 asynchronously in a separate thread.
 zdo_cb (Function, optional): Method to execute when ZDO process
 finishes. Receives two arguments:
 * The XBee that executed the ZDO command.
 * An error message if something went wrong.
 """
 if not sync:
 self.__zdo_thread = threading.Thread(target=self._send_zdo,
 kwargs={'zdo_cb': zdo_cb}, daemon=True)
 self.__zdo_thread.start()
 else:
 self._send_zdo(zdo_cb=zdo_cb)

 def _send_zdo(self, zdo_cb=None):
 """
 Sends the ZDO command.

 Args:
 zdo_cb (Function, optional): method to execute when ZDO process
 finishes. Receives two arguments:
 * The XBee that executed the ZDO command.
 * An error message if something went wrong.
 """
 self._running = True
 self._error = None
 self._received_status = False
 self._received_answer = False
 self._data_parsed = False
 self._lock.clear()

 if not self._xbee.is_remote():
 node = self._xbee
 else:
 node = self._xbee.get_local_xbee_device()

 node.add_packet_received_callback(self._zdo_packet_cb)

 self._init_variables()

 try:
 self.__prepare_device()

 node.send_packet(self._generate_zdo_packet())

 self._lock.wait(self.__timeout)

 if not self._received_status:
 if not self._error:
 self._error = "ZDO command not sent"
 return

 if not self._received_answer:
 if not self._error:
 self._error = "ZDO command answer not received"
 return

 self._perform_finish_actions()
 except XBeeException as exc:
 self._error = "Error sending ZDO command: " + str(exc)
 finally:
 node.del_packet_received_callback(self._zdo_packet_cb)
 self.__restore_device()
 self._notify_process_finished(zdo_cb)
 self._running = False

 @abstractmethod
 def _init_variables(self):
 """
 Initializes the ZDO command process variables.
 """

 @abstractmethod
 def _is_broadcast(self):
 """
 Retrieves whether the ZDO is broadcast.

 Returns:
 Boolean: `True` for broadcasting this ZDO, `False` otherwise.
 """

 @abstractmethod
 def _get_zdo_command_data(self):
 """
 Retrieves the ZDO packet data to be sent.

 Returns:
 Bytearray: The packet data.
 """

 @abstractmethod
 def _parse_data(self, data):
 """
 Handles what to do with the received data of the explicit frame. The
 status byte is already consumed.

 Args:
 data (bytearray): Byte array containing the frame data.

 Returns:
 Boolean: `True` if the process finishes, `False` otherwise.
 """

 @abstractmethod
 def _perform_finish_actions(self):
 """
 Performs final actions when the ZDO process has finished successfully.
 """

 def _notify_process_finished(self, zdo_cb):
 """
 Notifies that the ZDO process has finished its execution.

 Args:
 zdo_cb (Function, optional): Method to execute when ZDO process
 finishes. Receives two arguments:
 * The XBee that executed the ZDO command.
 * An error message if something went wrong.
 """
 if zdo_cb:
 zdo_cb(self._xbee, self._error)

 def __prepare_device(self):
 """
 Performs the local XBee configuration before sending the ZDO command.
 This saves the current AO value and sets it to 1.
 """
 if not self.__configure_ao:
 return

 if not self._xbee.is_remote():
 node = self._xbee
 else:
 node = self._xbee.get_local_xbee_device()

 try:
 self.__saved_ao = node.get_api_output_mode_value()

 # Do not configure AO if it is already:
 # * Bit 0: Native/Explicit API output (1)
 # * Bit 5: Prevent ZDO msgs from going out the serial port (0)
 value = bytearray([self.__saved_ao[0]]) if self.__saved_ao \
 else bytearray([APIOutputModeBit.EXPLICIT.code])
 if (value[0] & APIOutputModeBit.EXPLICIT.code
 and not value[0] & APIOutputModeBit.SUPPRESS_ALL_ZDO_MSG.code):
 self.__saved_ao = None
 return

 value[0] = value[0] | APIOutputModeBit.EXPLICIT.code
 value[0] = value[0] & ~APIOutputModeBit.SUPPRESS_ALL_ZDO_MSG.code

 node.set_parameter(ATStringCommand.AO, value, apply=True)

 except XBeeException as exc:
 raise XBeeException("Could not prepare XBee for ZDO: " + str(exc))

 def __restore_device(self):
 """
 Performs XBee configuration after sending the ZDO command.
 This restores the previous AO value.
 """
 if not self.__configure_ao or self.__saved_ao is None:
 return

 if not self._xbee.is_remote():
 node = self._xbee
 else:
 node = self._xbee.get_local_xbee_device()

 try:
 node.set_parameter(ATStringCommand.AO, self.__saved_ao, apply=True)
 except XBeeException as exc:
 self._error = "Could not restore XBee after ZDO: " + str(exc)

 def _generate_zdo_packet(self):
 """
 Generates the ZDO packet.

 Returns:
 :class:`.ExplicitAddressingPacket`: The packet to send.
 """
 if self._is_broadcast():
 addr64 = XBee64BitAddress.BROADCAST_ADDRESS
 addr16 = XBee16BitAddress.BROADCAST_ADDRESS
 else:
 addr64 = self._xbee.get_64bit_addr()
 addr16 = self._xbee.get_16bit_addr()

 return ExplicitAddressingPacket(
 self._current_transaction_id, addr64, addr16, self.SOURCE_ENDPOINT,
 self.DEST_ENDPOINT, self.__cluster_id, self.PROFILE_ID,
 broadcast_radius=0, transmit_options=TransmitOptions.NONE.value,
 rf_data=self._get_zdo_command_data())

 def _zdo_packet_cb(self, frame):
 """
 Callback notified when a new frame is received.

 Args:
 frame (:class:`.XBeeAPIPacket`): The received packet.
 """
 if not self._running:
 return

 if frame.get_frame_type() == ApiFrameType.EXPLICIT_RX_INDICATOR:
 # Check address
 x64 = self._xbee.get_64bit_addr()
 x16 = self._xbee.get_16bit_addr()
 if (not self._is_broadcast()
 and x64 != XBee64BitAddress.UNKNOWN_ADDRESS
 and x64 != frame.x64bit_source_addr
 and x16 != XBee16BitAddress.UNKNOWN_ADDRESS
 and x16 != frame.x16bit_source_addr):
 return
 # Check:
 # * Profile, Cluster ID and endpoints.
 # * If transaction ID matches, if not discard: not the frame we
 # are waiting for.
 if (frame.profile_id != self.PROFILE_ID
 or frame.cluster_id != self.__rx_cluster_id
 or frame.source_endpoint != self.SOURCE_ENDPOINT
 or frame.dest_endpoint != self.DEST_ENDPOINT
 or frame.rf_data[0] != self._current_transaction_id):
 return
 self._received_answer = True
 # Status byte
 if frame.rf_data[1] != self.STATUS_SUCCESS:
 self._error = "Error executing ZDO command (status: %d)" % int(frame.rf_data[1])
 self.stop()
 return

 self._data_parsed = self._parse_data(frame.rf_data[2:])

 if self._data_parsed and self._received_status:
 self.stop()
 elif frame.get_frame_type() == ApiFrameType.TRANSMIT_STATUS:
 self._logger.debug("Received 'ZDO' status frame: %s",
 frame.transmit_status.description)
 # If transaction ID does not match, discard: not the frame we are waiting for.
 if frame.frame_id != self._current_transaction_id:
 return

 self._received_status = True
 if frame.transmit_status not in (TransmitStatus.SUCCESS,
 TransmitStatus.SELF_ADDRESSED):
 self._error = "Error sending ZDO command: %s" % frame.transmit_status.description
 self.stop()

 if self._data_parsed:
 self.stop()

[docs]class NodeDescriptorReader(_ZDOCommand):
 """
 This class performs a node descriptor read of the given XBee using a ZDO command.

 The node descriptor read works only with Zigbee devices in API mode.
 """

 CLUSTER_ID = 0x0002
 RECEIVE_CLUSTER_ID = 0x8002

 __DEFAULT_TIMEOUT = 20 # seconds

 def __init__(self, xbee, configure_ao=True, timeout=__DEFAULT_TIMEOUT):
 """
 Class constructor. Instantiates a new :class:`.NodeDescriptorReader`
 object with the provided parameters.

 Args:
 xbee (class:`.XBeeDevice` or class:`.RemoteXBeeDevice`): XBee to
 send the command.
 configure_ao (Boolean, optional, default=`True`): `True` to set
 AO value before and after executing, `False` otherwise.
 timeout (Float, optional, default=`.__DEFAULT_TIMEOUT`): The ZDO
 command timeout in seconds.

 Raises:
 ValueError: If `xbee` is `None`.
 ValueError: If `cluster_id`, `receive_cluster_id`, or `timeout`
 are less than 0.
 TypeError: If the `xbee` is not a `.XBeeDevice` or a
 `RemoteXBeeDevice`.
 """
 super().__init__(
 xbee, self.CLUSTER_ID,
 self.RECEIVE_CLUSTER_ID, configure_ao, timeout)

 self.__node_descriptor = None
 self.__role = Role.UNKNOWN

[docs] def get_node_descriptor(self):
 """
 Returns the descriptor of the node.

 Returns:
 :class:`.NodeDescriptor`: The node descriptor.
 """
 self._start_process(sync=True)

 return self.__node_descriptor

 def _init_variables(self):
 """
 Override.

 .. seealso::
 | :meth:`._ZDOCommand._init_variables`
 """
 self.__role = Role.UNKNOWN

 def _is_broadcast(self):
 """
 Override.

 .. seealso::
 | :meth:`._ZDOCommand._is_broadcast`
 """
 return False

 def _get_zdo_command_data(self):
 """
 Override.

 .. seealso::
 | :meth:`._ZDOCommand._get_zdo_command_data`
 """
 return bytearray([
 self._current_transaction_id, self._xbee.get_16bit_addr().get_lsb(),
 self._xbee.get_16bit_addr().get_hsb()])

 def _parse_data(self, data):
 """
 Override.

 .. seealso::
 | :meth:`._ZDOCommand._parse_data`
 """
 # Ensure the 16-bit address received matches the address of the device
 x16 = XBee16BitAddress.from_bytes(data[1], data[0])
 if x16 != self._xbee.get_16bit_addr():
 return False

 # Role field: 3 bits (0, 1, 2) of the next byte
 role = Role.get(utils.get_int_from_byte(data[2], 0, 3))
 # Complex descriptor available: next bit (3) of the same byte
 complex_desc_available = utils.is_bit_enabled(data[2], 3)
 # User descriptor available: next bit (4) of the same byte
 user_desc_available = utils.is_bit_enabled(data[2], 4)

 # Frequency band: 5 bits of the next byte
 freq_band = NodeDescriptorReader.__to_bits(data[3])[-5:]

 # MAC capabilities: next byte
 mac_capabilities = NodeDescriptorReader.__to_bits(data[4])

 # Manufacturer code: next 2 bytes
 manufacturer_code = utils.bytes_to_int([data[6], data[5]])

 # Maximum buffer size: next byte
 max_buffer_size = int(data[7])

 # Maximum incoming transfer size: next 2 bytes
 max_in_transfer_size = utils.bytes_to_int([data[9], data[8]])

 # Maximum outgoing transfer size: next 2 bytes
 max_out_transfer_size = utils.bytes_to_int([data[13], data[12]])

 # Maximum outgoing transfer size: next byte
 desc_capabilities = NodeDescriptorReader.__to_bits(data[14])

 self.__node_descriptor = NodeDescriptor(
 role, complex_desc_available, user_desc_available, freq_band,
 mac_capabilities, manufacturer_code, max_buffer_size,
 max_in_transfer_size, max_out_transfer_size, desc_capabilities)

 return True

 @staticmethod
 def __to_bits(data_byte):
 """
 Convert the byte to an array of bits.

 Args:
 data_byte (Integer): The byte to convert.

 Returns:
 List: An array of bits.
 """
 return [(int(data_byte) >> i) & 1 for i in range(0, 8)]

 def _perform_finish_actions(self):
 """
 Override.

 .. seealso::
 | :meth:`._ZDOCommand._perform_finish_actions`
 """

[docs]class NodeDescriptor:
 """
 This class represents a node descriptor of an XBee.
 """

 def __init__(self, role, complex_desc_supported, user_desc_supported, freq_band,
 mac_capabilities, manufacturer_code, max_buffer_size, max_in_transfer_size,
 max_out_transfer_size, desc_capabilities):
 """
 Class constructor. Instantiates a new :class:`.NodeDescriptor` object
 with the provided parameters.

 Args:
 role (:class:`.Role`): The device role.
 complex_desc_supported (Boolean): `True` if the complex descriptor
 is supported.
 user_desc_supported (Boolean): `True` if the user descriptor is
 supported.
 freq_band (List): Byte array with the frequency bands.
 mac_capabilities (List): Byte array with MAC capabilities.
 manufacturer_code (Integer): The manufacturer's code assigned by
 the Zigbee Alliance.
 max_buffer_size (Integer): Maximum size in bytes of a data
 transmission.
 max_in_transfer_size (Integer): Maximum number of bytes that can be
 received by the node.
 max_out_transfer_size (Integer): Maximum number of bytes that can
 be transmitted by the node.
 desc_capabilities (List): Byte array with descriptor capabilities.
 """
 self.__role = role
 self.__complex_desc_available = complex_desc_supported
 self.__user_desc_available = user_desc_supported
 self.__freq_band = freq_band
 self.__mac_capabilities = mac_capabilities
 self.__manufacturer_code = manufacturer_code
 self.__max_buffer_size = max_buffer_size
 self.__max_in_tx_size = max_in_transfer_size
 self.__max_out_tx_size = max_out_transfer_size
 self.__desc_capabilities = desc_capabilities

 @property
 def role(self):
 """
 Gets the role in this node descriptor.

 Returns:
 :class:`.Role`: The role of the node descriptor.

 .. seealso::
 | :class:`.Role`
 """
 return self.__role

 @property
 def complex_desc_supported(self):
 """
 Gets if the complex descriptor is supported.

 Returns:
 Boolean: `True` if supported, `False` otherwise.
 """
 return self.__complex_desc_available

 @property
 def user_desc_supported(self):
 """
 Gets if the user descriptor is supported.

 Returns:
 Boolean: `True` if supported, `False` otherwise.
 """
 return self.__user_desc_available

 @property
 def freq_band(self):
 """
 Gets the frequency bands (LSB - bit0- index 0, MSB - bit4 - index 4):
 * Bit0: 868 MHz
 * Bit1: Reserved
 * Bit2: 900 MHz
 * Bit3: 2.4 GHz
 * Bit4: Reserved

 Returns:
 List: List of integers with the frequency bands bits.
 """
 return self.__freq_band

 @property
 def mac_capabilities(self):
 """
 Gets the MAC capabilities (LSB - bit0- index 0, MSB - bit7 - index 7):
 * Bit0: Alternate PAN coordinator
 * Bit1: Device Type
 * Bit2: Power source
 * Bit3: Receiver on when idle
 * Bit4-5: Reserved
 * Bit6: Security capability
 * Bit7: Allocate address

 Returns:
 List: List of integers with MAC capabilities bits.
 """
 return self.__mac_capabilities

 @property
 def manufacturer_code(self):
 """
 Gets the manufacturer's code assigned by the Zigbee Alliance.

 Returns:
 Integer: The manufacturer's code.
 """
 return self.__manufacturer_code

 @property
 def max_buffer_size(self):
 """
 Gets the maximum size in bytes of a data transmission (including APS bytes).

 Returns:
 Integer: Maximum size in bytes.
 """
 return self.__max_buffer_size

 @property
 def max_in_transfer_size(self):
 """
 Gets the maximum number of bytes that can be received by the node.

 Returns:
 Integer: Maximum number of bytes that can be received by the node.
 """
 return self.__max_in_tx_size

 @property
 def max_out_transfer_size(self):
 """
 Gets the maximum number of bytes that can be transmitted by the node,
 including fragmentation.

 Returns:
 Integer: Maximum number of bytes that can be transmitted by the node.
 """
 return self.__max_out_tx_size

 @property
 def desc_capabilities(self):
 """
 Gets the descriptor capabilities (LSB - bit0- index 0, MSB - bit1 - index 1):
 * Bit0: Extended active endpoint list available
 * Bit1: Extended simple descriptor list available

 Returns:
 List: List of integers with descriptor capabilities bits.
 """
 return self.__desc_capabilities

[docs]class RouteTableReader(_ZDOCommand):
 """
 This class performs a route table read of the given XBee using a ZDO command.

 The node descriptor read works only with Zigbee devices in API mode.
 """

 DEFAULT_TIMEOUT = 20 # seconds

 CLUSTER_ID = 0x0032
 RECEIVE_CLUSTER_ID = 0x8032

 ROUTE_BYTES_LEN = 5

 ST_FIELD_OFFSET = 0
 ST_FIELD_LEN = 3
 MEM_FIELD_OFFSET = 3
 M2O_FIELD_OFFSET = 4
 RR_FIELD_OFFSET = 5

 def __init__(self, xbee, configure_ao=True, timeout=DEFAULT_TIMEOUT):
 """
 Class constructor. Instantiates a new :class:`.RouteTableReader` object
 with the provided parameters.

 Args:
 xbee (class:`.XBeeDevice` or class:`.RemoteXBeeDevice`): XBee to
 send the command.
 configure_ao (Boolean, optional, default=`True`): `True` to set
 AO value before and after executing, `False` otherwise.
 timeout (Float, optional, default=`.DEFAULT_TIMEOUT`): The ZDO
 command timeout in seconds.

 Raises:
 ValueError: If `xbee` is `None`.
 ValueError: If `cluster_id`, `receive_cluster_id`, or `timeout` are
 less than 0.
 TypeError: If the `xbee` is not a `.XBeeDevice` or a
 `.RemoteXBeeDevice`.
 """
 super().__init__(xbee, self.CLUSTER_ID, self.RECEIVE_CLUSTER_ID,
 configure_ao, timeout)

 self.__routes = None
 self.__total_routes = 0
 self.__index = 0

 self.__cb = None

[docs] def get_route_table(self, route_cb=None, finished_cb=None):
 """
 Returns the routes of the XBee. If `route_cb` is not defined, the
 process blocks until the complete routing table is read.

 Args:
 route_cb (Function, optional, default=`None`): Method called when
 a new route is received. Receives two arguments:

 * The XBee that owns this new route.
 * The new route.

 finished_cb (Function, optional, default=`None`): Method to execute
 when the process finishes. Receives three arguments:

 * The XBee that executed the ZDO command.
 * A list with the discovered routes.
 * An error message if something went wrong.

 Returns:
 List: List of :class:`.Route` when `route_cb` is not defined,
 `None` otherwise (in this case routes are received in the
 callback).

 .. seealso::
 | :class:`.Route`
 """
 self.__cb = route_cb
 self._start_process(sync=bool(not self.__cb), zdo_cb=finished_cb)

 return self.__routes

 def _init_variables(self):
 """
 Override.

 .. seealso::
 | :meth:`._ZDOCommand._init_variables`
 """
 self.__routes = []
 self.__total_routes = 0
 self.__index = 0

 def _is_broadcast(self):
 """
 Override.

 .. seealso::
 | :meth:`._ZDOCommand._is_broadcast`
 """
 return False

 def _get_zdo_command_data(self):
 """
 Override.

 .. seealso::
 | :meth:`._ZDOCommand._get_zdo_command_data`
 """
 return bytearray([self._current_transaction_id, self.__index])

 def _parse_data(self, data):
 """
 Override.

 .. seealso::
 | :meth:`._ZDOCommand._parse_data`
 """
 # Byte 0: Total number of routing table entries
 # Byte 1: Starting point in the routing table
 # Byte 2: Number of routing table entries in the response
 # Byte 3 - end: List of routing table entries (as many as indicated in byte 2)

 self.__total_routes = int(data[0])
 # Ignore start index and get the number of entries in this response.
 n_items = int(data[2])
 if not n_items:
 # No entries in this response, try again?
 self.__get_next_routes()
 return True

 # Parse routes
 routes_starting_index = 3
 byte_index = routes_starting_index
 # Subtract the 3 first bytes: total number of entries, start index, and
 # the number of entries in this response
 n_route_data_bytes = len(data) - 3

 while byte_index + 1 < n_route_data_bytes:
 if byte_index + self.ROUTE_BYTES_LEN \
 > n_route_data_bytes + routes_starting_index:
 break

 route = self.__parse_route(
 data[byte_index:byte_index + self.ROUTE_BYTES_LEN])
 if route:
 self._logger.debug("Route of %s: %s - %s -> %s", self._xbee,
 route.destination, route.next_hop, route.status)
 self.__routes.append(route)
 if self.__cb:
 self.__cb(self._xbee, route)

 byte_index += self.ROUTE_BYTES_LEN
 self.__index += 1

 # Check if we already have all the routes
 if self.__index < self.__total_routes:
 self.__get_next_routes()

 return False

 return True

 def _perform_finish_actions(self):
 """
 Override.

 .. seealso::
 | :meth:`._ZDOCommand._perform_finish_actions`
 """

 def _notify_process_finished(self, zdo_cb):
 """
 Override.

 .. seealso::
 | :meth:`._ZDOCommand._notify_process_finished`
 """
 if zdo_cb:
 zdo_cb(self._xbee, self.__routes, self._error)

 def __parse_route(self, data):
 """
 Parses the given bytearray and returns a route.

 Args:
 data (bytearray): Bytearray with data to parse.

 Returns:
 :class:`.Route`: The route or `None` if not found.
 """
 # Bytes 0 - 1: 16-bit destination address (little endian)
 # Byte 2: Setting byte:
 # * Bits 0 - 2: Route status
 # * Bit 3: Low-memory concentrator flag
 # * Bit 4: Destination is a concentrator flag
 # * Bit 5: Route record message should be sent prior to next transmission flag
 # Bytes 3 - 4: 16 bit next hop address (little endian)
 return Route(XBee16BitAddress.from_bytes(data[1], data[0]),
 XBee16BitAddress.from_bytes(data[4], data[3]),
 RouteStatus.get(utils.get_int_from_byte(
 data[2], self.ST_FIELD_OFFSET, self.ST_FIELD_LEN)),
 utils.is_bit_enabled(data[2], self.MEM_FIELD_OFFSET),
 utils.is_bit_enabled(data[2], self.M2O_FIELD_OFFSET),
 utils.is_bit_enabled(data[2], self.RR_FIELD_OFFSET))

 def __get_next_routes(self):
 """
 Sends a new ZDO request to get more route table entries.
 """
 if not self._xbee.is_remote():
 node = self._xbee
 else:
 node = self._xbee.get_local_xbee_device()

 try:
 node.send_packet(self._generate_zdo_packet())
 except XBeeException as exc:
 self._error = "Error sending ZDO command: " + str(exc)

[docs]class RouteStatus(Enum):
 """
 Enumerates the available route status.
 """

 ACTIVE = (0, "Active")
 DISCOVERY_UNDERWAY = (1, "Discovery Underway")
 DISCOVERY_FAILED = (2, "Discovery Failed")
 INACTIVE = (3, "Inactive")
 VALIDATION_UNDERWAY = (4, "Validation Underway")
 UNKNOWN = (-1, "Unknown")

 def __init__(self, identifier, name):
 self.__id = identifier
 self.__name = name

 def __str__(self):
 return self.__name

 @property
 def id(self):
 """
 Returns the identifier of the RouteStatus.

 Returns:
 Integer: RouteStatus identifier.
 """
 return self.__id

 @property
 def name(self):
 """
 Returns the name of the RouteStatus.

 Returns:
 String: RouteStatus name.
 """
 return self.__name

 @classmethod
 def get(cls, identifier):
 """
 Returns the RouteStatus for the given identifier.

 Args:
 identifier (Integer): Id corresponding to the route status to get.

 Returns:
 :class:`.RouteStatus`: RouteStatus with the given id. `None` if
 it does not exist.
 """
 for item in cls:
 if identifier == item.id:
 return item

 return None

[docs]class Route:
 """
 This class represents a Zigbee route read from the route table of an XBee.
 """

 def __init__(self, destination, next_hop, status, is_low_memory,
 is_many_to_one, is_route_record_required):
 """
 Class constructor. Instantiates a new :class:`.Route` object with the
 provided parameters.

 Args:
 destination (:class:`.XBee16BitAddress`): 16-bit destination
 address of the route.
 next_hop (:class:`.XBee16BitAddress`): 16-bit address of the
 next hop.
 status (:class:`.RouteStatus`): Status of the route.
 is_low_memory (Boolean): `True` to indicate if the device is a
 low-memory concentrator.
 is_many_to_one (Boolean): `True` to indicate the destination is a
 concentrator.
 is_route_record_required (Boolean): `True` to indicate a route
 record message should be sent prior to the next data
 transmission.

 .. seealso::
 | :class:`.RouteStatus`
 | :class:`.XBee16BitAddress`
 """
 self.__dest = destination
 self.__next = next_hop
 self.__status = status
 self.__is_low_memory = is_low_memory
 self.__is_mto = is_many_to_one
 self.__is_rr_required = is_route_record_required

 def __str__(self):
 return ("Destination: {!s} - Next: {!s} (status: {!s}, low-memory: {!r}"
 ", many-to-one: {!r}, route record required: {!r})".format(
 self.__dest, self.__next, self.__status.name,
 self.__is_low_memory, self.__is_mto, self.__is_rr_required))

 @property
 def destination(self):
 """
 Gets the 16-bit address of this route destination.

 Returns:
 :class:`.XBee16BitAddress`: 16-bit address of the destination.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 return self.__dest

 @property
 def next_hop(self):
 """
 Gets the 16-bit address of this route next hop.

 Returns:
 :class:`.XBee16BitAddress`: 16-bit address of the next hop.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 return self.__next

 @property
 def status(self):
 """
 Gets this route status.

 Returns:
 :class:`.RouteStatus`: The route status.

 .. seealso::
 | :class:`.RouteStatus`
 """
 return self.__status

 @property
 def is_low_memory(self):
 """
 Gets whether the device is a low-memory concentrator.

 Returns:
 Boolean: `True` if the device is a low-memory concentrator, `False` otherwise.
 """
 return self.__is_low_memory

 @property
 def is_many_to_one(self):
 """
 Gets whether the destination is a concentrator.

 Returns:
 Boolean: `True` if destination is a concentrator, `False` otherwise.
 """
 return self.__is_mto

 @property
 def is_route_record_required(self):
 """
 Gets whether a route record message should be sent prior the next data
 transmission.

 Returns:
 Boolean: `True` if a route record message should be sent, `False` otherwise.
 """
 return self.__is_rr_required

[docs]class NeighborTableReader(_ZDOCommand):
 """
 This class performs a neighbor table read of the given XBee using a ZDO
 command.

 The node descriptor read works only with Zigbee devices in API mode.
 """

 DEFAULT_TIMEOUT = 20 # seconds

 CLUSTER_ID = 0x0031
 RECEIVE_CLUSTER_ID = 0x8031

 NEIGHBOR_BYTES_LEN = 22

 ROLE_FIELD_OFFSET = 0
 ROLE_FIELD_LEN = 2
 RELATIONSHIP_FIELD_OFFSET = 4
 RELATIONSHIP_FIELD_LEN = 3

 def __init__(self, xbee, configure_ao=True, timeout=DEFAULT_TIMEOUT):
 """
 Class constructor. Instantiates a new :class:`.NeighborTableReader`
 object with the provided parameters.

 Args:
 xbee (class:`.XBeeDevice` or class:`.RemoteXBeeDevice`): XBee to
 send the command.
 configure_ao (Boolean, optional, default=`True`): `True` to set
 AO value before and after executing, `False` otherwise.
 timeout (Float, optional, default=`.DEFAULT_TIMEOUT`): The ZDO
 command timeout in seconds.

 Raises:
 ValueError: If `xbee` is `None`.
 ValueError: If `cluster_id`, `receive_cluster_id`, or `timeout` are
 less than 0.
 TypeError: If the `xbee` is not a `.XBeeDevice` or a
 `.RemoteXBeeDevice`.
 """
 super().__init__(xbee, self.CLUSTER_ID, self.RECEIVE_CLUSTER_ID,
 configure_ao, timeout)

 self.__neighbors = None
 self.__total_neighbors = 0
 self.__index = 0

 self.__cb = None

[docs] def get_neighbor_table(self, neighbor_cb=None, finished_cb=None):
 """
 Returns the neighbors of the XBee. If `neighbor_cb` is not defined,
 the process blocks until the complete neighbor table is read.

 Args:
 neighbor_cb (Function, optional, default=`None`): Method called
 when a new neighbor is received. Receives two arguments:

 * The XBee that owns this new neighbor.
 * The new neighbor.

 finished_cb (Function, optional, default=`None`): Method to execute
 when the process finishes. Receives three arguments:

 * The XBee that executed the ZDO command.
 * A list with the discovered neighbors.
 * An error message if something went wrong.

 Returns:
 List: List of :class:`.Neighbor` when `neighbor_cb` is not defined,
 `None` otherwise (in this case neighbors are received in the callback)

 .. seealso::
 | :class:`.Neighbor`
 """
 self.__cb = neighbor_cb
 self._start_process(sync=bool(not self.__cb), zdo_cb=finished_cb)

 return self.__neighbors

 def _init_variables(self):
 """
 Override.

 .. seealso::
 | :meth:`._ZDOCommand._init_variables`
 """
 self.__neighbors = []
 self.__total_neighbors = 0
 self.__index = 0

 def _is_broadcast(self):
 """
 Override.

 .. seealso::
 | :meth:`._ZDOCommand._is_broadcast`
 """
 return False

 def _get_zdo_command_data(self):
 """
 Override.

 .. seealso::
 | :meth:`._ZDOCommand._get_zdo_command_data`
 """
 return bytearray([self._current_transaction_id, self.__index])

 def _parse_data(self, data):
 """
 Override.

 .. seealso::
 | :meth:`._ZDOCommand._parse_data`
 """
 # Byte 0: Total number of neighbor table entries
 # Byte 1: Starting point in the neighbor table
 # Byte 2: Number of neighbor table entries in the response
 # Byte 3 - end: List of neighbor table entries (as many as indicated in byte 2)

 self.__total_neighbors = int(data[0])
 # Ignore start index and get the number of entries in this response.
 n_items = int(data[2])
 if not n_items:
 # No entries in this response, try again?
 self.__get_next_neighbors()
 return True

 # Parse neighbors
 neighbors_starting_index = 3
 byte_index = neighbors_starting_index
 # Subtract the 3 first bytes: total number of entries, start index,
 # and the number of entries in this response
 n_neighbor_data_bytes = len(data) - 3

 while byte_index + 1 < n_neighbor_data_bytes:
 if byte_index + self.NEIGHBOR_BYTES_LEN \
 > n_neighbor_data_bytes + neighbors_starting_index:
 break

 neighbor = self.__parse_neighbor(
 data[byte_index:byte_index + self.NEIGHBOR_BYTES_LEN])
 # Do not add the node with Zigbee coordinator address "0000000000000000"
 # The coordinator is already received with its real 64-bit address
 if neighbor and neighbor.node.get_64bit_addr() != XBee64BitAddress.COORDINATOR_ADDRESS:
 self._logger.debug("Neighbor of '%s': %s (relation: %s, depth: %s, lqi: %s)",
 self._xbee, neighbor.node, neighbor.relationship.name,
 neighbor.depth, neighbor.lq)
 self.__neighbors.append(neighbor)
 if self.__cb:
 self.__cb(self._xbee, neighbor)

 byte_index += self.NEIGHBOR_BYTES_LEN
 self.__index += 1

 # Check if we already have all the neighbors
 if self.__index < self.__total_neighbors:
 self.__get_next_neighbors()

 return False

 return True

 def _perform_finish_actions(self):
 """
 Override.

 .. seealso::
 | :meth:`._ZDOCommand._perform_finish_actions`
 """

 def _notify_process_finished(self, zdo_cb):
 """
 Override.

 .. seealso::
 | :meth:`._ZDOCommand._notify_process_finished`
 """
 if zdo_cb:
 zdo_cb(self._xbee, self.__neighbors, self._error)

 def __parse_neighbor(self, data):
 """
 Parses the given bytearray and returns a neighbor.

 Args:
 data (bytearray): Bytearray with data to parse.

 Returns:
 :class:`.Neighbor`: The neighbor or `None` if not found.
 """
 # Bytes 0 - 7: Extended PAN ID (little endian)
 # Bytes 8 - 15: 64-bit neighbor address (little endian)
 # Bytes 16 - 17: 16-bit neighbor address (little endian)
 # Byte 18: First setting byte:
 # * Bit 0 - 1: Neighbor role
 # * Bit 2 - 3: Receiver on when idle (indicates if the
 # neighbor's receiver is enabled during idle times)
 # * Bit 4 - 6: Relationship of this neighbor with the node
 # * Bit 7: Reserved
 # Byte 19: Second setting byte:
 # * Bit 0 - 1: Permit joining (indicates if the neighbor accepts join requests)
 # * Bit 2 - 7: Reserved
 # Byte 20: Depth (Tree depth of the neighbor. A value of 0 indicates
 # the neighbor is the coordinator)
 # Byte 21: LQI (The estimated link quality of data transmissions from this neighbor)
 x64 = XBee64BitAddress.from_bytes(*data[8:16][:: -1])
 x16 = XBee16BitAddress.from_bytes(data[17], data[16])
 role = Role.get(utils.get_int_from_byte(data[18], self.ROLE_FIELD_OFFSET,
 self.ROLE_FIELD_LEN))
 relationship = NeighborRelationship.get(
 utils.get_int_from_byte(data[18], self.RELATIONSHIP_FIELD_OFFSET,
 self.RELATIONSHIP_FIELD_LEN))
 depth = int(data[20])
 lqi = int(data[21])

 if not self._xbee.is_remote():
 node = self._xbee
 else:
 node = self._xbee.get_local_xbee_device()

 # Create a new remote node
 n_xb = RemoteZigBeeDevice(node, x64bit_addr=x64, x16bit_addr=x16)
 n_xb._role = role

 return Neighbor(n_xb, relationship, depth, lqi)

 def __get_next_neighbors(self):
 """
 Sends a new ZDO request to get more neighbor table entries.
 """
 if not self._xbee.is_remote():
 node = self._xbee
 else:
 node = self._xbee.get_local_xbee_device()

 try:
 node.send_packet(self._generate_zdo_packet())
 except XBeeException as exc:
 self._error = "Error sending ZDO command: " + str(exc)

[docs]class NeighborRelationship(Enum):
 """
 Enumerates the available relationships between two nodes of the same network.
 """

 PARENT = (0, "Neighbor is the parent")
 CHILD = (1, "Neighbor is a child")
 SIBLING = (2, "Neighbor is a sibling")
 UNDETERMINED = (3, "Neighbor has an unknown relationship")
 PREVIOUS_CHILD = (4, "Previous child")
 UNKNOWN = (-1, "Unknown")

 def __init__(self, identifier, name):
 self.__id = identifier
 self.__name = name

 @property
 def id(self):
 """
 Returns the identifier of the NeighborRelationship.

 Returns:
 Integer: NeighborRelationship identifier.
 """
 return self.__id

 @property
 def name(self):
 """
 Returns the name of the NeighborRelationship.

 Returns:
 String: NeighborRelationship name.
 """
 return self.__name

 @classmethod
 def get(cls, identifier):
 """
 Returns the NeighborRelationship for the given identifier.

 Args:
 identifier (Integer): Id corresponding to the neighbor relationship to get.

 Returns:
 :class:`.NeighborRelationship`: the NeighborRelationship with the
 given id. `None` if it does not exist.
 """
 for item in cls:
 if identifier == item.id:
 return item
 return None

[docs]class Neighbor:
 """
 This class represents a Zigbee or DigiMesh neighbor.

 This information is read from the neighbor table of a Zigbee XBee, or
 provided by the 'FN' command in a Digimesh XBee.
 """

 def __init__(self, node, relationship, depth, lq):
 """
 Class constructor. Instantiates a new :class:`.Neighbor` object with
 the provided parameters.

 Args:
 node (:class:`.RemoteXBeeDevice`): The neighbor node.
 relationship (:class:`.NeighborRelationship`): The relationship of
 this neighbor with the node.
 depth (Integer): The tree depth of the neighbor. A value of 0
 indicates the device is a Zigbee coordinator for the network.
 -1 means this is unknown.
 lq (Integer): The estimated link quality (LQI or RSSI) of data
 transmission from this neighbor.

 .. seealso::
 | :class:`.NeighborRelationship`
 | :class:`.RemoteXBeeDevice`
 """
 self._node = node
 self.__relationship = relationship
 self.__depth = depth
 self.__lq = lq

 def __str__(self):
 return "Node: {!s} (relationship: {!s}, depth: {!r}, lq: {!r})".format(
 self._node, self.__relationship.name, self.__depth, self.__lq)

 @property
 def node(self):
 """
 Gets the neighbor node.

 Returns:
 :class:`.RemoteXBeeDevice`: The node itself.

 .. seealso::
 | :class:`.RemoteXBeeDevice`
 """
 return self._node

 @property
 def relationship(self):
 """
 Gets the neighbor node.

 Returns:
 :class:`.NeighborRelationship`: The neighbor relationship.

 .. seealso::
 | :class:`.NeighborRelationship`
 """
 return self.__relationship

 @property
 def depth(self):
 """
 Gets the tree depth of the neighbor.

 Returns:
 Integer: The tree depth of the neighbor.
 """
 return self.__depth

 @property
 def lq(self):
 """
 Gets the estimated link quality (LQI or RSSI) of data transmission
 from this neighbor.

 Returns:
 Integer: The estimated link quality of data transmission from this neighbor.
 """
 return self.__lq

[docs]class NeighborFinder:
 """
 This class performs a find neighbors (FN) of an XBee. This action requires
 an XBee and optionally a find timeout.

 The process works only in DigiMesh.
 """

 DEFAULT_TIMEOUT = 20 # seconds

 _global_frame_id = 1

 _logger = logging.getLogger(__name__)

 def __init__(self, xbee, timeout=DEFAULT_TIMEOUT):
 """
 Class constructor. Instantiates a new :class:`.NeighborFinder` object
 with the provided parameters.

 Args:
 xbee (class:`.XBeeDevice` or class:`.RemoteXBeeDevice`): The XBee
 to get neighbors from.
 timeout(Float): The timeout for the process in seconds.

 Raises:
 OperationNotSupportedException: If the process is not supported in the XBee.
 TypeError: If the `xbee` is not a `.AbstractXBeeDevice`.
 ValueError: If `xbee` is `None`.
 ValueError: If `timeout` is less than 0.
 """
 if not xbee:
 raise ValueError("XBee cannot be None")
 if not isinstance(xbee, (XBeeDevice, RemoteXBeeDevice)):
 raise TypeError("The xbee must be an XBeeDevice or a RemoteXBeeDevice"
 "not {!r}".format(xbee.__class__.__name__))
 if xbee.get_protocol() not in (XBeeProtocol.DIGI_MESH, XBeeProtocol.XLR_DM,
 XBeeProtocol.XTEND_DM, XBeeProtocol.SX):
 raise OperationNotSupportedException(
 message="Find neighbors is not supported in %s"
 % xbee.get_protocol().description)
 if timeout < 0:
 raise ValueError("Timeout cannot be negative")

 self.__xbee = xbee
 self.__timeout = timeout

 self.__running = False
 self.__error = None
 self.__fn_thread = None
 self.__lock = threading.Event()
 self.__received_answer = False
 self.__neighbors = []
 self.__cb = None

 self.__current_frame_id = self._global_frame_id
 self.__class__._global_frame_id = self.__class__._global_frame_id + 1
 if self.__class__._global_frame_id == 0xFF:
 self.__class__._global_frame_id = 1

 @property
 def running(self):
 """
 Returns whether this find neighbors process is running.

 Returns:
 Boolean: `True` if it is running, `False` otherwise.
 """
 return self.__running

 @property
 def error(self):
 """
 Returns the error string if any.

 Returns:
 String: The error string.
 """
 return self.__error

[docs] def stop(self):
 """
 Stops the find neighbors process if it is running.
 """
 self.__lock.set()

 if self.__fn_thread and self.__running:
 self.__fn_thread.join()
 self.__fn_thread = None

[docs] def get_neighbors(self, neighbor_cb=None, finished_cb=None):
 """
 Returns the neighbors of the XBee. If `neighbor_cb` is not defined,
 the process blocks until the complete neighbor table is read.

 Args:
 neighbor_cb (Function, optional, default=`None`): Method called
 when a new neighbor is received. Receives two arguments:

 * The XBee that owns this new neighbor.
 * The new neighbor.

 finished_cb (Function, optional, default=`None`): Method to execute
 when the process finishes. Receives three arguments:

 * The XBee that executed the FN command.
 * A list with the discovered neighbors.
 * An error message if something went wrong.

 Returns:
 List: List of :class:`.Neighbor` when `neighbor_cb` is not defined,
 `None` otherwise (in this case neighbors are received in the callback)

 .. seealso::
 | :class:`.Neighbor`
 """
 self.__cb = neighbor_cb

 if neighbor_cb:
 self.__fn_thread = threading.Thread(
 target=self.__send_command,
 kwargs={'finished_cb': finished_cb},
 daemon=True)
 self.__fn_thread.start()
 else:
 self.__send_command(finished_cb=finished_cb)

 return self.__neighbors

 def __send_command(self, finished_cb=None):
 """
 Sends the FN command.

 Args:
 finished_cb (Function, optional): Method to execute when the
 process finishes. Receives three arguments:

 * The XBee that executed the FN command.
 * A list with the discovered neighbors.
 * An error message if something went wrong.
 """
 self.__lock.clear()

 self.__running = True
 self.__error = None
 self.__received_answer = False
 self.__neighbors = []

 if not self.__xbee.is_remote():
 node = self.__xbee
 else:
 node = self.__xbee.get_local_xbee_device()

 node.add_packet_received_callback(self.__fn_packet_cb)

 try:
 node.send_packet(self.__generate_fn_packet())

 self.__lock.wait(self.__timeout)

 if not self.__received_answer:
 if not self.__error:
 self.__error = "%s command answer not received" % ATStringCommand.FN.command
 return
 except XBeeException as exc:
 self.__error = "Error sending %s command: %s" % (ATStringCommand.FN.command, str(exc))
 finally:
 node.del_packet_received_callback(self.__fn_packet_cb)
 if finished_cb:
 finished_cb(self.__xbee, self.__neighbors, self.__error)
 self.__running = False

 def __generate_fn_packet(self):
 """
 Generates the AT command packet or remote AT command packet.

 Returns:
 :class:`.RemoteATCommandPacket` or :class:`.ATCommandPacket`:
 The packet to send.
 """
 if self.__xbee.is_remote():
 return RemoteATCommandPacket(
 self.__current_frame_id, self.__xbee.get_64bit_addr(),
 XBee16BitAddress.UNKNOWN_ADDRESS, TransmitOptions.NONE.value,
 ATStringCommand.FN.command)

 return ATCommPacket(self.__current_frame_id, ATStringCommand.FN.command)

 def __parse_data(self, data):
 """
 Handles what to do with the received data.

 Args:
 data (bytearray): Byte array containing the frame data.
 """
 # Bytes 0 - 1: 16-bit neighbor address (always 0xFFFE)
 # Bytes 2 - 9: 64-bit neighbor address
 # Bytes 10 - x: Node identifier of the neighbor (ends with a 0x00 character)
 # Next 2 bytes: Neighbor parent 16-bit address (always 0xFFFE)
 # Next byte: Neighbor role:
 # * 0: Coordinator
 # * 1: Router
 # * 2: End device
 # Next byte: Status (reserved)
 # Next 2 bytes: Profile identifier
 # Next 2 bytes: Manufacturer identifier
 # Next 4 bytes: Digi device type (optional, depending on 'NO' settings)
 # Next byte: RSSI of last hop (optional, depending on 'NO' settings)

 # 64-bit address starts at index 2
 x64 = XBee64BitAddress(data[2:10])

 # Node ID starts at index 10
 i = 10
 # Node id: from 'i' to the next 0x00
 while data[i] != 0x00:
 i += 1
 node_id = data[10:i]
 i += 1 # The 0x00

 i += 2 # The parent address (not needed)

 # Role is the next byte
 role = Role.get(utils.bytes_to_int(data[i:i + 1]))
 i += 1

 i += 1 # The status byte
 i += 2 # The profile identifier
 i += 2 # The manufacturer identifier

 # Check if the Digi device type and/or the RSSI are included
 if len(data) >= i + 5:
 # Both included
 rssi = utils.bytes_to_int(data[i+4:i+5])
 elif len(data) >= i + 4:
 # Only Digi device types
 rssi = -9999
 elif len(data) >= i + 1:
 # Only the RSSI
 rssi = utils.bytes_to_int(data[i:i+1])
 else:
 # None of them
 rssi = -9999

 if not self.__xbee.is_remote():
 node = self.__xbee
 else:
 node = self.__xbee.get_local_xbee_device()

 # Create a new remote node
 n_xb = RemoteDigiMeshDevice(
 node, x64bit_addr=x64, node_id=node_id.decode('utf8', errors='ignore'))
 n_xb._role = role

 neighbor = Neighbor(n_xb, NeighborRelationship.SIBLING, -1, rssi)
 self.__neighbors.append(neighbor)
 self._logger.debug("Neighbor of '%s': %s (relation: %s, rssi: -%s)", self._xbee,
 neighbor.node, neighbor.relationship.name, neighbor.lq)

 if self.__cb:
 self.__cb(self.__xbee, neighbor)

 def __fn_packet_cb(self, frame):
 """
 Callback notified when a new frame is received.

 Args:
 frame (:class:`.XBeeAPIPacket`): The received packet.
 """
 if not self.__running:
 return

 frame_type = frame.get_frame_type()
 if frame_type in (ApiFrameType.AT_COMMAND_RESPONSE,
 ApiFrameType.REMOTE_AT_COMMAND_RESPONSE):

 self._logger.debug("Received '%s' frame: %s",
 frame.get_frame_type().description,
 utils.hex_to_string(frame.output()))

 # If frame ID does not match, discard: it is not the frame we are
 # waiting for
 if frame.frame_id != self.__current_frame_id:
 return
 # Check the command
 if frame.command != ATStringCommand.FN.command:
 return

 self.__received_answer = True

 # Check for error.
 if frame.status != ATCommandStatus.OK:
 self.__error = "Error executing %s command (status: %s (%d))" \
 % (ATStringCommand.FN.command,
 frame.status.description, frame.status.code)
 self.stop()
 return

 self.__parse_data(frame.command_value)

 Source code for digi.xbee.packets.aft

Copyright 2017-2020, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

from enum import Enum, unique
from digi.xbee.util import utils

[docs]@unique
class ApiFrameType(Enum):
 """
 This enumeration lists all the available frame types used in any XBee
 protocol.

 | Inherited properties:
 | **name** (String): the name (id) of this ApiFrameType.
 | **value** (String): the value of this ApiFrameType.

 """
 TX_64 = (0x00, "TX (Transmit) Request 64-bit address")
 TX_16 = (0x01, "TX (Transmit) Request 16-bit address")
 REMOTE_AT_COMMAND_REQUEST_WIFI = (
 0x07, "Remote AT Command Request (Wi-Fi)")
 AT_COMMAND = (0x08, "AT Command")
 AT_COMMAND_QUEUE = (0x09, "AT Command Queue")
 TRANSMIT_REQUEST = (0x10, "Transmit Request")
 EXPLICIT_ADDRESSING = (0x11, "Explicit Addressing Command Frame")
 REMOTE_AT_COMMAND_REQUEST = (0x17, "Remote AT Command Request")
 TX_SMS = (0x1F, "TX SMS")
 TX_IPV4 = (0x20, "TX IPv4")
 CREATE_SOURCE_ROUTE = (0x21, "Create Source Route")
 REGISTER_JOINING_DEVICE = (0x24, "Register Joining Device")
 SEND_DATA_REQUEST = (0x28, "Send Data Request")
 DEVICE_RESPONSE = (0x2A, "Device Response")
 USER_DATA_RELAY_REQUEST = (0x2D, "User Data Relay Request")
 FILE_SYSTEM_REQUEST = (0x3B, "File System Request")
 REMOTE_FILE_SYSTEM_REQUEST = (0x3C, "Remote File System Request")
 SOCKET_CREATE = (0x40, "Socket Create")
 SOCKET_OPTION_REQUEST = (0x41, "Socket Option Request")
 SOCKET_CONNECT = (0x42, "Socket Connect")
 SOCKET_CLOSE = (0x43, "Socket Close")
 SOCKET_SEND = (0x44, "Socket Send (Transmit)")
 SOCKET_SENDTO = (0x45, "Socket SendTo (Transmit Explicit Data): IPv4")
 SOCKET_BIND = (0x46, "Socket Bind/Listen")
 RX_64 = (0x80, "RX (Receive) Packet 64-bit Address")
 RX_16 = (0x81, "RX (Receive) Packet 16-bit Address")
 RX_IO_64 = (0x82, "IO Data Sample RX 64-bit Address Indicator")
 RX_IO_16 = (0x83, "IO Data Sample RX 16-bit Address Indicator")
 REMOTE_AT_COMMAND_RESPONSE_WIFI = (
 0x87, "Remote AT Command Response (Wi-Fi)")
 AT_COMMAND_RESPONSE = (0x88, "AT Command Response")
 TX_STATUS = (0x89, "TX (Transmit) Status")
 MODEM_STATUS = (0x8A, "Modem Status")
 TRANSMIT_STATUS = (0x8B, "Transmit Status")
 DIGIMESH_ROUTE_INFORMATION = (0x8D, "Route Information")
 IO_DATA_SAMPLE_RX_INDICATOR_WIFI = (
 0x8F, "IO Data Sample RX Indicator (Wi-Fi)")
 RECEIVE_PACKET = (0x90, "Receive Packet")
 EXPLICIT_RX_INDICATOR = (0x91, "Explicit RX Indicator")
 IO_DATA_SAMPLE_RX_INDICATOR = (0x92, "IO Data Sample RX Indicator")
 REMOTE_AT_COMMAND_RESPONSE = (0x97, "Remote Command Response")
 RX_SMS = (0x9F, "RX SMS")
 OTA_FIRMWARE_UPDATE_STATUS = (0xA0, "OTA Firmware Update Status")
 ROUTE_RECORD_INDICATOR = (0xA1, "Route Record Indicator")
 REGISTER_JOINING_DEVICE_STATUS = (0xA4, "Register Joining Device Status")
 USER_DATA_RELAY_OUTPUT = (0xAD, "User Data Relay Output")
 RX_IPV4 = (0xB0, "RX IPv4")
 SEND_DATA_RESPONSE = (0xB8, "Send Data Response")
 DEVICE_REQUEST = (0xB9, "Device Request")
 DEVICE_RESPONSE_STATUS = (0xBA, "Device Response Status")
 FILE_SYSTEM_RESPONSE = (0xBB, "File System Response")
 REMOTE_FILE_SYSTEM_RESPONSE = (0xBC, "Remote File System Response")
 SOCKET_CREATE_RESPONSE = (0xC0, "Socket Create Response")
 SOCKET_OPTION_RESPONSE = (0xC1, "Socket Option Response")
 SOCKET_CONNECT_RESPONSE = (0xC2, "Socket Connect Response")
 SOCKET_CLOSE_RESPONSE = (0xC3, "Socket Close Response")
 SOCKET_LISTEN_RESPONSE = (0xC6, "Socket Listen Response")
 SOCKET_NEW_IPV4_CLIENT = (0xCC, "Socket New IPv4 Client")
 SOCKET_RECEIVE = (0xCD, "Socket Receive")
 SOCKET_RECEIVE_FROM = (0xCE, "Socket Receive From")
 SOCKET_STATE = (0xCF, "Socket State")
 FRAME_ERROR = (0xFE, "Frame Error")
 GENERIC = (0xFF, "Generic")
 UNKNOWN = (-1, "Unknown Packet")

 def __init__(self, code, description):
 self.__code = code
 self.__description = description

 @property
 def code(self):
 """
 Returns the code of the ApiFrameType element.

 Returns:
 Integer: the code of the ApiFrameType element.
 """
 return self.__code

 @property
 def description(self):
 """
 Returns the description of the ApiFrameType element.

 Returns:
 Integer: the description of the ApiFrameType element.
 """
 return self.__description

 @classmethod
 def get(cls, code):
 """
 Retrieves the api frame type associated to the given ID.

 Args:
 code (Integer): the code of the API frame type to get.

 Returns:
 :class:`.ApiFrameType`: the API frame type associated to the given
 code or `UNKNOWN` if not found.
 """
 for frame_type in cls:
 if code == frame_type.code:
 return frame_type
 return ApiFrameType.UNKNOWN

ApiFrameType.__doc__ += utils.doc_enum(ApiFrameType)

 Source code for digi.xbee.packets.base

Copyright 2017-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

from abc import ABCMeta, abstractmethod
from enum import Enum, unique

from digi.xbee.packets.aft import ApiFrameType
from digi.xbee.models.atcomm import SpecialByte
from digi.xbee.models.mode import OperatingMode
from digi.xbee.exception import InvalidPacketException, InvalidOperatingModeException
from digi.xbee.util import utils

[docs]@unique
class DictKeys(Enum):
 """
 This enumeration contains all keys used in dictionaries returned by
 `to_dict()` method of :class:`.XBeePacket`.
 """

 ACK_TIMEOUT_COUNT = "ack_timeout_count"
 ADDITIONAL_DATA = "additional_data"
 ANALOG_MASK = "analog_mask"
 API_DATA = "api_spec_data"
 AT_CMD_STATUS = "at_command_status"
 BROADCAST_RADIUS = "broadcast_radius"
 BLOCK_NUMBER = "block_number"
 BOOTLOADER_MSG_TYPE = "bootloader_msg_type"
 BYTES_USED = "bytes_used"
 BYTES_FREE = "bytes_free"
 BYTES_BAD = "bytes_bad"
 CHECKSUM = "checksum"
 CLIENT_SOCKET_ID = "client_socket_id"
 CLUSTER_ID = "cluster_id"
 COMMAND = "at_command"
 CONTENT_TYPE = "content_type"
 CONTENT_TYPE_LENGTH = "content_type_length"
 DATA = "data"
 DC_STATUS = "device_cloud_status"
 DEST_ADDR = "dest_address"
 DEST_ADDR_TYPE = "dest_address_type"
 DEST_ENDPOINT = "dest_endpoint"
 DEST_INTERFACE = "dest_interface"
 DEST_IPV4_ADDR = "dest_ipv4_address"
 DEST_PORT = "dest_port"
 DIGITAL_MASK = "digital_mask"
 DS_STATUS = "ds_status"
 ENTRY = "entry"
 FILE_ID = "file_id"
 FLAGS = "flags"
 FRAME_ERROR = "frame_error"
 FRAME_ID = "fr_id"
 FRAME_SPEC_DATA = "fr_spec_data"
 FRAME_TYPE = "fr_type"
 FS_CMD = "fs_command"
 HASH = "hash"
 HEADER_BYTE = "header"
 HOPS = "hops"
 IP_PROTOCOL = "ip_protocol"
 KEY = "key"
 LENGTH = "length"
 MODEM_STATUS = "modem_status"
 NAME = "name"
 NEW_NAME = "new_name"
 NUM_OF_HOPS = "number_hops"
 NUM_SAMPLES = "num_samples"
 OFFSET = "offset"
 OPTIONS = "options"
 OPTION_DATA = "option_data"
 OPTION_ID = "option_id"
 PARAMETER = "parameter"
 PATH = "path"
 PATH_ID = "path_id"
 PATH_LENGTH = "path_length"
 PAYLOAD = "payload"
 PHONE_NUMBER = "phone_number"
 PROFILE_ID = "profile_id"
 RECEIVE_OPTIONS = "receive_options"
 REQUEST_ID = "request_id"
 REMOTE_ADDR = "remote_address"
 REMOTE_PORT = "remote_port"
 RESERVED = "reserved"
 RESPONDER_ADDR = "responder_address"
 RF_DATA = "rf_data"
 ROUTE_CMD_OPTIONS = "route_command_options"
 RSSI = "rssi"
 SIZE = "size"
 SOCKET_ID = "socket_id"
 SOURCE_ENDPOINT = "source_endpoint"
 SOURCE_INTERFACE = "source_interface"
 SRC_64BIT_ADDR = "src_x64_addr"
 SRC_ADDR = "src_address"
 SRC_EVENT = "src_event"
 SRC_IPV4_ADDR = "source_ipv4_address"
 SRC_PORT = "source_port"
 STATUS = "status"
 SUCCESSOR_ADDR = "successor_address"
 TARGET = "target"
 TARGET_64BIT_ADDR = "target_x64_addr"
 TRANSMIT_OPTIONS = "transmit_options"
 TRANSPORT = "transport"
 TRANS_R_COUNT = "transmit_retry_count"
 TIMESTAMP = "timestamp"
 TS_STATUS = "ts_status"
 TX_BLOCKED_COUNT = "tx_blocked_count"
 UPDATER_16BIT_ADDR = "updater_x16_addr"
 X16BIT_ADDR = "x16_addr"
 X64BIT_ADDR = "x64_addr"

[docs]class XBeePacket:
 """
 This abstract class represents the basic structure of an XBee packet.
 Derived classes should implement their own payload generation depending on
 their type.

 Generic actions like checksum compute or packet length calculation is
 performed here.
 """

 __HASH_SEED = 23

 __metaclass__ = ABCMeta
 __ESCAPE_BYTES = [i.value for i in SpecialByte]
 __ESCAPE_FACTOR = 0x20
 ESCAPE_BYTE = SpecialByte.ESCAPE_BYTE.code

 def __init__(self, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.XBeePacket` object.

 Args:
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.
 """
 self._op_mode = op_mode
 if op_mode not in (OperatingMode.API_MODE, OperatingMode.ESCAPED_API_MODE):
 self._op_mode = OperatingMode.API_MODE

 def __len__(self):
 """
 Returns the length value of the XBeePacket. The length is the number of
 bytes between the length field and the checksum field.

 Returns:
 Integer: length value of the XBeePacket.

 .. seealso::
 | :mod:`.factory`
 """
 return len(self.get_frame_spec_data())

 def __str__(self):
 """
 Returns the packet information as dictionary.

 Returns:
 Dictionary: the packet information.
 """
 return str(self.to_dict())

 def __eq__(self, other):
 """
 Returns whether the given object is equal to this one.

 Args:
 other: the object to compare.

 Returns:
 Boolean: `True` if the objects are equal, `False` otherwise.
 """
 if not isinstance(other, XBeePacket):
 return False
 return other.output() == self.output()

 def __hash__(self):
 """
 Returns a hash code value for the object.

 Returns:
 Integer: hash code value for the object.
 """
 res = self.__HASH_SEED
 for byte in self.output():
 res = 31 * (res + byte)
 return res

 @property
 def op_mode(self):
 """
 Retrieves the operating mode in which this packet was read.

 Returns:
 :class:`.OperatingMode`: The operating mode.
 """
 return self._op_mode

[docs] def get_checksum(self):
 """
 Returns the checksum value of this XBeePacket.
 The checksum is the last 8 bits of the sum of the bytes between the
 length field and the checksum field.

 Returns:
 Integer: checksum value of this XBeePacket.

 .. seealso::
 | :mod:`.factory`
 """
 return 0xFF - (sum(self.get_frame_spec_data()) & 0xFF)

[docs] def output(self, escaped=False):
 """
 Returns the raw bytearray of this XBeePacket, ready to be send by the
 serial port.

 Args:
 escaped (Boolean): indicates if the raw bytearray must be escaped.

 Returns:
 Bytearray: raw bytearray of the XBeePacket.
 """
 frame = self.__build_complete_frame_without_header(self.get_frame_spec_data())
 if escaped:
 frame = self._escape_data(frame)
 frame.insert(0, SpecialByte.HEADER_BYTE.code)
 return frame

[docs] def to_dict(self):
 """
 Returns a dictionary with all information of the XBeePacket fields.

 Returns:
 Dictionary: dictionary with all info of the XBeePacket fields.
 """
 return {DictKeys.HEADER_BYTE: SpecialByte.HEADER_BYTE.code,
 DictKeys.LENGTH: len(self),
 DictKeys.FRAME_SPEC_DATA: self._get_frame_spec_data_dict(),
 DictKeys.CHECKSUM: self.get_checksum()}

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Abstract method. Creates a full XBeePacket with the given parameters.
 This function ensures that the XBeePacket returned is valid and is well
 built (if not exceptions are raised).

 If _OPERATING_MODE is API2 (API escaped) this method des-escape 'raw'
 and build the XBeePacket. Then, you can use :meth:`.XBeePacket.output`
 to get the escaped bytearray or not escaped.

 Args:
 raw (Bytearray): bytearray with which the frame will be built.
 Must be a full frame represented by a bytearray.
 operating_mode (:class:`.OperatingMode`): The mode in which the
 frame ('byteArray') was captured.

 Returns:
 :class:`.XBeePacket`: the XBee packet created.

 Raises:
 InvalidPacketException: if something is wrong with `raw` and the
 packet cannot be built well.
 """
 raise NotImplementedError("Implement this function.")

[docs] @abstractmethod
 def get_frame_spec_data(self):
 """
 Returns the data between the length field and the checksum field as
 bytearray. This data is never escaped.

 Returns:
 Bytearray: the data between the length field and the checksum field
 as bytearray.

 .. seealso::
 | :mod:`.factory`
 """

 @abstractmethod
 def _get_frame_spec_data_dict(self):
 """
 Similar to :meth:`.XBeePacket.get_frame_spec_data` but returns the data
 as dictionary.

 Returns:
 Dictionary: the data between the length field and the checksum
 field as dictionary.
 """

 @staticmethod
 def _escape_data(data):
 """
 Escapes the bytearray 'data'.

 Args:
 data (Bytearray): the bytearray to escape.

 Returns:
 Bytearray: 'data' escaped.
 """
 esc_data = bytearray()
 for i in data:
 if i in XBeePacket.__ESCAPE_BYTES:
 esc_data.append(SpecialByte.ESCAPE_BYTE.code)
 esc_data.append(i ^ XBeePacket.__ESCAPE_FACTOR)
 else:
 esc_data.append(i)
 return esc_data

[docs] @staticmethod
 def unescape_data(data):
 """
 Un-escapes the provided bytearray data.

 Args:
 data (Bytearray): the bytearray to unescape.

 Returns:
 Bytearray: `data` unescaped.
 """
 new_data = bytearray(0)
 des_escape = False
 for byte in data:
 if byte == XBeePacket.ESCAPE_BYTE:
 des_escape = True
 else:
 new_data.append(byte ^ 0x20 if des_escape else byte)
 des_escape = False
 return new_data

 def __build_complete_frame_without_header(self, frame_spec_data):
 """
 Builds a complete non-escaped frame from the given frame specific data.
 Complete frame is:
 Start delimiter + length + frame specific data + checksum.

 Args:
 frame_spec_data (Bytearray): the frame specific data.

 Returns:
 Bytearray: the complete frame as bytearray.
 """
 frame = utils.int_to_length(len(frame_spec_data)) + frame_spec_data
 frame.append(self.get_checksum())
 return frame

[docs]class XBeeAPIPacket(XBeePacket):
 """
 This abstract class provides the basic structure of a API frame.
 Derived classes should implement their own methods to generate the API
 data and frame ID in case they support it.

 Basic operations such as frame type retrieval are performed in this class.

 .. seealso::
 | :class:`.XBeePacket`
 """
 __metaclass__ = ABCMeta

 def __init__(self, api_frame_type, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.XBeeAPIPacket` object
 with the provided parameters.

 Args:
 api_frame_type (:class:`.ApiFrameType` or Integer): The API frame
 type.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 .. seealso::
 | :class:`.ApiFrameType`
 | :class:`.XBeePacket`
 """
 super().__init__(op_mode=op_mode)
 # Check the type of the API frame type.
 if isinstance(api_frame_type, ApiFrameType):
 self._frame_type = api_frame_type
 self._frame_type_value = api_frame_type.code
 else:
 self._frame_type = ApiFrameType.get(api_frame_type)
 self._frame_type_value = api_frame_type
 self._frame_id = 0

[docs] def get_frame_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeePacket.get_frame_spec_data`
 """
 data = self._get_api_packet_spec_data()
 if self.needs_id():
 data.insert(0, self._frame_id)
 data.insert(0, self._frame_type_value)
 return data

[docs] def get_frame_type(self):
 """
 Returns the frame type of this packet.

 Returns:
 :class:`.ApiFrameType`: the frame type of this packet.

 .. seealso::
 | :class:`.ApiFrameType`
 """
 return self._frame_type

[docs] def get_frame_type_value(self):
 """
 Returns the frame type integer value of this packet.

 Returns:
 Integer: the frame type integer value of this packet.

 .. seealso::
 | :class:`.ApiFrameType`
 """
 return self._frame_type_value

 def _get_frame_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeePacket.get_frame_spec_data_dict`
 """
 return {DictKeys.FRAME_TYPE: self.get_frame_type(),
 DictKeys.FRAME_ID: self._frame_id if self.needs_id() else "NO ID",
 DictKeys.API_DATA: self._get_api_packet_spec_data_dict()}

[docs] def is_broadcast(self):
 """
 Returns whether this packet is broadcast or not.

 Returns:
 Boolean: `True` if this packet is broadcast, `False` otherwise.
 """
 return False

 @property
 def frame_id(self):
 """
 Returns the frame ID of the packet.

 Returns:
 Integer: the frame ID of the packet.
 """
 return self._frame_id

 @frame_id.setter
 def frame_id(self, frame_id):
 """
 Sets the frame ID of the packet.

 Args:
 frame_id (Integer): the new frame ID of the packet. Must be between
 0 and 255.

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame ID must be between 0 and 255.")
 self._frame_id = frame_id

 @staticmethod
 def _check_api_packet(raw, min_length=5):
 """
 Checks the not escaped bytearray 'raw' meets conditions.

 Args:
 raw (Bytearray): non-escaped bytearray to be checked.
 min_length (Integer): the minimum length of the packet in bytes.

 Raises:
 InvalidPacketException: if the bytearray length is less than 5.
 (start delim. + length (2 bytes) + frame type + checksum = 5 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).

 .. seealso::
 | :mod:`.factory`
 """
 if len(raw) < min_length:
 raise InvalidPacketException(
 message="Bytearray must have, at least, 5 of complete length "
 "(header, length, frameType, checksum)")

 if raw[0] & 0xFF != SpecialByte.HEADER_BYTE.code:
 raise InvalidPacketException(
 message="Bytearray must start with the header byte "
 "(SpecialByte.HEADER_BYTE.code)")

 # real frame specific data length
 real_length = len(raw[3:-1])
 # length is specified in the length field.
 length_field = utils.length_to_int(raw[1:3])
 if real_length != length_field:
 raise InvalidPacketException(
 message="The real length of this frame does not match the "
 "specified in length field (bytes 2 and 3) (real %d, "
 "length field %d)" % (real_length, length_field))

 checksum = 0xFF - (sum(raw[3:-1]) & 0xFF)
 if checksum != raw[-1]:
 raise InvalidPacketException(
 message="Wrong checksum (expected %02X, received %02X)" % (checksum, raw[-1]))

 @abstractmethod
 def _get_api_packet_spec_data(self):
 """
 Returns the frame specific data without frame type and frame ID fields.

 Returns:
 Bytearray: the frame specific data without frame type and frame ID fields.
 """

[docs] @abstractmethod
 def needs_id(self):
 """
 Returns whether the packet requires frame ID or not.

 Returns:
 Boolean: `True` if the packet needs frame ID, `False` otherwise.
 """

 @abstractmethod
 def _get_api_packet_spec_data_dict(self):
 """
 Similar to :meth:`XBeeAPIPacket._get_api_packet_spec_data` but returns
 data as dictionary or list.

 Returns:
 Dictionary: data as dictionary or list.
 """

[docs]class GenericXBeePacket(XBeeAPIPacket):
 """
 This class represents a basic and Generic XBee packet.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 5

 def __init__(self, data, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a :class:`.GenericXBeePacket` object
 with the provided parameters.

 Args:
 data (bytearray): the frame specific data without frame type and
 frame ID.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 .. seealso::
 | :mod:`.factory`
 | :class:`.XBeeAPIPacket`
 """
 super().__init__(api_frame_type=ApiFrameType.GENERIC, op_mode=op_mode)
 self.__data = data

[docs] @staticmethod
 def create_packet(raw, operating_mode=OperatingMode.API_MODE):
 """
 Override method.

 Returns:
 :class:`.GenericXBeePacket`: the GenericXBeePacket generated.

 Raises:
 InvalidPacketException: if the bytearray length is less than 5.
 (start delim. + length (2 bytes) + frame type + checksum = 5 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is different from
 :attr:`.ApiFrameType.GENERIC`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=GenericXBeePacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.GENERIC.code:
 raise InvalidPacketException(
 message="Wrong frame type, expected: %s. Value %d" %
 (ApiFrameType.GENERIC.description, ApiFrameType.GENERIC.code))

 return GenericXBeePacket(raw[4:-1], op_mode=operating_mode)

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 return bytearray(self.__data)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return False

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.RF_DATA: self.__data}

[docs]class UnknownXBeePacket(XBeeAPIPacket):
 """
 This class represents an unknown XBee packet.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 5

 def __init__(self, api_frame, data, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a :class:`.UnknownXBeePacket` object
 with the provided parameters.

 Args:
 api_frame (Integer): the API frame integer value of this packet.
 data (bytearray): the frame specific data without frame type and frame ID.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 .. seealso::
 | :mod:`.factory`
 | :class:`.XBeeAPIPacket`
 """
 super().__init__(api_frame_type=api_frame, op_mode=op_mode)
 self.__data = data

[docs] @staticmethod
 def create_packet(raw, operating_mode=OperatingMode.API_MODE):
 """
 Override method.

 Returns:
 :class:`.UnknownXBeePacket`: the UnknownXBeePacket generated.

 Raises:
 InvalidPacketException: if the bytearray length is less than 5.
 (start delim. + length (2 bytes) + frame type + checksum = 5 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=UnknownXBeePacket.__MIN_PACKET_LENGTH)

 return UnknownXBeePacket(raw[3], raw[4:-1], op_mode=operating_mode)

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 return bytearray(self.__data)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return False

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.RF_DATA: self.__data}

 Source code for digi.xbee.packets.cellular

Copyright 2017-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

import re

from digi.xbee.packets.base import XBeeAPIPacket, DictKeys
from digi.xbee.exception import InvalidOperatingModeException, InvalidPacketException
from digi.xbee.packets.aft import ApiFrameType
from digi.xbee.models.mode import OperatingMode
from digi.xbee.models.options import TransmitOptions
from digi.xbee.util import utils

PATTERN_PHONE_NUMBER = "^\+?\d+$"
"""Pattern used to validate the phone number parameter of SMS packets."""

[docs]class RXSMSPacket(XBeeAPIPacket):
 """
 This class represents an RX (Receive) SMS packet. Packet is built
 using the parameters of the constructor or providing a valid byte array.

 .. seealso::
 | :class:`.TXSMSPacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 25

 def __init__(self, phone_number, data, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.RXSMSPacket` object with
 the provided parameters.

 Args:
 phone_number (String): Phone number of the device that sent the SMS.
 data (String or bytearray): Packet data (text of the SMS).
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if length of `phone_number` is greater than 20.
 ValueError: if `phone_number` is not a valid phone number.
 """
 if len(phone_number) > 20:
 raise ValueError("Phone number length cannot be greater than 20 bytes")
 if not re.match(PATTERN_PHONE_NUMBER, phone_number):
 raise ValueError("Phone number invalid, only numbers and '+' prefix allowed.")
 super().__init__(ApiFrameType.RX_SMS, op_mode=op_mode)

 self.__phone_number = bytearray(20)
 self.__phone_number[0:len(phone_number)] = phone_number.encode(encoding="utf8")
 if isinstance(data, str):
 self.__data = data.encode('utf8', errors='ignore')
 else:
 self.__data = data

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.RXSMSPacket`

 Raises:
 InvalidPacketException: if the bytearray length is less than 25.
 (start delim + length (2 bytes) + frame type
 + phone number (20 bytes) + checksum = 25 bytes)
 InvalidPacketException: if the length field of `raw` is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of `raw` is not the
 header byte. See :class:`.SPECIAL_BYTE`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is different than
 :py:attr:`.ApiFrameType.RX_SMS`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=RXSMSPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.RX_SMS.code:
 raise InvalidPacketException(message="This packet is not an RXSMSPacket")

 return RXSMSPacket(raw[4:23].decode(encoding="utf8").replace("\0", ""),
 raw[24:-1], op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return False

[docs] def get_phone_number_byte_array(self):
 """
 Returns the phone number byte array.

 Returns:
 Bytearray: phone number of the device that sent the SMS.
 """
 return self.__phone_number

 @property
 def phone_number(self):
 """
 Returns the phone number of the device that sent the SMS.

 Returns:
 String: phone number of the device that sent the SMS.
 """
 return self.__phone_number.decode(encoding="utf8").replace("\0", "")

 @phone_number.setter
 def phone_number(self, phone_number):
 """
 Sets the phone number of the device that sent the SMS.

 Args:
 phone_number (String): the new phone number.

 Raises:
 ValueError: if length of `phone_number` is greater than 20.
 ValueError: if `phone_number` is not a valid phone number.
 """
 if len(phone_number) > 20:
 raise ValueError("Phone number length cannot be greater than 20 bytes")
 if not re.match(PATTERN_PHONE_NUMBER, phone_number):
 raise ValueError("Phone number invalid, only numbers and '+' prefix allowed.")

 self.__phone_number = bytearray(20)
 self.__phone_number[0:len(phone_number)] = phone_number.encode(encoding="utf8")

 @property
 def data(self):
 """
 Returns the data of the packet (SMS text).

 Returns:
 String: the data of the packet.
 """
 return self.__data.decode(encoding='utf8', errors='ignore')

 @data.setter
 def data(self, data):
 """
 Sets the data of the packet.

 Args:
 data (String or bytearrray): New data of the packet.
 """
 if isinstance(data, str):
 self.__data = data.encode('utf8', errors='ignore')
 else:
 self.__data = data

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_API_packet_spec_data`
 """
 ret = bytearray()
 ret += self.__phone_number
 if self.__data is not None:
 ret += self.__data
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_API_packet_spec_data_dict`
 """
 return {DictKeys.PHONE_NUMBER: self.__phone_number,
 DictKeys.RF_DATA: self.__data}

[docs]class TXSMSPacket(XBeeAPIPacket):
 """
 This class represents a TX (Transmit) SMS packet. Packet is built
 using the parameters of the constructor or providing a valid byte array.

 .. seealso::
 | :class:`.RXSMSPacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 27

 def __init__(self, frame_id, phone_number, data, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.TXSMSPacket` object with
 the provided parameters.

 Args:
 frame_id (Integer): the frame ID. Must be between 0 and 255.
 phone_number (String): the phone number.
 data (String or bytearray): this packet's data.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `frame_id` is not between 0 and 255.
 ValueError: if length of `phone_number` is greater than 20.
 ValueError: if `phone_number` is not a valid phone number.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame id must be between 0 and 255")
 if len(phone_number) > 20:
 raise ValueError("Phone number length cannot be greater than 20 bytes")
 if not re.match(PATTERN_PHONE_NUMBER, phone_number):
 raise ValueError("Phone number invalid, only numbers and '+' prefix allowed.")
 super().__init__(ApiFrameType.TX_SMS, op_mode=op_mode)

 self._frame_id = frame_id
 self.__tx_opts = TransmitOptions.NONE.value
 self.__phone_number = bytearray(20)
 self.__phone_number[0:len(phone_number)] = phone_number.encode(encoding="utf8")
 if isinstance(data, str):
 self.__data = data.encode('utf8', errors='ignore')
 else:
 self.__data = data

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.TXSMSPacket`

 Raises:
 InvalidPacketException: if the bytearray length is less than 27.
 (start delim, length (2 bytes), frame type, frame id,
 transmit options, phone number (20 bytes), checksum)
 InvalidPacketException: if the length field of `raw` is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of `raw` is not the
 header byte. See :class:`.SPECIAL_BYTE`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is different than
 :py:attr:`.ApiFrameType.TX_SMS`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=TXSMSPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.TX_SMS.code:
 raise InvalidPacketException(message="This packet is not a TXSMSPacket")

 data = None
 if len(raw) > TXSMSPacket.__MIN_PACKET_LENGTH:
 data = raw[26:-1]
 return TXSMSPacket(
 raw[4], raw[6:25].decode(encoding="utf8").replace("\0", ""), data)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

[docs] def get_phone_number_byte_array(self):
 """
 Returns the phone number byte array.

 Returns:
 Bytearray: phone number of the device that sent the SMS.
 """
 return self.__phone_number

 @property
 def phone_number(self):
 """
 Returns the phone number of the transmitter device.

 Returns:
 String: the phone number of the transmitter device.
 """
 return self.__phone_number.decode(encoding="utf8").replace("\0", "")

 @phone_number.setter
 def phone_number(self, phone_number):
 """
 Sets the phone number of the transmitter device.

 Args:
 phone_number (String): the new phone number.

 Raises:
 ValueError: if length of `phone_number` is greater than 20.
 ValueError: if `phone_number` is not a valid phone number.
 """
 if len(phone_number) > 20:
 raise ValueError("Phone number length cannot be greater than 20 bytes")
 if not re.match(PATTERN_PHONE_NUMBER, phone_number):
 raise ValueError("Phone number invalid, only numbers and '+' prefix allowed.")

 self.__phone_number = bytearray(20)
 self.__phone_number[0:len(phone_number)] = phone_number.encode(encoding="utf8")

 @property
 def data(self):
 """
 Returns the data of the packet (SMS text).

 Returns:
 Bytearray: packet's data.
 """
 return self.__data

 @data.setter
 def data(self, data):
 """
 Sets the data of the packet.

 Args:
 data (String or Bytearray): the new data of the packet.
 """
 if isinstance(data, str):
 self.__data = data.encode('utf8', errors='ignore')
 else:
 self.__data = data

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_API_packet_spec_data`
 """
 ret = utils.int_to_bytes(self.__tx_opts, num_bytes=1)
 ret += self.__phone_number
 if self.__data is not None:
 ret += self.__data
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_API_packet_spec_data_dict`
 """
 return {DictKeys.OPTIONS: self.__tx_opts,
 DictKeys.PHONE_NUMBER: self.__phone_number,
 DictKeys.RF_DATA: self.__data}

 Source code for digi.xbee.packets.common

Copyright 2017-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

from digi.xbee.models.mode import OperatingMode
from digi.xbee.models.address import XBee16BitAddress, XBee64BitAddress
from digi.xbee.models.status import ATCommandStatus, DiscoveryStatus, TransmitStatus, ModemStatus
from digi.xbee.packets.aft import ApiFrameType
from digi.xbee.packets.base import XBeeAPIPacket, DictKeys
from digi.xbee.util import utils
from digi.xbee.exception import InvalidOperatingModeException, InvalidPacketException
from digi.xbee.io import IOSample, IOLine

[docs]class ATCommPacket(XBeeAPIPacket):
 """
 This class represents an AT command packet.

 Used to query or set module parameters on the local device. This API
 command applies changes after executing the command. (Changes made to
 module parameters take effect once changes are applied.).

 Command response is received as an :class:`.ATCommResponsePacket`.

 .. seealso::
 | :class:`.ATCommResponsePacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 8

 def __init__(self, frame_id, command, parameter=None, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.ATCommPacket` object
 with the provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 command (String or bytearray): AT command of the packet.
 parameter (Bytearray, optional): the AT command parameter.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 ValueError: if length of `command` is different from 2.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """
 if not isinstance(command, (str, bytearray, bytes)):
 raise ValueError("Command must be a string or bytearray")
 if len(command) != 2:
 raise ValueError("Invalid command %s"
 % str(command, encoding='utf8', errors='ignore'))
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame id must be between 0 and 255.")

 super().__init__(ApiFrameType.AT_COMMAND, op_mode=op_mode)
 self.__cmd = _encode_at_cmd(command)
 self.__param = parameter
 self._frame_id = frame_id

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.ATCommPacket`

 Raises:
 InvalidPacketException: if the bytearray length is less than 8.
 (start delim. + length (2 bytes) + frame type
 + frame id + command (2 bytes) + checksum = 8 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is different from
 :attr:`.ApiFrameType.AT_COMMAND`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=ATCommPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.AT_COMMAND.code:
 raise InvalidPacketException(message="This packet is not an AT command packet.")

 return ATCommPacket(
 raw[4], raw[5:7],
 parameter=raw[7:-1] if len(raw) > ATCommPacket.__MIN_PACKET_LENGTH else None,
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 if self.__param is not None:
 return bytearray(self.__cmd) + self.__param
 return bytearray(self.__cmd)

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.COMMAND: self.__cmd,
 DictKeys.PARAMETER: list(self.__param) if self.__param is not None else None}

 @property
 def command(self):
 """
 Returns the AT command of the packet.

 Returns:
 String: the AT command of the packet.
 """
 return _decode_at_cmd(self.__cmd)

 @command.setter
 def command(self, command):
 """
 Sets the AT command of the packet.

 Args:
 command (String or bytearray): New AT command of the packet.
 Must have length = 2.

 Raises:
 ValueError: if length of `command` is different from 2.
 """
 if len(command) != 2:
 raise ValueError("Invalid command %s"
 % str(command, encoding='utf8', errors='ignore'))
 self.__cmd = _encode_at_cmd(command)

 @property
 def parameter(self):
 """
 Returns the parameter of the packet.

 Returns:
 Bytearray: the parameter of the packet.
 """
 return self.__param

 @parameter.setter
 def parameter(self, param):
 """
 Sets the parameter of the packet.

 Args:
 param (Bytearray): the new parameter of the packet.
 """
 self.__param = param

[docs]class ATCommQueuePacket(XBeeAPIPacket):
 """
 This class represents an AT command Queue packet.

 Used to query or set module parameters on the local device.

 In contrast to the :class:`.ATCommPacket` API packet, new parameter
 values are queued and not applied until either an :class:`.ATCommPacket`
 is sent or the `applyChanges()` method of the :class:`.XBeeDevice`
 class is issued.

 Command response is received as an :class:`.ATCommResponsePacket`.

 .. seealso::
 | :class:`.ATCommResponsePacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 8

 def __init__(self, frame_id, command, parameter=None, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.ATCommQueuePacket`
 object with the provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 command (String or bytearray): the AT command of the packet.
 parameter (Bytearray, optional): the AT command parameter. Optional.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 ValueError: if length of `command` is different from 2.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """
 if not isinstance(command, (str, bytearray, bytes)):
 raise ValueError("Command must be a string or bytearray")
 if len(command) != 2:
 raise ValueError("Invalid command %s"
 % str(command, encoding='utf8', errors='ignore'))
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame id must be between 0 and 255.")

 super().__init__(ApiFrameType.AT_COMMAND_QUEUE, op_mode=op_mode)
 self.__cmd = _encode_at_cmd(command)
 self.__param = parameter
 self._frame_id = frame_id

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.ATCommQueuePacket`

 Raises:
 InvalidPacketException: if the bytearray length is less than 8.
 (start delim. + length (2 bytes) + frame type
 + frame id + command + checksum = 8 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is different from
 :attr:`.ApiFrameType.AT_COMMAND_QUEUE`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=ATCommQueuePacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.AT_COMMAND_QUEUE.code:
 raise InvalidPacketException(message="This packet is not an AT command Queue packet.")

 return ATCommQueuePacket(
 raw[4], raw[5:7],
 parameter=raw[7:-1] if len(raw) > ATCommQueuePacket.__MIN_PACKET_LENGTH else None,
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 if self.__param is not None:
 return bytearray(self.__cmd) + self.__param
 return bytearray(self.__cmd)

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.COMMAND: self.__cmd,
 DictKeys.PARAMETER: list(self.__param) if self.__param is not None else None}

 @property
 def command(self):
 """
 Returns the AT command of the packet.

 Returns:
 String: the AT command of the packet.
 """
 return _decode_at_cmd(self.__cmd)

 @command.setter
 def command(self, command):
 """
 Sets the AT command of the packet.

 Args:
 command (String or bytearray): New AT command of the packet.
 Must have length = 2.

 Raises:
 ValueError: if length of `command` is different from 2.
 """
 if len(command) != 2:
 raise ValueError("Invalid command %s"
 % str(command, encoding='utf8', errors='ignore'))
 self.__cmd = _encode_at_cmd(command)

 @property
 def parameter(self):
 """
 Returns the parameter of the packet.

 Returns:
 Bytearray: the parameter of the packet.
 """
 return self.__param

 @parameter.setter
 def parameter(self, param):
 """
 Sets the parameter of the packet.

 Args:
 param (Bytearray): the new parameter of the packet.
 """
 self.__param = param

[docs]class ATCommResponsePacket(XBeeAPIPacket):
 """
 This class represents an AT command response packet.

 In response to an AT command message, the module will send an AT command
 response message. Some commands will send back multiple frames (for example,
 the `ND` - Node Discover command).

 This packet is received in response of an :class:`.ATCommPacket`.

 Response also includes an :class:`.ATCommandStatus` object with the status
 of the AT command.

 .. seealso::
 | :class:`.ATCommPacket`
 | :class:`.ATCommandStatus`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 9

 def __init__(self, frame_id, command, response_status=ATCommandStatus.OK,
 comm_value=None, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.ATCommResponsePacket`
 object with the provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet. Must be between 0 and 255.
 command (String or bytearray): the AT command of the packet.
 response_status (:class:`.ATCommandStatus` or Integer): the status of the AT command.
 comm_value (Bytearray, optional): the AT command response value.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 ValueError: if length of `command` is different from 2.

 .. seealso::
 | :class:`.ATCommandStatus`
 | :class:`.XBeeAPIPacket`
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame id must be between 0 and 255.")
 if not isinstance(command, (str, bytearray, bytes)):
 raise ValueError("Command must be a string or bytearray")
 if len(command) != 2:
 raise ValueError("Invalid command %s"
 % str(command, encoding='utf8', errors='ignore'))
 if response_status is None:
 response_status = ATCommandStatus.OK.code
 elif not isinstance(response_status, (ATCommandStatus, int)):
 raise TypeError("Response status must be ATCommandStatus or int not {!r}".format(
 response_status.__class__.__name__))

 super().__init__(ApiFrameType.AT_COMMAND_RESPONSE, op_mode=op_mode)
 self._frame_id = frame_id
 self.__cmd = _encode_at_cmd(command)
 if isinstance(response_status, ATCommandStatus):
 self.__resp_st = response_status.code
 elif 0 <= response_status <= 255:
 self.__resp_st = response_status
 else:
 raise ValueError("Response status must be between 0 and 255.")
 self.__comm_val = comm_value

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.ATCommResponsePacket`

 Raises:
 InvalidPacketException: if the bytearray length is less than 9.
 (start delim. + length (2 bytes) + frame type + frame id
 + at command (2 bytes) + command status + checksum = 9 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is different from
 :attr:`.ApiFrameType.AT_COMMAND_RESPONSE`.
 InvalidPacketException: if the command status field is not a valid
 value. See :class:`.ATCommandStatus`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=ATCommResponsePacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.AT_COMMAND_RESPONSE.code:
 raise InvalidPacketException(
 message="This packet is not an AT command response packet.")
 if ATCommandStatus.get(raw[7]) is None:
 raise InvalidPacketException(message="Invalid command status.")

 return ATCommResponsePacket(
 raw[4], raw[5:7], raw[7],
 comm_value=raw[8:-1] if len(raw) > ATCommResponsePacket.__MIN_PACKET_LENGTH else None,
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = bytearray(self.__cmd)
 ret.append(self.__resp_st)
 if self.__comm_val is not None:
 ret += self.__comm_val
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.COMMAND: self.__cmd,
 DictKeys.AT_CMD_STATUS: self.__resp_st,
 DictKeys.RF_DATA: list(self.__comm_val) if self.__comm_val is not None else None}

 @property
 def command(self):
 """
 Returns the AT command of the packet.

 Returns:
 String: the AT command of the packet.
 """
 return _decode_at_cmd(self.__cmd)

 @command.setter
 def command(self, command):
 """
 Sets the AT command of the packet.

 Args:
 command (String or bytearray): New AT command of the packet.
 Must have length = 2.

 Raises:
 ValueError: if length of `command` is different from 2.
 """
 if len(command) != 2:
 raise ValueError("Invalid command %s"
 % str(command, encoding='utf8', errors='ignore'))
 self.__cmd = _encode_at_cmd(command)

 @property
 def command_value(self):
 """
 Returns the AT command response value.

 Returns:
 Bytearray: the AT command response value.
 """
 return self.__comm_val

 @command_value.setter
 def command_value(self, __comm_value):
 """
 Sets the AT command response value.

 Args:
 __comm_value (Bytearray): the new AT command response value.
 """
 self.__comm_val = __comm_value

 @property
 def status(self):
 """
 Returns the AT command response status of the packet.

 Returns:
 :class:`.ATCommandStatus`: the AT command response status of the packet.

 .. seealso::
 | :class:`.ATCommandStatus`
 """
 return ATCommandStatus.get(self.__resp_st)

 @property
 def real_status(self):
 """
 Returns the AT command response status of the packet.

 Returns:
 Integer: the AT command response status of the packet.
 """
 return self.__resp_st

 @status.setter
 def status(self, response_status):
 """
 Sets the AT command response status of the packet

 Args:
 response_status (:class:`.ATCommandStatus`) : the new AT command
 response status of the packet.

 .. seealso::
 | :class:`.ATCommandStatus`
 """
 if response_status is None:
 raise ValueError("Response status cannot be None")

 if isinstance(response_status, ATCommandStatus):
 self.__resp_st = response_status.code
 elif isinstance(response_status, int):
 if 0 <= response_status <= 255:
 self.__resp_st = response_status
 else:
 raise ValueError("Response status must be between 0 and 255.")
 else:
 raise TypeError(
 "Response status must be ATCommandStatus or int not {!r}".
 format(response_status.__class__.__name__))

[docs]class ReceivePacket(XBeeAPIPacket):
 """
 This class represents a receive packet. Packet is built using the parameters
 of the constructor or providing a valid byte array.

 When the module receives an RF packet, it is sent out the UART using this
 message type.

 This packet is received when external devices send transmit request
 packets to this module.

 Among received data, some options can also be received indicating
 transmission parameters.

 .. seealso::
 | :class:`.TransmitPacket`
 | :class:`.ReceiveOptions`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 16

 def __init__(self, x64bit_addr, x16bit_addr, rx_options, rf_data=None,
 op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.ReceivePacket` object
 with the provided parameters.

 Args:
 x64bit_addr (:class:`.XBee64BitAddress`): the 64-bit source address.
 x16bit_addr (:class:`.XBee16BitAddress`): the 16-bit source address.
 rx_options (Integer): bitfield indicating the receive options.
 rf_data (Bytearray, optional): received RF data.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 .. seealso::
 | :class:`.ReceiveOptions`
 | :class:`.XBee16BitAddress`
 | :class:`.XBee64BitAddress`
 | :class:`.XBeeAPIPacket`
 """
 super().__init__(ApiFrameType.RECEIVE_PACKET, op_mode=op_mode)
 self.__x64bit_addr = x64bit_addr
 self.__x16bit_addr = x16bit_addr
 self.__rx_opts = rx_options
 self.__data = rf_data

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.ATCommResponsePacket`

 Raises:
 InvalidPacketException: if the bytearray length is less than 16.
 (start delim. + length (2 bytes) + frame type + 64bit addr.
 + 16bit addr. + Receive options + checksum = 16 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.RECEIVE_PACKET`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=ReceivePacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.RECEIVE_PACKET.code:
 raise InvalidPacketException(message="This packet is not a receive packet.")
 return ReceivePacket(
 XBee64BitAddress(raw[4:12]), XBee16BitAddress(raw[12:14]), raw[14],
 rf_data=raw[15:-1] if len(raw) > ReceivePacket.__MIN_PACKET_LENGTH else None,
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return False

[docs] def is_broadcast(self):
 """
 Override method.

 .. seealso::
 | :meth:`XBeeAPIPacket.is_broadcast`
 """
 return utils.is_bit_enabled(self.__rx_opts, 1)

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = self.__x64bit_addr.address
 ret += self.__x16bit_addr.address
 ret.append(self.__rx_opts)
 if self.__data is not None:
 return ret + self.__data
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.X64BIT_ADDR: self.__x64bit_addr.address,
 DictKeys.X16BIT_ADDR: self.__x16bit_addr.address,
 DictKeys.RECEIVE_OPTIONS: self.__rx_opts,
 DictKeys.RF_DATA: list(self.__data) if self.__data is not None else None}

 @property
 def x64bit_source_addr(self):
 """
 Returns the 64-bit source address.

 Returns:
 :class:`.XBee64BitAddress`: the 64-bit source address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 return self.__x64bit_addr

 @x64bit_source_addr.setter
 def x64bit_source_addr(self, x64bit_addr):
 """
 Sets the 64-bit source address.

 Args:
 x64bit_addr (:class:`.XBee64BitAddress`): the new 64-bit source address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 self.__x64bit_addr = x64bit_addr

 @property
 def x16bit_source_addr(self):
 """
 Returns the 16-bit source address.

 Returns:
 :class:`.XBee16BitAddress`: the 16-bit source address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 return self.__x16bit_addr

 @x16bit_source_addr.setter
 def x16bit_source_addr(self, x16bit_addr):
 """
 Sets the 16-bit source address.

 Args:
 x16bit_addr (:class:`.XBee16BitAddress`): the new 16-bit source address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 self.__x16bit_addr = x16bit_addr

 @property
 def receive_options(self):
 """
 Returns the receive options bitfield.

 Returns:
 Integer: the receive options bitfield.

 .. seealso::
 | :class:`.ReceiveOptions`
 """
 return self.__rx_opts

 @receive_options.setter
 def receive_options(self, receive_options):
 """
 Sets the receive options bitfield.

 Args:
 receive_options (Integer): the new receive options bitfield.

 .. seealso::
 | :class:`.ReceiveOptions`
 """
 self.__rx_opts = receive_options

 @property
 def rf_data(self):
 """
 Returns the received RF data.

 Returns:
 Bytearray: the received RF data.
 """
 if self.__data is None:
 return None
 return self.__data.copy()

 @rf_data.setter
 def rf_data(self, rf_data):
 """
 Sets the received RF data.

 Args:
 rf_data (Bytearray): the new received RF data.
 """
 if rf_data is None:
 self.__data = None
 else:
 self.__data = rf_data.copy()

[docs]class RemoteATCommandPacket(XBeeAPIPacket):
 """
 This class represents a Remote AT command Request packet. Packet is built
 using the parameters of the constructor or providing a valid byte array.

 Used to query or set module parameters on a remote device. For parameter
 changes on the remote device to take effect, changes must be applied, either
 by setting the apply changes options bit, or by sending an `AC` command
 to the remote node.

 Remote command options are set as a bitfield.

 If configured, command response is received as a :class:`.RemoteATCommandResponsePacket`.

 .. seealso::
 | :class:`.RemoteATCommandResponsePacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 19

 def __init__(self, frame_id, x64bit_addr, x16bit_addr, tx_options,
 command, parameter=None, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.RemoteATCommandPacket`
 object with the provided parameters.

 Args:
 frame_id (integer): the frame ID of the packet.
 x64bit_addr (:class:`.XBee64BitAddress`): the 64-bit destination address.
 x16bit_addr (:class:`.XBee16BitAddress`): the 16-bit destination address.
 tx_options (Integer): bitfield of supported transmission options.
 command (String or bytearray): AT command to send.
 parameter (Bytearray, optional): AT command parameter.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 ValueError: if length of `command` is different from 2.

 .. seealso::
 | :class:`.RemoteATCmdOptions`
 | :class:`.XBee16BitAddress`
 | :class:`.XBee64BitAddress`
 | :class:`.XBeeAPIPacket`
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame id must be between 0 and 255.")
 if not isinstance(command, (str, bytearray, bytes)):
 raise ValueError("Command must be a string or bytearray")
 if len(command) != 2:
 raise ValueError("Invalid command %s"
 % str(command, encoding='utf8', errors='ignore'))

 super().__init__(ApiFrameType.REMOTE_AT_COMMAND_REQUEST, op_mode=op_mode)
 self._frame_id = frame_id
 self.__x64bit_addr = x64bit_addr
 self.__x16bit_addr = x16bit_addr
 self.__tx_opts = tx_options
 self.__cmd = _encode_at_cmd(command)
 self.__param = parameter

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.RemoteATCommandPacket`

 Raises:
 InvalidPacketException: if the Bytearray length is less than 19.
 (start delim. + length (2 bytes) + frame type + frame id
 + 64bit addr. + 16bit addr. + transmit options
 + command (2 bytes) + checksum = 19 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.REMOTE_AT_COMMAND_REQUEST`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=RemoteATCommandPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.REMOTE_AT_COMMAND_REQUEST.code:
 raise InvalidPacketException(
 message="This packet is not a remote AT command request packet.")

 return RemoteATCommandPacket(
 raw[4], XBee64BitAddress(raw[5:13]), XBee16BitAddress(raw[13:15]),
 raw[15], raw[16:18],
 parameter=raw[18:-1] if len(raw) > RemoteATCommandPacket.__MIN_PACKET_LENGTH else None,
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = self.__x64bit_addr.address
 ret += self.__x16bit_addr.address
 ret.append(self.__tx_opts)
 ret += self.__cmd

 return ret if self.__param is None else ret + self.__param

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.X64BIT_ADDR: self.__x64bit_addr.address,
 DictKeys.X16BIT_ADDR: self.__x16bit_addr.address,
 DictKeys.TRANSMIT_OPTIONS: self.__tx_opts,
 DictKeys.COMMAND: self.__cmd,
 DictKeys.PARAMETER: list(self.__param) if self.__param is not None else None}

 @property
 def x64bit_dest_addr(self):
 """
 Returns the 64-bit destination address.

 Returns:
 :class:`.XBee64BitAddress`: the 64-bit destination address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 return self.__x64bit_addr

 @x64bit_dest_addr.setter
 def x64bit_dest_addr(self, x64bit_addr):
 """
 Sets the 64-bit destination address.

 Args:
 x64bit_addr (:class:`.XBee64BitAddress`): the new 64-bit destination address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 self.__x64bit_addr = x64bit_addr

 @property
 def x16bit_dest_addr(self):
 """
 Returns the 16-bit destination address.

 Returns:
 :class:`.XBee16BitAddress`: the 16-bit destination address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 return self.__x16bit_addr

 @x16bit_dest_addr.setter
 def x16bit_dest_addr(self, x16bit_addr):
 """
 Sets the 16-bit destination address.

 Args:
 x16bit_addr (:class:`.XBee16BitAddress`): the new 16-bit destination address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 self.__x16bit_addr = x16bit_addr

 @property
 def transmit_options(self):
 """
 Returns the transmit options bitfield.

 Returns:
 Integer: the transmit options bitfield.

 .. seealso::
 | :class:`.RemoteATCmdOptions`
 """
 return self.__tx_opts

 @transmit_options.setter
 def transmit_options(self, transmit_options):
 """
 Sets the transmit options bitfield.

 Args:
 transmit_options (Integer): the new transmit options bitfield.

 .. seealso::
 | :class:`.RemoteATCmdOptions`
 """
 self.__tx_opts = transmit_options

 @property
 def parameter(self):
 """
 Returns the AT command parameter.

 Returns:
 Bytearray: the AT command parameter.
 """
 return self.__param

 @parameter.setter
 def parameter(self, parameter):
 """
 Sets the AT command parameter.

 Args:
 parameter (Bytearray): the new AT command parameter.
 """
 self.__param = parameter

 @property
 def command(self):
 """
 Returns the AT command.

 Returns:
 String: the AT command.
 """
 return _decode_at_cmd(self.__cmd)

 @command.setter
 def command(self, command):
 """
 Sets the AT command.

 Args:
 command (String or bytearray): New AT command.
 """
 if len(command) != 2:
 raise ValueError("Invalid command %s"
 % str(command, encoding='utf8', errors='ignore'))
 self.__cmd = _encode_at_cmd(command)

[docs]class RemoteATCommandResponsePacket(XBeeAPIPacket):
 """
 This class represents a remote AT command response packet. Packet is built
 using the parameters of the constructor or providing a valid byte array.

 If a module receives a remote command response RF data frame in response
 to a remote AT command request, the module will send a remote AT command
 response message out the UART. Some commands may send back multiple frames,
 for example, Node Discover (`ND`) command.

 This packet is received in response of a :class:`.RemoteATCommandPacket`.

 Response also includes an object with the status of the AT command.

 .. seealso::
 | :class:`.RemoteATCommandPacket`
 | :class:`.ATCommandStatus`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 19

 def __init__(self, frame_id, x64bit_addr, x16bit_addr, command,
 resp_status, comm_value=None, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new
 :class:`.RemoteATCommandResponsePacket` object with the provided
 parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 x64bit_addr (:class:`.XBee64BitAddress`): the 64-bit source address
 x16bit_addr (:class:`.XBee16BitAddress`): the 16-bit source address.
 command (String or bytearray): the AT command of the packet.
 resp_status (:class:`.ATCommandStatus` or Integer): the status of the AT command.
 comm_value (Bytearray, optional): the AT command response value. Optional.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 ValueError: if length of `command` is different from 2.

 .. seealso::
 | :class:`.ATCommandStatus`
 | :class:`.XBee16BitAddress`
 | :class:`.XBee64BitAddress`
 | :class:`.XBeeAPIPacket`
 """
 if frame_id > 255 or frame_id < 0:
 raise ValueError("frame_id must be between 0 and 255.")
 if not isinstance(command, (str, bytearray, bytes)):
 raise ValueError("Command must be a string or bytearray")
 if len(command) != 2:
 raise ValueError("Invalid command %s"
 % str(command, encoding='utf8', errors='ignore'))
 if resp_status is None:
 resp_status = ATCommandStatus.OK.code
 elif not isinstance(resp_status, (ATCommandStatus, int)):
 raise TypeError("Response status must be ATCommandStatus or int not {!r}".format(
 resp_status.__class__.__name__))

 super().__init__(ApiFrameType.REMOTE_AT_COMMAND_RESPONSE, op_mode=op_mode)
 self._frame_id = frame_id
 self.__x64bit_addr = x64bit_addr
 self.__x16bit_addr = x16bit_addr
 self.__cmd = _encode_at_cmd(command)
 if isinstance(resp_status, ATCommandStatus):
 self.__resp_st = resp_status.code
 elif 0 <= resp_status <= 255:
 self.__resp_st = resp_status
 else:
 raise ValueError("Response status must be between 0 and 255.")
 self.__comm_val = comm_value

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.RemoteATCommandResponsePacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 19.
 (start delim. + length (2 bytes) + frame type + frame id
 + 64bit addr. + 16bit addr. + receive options
 + command (2 bytes) + checksum = 19 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.REMOTE_AT_COMMAND_RESPONSE`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=RemoteATCommandResponsePacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.REMOTE_AT_COMMAND_RESPONSE.code:
 raise InvalidPacketException(
 message="This packet is not a remote AT command response packet.")

 value = None
 if len(raw) > RemoteATCommandResponsePacket.__MIN_PACKET_LENGTH:
 value = raw[18:-1]

 return RemoteATCommandResponsePacket(
 raw[4], XBee64BitAddress(raw[5:13]), XBee16BitAddress(raw[13:15]),
 raw[15:17], raw[17], comm_value=value, op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = self.__x64bit_addr.address
 ret += self.__x16bit_addr.address
 ret += self.__cmd
 ret.append(self.__resp_st)
 if self.__comm_val is not None:
 ret += self.__comm_val
 return ret

 def _get_api_packet_spec_data_dict(self):
 return {DictKeys.X64BIT_ADDR: self.__x64bit_addr.address,
 DictKeys.X16BIT_ADDR: self.__x16bit_addr.address,
 DictKeys.COMMAND: self.__cmd,
 DictKeys.AT_CMD_STATUS: self.__resp_st,
 DictKeys.RF_DATA: list(self.__comm_val) if self.__comm_val is not None else None}

 @property
 def command(self):
 """
 Returns the AT command of the packet.

 Returns:
 String: the AT command of the packet.
 """
 return _decode_at_cmd(self.__cmd)

 @command.setter
 def command(self, command):
 """
 Sets the AT command of the packet.

 Args:
 command (String or bytearray): New AT command of the packet.
 Must have length = 2.

 Raises:
 ValueError: if length of `command` is different from 2.
 """
 if len(command) != 2:
 raise ValueError("Invalid command %s"
 % str(command, encoding='utf8', errors='ignore'))
 self.__cmd = _encode_at_cmd(command)

 @property
 def command_value(self):
 """
 Returns the AT command response value.

 Returns:
 Bytearray: the AT command response value.
 """
 return self.__comm_val

 @command_value.setter
 def command_value(self, comm_value):
 """
 Sets the AT command response value.

 Args:
 comm_value (Bytearray): the new AT command response value.
 """
 self.__comm_val = comm_value

 @property
 def status(self):
 """
 Returns the AT command response status of the packet.

 Returns:
 :class:`.ATCommandStatus`: the AT command response status of the packet.

 .. seealso::
 | :class:`.ATCommandStatus`
 """
 return ATCommandStatus.get(self.__resp_st)

 @property
 def real_status(self):
 """
 Returns the AT command response status of the packet.

 Returns:
 Integer: the AT command response status of the packet.
 """
 return self.__resp_st

 @status.setter
 def status(self, response_status):
 """
 Sets the AT command response status of the packet

 Args:
 response_status (:class:`.ATCommandStatus`) : the new AT command
 response status of the packet.

 .. seealso::
 | :class:`.ATCommandStatus`
 """
 if response_status is None:
 raise ValueError("Response status cannot be None")

 if isinstance(response_status, ATCommandStatus):
 self.__resp_st = response_status.code
 elif isinstance(response_status, int):
 if 0 <= response_status <= 255:
 self.__resp_st = response_status
 else:
 raise ValueError("Response status must be between 0 and 255.")
 else:
 raise TypeError(
 "Response status must be ATCommandStatus or int not {!r}".
 format(response_status.__class__.__name__))

 @property
 def x64bit_source_addr(self):
 """
 Returns the 64-bit source address.

 Returns:
 :class:`.XBee64BitAddress`: the 64-bit source address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 return self.__x64bit_addr

 @x64bit_source_addr.setter
 def x64bit_source_addr(self, x64bit_addr):
 """
 Sets the 64-bit source address.

 Args:
 x64bit_addr (:class:`.XBee64BitAddress`): the new 64-bit source address

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 self.__x64bit_addr = x64bit_addr

 @property
 def x16bit_source_addr(self):
 """
 Returns the 16-bit source address.

 Returns:
 :class:`.XBee16BitAddress`: the 16-bit source address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 return self.__x16bit_addr

 @x16bit_source_addr.setter
 def x16bit_source_addr(self, x16bit_addr):
 """
 Sets the 16-bit source address.

 Args:
 x16bit_addr (:class:`.XBee16BitAddress`): the new 16-bit source address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 self.__x16bit_addr = x16bit_addr

[docs]class TransmitPacket(XBeeAPIPacket):
 """
 This class represents a transmit request packet. Packet is built using the
 parameters of the constructor or providing a valid API byte array.

 A transmit request API frame causes the module to send data as an RF
 packet to the specified destination.

 The 64-bit destination address should be set to `0x000000000000FFFF`
 for a broadcast transmission (to all devices).

 The coordinator can be addressed by either setting the 64-bit address to
 `0x0000000000000000` and the 16-bit address to `0xFFFE`, OR by setting the
 64-bit address to the coordinator's 64-bit address and the 16-bit address
 to `0x0000`.

 For all other transmissions, setting the 16-bit address to the correct
 16-bit address can help improve performance when transmitting to multiple
 destinations.

 If a 16-bit address is not known, this field should be set to
 `0xFFFE` (unknown).

 The transmit status frame (:attr:`.ApiFrameType.TRANSMIT_STATUS`) will
 indicate the discovered 16-bit address, if successful (see :class:`.TransmitStatusPacket`).

 The broadcast radius can be set from `0` up to `NH`. If set to `0`, the
 value of `NH` specifies the broadcast radius (recommended). This parameter
 is only used for broadcast transmissions.

 The maximum number of payload bytes can be read with the `NP` command.

 Several transmit options can be set using the transmit options bitfield.

 .. seealso::
 | :class:`.TransmitOptions`
 | :attr:`.XBee16BitAddress.COORDINATOR_ADDRESS`
 | :attr:`.XBee16BitAddress.UNKNOWN_ADDRESS`
 | :attr:`.XBee64BitAddress.BROADCAST_ADDRESS`
 | :attr:`.XBee64BitAddress.COORDINATOR_ADDRESS`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 18

 def __init__(self, frame_id, x64bit_addr, x16bit_addr, broadcast_radius,
 tx_options, rf_data=None, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.TransmitPacket` object
 with the provided parameters.

 Args:
 frame_id (integer): the frame ID of the packet.
 x64bit_addr (:class:`.XBee64BitAddress`): the 64-bit destination address.
 x16bit_addr (:class:`.XBee16BitAddress`): the 16-bit destination address.
 broadcast_radius (Integer): maximum number of hops a broadcast transmission can occur.
 tx_options (Integer): bitfield of supported transmission options.
 rf_data (Bytearray, optional): RF data that is sent to the destination device.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 .. seealso::
 | :class:`.TransmitOptions`
 | :class:`.XBee16BitAddress`
 | :class:`.XBee64BitAddress`
 | :class:`.XBeeAPIPacket`

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 """
 if frame_id > 255 or frame_id < 0:
 raise ValueError("frame_id must be between 0 and 255.")

 super().__init__(ApiFrameType.TRANSMIT_REQUEST, op_mode=op_mode)
 self._frame_id = frame_id
 self.__x64bit_addr = x64bit_addr
 self.__x16bit_addr = x16bit_addr
 self.__broadcast_radius = broadcast_radius
 self.__tx_opts = tx_options
 self.__data = rf_data

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.TransmitPacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 18.
 (start delim. + length (2 bytes) + frame type + frame id
 + 64bit addr. + 16bit addr. + broadcast radius
 + Transmit options + checksum = 18 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.TRANSMIT_REQUEST`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=TransmitPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.TRANSMIT_REQUEST.code:
 raise InvalidPacketException(message="This packet is not a transmit request packet.")

 return TransmitPacket(
 raw[4], XBee64BitAddress(raw[5:13]), XBee16BitAddress(raw[13:15]),
 raw[15], raw[16],
 rf_data=raw[17:-1] if len(raw) > TransmitPacket.__MIN_PACKET_LENGTH else None,
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = self.__x64bit_addr.address
 ret += self.__x16bit_addr.address
 ret.append(self.__broadcast_radius)
 ret.append(self.__tx_opts)
 if self.__data is not None:
 return ret + self.__data
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.X64BIT_ADDR: self.__x64bit_addr.address,
 DictKeys.X16BIT_ADDR: self.__x16bit_addr.address,
 DictKeys.BROADCAST_RADIUS: self.__broadcast_radius,
 DictKeys.TRANSMIT_OPTIONS: self.__tx_opts,
 DictKeys.RF_DATA: list(self.__data) if self.__data is not None else None}

 @property
 def rf_data(self):
 """
 Returns the RF data to send.

 Returns:
 Bytearray: the RF data to send.
 """
 if self.__data is None:
 return None
 return self.__data.copy()

 @rf_data.setter
 def rf_data(self, rf_data):
 """
 Sets the RF data to send.

 Args:
 rf_data (Bytearray): the new RF data to send.
 """
 if rf_data is None:
 self.__data = None
 else:
 self.__data = rf_data.copy()

 @property
 def transmit_options(self):
 """
 Returns the transmit options bitfield.

 Returns:
 Integer: the transmit options bitfield.

 .. seealso::
 | :class:`.TransmitOptions`
 """
 return self.__tx_opts

 @transmit_options.setter
 def transmit_options(self, transmit_options):
 """
 Sets the transmit options bitfield.

 Args:
 transmit_options (Integer): the new transmit options bitfield.

 .. seealso::
 | :class:`.TransmitOptions`
 """
 self.__tx_opts = transmit_options

 @property
 def broadcast_radius(self):
 """
 Returns the broadcast radius. Broadcast radius is the maximum number of
 hops a broadcast transmission.

 Returns:
 Integer: the broadcast radius.
 """
 return self.__broadcast_radius

 @broadcast_radius.setter
 def broadcast_radius(self, br_radius):
 """
 Sets the broadcast radius. Broadcast radius is the maximum number of
 hops a broadcast transmission.

 Args:
 br_radius (Integer): the new broadcast radius.
 """
 self.__broadcast_radius = br_radius

 @property
 def x64bit_dest_addr(self):
 """
 Returns the 64-bit destination address.

 Returns:
 :class:`.XBee64BitAddress`: the 64-bit destination address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 return self.__x64bit_addr

 @x64bit_dest_addr.setter
 def x64bit_dest_addr(self, x64bit_addr):
 """
 Sets the 64-bit destination address.

 Args:
 x64bit_addr (:class:`.XBee64BitAddress`): the new 64-bit destination address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 self.__x64bit_addr = x64bit_addr

 @property
 def x16bit_dest_addr(self):
 """
 Returns the 16-bit destination address.

 Returns:
 :class:`XBee16BitAddress`: the 16-bit destination address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 return self.__x16bit_addr

 @x16bit_dest_addr.setter
 def x16bit_dest_addr(self, x16bit_addr):
 """
 Sets the 16-bit destination address.

 Args:
 x16bit_addr (:class:`.XBee16BitAddress`): the new 16-bit destination address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 self.__x16bit_addr = x16bit_addr

[docs]class TransmitStatusPacket(XBeeAPIPacket):
 """
 This class represents a transmit status packet. Packet is built using the
 parameters of the constructor or providing a valid raw byte array.

 When a Transmit Request is completed, the module sends a transmit status
 message. This message will indicate if the packet was transmitted
 successfully or if there was a failure.

 This packet is the response to standard and explicit transmit requests.

 .. seealso::
 | :class:`.TransmitPacket`
 """

 __MIN_PACKET_LENGTH = 11

 def __init__(self, frame_id, x16bit_addr, tx_retry_count,
 transmit_status=TransmitStatus.SUCCESS,
 discovery_status=DiscoveryStatus.NO_DISCOVERY_OVERHEAD,
 op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.TransmitStatusPacket`
 object with the provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 x16bit_addr (:class:`.XBee16BitAddress`): 16-bit network address
 the packet was delivered to.
 tx_retry_count (Integer): the number of application
 transmission retries that took place.
 transmit_status (:class:`.TransmitStatus`, optional): transmit
 status. Default: SUCCESS.
 discovery_status (:class:`DiscoveryStatus`, optional): discovery status.
 Default: NO_DISCOVERY_OVERHEAD.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.

 .. seealso::
 | :class:`.DiscoveryStatus`
 | :class:`.TransmitStatus`
 | :class:`.XBee16BitAddress`
 | :class:`.XBeeAPIPacket`
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame id must be between 0 and 255.")

 super().__init__(ApiFrameType.TRANSMIT_STATUS, op_mode=op_mode)
 self._frame_id = frame_id
 self.__x16bit_addr = x16bit_addr
 self.__tx_retry_count = tx_retry_count
 self.__tx_status = transmit_status
 self.__discovery_status = discovery_status

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.TransmitStatusPacket`

 Raises:
 InvalidPacketException: if the bytearray length is less than 11.
 (start delim. + length (2 bytes) + frame type + frame id
 + 16bit addr. + transmit retry count + delivery status
 + discovery status + checksum = 11 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.TRANSMIT_STATUS`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=TransmitStatusPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.TRANSMIT_STATUS.code:
 raise InvalidPacketException(message="This packet is not a transmit status packet.")

 return TransmitStatusPacket(raw[4], XBee16BitAddress(raw[5:7]), raw[7],
 transmit_status=TransmitStatus.get(raw[8]),
 discovery_status=DiscoveryStatus.get(raw[9]),
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = self.__x16bit_addr.address
 ret.append(self.__tx_retry_count)
 ret.append(self.__tx_status.code)
 ret.append(self.__discovery_status.code)
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.X16BIT_ADDR: self.__x16bit_addr.address,
 DictKeys.TRANS_R_COUNT: self.__tx_retry_count,
 DictKeys.TS_STATUS: self.__tx_status,
 DictKeys.DS_STATUS: self.__discovery_status}

 @property
 def x16bit_dest_addr(self):
 """
 Returns the 16-bit destination address.

 Returns:
 :class:`.XBee16BitAddress`: the 16-bit destination address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 return self.__x16bit_addr

 @x16bit_dest_addr.setter
 def x16bit_dest_addr(self, x16bit_addr):
 """
 Sets the 16-bit destination address.

 Args:
 x16bit_addr (:class:`.XBee16BitAddress`): the new 16-bit destination address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 self.__x16bit_addr = x16bit_addr

 @property
 def transmit_status(self):
 """
 Returns the transmit status.

 Returns:
 :class:`.TransmitStatus`: the transmit status.

 .. seealso::
 | :class:`.TransmitStatus`
 """
 return self.__tx_status

 @transmit_status.setter
 def transmit_status(self, transmit_status):
 """
 Sets the transmit status.

 Args:
 transmit_status (:class:`.TransmitStatus`): the new transmit status to set.

 .. seealso::
 | :class:`.TransmitStatus`
 """
 self.__tx_status = transmit_status

 @property
 def transmit_retry_count(self):
 """
 Returns the transmit retry count.

 Returns:
 Integer: the transmit retry count.
 """
 return self.__tx_retry_count

 @transmit_retry_count.setter
 def transmit_retry_count(self, transmit_retry_count):
 """
 Sets the transmit retry count.

 Args:
 transmit_retry_count (Integer): the new transmit retry count.
 """
 self.__tx_retry_count = transmit_retry_count

 @property
 def discovery_status(self):
 """
 Returns the discovery status.

 Returns:
 :class:`.DiscoveryStatus`: the discovery status.

 .. seealso::
 | :class:`.DiscoveryStatus`
 """
 return self.__discovery_status

 @discovery_status.setter
 def discovery_status(self, discovery_status):
 """
 Sets the discovery status.

 Args:
 discovery_status (:class:`.DiscoveryStatus`): the new discovery status to set.

 .. seealso::
 | :class:`.DiscoveryStatus`
 """
 self.__discovery_status = discovery_status

[docs]class ModemStatusPacket(XBeeAPIPacket):
 """
 This class represents a modem status packet. Packet is built using the
 parameters of the constructor or providing a valid API raw byte array.

 RF module status messages are sent from the module in response to specific
 conditions and indicates the state of the modem in that moment.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 6

 def __init__(self, modem_status, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.ModemStatusPacket`
 object with the provided parameters.

 Args:
 modem_status (:class:`.ModemStatus`): the modem status event.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 .. seealso::
 | :class:`.ModemStatus`
 | :class:`.XBeeAPIPacket`
 """
 super().__init__(ApiFrameType.MODEM_STATUS, op_mode=op_mode)
 self.__modem_status = modem_status

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.ModemStatusPacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 6.
 (start delim. + length (2 bytes) + frame type
 + modem status + checksum = 6 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.MODEM_STATUS`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=ModemStatusPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.MODEM_STATUS.code:
 raise InvalidPacketException(message="This packet is not a modem status packet.")

 return ModemStatusPacket(ModemStatus.get(raw[4]), op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return False

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return bytearray([self.__modem_status.code])

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.MODEM_STATUS: self.__modem_status}

 @property
 def modem_status(self):
 """
 Returns the modem status event.

 Returns:
 :class:`.ModemStatus`: The modem status event.

 .. seealso::
 | :class:`.ModemStatus`
 """
 return self.__modem_status

 @modem_status.setter
 def modem_status(self, modem_status):
 """
 Sets the modem status event.

 Args:
 modem_status (:class:`.ModemStatus`): the new modem status event to set.

 .. seealso::
 | :class:`.ModemStatus`
 """
 self.__modem_status = modem_status

[docs]class IODataSampleRxIndicatorPacket(XBeeAPIPacket):
 """
 This class represents an IO data sample RX indicator packet. Packet is built
 using the parameters of the constructor or providing a valid API byte array.

 When the module receives an IO sample frame from a remote device, it sends
 the sample out the UART using this frame type (when `AO=0`). Only modules
 running API firmware will send IO samples out the UART.

 Among received data, some options can also be received indicating
 transmission parameters.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 | :class:`.ReceiveOptions`
 """

 __MIN_PACKET_LENGTH = 20

 def __init__(self, x64bit_addr, x16bit_addr, rx_options, rf_data=None,
 op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new
 :class:`.IODataSampleRxIndicatorPacket` object with the provided parameters.

 Args:
 x64bit_addr (:class:`.XBee64BitAddress`): the 64-bit source address.
 x16bit_addr (:class:`.XBee16BitAddress`): the 16-bit source address.
 rx_options (Integer): bitfield indicating the receive options.
 rf_data (Bytearray, optional): received RF data.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `rf_data` is not `None` and it's not valid for
 create an :class:`.IOSample`.

 .. seealso::
 | :class:`.IOSample`
 | :class:`.ReceiveOptions`
 | :class:`.XBee16BitAddress`
 | :class:`.XBee64BitAddress`
 | :class:`.XBeeAPIPacket`
 """
 super().__init__(ApiFrameType.IO_DATA_SAMPLE_RX_INDICATOR, op_mode=op_mode)
 self.__x64bit_addr = x64bit_addr
 self.__x16bit_addr = x16bit_addr
 self.__rx_opts = rx_options
 self.__data = rf_data
 self.__io_sample = IOSample(rf_data) if rf_data is not None and len(rf_data) >= 5 else None

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.IODataSampleRxIndicatorPacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 20.
 (start delim. + length (2 bytes) + frame type + 64bit addr.
 + 16bit addr. + rf data (5 bytes) + checksum = 20 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.IO_DATA_SAMPLE_RX_INDICATOR`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=IODataSampleRxIndicatorPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.IO_DATA_SAMPLE_RX_INDICATOR.code:
 raise InvalidPacketException(
 message="This packet is not an IO data sample RX indicator packet.")

 return IODataSampleRxIndicatorPacket(
 XBee64BitAddress(raw[4:12]), XBee16BitAddress(raw[12:14]),
 raw[14], rf_data=raw[15:-1], op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return False

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = self.__x64bit_addr.address
 ret += self.__x16bit_addr.address
 ret.append(self.__rx_opts)
 if self.__data is not None:
 ret += self.__data
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 base = {DictKeys.X64BIT_ADDR: self.__x64bit_addr.address,
 DictKeys.X16BIT_ADDR: self.__x16bit_addr.address,
 DictKeys.RECEIVE_OPTIONS: self.__rx_opts}

 if self.__io_sample is not None:
 base[DictKeys.NUM_SAMPLES] = 1
 base[DictKeys.DIGITAL_MASK] = self.__io_sample.digital_mask
 base[DictKeys.ANALOG_MASK] = self.__io_sample.analog_mask

 # Digital values
 for i in range(16):
 if self.__io_sample.has_digital_value(IOLine.get(i)):
 base[IOLine.get(i).description + " digital value"] = \
 self.__io_sample.get_digital_value(IOLine.get(i)).name

 # Analog values
 for i in range(6):
 if self.__io_sample.has_analog_value(IOLine.get(i)):
 base[IOLine.get(i).description + " analog value"] = \
 self.__io_sample.get_analog_value(IOLine.get(i))

 # Power supply
 if self.__io_sample.has_power_supply_value():
 base["Power supply value "] = "%02X" % self.__io_sample.power_supply_value

 elif self.__data is not None:
 base[DictKeys.RF_DATA] = utils.hex_to_string(self.__data)

 return base

[docs] def is_broadcast(self):
 """
 Override method.

 .. seealso::
 | :meth:`XBeeAPIPacket.is_broadcast`
 """
 return utils.is_bit_enabled(self.__rx_opts, 1)

 @property
 def x64bit_source_addr(self):
 """
 Returns the 64-bit source address.

 Returns:
 :class:`.XBee64BitAddress`: the 64-bit source address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 return self.__x64bit_addr

 @x64bit_source_addr.setter
 def x64bit_source_addr(self, x64bit_addr):
 """
 Sets the 64-bit source address.

 Args:
 x64bit_addr (:class:`.XBee64BitAddress`): the new 64-bit source address

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 self.__x64bit_addr = x64bit_addr

 @property
 def x16bit_source_addr(self):
 """
 Returns the 16-bit source address.

 Returns:
 :class:`.XBee16BitAddress`: the 16-bit source address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 return self.__x16bit_addr

 @x16bit_source_addr.setter
 def x16bit_source_addr(self, x16bit_addr):
 """
 Sets the 16-bit source address.

 Args:
 x16bit_addr (:class:`.XBee16BitAddress`): the new 16-bit source address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 self.__x16bit_addr = x16bit_addr

 @property
 def receive_options(self):
 """
 Returns the receive options bitfield.

 Returns:
 Integer: the receive options bitfield.

 .. seealso::
 | :class:`.ReceiveOptions`
 """
 return self.__rx_opts

 @receive_options.setter
 def receive_options(self, receive_options):
 """
 Sets the receive options bitfield.

 Args:
 receive_options (Integer): the new receive options bitfield.

 .. seealso::
 | :class:`.ReceiveOptions`
 """
 self.__rx_opts = receive_options

 @property
 def rf_data(self):
 """
 Returns the received RF data.

 Returns:
 Bytearray: the received RF data.
 """
 if self.__data is None:
 return None
 return self.__data.copy()

 @rf_data.setter
 def rf_data(self, rf_data):
 """
 Sets the received RF data.

 Args:
 rf_data (Bytearray): the new received RF data.
 """
 if rf_data is None:
 self.__data = None
 else:
 self.__data = rf_data.copy()

 # Modify the ioSample accordingly
 if rf_data is not None and len(rf_data) >= 5:
 self.__io_sample = IOSample(self.__data)
 else:
 self.__io_sample = None

 @property
 def io_sample(self):
 """
 Returns the IO sample corresponding to the data contained in the packet.

 Returns:
 :class:`.IOSample`: the IO sample of the packet, `None` if the
 packet has not any data or if the sample could not be generated
 correctly.

 .. seealso::
 | :class:`.IOSample`
 """
 return self.__io_sample

 @io_sample.setter
 def io_sample(self, io_sample):
 """
 Sets the IO sample of the packet.

 Args:
 io_sample (:class:`.IOSample`): the new IO sample to set.

 .. seealso::
 | :class:`.IOSample`
 """
 self.__io_sample = io_sample

[docs]class ExplicitAddressingPacket(XBeeAPIPacket):
 """
 This class represents an explicit addressing command packet. Packet is
 built using the parameters of the constructor or providing a valid API
 payload.

 Allows application layer fields (endpoint and cluster ID) to be
 specified for a data transmission. Similar to the transmit request, but
 also requires application layer addressing fields to be specified
 (endpoints, cluster ID, profile ID). An explicit addressing request API
 frame causes the module to send data as an RF packet to the specified
 destination, using the specified source and destination endpoints, cluster
 ID, and profile ID.

 The 64-bit destination address should be set to `0x000000000000FFF` for
 a broadcast transmission (to all devices).

 The coordinator can be addressed by either setting the 64-bit address to
 `0x000000000000000` and the 16-bit address to `0xFFFE`, OR by setting the
 64-bit address to the coordinator's 64-bit address and the 16-bit address
 to `0x0000`.

 For all other transmissions, setting the 16-bit address to the right 16-bit
 address can help improve performance when transmitting to multiple destinations.

 If a 16-bit address is not known, this field should be set to
 `0xFFFE` (unknown).

 The transmit status frame (:attr:`.ApiFrameType.TRANSMIT_STATUS`) will
 indicate the discovered 16-bit address, if successful
 (see :class:`.TransmitStatusPacket`)).

 The broadcast radius can be set from `0` up to `NH`. If set to `0`, the
 value of `NH` specifies the broadcast radius (recommended). This parameter
 is only used for broadcast transmissions.

 The maximum number of payload bytes can be read with the `NP` command.
 Note: if source routing is used, the RF payload will be reduced by two
 bytes per intermediate hop in the source route.

 Several transmit options can be set using the transmit options bitfield.

 .. seealso::
 | :class:`.TransmitOptions`
 | :attr:`.XBee16BitAddress.COORDINATOR_ADDRESS`
 | :attr:`.XBee16BitAddress.UNKNOWN_ADDRESS`
 | :attr:`.XBee64BitAddress.BROADCAST_ADDRESS`
 | :attr:`.XBee64BitAddress.COORDINATOR_ADDRESS`
 | :class:`.ExplicitRXIndicatorPacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 24

 def __init__(self, frame_id, x64bit_addr, x16bit_addr, src_endpoint,
 dest_endpoint, cluster_id, profile_id, broadcast_radius=0x00,
 transmit_options=0x00, rf_data=None, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. . Instantiates a new :class:`.ExplicitAddressingPacket`
 object with the provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 x64bit_addr (:class:`.XBee64BitAddress`): the 64-bit address.
 x16bit_addr (:class:`.XBee16BitAddress`): the 16-bit address.
 src_endpoint (Integer): source endpoint. 1 byte.
 dest_endpoint (Integer): destination endpoint. 1 byte.
 cluster_id (Integer): cluster id. Must be between 0 and 0xFFFF.
 profile_id (Integer): profile id. Must be between 0 and 0xFFFF.
 broadcast_radius (Integer): maximum number of hops a broadcast transmission can occur.
 transmit_options (Integer): bitfield of supported transmission options.
 rf_data (Bytearray, optional): RF data that is sent to the destination device.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `frame_id`, `src_endpoint` or `dst_endpoint` are less
 than 0 or greater than 255.
 ValueError: if lengths of `cluster_id` or `profile_id` (respectively)
 are less than 0 or greater than 0xFFFF.

 .. seealso::
 | :class:`.XBee16BitAddress`
 | :class:`.XBee64BitAddress`
 | :class:`.TransmitOptions`
 | :class:`.XBeeAPIPacket`
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame id must be between 0 and 255.")
 if src_endpoint < 0 or src_endpoint > 255:
 raise ValueError("Source endpoint must be between 0 and 255.")
 if dest_endpoint < 0 or dest_endpoint > 255:
 raise ValueError("Destination endpoint must be between 0 and 255.")
 if cluster_id < 0 or cluster_id > 0xFFFF:
 raise ValueError("Cluster id must be between 0 and 0xFFFF.")
 if profile_id < 0 or profile_id > 0xFFFF:
 raise ValueError("Profile id must be between 0 and 0xFFFF.")

 super().__init__(ApiFrameType.EXPLICIT_ADDRESSING, op_mode=op_mode)
 self._frame_id = frame_id
 self.__x64bit_addr = x64bit_addr
 self.__x16bit_addr = x16bit_addr
 self.__src_ed = src_endpoint
 self.__dest_ed = dest_endpoint
 self.__cluster_id = cluster_id
 self.__profile_id = profile_id
 self.__broadcast_radius = broadcast_radius
 self.__tx_opts = transmit_options
 self.__data = rf_data

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.ExplicitAddressingPacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 24.
 (start delim. + length (2 bytes) + frame type + frame ID
 + 64bit addr. + 16bit addr. + source endpoint + dest. endpoint
 + cluster ID (2 bytes) + profile ID (2 bytes)
 + broadcast radius + transmit options + checksum = 24 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is different from
 :attr:`.ApiFrameType.EXPLICIT_ADDRESSING`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=ExplicitAddressingPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.EXPLICIT_ADDRESSING.code:
 raise InvalidPacketException(message="This packet is not an explicit addressing packet")

 return ExplicitAddressingPacket(
 raw[4], XBee64BitAddress(raw[5:13]), XBee16BitAddress(raw[13:15]), raw[15], raw[16],
 utils.bytes_to_int(raw[17:19]), utils.bytes_to_int(raw[19:21]), raw[21], raw[22],
 rf_data=raw[23:-1] if len(raw) > ExplicitAddressingPacket.__MIN_PACKET_LENGTH else None)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 raw = self.__x64bit_addr.address
 raw += self.__x16bit_addr.address
 raw.append(self.__src_ed)
 raw.append(self.__dest_ed)
 raw += utils.int_to_bytes(self.__cluster_id, num_bytes=2)
 raw += utils.int_to_bytes(self.__profile_id, num_bytes=2)
 raw.append(self.__broadcast_radius)
 raw.append(self.__tx_opts)
 if self.__data is not None:
 raw += self.__data
 return raw

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.X64BIT_ADDR: self.__x64bit_addr.address,
 DictKeys.X16BIT_ADDR: self.__x16bit_addr.address,
 DictKeys.SOURCE_ENDPOINT: self.__src_ed,
 DictKeys.DEST_ENDPOINT: self.__dest_ed,
 DictKeys.CLUSTER_ID: self.__cluster_id,
 DictKeys.PROFILE_ID: self.__profile_id,
 DictKeys.BROADCAST_RADIUS: self.__broadcast_radius,
 DictKeys.TRANSMIT_OPTIONS: self.__tx_opts,
 DictKeys.RF_DATA: self.__data}

 @property
 def source_endpoint(self):
 """
 Returns the source endpoint of the transmission.

 Returns:
 Integer: the source endpoint of the transmission.
 """
 return self.__dest_ed

 @source_endpoint.setter
 def source_endpoint(self, source_endpoint):
 """
 Sets the source endpoint of the transmission.

 Args:
 source_endpoint (Integer): the new source endpoint of the transmission.
 """
 self.__src_ed = source_endpoint

 @property
 def dest_endpoint(self):
 """
 Returns the destination endpoint of the transmission.

 Returns:
 Integer: the destination endpoint of the transmission.
 """
 return self.__dest_ed

 @dest_endpoint.setter
 def dest_endpoint(self, dest_endpoint):
 """
 Sets the destination endpoint of the transmission.

 Args:
 dest_endpoint (Integer): the new destination endpoint of the transmission.
 """
 self.__dest_ed = dest_endpoint

 @property
 def cluster_id(self):
 """
 Returns the cluster ID of the transmission.

 Returns:
 Integer: the cluster ID of the transmission.
 """
 return self.__cluster_id

 @cluster_id.setter
 def cluster_id(self, cluster_id):
 """
 Sets the cluster ID of the transmission.

 Args:
 cluster_id (Integer): the new cluster ID of the transmission.
 """
 self.__cluster_id = cluster_id

 @property
 def profile_id(self):
 """
 Returns the profile ID of the transmission.

 Returns
 Integer: the profile ID of the transmission.
 """
 return self.__profile_id

 @profile_id.setter
 def profile_id(self, profile_id):
 """
 Sets the profile ID of the transmission.

 Args
 profile_id (Integer): the new profile ID of the transmission.
 """
 self.__profile_id = profile_id

 @property
 def rf_data(self):
 """
 Returns the RF data to send.

 Returns:
 Bytearray: the RF data to send.
 """
 if self.__data is None:
 return None
 return self.__data.copy()

 @rf_data.setter
 def rf_data(self, rf_data):
 """
 Sets the RF data to send.

 Args:
 rf_data (Bytearray): the new RF data to send.
 """
 if rf_data is None:
 self.__data = None
 else:
 self.__data = rf_data.copy()

 @property
 def transmit_options(self):
 """
 Returns the transmit options bitfield.

 Returns:
 Integer: the transmit options bitfield.

 .. seealso::
 | :class:`.TransmitOptions`
 """
 return self.__tx_opts

 @transmit_options.setter
 def transmit_options(self, transmit_options):
 """
 Sets the transmit options bitfield.

 Args:
 transmit_options (Integer): the new transmit options bitfield.

 .. seealso::
 | :class:`.TransmitOptions`
 """
 self.__tx_opts = transmit_options

 @property
 def broadcast_radius(self):
 """
 Returns the broadcast radius. Broadcast radius is the maximum number
 of hops a broadcast transmission.

 Returns:
 Integer: the broadcast radius.
 """
 return self.__broadcast_radius

 @broadcast_radius.setter
 def broadcast_radius(self, br_radius):
 """
 Sets the broadcast radius. Broadcast radius is the maximum number
 of hops a broadcast transmission.

 Args:
 br_radius (Integer): the new broadcast radius.
 """
 self.__broadcast_radius = br_radius

 @property
 def x64bit_dest_addr(self):
 """
 Returns the 64-bit destination address.

 Returns:
 :class:`.XBee64BitAddress`: the 64-bit destination address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 return self.__x64bit_addr

 @x64bit_dest_addr.setter
 def x64bit_dest_addr(self, x64bit_addr):
 """
 Sets the 64-bit destination address.

 Args:
 x64bit_addr (:class:`.XBee64BitAddress`): the new 64-bit destination address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 self.__x64bit_addr = x64bit_addr

 @property
 def x16bit_dest_addr(self):
 """
 Returns the 16-bit destination address.

 Returns:
 :class:`XBee16BitAddress`: the 16-bit destination address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 return self.__x16bit_addr

 @x16bit_dest_addr.setter
 def x16bit_dest_addr(self, x16bit_addr):
 """
 Sets the 16-bit destination address.

 Args:
 x16bit_addr (:class:`.XBee16BitAddress`): the new 16-bit destination address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 self.__x16bit_addr = x16bit_addr

[docs]class ExplicitRXIndicatorPacket(XBeeAPIPacket):
 """
 This class represents an explicit RX indicator packet. Packet is
 built using the parameters of the constructor or providing a valid API
 payload.

 When the modem receives an RF packet it is sent out the UART using this
 message type (when `AO=1`).

 This packet is received when external devices send explicit addressing
 packets to this module.

 Among received data, some options can also be received indicating
 transmission parameters.

 .. seealso::
 | :class:`.ReceiveOptions`
 | :class:`.ExplicitAddressingPacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 22

 def __init__(self, x64bit_addr, x16bit_addr, src_endpoint, dest_endpoint,
 cluster_id, profile_id, rx_options, rf_data=None,
 op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.ExplicitRXIndicatorPacket`
 object with the provided parameters.

 Args:
 x64bit_addr (:class:`.XBee64BitAddress`): the 64-bit source address.
 x16bit_addr (:class:`.XBee16BitAddress`): the 16-bit source address.
 src_endpoint (Integer): source endpoint. 1 byte.
 dest_endpoint (Integer): destination endpoint. 1 byte.
 cluster_id (Integer): cluster ID. Must be between 0 and 0xFFFF.
 profile_id (Integer): profile ID. Must be between 0 and 0xFFFF.
 rx_options (Integer): bitfield indicating the receive options.
 rf_data (Bytearray, optional): received RF data.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `src_endpoint` or `dst_endpoint` are less than 0 or greater than 255.
 ValueError: if lengths of `cluster_id` or `profile_id` (respectively)
 are different from 2.

 .. seealso::
 | :class:`.XBee16BitAddress`
 | :class:`.XBee64BitAddress`
 | :class:`.ReceiveOptions`
 | :class:`.XBeeAPIPacket`
 """
 if src_endpoint < 0 or src_endpoint > 255:
 raise ValueError("Source endpoint must be between 0 and 255.")
 if dest_endpoint < 0 or dest_endpoint > 255:
 raise ValueError("Destination endpoint must be between 0 and 255.")
 if cluster_id < 0 or cluster_id > 0xFFFF:
 raise ValueError("Cluster id must be between 0 and 0xFFFF.")
 if profile_id < 0 or profile_id > 0xFFFF:
 raise ValueError("Profile id must be between 0 and 0xFFFF.")

 super().__init__(ApiFrameType.EXPLICIT_RX_INDICATOR, op_mode=op_mode)
 self.__x64bit_addr = x64bit_addr
 self.__x16bit_addr = x16bit_addr
 self.__src_ed = src_endpoint
 self.__dest_ed = dest_endpoint
 self.__cluster_id = cluster_id
 self.__profile_id = profile_id
 self.__rx_opts = rx_options
 self.__data = rf_data

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.ExplicitRXIndicatorPacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 22.
 (start delim. + length (2 bytes) + frame type + 64bit addr.
 + 16bit addr. + source endpoint + dest. endpoint
 + cluster ID (2 bytes) + profile ID (2 bytes) + receive options
 + checksum = 22 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is different from
 :attr:`.ApiFrameType.EXPLICIT_RX_INDICATOR`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=ExplicitRXIndicatorPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.EXPLICIT_RX_INDICATOR.code:
 raise InvalidPacketException(
 message="This packet is not an explicit RX indicator packet.")

 return ExplicitRXIndicatorPacket(
 XBee64BitAddress(raw[4:12]), XBee16BitAddress(raw[12:14]), raw[14], raw[15],
 utils.bytes_to_int(raw[16:18]), utils.bytes_to_int(raw[18:20]), raw[20],
 rf_data=raw[21:-1] if len(raw) > ExplicitRXIndicatorPacket.__MIN_PACKET_LENGTH else None,
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return False

[docs] def is_broadcast(self):
 """
 Override method.

 .. seealso::
 | :meth:`XBeeAPIPacket.is_broadcast`
 """
 return utils.is_bit_enabled(self.__rx_opts, 1)

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 raw = self.__x64bit_addr.address
 raw += self.__x16bit_addr.address
 raw.append(self.__src_ed)
 raw.append(self.__dest_ed)
 raw += utils.int_to_bytes(self.__cluster_id, num_bytes=2)
 raw += utils.int_to_bytes(self.__profile_id, num_bytes=2)
 raw.append(self.__rx_opts)
 if self.__data is not None:
 raw += self.__data
 return raw

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.X64BIT_ADDR: self.__x64bit_addr.address,
 DictKeys.X16BIT_ADDR: self.__x16bit_addr.address,
 DictKeys.SOURCE_ENDPOINT: self.__src_ed,
 DictKeys.DEST_ENDPOINT: self.__dest_ed,
 DictKeys.CLUSTER_ID: self.__cluster_id,
 DictKeys.PROFILE_ID: self.__profile_id,
 DictKeys.RECEIVE_OPTIONS: self.__rx_opts,
 DictKeys.RF_DATA: self.__data}

 @property
 def x64bit_source_addr(self):
 """
 Returns the 64-bit source address.

 Returns:
 :class:`.XBee64BitAddress`: the 64-bit source address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 return self.__x64bit_addr

 @x64bit_source_addr.setter
 def x64bit_source_addr(self, x64bit_addr):
 """
 Sets the 64-bit source address.

 Args:
 x64bit_addr (:class:`.XBee64BitAddress`): the new 64-bit source address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 self.__x64bit_addr = x64bit_addr

 @property
 def x16bit_source_addr(self):
 """
 Returns the 16-bit source address.

 Returns:
 :class:`.XBee16BitAddress`: the 16-bit source address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 return self.__x16bit_addr

 @x16bit_source_addr.setter
 def x16bit_source_addr(self, x16bit_addr):
 """
 Sets the 16-bit source address.

 Args:
 x16bit_addr (:class:`.XBee16BitAddress`): the new 16-bit source address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 self.__x16bit_addr = x16bit_addr

 @property
 def source_endpoint(self):
 """
 Returns the source endpoint of the transmission.

 Returns:
 Integer: the source endpoint of the transmission.
 """
 return self.__src_ed

 @source_endpoint.setter
 def source_endpoint(self, source_endpoint):
 """
 Sets the source endpoint of the transmission.

 Args:
 source_endpoint (Integer): the new source endpoint of the transmission.
 """
 self.__src_ed = source_endpoint

 @property
 def dest_endpoint(self):
 """
 Returns the destination endpoint of the transmission.

 Returns:
 Integer: the destination endpoint of the transmission.
 """
 return self.__dest_ed

 @dest_endpoint.setter
 def dest_endpoint(self, dest_endpoint):
 """
 Sets the destination endpoint of the transmission.

 Args:
 dest_endpoint (Integer): the new destination endpoint of the transmission.
 """
 self.__dest_ed = dest_endpoint

 @property
 def cluster_id(self):
 """
 Returns the cluster ID of the transmission.

 Returns:
 Integer: the cluster ID of the transmission.
 """
 return self.__cluster_id

 @cluster_id.setter
 def cluster_id(self, cluster_id):
 """
 Sets the cluster ID of the transmission.

 Args:
 cluster_id (Integer): the new cluster ID of the transmission.
 """
 self.__cluster_id = cluster_id

 @property
 def profile_id(self):
 """
 Returns the profile ID of the transmission.

 Returns
 Integer: the profile ID of the transmission.
 """
 return self.__profile_id

 @profile_id.setter
 def profile_id(self, profile_id):
 """
 Sets the profile ID of the transmission.

 Args
 profile_id (Integer): the new profile ID of the transmission.
 """
 self.__profile_id = profile_id

 @property
 def receive_options(self):
 """
 Returns the receive options bitfield.

 Returns:
 Integer: the receive options bitfield.

 .. seealso::
 | :class:`.ReceiveOptions`
 """
 return self.__rx_opts

 @receive_options.setter
 def receive_options(self, receive_options):
 """
 Sets the receive options bitfield.

 Args:
 receive_options (Integer): the new receive options bitfield.

 .. seealso::
 | :class:`.ReceiveOptions`
 """
 self.__rx_opts = receive_options

 @property
 def rf_data(self):
 """
 Returns the received RF data.

 Returns:
 Bytearray: the received RF data.
 """
 if self.__data is None:
 return None
 return self.__data.copy()

 @rf_data.setter
 def rf_data(self, rf_data):
 """
 Sets the received RF data.

 Args:
 rf_data (Bytearray): the new received RF data.
 """
 if rf_data is None:
 self.__data = None
 else:
 self.__data = rf_data.copy()

def _decode_at_cmd(cmd_bytearray):
 """
 Decodes the given bytearray to an string with 2 characters.

 Args:
 cmd_bytearray (Bytearray): The bytearray to decode.

 Returns:
 String: The decoded AT command string.
 """
 cmd = cmd_bytearray.decode('utf8', errors='backslashreplace')[0:2]
 if len(cmd) != 2:
 # If the command is corrupted it may be an utf-8 valid character
 # which value is bigger than 0xFF, for example '€' 0xc280C. In this
 # situation, add a '?' as the second character not to throw an
 # exception when creating the package that is valid from the
 # conforming bytes point of view
 cmd += '?'

 return cmd

def _encode_at_cmd(cmd):
 """
 Encodes an string AT command to get a bytearray.

 Args:
 cmd (String or bytearray): The string to encode.

 Returns:
 Bytearray: A 2-length bytearray with the command.
 """
 if isinstance(cmd, str):
 cmd = cmd.encode(encoding='utf8', errors='ignore')
 while len(cmd) != 2:
 cmd += b'?'

 return cmd

 Source code for digi.xbee.packets.devicecloud

Copyright 2017-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

from digi.xbee.packets.base import XBeeAPIPacket, DictKeys
from digi.xbee.util import utils
from digi.xbee.exception import InvalidOperatingModeException, InvalidPacketException
from digi.xbee.packets.aft import ApiFrameType
from digi.xbee.models.mode import OperatingMode
from digi.xbee.models.status import DeviceCloudStatus, FrameError
from digi.xbee.models.options import SendDataRequestOptions

[docs]class DeviceRequestPacket(XBeeAPIPacket):
 """
 This class represents a device request packet. Packet is built
 using the parameters of the constructor or providing a valid API payload.

 This frame type is sent out the serial port when the XBee module receives
 a valid device request from Device Cloud.

 .. seealso::
 | :class:`.DeviceResponsePacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 9

 def __init__(self, request_id, target=None, request_data=None, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.DeviceRequestPacket`
 object with the provided parameters.

 Args:
 request_id (Integer): number that identifies the device request.
 (0 has no special meaning)
 target (String): device request target.
 request_data (Bytearray, optional): data of the request.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `request_id` is less than 0 or greater than 255.
 ValueError: if length of `target` is greater than 255.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """
 if request_id < 0 or request_id > 255:
 raise ValueError("Device request ID must be between 0 and 255.")

 if target is not None and len(target) > 255:
 raise ValueError("Target length cannot exceed 255 bytes.")

 super().__init__(ApiFrameType.DEVICE_REQUEST, op_mode=op_mode)
 self.__req_id = request_id
 self.__transport = 0x00 # Reserved.
 self.__flags = 0x00 # Reserved.
 self.__target = target
 self.__req_data = request_data

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.DeviceRequestPacket`

 Raises:
 InvalidPacketException: if the bytearray length is less than 9.
 (start delim. + length (2 bytes) + frame type + request id
 + transport + flags + target length + checksum = 9 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is different from
 :attr:`.ApiFrameType.DEVICE_REQUEST`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=DeviceRequestPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.DEVICE_REQUEST.code:
 raise InvalidPacketException(message="This packet is not a device request packet.")

 target_length = raw[7]

 return DeviceRequestPacket(
 raw[4], target=raw[8:8 + target_length].decode("utf8"),
 request_data=raw[8 + target_length:-1] if len(raw) > DeviceRequestPacket.__MIN_PACKET_LENGTH else None,
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return False

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = utils.int_to_bytes(self.__req_id, num_bytes=1)
 ret += utils.int_to_bytes(self.__transport, num_bytes=1)
 ret += utils.int_to_bytes(self.__flags, num_bytes=1)
 if self.__target is not None:
 ret += utils.int_to_bytes(len(self.__target), num_bytes=1)
 ret += bytearray(self.__target, encoding="utf8")
 else:
 ret += utils.int_to_bytes(0x00, num_bytes=1)
 if self.__req_data is not None:
 ret += self.__req_data

 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 See:
 :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.REQUEST_ID: self.__req_id,
 DictKeys.TRANSPORT: self.__transport,
 DictKeys.FLAGS: self.__flags,
 DictKeys.TARGET: self.__target,
 DictKeys.RF_DATA: list(self.__req_data) if self.__req_data is not None else None}

 @property
 def request_id(self):
 """
 Returns the request ID of the packet.

 Returns:
 Integer: the request ID of the packet.
 """
 return self.__req_id

 @request_id.setter
 def request_id(self, request_id):
 """
 Sets the request ID of the packet.

 Args:
 request_id (Integer): the new request ID of the packet. Must be between 0 and 255.

 Raises:
 ValueError: if `request_id` is less than 0 or greater than 255.
 """
 if request_id < 0 or request_id > 255:
 raise ValueError("Device request ID must be between 0 and 255.")
 self.__req_id = request_id

 @property
 def transport(self):
 """
 Returns the transport of the packet.

 Returns:
 Integer: the transport of the packet.
 """
 return self.__transport

 @property
 def flags(self):
 """
 Returns the flags of the packet.

 Returns:
 Integer: the flags of the packet.
 """
 return self.__flags

 @property
 def target(self):
 """
 Returns the device request target of the packet.

 Returns:
 String: the device request target of the packet.
 """
 return self.__target

 @target.setter
 def target(self, target):
 """
 Sets the device request target of the packet.

 Args:
 target (String): the new device request target of the packet.

 Raises:
 ValueError: if `target` length is greater than 255.
 """
 if target is not None and len(target) > 255:
 raise ValueError("Target length cannot exceed 255 bytes.")
 self.__target = target

 @property
 def request_data(self):
 """
 Returns the data of the device request.

 Returns:
 Bytearray: the data of the device request.
 """
 if self.__req_data is None:
 return None
 return self.__req_data.copy()

 @request_data.setter
 def request_data(self, request_data):
 """
 Sets the data of the device request.

 Args:
 request_data (Bytearray): the new data of the device request.
 """
 if request_data is None:
 self.__req_data = None
 else:
 self.__req_data = request_data.copy()

[docs]class DeviceResponsePacket(XBeeAPIPacket):
 """
 This class represents a device response packet. Packet is built
 using the parameters of the constructor or providing a valid API payload.

 This frame type is sent to the serial port by the host in response to the
 :class:`.DeviceRequestPacket`. It should be sent within five seconds to avoid
 a timeout error.

 .. seealso::
 | :class:`.DeviceRequestPacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 8

 def __init__(self, frame_id, request_id, response_data=None, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.DeviceResponsePacket`
 object with the provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 request_id (Integer): device Request ID. This number should match
 the device request ID in the device request. Otherwise, an
 error will occur. (0 has no special meaning)
 response_data (Bytearray, optional): data of the response.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 ValueError: if `request_id` is less than 0 or greater than 255.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame id must be between 0 and 255.")
 if request_id < 0 or request_id > 255:
 raise ValueError("Device request ID must be between 0 and 255.")

 super().__init__(ApiFrameType.DEVICE_RESPONSE, op_mode=op_mode)
 self._frame_id = frame_id
 self.__req_id = request_id
 self.__resp_data = response_data

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.DeviceResponsePacket`

 Raises:
 InvalidPacketException: if the bytearray length is less than 8.
 (start delim. + length (2 bytes) + frame type + frame id
 + request id + reserved + checksum = 8 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is different from
 :attr:`.ApiFrameType.DEVICE_RESPONSE`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=DeviceResponsePacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.DEVICE_RESPONSE.code:
 raise InvalidPacketException(message="This packet is not a device response packet.")

 return DeviceResponsePacket(
 raw[4], raw[5],
 response_data=raw[7:-1] if len(raw) > DeviceResponsePacket.__MIN_PACKET_LENGTH else None,
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = utils.int_to_bytes(self.__req_id, num_bytes=1)
 ret += utils.int_to_bytes(0x00, num_bytes=1)
 if self.__resp_data is not None:
 ret += self.__resp_data

 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.REQUEST_ID: self.__req_id,
 DictKeys.RESERVED: 0x00,
 DictKeys.RF_DATA: list(self.__resp_data) if self.__resp_data is not None else None}

 @property
 def request_id(self):
 """
 Returns the request ID of the packet.

 Returns:
 Integer: the request ID of the packet.
 """
 return self.__req_id

 @request_id.setter
 def request_id(self, request_id):
 """
 Sets the request ID of the packet.

 Args:
 request_id (Integer): the new request ID of the packet. Must be between 0 and 255.

 Raises:
 ValueError: if `request_id` is less than 0 or greater than 255.
 """
 if request_id < 0 or request_id > 255:
 raise ValueError("Device request ID must be between 0 and 255.")
 self.__req_id = request_id

 @property
 def request_data(self):
 """
 Returns the data of the device response.

 Returns:
 Bytearray: the data of the device response.
 """
 if self.__resp_data is None:
 return None
 return self.__resp_data.copy()

 @request_data.setter
 def request_data(self, response_data):
 """
 Sets the data of the device response.

 Args:
 response_data (Bytearray): the new data of the device response.
 """
 if response_data is None:
 self.__resp_data = None
 else:
 self.__resp_data = response_data.copy()

[docs]class DeviceResponseStatusPacket(XBeeAPIPacket):
 """
 This class represents a device response status packet. Packet is built
 using the parameters of the constructor or providing a valid API payload.

 This frame type is sent to the serial port after the serial port sends a
 :class:`.DeviceResponsePacket`.

 .. seealso::
 | :class:`.DeviceResponsePacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 7

 def __init__(self, frame_id, status, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.DeviceResponseStatusPacket`
 object with the provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 status (:class:`.DeviceCloudStatus`): device response status.

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.

 .. seealso::
 | :class:`.DeviceCloudStatus`
 | :class:`.XBeeAPIPacket`
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame id must be between 0 and 255.")

 super().__init__(ApiFrameType.DEVICE_RESPONSE_STATUS, op_mode=op_mode)
 self._frame_id = frame_id
 self.__status = status

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.DeviceResponseStatusPacket`

 Raises:
 InvalidPacketException: if the bytearray length is less than 7.
 (start delim. + length (2 bytes) + frame type + frame id
 + device response status + checksum = 7 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is different
 from :attr:`.ApiFrameType.DEVICE_RESPONSE_STATUS`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=DeviceResponseStatusPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.DEVICE_RESPONSE_STATUS.code:
 raise InvalidPacketException(
 message="This packet is not a device response status packet.")

 return DeviceResponseStatusPacket(
 raw[4], DeviceCloudStatus.get(raw[5]), op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 return utils.int_to_bytes(self.__status.code, num_bytes=1)

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 See:
 :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.DC_STATUS: self.__status}

 @property
 def status(self):
 """
 Returns the status of the device response packet.

 Returns:
 :class:`.DeviceCloudStatus`: the status of the device response packet.

 .. seealso::
 | :class:`.DeviceCloudStatus`
 """
 return self.__status

 @status.setter
 def status(self, status):
 """
 Sets the status of the device response packet.

 Args:
 status (:class:`.DeviceCloudStatus`): the new status of the device response packet.

 .. seealso::
 | :class:`.DeviceCloudStatus`
 """
 self.__status = status

[docs]class FrameErrorPacket(XBeeAPIPacket):
 """
 This class represents a frame error packet. Packet is built
 using the parameters of the constructor or providing a valid API payload.

 This frame type is sent to the serial port for any type of frame error.

 .. seealso::
 | :class:`.FrameError`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 6

 def __init__(self, frame_error, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.FrameErrorPacket` object
 with the provided parameters.

 Args:
 frame_error (:class:`.FrameError`): the frame error.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 .. seealso::
 | :class:`.FrameError`
 | :class:`.XBeeAPIPacket`
 """
 super().__init__(ApiFrameType.FRAME_ERROR, op_mode=op_mode)
 self.__frame_error = frame_error

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.FrameErrorPacket`

 Raises:
 InvalidPacketException: if the bytearray length is less than 6.
 (start delim. + length (2 bytes) + frame type + frame error
 + checksum = 6 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is different from
 :attr:`.ApiFrameType.FRAME_ERROR`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=FrameErrorPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.FRAME_ERROR.code:
 raise InvalidPacketException(message="This packet is not a frame error packet.")

 return FrameErrorPacket(FrameError.get(raw[4]), op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return False

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 return utils.int_to_bytes(self.__frame_error.code, num_bytes=1)

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.FRAME_ERROR: self.__frame_error}

 @property
 def error(self):
 """
 Returns the frame error of the packet.

 Returns:
 :class:`.FrameError`: the frame error of the packet.

 .. seealso::
 | :class:`.FrameError`
 """
 return self.__frame_error

 @error.setter
 def error(self, frame_error):
 """
 Sets the frame error of the packet.

 Args:
 frame_error (:class:`.FrameError`): the new frame error of the packet.

 .. seealso::
 | :class:`.FrameError`
 """
 self.__frame_error = frame_error

[docs]class SendDataRequestPacket(XBeeAPIPacket):
 """
 This class represents a send data request packet. Packet is built
 using the parameters of the constructor or providing a valid API payload.

 This frame type is used to send a file of the given name and type to
 Device Cloud.

 If the frame ID is non-zero, a :class:`.SendDataResponsePacket` will be
 received.

 .. seealso::
 | :class:`.SendDataResponsePacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 10

 def __init__(self, frame_id, path, content_type, options, file_data=None,
 op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.SendDataRequestPacket`
 object with the provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 path (String): path of the file to upload to Device Cloud.
 content_type (String): content type of the file to upload.
 options (:class:`.SendDataRequestOptions`): the action when uploading a file.
 file_data (Bytearray, optional): data of the file to upload.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame id must be between 0 and 255.")

 super().__init__(ApiFrameType.SEND_DATA_REQUEST, op_mode=op_mode)
 self._frame_id = frame_id
 self.__path = path
 self.__content_type = content_type
 self.__transport = 0x00 # Always TCP.
 self.__opts = options
 self.__file_data = file_data

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.SendDataRequestPacket`

 Raises:
 InvalidPacketException: if the bytearray length is less than 10.
 (start delim. + length (2 bytes) + frame type + frame id
 + path length + content type length + transport + options
 + checksum = 10 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is different from
 :attr:`.ApiFrameType.SEND_DATA_REQUEST`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=SendDataRequestPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.SEND_DATA_REQUEST.code:
 raise InvalidPacketException(message="This packet is not a send data request packet.")

 path_length = raw[5]
 content_type_length = raw[6 + path_length]
 return SendDataRequestPacket(
 raw[4], raw[6:6 + path_length].decode("utf8"),
 raw[6 + path_length + 1:6 + path_length + 1 + content_type_length].decode("utf8"),
 SendDataRequestOptions.get(raw[6 + path_length + 2 + content_type_length]),
 file_data=raw[6 + path_length + 3 + content_type_length:-1], op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 if self.__path is not None:
 ret = utils.int_to_bytes(len(self.__path), num_bytes=1)
 ret += bytearray(self.__path, encoding="utf8")
 else:
 ret = utils.int_to_bytes(0x00, num_bytes=1)
 if self.__content_type is not None:
 ret += utils.int_to_bytes(len(self.__content_type), num_bytes=1)
 ret += bytearray(self.__content_type, encoding="utf8")
 else:
 ret += utils.int_to_bytes(0x00, num_bytes=1)
 ret += utils.int_to_bytes(0x00, num_bytes=1) # Transport is always TCP
 ret += utils.int_to_bytes(self.__opts.code, num_bytes=1)
 if self.__file_data is not None:
 ret += self.__file_data

 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {
 DictKeys.PATH_LENGTH: len(self.__path) if self.__path else 0x00,
 DictKeys.PATH: self.__path if self.__path is not None else None,
 DictKeys.CONTENT_TYPE_LENGTH: len(self.__content_type) if self.__content_type else 0x00,
 DictKeys.CONTENT_TYPE: self.__content_type if self.__content_type is not None else None,
 DictKeys.TRANSPORT: 0x00,
 DictKeys.TRANSMIT_OPTIONS: self.__opts,
 DictKeys.RF_DATA: list(self.__file_data) if self.__file_data is not None else None}

 @property
 def path(self):
 """
 Returns the path of the file to upload to Device Cloud.

 Returns:
 String: the path of the file to upload to Device Cloud.
 """
 return self.__path

 @path.setter
 def path(self, path):
 """
 Sets the path of the file to upload to Device Cloud.

 Args:
 path (String): the new path of the file to upload to Device Cloud.
 """
 self.__path = path

 @property
 def content_type(self):
 """
 Returns the content type of the file to upload.

 Returns:
 String: the content type of the file to upload.
 """
 return self.__content_type

 @content_type.setter
 def content_type(self, content_type):
 """
 Sets the content type of the file to upload.

 Args:
 content_type (String): the new content type of the file to upload.
 """
 self.__content_type = content_type

 @property
 def options(self):
 """
 Returns the file upload operation options.

 Returns:
 :class:`.SendDataRequestOptions`: the file upload operation options.

 .. seealso::
 | :class:`.SendDataRequestOptions`
 """
 return self.__opts

 @options.setter
 def options(self, options):
 """
 Sets the file upload operation options.

 Args:
 options (:class:`.SendDataRequestOptions`): the new file upload operation options

 .. seealso::
 | :class:`.SendDataRequestOptions`
 """
 self.__opts = options

 @property
 def file_data(self):
 """
 Returns the data of the file to upload.

 Returns:
 Bytearray: the data of the file to upload.
 """
 if self.__file_data is None:
 return None
 return self.__file_data.copy()

 @file_data.setter
 def file_data(self, file_data):
 """
 Sets the data of the file to upload.

 Args:
 file_data (Bytearray): the new data of the file to upload.
 """
 if file_data is None:
 self.__file_data = None
 else:
 self.__file_data = file_data.copy()

[docs]class SendDataResponsePacket(XBeeAPIPacket):
 """
 This class represents a send data response packet. Packet is built
 using the parameters of the constructor or providing a valid API payload.

 This frame type is sent out the serial port in response to the
 :class:`.SendDataRequestPacket`, providing its frame ID is non-zero.

 .. seealso::
 | :class:`.SendDataRequestPacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 7

 def __init__(self, frame_id, status, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.SendDataResponsePacket`
 object with the provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 status (:class:`.DeviceCloudStatus`): the file upload status.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.

 .. seealso::
 | :class:`.DeviceCloudStatus`
 | :class:`.XBeeAPIPacket`
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame id must be between 0 and 255.")

 super().__init__(ApiFrameType.SEND_DATA_RESPONSE, op_mode=op_mode)
 self._frame_id = frame_id
 self.__status = status

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.SendDataResponsePacket`

 Raises:
 InvalidPacketException: if the bytearray length is less than 10.
 (start delim. + length (2 bytes) + frame type + frame id
 + status + checksum = 7 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is different from
 :attr:`.ApiFrameType.SEND_DATA_RESPONSE`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=SendDataResponsePacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.SEND_DATA_RESPONSE.code:
 raise InvalidPacketException(message="This packet is not a send data response packet.")

 return SendDataResponsePacket(raw[4], DeviceCloudStatus.get(raw[5]), op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 return utils.int_to_bytes(self.__status.code, num_bytes=1)

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.DC_STATUS: self.__status}

 @property
 def status(self):
 """
 Returns the file upload status.

 Returns:
 :class:`.DeviceCloudStatus`: the file upload status.

 .. seealso::
 | :class:`.DeviceCloudStatus`
 """
 return self.__status

 @status.setter
 def status(self, status):
 """
 Sets the file upload status.

 Args:
 status (:class:`.DeviceCloudStatus`): the new file upload status.

 .. seealso::
 | :class:`.DeviceCloudStatus`
 """
 self.__status = status

 Source code for digi.xbee.packets.digimesh

Copyright 2019-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF

from digi.xbee.exception import InvalidOperatingModeException, InvalidPacketException
from digi.xbee.models.address import XBee64BitAddress
from digi.xbee.models.mode import OperatingMode
from digi.xbee.packets.aft import ApiFrameType
from digi.xbee.packets.base import XBeeAPIPacket, DictKeys
from digi.xbee.util import utils

[docs]class RouteInformationPacket(XBeeAPIPacket):
 """
 This class represents a DigiMesh Route Information packet. Packet is built
 using the parameters of the constructor or providing a valid API
 payload.

 A Route Information Packet can be output for DigiMesh unicast transmissions
 on which the NACK enable or the Trace Route enable TX option is enabled.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 46

 def __init__(self, src_event, timestamp, ack_timeout_count, tx_block_count,
 dst_addr, src_addr, responder_addr, successor_addr,
 additional_data=None, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new
 :class:`.RouteInformationPacket` object with the provided
 parameters.

 Args:
 src_event (Integer): Source event identifier.
 0x11=NACK, 0x12=Trace route
 timestamp (Integer): System timer value on the node generating the
 this packet. The timestamp is in microseconds.
 ack_timeout_count (Integer): The number of MAC ACK timeouts.
 tx_block_count (Integer): The number of times the transmission was
 blocked due to reception in progress.
 dst_addr (:class:`.XBee64BitAddress`): The 64-bit address of the
 final destination node of this network-level transmission.
 src_addr (:class:`.XBee64BitAddress`): The 64-bit address of the
 source node of this network-level transmission.
 responder_addr (:class:`.XBee64BitAddress`): The 64-bit address of
 the node that generates this packet after it sends (or attempts
 to send) the packet to the next hop (successor node).
 successor_addr (:class:`.XBee64BitAddress`): The 64-bit address of
 the next node after the responder in the route towards the
 destination, whether or not the packet arrived successfully at
 the successor node.
 additional_data (Bytearray, optional, default=`None`): Additional
 data of the packet.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `src_event` is not 0x11 or 0x12.
 ValueError: if `timestamp` is not between 0 and 0xFFFFFFFF.
 ValueError: if `ack_timeout_count` or `tx_block_count` are not
 between 0 and 255.

 .. seealso::
 | :class:`.XBee64BitAddress`
 | :class:`.XBeeAPIPacket`
 """
 if src_event not in [0x11, 0x12]:
 raise ValueError("Source event must be 0x11 or 0x12.")
 if timestamp < 0 or timestamp > 0xFFFFFFFF: # 4 bytes
 raise ValueError("Timestamp must be between 0 and %d." % 0xFFFFFFFF)
 if ack_timeout_count < 0 or ack_timeout_count > 0xFF: # 1 byte
 raise ValueError("ACK timeout count must be between 0 and 255")
 if tx_block_count < 0 or tx_block_count > 0xFF: # 1 byte
 raise ValueError("TX blocked count must be between 0 and 255")

 super().__init__(ApiFrameType.DIGIMESH_ROUTE_INFORMATION, op_mode=op_mode)

 self.__src_event = src_event
 self.__timestamp = timestamp
 self.__ack_timeout_count = ack_timeout_count
 self.__tx_block_count = tx_block_count
 self._reserved = 0
 self.__dst_addr = dst_addr
 self.__src_addr = src_addr
 self.__responder_addr = responder_addr
 self.__successor_addr = successor_addr
 self.__additional_data = additional_data

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.RouteInformationPacket`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 46.
 (start delim. + length (2 bytes) + frame type + src_event
 + length + timestamp (4 bytes) + ack timeout count
 + tx blocked count + reserved + dest addr (8 bytes)
 + src addr (8 bytes) + responder addr (8 bytes)
 + successor addr (8 bytes) + checksum = 46 bytes).
 InvalidPacketException: If the length field of `raw` is different
 from its real length. (length field: bytes 1 and 3)
 InvalidPacketException: If the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: If the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: If the frame type is not
 :attr:`.ApiFrameType.DIGIMESH_ROUTE_INFORMATION`.
 InvalidPacketException: If the internal length byte of the rest
 of the frame (without the checksum) is different from its real
 length.
 InvalidOperatingModeException: If `operating_mode` is not
 supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(
 operating_mode.name + " is not supported.")

 XBeeAPIPacket._check_api_packet(
 raw, min_length=RouteInformationPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.DIGIMESH_ROUTE_INFORMATION.code:
 raise InvalidPacketException(
 "This packet is not a Route Information packet.")

 # 7: frame len starting from this byte (index 5) and without the checksum
 if raw[5] != len(raw) - 7:
 raise InvalidPacketException("Length does not match with the data length")

 additional_data = []
 if len(raw) > RouteInformationPacket.__MIN_PACKET_LENGTH:
 additional_data = raw[45:]
 packet = RouteInformationPacket(
 raw[4], utils.bytes_to_int(raw[6:10]), raw[10], raw[11],
 XBee64BitAddress(raw[13:21]), XBee64BitAddress(raw[21:29]),
 XBee64BitAddress(raw[29:37]), XBee64BitAddress(raw[37:45]),
 additional_data, op_mode=operating_mode)
 packet._reserved = raw[12]

 return packet

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return False

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = bytearray([self.__src_event])
 ret.append(self.length)
 ret += utils.int_to_bytes(self.__timestamp, num_bytes=4)
 ret.append(self.__ack_timeout_count)
 ret.append(self.__tx_block_count)
 ret.append(self._reserved)
 ret += self.__dst_addr.address
 ret += self.__src_addr.address
 ret += self.__responder_addr.address
 ret += self.__successor_addr.address
 if self.__additional_data:
 ret += self.__additional_data

 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.SRC_EVENT: self.__src_event,
 DictKeys.LENGTH: self.length,
 DictKeys.TIMESTAMP: self.__timestamp,
 DictKeys.ACK_TIMEOUT_COUNT: self.__ack_timeout_count,
 DictKeys.TX_BLOCKED_COUNT: self.__tx_block_count,
 DictKeys.DEST_ADDR: self.__dst_addr,
 DictKeys.SRC_ADDR: self.__src_addr,
 DictKeys.RESPONDER_ADDR: self.__responder_addr,
 DictKeys.SUCCESSOR_ADDR: self.__successor_addr,
 DictKeys.ADDITIONAL_DATA: self.__additional_data}

 @property
 def src_event(self):
 """
 Returns the source event.

 Returns:
 Integer: The source event.
 """
 return self.__src_event

 @src_event.setter
 def src_event(self, src_event):
 """
 Sets the source event identifier. 0x11=NACK, 0x12=Trace route

 Args:
 src_event (Integer): The new source event.

 Raises:
 ValueError: if `src_event` is not 0x11 or 0x12.
 """
 if src_event not in [0x11, 0x12]:
 raise ValueError("Source event must be 0x11 or 0x12.")

 self.__src_event = src_event

 @property
 def length(self):
 """
 Returns the number of bytes that follow, excluding the checksum.

 Returns:
 Integer: Data length.

 """
 # len: len(additional_data) + 4 MACS + timestamp (4 bytes) + 3 bytes
 return len(self.__additional_data) + 8 * 4 + 4 + 3

 @property
 def timestamp(self):
 """
 Returns the system timer value on the node generating this package.
 The timestamp is in microseconds.

 Returns:
 Integer: The system timer value in microseconds.
 """
 return self.__timestamp

 @timestamp.setter
 def timestamp(self, timestamp):
 """
 Sets the system timer value on the node generating this package.
 The timestamp is in microseconds.

 Args:
 timestamp (Integer): The number of microseconds.

 Raises:
 ValueError: if `timestamp` is not between 0 and 0xFFFFFFFF.
 """
 if timestamp < 0 or timestamp > 0xFFFFFFFF: # 4 bytes
 raise ValueError("Timestamp must be between 0 and %d." % 0xFFFFFFFF)

 self.__timestamp = timestamp

 @property
 def ack_timeout_count(self):
 """
 Returns the number of MAC ACK timeouts that occur.

 Returns:
 Integer: The number of MAC ACK timeouts that occur.
 """
 return self.__ack_timeout_count

 @ack_timeout_count.setter
 def ack_timeout_count(self, ack_timeout_count):
 """
 Sets the number of MAC ACK timeouts that occur.

 Args:
 ack_timeout_count (Integer): The number of MAC ACK timeouts that occur.

 Raises:
 ValueError: if `ack_timeout_count` is not between 0 and 255.
 """
 if ack_timeout_count < 0 or ack_timeout_count > 0xFF: # 1 byte
 raise ValueError("ACK timeout count must be between 0 and 255")

 self.__ack_timeout_count = ack_timeout_count

 @property
 def tx_block_count(self):
 """
 Returns the number of times the transmission was blocked due to reception
 in progress.

 Returns:
 Integer: The number of times the transmission was blocked due to
 reception in progress.
 """
 return self.__tx_block_count

 @tx_block_count.setter
 def tx_block_count(self, tx_block_count):
 """
 Sets the number of times the transmission was blocked due to reception
 in progress.

 Args:
 tx_block_count (Integer): The number of times the transmission was
 blocked due to reception in progress.

 Raises:
 ValueError: if `tx_block_count` is not between 0 and 255.
 """
 if tx_block_count < 0 or tx_block_count > 0xFF: # 1 byte
 raise ValueError("TX blocked count must be between 0 and 255")

 self.__tx_block_count = tx_block_count

 @property
 def dst_addr(self):
 """
 Returns the 64-bit source address.

 Returns:
 :class:`.XBee64BitAddress`: The 64-bit address of the final
 destination node.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 return self.__dst_addr

 @dst_addr.setter
 def dst_addr(self, dst_addr):
 """
 Sets the 64-bit address of the final destination node of this
 network-level transmission.

 Args:
 dst_addr (:class:`.XBee64BitAddress`): The new 64-bit address of the
 final destination node.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 self.__dst_addr = dst_addr

 @property
 def src_addr(self):
 """
 Returns the 64-bit address of the source node of this network-level
 transmission.

 Returns:
 :class:`.XBee64BitAddress`: The 64-bit address of the source node.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 return self.__src_addr

 @src_addr.setter
 def src_addr(self, src_addr):
 """
 Sets the 64-bit address of the source node of this network-level
 transmission.

 Args:
 src_addr (:class:`.XBee64BitAddress`): The new 64-bit address of the
 source node.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 self.__src_addr = src_addr

 @property
 def responder_addr(self):
 """
 Returns the 64-bit address of the node that generates this packet after
 it sends (or attempts to send) the packet to the next hop (successor node).

 Returns:
 :class:`.XBee64BitAddress`: The 64-bit address of the responder node.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 return self.__responder_addr

 @responder_addr.setter
 def responder_addr(self, responder_addr):
 """
 Sets the 64-bit address of the node that generates this packet after it
 sends (or attempts to send) the packet to the next hop (successor node).

 Args:
 responder_addr (:class:`.XBee64BitAddress`): The new 64-bit address
 of the responder node.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 self.__responder_addr = responder_addr

 @property
 def successor_addr(self):
 """
 Returns the 64-bit address of the next node after the responder in the
 route towards the destination, whether or not the packet arrived
 successfully at the successor node.

 Returns:
 :class:`.XBee64BitAddress`: The 64-bit address of the successor node.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 return self.__successor_addr

 @successor_addr.setter
 def successor_addr(self, successor_addr):
 """
 Sets the 64-bit address of the next node after the responder in the
 route towards the destination, whether or not the packet arrived
 successfully at the successor node.

 Args:
 successor_addr (:class:`.XBee64BitAddress`): The new 64-bit address
 of the successor node.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 self.__successor_addr = successor_addr

 Source code for digi.xbee.packets.factory

Copyright 2017-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
"""
This module provides functionality to build XBee packets from
bytearray returning the appropriate XBeePacket subclass.

All the API and API2 logic is already included so all packet reads are
independent of the XBee operating mode.

Two API modes are supported and both can be enabled using the `AP`
(API Enable) command:

API1 - API Without Escapes
The data frame structure is defined as follows:

.. code-block:: none

 Start Delimiter Length Frame Data Checksum
 (Byte 1) (Bytes 2-3) (Bytes 4-n) (Byte n + 1)
 +----------------+ +-------------------+ +--------------------------- + +----------------+
 | 0x7E | | MSB | LSB | | API-specific Structure | | 1 Byte |
 +----------------+ +-------------------+ +----------------------------+ +----------------+
 MSB = Most Significant Byte, LSB = Least Significant Byte

API2 - API With Escapes
The data frame structure is defined as follows:

.. code-block:: none

 Start Delimiter Length Frame Data Checksum
 (Byte 1) (Bytes 2-3) (Bytes 4-n) (Byte n + 1)
 +----------------+ +-------------------+ +--------------------------- + +----------------+
 | 0x7E | | MSB | LSB | | API-specific Structure | | 1 Byte |
 +----------------+ +-------------------+ +----------------------------+ +----------------+
 ___________________________________ _________________________________/
 \/
 Characters Escaped If Needed

 MSB = Most Significant Byte, LSB = Least Significant Byte

When sending or receiving an API2 frame, specific data values must be
escaped (flagged) so they do not interfere with the data frame sequencing.
To escape an interfering data byte, the byte 0x7D is inserted before
the byte to be escaped XOR'd with 0x20.

The data bytes that need to be escaped:

- `0x7E` - Frame Delimiter - :attr:`.SpecialByte`.
- `0x7D` - Escape
- `0x11` - XON
- `0x13` - XOFF

The length field has a two-byte value that specifies the number of
bytes that will be contained in the frame data field. It does not include the
checksum field.

The frame data forms an API-specific structure as follows::

 Start Delimiter Length Frame Data Checksum
 (Byte 1) (Bytes 2-3) (Bytes 4-n) (Byte n + 1)
 +----------------+ +-------------------+ +--------------------------- + +----------------+
 | 0x7E | | MSB | LSB | | API-specific Structure | | 1 Byte |
 +----------------+ +-------------------+ +----------------------------+ +----------------+
 / \\
 / API Identifier Identifier specific data \\
 +------------------+ +------------------------------+
 | cmdID | | cmdData |
 +------------------+ +------------------------------+

The cmdID frame (API-identifier) indicates which API messages
will be contained in the cmdData frame (Identifier-specific data).

To unit_test data integrity, a checksum is calculated and verified on
non-escaped data.

.. seealso::
 | :class:`.XBeePacket`
 | :class:`.OperatingMode`
"""
from digi.xbee.exception import InvalidPacketException
from digi.xbee.packets.base import GenericXBeePacket, UnknownXBeePacket
from digi.xbee.packets.cellular import TXSMSPacket, RXSMSPacket
from digi.xbee.packets.common import ATCommPacket, ATCommQueuePacket, \
 ATCommResponsePacket, ReceivePacket, RemoteATCommandPacket, \
 RemoteATCommandResponsePacket, TransmitPacket, TransmitStatusPacket, \
 ModemStatusPacket, IODataSampleRxIndicatorPacket, ExplicitAddressingPacket, \
 ExplicitRXIndicatorPacket
from digi.xbee.packets.devicecloud import SendDataRequestPacket, \
 DeviceResponsePacket, SendDataResponsePacket, DeviceRequestPacket, \
 DeviceResponseStatusPacket, FrameErrorPacket
from digi.xbee.packets.digimesh import RouteInformationPacket
from digi.xbee.packets.aft import ApiFrameType
from digi.xbee.models.mode import OperatingMode
from digi.xbee.packets.filesystem import FSRequestPacket, FSResponsePacket, \
 RemoteFSRequestPacket, RemoteFSResponsePacket
from digi.xbee.packets.network import TXIPv4Packet, RXIPv4Packet
from digi.xbee.packets.raw import RX64Packet, RX16Packet, TXStatusPacket, \
 RX16IOPacket, RX64IOPacket
from digi.xbee.packets.relay import UserDataRelayOutputPacket, \
 UserDataRelayPacket
from digi.xbee.packets.socket import SocketCreatePacket, \
 SocketCreateResponsePacket, SocketOptionRequestPacket, \
 SocketOptionResponsePacket, SocketConnectPacket, \
 SocketConnectResponsePacket, SocketClosePacket, SocketCloseResponsePacket, \
 SocketSendPacket, SocketSendToPacket, SocketBindListenPacket, \
 SocketListenResponsePacket, SocketNewIPv4ClientPacket, SocketReceivePacket, \
 SocketReceiveFromPacket, SocketStatePacket
from digi.xbee.packets.wifi import RemoteATCommandWifiPacket, \
 RemoteATCommandResponseWifiPacket, IODataSampleRxIndicatorWifiPacket
from digi.xbee.packets.zigbee import RegisterJoiningDevicePacket,\
 RegisterDeviceStatusPacket, RouteRecordIndicatorPacket, OTAFirmwareUpdateStatusPacket

[docs]def build_frame(packet_bytearray, operating_mode=OperatingMode.API_MODE):
 """
 Creates a packet from raw data.

 Args:
 packet_bytearray (Bytearray): the raw data of the packet to build.
 operating_mode (:class:`.OperatingMode`): the operating mode in which
 the raw data has been captured.

 .. seealso::
 | :class:`.OperatingMode`
 """
 if len(packet_bytearray) < 5:
 raise InvalidPacketException(
 message="Bytearray must have, at least, 5 bytes (header, length, "
 "frameType, checksum)")

 frame_type = ApiFrameType.get(packet_bytearray[3])

 if frame_type == ApiFrameType.GENERIC:
 return GenericXBeePacket.create_packet(packet_bytearray,
 operating_mode=operating_mode)

 if frame_type == ApiFrameType.AT_COMMAND:
 return ATCommPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.AT_COMMAND_QUEUE:
 return ATCommQueuePacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.AT_COMMAND_RESPONSE:
 return ATCommResponsePacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.RECEIVE_PACKET:
 return ReceivePacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.RX_64:
 return RX64Packet.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.RX_16:
 return RX16Packet.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.REMOTE_AT_COMMAND_REQUEST:
 return RemoteATCommandPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.REMOTE_AT_COMMAND_RESPONSE:
 return RemoteATCommandResponsePacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.TRANSMIT_REQUEST:
 return TransmitPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.TRANSMIT_STATUS:
 return TransmitStatusPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.MODEM_STATUS:
 return ModemStatusPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.TX_STATUS:
 return TXStatusPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.RX_IO_16:
 return RX16IOPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.RX_IO_64:
 return RX64IOPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.IO_DATA_SAMPLE_RX_INDICATOR:
 return IODataSampleRxIndicatorPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.EXPLICIT_ADDRESSING:
 return ExplicitAddressingPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.EXPLICIT_RX_INDICATOR:
 return ExplicitRXIndicatorPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.TX_SMS:
 return TXSMSPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.TX_IPV4:
 return TXIPv4Packet.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.RX_SMS:
 return RXSMSPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.USER_DATA_RELAY_OUTPUT:
 return UserDataRelayOutputPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.RX_IPV4:
 return RXIPv4Packet.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.REMOTE_AT_COMMAND_REQUEST_WIFI:
 return RemoteATCommandWifiPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.SEND_DATA_REQUEST:
 return SendDataRequestPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.DEVICE_RESPONSE:
 return DeviceResponsePacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.USER_DATA_RELAY_REQUEST:
 return UserDataRelayPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.REMOTE_AT_COMMAND_RESPONSE_WIFI:
 return RemoteATCommandResponseWifiPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.IO_DATA_SAMPLE_RX_INDICATOR_WIFI:
 return IODataSampleRxIndicatorWifiPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.SEND_DATA_RESPONSE:
 return SendDataResponsePacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.DEVICE_REQUEST:
 return DeviceRequestPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.DEVICE_RESPONSE_STATUS:
 return DeviceResponseStatusPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.FRAME_ERROR:
 return FrameErrorPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.REGISTER_JOINING_DEVICE:
 return RegisterJoiningDevicePacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.REGISTER_JOINING_DEVICE_STATUS:
 return RegisterDeviceStatusPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.ROUTE_RECORD_INDICATOR:
 return RouteRecordIndicatorPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.SOCKET_CREATE:
 return SocketCreatePacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.SOCKET_CREATE_RESPONSE:
 return SocketCreateResponsePacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.SOCKET_OPTION_REQUEST:
 return SocketOptionRequestPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.SOCKET_OPTION_RESPONSE:
 return SocketOptionResponsePacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.SOCKET_CONNECT:
 return SocketConnectPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.SOCKET_CONNECT_RESPONSE:
 return SocketConnectResponsePacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.SOCKET_CLOSE:
 return SocketClosePacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.SOCKET_CLOSE_RESPONSE:
 return SocketCloseResponsePacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.SOCKET_SEND:
 return SocketSendPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.SOCKET_SENDTO:
 return SocketSendToPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.SOCKET_BIND:
 return SocketBindListenPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.SOCKET_LISTEN_RESPONSE:
 return SocketListenResponsePacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.SOCKET_NEW_IPV4_CLIENT:
 return SocketNewIPv4ClientPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.SOCKET_RECEIVE:
 return SocketReceivePacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.SOCKET_RECEIVE_FROM:
 return SocketReceiveFromPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.SOCKET_STATE:
 return SocketStatePacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.DIGIMESH_ROUTE_INFORMATION:
 return RouteInformationPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.FILE_SYSTEM_REQUEST:
 return FSRequestPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.FILE_SYSTEM_RESPONSE:
 return FSResponsePacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.REMOTE_FILE_SYSTEM_REQUEST:
 return RemoteFSRequestPacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.REMOTE_FILE_SYSTEM_RESPONSE:
 return RemoteFSResponsePacket.create_packet(packet_bytearray, operating_mode)

 if frame_type == ApiFrameType.OTA_FIRMWARE_UPDATE_STATUS:
 return OTAFirmwareUpdateStatusPacket.create_packet(packet_bytearray, operating_mode)

 return UnknownXBeePacket.create_packet(packet_bytearray, operating_mode=operating_mode)

 Source code for digi.xbee.packets.filesystem

Copyright 2020, 2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
from digi.xbee.exception import InvalidOperatingModeException, InvalidPacketException
from digi.xbee.models.address import XBee64BitAddress
from digi.xbee.models.filesystem import FSCmd, FSCmdType, OpenFileCmdRequest, \
 OpenFileCmdResponse, CloseFileCmdRequest, CloseFileCmdResponse, \
 ReadFileCmdRequest, ReadFileCmdResponse, WriteFileCmdRequest, \
 WriteFileCmdResponse, HashFileCmdRequest, HashFileCmdResponse, \
 CreateDirCmdRequest, CreateDirCmdResponse, OpenDirCmdRequest, \
 OpenDirCmdResponse, CloseDirCmdRequest, CloseDirCmdResponse, \
 ReadDirCmdRequest, ReadDirCmdResponse, GetPathIdCmdRequest, \
 RenameCmdRequest, GetPathIdCmdResponse, RenameCmdResponse, \
 DeleteCmdRequest, DeleteCmdResponse, VolStatCmdRequest,\
 VolStatCmdResponse, VolFormatCmdRequest, VolFormatCmdResponse, UnknownFSCmd
from digi.xbee.models.options import TransmitOptions
from digi.xbee.models.mode import OperatingMode
from digi.xbee.packets.aft import ApiFrameType
from digi.xbee.packets.base import XBeeAPIPacket, DictKeys

[docs]class FSRequestPacket(XBeeAPIPacket):
 """
 This class represents a File System Request. Packet is built using the
 parameters of the constructor or providing a valid API payload.

 A File System Request allows to access the filesystem and perform
 different operations.

 Command response is received as an :class:`.FSResponsePacket`.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 7

 def __init__(self, frame_id, command, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.FSRequestPacket`
 object with the provided parameters.

 Args:
 frame_id (Integer): Frame ID of the packet.
 command (:class:`.FSCmd` or bytearray): File system command to
 execute.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: If `frame_id` is less than 0 or greater than 255.
 TypeError: If `command` is not a :class:`.FSCmd` or a bytearray.

 .. seealso::
 | :class:`.FSCmd`
 | :class:`.XBeeAPIPacket`
 """
 if frame_id not in range(0, 256):
 raise ValueError("Frame id must be between 0 and 255.")

 if not isinstance(command, (bytearray, FSCmd)):
 raise TypeError(
 "Command must be a bytearray or a FSCmd, "
 "not {!r}".format(command.__class__.__name__))

 super().__init__(ApiFrameType.FILE_SYSTEM_REQUEST, op_mode=op_mode)

 self._frame_id = frame_id

 self.__cmd = command
 if isinstance(command, bytearray):
 self.__cmd = build_fs_command(command)

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.FSRequestPacket`

 Raises:
 InvalidPacketException: If the bytearray length is less than 7 +
 the minimum length of the command.
 (start delim. + length (2 bytes) + frame type + frame id
 + fs cmd id + checksum + cmd data = 7 bytes + cmd data).
 InvalidPacketException: If the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: If the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: If the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: If the frame type is different from
 :attr:`.ApiFrameType.FILE_SYSTEM_REQUEST`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=FSRequestPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.FILE_SYSTEM_REQUEST.code:
 raise InvalidPacketException(
 message="This packet is not a File System request packet.")

 return FSRequestPacket(raw[4], raw[5:-1], op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 return self.__cmd.output()

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return self.__cmd.to_dict()

 @property
 def command(self):
 """
 Returns the file system command of the packet.

 Returns:
 String: File system command of the packet.
 """
 return self.__cmd

 @command.setter
 def command(self, command):
 """
 Sets the file system command of the packet.

 Args:
 command (:class:`.FSCmd` or Bytearray): New file system command.

 Raises:
 ValueError: If `command` is invalid.
 TypeError: If `command` is not a :class:`.FSCmd` or a bytearray.
 """
 if not isinstance(command, (bytearray, FSCmd)):
 raise TypeError(
 "Command must be a bytearray or a FSCmd, not {!r}".format(
 command.__class__.__name__))

 self.__cmd = command
 if isinstance(command, bytearray):
 self.__cmd = build_fs_command(command)

[docs]class FSResponsePacket(XBeeAPIPacket):
 """
 This class represents a File System Response. Packet is built using the
 parameters of the constructor or providing a valid API payload.

 This packet is received in response of an :class:`.FSRequestPacket`.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 8

 def __init__(self, frame_id, command, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.FSResponsePacket`
 object with the provided parameters.

 Args:
 frame_id (Integer): The frame ID of the packet.
 command (:class:`.FSCmd` or bytearray): File system command to
 execute.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: If `frame_id` is less than 0 or greater than 255.
 TypeError: If `command` is not a :class:`.FSCmd` or a bytearray.

 .. seealso::
 | :class:`.FSCmd`
 | :class:`.XBeeAPIPacket`
 """
 if frame_id not in range(0, 256):
 raise ValueError("Frame id must be between 0 and 255.")

 if not isinstance(command, (bytearray, FSCmd)):
 raise TypeError(
 "Command must be a bytearray or a FSCmd, "
 "not {!r}".format(command.__class__.__name__))

 super().__init__(ApiFrameType.FILE_SYSTEM_RESPONSE, op_mode=op_mode)

 self._frame_id = frame_id

 self.__cmd = command
 if isinstance(command, bytearray):
 self.__cmd = build_fs_command(command, direction=FSCmd.RESPONSE)

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.FSResponsePacket`

 Raises:
 InvalidPacketException: If the bytearray length is less than 8 +
 the minimum length of the command.
 (start delim. + length (2 bytes) + frame type + frame id
 + fs cmd id + status + checksum + cmd data = 8 bytes + cmd data).
 InvalidPacketException: If the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: If the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: If the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: If the frame type is different from
 :attr:`.ApiFrameType.FILE_SYSTEM_RESPONSE`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=FSResponsePacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.FILE_SYSTEM_RESPONSE.code:
 raise InvalidPacketException(
 message="This packet is not a File System response packet.")

 return FSResponsePacket(raw[4], raw[5:-1], op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 return self.__cmd.output()

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return self.__cmd.to_dict()

 @property
 def command(self):
 """
 Returns the file system command of the packet.

 Returns:
 String: File system command of the packet.
 """
 return self.__cmd

 @command.setter
 def command(self, command):
 """
 Sets the file system command of the packet.

 Args:
 command (:class:`.FSCmd` or Bytearray): New file system command.

 Raises:
 ValueError: If `command` is invalid.
 TypeError: If `command` is not a :class:`.FSCmd` or a bytearray.
 """
 if not isinstance(command, (bytearray, FSCmd)):
 raise TypeError(
 "Command must be a bytearray or a FSCmd, not {!r}".format(
 command.__class__.__name__))

 self.__cmd = command
 if isinstance(command, bytearray):
 self.__cmd = build_fs_command(command, direction=FSCmd.RESPONSE)

[docs]class RemoteFSRequestPacket(XBeeAPIPacket):
 """
 This class represents a remote File System Request. Packet is built using
 the parameters of the constructor or providing a valid API payload.

 Used to access the filesystem on a remote device and perform different
 operations.

 Remote command options are set as a bitfield.

 If configured, command response is received as a
 :class:`.RemoteFSResponsePacket`.

 .. seealso::
 | :class:`.RemoteFSResponsePacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 16

 def __init__(self, frame_id, x64bit_addr, command,
 transmit_options=TransmitOptions.NONE.value, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.RemoteFSRequestPacket`
 object with the provided parameters.

 Args:
 frame_id (Integer): Frame ID of the packet.
 x64bit_addr (:class:`.XBee64BitAddress`): 64-bit destination address.
 command (:class:`.FSCmd` or bytearray): File system command to
 execute.
 transmit_options (Integer, optional, default=`TransmitOptions.NONE.value`): Bitfield of
 supported transmission options.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: If `frame_id` is less than 0 or greater than 255.
 TypeError: If `command` is not a :class:`.FSCmd` or a bytearray.

 .. seealso::
 | :class:`.FSCmd`
 | :class:`.TransmitOptions`
 | :class:`.XBee64BitAddress`
 | :class:`.XBeeAPIPacket`
 """
 if frame_id not in range(0, 256):
 raise ValueError("Frame id must be between 0 and 255.")

 if x64bit_addr is None:
 raise ValueError("64-bit destination address cannot be None.")

 if not isinstance(command, (bytearray, FSCmd)):
 raise TypeError(
 "Command must be a bytearray or a FSCmd, "
 "not {!r}".format(command.__class__.__name__))

 super().__init__(ApiFrameType.REMOTE_FILE_SYSTEM_REQUEST, op_mode=op_mode)

 self._frame_id = frame_id

 self.__x64bit_addr = x64bit_addr
 self.__tx_opts = transmit_options

 self.__cmd = command
 if isinstance(command, bytearray):
 self.__cmd = build_fs_command(command)

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.RemoteFSRequestPacket`

 Raises:
 InvalidPacketException: If the bytearray length is less than 7 +
 the minimum length of the command.
 (start delim. + length (2 bytes) + frame type + frame id
 + 64bit addr. + transmit options + fs cmd id + checksum
 + cmd data = 16 bytes + cmd data).
 InvalidPacketException: If the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: If the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: If the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: If the frame type is different from
 :attr:`.ApiFrameType.REMOTE_FILE_SYSTEM_REQUEST`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=RemoteFSRequestPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.REMOTE_FILE_SYSTEM_REQUEST.code:
 raise InvalidPacketException(
 message="This packet is not a Remote File System request packet.")

 return RemoteFSRequestPacket(raw[4], XBee64BitAddress(raw[5:13]),
 raw[14:-1], transmit_options=raw[13], op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = self.__x64bit_addr.address
 ret.append(self.__tx_opts)
 ret += self.__cmd.output()

 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 ret_dict = {DictKeys.X64BIT_ADDR: self.__x64bit_addr.address,
 DictKeys.TRANSMIT_OPTIONS: self.__tx_opts}
 ret_dict.update(self.__cmd.to_dict())

 return ret_dict

 @property
 def x64bit_dest_addr(self):
 """
 Returns the 64-bit destination address.

 Returns:
 :class:`.XBee64BitAddress`: 64-bit destination address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 return self.__x64bit_addr

 @x64bit_dest_addr.setter
 def x64bit_dest_addr(self, addr):
 """
 Sets the 64-bit destination address.

 Args:
 addr (:class:`.XBee64BitAddress`): New 64-bit destination address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 self.__x64bit_addr = addr

 @property
 def command(self):
 """
 Returns the file system command of the packet.

 Returns:
 String: File system command of the packet.
 """
 return self.__cmd

 @command.setter
 def command(self, command):
 """
 Sets the file system command of the packet.

 Args:
 command (:class:`.FSCmd` or Bytearray): New file system command.

 Raises:
 ValueError: If `command` is invalid.
 TypeError: If `command` is not a :class:`.FSCmd` or a bytearray.
 """
 if not isinstance(command, (bytearray, FSCmd)):
 raise TypeError(
 "Command must be a bytearray or a FSCmd, not {!r}".format(
 command.__class__.__name__))

 self.__cmd = command
 if isinstance(command, bytearray):
 self.__cmd = build_fs_command(command)

 @property
 def transmit_options(self):
 """
 Returns the transmit options bitfield.

 Returns:
 Integer: Transmit options bitfield.

 .. seealso::
 | :class:`.TransmitOptions`
 """
 return self.__tx_opts

 @transmit_options.setter
 def transmit_options(self, options):
 """
 Sets the transmit options bitfield.

 Args:
 options (Integer): New transmit options bitfield.

 .. seealso::
 | :class:`.TransmitOptions`
 """
 self.__tx_opts = options

[docs]class RemoteFSResponsePacket(XBeeAPIPacket):
 """
 This class represents a Remote File System Response. Packet is built using
 the parameters of the constructor or providing a valid API payload.

 This packet is received in response of an :class:`.RemoteFSRequestPacket`.

 .. seealso::
 | :class:`.RemoteFSRequestPacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 17

 def __init__(self, frame_id, x64bit_addr, command, rx_options,
 op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.RemoteFSResponsePacket`
 object with the provided parameters.

 Args:
 frame_id (Integer): The frame ID of the packet.
 x64bit_addr (:class:`.XBee64BitAddress`): 64-bit source address.
 command (:class:`.FSCmd` or bytearray): File system command to
 execute.
 rx_options (Integer): Bitfield indicating the receive options.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: If `frame_id` is less than 0 or greater than 255.
 TypeError: If `command` is not a :class:`.FSCmd` or a bytearray.

 .. seealso::
 | :class:`.FSCmd`
 | :class:`.ReceiveOptions`
 | :class:`.XBeeAPIPacket`
 """
 if frame_id not in range(0, 256):
 raise ValueError("Frame id must be between 0 and 255.")

 if x64bit_addr is None:
 raise ValueError("64-bit source address cannot be None.")

 if not isinstance(command, (bytearray, FSCmd)):
 raise TypeError(
 "Command must be a bytearray or a FSCmd, "
 "not {!r}".format(command.__class__.__name__))

 super().__init__(ApiFrameType.REMOTE_FILE_SYSTEM_RESPONSE, op_mode=op_mode)

 self._frame_id = frame_id

 self.__x64bit_addr = x64bit_addr
 self.__rx_opts = rx_options

 self.__cmd = command
 if isinstance(command, bytearray):
 self.__cmd = build_fs_command(command, direction=FSCmd.RESPONSE)

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.RemoteFSResponsePacket`

 Raises:
 InvalidPacketException: If the bytearray length is less than 8 +
 the minimum length of the command.
 (start delim. + length (2 bytes) + frame type + frame id
 + 64bit addr. + receive options + fs cmd id + status
 + checksum + cmd data = 17 bytes + cmd data).
 InvalidPacketException: If the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: If the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: If the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: If the frame type is different from
 :attr:`.ApiFrameType.REMOTE_FILE_SYSTEM_RESPONSE`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=RemoteFSResponsePacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.REMOTE_FILE_SYSTEM_RESPONSE.code:
 raise InvalidPacketException(
 message="This packet is not a Remote File System response packet.")

 return RemoteFSResponsePacket(raw[4], XBee64BitAddress(raw[5:13]),
 raw[14:-1], raw[13], op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 cmd_array = self.__cmd.output()

 ret = self.__x64bit_addr.address
 ret.append(self.__rx_opts)
 ret.append(cmd_array[0])
 ret += cmd_array[1:]

 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 ret_dict = {DictKeys.X64BIT_ADDR: self.__x64bit_addr.address,
 DictKeys.RECEIVE_OPTIONS: self.__rx_opts}
 ret_dict.update(self.__cmd.to_dict())

 return ret_dict

 @property
 def x64bit_source_addr(self):
 """
 Returns the 64-bit source address.

 Returns:
 :class:`.XBee64BitAddress`: 64-bit source address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 return self.__x64bit_addr

 @x64bit_source_addr.setter
 def x64bit_source_addr(self, x64bit_addr):
 """
 Sets the 64-bit source address.

 Args:
 x64bit_addr (:class:`.XBee64BitAddress`): New 64-bit source address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 self.__x64bit_addr = x64bit_addr

 @property
 def command(self):
 """
 Returns the file system command of the packet.

 Returns:
 String: File system command of the packet.
 """
 return self.__cmd

 @command.setter
 def command(self, command):
 """
 Sets the file system command of the packet.

 Args:
 command (:class:`.FSCmd` or Bytearray): New file system command.

 Raises:
 ValueError: If `command` is invalid.
 TypeError: If `command` is not a :class:`.FSCmd` or a bytearray.
 """
 if not isinstance(command, (bytearray, FSCmd)):
 raise TypeError(
 "Command must be a bytearray or a FSCmd, not {!r}".format(
 command.__class__.__name__))

 self.__cmd = command
 if isinstance(command, bytearray):
 self.__cmd = build_fs_command(command, direction=FSCmd.RESPONSE)

 @property
 def receive_options(self):
 """
 Returns the receive options bitfield.

 Returns:
 Integer: Receive options bitfield.

 .. seealso::
 | :class:`.ReceiveOptions`
 """
 return self.__rx_opts

 @receive_options.setter
 def receive_options(self, options):
 """
 Sets the receive options bitfield.

 Args:
 options (Integer): New receive options bitfield.

 .. seealso::
 | :class:`.ReceiveOptions`
 """
 self.__rx_opts = options

[docs]def build_fs_command(cmd_bytearray, direction=FSCmd.REQUEST):
 """
 Creates a file system command from raw data.

 Args:
 cmd_bytearray (Bytearray): Raw data of the packet to build.
 direction (Integer, optional, default=0): If this command is a request
 (0) or a response (1).

 Raises:
 InvalidPacketException: If `cmd_bytearray` is not a bytearray or its
 length is less than 1 for requests 2 for responses.

 .. seealso::
 | :class:`.FSCmd`
 """
 if not isinstance(cmd_bytearray, bytearray):
 raise TypeError("Command must be a bytearray")
 if direction not in (FSCmd.REQUEST, FSCmd.RESPONSE):
 raise ValueError("Direction must be 0 or 1")
 min_len = 2 if direction == FSCmd.RESPONSE else 1
 if len(cmd_bytearray) < min_len:
 raise InvalidPacketException(
 message="Command bytearray must have, at least, %d bytes" % min_len)

 cmd_type = FSCmdType.get(cmd_bytearray[0])

 if cmd_type == FSCmdType.FILE_OPEN:
 if direction == FSCmd.REQUEST:
 return OpenFileCmdRequest.create_cmd(cmd_bytearray)

 return OpenFileCmdResponse.create_cmd(cmd_bytearray)

 if cmd_type == FSCmdType.FILE_CLOSE:
 if direction == FSCmd.REQUEST:
 return CloseFileCmdRequest.create_cmd(cmd_bytearray)

 return CloseFileCmdResponse.create_cmd(cmd_bytearray)

 if cmd_type == FSCmdType.FILE_READ:
 if direction == FSCmd.REQUEST:
 return ReadFileCmdRequest.create_cmd(cmd_bytearray)

 return ReadFileCmdResponse.create_cmd(cmd_bytearray)

 if cmd_type == FSCmdType.FILE_WRITE:
 if direction == FSCmd.REQUEST:
 return WriteFileCmdRequest.create_cmd(cmd_bytearray)

 return WriteFileCmdResponse.create_cmd(cmd_bytearray)

 if cmd_type == FSCmdType.FILE_HASH:
 if direction == FSCmd.REQUEST:
 return HashFileCmdRequest.create_cmd(cmd_bytearray)

 return HashFileCmdResponse.create_cmd(cmd_bytearray)

 if cmd_type == FSCmdType.DIR_CREATE:
 if direction == FSCmd.REQUEST:
 return CreateDirCmdRequest.create_cmd(cmd_bytearray)

 return CreateDirCmdResponse.create_cmd(cmd_bytearray)

 if cmd_type == FSCmdType.DIR_OPEN:
 if direction == FSCmd.REQUEST:
 return OpenDirCmdRequest.create_cmd(cmd_bytearray)

 return OpenDirCmdResponse.create_cmd(cmd_bytearray)

 if cmd_type == FSCmdType.DIR_CLOSE:
 if direction == FSCmd.REQUEST:
 return CloseDirCmdRequest.create_cmd(cmd_bytearray)

 return CloseDirCmdResponse.create_cmd(cmd_bytearray)

 if cmd_type == FSCmdType.DIR_READ:
 if direction == FSCmd.REQUEST:
 return ReadDirCmdRequest.create_cmd(cmd_bytearray)

 return ReadDirCmdResponse.create_cmd(cmd_bytearray)

 if cmd_type == FSCmdType.GET_PATH_ID:
 if direction == FSCmd.REQUEST:
 return GetPathIdCmdRequest.create_cmd(cmd_bytearray)

 return GetPathIdCmdResponse.create_cmd(cmd_bytearray)

 if cmd_type == FSCmdType.RENAME:
 if direction == FSCmd.REQUEST:
 return RenameCmdRequest.create_cmd(cmd_bytearray)

 return RenameCmdResponse.create_cmd(cmd_bytearray)

 if cmd_type == FSCmdType.DELETE:
 if direction == FSCmd.REQUEST:
 return DeleteCmdRequest.create_cmd(cmd_bytearray)

 return DeleteCmdResponse.create_cmd(cmd_bytearray)

 if cmd_type == FSCmdType.STAT:
 if direction == FSCmd.REQUEST:
 return VolStatCmdRequest.create_cmd(cmd_bytearray)

 return VolStatCmdResponse.create_cmd(cmd_bytearray)

 if cmd_type == FSCmdType.FORMAT:
 if direction == FSCmd.REQUEST:
 return VolFormatCmdRequest.create_cmd(cmd_bytearray)

 return VolFormatCmdResponse.create_cmd(cmd_bytearray)

 return UnknownFSCmd(cmd_bytearray, direction=direction)

 Source code for digi.xbee.packets.network

Copyright 2017-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

from ipaddress import IPv4Address
from digi.xbee.models.mode import OperatingMode
from digi.xbee.models.protocol import IPProtocol
from digi.xbee.packets.aft import ApiFrameType
from digi.xbee.packets.base import XBeeAPIPacket, DictKeys
from digi.xbee.util import utils
from digi.xbee.exception import InvalidOperatingModeException, InvalidPacketException

[docs]class RXIPv4Packet(XBeeAPIPacket):
 """
 This class represents an RX (Receive) IPv4 packet. Packet is built
 using the parameters of the constructor or providing a valid byte array.

 .. seealso::
 | :class:`.TXIPv4Packet`
 | :class:`.XBeeAPIPacket`
 """
 __MIN_PACKET_LENGTH = 15

 def __init__(self, src_address, dest_port, src_port, ip_protocol,
 data=None, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.RXIPv4Packet` object
 with the provided parameters.

 Args:
 src_address (:class:`.IPv4Address`): IPv4 address of the source device.
 dest_port (Integer): destination port number.
 src_port (Integer): source port number.
 ip_protocol (:class:`.IPProtocol`): IP protocol used for transmitted data.
 data (Bytearray, optional): data that is sent to the destination device.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `dest_port` is less than 0 or greater than 65535 or
 ValueError: if `source_port` is less than 0 or greater than 65535.

 .. seealso::
 | :class:`.IPProtocol`
 """
 if dest_port < 0 or dest_port > 65535:
 raise ValueError("Destination port must be between 0 and 65535")
 if src_port < 0 or src_port > 65535:
 raise ValueError("Source port must be between 0 and 65535")

 super().__init__(ApiFrameType.RX_IPV4, op_mode=op_mode)
 self.__src_addr = src_address
 self.__dest_port = dest_port
 self.__src_port = src_port
 self.__ip_prot = ip_protocol
 self.__status = 0 # Reserved
 self.__data = data

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class: `.RXIPv4Packet`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 15.
 (start delim + length (2 bytes) + frame type
 + source address(4 bytes) + dest port (2 bytes)
 + source port (2 bytes) + network protocol + status
 + checksum = 15 bytes)
 InvalidPacketException: if the length field of `raw` is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of `raw` is not the
 header byte. See :class:`.SPECIAL_BYTE`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`ApiFrameType.RX_IPV4`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=RXIPv4Packet.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.RX_IPV4.code:
 raise InvalidPacketException(message="This packet is not an RXIPv4Packet.")

 return RXIPv4Packet(IPv4Address(bytes(raw[4:8])), utils.bytes_to_int(raw[8:10]),
 utils.bytes_to_int(raw[10:12]), IPProtocol.get(raw[12]),
 data=raw[14:-1] if len(raw) > RXIPv4Packet.__MIN_PACKET_LENGTH else None,
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return False

 @property
 def source_address(self):
 """
 Returns the IPv4 address of the source device.

 Returns:
 :class:`ipaddress.IPv4Address`: the IPv4 address of the source device.
 """
 return self.__src_addr

 @source_address.setter
 def source_address(self, source_address):
 """
 Sets the IPv4 source address.

 Args:
 source_address (:class:`.IPv4Address`): The new IPv4 source address.
 """
 if source_address is not None:
 self.__src_addr = source_address

 @property
 def dest_port(self):
 """
 Returns the destination port.

 Returns:
 Integer: the destination port.
 """
 return self.__dest_port

 @dest_port.setter
 def dest_port(self, dest_port):
 """
 Sets the destination port.

 Args:
 dest_port (Integer): the new destination port.

 Raises:
 ValueError: if `dest_port` is less than 0 or greater than 65535.
 """
 if dest_port < 0 or dest_port > 65535:
 raise ValueError("Destination port must be between 0 and 65535")
 self.__dest_port = dest_port

 @property
 def source_port(self):
 """
 Returns the source port.

 Returns:
 Integer: the source port.
 """
 return self.__src_port

 @source_port.setter
 def source_port(self, source_port):
 """
 Sets the source port.

 Args:
 source_port (Integer): the new source port.

 Raises:
 ValueError: if `source_port` is less than 0 or greater than 65535.
 """
 if source_port < 0 or source_port > 65535:
 raise ValueError("Source port must be between 0 and 65535")
 self.__src_port = source_port

 @property
 def ip_protocol(self):
 """
 Returns the IP protocol used for transmitted data.

 Returns:
 :class:`.IPProtocol`: the IP protocol used for transmitted data.
 """
 return self.__ip_prot

 @ip_protocol.setter
 def ip_protocol(self, ip_protocol):
 """
 Sets the IP protocol used for transmitted data.

 Args:
 ip_protocol (:class:`.IPProtocol`): the new IP protocol.
 """
 self.__ip_prot = ip_protocol

 @property
 def data(self):
 """
 Returns the data of the packet.

 Returns:
 Bytearray: the data of the packet.
 """
 if self.__data is None:
 return self.__data
 return self.__data.copy()

 @data.setter
 def data(self, data):
 """
 Sets the data of the packet.

 Args:
 data (Bytearray): the new data of the packet.
 """
 if data is None:
 self.__data = None
 else:
 self.__data = data.copy()

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_API_packet_spec_data`
 """
 ret = bytearray(self.__src_addr.packed)
 ret += utils.int_to_bytes(self.__dest_port, num_bytes=2)
 ret += utils.int_to_bytes(self.__src_port, num_bytes=2)
 ret += utils.int_to_bytes(self.__ip_prot.code, num_bytes=1)
 ret += utils.int_to_bytes(self.__status, num_bytes=1)
 if self.__data is not None:
 ret += self.__data
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_API_packet_spec_data_dict`
 """
 return {
 DictKeys.SRC_IPV4_ADDR: "%s (%s)" % (self.__src_addr.packed, self.__src_addr.exploded),
 DictKeys.DEST_PORT: self.__dest_port,
 DictKeys.SRC_PORT: self.__src_port,
 DictKeys.IP_PROTOCOL: "%s (%s)" % (self.__ip_prot.code, self.__ip_prot.description),
 DictKeys.STATUS: self.__status,
 DictKeys.RF_DATA: bytearray(self.__data)}

[docs]class TXIPv4Packet(XBeeAPIPacket):
 """
 This class represents an TX (Transmit) IPv4 packet. Packet is built
 using the parameters of the constructor or providing a valid byte array.

 .. seealso::
 | :class:`.RXIPv4Packet`
 | :class:`.XBeeAPIPacket`
 """

 OPTIONS_CLOSE_SOCKET = 2
 """This option will close the socket after the transmission."""

 OPTIONS_LEAVE_SOCKET_OPEN = 0
 """This option will leave socket open after the transmission."""

 __MIN_PACKET_LENGTH = 16

 def __init__(self, frame_id, dest_address, dest_port, src_port,
 ip_protocol, tx_opts, data=None, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.TXIPv4Packet` object
 with the provided parameters.

 Args:
 frame_id (Integer): the frame ID. Must be between 0 and 255.
 dest_address (:class:`.IPv4Address`): IPv4 address of the destination device.
 dest_port (Integer): destination port number.
 src_port (Integer): source port number.
 ip_protocol (:class:`.IPProtocol`): IP protocol used for transmitted data.
 tx_opts (Integer): the transmit options of the packet.
 data (Bytearray, optional): data that is sent to the destination device.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 ValueError: if `dest_port` is less than 0 or greater than 65535.
 ValueError: if `source_port` is less than 0 or greater than 65535.

 .. seealso::
 | :class:`.IPProtocol`
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame id must be between 0 and 255")
 if dest_port < 0 or dest_port > 65535:
 raise ValueError("Destination port must be between 0 and 65535")
 if src_port < 0 or src_port > 65535:
 raise ValueError("Source port must be between 0 and 65535")

 super().__init__(ApiFrameType.TX_IPV4, op_mode=op_mode)
 self._frame_id = frame_id
 self.__dest_addr = dest_address
 self.__dest_port = dest_port
 self.__src_port = src_port
 self.__ip_prot = ip_protocol
 self.__tx_opts = tx_opts
 self.__data = data

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 TXIPv4Packet.

 Raises:
 InvalidPacketException: if the bytearray length is less than 16.
 (start delim + length (2 bytes) + frame type + frame id
 + dest address (4 bytes) + dest port (2 bytes)
 + source port (2 bytes) + network protocol + transmit options
 + checksum = 16 bytes)
 InvalidPacketException: if the length field of `raw` is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of `raw` is not the
 header byte. See :class:`.SPECIAL_BYTE`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`ApiFrameType.TX_IPV4`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=TXIPv4Packet.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.TX_IPV4.code:
 raise InvalidPacketException(message="This packet is not an TXIPv4Packet.")

 return TXIPv4Packet(raw[4], IPv4Address(bytes(raw[5:9])), utils.bytes_to_int(raw[9:11]),
 utils.bytes_to_int(raw[11:13]), IPProtocol.get(raw[13]), raw[14],
 data=raw[15:-1] if len(raw) > TXIPv4Packet.__MIN_PACKET_LENGTH else None,
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 @property
 def dest_address(self):
 """
 Returns the IPv4 address of the destination device.

 Returns:
 :class:`ipaddress.IPv4Address`: the IPv4 address of the destination device.
 """
 return self.__dest_addr

 @dest_address.setter
 def dest_address(self, dest_address):
 """
 Sets the IPv4 destination address.

 Args:
 dest_address (:class:`ipaddress.IPv4Address`): The new IPv4 destination address.
 """
 if dest_address is not None:
 self.__dest_addr = dest_address

 @property
 def dest_port(self):
 """
 Returns the destination port.

 Returns:
 Integer: the destination port.
 """
 return self.__dest_port

 @dest_port.setter
 def dest_port(self, dest_port):
 """
 Sets the destination port.

 Args:
 dest_port (Integer): the new destination port.

 Raises:
 ValueError: if `dest_port` is less than 0 or greater than 65535.
 """
 if dest_port < 0 or dest_port > 65535:
 raise ValueError("Destination port must be between 0 and 65535")
 self.__dest_port = dest_port

 @property
 def source_port(self):
 """
 Returns the source port.

 Returns:
 Integer: the source port.
 """
 return self.__src_port

 @source_port.setter
 def source_port(self, source_port):
 """
 Sets the source port.

 Args:
 source_port (Integer): the new source port.

 Raises:
 ValueError: if `source_port` is less than 0 or greater than 65535.
 """
 if source_port < 0 or source_port > 65535:
 raise ValueError("Source port must be between 0 and 65535")

 self.__src_port = source_port

 @property
 def ip_protocol(self):
 """
 Returns the IP protocol used for transmitted data.

 Returns:
 :class:`.IPProtocol`: the IP protocol used for transmitted data.
 """
 return self.__ip_prot

 @ip_protocol.setter
 def ip_protocol(self, ip_protocol):
 """
 Sets the network protocol used for transmitted data.

 Args:
 ip_protocol (:class:`.IPProtocol`): the new IP protocol.
 """
 self.__ip_prot = ip_protocol

 @property
 def transmit_options(self):
 """
 Returns the transmit options of the packet.

 Returns:
 Integer: the transmit options of the packet.
 """
 return self.__tx_opts

 @transmit_options.setter
 def transmit_options(self, transmit_options):
 """
 Sets the transmit options bitfield of the packet.

 Args:
 transmit_options (Integer): the new transmit options. Can
 be :attr:`OPTIONS_CLOSE_SOCKET` or :attr:`OPTIONS_LEAVE_SOCKET_OPEN`.
 """
 self.__tx_opts = transmit_options

 @property
 def data(self):
 """
 Returns the data of the packet.

 Returns:
 Bytearray: the data of the packet.
 """
 return self.__data if self.__data is None else self.__data.copy()

 @data.setter
 def data(self, data):
 """
 Sets the data of the packet.

 Args:
 data (Bytearray): the new data of the packet.
 """
 self.__data = None if data is None else data.copy()

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_API_packet_spec_data`
 """
 ret = bytearray(self.__dest_addr.packed)
 ret += utils.int_to_bytes(self.__dest_port, num_bytes=2)
 ret += utils.int_to_bytes(self.__src_port, num_bytes=2)
 ret += utils.int_to_bytes(self.__ip_prot.code)
 ret += utils.int_to_bytes(self.__tx_opts)
 if self.__data is not None:
 ret += self.__data
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_API_packet_spec_data_dict`
 """
 return {
 DictKeys.DEST_IPV4_ADDR: "%s (%s)" % (self.__dest_addr.packed, self.__dest_addr.exploded),
 DictKeys.DEST_PORT: self.__dest_port,
 DictKeys.SRC_PORT: self.__src_port,
 DictKeys.IP_PROTOCOL: "%s (%s)" % (self.__ip_prot.code, self.__ip_prot.description),
 DictKeys.OPTIONS: self.__tx_opts,
 DictKeys.RF_DATA: bytearray(self.__data)}

 Source code for digi.xbee.packets.raw

Copyright 2017-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

from digi.xbee.packets.base import XBeeAPIPacket, DictKeys
from digi.xbee.models.address import XBee64BitAddress, XBee16BitAddress
from digi.xbee.models.status import TransmitStatus
from digi.xbee.exception import InvalidOperatingModeException, InvalidPacketException
from digi.xbee.packets.aft import ApiFrameType
from digi.xbee.models.mode import OperatingMode
from digi.xbee.io import IOSample, IOLine
from digi.xbee.util import utils

[docs]class TX64Packet(XBeeAPIPacket):
 """
 This class represents a TX (Transmit) 64 Request packet. Packet is built
 using the parameters of the constructor or providing a valid byte array.

 A TX Request message will cause the module to transmit data as an RF
 Packet.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 15

 def __init__(self, frame_id, x64bit_addr, tx_opts, rf_data=None,
 op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.TX64Packet` object with
 the provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 x64bit_addr (:class:`.XBee64BitAddress`): the 64-bit destination address.
 tx_opts (Integer): bitfield of supported transmission options.
 rf_data (Bytearray, optional): RF data that is sent to the destination device.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 .. seealso::
 | :class:`.TransmitOptions`
 | :class:`.XBee64BitAddress`
 | :class:`.XBeeAPIPacket`

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame id must be between 0 and 255.")

 super().__init__(ApiFrameType.TX_64, op_mode=op_mode)
 self._frame_id = frame_id
 self.__x64bit_addr = x64bit_addr
 self.__tx_opts = tx_opts
 self.__data = rf_data

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.TX64Packet`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 15.
 (start delim. + length (2 bytes) + frame type + frame id
 + 64bit addr. + transmit options + checksum = 15 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is different from
 :attr:`.ApiFrameType.TX_64`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in(OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=TX64Packet.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.TX_64.code:
 raise InvalidPacketException(message="This packet is not a TX 64 packet.")

 return TX64Packet(raw[4], XBee64BitAddress(raw[5:13]), raw[13],
 rf_data=raw[14:-1] if len(raw) > TX64Packet.__MIN_PACKET_LENGTH else None,
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = self.__x64bit_addr.address
 ret.append(self.__tx_opts)
 if self.__data is not None:
 ret += self.__data
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.X64BIT_ADDR: self.__x64bit_addr.address,
 DictKeys.TRANSMIT_OPTIONS: self.__tx_opts,
 DictKeys.RF_DATA: self.__data}

 @property
 def x64bit_dest_addr(self):
 """
 Returns the 64-bit destination address.

 Returns:
 :class:`.XBee64BitAddress`: the 64-bit destination address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 return self.__x64bit_addr

 @x64bit_dest_addr.setter
 def x64bit_dest_addr(self, x64bit_addr):
 """
 Sets the 64-bit destination address.

 Args:
 x64bit_addr (:class:`.XBee64BitAddress`): the new 64-bit destination address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 self.__x64bit_addr = x64bit_addr

 @property
 def transmit_options(self):
 """
 Returns the transmit options bitfield.

 Returns:
 Integer: the transmit options bitfield.

 .. seealso::
 | :class:`.TransmitOptions`
 """
 return self.__tx_opts

 @transmit_options.setter
 def transmit_options(self, transmit_options):
 """
 Sets the transmit options bitfield.

 Args:
 transmit_options (Integer): the new transmit options bitfield.

 .. seealso::
 | :class:`.TransmitOptions`
 """
 self.__tx_opts = transmit_options

 @property
 def rf_data(self):
 """
 Returns the RF data to send.

 Returns:
 Bytearray: the RF data to send.
 """
 if self.__data is None:
 return None
 return self.__data.copy()

 @rf_data.setter
 def rf_data(self, rf_data):
 """
 Sets the RF data to send.

 Args:
 rf_data (Bytearray): the new RF data to send.
 """
 if rf_data is None:
 self.__data = None
 else:
 self.__data = rf_data.copy()

[docs]class TX16Packet(XBeeAPIPacket):
 """
 This class represents a TX (Transmit) 16 Request packet. Packet is built
 using the parameters of the constructor or providing a valid byte array.

 A TX request message will cause the module to transmit data as an RF
 packet.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 9

 def __init__(self, frame_id, x16bit_addr, tx_opts, rf_data=None,
 op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.TX16Packet` object with
 the provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 x16bit_addr (:class:`.XBee16BitAddress`): the 16-bit destination address.
 tx_opts (Integer): bitfield of supported transmission options.
 rf_data (Bytearray, optional): RF data that is sent to the destination device.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 .. seealso::
 | :class:`.TransmitOptions`
 | :class:`.XBee16BitAddress`
 | :class:`.XBeeAPIPacket`

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame id must be between 0 and 255.")

 super().__init__(ApiFrameType.TX_16, op_mode=op_mode)
 self._frame_id = frame_id
 self.__x16bit_addr = x16bit_addr
 self.__tx_opts = tx_opts
 self.__data = rf_data

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.TX16Packet`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 9.
 (start delim. + length (2 bytes) + frame type + frame id
 + 16bit addr. + transmit options + checksum = 9 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is different from
 :attr:`.ApiFrameType.TX_16`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=TX16Packet.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.TX_16.code:
 raise InvalidPacketException(message="This packet is not a TX 16 packet.")

 return TX16Packet(raw[4], XBee16BitAddress(raw[5:7]), raw[7],
 rf_data=raw[8:-1] if len(raw) > TX16Packet.__MIN_PACKET_LENGTH else None,
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = self.__x16bit_addr.address
 ret.append(self.__tx_opts)
 if self.__data is not None:
 ret += self.__data
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.X16BIT_ADDR: self.__x16bit_addr,
 DictKeys.TRANSMIT_OPTIONS: self.__tx_opts,
 DictKeys.RF_DATA: self.__data}

 @property
 def x16bit_dest_addr(self):
 """
 Returns the 16-bit destination address.

 Returns:
 :class:`.XBee16BitAddress`: the 16-bit destination address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 return self.__x16bit_addr

 @x16bit_dest_addr.setter
 def x16bit_dest_addr(self, x16bit_addr):
 """
 Sets the 16-bit destination address.

 Args:
 x16bit_addr (:class:`.XBee16BitAddress`): the new 16-bit destination address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 self.__x16bit_addr = x16bit_addr

 @property
 def transmit_options(self):
 """
 Returns the transmit options bitfield.

 Returns:
 Integer: the transmit options bitfield.

 .. seealso::
 | :class:`.TransmitOptions`
 """
 return self.__tx_opts

 @transmit_options.setter
 def transmit_options(self, transmit_options):
 """
 Sets the transmit options bitfield.

 Args:
 transmit_options (Integer): the new transmit options bitfield.

 .. seealso::
 | :class:`.TransmitOptions`
 """
 self.__tx_opts = transmit_options

 @property
 def rf_data(self):
 """
 Returns the RF data to send.

 Returns:
 Bytearray: the RF data to send.
 """
 if self.__data is None:
 return None
 return self.__data.copy()

 @rf_data.setter
 def rf_data(self, rf_data):
 """
 Sets the RF data to send.

 Args:
 rf_data (Bytearray): the new RF data to send.
 """
 if rf_data is None:
 self.__data = None
 else:
 self.__data = rf_data.copy()

[docs]class TXStatusPacket(XBeeAPIPacket):
 """
 This class represents a TX (Transmit) status packet. Packet is built using
 the parameters of the constructor or providing a valid API payload.

 When a TX request is completed, the module sends a TX status message.
 This message will indicate if the packet was transmitted successfully or if
 there was a failure.

 .. seealso::
 | :class:`.TX16Packet`
 | :class:`.TX64Packet`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 7

 def __init__(self, frame_id, tx_status, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.TXStatusPacket` object
 with the provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 tx_status (:class:`.TransmitStatus`): transmit status.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.

 .. seealso::
 | :class:`.TransmitStatus`
 | :class:`.XBeeAPIPacket`
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame id must be between 0 and 255.")

 super().__init__(ApiFrameType.TX_STATUS, op_mode=op_mode)
 self._frame_id = frame_id
 self.__tx_status = tx_status

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.TXStatusPacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 7.
 (start delim. + length (2 bytes) + frame type + frame id
 + transmit status + checksum = 7 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is different from
 :attr:`.ApiFrameType.TX_16`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=TXStatusPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.TX_STATUS.code:
 raise InvalidPacketException(message="This packet is not a TX status packet.")

 return TXStatusPacket(raw[4], TransmitStatus.get(raw[5]), op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 return utils.int_to_bytes(self.__tx_status.code, num_bytes=1)

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.TS_STATUS: self.__tx_status}

 @property
 def transmit_status(self):
 """
 Returns the transmit status.

 Returns:
 :class:`.TransmitStatus`: the transmit status.

 .. seealso::
 | :class:`.TransmitStatus`
 """
 return self.__tx_status

 @transmit_status.setter
 def transmit_status(self, transmit_status):
 """
 Sets the transmit status.

 Args:
 transmit_status (:class:`.TransmitStatus`): the new transmit status to set.

 .. seealso::
 | :class:`.TransmitStatus`
 """
 self.__tx_status = transmit_status

[docs]class RX64Packet(XBeeAPIPacket):
 """
 This class represents an RX (Receive) 64 request packet. Packet is built
 using the parameters of the constructor or providing a valid API byte array.

 When the module receives an RF packet, it is sent out the UART using
 this message type.

 This packet is the response to TX (transmit) 64 request packets.

 .. seealso::
 | :class:`.ReceiveOptions`
 | :class:`.TX64Packet`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 15

 def __init__(self, x64bit_addr, rssi, rx_opts, rf_data=None,
 op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a :class:`.RX64Packet` object with the
 provided parameters.

 Args:
 x64bit_addr (:class:`.XBee64BitAddress`): the 64-bit source address.
 rssi (Integer): received signal strength indicator.
 rx_opts (Integer): bitfield indicating the receive options.
 rf_data (Bytearray, optional): received RF data.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 .. seealso::
 | :class:`.ReceiveOptions`
 | :class:`.XBee64BitAddress`
 | :class:`.XBeeAPIPacket`
 """

 super().__init__(ApiFrameType.RX_64, op_mode=op_mode)

 self.__x64bit_addr = x64bit_addr
 self.__rssi = rssi
 self.__rx_opts = rx_opts
 self.__data = rf_data

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.RX64Packet`

 Raises:
 InvalidPacketException: if the bytearray length is less than 15.
 (start delim. + length (2 bytes) + frame type + 64bit addr.
 + rssi + receive options + checksum = 15 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is different from
 :attr:`.ApiFrameType.RX_64`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=RX64Packet.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.RX_64.code:
 raise InvalidPacketException(message="This packet is not an RX 64 packet.")

 return RX64Packet(XBee64BitAddress(raw[4:12]), raw[12], raw[13],
 rf_data=raw[14:-1] if len(raw) > RX64Packet.__MIN_PACKET_LENGTH else None,
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return False

[docs] def is_broadcast(self):
 """
 Override method.

 .. seealso::
 | :meth:`XBeeAPIPacket.is_broadcast`
 """
 return (utils.is_bit_enabled(self.__rx_opts, 1)
 or utils.is_bit_enabled(self.__rx_opts, 2))

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = self.__x64bit_addr.address
 ret.append(self.__rssi)
 ret.append(self.__rx_opts)
 if self.__data is not None:
 ret += self.__data
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.X64BIT_ADDR: self.__x64bit_addr,
 DictKeys.RSSI: self.__rssi,
 DictKeys.RECEIVE_OPTIONS: self.__rx_opts,
 DictKeys.RF_DATA: self.__data}

 @property
 def x64bit_source_addr(self):
 """
 Returns the 64-bit source address.

 Returns:
 :class:`.XBee64BitAddress`: the 64-bit source address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 return self.__x64bit_addr

 @x64bit_source_addr.setter
 def x64bit_source_addr(self, x64bit_addr):
 """
 Sets the 64-bit source address.

 Args:
 x64bit_addr (:class:`.XBee64BitAddress`): the new 64-bit source address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 self.__x64bit_addr = x64bit_addr

 @property
 def rssi(self):
 """
 Returns the received Signal Strength Indicator (RSSI).

 Returns:
 Integer: the received Signal Strength Indicator (RSSI).
 """
 return self.__rssi

 @rssi.setter
 def rssi(self, rssi):
 """
 Sets the received Signal Strength Indicator (RSSI).

 Args:
 rssi (Integer): the new received Signal Strength Indicator (RSSI).
 """
 self.__rssi = rssi

 @property
 def receive_options(self):
 """
 Returns the receive options bitfield.

 Returns:
 Integer: the receive options bitfield.

 .. seealso::
 | :class:`.ReceiveOptions`
 """
 return self.__rx_opts

 @receive_options.setter
 def receive_options(self, receive_options):
 """
 Sets the receive options bitfield.

 Args:
 receive_options (Integer): the new receive options bitfield.

 .. seealso::
 | :class:`.ReceiveOptions`
 """
 self.__rx_opts = receive_options

 @property
 def rf_data(self):
 """
 Returns the received RF data.

 Returns:
 Bytearray: the received RF data.
 """
 if self.__data is None:
 return None
 return self.__data.copy()

 @rf_data.setter
 def rf_data(self, rf_data):
 """
 Sets the received RF data.

 Args:
 rf_data (Bytearray): the new received RF data.
 """
 if rf_data is None:
 self.__data = None
 else:
 self.__data = rf_data.copy()

[docs]class RX16Packet(XBeeAPIPacket):
 """
 This class represents an RX (Receive) 16 Request packet. Packet is built
 using the parameters of the constructor or providing a valid API byte array.

 When the module receives an RF packet, it is sent out the UART using this
 message type

 This packet is the response to TX (Transmit) 16 Request packets.

 .. seealso::
 | :class:`.ReceiveOptions`
 | :class:`.TX16Packet`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 9

 def __init__(self, x16bit_addr, rssi, rx_opts, rf_data=None,
 op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a :class:`.RX16Packet` object with the
 provided parameters.

 Args:
 x16bit_addr (:class:`.XBee16BitAddress`): the 16-bit source address.
 rssi (Integer): received signal strength indicator.
 rx_opts (Integer): bitfield indicating the receive options.
 rf_data (Bytearray, optional): received RF data.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 .. seealso::
 | :class:`.ReceiveOptions`
 | :class:`.XBee16BitAddress`
 | :class:`.XBeeAPIPacket`
 """

 super().__init__(ApiFrameType.RX_16, op_mode=op_mode)

 self.__x16bit_addr = x16bit_addr
 self.__rssi = rssi
 self.__rx_opts = rx_opts
 self.__data = rf_data

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.RX16Packet`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 9.
 (start delim. + length (2 bytes) + frame type + 16bit addr. + rssi
 + receive options + checksum = 9 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is different from
 :attr:`.ApiFrameType.RX_16`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=RX16Packet.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.RX_16.code:
 raise InvalidPacketException(message="This packet is not an RX 16 Packet")

 return RX16Packet(XBee16BitAddress(raw[4:6]), raw[6], raw[7],
 rf_data=raw[8:-1] if len(raw) > RX16Packet.__MIN_PACKET_LENGTH else None,
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return False

[docs] def is_broadcast(self):
 """
 Override method.

 .. seealso::
 | :meth:`XBeeAPIPacket.is_broadcast`
 """
 return (utils.is_bit_enabled(self.__rx_opts, 1)
 or utils.is_bit_enabled(self.__rx_opts, 2))

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = self.__x16bit_addr.address
 ret.append(self.__rssi)
 ret.append(self.__rx_opts)
 if self.__data is not None:
 ret += self.__data
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.X16BIT_ADDR: self.__x16bit_addr,
 DictKeys.RSSI: self.__rssi,
 DictKeys.RECEIVE_OPTIONS: self.__rx_opts,
 DictKeys.RF_DATA: self.__data}

 @property
 def x16bit_source_addr(self):
 """
 Returns the 16-bit source address.

 Returns:
 :class:`.XBee16BitAddress`: the 16-bit source address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 return self.__x16bit_addr

 @x16bit_source_addr.setter
 def x16bit_source_addr(self, x16bit_addr):
 """
 Sets the 16-bit source address.

 Args:
 x16bit_addr (:class:`.XBee16BitAddress`): the new 16-bit source address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 self.__x16bit_addr = x16bit_addr

 @property
 def rssi(self):
 """
 Returns the received Signal Strength Indicator (RSSI).

 Returns:
 Integer: the received Signal Strength Indicator (RSSI).
 """
 return self.__rssi

 @rssi.setter
 def rssi(self, rssi):
 """
 Sets the received Signal Strength Indicator (RSSI).

 Args:
 rssi (Integer): the new received Signal Strength Indicator (RSSI).

 """
 self.__rssi = rssi

 @property
 def receive_options(self):
 """
 Returns the receive options bitfield.

 Returns:
 Integer: the receive options bitfield.

 .. seealso::
 | :class:`.ReceiveOptions`
 """
 return self.__rx_opts

 @receive_options.setter
 def receive_options(self, receive_options):
 """
 Sets the receive options bitfield.

 Args:
 receive_options (Integer): the new receive options bitfield.

 .. seealso::
 | :class:`.ReceiveOptions`
 """
 self.__rx_opts = receive_options

 @property
 def rf_data(self):
 """
 Returns the received RF data.

 Returns:
 Bytearray: the received RF data.
 """
 if self.__data is None:
 return None
 return self.__data.copy()

 @rf_data.setter
 def rf_data(self, rf_data):
 """
 Sets the received RF data.

 Args:
 rf_data (Bytearray): the new received RF data.
 """
 if rf_data is None:
 self.__data = None
 else:
 self.__data = rf_data.copy()

[docs]class RX64IOPacket(XBeeAPIPacket):
 """
 This class represents an RX64 address IO packet. Packet is built using the
 parameters of the constructor or providing a valid API payload.

 I/O data is sent out the UART using an API frame.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 20

 def __init__(self, x64bit_addr, rssi, rx_opts, data, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates an :class:`.RX64IOPacket` object with
 the provided parameters.

 Args:
 x64bit_addr (:class:`.XBee64BitAddress`): the 64-bit source address.
 rssi (Integer): received signal strength indicator.
 rx_opts (Integer): bitfield indicating the receive options.
 data (Bytearray): received RF data.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 .. seealso::
 | :class:`.ReceiveOptions`
 | :class:`.XBee64BitAddress`
 | :class:`.XBeeAPIPacket`
 """
 super().__init__(ApiFrameType.RX_IO_64, op_mode=op_mode)
 self.__x64bit_addr = x64bit_addr
 self.__rssi = rssi
 self.__rs_opts = rx_opts
 self.__data = data
 self.__io_sample = IOSample(data) if data is not None and len(data) >= 5 else None

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.RX64IOPacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 20.
 (start delim. + length (2 bytes) + frame type + 64bit addr.
 + rssi + receive options + rf data (5 bytes) + checksum = 20 bytes)
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is different from
 :attr:`.ApiFrameType.RX_IO_64`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=RX64IOPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.RX_IO_64.code:
 raise InvalidPacketException(message="This packet is not an RX 64 IO packet.")

 return RX64IOPacket(XBee64BitAddress(raw[4:12]), raw[12], raw[13], raw[14:-1],
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return False

[docs] def is_broadcast(self):
 """
 Override method.

 .. seealso::
 | :meth:`XBeeAPIPacket.is_broadcast`
 """
 return (utils.is_bit_enabled(self.__rs_opts, 1)
 or utils.is_bit_enabled(self.__rs_opts, 2))

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = self.__x64bit_addr.address
 ret.append(self.__rssi)
 ret.append(self.__rs_opts)
 if self.__data is not None:
 ret += self.__data
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 base = {DictKeys.X16BIT_ADDR: self.__x64bit_addr.address,
 DictKeys.RSSI: self.__rssi,
 DictKeys.RECEIVE_OPTIONS: self.__rs_opts}

 if self.__io_sample is not None:
 base[DictKeys.NUM_SAMPLES] = 1
 base[DictKeys.DIGITAL_MASK] = self.__io_sample.digital_mask
 base[DictKeys.ANALOG_MASK] = self.__io_sample.analog_mask

 # Digital values
 for i in range(16):
 if self.__io_sample.has_digital_value(IOLine.get(i)):
 base[IOLine.get(i).description + "digital value"] = \
 utils.hex_to_string(self.__io_sample.get_digital_value(IOLine.get(i)))

 # Analog values
 for i in range(6):
 if self.__io_sample.has_analog_value(IOLine.get(i)):
 base[IOLine.get(i).description + "analog value"] = \
 utils.hex_to_string(self.__io_sample.get_analog_value(IOLine.get(i)))

 # Power supply
 if self.__io_sample.has_power_supply_value():
 base["Power supply value "] = "%02X" % self.__io_sample.power_supply_value

 elif self.__data is not None:
 base[DictKeys.RF_DATA] = utils.hex_to_string(self.__data)

 return base

 @property
 def x64bit_source_addr(self):
 """
 Returns the 64-bit source address.

 Returns:
 :class:`XBee64BitAddress`: the 64-bit source address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 return self.__x64bit_addr

 @x64bit_source_addr.setter
 def x64bit_source_addr(self, x64bit_addr):
 """
 Sets the 64-bit source address.

 Args:
 x64bit_addr (:class:`.XBee64BitAddress`): the new 64-bit source address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 self.__x64bit_addr = x64bit_addr

 @property
 def rssi(self):
 """
 Returns the received Signal Strength Indicator (RSSI).

 Returns:
 Integer: the received Signal Strength Indicator (RSSI).
 """
 return self.__rssi

 @rssi.setter
 def rssi(self, rssi):
 """
 Sets the received Signal Strength Indicator (RSSI).

 Args:
 rssi (Integer): the new received Signal Strength Indicator (RSSI).
 """
 self.__rssi = rssi

 @property
 def receive_options(self):
 """
 Returns the receive options bitfield.

 Returns:
 Integer: the receive options bitfield.

 .. seealso::
 | :class:`.ReceiveOptions`
 """
 return self.__rs_opts

 @receive_options.setter
 def receive_options(self, receive_options):
 """
 Sets the receive options bitfield.

 Args:
 receive_options (Integer): the new receive options bitfield.

 .. seealso::
 | :class:`.ReceiveOptions`
 """
 self.__rs_opts = receive_options

 @property
 def rf_data(self):
 """
 Returns the received RF data.

 Returns:
 Bytearray: the received RF data.
 """
 if self.__data is None:
 return None
 return self.__data.copy()

 @rf_data.setter
 def rf_data(self, rf_data):
 """
 Sets the received RF data.

 Args:
 rf_data (Bytearray): the new received RF data.
 """
 if rf_data is None:
 self.__data = None
 else:
 self.__data = rf_data.copy()

 # Modify the ioSample accordingly
 if rf_data is not None and len(rf_data) >= 5:
 self.__io_sample = IOSample(self.__data)
 else:
 self.__io_sample = None

 @property
 def io_sample(self):
 """
 Returns the IO sample corresponding to the data contained in the packet.

 Returns:
 :class:`.IOSample`: the IO sample of the packet, `None` if the
 packet has not any data or if the sample could not be generated
 correctly.

 .. seealso::
 | :class:`.IOSample`
 """
 return self.__io_sample

 @io_sample.setter
 def io_sample(self, io_sample):
 """
 Sets the IO sample of the packet.

 Args:
 io_sample (:class:`.IOSample`): the new IO sample to set.

 .. seealso::
 | :class:`.IOSample`
 """
 self.__io_sample = io_sample

[docs]class RX16IOPacket(XBeeAPIPacket):
 """
 This class represents an RX16 address IO packet. Packet is built using the
 parameters of the constructor or providing a valid byte array.

 I/O data is sent out the UART using an API frame.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 14

 def __init__(self, x16bit_addr, rssi, rx_opts, data, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates an :class:`.RX16IOPacket` object with
 the provided parameters.

 Args:
 x16bit_addr (:class:`.XBee16BitAddress`): the 16-bit source address.
 rssi (Integer): received signal strength indicator.
 rx_opts (Integer): bitfield indicating the receive options.
 data (Bytearray): received RF data.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 .. seealso::
 | :class:`.ReceiveOptions`
 | :class:`.XBee16BitAddress`
 | :class:`.XBeeAPIPacket`
 """
 super().__init__(ApiFrameType.RX_IO_16, op_mode=op_mode)
 self.__x16bit_addr = x16bit_addr
 self.__rssi = rssi
 self.__rx_opts = rx_opts
 self.__data = data
 self.__io_sample = IOSample(data) if data is not None and len(data) >= 5 else None

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.RX16IOPacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 14.
 (start delim. + length (2 bytes) + frame type + 16bit addr.
 + rssi + receive options + rf data (5 bytes) + checksum = 14 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is different from
 :attr:`.ApiFrameType.RX_IO_16`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=RX16IOPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.RX_IO_16.code:
 raise InvalidPacketException(message="This packet is not an RX 16 IO packet.")

 return RX16IOPacket(XBee16BitAddress(raw[4:6]), raw[6], raw[7], raw[8:-1],
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return False

[docs] def is_broadcast(self):
 """
 Override method.

 .. seealso::
 | :meth:`XBeeAPIPacket.is_broadcast`
 """
 return (utils.is_bit_enabled(self.__rx_opts, 1)
 or utils.is_bit_enabled(self.__rx_opts, 2))

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = self.__x16bit_addr.address
 ret.append(self.__rssi)
 ret.append(self.__rx_opts)
 if self.__data is not None:
 ret += self.__data
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 base = {DictKeys.X16BIT_ADDR: self.__x16bit_addr.address,
 DictKeys.RSSI: self.__rssi,
 DictKeys.RECEIVE_OPTIONS: self.__rx_opts}

 if self.__io_sample is not None:
 base[DictKeys.NUM_SAMPLES] = 1
 base[DictKeys.DIGITAL_MASK] = self.__io_sample.digital_mask
 base[DictKeys.ANALOG_MASK] = self.__io_sample.analog_mask

 # Digital values
 for i in range(16):
 if self.__io_sample.has_digital_value(IOLine.get(i)):
 base[IOLine.get(i).description + "digital value"] = \
 utils.hex_to_string(self.__io_sample.get_digital_value(IOLine.get(i)))

 # Analog values
 for i in range(6):
 if self.__io_sample.has_analog_value(IOLine.get(i)):
 base[IOLine.get(i).description + "analog value"] = \
 utils.hex_to_string(self.__io_sample.get_analog_value(IOLine.get(i)))

 # Power supply
 if self.__io_sample.has_power_supply_value():
 base["Power supply value "] = "%02X" % self.__io_sample.power_supply_value

 elif self.__data is not None:
 base[DictKeys.RF_DATA] = utils.hex_to_string(self.__data)

 return base

 @property
 def x16bit_source_addr(self):
 """
 Returns the 16-bit source address.

 Returns:
 :class:`.XBee16BitAddress`: the 16-bit source address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 return self.__x16bit_addr

 @x16bit_source_addr.setter
 def x16bit_source_addr(self, x16bit_addr):
 """
 Sets the 16-bit source address.

 Args:
 x16bit_addr (:class:`.XBee16BitAddress`): the new 16-bit source address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 self.__x16bit_addr = x16bit_addr

 @property
 def rssi(self):
 """
 Returns the received Signal Strength Indicator (RSSI).

 Returns:
 Integer: the received Signal Strength Indicator (RSSI).
 """
 return self.__rssi

 @rssi.setter
 def rssi(self, rssi):
 """
 Sets the received Signal Strength Indicator (RSSI).

 Args:
 rssi (Integer): the new received Signal Strength Indicator (RSSI).

 """
 self.__rssi = rssi

 @property
 def receive_options(self):
 """
 Returns the receive options bitfield.

 Returns:
 Integer: the receive options bitfield.

 .. seealso::
 | :class:`.ReceiveOptions`
 """
 return self.__rx_opts

 @receive_options.setter
 def receive_options(self, receive_options):
 """
 Sets the receive options bitfield.

 Args:
 receive_options (Integer): the new receive options bitfield.

 .. seealso::
 | :class:`.ReceiveOptions`
 """
 self.__rx_opts = receive_options

 @property
 def rf_data(self):
 """
 Returns the received RF data.

 Returns:
 Bytearray: the received RF data.
 """
 if self.__data is None:
 return None
 return self.__data.copy()

 @rf_data.setter
 def rf_data(self, rf_data):
 """
 Sets the received RF data.

 Args:
 rf_data (Bytearray): the new received RF data.
 """
 if rf_data is None:
 self.__data = None
 else:
 self.__data = rf_data.copy()

 # Modify the ioSample accordingly
 if rf_data is not None and len(rf_data) >= 5:
 self.__io_sample = IOSample(self.__data)
 else:
 self.__io_sample = None

 @property
 def io_sample(self):
 """
 Returns the IO sample corresponding to the data contained in the packet.

 Returns:
 :class:`.IOSample`: the IO sample of the packet, `None` if the
 packet has not any data or if the sample could not be generated
 correctly.

 .. seealso::
 | :class:`.IOSample`
 """
 return self.__io_sample

 @io_sample.setter
 def io_sample(self, io_sample):
 """
 Sets the IO sample of the packet.

 Args:
 io_sample (:class:`.IOSample`): the new IO sample to set.

 .. seealso::
 | :class:`.IOSample`
 """
 self.__io_sample = io_sample

 Source code for digi.xbee.packets.relay

Copyright 2019-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

from digi.xbee.models.mode import OperatingMode
from digi.xbee.models.options import XBeeLocalInterface
from digi.xbee.packets.aft import ApiFrameType
from digi.xbee.packets.base import XBeeAPIPacket, DictKeys
from digi.xbee.exception import InvalidOperatingModeException, InvalidPacketException

[docs]class UserDataRelayPacket(XBeeAPIPacket):
 """
 This class represents a User Data Relay packet. Packet is built using the
 parameters of the constructor.

 The User Data Relay packet allows for data to come in on an interface with
 a designation of the target interface for the data to be output on.

 The destination interface must be one of the interfaces found in the
 corresponding enumerator (see :class:`.XBeeLocalInterface`).

 .. seealso::
 | :class:`.UserDataRelayOutputPacket`
 | :class:`.XBeeAPIPacket`
 | :class:`.XBeeLocalInterface`
 """

 __MIN_PACKET_LENGTH = 7

 def __init__(self, frame_id, local_iface, data=None, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.UserDataRelayPacket`
 object with the provided parameters.

 Args:
 frame_id (integer): the frame ID of the packet.
 local_iface (:class:`.XBeeLocalInterface`): the destination interface.
 data (Bytearray, optional): Data to send to the destination interface.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 | :class:`.XBeeLocalInterface`

 Raises:
 ValueError: if `local_interface` is `None`.
 ValueError: if `frame_id` is less than 0 or greater than 255.
 """
 if local_iface is None:
 raise ValueError("Destination interface cannot be None")
 if frame_id > 255 or frame_id < 0:
 raise ValueError("frame_id must be between 0 and 255.")

 super().__init__(ApiFrameType.USER_DATA_RELAY_REQUEST, op_mode=op_mode)
 self._frame_id = frame_id
 self.__local_iface = local_iface
 self.__data = data

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.UserDataRelayPacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 7.
 (start delim. + length (2 bytes) + frame type + frame id
 + relay interface + checksum = 7 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.USER_DATA_RELAY_REQUEST`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=UserDataRelayPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.USER_DATA_RELAY_REQUEST.code:
 raise InvalidPacketException(message="This packet is not a user data relay packet.")

 return UserDataRelayPacket(
 raw[4], XBeeLocalInterface.get(raw[5]),
 data=raw[6:-1] if len(raw) > UserDataRelayPacket.__MIN_PACKET_LENGTH else None,
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = bytearray()
 ret.append(self.__local_iface.code)
 if self.__data is not None:
 return ret + self.__data
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.DEST_INTERFACE: self.__local_iface.description,
 DictKeys.DATA: list(self.__data) if self.__data is not None else None}

 @property
 def data(self):
 """
 Returns the data to send.

 Returns:
 Bytearray: the data to send.
 """
 if self.__data is None:
 return None
 return self.__data.copy()

 @data.setter
 def data(self, data):
 """
 Sets the data to send.

 Args:
 data (Bytearray): the new data to send.
 """
 if data is None:
 self.__data = None
 else:
 self.__data = data.copy()

 @property
 def dest_interface(self):
 """
 Returns the the destination interface.

 Returns:
 :class:`.XBeeLocalInterface`: the destination interface.

 .. seealso::
 | :class:`.XBeeLocalInterface`
 """
 return self.__local_iface

 @dest_interface.setter
 def dest_interface(self, local_interface):
 """
 Sets the destination interface.

 Args:
 local_interface (:class:`.XBeeLocalInterface`): the new destination interface.

 .. seealso::
 | :class:`.XBeeLocalInterface`
 """
 self.__local_iface = local_interface

[docs]class UserDataRelayOutputPacket(XBeeAPIPacket):
 """
 This class represents a User Data Relay Output packet. Packet is built
 using the parameters of the constructor.

 The User Data Relay Output packet can be received from any relay interface.

 The source interface must be one of the interfaces found in the
 corresponding enumerator (see :class:`.XBeeLocalInterface`).

 .. seealso::
 | :class:`.UserDataRelayPacket`
 | :class:`.XBeeAPIPacket`
 | :class:`.XBeeLocalInterface`
 """

 __MIN_PACKET_LENGTH = 6

 def __init__(self, local_iface, data=None, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new
 :class:`.UserDataRelayOutputPacket` object with the provided
 parameters.

 Args:
 local_iface (:class:`.XBeeLocalInterface`): the source interface.
 data (Bytearray, optional): Data received from the source interface.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `local_interface` is `None`.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 | :class:`.XBeeLocalInterface`
 """
 if local_iface is None:
 raise ValueError("Source interface cannot be None")

 super().__init__(ApiFrameType.USER_DATA_RELAY_OUTPUT, op_mode=op_mode)
 self.__local_iface = local_iface
 self.__data = data

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.UserDataRelayOutputPacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 6.
 (start delim. + length (2 bytes) + frame type + relay interface
 + checksum = 6 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.USER_DATA_RELAY_OUTPUT`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=UserDataRelayOutputPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.USER_DATA_RELAY_OUTPUT.code:
 raise InvalidPacketException(
 message="This packet is not a user data relay output packet.")

 return UserDataRelayOutputPacket(
 XBeeLocalInterface.get(raw[4]),
 data=raw[5:-1] if len(raw) > UserDataRelayOutputPacket.__MIN_PACKET_LENGTH else None,
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return False

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = bytearray()
 ret.append(self.__local_iface.code)
 if self.__data is not None:
 return ret + self.__data
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.SOURCE_INTERFACE: self.__local_iface.description,
 DictKeys.DATA: list(self.__data) if self.__data is not None else None}

 @property
 def data(self):
 """
 Returns the received data.

 Returns:
 Bytearray: the received data.
 """
 if self.__data is None:
 return None
 return self.__data.copy()

 @data.setter
 def data(self, data):
 """
 Sets the received data.

 Args:
 data (Bytearray): the new received data.
 """
 if data is None:
 self.__data = None
 else:
 self.__data = data.copy()

 @property
 def src_interface(self):
 """
 Returns the the source interface.

 Returns:
 :class:`.XBeeLocalInterface`: the source interface.

 .. seealso::
 | :class:`.XBeeLocalInterface`
 """
 return self.__local_iface

 @src_interface.setter
 def src_interface(self, local_interface):
 """
 Sets the source interface.

 Args:
 local_interface (:class:`.XBeeLocalInterface`): the new source interface.

 .. seealso::
 | :class:`.XBeeLocalInterface`
 """
 self.__local_iface = local_interface

 Source code for digi.xbee.packets.socket

Copyright 2019-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

from ipaddress import IPv4Address

from digi.xbee.exception import InvalidOperatingModeException, InvalidPacketException
from digi.xbee.models.mode import OperatingMode
from digi.xbee.models.options import SocketOption
from digi.xbee.models.protocol import IPProtocol
from digi.xbee.models.status import SocketStatus, SocketState
from digi.xbee.packets.aft import ApiFrameType
from digi.xbee.packets.base import XBeeAPIPacket, DictKeys
from digi.xbee.util import utils

[docs]class SocketCreatePacket(XBeeAPIPacket):
 """
 This class represents a Socket Create packet. Packet is built using the
 parameters of the constructor.

 Use this frame to create a new socket with the following protocols: TCP,
 UDP, or TLS.

 .. seealso::
 | :class:`.SocketCreateResponsePacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 7

 def __init__(self, frame_id, protocol, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.SocketCreatePacket`
 object with the provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 protocol (:class:`.IPProtocol`): the protocol used to create the socket.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 | :class:`.IPProtocol`

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame ID must be between 0 and 255")

 super().__init__(ApiFrameType.SOCKET_CREATE, op_mode=op_mode)
 self._frame_id = frame_id
 self.__prot = protocol

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.SocketCreatePacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 7.
 (start delim. + length (2 bytes) + frame type + frame id
 + protocol + checksum = 7 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.SOCKET_CREATE`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=SocketCreatePacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.SOCKET_CREATE.code:
 raise InvalidPacketException(
 message="This packet is not a Socket Create packet.")

 return SocketCreatePacket(raw[4], IPProtocol.get(raw[5]), op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 return bytearray([self.__prot.code])

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {
 DictKeys.IP_PROTOCOL.value: "%s (%s)" % (self.__prot.code, self.__prot.description)}

 @property
 def protocol(self):
 """
 Returns the communication protocol.

 Returns:
 :class:`.IPProtocol`: the communication protocol.

 .. seealso::
 | :class:`.IPProtocol`
 """
 return self.__prot

 @protocol.setter
 def protocol(self, protocol):
 """
 Sets the communication protocol.

 Args:
 protocol (:class:`.IPProtocol`): the new communication protocol.

 .. seealso::
 | :class:`.IPProtocol`
 """
 self.__prot = protocol

[docs]class SocketCreateResponsePacket(XBeeAPIPacket):
 """
 This class represents a Socket Create Response packet. Packet is built using
 the parameters of the constructor.

 The device sends this frame in response to a Socket Create (0x40) frame. It
 contains a socket ID that should be used for future transactions with the
 socket and a status field.

 If the status field is non-zero, which indicates an error, the socket ID
 will be set to 0xFF and the socket will not be opened.

 .. seealso::
 | :class:`.SocketCreatePacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 8

 def __init__(self, frame_id, socket_id, status, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new
 :class:`.SocketCreateResponsePacket` object with the provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 socket_id (Integer): the unique socket ID to address the socket.
 status (:class:`.SocketStatus`): the socket create status.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 | :class:`.SocketStatus`

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 ValueError: if `socket_id` is less than 0 or greater than 255.
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame ID must be between 0 and 255")
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255")

 super().__init__(ApiFrameType.SOCKET_CREATE_RESPONSE, op_mode=op_mode)
 self._frame_id = frame_id
 self.__socket_id = socket_id
 self.__status = status

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.SocketCreateResponsePacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 8.
 (start delim. + length (2 bytes) + frame type + frame id
 + socket id + status + checksum = 8 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.SOCKET_CREATE_RESPONSE`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=SocketCreateResponsePacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.SOCKET_CREATE_RESPONSE.code:
 raise InvalidPacketException(
 message="This packet is not a Socket Create Response packet.")

 return SocketCreateResponsePacket(
 raw[4], raw[5], SocketStatus.get(raw[6]), op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = bytearray()
 ret.append(self.__socket_id)
 ret.append(self.__status.code)
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {
 DictKeys.SOCKET_ID.value: utils.hex_to_string(bytearray([self.__socket_id])),
 DictKeys.STATUS.value: "%s (%s)" % (self.__status.code, self.__status.description)}

 @property
 def socket_id(self):
 """
 Returns the the socket ID.

 Returns:
 Integer: the socket ID.
 """
 return self.__socket_id

 @socket_id.setter
 def socket_id(self, socket_id):
 """
 Sets the socket ID.

 Args:
 socket_id (Integer): the new socket ID.

 Raises:
 ValueError: if `socket_id` is less than 0 or greater than 255.
 """
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255")
 self.__socket_id = socket_id

 @property
 def status(self):
 """
 Returns the socket create status.

 Returns:
 :class:`.SocketStatus`: the status.

 .. seealso::
 | :class:`.SocketStatus`
 """
 return self.__status

 @status.setter
 def status(self, status):
 """
 Sets the socket create status.

 Args:
 status (:class:`.SocketStatus`): the new status.

 .. seealso::
 | :class:`.SocketStatus`
 """
 self.__status = status

[docs]class SocketOptionRequestPacket(XBeeAPIPacket):
 """
 This class represents a Socket Option Request packet. Packet is built using
 the parameters of the constructor.

 Use this frame to modify the behavior of sockets to be different from the
 normal default behavior.

 If the Option Data field is zero-length, the Socket Option Response Packet
 (0xC1) reports the current effective value.

 .. seealso::
 | :class:`.SocketOptionResponsePacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 8

 def __init__(self, frame_id, socket_id, option, option_data=None,
 op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.SocketOptionRequestPacket`
 object with the provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 socket_id (Integer): the socket ID to modify.
 option (:class:`.SocketOption`): the socket option of the parameter to change.
 option_data (Bytearray, optional): the option data.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 | :class:`.SocketOption`

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 ValueError: if `socket_id` is less than 0 or greater than 255.
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame ID must be between 0 and 255")
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255")

 super().__init__(ApiFrameType.SOCKET_OPTION_REQUEST, op_mode=op_mode)
 self._frame_id = frame_id
 self.__socket_id = socket_id
 self.__opt = option
 self.__opt_data = option_data

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.SocketOptionRequestPacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 8.
 (start delim. + length (2 bytes) + frame type + frame id
 + socket id + option + checksum = 8 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: byte 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.SOCKET_OPTION_REQUEST`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=SocketOptionRequestPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.SOCKET_OPTION_REQUEST.code:
 raise InvalidPacketException(
 message="This packet is not a Socket Option Request packet.")

 return SocketOptionRequestPacket(
 raw[4], raw[5], SocketOption.get(raw[6]),
 option_data=raw[7:-1] if len(raw) > SocketOptionRequestPacket.__MIN_PACKET_LENGTH else None,
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = bytearray()
 ret.append(self.__socket_id)
 ret.append(self.__opt.code)
 if self.__opt_data is not None:
 ret += self.__opt_data
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.SOCKET_ID.value: utils.hex_to_string(bytearray([self.__socket_id])),
 DictKeys.OPTION_ID.value: "%s (%s)" % (self.__opt.code, self.__opt.description),
 DictKeys.OPTION_DATA.value: utils.hex_to_string(
 self.__opt_data, True) if self.__opt_data is not None else None}

 @property
 def socket_id(self):
 """
 Returns the the socket ID.

 Returns:
 Integer: the socket ID.
 """
 return self.__socket_id

 @socket_id.setter
 def socket_id(self, socket_id):
 """
 Sets the socket ID.

 Args:
 socket_id (Integer): the new socket ID.

 Raises:
 ValueError: if `socket_id` is less than 0 or greater than 255.
 """
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255")
 self.__socket_id = socket_id

 @property
 def option(self):
 """
 Returns the socket option.

 Returns:
 :class:`.SocketOption`: the socket option.

 .. seealso::
 | :class:`.SocketOption`
 """
 return self.__opt

 @option.setter
 def option(self, option):
 """
 Sets the socket option.

 Args:
 option (:class:`.SocketOption`): the new socket option.

 .. seealso::
 | :class:`.SocketOption`
 """
 self.__opt = option

 @property
 def option_data(self):
 """
 Returns the socket option data.

 Returns:
 Bytearray: the socket option data.
 """
 return self.__opt_data if self.__opt_data is None else self.__opt_data.copy()

 @option_data.setter
 def option_data(self, option_data):
 """
 Sets the socket option data.

 Args:
 option_data (Bytearray): the new socket option data.
 """
 self.__opt_data = None if option_data is None else option_data.copy()

[docs]class SocketOptionResponsePacket(XBeeAPIPacket):
 """
 This class represents a Socket Option Response packet. Packet is built using
 the parameters of the constructor.

 Reports the status of requests made with the Socket Option Request (0x41)
 packet.

 .. seealso::
 | :class:`.SocketOptionRequestPacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 9

 def __init__(self, frame_id, socket_id, option, status, option_data=None,
 op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.SocketOptionResponsePacket`
 object with the provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 socket_id (Integer): the socket ID for which modification was requested.
 option (:class:`.SocketOption`): the socket option of the parameter requested.
 status (:class:`.SocketStatus`): the socket option status of the parameter requested.
 option_data (Bytearray, optional): the option data.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 | :class:`.SocketOption`
 | :class:`.SocketStatus`

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 ValueError: if `socket_id` is less than 0 or greater than 255.
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame ID must be between 0 and 255")
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255")

 super().__init__(ApiFrameType.SOCKET_OPTION_RESPONSE, op_mode=op_mode)
 self._frame_id = frame_id
 self.__socket_id = socket_id
 self.__opt = option
 self.__status = status
 self.__opt_data = option_data

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.SocketOptionResponsePacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 9.
 (start delim. + length (2 bytes) + frame type + frame id
 + socket id + option + status + checksum = 9 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.SOCKET_OPTION_RESPONSE`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=SocketOptionResponsePacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.SOCKET_OPTION_RESPONSE.code:
 raise InvalidPacketException(
 message="This packet is not a Socket Option Response packet.")

 return SocketOptionResponsePacket(
 raw[4], raw[5], SocketOption.get(raw[6]), SocketStatus.get(raw[7]),
 option_data=raw[8:-1] if len(raw) > SocketOptionResponsePacket.__MIN_PACKET_LENGTH else None,
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = bytearray()
 ret.append(self.__socket_id)
 ret.append(self.__opt.code)
 ret.append(self.__status.code)
 if self.__opt_data is not None:
 ret += self.__opt_data
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {
 DictKeys.SOCKET_ID.value: utils.hex_to_string(bytearray([self.__socket_id])),
 DictKeys.OPTION_ID.value: "%s (%s)" % (self.__opt.code, self.__opt.description),
 DictKeys.STATUS.value: "%s (%s)" % (self.__status.code, self.__status.description),
 DictKeys.OPTION_DATA.value: utils.hex_to_string(
 self.__opt_data, True) if self.__opt_data is not None else None}

 @property
 def socket_id(self):
 """
 Returns the the socket ID.

 Returns:
 Integer: the socket ID.
 """
 return self.__socket_id

 @socket_id.setter
 def socket_id(self, socket_id):
 """
 Sets the socket ID.

 Args:
 socket_id (Integer): the new socket ID.

 Raises:
 ValueError: if `socket_id` is less than 0 or greater than 255.
 """
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255")
 self.__socket_id = socket_id

 @property
 def option(self):
 """
 Returns the socket option.

 Returns:
 :class:`.SocketOption`: the socket option.

 .. seealso::
 | :class:`.SocketOption`
 """
 return self.__opt

 @option.setter
 def option(self, option):
 """
 Sets the socket option.

 Args:
 option (:class:`.SocketOption`): the new socket option.

 .. seealso::
 | :class:`.SocketOption`
 """
 self.__opt = option

 @property
 def status(self):
 """
 Returns the socket option status.

 Returns:
 :class:`.SocketStatus`: the socket option status.

 .. seealso::
 | :class:`.SocketStatus`
 """
 return self.__status

 @status.setter
 def status(self, status):
 """
 Sets the socket option status.

 Args:
 status (:class:`.SocketStatus`): the new socket option status.

 .. seealso::
 | :class:`.SocketStatus`
 """
 self.__status = status

 @property
 def option_data(self):
 """
 Returns the socket option data.

 Returns:
 Bytearray: the socket option data.
 """
 return self.__opt_data if self.__opt_data is None else self.__opt_data.copy()

 @option_data.setter
 def option_data(self, option_data):
 """
 Sets the socket option data.

 Args:
 option_data (Bytearray): the new socket option data.
 """
 self.__opt_data = None if option_data is None else option_data.copy()

[docs]class SocketConnectPacket(XBeeAPIPacket):
 """
 This class represents a Socket Connect packet. Packet is built using the
 parameters of the constructor.

 Use this frame to create a socket connect message that causes the device to
 connect a socket to the given address and port.

 For a UDP socket, this filters out any received responses that are not from
 the specified remote address and port.

 Two frames occur in response:

 * Socket Connect Response frame (:class:`SocketConnectResponsePacket`):
 Arrives immediately and confirms the request.
 * Socket Status frame (:class:`SocketStatePacket`): Indicates if the
 connection was successful.

 .. seealso::
 | :class:`.SocketConnectResponsePacket`
 | :class:`.SocketStatePacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 11

 DEST_ADDRESS_BINARY = 0
 """Indicates the destination address field is a binary IPv4 address in network byte order."""

 DEST_ADDRESS_STRING = 1
 """Indicates the destination address field is a string containing either a
 dotted quad value or a domain name to be resolved."""

 def __init__(self, frame_id, socket_id, dest_port, dest_address_type,
 dest_address, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.SocketConnectPacket`
 object with the provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 socket_id (Integer): the ID of the socket to connect.
 dest_port (Integer): the destination port number.
 dest_address_type (Integer): the destination address type. One of
 :attr:`SocketConnectPacket.DEST_ADDRESS_BINARY` or
 :attr:`SocketConnectPacket.DEST_ADDRESS_STRING`.
 dest_address (Bytearray or String): the destination address.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 .. seealso::
 | :attr:`SocketConnectPacket.DEST_ADDRESS_BINARY`
 | :attr:`SocketConnectPacket.DEST_ADDRESS_STRING`
 | :class:`.XBeeAPIPacket`

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 ValueError: if `socket_id` is less than 0 or greater than 255.
 ValueError: if `dest_port` is less than 0 or greater than 65535.
 ValueError: if `dest_address_type` is different than
 :attr:`SocketConnectPacket.DEST_ADDRESS_BINARY` and
 :attr:`SocketConnectPacket.DEST_ADDRESS_STRING`.
 ValueError: if `dest_address` is `None` or does not follow the
 format specified in the configured type.
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame ID must be between 0 and 255")
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255")
 if dest_port < 0 or dest_port > 65535:
 raise ValueError("Destination port must be between 0 and 65535")
 if dest_address_type not in (SocketConnectPacket.DEST_ADDRESS_BINARY,
 SocketConnectPacket.DEST_ADDRESS_STRING):
 raise ValueError("Destination address type must be %d or %d" % (
 SocketConnectPacket.DEST_ADDRESS_BINARY, SocketConnectPacket.DEST_ADDRESS_STRING))
 if (dest_address is None
 or (dest_address_type == SocketConnectPacket.DEST_ADDRESS_BINARY
 and (not isinstance(dest_address, bytearray) or len(dest_address) != 4))
 or (dest_address_type == SocketConnectPacket.DEST_ADDRESS_STRING
 and (not isinstance(dest_address, str) or len(dest_address) < 1))):
 raise ValueError("Invalid destination address")

 super().__init__(ApiFrameType.SOCKET_CONNECT, op_mode=op_mode)
 self._frame_id = frame_id
 self.__socket_id = socket_id
 self.__dest_port = dest_port
 self.__dest_addr_type = dest_address_type
 self.__dest_addr = dest_address

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.SocketConnectPacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 11.
 (start delim. + length (2 bytes) + frame type + frame id
 + socket id + dest port (2 bytes) + dest address type
 + dest_address + checksum = 11 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.SOCKET_CONNECT`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=SocketConnectPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.SOCKET_CONNECT.code:
 raise InvalidPacketException(
 message="This packet is not a Socket Connect packet.")

 addr_type = raw[8]
 address = raw[9:-1]
 if address is not None and addr_type == SocketConnectPacket.DEST_ADDRESS_STRING:
 address = address.decode(encoding="utf8", errors='ignore')

 return SocketConnectPacket(raw[4], raw[5], utils.bytes_to_int(raw[6:8]),
 addr_type, address, op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = bytearray()
 ret.append(self.__socket_id)
 ret += utils.int_to_bytes(self.__dest_port, num_bytes=2)
 ret.append(self.__dest_addr_type)
 if isinstance(self.__dest_addr, str):
 ret += self.__dest_addr.encode(encoding='utf8')
 else:
 ret += self.__dest_addr
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {
 DictKeys.SOCKET_ID.value: "%02X" % self.__socket_id,
 DictKeys.DEST_PORT.value: "%s (%s)"
 % (utils.hex_to_string(utils.int_to_bytes(self.__dest_port, num_bytes=2)),
 self.__dest_port),
 DictKeys.DEST_ADDR_TYPE.value: "%02X" % self.__dest_addr_type,
 DictKeys.DEST_ADDR.value: ("%s (%s)" % (
 utils.hex_to_string(
 self.__dest_addr.encode(encoding="utf8", errors='ignore')), self.__dest_addr)) if isinstance(self.__dest_addr, str) else utils.hex_to_string(self.__dest_addr)}

 @property
 def socket_id(self):
 """
 Returns the the socket ID.

 Returns:
 Integer: the socket ID.
 """
 return self.__socket_id

 @socket_id.setter
 def socket_id(self, socket_id):
 """
 Sets the socket ID.

 Args:
 socket_id (Integer): the new socket ID.

 Raises:
 ValueError: if `socket_id` is less than 0 or greater than 255.
 """
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255")
 self.__socket_id = socket_id

 @property
 def dest_port(self):
 """
 Returns the destination port.

 Returns:
 Integer: the destination port.
 """
 return self.__dest_port

 @dest_port.setter
 def dest_port(self, dest_port):
 """
 Sets the destination port.

 Args:
 dest_port (Integer): the new destination port.

 Raises:
 ValueError: if `dest_port` is less than 0 or greater than 65535.
 """
 if dest_port < 0 or dest_port > 65535:
 raise ValueError("Destination port must be between 0 and 65535")
 self.__dest_port = dest_port

 @property
 def dest_address_type(self):
 """
 Returns the destination address type.

 Returns:
 Integer: the destination address type.
 """
 return self.__dest_addr_type

 @dest_address_type.setter
 def dest_address_type(self, dest_address_type):
 """
 Sets the destination address type.

 Args:
 dest_address_type (Integer): the new destination address type.

 Raises:
 ValueError: if `dest_address_type` is different from
 :attr:`SocketConnectPacket.DEST_ADDRESS_BINARY` and
 :attr:`SocketConnectPacket.DEST_ADDRESS_STRING`.
 """
 if dest_address_type not in (SocketConnectPacket.DEST_ADDRESS_BINARY,
 SocketConnectPacket.DEST_ADDRESS_STRING):
 raise ValueError("Destination address type must be %d or %d" % (
 SocketConnectPacket.DEST_ADDRESS_BINARY, SocketConnectPacket.DEST_ADDRESS_STRING))
 self.__dest_addr_type = dest_address_type

 @property
 def dest_address(self):
 """
 Returns the destination address.

 Returns:
 Bytearray or String: the destination address.
 """
 return self.__dest_addr

 @dest_address.setter
 def dest_address(self, dest_address):
 """
 Sets the destination address.

 Args:
 dest_address (Bytearray or String): the new destination address.

 Raises:
 ValueError: if `dest_address` is `None`.
 ValueError: if `dest_address` does not follow the format specified
 in the configured type.
 """
 if (dest_address is None
 or (self.__dest_addr_type == SocketConnectPacket.DEST_ADDRESS_BINARY
 and (not isinstance(dest_address, bytearray) or len(dest_address) != 4))
 or (self.__dest_addr_type == SocketConnectPacket.DEST_ADDRESS_STRING
 and (not isinstance(dest_address, str) or len(dest_address) < 1))):
 raise ValueError("Invalid destination address")
 self.__dest_addr = dest_address

[docs]class SocketConnectResponsePacket(XBeeAPIPacket):
 """
 This class represents a Socket Connect Response packet. Packet is built
 using the parameters of the constructor.

 The device sends this frame in response to a Socket Connect (0x42) frame.
 The frame contains a status regarding the initiation of the connect.

 .. seealso::
 | :class:`.SocketConnectPacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 8

 def __init__(self, frame_id, socket_id, status, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.SocketConnectPacket`
 object with the provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 socket_id (Integer): the ID of the socket to connect.
 status (:class:`.SocketStatus`): the socket connect status.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 | :class:`.SocketStatus`

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 ValueError: if `socket_id` is less than 0 or greater than 255.
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame ID must be between 0 and 255")
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255")

 super().__init__(ApiFrameType.SOCKET_CONNECT_RESPONSE, op_mode=op_mode)
 self._frame_id = frame_id
 self.__socket_id = socket_id
 self.__status = status

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.SocketConnectResponsePacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 8.
 (start delim. + length (2 bytes) + frame type + frame id
 + socket id + status + checksum = 8 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.SOCKET_CONNECT_RESPONSE`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=SocketConnectResponsePacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.SOCKET_CONNECT_RESPONSE.code:
 raise InvalidPacketException(
 message="This packet is not a Socket Connect Response packet.")

 return SocketConnectResponsePacket(
 raw[4], raw[5], SocketStatus.get(raw[6]), op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = bytearray()
 ret.append(self.__socket_id)
 ret.append(self.__status.code)
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {
 DictKeys.SOCKET_ID.value: "%02X" % self.__socket_id,
 DictKeys.STATUS.value: "%s (%s)" % (self.__status.code, self.__status.description)}

 @property
 def socket_id(self):
 """
 Returns the the socket ID.

 Returns:
 Integer: the socket ID.
 """
 return self.__socket_id

 @socket_id.setter
 def socket_id(self, socket_id):
 """
 Sets the socket ID.

 Args:
 socket_id (Integer): the new socket ID.

 Raises:
 ValueError: if `socket_id` is less than 0 or greater than 255.
 """
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255")
 self.__socket_id = socket_id

 @property
 def status(self):
 """
 Returns the socket connect status.

 Returns:
 :class:`.SocketStatus`: the socket connect status.

 .. seealso::
 | :class:`.SocketStatus`
 """
 return self.__status

 @status.setter
 def status(self, status):
 """
 Sets the socket connect status.

 Args:
 status (:class:`.SocketStatus`): the new socket connect status.

 .. seealso::
 | :class:`.SocketStatus`
 """
 self.__status = status

[docs]class SocketClosePacket(XBeeAPIPacket):
 """
 This class represents a Socket Close packet. Packet is built using the
 parameters of the constructor.

 Use this frame to close a socket when given an identifier.

 .. seealso::
 | :class:`.SocketCloseResponsePacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 7

 def __init__(self, frame_id, socket_id, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.SocketClosePacket`
 object with the provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 socket_id (Integer): the ID of the socket to close.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 .. seealso::
 | :class:`.XBeeAPIPacket`

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 ValueError: if `socket_id` is less than 0 or greater than 255.
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame ID must be between 0 and 255")
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255")

 super().__init__(ApiFrameType.SOCKET_CLOSE, op_mode=op_mode)
 self._frame_id = frame_id
 self.__socket_id = socket_id

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.SocketClosePacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 7.
 (start delim. + length (2 bytes) + frame
 type + frame id + socket id + checksum = 7 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.SOCKET_CLOSE`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(raw, min_length=SocketClosePacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.SOCKET_CLOSE.code:
 raise InvalidPacketException(message="This packet is not a Socket Close packet.")

 return SocketClosePacket(raw[4], raw[5], op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 return bytearray([self.__socket_id])

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.SOCKET_ID.value: utils.hex_to_string(bytearray([self.__socket_id]))}

 @property
 def socket_id(self):
 """
 Returns the socket ID.

 Returns:
 Integer: the socket ID.
 """
 return self.__socket_id

 @socket_id.setter
 def socket_id(self, socket_id):
 """
 Sets the socket ID.

 Args:
 socket_id (Integer): the new socket ID.

 Raises:
 ValueError: if `socket_id` is less than 0 or greater than 255.
 """
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255")
 self.__socket_id = socket_id

[docs]class SocketCloseResponsePacket(XBeeAPIPacket):
 """
 This class represents a Socket Close Response packet. Packet is built using
 the parameters of the constructor.

 The device sends this frame in response to a Socket Close (0x43) frame.
 Since a close will always succeed for a socket that exists, the status can
 be only one of two values:

 * Success.
 * Bad socket ID.

 .. seealso::
 | :class:`.SocketClosePacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 8

 def __init__(self, frame_id, socket_id, status, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.SocketCloseResponsePacket`
 object with the provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 socket_id (Integer): the ID of the socket to close.
 status (:class:`.SocketStatus`): the socket close status.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 | :class:`.SocketStatus`

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 ValueError: if `socket_id` is less than 0 or greater than 255.
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame ID must be between 0 and 255")
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255")

 super().__init__(ApiFrameType.SOCKET_CLOSE_RESPONSE, op_mode=op_mode)
 self._frame_id = frame_id
 self.__socket_id = socket_id
 self.__status = status

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.SocketCloseResponsePacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 8.
 (start delim. + length (2 bytes) + frame type + frame id
 + socket id + status + checksum = 8 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.SOCKET_CLOSE_RESPONSE`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=SocketCloseResponsePacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.SOCKET_CLOSE_RESPONSE.code:
 raise InvalidPacketException(
 message="This packet is not a Socket Close Response packet.")

 return SocketCloseResponsePacket(
 raw[4], raw[5], SocketStatus.get(raw[6]), op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = bytearray()
 ret.append(self.__socket_id)
 ret.append(self.__status.code)
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {
 DictKeys.SOCKET_ID.value: "%02X" % self.__socket_id,
 DictKeys.STATUS.value: "%s (%s)" % (self.__status.code, self.__status.description)}

 @property
 def socket_id(self):
 """
 Returns the the socket ID.

 Returns:
 Integer: the socket ID.
 """
 return self.__socket_id

 @socket_id.setter
 def socket_id(self, socket_id):
 """
 Sets the socket ID.

 Args:
 socket_id (Integer): the new socket ID.

 Raises:
 ValueError: if `socket_id` is less than 0 or greater than 255.
 """
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255")
 self.__socket_id = socket_id

 @property
 def status(self):
 """
 Returns the socket close status.

 Returns:
 :class:`.SocketStatus`: the socket close status.

 .. seealso::
 | :class:`.SocketStatus`
 """
 return self.__status

 @status.setter
 def status(self, status):
 """
 Sets the socket close status.

 Args:
 status (:class:`.SocketStatus`): the new socket close status.

 .. seealso::
 | :class:`.SocketStatus`
 """
 self.__status = status

[docs]class SocketSendPacket(XBeeAPIPacket):
 """
 This class represents a Socket Send packet. Packet is built using the
 parameters of the constructor.

 A Socket Send message causes the device to transmit data using the
 current connection. For a nonzero frame ID, this will elicit a Transmit
 (TX) Status - 0x89 frame (:class:`.TransmitStatusPacket`).

 This frame requires a successful Socket Connect - 0x42 frame first
 (:class:`.SocketConnectPacket`). For a socket that is not connected, the
 device responds with a Transmit (TX) Status - 0x89 frame with an
 error.

 .. seealso::
 | :class:`.TransmitStatusPacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 7

 def __init__(self, frame_id, socket_id, payload=None, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.SocketSendPacket` object
 with the provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 socket_id (Integer): the socket identifier.
 payload (Bytearray, optional): data that is sent.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 ValueError: if `socket_id` is less than 0 or greater than 255.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame ID must be between 0 and 255.")
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255.")

 super().__init__(ApiFrameType.SOCKET_SEND, op_mode=op_mode)
 self._frame_id = frame_id
 self.__socket_id = socket_id
 self.__payload = payload

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.SocketSendPacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 7.
 (start delim. + length (2 bytes) + frame type + frame id
 + socket ID + checksum = 7 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.SOCKET_SEND`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=SocketSendPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.SOCKET_SEND.code:
 raise InvalidPacketException(
 "This packet is not a Socket Send (transmit) packet.")

 return SocketSendPacket(
 raw[4], raw[5],
 payload=raw[7:-1] if len(raw) > SocketSendPacket.__MIN_PACKET_LENGTH else None,
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = bytearray()
 ret.append(self.__socket_id)
 ret.append(0) # Transmit options (Reserved)
 if self.__payload is not None:
 ret += self.__payload
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {
 DictKeys.SOCKET_ID.value: "%02X" % self.__socket_id,
 DictKeys.TRANSMIT_OPTIONS.value: "00",
 DictKeys.PAYLOAD.value: utils.hex_to_string(self.__payload,
 True) if self.__payload is not None else None}

 @property
 def socket_id(self):
 """
 Returns the socket ID.

 Returns:
 Integer: the socket ID.
 """
 return self.__socket_id

 @socket_id.setter
 def socket_id(self, socket_id):
 """
 Sets the socket ID.

 Args:
 socket_id (Integer): The new socket ID.

 Raises:
 ValueError: if `socket_id` is less than 0 or greater than 255.
 """
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255.")
 self.__socket_id = socket_id

 @property
 def payload(self):
 """
 Returns the payload to send.

 Returns:
 Bytearray: the payload to send.
 """
 if self.__payload is None:
 return None
 return self.__payload.copy()

 @payload.setter
 def payload(self, payload):
 """
 Sets the payload to send.

 Args:
 payload (Bytearray): the new payload to send.
 """
 if payload is None:
 self.__payload = None
 else:
 self.__payload = payload.copy()

[docs]class SocketSendToPacket(XBeeAPIPacket):
 """
 This class represents a Socket Send packet. Packet is built using the
 parameters of the constructor.

 A Socket SendTo (Transmit Explicit Data) message causes the device to
 transmit data using an IPv4 address and port. For a non-zero frame ID,
 this will elicit a Transmit (TX) Status - 0x89 frame
 (:class:`.TransmitStatusPacket`).

 If this frame is used with a TCP, SSL, or a connected UDP socket, the
 address and port fields are ignored.

 .. seealso::
 | :class:`.TransmitStatusPacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 14

 def __init__(self, frame_id, socket_id, dest_address, dest_port,
 payload=None, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.SocketSendToPacket`
 object with the provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 socket_id (Integer): the socket identifier.
 dest_address (:class:`.IPv4Address`): IPv4 address of the destination device.
 dest_port (Integer): destination port number.
 payload (Bytearray, optional): data that is sent.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 ValueError: if `socket_id` is less than 0 or greater than 255.
 ValueError: if `dest_port` is less than 0 or greater than 65535.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame ID must be between 0 and 255.")
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255.")
 if dest_port < 0 or dest_port > 65535:
 raise ValueError("Destination port must be between 0 and 65535")

 super().__init__(ApiFrameType.SOCKET_SENDTO, op_mode=op_mode)
 self._frame_id = frame_id
 self.__socket_id = socket_id
 self.__dest_addr = dest_address
 self.__dest_port = dest_port
 self.__payload = payload

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.SocketSendToPacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 14.
 (start delim. + length (2 bytes) + frame type + frame id
 + socket ID + dest address (4 bytes) + dest port (2 bytes)
 + transmit options + checksum = 14 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.SOCKET_SENDTO`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=SocketSendToPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.SOCKET_SENDTO.code:
 raise InvalidPacketException(
 "This packet is not a Socket SendTo (Transmit Explicit Data): "
 "IPv4 packet.")

 return SocketSendToPacket(
 raw[4], raw[5], IPv4Address(bytes(raw[6:10])), utils.bytes_to_int(raw[10:12]),
 payload=raw[13:-1] if len(raw) > SocketSendToPacket.__MIN_PACKET_LENGTH else None,
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = bytearray()
 ret.append(self.__socket_id)
 ret += self.__dest_addr.packed
 ret += utils.int_to_bytes(self.__dest_port, num_bytes=2)
 ret.append(0) # Transmit options (Reserved)
 if self.__payload is not None:
 ret += self.__payload
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {
 DictKeys.SOCKET_ID.value: "%02X" % self.__socket_id,
 DictKeys.DEST_IPV4_ADDR.value: "%s (%s)" % (utils.hex_to_string(self.__dest_addr.packed, True),
 self.__dest_addr.exploded),
 DictKeys.DEST_PORT.value: "%s (%s)" % (utils.hex_to_string(utils.int_to_bytes(self.__dest_port,
 num_bytes=2)),
 self.__dest_port),
 DictKeys.TRANSMIT_OPTIONS.value: "00",
 DictKeys.PAYLOAD.value: utils.hex_to_string(self.__payload,
 True) if self.__payload is not None else None}

 @property
 def socket_id(self):
 """
 Returns the socket ID.

 Returns:
 Integer: the socket ID.
 """
 return self.__socket_id

 @socket_id.setter
 def socket_id(self, socket_id):
 """
 Sets the socket ID.

 Args:
 socket_id (Integer): The new socket ID.

 Raises:
 ValueError: if `socket_id` is less than 0 or greater than 255.
 """
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255.")
 self.__socket_id = socket_id

 @property
 def dest_address(self):
 """
 Returns the IPv4 address of the destination device.

 Returns:
 :class:`ipaddress.IPv4Address`: the IPv4 address of the destination device.
 """
 return self.__dest_addr

 @dest_address.setter
 def dest_address(self, dest_address):
 """
 Sets the IPv4 destination address.

 Args:
 dest_address (:class:`ipaddress.IPv4Address`): The new IPv4 destination address.
 """
 if dest_address is not None:
 self.__dest_addr = dest_address

 @property
 def dest_port(self):
 """
 Returns the destination port.

 Returns:
 Integer: the destination port.
 """
 return self.__dest_port

 @dest_port.setter
 def dest_port(self, dest_port):
 """
 Sets the destination port.

 Args:
 dest_port (Integer): the new destination port.

 Raises:
 ValueError: if `dest_port` is less than 0 or greater than 65535.
 """
 if dest_port < 0 or dest_port > 65535:
 raise ValueError("Destination port must be between 0 and 65535")
 self.__dest_port = dest_port

 @property
 def payload(self):
 """
 Returns the payload to send.

 Returns:
 Bytearray: the payload to send.
 """
 if self.__payload is None:
 return None
 return self.__payload.copy()

 @payload.setter
 def payload(self, payload):
 """
 Sets the payload to send.

 Args:
 payload (Bytearray): the new payload to send.
 """
 if payload is None:
 self.__payload = None
 else:
 self.__payload = payload.copy()

[docs]class SocketBindListenPacket(XBeeAPIPacket):
 """
 This class represents a Socket Bind/Listen packet. Packet is built using the
 parameters of the constructor.

 Opens a listener socket that listens for incoming connections.

 When there is an incoming connection on the listener socket, a Socket New
 IPv4 Client - 0xCC frame (:class:`.SocketNewIPv4ClientPacket`) is sent,
 indicating the socket ID for the new connection along with the remote
 address information.

 For a UDP socket, this frame binds the socket to a given port. A bound
 UDP socket can receive data with a Socket Receive From: IPv4 - 0xCE frame
 (:class:`.SocketReceiveFromIPv4Packet`).

 .. seealso::
 | :class:`.SocketNewIPv4ClientPacket`
 | :class:`.SocketReceiveFromIPv4Packet`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 9

 def __init__(self, frame_id, socket_id, src_port, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.SocketBindListenPacket`
 object with the provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 socket_id (Integer): socket ID to listen on.
 src_port (Integer): the port to listen on.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 ValueError: if `socket_id` is less than 0 or greater than 255.
 ValueError: if `source_port` is less than 0 or greater than 65535.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame ID must be between 0 and 255.")
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255.")
 if src_port < 0 or src_port > 65535:
 raise ValueError("Source port must be between 0 and 65535")

 super().__init__(ApiFrameType.SOCKET_BIND, op_mode=op_mode)
 self._frame_id = frame_id
 self.__socket_id = socket_id
 self.__src_port = src_port

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.SocketBindListenPacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 9.
 (start delim. + length (2 bytes) + frame type + frame id
 + socket ID + source port (2 bytes) + checksum = 9 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.SOCKET_BIND`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=SocketBindListenPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.SOCKET_BIND.code:
 raise InvalidPacketException(
 "This packet is not a Socket Bind/Listen packet.")

 return SocketBindListenPacket(
 raw[4], raw[5], utils.bytes_to_int(raw[6:8]), op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = bytearray()
 ret.append(self.__socket_id)
 ret += utils.int_to_bytes(self.__src_port, num_bytes=2)
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {
 DictKeys.SOCKET_ID.value: "%02X" % self.__socket_id,
 DictKeys.SRC_PORT.value: "%s (%s)" % (utils.hex_to_string(utils.int_to_bytes(self.__src_port,
 num_bytes=2)),
 self.__src_port)}

 @property
 def socket_id(self):
 """
 Returns the socket ID.

 Returns:
 Integer: the socket ID.
 """
 return self.__socket_id

 @socket_id.setter
 def socket_id(self, socket_id):
 """
 Sets the socket ID.

 Args:
 socket_id (Integer): The new socket ID.

 Raises:
 ValueError: if `socket_id` is less than 0 or greater than 255.
 """
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255.")
 self.__socket_id = socket_id

 @property
 def source_port(self):
 """
 Returns the source port.

 Returns:
 Integer: the source port.
 """
 return self.__src_port

 @source_port.setter
 def source_port(self, source_port):
 """
 Sets the source port.

 Args:
 source_port (Integer): the new source port.

 Raises:
 ValueError: if `source_port` is less than 0 or greater than 65535.
 """
 if source_port < 0 or source_port > 65535:
 raise ValueError("Source port must be between 0 and 65535")
 self.__src_port = source_port

[docs]class SocketListenResponsePacket(XBeeAPIPacket):
 """
 This class represents a Socket Listen Response packet. Packet is built using
 the parameters of the constructor.

 The device sends this frame in response to a Socket Bind/Listen (0x46)
 frame (:class:`.SocketBindListenPacket`).

 .. seealso::
 | :class:`.SocketBindListenPacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 8

 def __init__(self, frame_id, socket_id, status, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.SocketListenResponsePacket`
 object with the provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 socket_id (Integer): socket ID.
 status (:class:`.SocketStatus`): socket listen status.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 ValueError: if `socket_id` is less than 0 or greater than 255.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 | :class:`.SocketStatus`
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Socket ID must be between 0 and 255.")
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255.")

 super().__init__(ApiFrameType.SOCKET_LISTEN_RESPONSE, op_mode=op_mode)
 self._frame_id = frame_id
 self.__socket_id = socket_id
 self.__status = status

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.SocketListenResponsePacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 8.
 (start delim. + length (2 bytes) + frame type + frame id
 + socket ID + status + checksum = 8 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.SOCKET_LISTEN_RESPONSE`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=SocketListenResponsePacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.SOCKET_LISTEN_RESPONSE.code:
 raise InvalidPacketException(
 "This packet is not a Socket Listen Response packet.")

 return SocketListenResponsePacket(
 raw[4], raw[5], SocketStatus.get(raw[6]), op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = bytearray()
 ret.append(self.__socket_id)
 ret.append(self.__status.code)
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {
 DictKeys.SOCKET_ID.value: "%02X" % self.__socket_id,
 DictKeys.STATUS.value: "%s (%s)" % (utils.hex_to_string(bytearray([self.__status.code])),
 self.__status.description)}

 @property
 def socket_id(self):
 """
 Returns the socket ID.

 Returns:
 Integer: the socket ID.
 """
 return self.__socket_id

 @socket_id.setter
 def socket_id(self, socket_id):
 """
 Sets the socket ID.

 Args:
 socket_id (Integer): The new socket ID.

 Raises:
 ValueError: if `socket_id` is less than 0 or greater than 255.
 """
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255.")
 self.__socket_id = socket_id

 @property
 def status(self):
 """
 Returns the socket listen status.

 Returns:
 :class:`.SocketStatus`: The socket listen status.

 .. seealso::
 | :class:`.SocketStatus`
 """
 return self.__status

 @status.setter
 def status(self, status):
 """
 Sets the socket listen status.

 Args:
 status (:class:`.SocketStatus`): the new socket listen status.

 .. seealso::
 | :class:`.SocketStatus`
 """
 self.__status = status

[docs]class SocketNewIPv4ClientPacket(XBeeAPIPacket):
 """
 This class represents a Socket New IPv4 Client packet. Packet is built using
 the parameters of the constructor.

 XBee Cellular modem uses this frame when an incoming connection is
 accepted on a listener socket.

 This frame contains the original listener's socket ID and a new socket ID
 of the incoming connection, along with the connection's remote address
 information.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 13

 def __init__(self, socket_id, client_socket_id, remote_address,
 remote_port, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.SocketNewIPv4ClientPacket`
 object with the provided parameters.

 Args:
 socket_id (Integer): the socket ID of the listener socket.
 client_socket_id (Integer): the socket ID of the new connection.
 remote_address (:class:`.IPv4Address`): the remote IPv4 address.
 remote_port (Integer): the remote port number.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `socket_id` is less than 0 or greater than 255.
 ValueError: if `client_socket_id` is less than 0 or greater than 255.
 ValueError: if `remote_port` is less than 0 or greater than 65535.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255")
 if client_socket_id < 0 or client_socket_id > 255:
 raise ValueError("Client socket ID must be between 0 and 255")
 if remote_port < 0 or remote_port > 65535:
 raise ValueError("Remote port must be between 0 and 65535")

 super().__init__(ApiFrameType.SOCKET_NEW_IPV4_CLIENT, op_mode=op_mode)
 self.__socket_id = socket_id
 self.__client_sock_id = client_socket_id
 self.__remote_addr = remote_address
 self.__remote_port = remote_port

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.SocketNewIPv4ClientPacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 13.
 (start delim. + length (2 bytes) + frame type + socket ID
 + client socket ID + remote address (4 bytes)
 + remote port (2 bytes) + checksum = 13 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.SOCKET_NEW_IPV4_CLIENT`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=SocketNewIPv4ClientPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.SOCKET_NEW_IPV4_CLIENT.code:
 raise InvalidPacketException(
 "This packet is not a Socket New IPv4 Client packet.")

 return SocketNewIPv4ClientPacket(raw[4], raw[5], IPv4Address(bytes(raw[6:10])),
 utils.bytes_to_int(raw[10:12]), op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return False

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = bytearray()
 ret.append(self.__socket_id)
 ret.append(self.__client_sock_id)
 ret += self.__remote_addr.packed
 ret += utils.int_to_bytes(self.__remote_port, num_bytes=2)
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {
 DictKeys.SOCKET_ID.value: "%02X" % self.__socket_id,
 DictKeys.CLIENT_SOCKET_ID.value: "%02X" % self.__client_sock_id,
 DictKeys.REMOTE_ADDR.value: "%s (%s)" % (utils.hex_to_string(self.__remote_addr.packed, True),
 self.__remote_addr.exploded),
 DictKeys.REMOTE_PORT.value: "%s (%s)" % (utils.hex_to_string(utils.int_to_bytes(self.__remote_port,
 num_bytes=2)),
 self.__remote_port)}

 @property
 def socket_id(self):
 """
 Returns the socket ID.

 Returns:
 Integer: the socket ID.
 """
 return self.__socket_id

 @socket_id.setter
 def socket_id(self, socket_id):
 """
 Sets the socket ID.

 Args:
 socket_id (Integer): The new socket ID.

 Raises:
 ValueError: if `socket_id` is less than 0 or greater than 255.
 """
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255")
 self.__socket_id = socket_id

 @property
 def client_socket_id(self):
 """
 Returns the client socket ID.

 Returns:
 Integer: the client socket ID.
 """
 return self.__client_sock_id

 @client_socket_id.setter
 def client_socket_id(self, client_socket_id):
 """
 Sets the client socket ID.

 Args:
 client_socket_id (Integer): The new client socket ID.

 Raises:
 ValueError: if `client_socket_id` is less than 0 or greater than 255.
 """
 if client_socket_id < 0 or client_socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255")
 self.__client_sock_id = client_socket_id

 @property
 def remote_address(self):
 """
 Returns the remote IPv4 address.

 Returns:
 :class:`ipaddress.IPv4Address`: the remote IPv4 address.
 """
 return self.__remote_addr

 @remote_address.setter
 def remote_address(self, remote_address):
 """
 Sets the remote IPv4 address.

 Args:
 remote_address (:class:`ipaddress.IPv4Address`): The new remote IPv4 address.
 """
 if remote_address is not None:
 self.__remote_addr = remote_address

 @property
 def remote_port(self):
 """
 Returns the remote port.

 Returns:
 Integer: the remote port.
 """
 return self.__remote_port

 @remote_port.setter
 def remote_port(self, remote_port):
 """
 Sets the remote port.

 Args:
 remote_port (Integer): the new remote port.

 Raises:
 ValueError: if `remote_port` is less than 0 or greater than 65535.
 """
 if remote_port < 0 or remote_port > 65535:
 raise ValueError("Remote port must be between 0 and 65535")
 self.__remote_port = remote_port

[docs]class SocketReceivePacket(XBeeAPIPacket):
 """
 This class represents a Socket Receive packet. Packet is built using
 the parameters of the constructor.

 XBee Cellular modem uses this frame when it receives RF data on the
 specified socket.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 7

 def __init__(self, frame_id, socket_id, payload=None, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.SocketReceivePacket`
 object with the provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 socket_id (Integer): the ID of the socket the data has been received on.
 payload (Bytearray, optional): data that is received.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 ValueError: if `socket_id` is less than 0 or greater than 255.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame ID must be between 0 and 255.")
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255.")

 super().__init__(ApiFrameType.SOCKET_RECEIVE, op_mode=op_mode)
 self._frame_id = frame_id
 self.__socket_id = socket_id
 self.__payload = payload

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.SocketReceivePacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 7.
 (start delim. + length (2 bytes) + frame type + frame id
 + socket ID + checksum = 7 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.SOCKET_RECEIVE`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=SocketReceivePacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.SOCKET_RECEIVE.code:
 raise InvalidPacketException(
 "This packet is not a Socket Receive packet.")

 return SocketReceivePacket(
 raw[4], raw[5],
 payload=raw[7:-1] if len(raw) > SocketReceivePacket.__MIN_PACKET_LENGTH else None,
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = bytearray()
 ret.append(self.__socket_id)
 ret.append(0) # Status (Reserved)
 if self.__payload is not None:
 ret += self.__payload
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {
 DictKeys.SOCKET_ID.value: "%02X" % self.__socket_id,
 DictKeys.STATUS.value: "00",
 DictKeys.PAYLOAD.value: utils.hex_to_string(self.__payload) if self.__payload is not None else None}

 @property
 def socket_id(self):
 """
 Returns the socket ID.

 Returns:
 Integer: the socket ID.
 """
 return self.__socket_id

 @socket_id.setter
 def socket_id(self, socket_id):
 """
 Sets the socket ID.

 Args:
 socket_id (Integer): The new socket ID.

 Raises:
 ValueError: if `socket_id` is less than 0 or greater than 255.
 """
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255.")
 self.__socket_id = socket_id

 @property
 def payload(self):
 """
 Returns the payload that was received.

 Returns:
 Bytearray: the payload that was received.
 """
 if self.__payload is None:
 return None
 return self.__payload.copy()

 @payload.setter
 def payload(self, payload):
 """
 Sets the payload that was received.

 Args:
 payload (Bytearray): the new payload that was received.
 """
 if payload is None:
 self.__payload = None
 else:
 self.__payload = payload.copy()

[docs]class SocketReceiveFromPacket(XBeeAPIPacket):
 """
 This class represents a Socket Receive From packet. Packet is built using
 the parameters of the constructor.

 XBee Cellular modem uses this frame when it receives RF data on the
 specified socket. The frame also contains addressing information about
 the source.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 14

 def __init__(self, frame_id, socket_id, src_address, src_port,
 payload=None, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.SocketReceiveFromPacket`
 object with the provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 socket_id (Integer): the ID of the socket the data has been received on.
 src_address (:class:`.IPv4Address`): IPv4 address of the source device.
 src_port (Integer): source port number.
 payload (Bytearray, optional): data that is received.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 ValueError: if `socket_id` is less than 0 or greater than 255.
 ValueError: if `source_port` is less than 0 or greater than 65535.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame ID must be between 0 and 255.")
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255.")
 if src_port < 0 or src_port > 65535:
 raise ValueError("Source port must be between 0 and 65535")

 super().__init__(ApiFrameType.SOCKET_RECEIVE_FROM, op_mode=op_mode)
 self._frame_id = frame_id
 self.__socket_id = socket_id
 self.__src_addr = src_address
 self.__src_port = src_port
 self.__payload = payload

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.SocketReceiveFromPacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 13.
 (start delim. + length (2 bytes) + frame type + frame id
 + socket ID + source address (4 bytes) + source port (2 bytes)
 + status + Checksum = 14 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.SOCKET_RECEIVE_FROM`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=SocketReceiveFromPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.SOCKET_RECEIVE_FROM.code:
 raise InvalidPacketException(
 "This packet is not a Socket Receive From packet.")

 return SocketReceiveFromPacket(
 raw[4], raw[5], IPv4Address(bytes(raw[6:10])), utils.bytes_to_int(raw[10:12]),
 payload=raw[13:-1] if len(raw) > SocketReceiveFromPacket.__MIN_PACKET_LENGTH else None,
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = bytearray()
 ret.append(self.__socket_id)
 ret += self.__src_addr.packed
 ret += utils.int_to_bytes(self.__src_port, num_bytes=2)
 ret.append(0) # Status (Reserved)
 if self.__payload is not None:
 ret += self.__payload
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {
 DictKeys.SOCKET_ID.value: "%02X" % self.__socket_id,
 DictKeys.SRC_IPV4_ADDR.value: "%s (%s)" % (utils.hex_to_string(self.__src_addr.packed),
 self.__src_addr.exploded),
 DictKeys.SRC_PORT.value: "%s (%s)" % (utils.hex_to_string(utils.int_to_bytes(self.__src_port,
 num_bytes=2)),
 self.__src_port),
 DictKeys.STATUS.value: "00",
 DictKeys.PAYLOAD.value: utils.hex_to_string(self.__payload,
 True) if self.__payload is not None else None}

 @property
 def socket_id(self):
 """
 Returns the socket ID.

 Returns:
 Integer: the socket ID.
 """
 return self.__socket_id

 @socket_id.setter
 def socket_id(self, socket_id):
 """
 Sets the socket ID.

 Args:
 socket_id (Integer): The new socket ID.

 Raises:
 ValueError: if `socket_id` is less than 0 or greater than 255.
 """
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255.")
 self.__socket_id = socket_id

 @property
 def source_address(self):
 """
 Returns the IPv4 address of the source device.

 Returns:
 :class:`ipaddress.IPv4Address`: the IPv4 address of the source device.
 """
 return self.__src_addr

 @source_address.setter
 def source_address(self, source_address):
 """
 Sets the IPv4 source address.

 Args:
 source_address (:class:`ipaddress.IPv4Address`): The new IPv4 source address.
 """
 if source_address is not None:
 self.__src_addr = source_address

 @property
 def source_port(self):
 """
 Returns the source port.

 Returns:
 Integer: the source port.
 """
 return self.__src_port

 @source_port.setter
 def source_port(self, source_port):
 """
 Sets the destination port.

 Args:
 source_port (Integer): the new source port.

 Raises:
 ValueError: if `source_port` is less than 0 or greater than 65535.
 """
 if source_port < 0 or source_port > 65535:
 raise ValueError("Source port must be between 0 and 65535")
 self.__src_port = source_port

 @property
 def payload(self):
 """
 Returns the payload to send.

 Returns:
 Bytearray: the payload that has been received.
 """
 if self.__payload is None:
 return None
 return self.__payload.copy()

 @payload.setter
 def payload(self, payload):
 """
 Sets the payload to send.

 Args:
 payload (Bytearray): the new payload that has been received.
 """
 if payload is None:
 self.__payload = None
 else:
 self.__payload = payload.copy()

[docs]class SocketStatePacket(XBeeAPIPacket):
 """
 This class represents a Socket State packet. Packet is built using the
 parameters of the constructor.

 This frame is sent out the device's serial port to indicate the state
 related to the socket.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 7

 def __init__(self, socket_id, state, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.SocketStatePacket`
 object with the provided parameters.

 Args:
 socket_id (Integer): the socket identifier.
 state (:class:`.SocketState`): socket status.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `socket_id` is less than 0 or greater than 255.

 .. seealso::
 | :class:`.SockeState`
 | :class:`.XBeeAPIPacket`
 """
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255.")

 super().__init__(ApiFrameType.SOCKET_STATE, op_mode=op_mode)
 self.__socket_id = socket_id
 self.__state = state

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.SocketStatePacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 7.
 (start delim. + length (2 bytes) + frame type + socket ID
 + state + checksum = 7 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.SOCKET_STATUS`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=SocketStatePacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.SOCKET_STATE.code:
 raise InvalidPacketException(
 "This packet is not a Socket State packet.")

 return SocketStatePacket(raw[4], SocketState.get(raw[5]), op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return False

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = bytearray()
 ret.append(self.__socket_id)
 ret.append(self.__state.code)
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {
 DictKeys.SOCKET_ID.value: "%02X" % self.__socket_id,
 DictKeys.STATUS.value: "%s (%s)" % (utils.hex_to_string(bytearray([self.__state.code])),
 self.__state.description)}

 @property
 def socket_id(self):
 """
 Returns the socket ID.

 Returns:
 Integer: the socket ID.
 """
 return self.__socket_id

 @socket_id.setter
 def socket_id(self, socket_id):
 """
 Sets the socket ID.

 Args:
 socket_id (Integer): The new socket ID.

 Raises:
 ValueError: if `socket_id` is less than 0 or greater than 255.
 """
 if socket_id < 0 or socket_id > 255:
 raise ValueError("Socket ID must be between 0 and 255.")
 self.__socket_id = socket_id

 @property
 def state(self):
 """
 Returns the socket state.

 Returns:
 :class:`.SocketState`: The socket state.

 .. seealso::
 | :class:`.SocketState`
 """
 return self.__state

 @state.setter
 def state(self, status):
 """
 Sets the socket state.

 Args:
 status (:class:`.SocketState`): the new socket state.

 .. seealso::
 | :class:`.SocketState`
 """
 self.__state = status

 Source code for digi.xbee.packets.wifi

Copyright 2017-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
from ipaddress import IPv4Address

from digi.xbee.packets.base import XBeeAPIPacket, DictKeys
from digi.xbee.util import utils
from digi.xbee.exception import InvalidOperatingModeException, InvalidPacketException
from digi.xbee.packets.aft import ApiFrameType
from digi.xbee.models.mode import OperatingMode
from digi.xbee.models.status import ATCommandStatus
from digi.xbee.io import IOSample, IOLine

[docs]class IODataSampleRxIndicatorWifiPacket(XBeeAPIPacket):
 """
 This class represents a IO data sample RX indicator (Wi-Fi) packet. Packet
 is built using the parameters of the constructor or providing a valid API
 payload.

 When the module receives an IO sample frame from a remote device, it sends
 the sample out the UART or SPI using this frame type. Only modules running
 API mode will be able to receive IO samples.

 Among received data, some options can also be received indicating
 transmission parameters.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 16

 def __init__(self, src_address, rssi, rx_options, rf_data=None,
 op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new
 :class:`.IODataSampleRxIndicatorWifiPacket` object with the
 provided parameters.

 Args:
 src_address (:class:`ipaddress.IPv4Address`): the 64-bit source address.
 rssi (Integer): received signal strength indicator.
 rx_options (Integer): bitfield indicating the receive options.
 rf_data (Bytearray, optional): received RF data.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `rf_data` is not `None` and it's not valid for
 create an :class:`.IOSample`.

 .. seealso::
 | :class:`.IOSample`
 | :class:`ipaddress.IPv4Address`
 | :class:`.ReceiveOptions`
 | :class:`.XBeeAPIPacket`
 """
 super().__init__(ApiFrameType.IO_DATA_SAMPLE_RX_INDICATOR_WIFI, op_mode=op_mode)
 self.__src_addr = src_address
 self.__rssi = rssi
 self.__rx_opts = rx_options
 self.__data = rf_data
 self.__io_sample = IOSample(rf_data) if rf_data is not None and len(rf_data) >= 5 else None

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.IODataSampleRxIndicatorWifiPacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 16.
 (start delim. + length (2 bytes) + frame type
 + source addr. (4 bytes) + rssi + receive options
 + rf data (5 bytes) + checksum = 16 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.IO_DATA_SAMPLE_RX_INDICATOR_WIFI`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=IODataSampleRxIndicatorWifiPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.IO_DATA_SAMPLE_RX_INDICATOR_WIFI.code:
 raise InvalidPacketException(
 message="This packet is not an IO data sample RX indicator Wi-Fi packet.")

 return IODataSampleRxIndicatorWifiPacket(
 IPv4Address(bytes(raw[4:8])), raw[7], raw[8], rf_data=raw[9:-1], op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return False

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = bytearray(self.__src_addr.packed)
 ret += utils.int_to_bytes(self.__rssi, num_bytes=1)
 ret += utils.int_to_bytes(self.__rx_opts, num_bytes=1)
 if self.__data is not None:
 ret += self.__data
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 base = {DictKeys.SRC_IPV4_ADDR: "%s (%s)" % (self.__src_addr.packed,
 self.__src_addr.exploded),
 DictKeys.RSSI: self.__rssi,
 DictKeys.RECEIVE_OPTIONS: self.__rx_opts}

 if self.__io_sample is not None:
 base[DictKeys.NUM_SAMPLES] = 1
 base[DictKeys.DIGITAL_MASK] = self.__io_sample.digital_mask
 base[DictKeys.ANALOG_MASK] = self.__io_sample.analog_mask

 # Digital values
 for i in range(16):
 if self.__io_sample.has_digital_value(IOLine.get(i)):
 base[IOLine.get(i).description + " digital value"] = \
 self.__io_sample.get_digital_value(IOLine.get(i)).name

 # Analog values
 for i in range(6):
 if self.__io_sample.has_analog_value(IOLine.get(i)):
 base[IOLine.get(i).description + " analog value"] = \
 self.__io_sample.get_analog_value(IOLine.get(i))

 # Power supply
 if self.__io_sample.has_power_supply_value():
 base["Power supply value "] = "%02X" % self.__io_sample.power_supply_value

 elif self.__data is not None:
 base[DictKeys.RF_DATA] = utils.hex_to_string(self.__data)

 return base

 @property
 def source_address(self):
 """
 Returns the IPv4 address of the source device.

 Returns:
 :class:`ipaddress.IPv4Address`: the IPv4 address of the source device.

 .. seealso::
 | :class:`ipaddress.IPv4Address`
 """
 return self.__src_addr

 @source_address.setter
 def source_address(self, source_address):
 """
 Sets the IPv4 source address.

 Args:
 source_address (:class:`ipaddress.IPv4Address`): The new IPv4 source address.

 .. seealso::
 | :class:`ipaddress.IPv4Address`
 """
 if source_address is not None:
 self.__src_addr = source_address

 @property
 def rssi(self):
 """
 Returns the received Signal Strength Indicator (RSSI).

 Returns:
 Integer: the received Signal Strength Indicator (RSSI).
 """
 return self.__rssi

 @rssi.setter
 def rssi(self, rssi):
 """
 Sets the received Signal Strength Indicator (RSSI).

 Args:
 rssi (Integer): the new received Signal Strength Indicator (RSSI).
 """
 self.__rssi = rssi

 @property
 def receive_options(self):
 """
 Returns the receive options bitfield.

 Returns:
 Integer: the receive options bitfield.

 .. seealso::
 | :class:`.ReceiveOptions`
 """
 return self.__rx_opts

 @receive_options.setter
 def receive_options(self, receive_options):
 """
 Sets the receive options bitfield.

 Args:
 receive_options (Integer): the new receive options bitfield.

 .. seealso::
 | :class:`.ReceiveOptions`
 """
 self.__rx_opts = receive_options

 @property
 def rf_data(self):
 """
 Returns the received RF data.

 Returns:
 Bytearray: the received RF data.
 """
 if self.__data is None:
 return None
 return self.__data.copy()

 @rf_data.setter
 def rf_data(self, rf_data):
 """
 Sets the received RF data.

 Args:
 rf_data (Bytearray): the new received RF data.
 """
 if rf_data is None:
 self.__data = None
 else:
 self.__data = rf_data.copy()

 # Modify the IO sample accordingly
 if rf_data is not None and len(rf_data) >= 5:
 self.__io_sample = IOSample(self.__data)
 else:
 self.__io_sample = None

 @property
 def io_sample(self):
 """
 Returns the IO sample corresponding to the data contained in the packet.

 Returns:
 :class:`.IOSample`: the IO sample of the packet, `None` if the
 packet has not any data or if the sample could not be
 generated correctly.

 .. seealso::
 | :class:`.IOSample`
 """
 return self.__io_sample

 @io_sample.setter
 def io_sample(self, io_sample):
 """
 Sets the IO sample of the packet.

 Args:
 io_sample (:class:`.IOSample`): the new IO sample to set.

 .. seealso::
 | :class:`.IOSample`
 """
 self.__io_sample = io_sample

[docs]class RemoteATCommandWifiPacket(XBeeAPIPacket):
 """
 This class represents a remote AT command request (Wi-Fi) packet. Packet is
 built using the parameters of the constructor or providing a valid API
 payload.

 Used to query or set module parameters on a remote device. For parameter
 changes on the remote device to take effect, changes must be applied, either
 by setting the apply changes options bit, or by sending an `AC` command
 to the remote node.

 Remote command options are set as a bitfield.

 If configured, command response is received as a :class:`.RemoteATCommandResponseWifiPacket`.

 .. seealso::
 | :class:`.RemoteATCommandResponseWifiPacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 17

 def __init__(self, frame_id, dest_address, tx_options, command,
 parameter=None, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.RemoteATCommandWifiPacket`
 object with the provided parameters.

 Args:
 frame_id (integer): the frame ID of the packet.
 dest_address (:class:`ipaddress.IPv4Address`): the IPv4 address of
 the destination device.
 tx_options (Integer): bitfield of supported transmission options.
 command (String): AT command to send.
 parameter (Bytearray, optional): AT command parameter.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 ValueError: if length of `command` is different than 2.

 .. seealso::
 | :class:`ipaddress.IPv4Address`
 | :class:`.RemoteATCmdOptions`
 | :class:`.XBeeAPIPacket`
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame id must be between 0 and 255.")
 if len(command) != 2:
 raise ValueError("Invalid command " + command)

 super().__init__(ApiFrameType.REMOTE_AT_COMMAND_REQUEST_WIFI, op_mode=op_mode)
 self._frame_id = frame_id
 self.__dest_addr = dest_address
 self.__tx_opts = tx_options
 self.__cmd = command
 self.__param = parameter

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.RemoteATCommandWifiPacket`

 Raises:
 InvalidPacketException: if the Bytearray length is less than 17.
 (start delim. + length (2 bytes) + frame type + frame id
 + dest. addr. (8 bytes) + transmit options
 + command (2 bytes) + checksum = 17 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.REMOTE_AT_COMMAND_REQUEST_WIFI`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=RemoteATCommandWifiPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.REMOTE_AT_COMMAND_REQUEST_WIFI.code:
 raise InvalidPacketException(
 message="This packet is not a remote AT command request Wi-Fi packet.")

 return RemoteATCommandWifiPacket(
 raw[4], IPv4Address(bytes(raw[9:13])), raw[13], raw[14:16].decode("utf8"),
 parameter=raw[16:-1] if len(raw) > RemoteATCommandWifiPacket.__MIN_PACKET_LENGTH else None,
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = bytearray(self.__dest_addr.packed)
 ret += utils.int_to_bytes(self.__tx_opts, num_bytes=1)
 ret += bytearray(self.__cmd, "utf8")
 if self.__param is not None:
 ret += self.__param
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 See:
 :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.DEST_IPV4_ADDR: "%s (%s)" % (self.__dest_addr.packed, self.__dest_addr.exploded),
 DictKeys.TRANSMIT_OPTIONS: self.__tx_opts,
 DictKeys.COMMAND: self.__cmd,
 DictKeys.PARAMETER: list(self.__param) if self.__param is not None else None}

 @property
 def dest_address(self):
 """
 Returns the IPv4 address of the destination device.

 Returns:
 :class:`ipaddress.IPv4Address`: the IPv4 address of the destination device.

 .. seealso::
 | :class:`ipaddress.IPv4Address`
 """
 return self.__dest_addr

 @dest_address.setter
 def dest_address(self, dest_address):
 """
 Sets the IPv4 destination address.

 Args:
 dest_address (:class:`ipaddress.IPv4Address`): The new IPv4 destination address.

 .. seealso::
 | :class:`ipaddress.IPv4Address`
 """
 if dest_address is not None:
 self.__dest_addr = dest_address

 @property
 def transmit_options(self):
 """
 Returns the transmit options bitfield.

 Returns:
 Integer: the transmit options bitfield.

 .. seealso::
 | :class:`.RemoteATCmdOptions`
 """
 return self.__tx_opts

 @transmit_options.setter
 def transmit_options(self, transmit_options):
 """
 Sets the transmit options bitfield.

 Args:
 transmit_options (Integer): the new transmit options bitfield.

 .. seealso::
 | :class:`.RemoteATCmdOptions`
 """
 self.__tx_opts = transmit_options

 @property
 def command(self):
 """
 Returns the AT command.

 Returns:
 String: the AT command.
 """
 return self.__cmd

 @command.setter
 def command(self, command):
 """
 Sets the AT command.

 Args:
 command (String): the new AT command.
 """
 self.__cmd = command

 @property
 def parameter(self):
 """
 Returns the AT command parameter.

 Returns:
 Bytearray: the AT command parameter.
 """
 return self.__param

 @parameter.setter
 def parameter(self, parameter):
 """
 Sets the AT command parameter.

 Args:
 parameter (Bytearray): the new AT command parameter.
 """
 self.__param = parameter

[docs]class RemoteATCommandResponseWifiPacket(XBeeAPIPacket):
 """
 This class represents a remote AT command response (Wi-Fi) packet. Packet
 is built using the parameters of the constructor or providing a valid API
 payload.

 If a module receives a remote command response RF data frame in response
 to a Remote AT Command Request, the module will send a Remote AT Command
 Response message out the UART. Some commands may send back multiple frames
 for example, Node Discover (`ND`) command.

 This packet is received in response of a :class:`.RemoteATCommandPacket`.

 Response also includes an :class:`.ATCommandStatus` object with the status
 of the AT command.

 .. seealso::
 | :class:`.RemoteATCommandWifiPacket`
 | :class:`.ATCommandStatus`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 17

 def __init__(self, frame_id, src_address, command, resp_status,
 comm_value=None, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new
 :class:`.RemoteATCommandResponseWifiPacket` object with the
 provided parameters.

 Args:
 frame_id (Integer): the frame ID of the packet.
 src_address (:class:`ipaddress.IPv4Address`): the IPv4 address of the source device.
 command (String): the AT command of the packet. Must be a string.
 resp_status (:class:`.ATCommandStatus`): the status of the AT command.
 comm_value (Bytearray, optional): the AT command response value.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.
 ValueError: if length of `command` is different than 2.

 .. seealso::
 | :class:`.ATCommandStatus`
 | :class:`ipaddress.IPv4Address`
 """
 if frame_id > 255 or frame_id < 0:
 raise ValueError("frame_id must be between 0 and 255.")
 if len(command) != 2:
 raise ValueError("Invalid command " + command)

 super().__init__(ApiFrameType.REMOTE_AT_COMMAND_RESPONSE_WIFI, op_mode=op_mode)
 self._frame_id = frame_id
 self.__src_addr = src_address
 self.__cmd = command
 self.__resp_status = resp_status
 self.__comm_val = comm_value

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.RemoteATCommandResponseWifiPacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 17.
 (start delim. + length (2 bytes) + frame type + frame id
 + source addr. (8 bytes) + command (2 bytes) + receive options
 + checksum = 17 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.REMOTE_AT_COMMAND_RESPONSE_WIFI`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(op_mode=operating_mode)

 XBeeAPIPacket._check_api_packet(
 raw, min_length=RemoteATCommandResponseWifiPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.REMOTE_AT_COMMAND_RESPONSE_WIFI.code:
 raise InvalidPacketException(
 message="This packet is not a remote AT command response Wi-Fi packet.")

 return RemoteATCommandResponseWifiPacket(
 raw[4], IPv4Address(bytes(raw[9:13])), raw[13:15].decode("utf8"),
 ATCommandStatus.get(raw[15]),
 comm_value=raw[16:-1] if len(raw) > RemoteATCommandResponseWifiPacket.__MIN_PACKET_LENGTH else None,
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = bytearray(self.__src_addr.packed)
 ret += bytearray(self.__cmd, "utf8")
 ret += utils.int_to_bytes(self.__resp_status.code, num_bytes=1)
 if self.__comm_val is not None:
 ret += self.__comm_val
 return ret

 def _get_api_packet_spec_data_dict(self):
 return {DictKeys.SRC_IPV4_ADDR: "%s (%s)" % (self.__src_addr.packed, self.__src_addr.exploded),
 DictKeys.COMMAND: self.__cmd,
 DictKeys.AT_CMD_STATUS: self.__resp_status,
 DictKeys.RF_DATA: list(self.__comm_val) if self.__comm_val is not None else None}

 @property
 def source_address(self):
 """
 Returns the IPv4 address of the source device.

 Returns:
 :class:`ipaddress.IPv4Address`: the IPv4 address of the source device.

 .. seealso::
 | :class:`ipaddress.IPv4Address`
 """
 return self.__src_addr

 @source_address.setter
 def source_address(self, source_address):
 """
 Sets the IPv4 source address.

 Args:
 source_address (:class:`ipaddress.IPv4Address`): The new IPv4 source address.

 .. seealso::
 | :class:`ipaddress.IPv4Address`
 """
 if source_address is not None:
 self.__src_addr = source_address

 @property
 def command(self):
 """
 Returns the AT command of the packet.

 Returns:
 String: the AT command of the packet.
 """
 return self.__cmd

 @command.setter
 def command(self, command):
 """
 Sets the AT command of the packet.

 Args:
 command (String): the new AT command of the packet. Must have length = 2.

 Raises:
 ValueError: if length of `command` is different than 2.
 """
 if len(command) != 2:
 raise ValueError("Invalid command " + command)
 self.__cmd = command

 @property
 def status(self):
 """
 Returns the AT command response status of the packet.

 Returns:
 :class:`.ATCommandStatus`: the AT command response status of the packet.

 .. seealso::
 | :class:`.ATCommandStatus`
 """
 return self.__resp_status

 @status.setter
 def status(self, response_status):
 """
 Sets the AT command response status of the packet

 Args:
 response_status (:class:`.ATCommandStatus`) : the new AT command
 response status of the packet.

 .. seealso::
 | :class:`.ATCommandStatus`
 """
 self.__resp_status = response_status

 @property
 def command_value(self):
 """
 Returns the AT command response value.

 Returns:
 Bytearray: the AT command response value.
 """
 return self.__comm_val

 @command_value.setter
 def command_value(self, comm_value):
 """
 Sets the AT command response value.

 Args:
 comm_value (Bytearray): the new AT command response value.
 """
 self.__comm_val = comm_value

 Source code for digi.xbee.packets.zigbee

Copyright 2019-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF

from digi.xbee.exception import InvalidOperatingModeException, InvalidPacketException
from digi.xbee.models.address import XBee64BitAddress, XBee16BitAddress
from digi.xbee.models.mode import OperatingMode
from digi.xbee.models.options import RegisterKeyOptions
from digi.xbee.models.status import ZigbeeRegisterStatus, EmberBootloaderMessageType
from digi.xbee.packets.aft import ApiFrameType
from digi.xbee.packets.base import XBeeAPIPacket, DictKeys
from digi.xbee.util import utils

[docs]class RegisterJoiningDevicePacket(XBeeAPIPacket):
 """
 This class represents a Register Joining Device packet. Packet is built
 using the parameters of the constructor or providing a valid API
 payload.

 Use this frame to securely register a joining device to a trust center.
 Registration is the process by which a node is authorized to join the
 network using a preconfigured link key or installation code that is
 conveyed to the trust center out-of-band (using a physical interface and
 not over-the-air).

 If registering a device with a centralized trust center (EO = 2), then the
 key entry will only persist for KT seconds before expiring.

 Registering devices in a distributed trust center (EO = 0) is persistent
 and the key entry will never expire unless explicitly removed.

 To remove a key entry on a distributed trust center, this frame should be
 issued with a null (None) key. In a centralized trust center you cannot
 use this method to explicitly remove the key entries.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 17

 def __init__(self, frame_id, registrant_address, options, key, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new
 :class:`.RegisterJoiningDevicePacket` object with the
 provided parameters.

 Args:
 frame_id (integer): the frame ID of the packet.
 registrant_address (:class:`.XBee64BitAddress`): the 64-bit address
 of the destination device.
 options (:class:`.RegisterKeyOptions`): the register options
 indicating the key source.
 key (Bytearray): key of the device to register. Up to 16 bytes if
 entering a Link Key or up to 18 bytes
 (16-byte code + 2 byte CRC) if entering an Install Code.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.

 .. seealso::
 | :class:`.XBee64BitAddress`
 | :class:`.XBeeAPIPacket`
 | :class:`.RegisterKeyOptions`
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame id must be between 0 and 255.")

 super().__init__(ApiFrameType.REGISTER_JOINING_DEVICE, op_mode=op_mode)
 self._frame_id = frame_id
 self.__registrant_addr = registrant_address
 self.__opts = options
 self.__key = key

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.RegisterJoiningDevicePacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 17.
 (start delim. + length (2 bytes) + frame type + frame id
 + 64-bit registrant addr. (8 bytes)
 + 16-bit registrant addr. (2 bytes) + options
 + checksum = 17 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 2 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.REGISTER_JOINING_DEVICE`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(
 operating_mode.name + " is not supported.")

 XBeeAPIPacket._check_api_packet(
 raw, min_length=RegisterJoiningDevicePacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.REGISTER_JOINING_DEVICE.code:
 raise InvalidPacketException(
 "This packet is not a Register Joining Device packet.")

 return RegisterJoiningDevicePacket(raw[4], XBee64BitAddress(raw[5:13]),
 RegisterKeyOptions.get(raw[15]),
 raw[16:-1], op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = self.__registrant_addr.address
 ret += XBee16BitAddress.UNKNOWN_ADDRESS.address
 ret.append(self.__opts.code)
 if self.__key is not None:
 ret += self.__key
 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.X64BIT_ADDR: "%s (%s)" % (self.__registrant_addr.packed,
 self.__registrant_addr.exploded),
 DictKeys.RESERVED: XBee16BitAddress.UNKNOWN_ADDRESS.address,
 DictKeys.OPTIONS: "%s (%s)" % (self.__opts.code,
 self.__opts.description),
 DictKeys.KEY: list(self.__key) if self.__key is not None else None}

 @property
 def registrant_address(self):
 """
 Returns the 64-bit registrant address.

 Returns:
 :class:`.XBee64BitAddress`: the 64-bit registrant address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 return self.__registrant_addr

 @registrant_address.setter
 def registrant_address(self, registrant_address):
 """
 Sets the 64-bit registrant address.

 Args:
 registrant_address (:class:`.XBee64BitAddress`): The new 64-bit
 registrant address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 if registrant_address is not None:
 self.__registrant_addr = registrant_address

 @property
 def options(self):
 """
 Returns the register options value.

 Returns:
 :class:`.RegisterKeyOptions`: the register options indicating the key source.

 .. seealso::
 | :class:`.RegisterKeyOptions`
 """
 return self.__opts

 @options.setter
 def options(self, options):
 """
 Sets the register options value.

 Args:
 options (:class:`.RegisterKeyOptions`): the new register options.

 .. seealso::
 | :class:`.RegisterKeyOptions`
 """
 self.__opts = options

 @property
 def key(self):
 """
 Returns the register key.

 Returns:
 Bytearray: the register key.
 """
 if self.__key is None:
 return None
 return self.__key.copy()

 @key.setter
 def key(self, key):
 """
 Sets the register key.

 Args:
 key (Bytearray): the new register key.
 """
 if key is None:
 self.__key = None
 else:
 self.__key = key.copy()

[docs]class RegisterDeviceStatusPacket(XBeeAPIPacket):
 """
 This class represents a Register Device Status packet. Packet is built
 using the parameters of the constructor or providing a valid API
 payload.

 This frame is sent out of the UART of the trust center as a response to
 a 0x24 Register Device frame, indicating whether the registration was
 successful or not.

 .. seealso::
 | :class:`.RegisterJoiningDevicePacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 7

 def __init__(self, frame_id, status, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new
 :class:`.RegisterDeviceStatusPacket` object with the
 provided parameters.

 Args:
 frame_id (integer): the frame ID of the packet.
 status (:class:`.ZigbeeRegisterStatus`): status of the register
 device operation.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 Raises:
 ValueError: if `frame_id` is less than 0 or greater than 255.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 | :class:`.ZigbeeRegisterStatus`
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame id must be between 0 and 255.")

 super().__init__(ApiFrameType.REGISTER_JOINING_DEVICE_STATUS, op_mode=op_mode)
 self._frame_id = frame_id
 self.__status = status

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.RegisterDeviceStatusPacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 17.
 (start delim. + length (2 bytes) + frame type + frame id
 + status + checksum = 7 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 1 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.REGISTER_JOINING_DEVICE_STATUS`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(
 operating_mode.name + " is not supported.")

 XBeeAPIPacket._check_api_packet(
 raw, min_length=RegisterDeviceStatusPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.REGISTER_JOINING_DEVICE_STATUS.code:
 raise InvalidPacketException(
 "This packet is not a Register Device Status packet.")

 return RegisterDeviceStatusPacket(
 raw[4], ZigbeeRegisterStatus.get(raw[5]), op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 return bytearray([self.__status.code])

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.STATUS: "%s (%s)" % (self.__status.code,
 self.__status.description)}

 @property
 def status(self):
 """
 Returns the register device status.

 Returns:
 :class:`.ZigbeeRegisterStatus`: the register device status.

 .. seealso::
 | :class:`.ZigbeeRegisterStatus`
 """
 return self.__status

 @status.setter
 def status(self, status):
 """
 Sets the register device status.

 Args:
 status (:class:`.ZigbeeRegisterStatus`): the new register device status.

 .. seealso::
 | :class:`.ZigbeeRegisterStatus`
 """
 self.__status = status

[docs]class RouteRecordIndicatorPacket(XBeeAPIPacket):
 """
 This class represents a Zigbee Route Record Indicator packet. Packet is
 built using the parameters of the constructor or providing a valid API
 payload.

 The route record indicator is received whenever a device sends a Zigbee
 route record command. This is used with many-to-one routing to create
 source routes for devices in a network.

 Among received data, some options can also be received indicating
 transmission parameters.

 .. seealso::
 | :class:`.ReceiveOptions`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 17

 def __init__(self, x64bit_addr, x16bit_addr, rx_opts, hops=None,
 op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new
 :class:`.RouteRecordIndicatorPacket` object with the provided
 parameters.

 Args:
 x64bit_addr (:class:`.XBee64BitAddress`): The 64-bit source address.
 x16bit_addr (:class:`.XBee16BitAddress`): The 16-bit source address.
 rx_opts (Integer): Bitfield indicating the receive options.
 hops (List, optional, default=`None`): List of 16-bit address of
 intermediate hops in the source route (excluding source and
 destination).
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 .. seealso::
 | :class:`.ReceiveOptions`
 | :class:`.XBee16BitAddress`
 | :class:`.XBee64BitAddress`
 | :class:`.XBeeAPIPacket`
 """
 super().__init__(ApiFrameType.ROUTE_RECORD_INDICATOR, op_mode=op_mode)

 self.__x64_addr = x64bit_addr
 self.__x16_addr = x16bit_addr
 self.__rx_opts = rx_opts
 self.__hops = hops if hops else []

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.RouteRecordIndicatorPacket`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 17.
 (start delim. + length (2 bytes) + frame type + 64bit addr. +
 16bit addr. + Receive options + num of addrs + checksum
 = 17 bytes).
 InvalidPacketException: If the length field of `raw` is different
 from its real length. (length field: bytes 1 and 3)
 InvalidPacketException: If the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: If the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: If the frame type is not
 :attr:`.ApiFrameType.ROUTE_RECORD_INDICATOR`.
 InvalidPacketException: If the number of hops does not match with
 the number of 16-bit addresses.
 InvalidOperatingModeException: If `operating_mode` is not
 supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(
 operating_mode.name + " is not supported.")

 XBeeAPIPacket._check_api_packet(
 raw, min_length=RouteRecordIndicatorPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.ROUTE_RECORD_INDICATOR.code:
 raise InvalidPacketException(
 "This packet is not a Route Record Indicator packet.")

 hops = [XBee16BitAddress(raw[i:i+2]) for i in range(16, len(raw) - 1, 2)]

 if raw[15] != len(hops):
 raise InvalidPacketException("Specified number of hops does not"
 "match with the length of addresses.")

 return RouteRecordIndicatorPacket(
 XBee64BitAddress(raw[4:12]), XBee16BitAddress(raw[12:14]),
 raw[14], hops, op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return False

[docs] def is_broadcast(self):
 """
 Override method.

 .. seealso::
 | :meth:`XBeeAPIPacket.is_broadcast`
 """
 return utils.is_bit_enabled(self.__rx_opts, 1)

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = self.__x64_addr.address
 ret += self.__x16_addr.address
 ret.append(self.__rx_opts)
 ret.append(len(self.__hops))
 for hop in self.__hops:
 ret += hop.address

 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 hops_array = [hop.address for hop in self.__hops]

 return {DictKeys.X64BIT_ADDR: self.__x64_addr.address,
 DictKeys.X16BIT_ADDR: self.__x16_addr.address,
 DictKeys.RECEIVE_OPTIONS: self.__rx_opts,
 DictKeys.NUM_OF_HOPS: len(hops_array),
 DictKeys.HOPS: hops_array}

 @property
 def x64bit_source_addr(self):
 """
 Returns the 64-bit source address.

 Returns:
 :class:`.XBee64BitAddress`: The 64-bit source address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 return self.__x64_addr

 @x64bit_source_addr.setter
 def x64bit_source_addr(self, x64bit_addr):
 """
 Sets the 64-bit source address.

 Args:
 x64bit_addr (:class:`.XBee64BitAddress`): The new 64-bit source address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 self.__x64_addr = x64bit_addr

 @property
 def x16bit_source_addr(self):
 """
 Returns the 16-bit source address.

 Returns:
 :class:`.XBee16BitAddress`: The 16-bit source address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 return self.__x16_addr

 @x16bit_source_addr.setter
 def x16bit_source_addr(self, x16bit_addr):
 """
 Sets the 16-bit source address.

 Args:
 x16bit_addr (:class:`.XBee16BitAddress`): The new 16-bit source address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 self.__x16_addr = x16bit_addr

 @property
 def receive_options(self):
 """
 Returns the receive options bitfield.

 Returns:
 Integer: The receive options bitfield.

 .. seealso::
 | :class:`.ReceiveOptions`
 """
 return self.__rx_opts

 @receive_options.setter
 def receive_options(self, receive_options):
 """
 Sets the receive options bitfield.

 Args:
 receive_options (Integer): The new receive options bitfield.

 .. seealso::
 | :class:`.ReceiveOptions`
 """
 self.__rx_opts = receive_options

 @property
 def number_of_hops(self):
 """
 Returns the number of intermediate hops in the source route (excluding
 source and destination).

 Returns:
 Integer: The number of addresses.
 """
 return len(self.__hops)

 @property
 def hops(self):
 """
 Returns the list of intermediate hops starting from the closest to
 destination hop and finishing with the closest to the source (excluding
 source and destination).

 Returns:
 List: The list of 16-bit addresses of intermediate hops.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 return self.__hops

 @hops.setter
 def hops(self, hops):
 """
 Sets the hops of the route (excluding source and destination).

 Args:
 hops (List): List of `XBee16BitAddress`.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 self.__hops = hops if hops else []

[docs]class CreateSourceRoutePacket(XBeeAPIPacket):
 """
 This class represents a Zigbee Create Source Route packet. This packet is
 built using the parameters of the constructor or providing a valid API
 payload.

 This frame creates a source route in the node. A source route specifies the
 complete route a packet should travese to get from source to destination.
 Source routing should be used with many-to-one routing for best results.

 Note: Both, 64-bit and 16-bit destination addresses are required when
 creating a source route. These are obtained when a Route Record Indicator
 (0xA1) frame is received.

 .. seealso::
 | :class:`.RouteRecordIndicatorPacket`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 18

 def __init__(self, frame_id, x64bit_addr, x16bit_addr, route_options=0,
 hops=None, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new :class:`.CreateSourceRoutePacket`
 object with the provided parameters.

 Args:
 frame_id (integer): the frame ID of the packet.
 x64bit_addr (:class:`.XBee64BitAddress`): The 64-bit destination address.
 x16bit_addr (:class:`.XBee16BitAddress`): The 16-bit destination address.
 route_options (Integer): Route command options.
 hops (List, optional, default=`None`): List of 16-bit addresses of
 intermediate hops in the source route (excluding source and
 destination).
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 .. seealso::
 | :class:`.XBee16BitAddress`
 | :class:`.XBee64BitAddress`
 | :class:`.XBeeAPIPacket`
 """
 if frame_id < 0 or frame_id > 255:
 raise ValueError("Frame id must be between 0 and 255.")

 super().__init__(ApiFrameType.CREATE_SOURCE_ROUTE, op_mode=op_mode)

 self._frame_id = frame_id
 self.__x64_addr = x64bit_addr
 self.__x16_addr = x16bit_addr
 self.__route_opts = route_options
 self.__hops = hops if hops else []

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.CreateSourceRoutePacket`.

 Raises:
 InvalidPacketException: If the bytearray length is less than 18.
 (start delim. + length (2 bytes) + frame type + frame id +
 64-bit addr. + 16-bit addr. + Route command options
 + num of addrs + hops 16-bit addrs + checksum = 18 bytes).
 InvalidPacketException: If the length field of `raw` is different
 from its real length. (length field: bytes 1 and 3)
 InvalidPacketException: If the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: If the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: If the frame type is not
 :attr:`.ApiFrameType.CREATE_SOURCE_ROUTE`.
 InvalidPacketException: If the number of hops does not match with
 the number of 16-bit addresses.
 InvalidOperatingModeException: If `operating_mode` is not
 supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(
 operating_mode.name + " is not supported.")

 XBeeAPIPacket._check_api_packet(
 raw, min_length=CreateSourceRoutePacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.CREATE_SOURCE_ROUTE.code:
 raise InvalidPacketException(
 "This packet is not a Create Source Route packet.")

 hops = [XBee16BitAddress(raw[i:i+2]) for i in range(17, len(raw) - 1, 2)]

 if raw[16] != len(hops):
 raise InvalidPacketException("Specified number of hops does not"
 "match with the length of addresses.")

 return CreateSourceRoutePacket(
 raw[4], XBee64BitAddress(raw[5:13]), XBee16BitAddress(raw[13:15]),
 raw[15], hops, op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return True

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 ret = self.__x64_addr.address
 ret += self.__x16_addr.address
 ret.append(self.__route_opts)
 ret.append(len(self.__hops))
 for hop in self.__hops:
 ret += hop.address

 return ret

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 hops_array = [hop.address for hop in self.__hops]

 return {DictKeys.X64BIT_ADDR: self.__x64_addr.address,
 DictKeys.X16BIT_ADDR: self.__x16_addr.address,
 DictKeys.ROUTE_CMD_OPTIONS: self.__route_opts,
 DictKeys.NUM_OF_HOPS: len(hops_array),
 DictKeys.HOPS: hops_array}

 @property
 def x64bit_dest_addr(self):
 """
 Returns the 64-bit destination address.

 Returns:
 :class:`.XBee64BitAddress`: The 64-bit destination address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 return self.__x64_addr

 @x64bit_dest_addr.setter
 def x64bit_dest_addr(self, x64bit_addr):
 """
 Sets the 64-bit destination address.

 Args:
 x64bit_addr (:class:`.XBee64BitAddress`): The new 64-bit destination address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 self.__x64_addr = x64bit_addr

 @property
 def x16bit_dest_addr(self):
 """
 Returns the 16-bit destination address.

 Returns:
 :class:`.XBee16BitAddress`: The 16-bit destination address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 return self.__x16_addr

 @x16bit_dest_addr.setter
 def x16bit_dest_addr(self, x16bit_addr):
 """
 Sets the 16-bit destination address.

 Args:
 x16bit_addr (:class:`.XBee16BitAddress`): The new 16-bit destination address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 self.__x16_addr = x16bit_addr

 @property
 def route_cmd_options(self):
 """
 Returns the route command options bitfield.

 Returns:
 Integer: The route command options bitfield.
 """
 return self.__route_opts

 @route_cmd_options.setter
 def route_cmd_options(self, route_options):
 """
 Sets the route command options bitfield.

 Args:
 route_options (Integer): The new route command options bitfield.
 """
 self.__route_opts = route_options

 @property
 def number_of_hops(self):
 """
 Returns the number of intermediate hops in the source route (excluding
 source and destination).

 Returns:
 Integer: The number of intermediate hops.
 """
 return len(self.__hops)

 @property
 def hops(self):
 """
 Returns the list of intermediate hops starting from the closest to
 destination hop and finishing with the closest to the source (excluding
 source and destination).

 Returns:
 List: The list of 16-bit addresses of intermediate hops.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 return self.__hops

 @hops.setter
 def hops(self, hops):
 """
 Sets the hops of the route (excluding source and destination).

 Args:
 hops (List): List of `XBee16BitAddress`.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 self.__hops = hops if hops else []

[docs]class OTAFirmwareUpdateStatusPacket(XBeeAPIPacket):
 """
 This class represents a an Over The Air Firmware Update Status packet.
 Packet is built using the parameters of the constructor or providing
 a valid API payload.

 This frame provides a status indication of a firmware update
 transmission.

 If a query request returns a 0x15 (NACK) status, the target is likely
 waiting for a firmware update image. If no messages are sent to it for
 about 75 seconds, the target will timeout and accept new query messages.

 If a query status returns a 0x51 (QUERY) status, then the target's
 bootloader is not active and will not respond to query messages.

 .. seealso::
 | :class:`.EmberBootloaderMessageType`
 | :class:`.XBeeAPIPacket`
 """

 __MIN_PACKET_LENGTH = 26

 def __init__(self, src_address_64, updater_address_16, rx_options, msg_type,
 block_number, target_address_64, op_mode=OperatingMode.API_MODE):
 """
 Class constructor. Instantiates a new
 :class:`.OTAFirmwareUpdateStatusPacket` object with the
 provided parameters.

 Args:
 src_address_64 (:class:`.XBee64BitAddress`): the 64-bit address
 of the device returning this answer.
 updater_address_16 (:class:`.XBee16BitAddress`): the 16-bit address
 of the updater device.
 rx_options (Integer): bitfield indicating the receive options.
 msg_type (:class:`.EmberBootloaderMessageType`): Ember bootloader message type
 block_number (Integer): block number used in the update request.
 target_address_64 (:class:`.XBee64BitAddress`): the 64-bit address
 of the device that is being updated.
 op_mode (:class:`.OperatingMode`, optional, default=`OperatingMode.API_MODE`):
 The mode in which the frame was captured.

 .. seealso::
 | :class:`.XBeeAPIPacket`
 | :class:`.XBee16BitAddress`
 | :class:`.XBee64BitAddress`
 | :class:`.ReceiveOptions`
 | :class:`.EmberBootloaderMessageType`
 """
 super().__init__(ApiFrameType.OTA_FIRMWARE_UPDATE_STATUS, op_mode=op_mode)
 self.__src_x64bit_addr = src_address_64
 self.__updater_x16bit_addr = updater_address_16
 self.__rx_opts = rx_options
 self.__msg_type = msg_type
 self.__block_number = block_number
 self.__target_x64bit_addr = target_address_64

[docs] @staticmethod
 def create_packet(raw, operating_mode):
 """
 Override method.

 Returns:
 :class:`.OTAFirmwareUpdateStatusPacket`.

 Raises:
 InvalidPacketException: if the bytearray length is less than 17.
 (start delim. + length (2 bytes) + frame type
 + source 64bit addr. (8 bytes) + updater 16bit addr. (2 bytes)
 + receive options + bootloader message type + block number
 + source 64bit addr. (8 bytes) + checksum = 27 bytes).
 InvalidPacketException: if the length field of 'raw' is different
 from its real length. (length field: bytes 1 and 3)
 InvalidPacketException: if the first byte of 'raw' is not the
 header byte. See :class:`.SpecialByte`.
 InvalidPacketException: if the calculated checksum is different
 from the checksum field value (last byte).
 InvalidPacketException: if the frame type is not
 :attr:`.ApiFrameType.OTA_FIRMWARE_UPDATE_STATUS`.
 InvalidOperatingModeException: if `operating_mode` is not supported.

 .. seealso::
 | :meth:`.XBeePacket.create_packet`
 | :meth:`.XBeeAPIPacket._check_api_packet`
 """
 if operating_mode not in (OperatingMode.ESCAPED_API_MODE,
 OperatingMode.API_MODE):
 raise InvalidOperatingModeException(
 operating_mode.name + " is not supported.")

 XBeeAPIPacket._check_api_packet(
 raw, min_length=OTAFirmwareUpdateStatusPacket.__MIN_PACKET_LENGTH)

 if raw[3] != ApiFrameType.OTA_FIRMWARE_UPDATE_STATUS.code:
 raise InvalidPacketException(
 "This packet is not an OTA Firmware Update Status packet.")

 return OTAFirmwareUpdateStatusPacket(
 XBee64BitAddress(raw[4:12]), XBee16BitAddress(raw[12:14]), raw[14],
 EmberBootloaderMessageType.get(raw[15]), raw[16], XBee64BitAddress(raw[17:25]),
 op_mode=operating_mode)

[docs] def needs_id(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket.needs_id`
 """
 return False

 def _get_api_packet_spec_data(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data`
 """
 raw = self.__src_x64bit_addr.address
 raw += self.__updater_x16bit_addr.address
 raw.append(self.__rx_opts & 0xFF)
 raw.append(self.__msg_type.code & 0xFF)
 raw.append(self.__block_number & 0xFF)
 raw += self.__target_x64bit_addr.address
 return raw

 def _get_api_packet_spec_data_dict(self):
 """
 Override method.

 .. seealso::
 | :meth:`.XBeeAPIPacket._get_api_packet_spec_data_dict`
 """
 return {DictKeys.SRC_64BIT_ADDR: self.__src_x64bit_addr.address,
 DictKeys.UPDATER_16BIT_ADDR: self.__updater_x16bit_addr.address,
 DictKeys.RECEIVE_OPTIONS: self.__rx_opts,
 DictKeys.BOOTLOADER_MSG_TYPE: self.__msg_type,
 DictKeys.BLOCK_NUMBER: self.__block_number,
 DictKeys.TARGET_64BIT_ADDR: self.__target_x64bit_addr.address}

 @property
 def x64bit_source_addr(self):
 """
 Returns the 64-bit source address.

 Returns:
 :class:`.XBee64BitAddress`: the 64-bit source address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 return self.__src_x64bit_addr

 @x64bit_source_addr.setter
 def x64bit_source_addr(self, x64bit_source_addr):
 """
 Sets the 64-bit source address.

 Args:
 x64bit_source_addr (:class:`.XBee64BitAddress`): the new 64-bit source address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 self.__src_x64bit_addr = x64bit_source_addr

 @property
 def x16bit_updater_addr(self):
 """
 Returns the 16-bit updater address.

 Returns:
 :class:`.XBee16BitAddress`: the 16-bit updater address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 return self.__updater_x16bit_addr

 @x16bit_updater_addr.setter
 def x16bit_updater_addr(self, x16bit_updater_addr):
 """
 Sets the 16-bit updater address.

 Args:
 x16bit_updater_addr (:class:`.XBee16BitAddress`): the new 16-bit updater address.

 .. seealso::
 | :class:`.XBee16BitAddress`
 """
 self.__updater_x16bit_addr = x16bit_updater_addr

 @property
 def receive_options(self):
 """
 Returns the receive options bitfield.

 Returns:
 Integer: the receive options bitfield.

 .. seealso::
 | :class:`.ReceiveOptions`
 """
 return self.__rx_opts

 @receive_options.setter
 def receive_options(self, receive_options):
 """
 Sets the receive options bitfield.

 Args:
 receive_options (Integer): the new receive options bitfield.

 .. seealso::
 | :class:`.ReceiveOptions`
 """
 self.__rx_opts = receive_options

 @property
 def bootloader_msg_type(self):
 """
 Returns the bootloader message type.

 Returns:
 :class:`.EmberBootloaderMessageType`: the bootloader message type.

 .. seealso::
 | :class:`.EmberBootloaderMessageType`
 """
 return self.__msg_type

 @bootloader_msg_type.setter
 def bootloader_msg_type(self, bootloader_message_type):
 """
 Sets the receive options bitfield.

 Args:
 bootloader_message_type (:class:`.EmberBootloaderMessageType`): the
 new bootloader message type.

 .. seealso::
 | :class:`.EmberBootloaderMessageType`
 """
 self.__msg_type = bootloader_message_type

 @property
 def block_number(self):
 """
 Returns the block number of the request.

 Returns:
 Integer: the block number of the request.
 """
 return self.__block_number

 @block_number.setter
 def block_number(self, block_number):
 """
 Sets the block number.

 Args:
 block_number (Integer): the new block number.
 """
 self.__block_number = block_number

 @property
 def x64bit_target_addr(self):
 """
 Returns the 64-bit target address.

 Returns:
 :class:`.XBee64BitAddress`: the 64-bit target address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 return self.__target_x64bit_addr

 @x64bit_target_addr.setter
 def x64bit_target_addr(self, x64bit_target_addr):
 """
 Sets the 64-bit source address.

 Args:
 x64bit_target_addr (:class:`.XBee64BitAddress`): the new 64-bit target address.

 .. seealso::
 | :class:`.XBee64BitAddress`
 """
 self.__target_x64bit_addr = x64bit_target_addr

 Source code for digi.xbee.util.utils

Copyright 2017-2020, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

import logging
from functools import wraps

Number of bits to extract with the mask (__MASK)
__MASK_NUM_BITS = 8

Bit mask to extract the less important __MAS_NUM_BITS bits of a number.
__MASK = 0xFF

[docs]def is_bit_enabled(number, position):
 """
 Returns whether the bit located at `position` within `number` is enabled.

 Args:
 number (Integer): the number to check if a bit is enabled.
 position (Integer): the position of the bit to check if is enabled in
 `number`.

 Returns:
 Boolean: `True` if the bit located at `position` within `number` is
 enabled, `False` otherwise.
 """
 return ((number & 0xFFFFFFFF) >> position) & 0x01 == 0x01

[docs]def get_int_from_byte(number, offset, length):
 """
 Reads an integer value from the given byte using the provived bit offset
 and length.

 Args:
 number (Integer): Byte to read the integer from.
 offset (Integer): Bit offset inside the byte to start reading
 (LSB = 0, MSB = 7).
 length (Integer): Number of bits to read.

 Returns:
 Integer: The integer value read.

 Raises:
 ValueError: If `number is lower than 0 or higher than 255.
 If `offset` is lower than 0 or higher than 7.
 If `length` is lower than 0 or higher than 8.
 If `offset + length` is higher than 8.
 """
 if number < 0 or number > 255:
 raise ValueError("Number must be between 0 and 255")
 if offset < 0 or offset > 7:
 raise ValueError("Offset must be between 0 and 7")
 if length < 0 or length > 8:
 raise ValueError("Length must be between 0 and 8")
 if offset + length > 8:
 raise ValueError(
 "Starting at offset=%d, length must be between 0 and %d" % (offset, 8 - offset))

 if not length:
 return 0

 binary = "{0:08b}".format(number)
 end = len(binary) - offset - 1
 start = end - length + 1

 return int(binary[start:end + 1], 2)

[docs]def hex_string_to_bytes(hex_string):
 """
 Converts a String (composed by hex. digits) into a bytearray with same digits.

 Args:
 hex_string (String): String (made by hex. digits) with "0x" header or not.

 Returns:
 Bytearray: bytearray containing the numeric value of the hexadecimal digits.

 Raises:
 ValueError: if invalid literal for int() with base 16 is provided.

 Example:
 >>> a = "0xFFFE"
 >>> for i in hex_string_to_bytes(a): print(i)
 255
 254
 >>> print(type(hex_string_to_bytes(a)))
 <type 'bytearray'>

 >>> b = "FFFE"
 >>> for i in hex_string_to_bytes(b): print(i)
 255
 254
 >>> print(type(hex_string_to_bytes(b)))
 <type 'bytearray'>
 """
 aux = int(hex_string, 16)
 return int_to_bytes(aux)

[docs]def int_to_bytes(number, num_bytes=None):
 """
 Converts the provided integer into a bytearray.

 If `number` has less bytes than `num_bytes`, the resultant bytearray
 is filled with zeros (0x00) starting at the beginning.

 If `number` has more bytes than `num_bytes`, the resultant bytearray
 is returned without changes.

 Args:
 number (Integer): the number to convert to a bytearray.
 num_bytes (Integer): the number of bytes that the resultant bytearray will have.

 Returns:
 Bytearray: the bytearray corresponding to the provided number.

 Example:
 >>> a=0xFFFE
 >>> print([i for i in int_to_bytes(a)])
 [255,254]
 >>> print(type(int_to_bytes(a)))
 <type 'bytearray'>
 """
 byte_array = bytearray()
 byte_array.insert(0, number & __MASK)
 number >>= __MASK_NUM_BITS
 while number != 0:
 byte_array.insert(0, number & __MASK)
 number >>= __MASK_NUM_BITS

 if num_bytes is not None:
 while len(byte_array) < num_bytes:
 byte_array.insert(0, 0x00)

 return byte_array

[docs]def length_to_int(byte_array):
 """
 Calculates the length value for the given length field of a packet.
 Length field are bytes 1 and 2 of any packet.

 Args:
 byte_array (Bytearray): length field of a packet.

 Returns:
 Integer: the length value.

 Raises:
 ValueError: if `byte_array` is not a valid length field (it has length distinct than 0).

 Example:
 >>> b = bytearray([13,14])
 >>> c = length_to_int(b)
 >>> print("0x%02X" % c)
 0x1314
 >>> print(c)
 4884
 """
 if len(byte_array) != 2:
 raise ValueError("bArray must have length 2")
 return (byte_array[0] << 8) + byte_array[1]

[docs]def bytes_to_int(byte_array):
 """
 Converts the provided bytearray in an Integer.
 This integer is result of concatenate all components of `byte_array`
 and convert that hex number to a decimal number.

 Args:
 byte_array (Bytearray): bytearray to convert in integer.

 Returns:
 Integer: the integer corresponding to the provided bytearray.

 Example:
 >>> x = bytearray([0xA,0x0A,0x0A]) #this is 0xA0A0A
 >>> print(bytes_to_int(x))
 657930
 >>> b = bytearray([0x0A,0xAA]) #this is 0xAAA
 >>> print(bytes_to_int(b))
 2730
 """
 if len(byte_array) == 0:
 return 0
 return int("".join(["%02X" % i for i in byte_array]), 16)

[docs]def ascii_to_int(array):
 """
 Converts a bytearray containing the ASCII code of each number digit in an
 Integer. This integer is result of the number formed by all ASCII codes of
 the bytearray.

 Args:
 array (Bytearray): bytearray to convert in integer.

 Example:
 >>> x = bytearray([0x31,0x30,0x30]) #0x31 => ASCII code for number 1.
 #0x31,0x30,0x30 <==> 1,0,0
 >>> print(ascii_to_int(x))
 100
 """
 return int("".join([str(i - 0x30) for i in array]))

[docs]def int_to_ascii(number):
 """
 Converts an integer number to a bytearray. Each element of the bytearray is
 the ASCII code that corresponds to the digit of its position.

 Args:
 number (Integer): the number to convert to an ASCII bytearray.

 Returns:
 Bytearray: the bytearray containing the ASCII value of each digit of the number.

 Example:
 >>> x = int_to_ascii(100)
 >>> print(x)
 100
 >>> print([i for i in x])
 [49, 48, 48]
 """
 return bytearray([ord(i) for i in str(number)])

[docs]def int_to_length(number):
 """
 Converts an integer into a bytearray of 2 bytes corresponding to the
 length field of a packet. If this bytearray has length 1, a byte with value
 0 is added at the beginning.

 Args:
 number (Integer): the number to convert to a length field.

 Returns:
 Bytearray: The bytearray.

 Raises:
 ValueError: if `number` is less than 0 or greater than 0xFFFF.

 Example:
 >>> a = 0
 >>> print(hex_to_string(int_to_length(a)))
 00 00

 >>> a = 8
 >>> print(hex_to_string(int_to_length(a)))
 00 08

 >>> a = 200
 >>> print(hex_to_string(int_to_length(a)))
 00 C8

 >>> a = 0xFF00
 >>> print(hex_to_string(int_to_length(a)))
 FF 00

 >>> a = 0xFF
 >>> print(hex_to_string(int_to_length(a)))
 00 FF
 """
 if number < 0 or number > 0xFFFF:
 raise ValueError("The number must be between 0 and 0xFFFF.")
 length = int_to_bytes(number)
 if len(length) < 2:
 length.insert(0, 0)
 return length

[docs]def hex_to_string(byte_array, pretty=True):
 """
 Returns the provided bytearray in a pretty string format. All bytes are
 separated by blank spaces and printed in hex format.

 Args:
 byte_array (Bytearray): the bytearray to print in pretty string.
 pretty (Boolean, optional): `True` for pretty string format, `False`
 for plain string format. Default to `True`.

 Returns:
 String: the bytearray formatted in a string format.
 """
 separator = " " if pretty else ""
 return separator.join(["%02X" % i for i in byte_array])

[docs]def doc_enum(enum_class, descriptions=None):
 """
 Returns a string with the description of each value of an enumeration.

 Args:
 enum_class (Enumeration): the Enumeration to get its values documentation.
 descriptions (dictionary): each enumeration's item description. The key
 is the enumeration element name and the value is the description.

 Returns:
 String: the string listing all the enumeration values and their descriptions.
 """
 tab = " "*4
 data = "\n| Values:\n"
 for item in enum_class:
 data += """| {:s}**{:s}**{:s} {:s}\n""".format(
 tab, str(item), ":" if descriptions is not None else " =",
 str(item.value) if descriptions is None else descriptions[item])
 return data + "| \n"

[docs]def enable_logger(name, level=logging.DEBUG):
 """
 Enables a logger with the given name and level.

 Args:
 name (String): name of the logger to enable.
 level (Integer): logging level value.

 Assigns a default formatter and a default handler (for console).
 """
 log = logging.getLogger(name)
 log.disabled = False
 handler = logging.StreamHandler()
 handler.setLevel(level)
 formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)-7s - %(message)s')
 handler.setFormatter(formatter)
 log.addHandler(handler)
 log.setLevel(level)

[docs]def disable_logger(name):
 """
 Disables the logger with the give name.

 Args:
 name (String): the name of the logger to disable.
 """
 log = logging.getLogger(name)
 log.disabled = True

[docs]def deprecated(version, details="None"):
 """
 Decorates a method to mark as deprecated.
 This adds a deprecation note to the method docstring and also raises a
 :class:`warning.DeprecationWarning`.

 Args:
 version (String): Version that deprecates this feature.
 details (String, optional, default=`None`): Extra details to be added
 to the method docstring and warning.
 """
 def _function_wrapper(func):
 docstring = func.__doc__ or ""
 msg = ".. deprecated:: %s\n" % version

 doc_list = docstring.split(sep="\n", maxsplit=1)
 leading_spaces = 0
 if len(doc_list) > 1:
 leading_spaces = len(doc_list[1]) - len(doc_list[1].lstrip())

 doc_list.insert(0, "\n\n")
 doc_list.insert(0, ' ' * (leading_spaces + 4) + details if details else "")
 doc_list.insert(0, ' ' * leading_spaces + msg)
 doc_list.insert(0, "\n")

 func.__doc__ = "".join(doc_list)

 @wraps(func)
 def _inner(*args, **kwargs):
 message = "'%s' is deprecated." % func.__name__
 if details:
 message = "%s %s" % (message, details)
 import warnings
 warnings.simplefilter("default")
 warnings.warn(message, category=DeprecationWarning, stacklevel=2)

 return func(*args, **kwargs)

 return _inner

 return _function_wrapper

 Source code for digi.xbee.util.xmodem

Copyright 2019-2021, Digi International Inc.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

import collections
import os
import time

from enum import Enum

_ERROR_VALUE_DEST_PATH = "Destination path must be a non empty String"
_ERROR_VALUE_READ_CB = "Read callback must be a valid callable function"
_ERROR_VALUE_SRC_PATH = "Source path must be a non empty String"
_ERROR_VALUE_WRITE_CB = "Write callback must be a valid callable function"
_ERROR_XMODEM_BAD_BLOCK_NUMBER = "Bad block number in block #%d (received %d)"
_ERROR_XMODEM_BAD_DATA = "Data verification failed"
_ERROR_XMODEM_CANCELLED = "XModem transfer was cancelled by the remote end"
_ERROR_XMODEM_FINISH_TRANSFER = "Could not finish XModem transfer after %s retries"
_ERROR_XMODEM_READ_PACKET = "XModem packet could not be read after %s retries"
_ERROR_XMODEM_READ_PACKET_TIMEOUT = "Timeout reading XModem packet"
_ERROR_XMODEM_READ_VERIFICATION = "Could not read XModem verification byte after %s retries"
_ERROR_XMODEM_SEND_ACK_BYTE = "Could not send XModem ACK byte"
_ERROR_XMODEM_SEND_NAK_BYTE = "Could not send XModem NAK byte"
_ERROR_XMODEM_SEND_VERIFICATION_BYTE = "Could not send XModem verification byte"
_ERROR_XMODEM_UNEXPECTED_EOT = "Unexpected end of transmission"
_ERROR_XMODEM_TRANSFER_NAK = "XModem packet not acknowledged after %s retries"
_ERROR_XMODEM_WRITE_TO_FILE = "Could not write data to file '%s': %s"

_PADDING_BYTE_XMODEM = 0xFF
_PADDING_BYTE_YMODEM = 0x1A

XMODEM_ACK = 0x06 # Packet acknowledged.
XMODEM_CAN = 0x18 # Cancel transmission.
XMODEM_CRC = "C"
XMODEM_CRC_POLYNOMINAL = 0x1021
XMODEM_EOT = 0x04 # End of transmission.
XMODEM_NAK = 0x15 # Packet not acknowledged.
XMODEM_SOH = 0x01 # Start of header (128 data bytes).
XMODEM_STX = 0x02 # Start of header (1024 data bytes).

_XMODEM_BLOCK_SIZE_128 = 128
_XMODEM_BLOCK_SIZE_1K = 1024
_XMODEM_READ_HEADER_TIMEOUT = 3 # Seconds
_XMODEM_READ_DATA_TIMEOUT = 1 # Seconds.
_XMODEM_READ_RETRIES = 10
_XMODEM_WRITE_RETRIES = 10

[docs]class XModemException(Exception):
 """
 This exception will be thrown when any problem related with the
 XModem/YModem transfer occurs.

 All functionality of this class is the inherited from `Exception
 <https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception>`_.
 """

[docs]class XModemCancelException(XModemException):
 """
 This exception will be thrown when the XModem/YModem transfer is cancelled
 by the remote end.

 All functionality of this class is the inherited from `Exception
 <https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception>`_.
 """

class _XModemMode(Enum):
 """
 This class lists the available XModem modes.

 | Inherited properties:
 | **name** (String): The name of this _XModemMode.
 | **value** (Integer): The ID of this _XModemMode.
 """
 XMODEM = ("XModem", _XMODEM_BLOCK_SIZE_128, _PADDING_BYTE_XMODEM)
 YMODEM = ("YModem", _XMODEM_BLOCK_SIZE_1K, _PADDING_BYTE_YMODEM)

 def __init__(self, name, block_size, eof_pad):
 self.__name = name
 self.__block_size = block_size
 self.__eof_pad = eof_pad

 @property
 def name(self):
 """
 Returns the name of the _XModemMode element.

 Returns:
 String: the name of the _XModemMode element.
 """
 return self.__name

 @property
 def block_size(self):
 """
 Returns the block size of the _XModemMode element.

 Returns:
 Integer: the block size of the _XModemMode element.
 """
 return self.__block_size

 @property
 def eof_pad(self):
 """
 Returns the end of file padding byte of the _XModemMode element.

 Returns:
 Integer: the end of file padding byte of the _XModemMode element.
 """
 return self.__eof_pad

class _XModemVerificationMode(Enum):
 """
 This class lists the available XModem verification modes.

 | Inherited properties:
 | **name** (String): The name of this _XModemVerificationMode.
 | **value** (Integer): The ID of this _XModemVerificationMode.
 """
 CHECKSUM = ("Checksum", 1, XMODEM_NAK)
 CRC_16 = ("16-bit CRC", 2, ord(XMODEM_CRC))

 def __init__(self, name, length, byte):
 self.__name = name
 self.__length = length
 self.__byte = byte

 @property
 def name(self):
 """
 Returns the name of the _XModemVerificationMode element.

 Returns:
 String: the name of the _XModemVerificationMode element.
 """
 return self.__name

 @property
 def length(self):
 """
 Returns the byte length of the _XModemVerificationMode element.

 Returns:
 Integer: the byte length of the _XModemVerificationMode element.
 """
 return self.__length

 @property
 def byte(self):
 """
 Returns the _XModemVerificationMode element byte.

 Returns:
 Integer: the _XModemVerificationMode element byte.
 """
 return self.__byte

class _TransferFile:
 """
 Helper class used to read and split the file to transfer in data chunks.
 """

 def __init__(self, file_path, mode):
 """
 Class constructor. Instantiates a new :class:`._TransferFile` with the
 given parameters.

 Args:
 file_path (String): location of the file.
 mode (:class:`._XModemMode`): the XModem transfer mode.
 """
 self._file_path = file_path
 self._mode = mode
 # Calculate the total number of chunks (for percentage purposes later).
 file_size = os.stat(file_path).st_size
 self._chunk_index = 1
 self._num_chunks = file_size // mode.block_size
 if file_size % mode.block_size:
 self._num_chunks += 1

 def get_next_data_chunk(self):
 """
 Returns the next data chunk of this file.

 Returns:
 Bytearray: the next data chunk of the file as byte array.
 """
 with open(self._file_path, "rb") as file:
 while True:
 read_bytes = file.read(self._mode.block_size)
 if not read_bytes:
 break
 if len(read_bytes) < self._mode.block_size:
 # Since YModem allows for mixed block sizes transmissions,
 # optimize the packet size if the last block is < 128 bytes
 if len(read_bytes) < _XMODEM_BLOCK_SIZE_128:
 data = bytearray([self._mode.eof_pad] * _XMODEM_BLOCK_SIZE_128)
 else:
 data = bytearray([self._mode.eof_pad] * self._mode.block_size)
 data[0:len(read_bytes)] = read_bytes
 yield data
 else:
 yield read_bytes
 self._chunk_index += 1

 @property
 def num_chunks(self):
 """
 Returns the total number of data chunks of this file.

 Returns:
 Integer: the total number of data chunks of this file.
 """
 return self._num_chunks

 @property
 def chunk_index(self):
 """
 Returns the current data chunk index.

 Returns:
 Integer: the current data chunk index.
 """
 return self._chunk_index

 @property
 def percent(self):
 """
 Returns the transfer file progress percent.

 Returns:
 Integer: the transfer file progress percent.
 """
 return (self._chunk_index * 100) // self._num_chunks

class _DownloadFile:
 """
 Helper class used to create and write the download file from the given
 data chunks.
 """

 def __init__(self, file_path, mode):
 """
 Class constructor. Instantiates a new :class:`._DownloadFile` with the
 given parameters.

 Args:
 file_path (String): location of the file.
 mode (:class:`._XModemMode`): the XModem transfer mode.
 """
 self._file_path = file_path
 self._mode = mode
 self._size = 0
 self._name = None
 self._num_chunks = 0
 self._chunk_index = 1
 self._written_bytes = 0
 self._file = None

 def write_data_chunk(self, data):
 """
 Writes the given data chunk in the file.

 Args:
 data (Bytearray): the data chunk to write in the file.
 """
 try:
 if self._file is None:
 self._file = open(self._file_path, "wb+")

 bytes_to_write = len(data)
 # It may happen that the last data block contains padding data.
 # Get rid of it by calculating remaining bytes to write.
 if self._size != 0:
 bytes_to_write = min(bytes_to_write, self.size - self._written_bytes)
 self._file.write(data[0:bytes_to_write])
 self._written_bytes += bytes_to_write
 self._chunk_index += 1
 except Exception as exc:
 self.close_file()
 raise XModemException(_ERROR_XMODEM_WRITE_TO_FILE % (self._file_path, str(exc)))

 def close_file(self):
 """
 Closes the file.
 """
 if self._file:
 self._file.close()

 @property
 def num_chunks(self):
 """
 Returns the total number of data chunks of this file.

 Returns:
 Integer: the total number of data chunks of this file.
 """
 return self._num_chunks

 @property
 def chunk_index(self):
 """
 Returns the current data chunk index.

 Returns:
 Integer: the current data chunk index.
 """
 return self._chunk_index

 @property
 def size(self):
 """
 Returns the size of the download file.

 Returns:
 Integer: the size of the download file.
 """
 return self._size

 @size.setter
 def size(self, size):
 """
 Sets the download file size.

 Args:
 size (Integer): the download file size.
 """
 self._size = size
 self._num_chunks = self._size // self._mode.block_size
 if self._size % self._mode.block_size:
 self._num_chunks += 1

 @property
 def name(self):
 """
 Returns the name of the download file.

 Returns:
 String: the name of the download file.
 """
 return self._name

 @name.setter
 def name(self, name):
 """
 Sets the download file name.

 Args:
 name (String): the download file name.
 """
 self._name = name

 @property
 def percent(self):
 """
 Returns the download file progress percent.

 Returns:
 Integer: the download file progress percent.
 """
 if self.size == 0:
 return 0

 return (self._chunk_index * 100) // self._num_chunks

class _XModemTransferSession:
 """
 Helper class used to manage a XModem file transfer session.
 """

 def __init__(self, src_path, write_cb, read_cb, mode=_XModemMode.XMODEM, progress_cb=None, log=None):
 """
 Class constructor. Instantiates a new :class:`._XModemTransferSession`
 with the given parameters.

 Args:
 src_path (String): absolute path of the file to transfer.
 write_cb (Function): function to execute in order to write data to
 the remote end. Takes the following arguments:

 * The data to write as byte array.

 The function returns the following:

 Boolean: `True` if the write succeeded, `False` otherwise

 read_cb (Function): function to execute in order to read data from
 the remote end. Takes the following arguments:

 * The size of the data to read.
 * The timeout to wait for data. (seconds)

 The function returns the following:

 Bytearray: the read data, `None` if data could not be read

 mode (:class:`._XModemMode`, optional): the XModem transfer mode.
 Defaults to XModem.
 progress_cb (Function, optional): function to execute in order to
 receive transfer progress information. Takes the following
 arguments:

 * The progress percentage as integer.

 log (:class:`.Logger`, optional): logger used to log transfer debug messages
 """
 self._src_path = src_path
 self._write_cb = write_cb
 self._read_cb = read_cb
 self._mode = mode
 self._progress_cb = progress_cb
 self._log = log
 self._seq_index = 0
 self._transfer_file = None
 self._verification_mode = _XModemVerificationMode.CHECKSUM

 def _read_verification_mode(self):
 """
 Reads the transmission verification mode.

 Raises:
 XModemCancelException: if the transfer is cancelled by the remote end.
 XModemException: if there is any error reading the verification mode.
 """
 if self._log:
 self._log.debug("Reading verification mode...")
 retries = _XMODEM_WRITE_RETRIES
 while retries > 0:
 verification = self._read_cb(1, timeout=_XMODEM_READ_DATA_TIMEOUT)
 if not verification:
 retries -= 1
 continue
 verification = verification[0]
 if verification == ord(XMODEM_CRC):
 self._verification_mode = _XModemVerificationMode.CRC_16
 break
 if verification == XMODEM_NAK:
 self._verification_mode = _XModemVerificationMode.CHECKSUM
 break
 if verification == XMODEM_CAN:
 # Cancel requested from remote device.
 raise XModemCancelException(_ERROR_XMODEM_CANCELLED)
 # We got either NAK or something unexpected.
 retries -= 1

 # Check result.
 if retries <= 0:
 raise XModemException(_ERROR_XMODEM_READ_VERIFICATION % _XMODEM_WRITE_RETRIES)
 if self._log:
 self._log.debug("Verification mode is '%s'" % self._verification_mode.name)

 def _send_block_0(self):
 """
 Sends the special YModem block 0 to the remote end.

 Raises:
 XModemCancelException: if the transfer is cancelled by the remote end.
 XModemException: if there is any error transferring the block 0.
 """
 self._seq_index = 0
 name = str.encode(os.path.basename(self._src_path), encoding='utf8')
 size = str.encode(str(os.path.getsize(self._src_path)), encoding='utf8')
 mod_time = str.encode(str(oct(int(os.path.getctime(self._src_path)))), encoding='utf8')
 if (len(name) + len(size) + len(mod_time)) > 110:
 data = bytearray(_XMODEM_BLOCK_SIZE_1K)
 else:
 data = bytearray(_XMODEM_BLOCK_SIZE_128)
 data[0:len(name)] = name
 data[len(name) + 1:len(name) + 1 + len(size)] = size
 data[len(name) + len(size) + 1] = str.encode(" ", encoding='utf8')[0]
 data[len(name) + len(size) + 2:len(name) + len(size) + len(mod_time)] = mod_time[2:]
 self._send_next_block(data)

 def _send_empty_block_0(self):
 """
 Sends an empty YModem block 0 indicating YModem transmission has ended.

 Raises:
 XModemCancelException: if the transfer is cancelled by the remote end.
 XModemException: if there is any error transferring the empty header block 0.
 """
 self._seq_index = 0
 data = bytearray([0] * _XMODEM_BLOCK_SIZE_128)
 self._send_next_block(data)

 def _send_next_block(self, data):
 """
 Sends the next XModem block using the given data chunk.

 Args:
 data (Bytearray): data to send in the next block.

 Raises:
 XModemCancelException: if the transfer is cancelled by the remote end.
 XModemException: if there is any error transferring the next block.
 """
 # Build XModem packet.
 packet_size = len(data) + 3 + self._verification_mode.length # Extra 3 bytes for header and seq bytes.
 packet = bytearray(packet_size)
 # Write header, depends on the data block size.
 if len(data) == _XMODEM_BLOCK_SIZE_1K:
 packet[0] = XMODEM_STX
 else:
 packet[0] = XMODEM_SOH
 # Write sequence index.
 packet[1] = self._seq_index
 # Write diff sequence index.
 packet[2] = (255 - self._seq_index) & 0xFF
 # Write data.
 packet[3: 3 + len(data)] = data
 # Write verification byte(s).
 if self._verification_mode == _XModemVerificationMode.CHECKSUM:
 packet[packet_size - _XModemVerificationMode.CHECKSUM.length:packet_size] = _calculate_checksum(data)
 elif self._verification_mode == _XModemVerificationMode.CRC_16:
 packet[packet_size - _XModemVerificationMode.CRC_16.length:packet_size] = _calculate_crc16_ccitt(data)
 # Send XModem packet.
 retries = _XMODEM_WRITE_RETRIES
 answer = None
 while retries > 0:
 if self._log:
 if self._seq_index == 0:
 if self._mode == _XModemMode.YMODEM and len(data) == _XModemMode.XMODEM.block_size and data[0] == 0:
 self._log.debug("Sending empty header - retry %d" % (_XMODEM_WRITE_RETRIES - retries + 1))
 else:
 self._log.debug("Sending block 0 - retry %d" % (_XMODEM_WRITE_RETRIES - retries + 1))
 else:
 self._log.debug("Sending chunk %d/%d %d%% - retry %d" % (self._transfer_file.chunk_index,
 self._transfer_file.num_chunks,
 self._transfer_file.percent,
 _XMODEM_WRITE_RETRIES - retries + 1))
 if not self._write_cb(packet):
 retries -= 1
 continue
 answer = self._read_cb(1, timeout=_XMODEM_READ_DATA_TIMEOUT)
 if not answer:
 retries -= 1
 continue
 answer = answer[0]
 if answer == XMODEM_ACK:
 # Block was sent successfully.
 break
 if answer == XMODEM_CAN:
 # Cancel requested from remote device.
 raise XModemCancelException(_ERROR_XMODEM_CANCELLED)
 # We got either NAK or something unexpected.
 retries -= 1

 # Check result.
 if answer == XMODEM_NAK or retries <= 0:
 raise XModemException(_ERROR_XMODEM_TRANSFER_NAK % _XMODEM_WRITE_RETRIES)
 self._seq_index = (self._seq_index + 1) & 0xFF

 def _send_eot(self):
 """
 Sends the XModem end of transfer request (EOT).

 Raises:
 XModemCancelException: if the transfer is cancelled by the remote end.
 XModemException: if there is any error sending the end of transfer request.
 """
 if self._log:
 self._log.debug("Sending EOT")
 retries = _XMODEM_WRITE_RETRIES
 answer = None
 while retries > 0:
 if not self._write_cb(bytes([XMODEM_EOT])):
 retries -= 1
 continue
 # Read answer.
 answer = self._read_cb(1, timeout=_XMODEM_READ_DATA_TIMEOUT)
 if self._log:
 self._log.debug("EOT answer: %s", answer)
 if not answer:
 retries -= 1
 continue
 answer = answer[0]
 if answer == XMODEM_ACK:
 # Block was sent successfully.
 break
 if answer == XMODEM_CAN:
 # Transfer cancelled by the remote end.
 raise XModemCancelException(_ERROR_XMODEM_CANCELLED)
 # We got either NAK or something unexpected.
 retries -= 1

 # Check result.
 if answer == XMODEM_NAK or retries <= 0:
 raise XModemException(_ERROR_XMODEM_FINISH_TRANSFER % _XMODEM_WRITE_RETRIES)

 def transfer_file(self):
 """
 Performs the file transfer operation.

 Raises:
 XModemCancelException: if the transfer is cancelled by the remote end.
 XModemException: if there is any error during the file transfer.
 """
 if self._log:
 self._log.debug("Sending '%s' file through XModem" % self._src_path)
 self._transfer_file = _TransferFile(self._src_path, self._mode)
 # Read requested verification mode.
 self._read_verification_mode()
 # Execute special protocol pre-actions.
 if self._mode == _XModemMode.YMODEM:
 self._send_block_0()
 else:
 self._seq_index = 1
 # Perform file transfer.
 previous_percent = None
 for data_chunk in self._transfer_file.get_next_data_chunk():
 if self._progress_cb is not None and self._transfer_file.percent != previous_percent:
 self._progress_cb(self._transfer_file.percent)
 previous_percent = self._transfer_file.percent
 self._send_next_block(data_chunk)
 # Finish transfer.
 self._send_eot()
 # Execute special protocol post-actions.
 if self._mode == _XModemMode.YMODEM:
 self._read_verification_mode()
 self._send_empty_block_0()

class _XModemReadSession:
 """
 Helper class used to manage a XModem file read session.
 """

 def __init__(self, dest_path, write_cb, read_cb, mode=_XModemMode.XMODEM,
 verification_mode=_XModemVerificationMode.CRC_16, progress_cb=None, log=None):
 """
 Class constructor. Instantiates a new :class:`._XModemReadSession` with
 the given parameters.

 Args:
 dest_path (String): absolute path to store downloaded file in.
 write_cb (Function): function to execute in order to write data to
 the remote end. Takes the following arguments:

 * The data to write as byte array.

 The function returns the following:

 Boolean: `True` if the write succeeded, `False` otherwise

 read_cb (Function): function to execute in order to read data from
 the remote end. Takes the following arguments:

 * The size of the data to read.
 * The timeout to wait for data. (seconds)

 The function returns the following:

 Bytearray: the read data, `None` if data could not be read

 mode (:class:`._XModemMode`, optional): the XModem transfer mode.
 Defaults to XModem.
 verification_mode (:class:`._XModemVerificationMode`, optional):
 the XModem verification mode to use. Defaults to 16-bit CRC.
 progress_cb (Function, optional): function to execute in order to
 receive progress information. Takes the following arguments:

 * The progress percentage as integer.

 log (:class:`.Logger`, optional): logger used to log download debug messages
 """
 self._dest_path = dest_path
 self._write_cb = write_cb
 self._read_cb = read_cb
 self._mode = mode
 self._verification_mode = verification_mode
 self._progress_cb = progress_cb
 self._log = log
 self._seq_index = 0
 self._download_file = None

 def _send_data_with_retries(self, data, retries=_XMODEM_WRITE_RETRIES):
 """
 Sends the given data to the remote end using the given number of retries.

 Args:
 data (Bytearray): the data to send to the remote end.
 retries (Integer, optional): the number of retries to perform.

 Returns:
 Boolean: `True` if data was successfully sent, `False` otherwise.
 """
 _retries = retries
 while _retries > 0:
 if self._write_cb(data):
 return True
 time.sleep(0.1)
 _retries -= 1

 return False

 def _send_verification_char(self):
 """
 Sends the verification request byte to indicate we are ready to receive
 data.

 Raises:
 XModemException: if there is any error sending the verification request byte.
 """
 if self._log:
 self._log.debug("Sending verification character")
 if not self._send_data_with_retries(bytearray([self._verification_mode.byte])):
 raise XModemException(_ERROR_XMODEM_SEND_VERIFICATION_BYTE)

 def _send_ack(self):
 """
 Sends the ACK byte to acknowledge the received data.

 Raises:
 XModemException: if there is any error sending the ACK byte.
 """
 if not self._send_data_with_retries(bytes([XMODEM_ACK])):
 raise XModemException(_ERROR_XMODEM_SEND_ACK_BYTE)

 def _send_nak(self):
 """
 Sends the NAK byte to discard received data.

 Raises:
 XModemException: if there is any error sending the NAK byte.
 """
 if not self._send_data_with_retries(bytes([XMODEM_NAK])):
 raise XModemException(_ERROR_XMODEM_SEND_NAK_BYTE)

 def _purge(self):
 """
 Purges the remote end by consuming all data until timeout (no data) is
 received.
 """
 if self._log:
 self._log.debug("Purging remote end...")
 data = self._read_cb(1, timeout=1)
 while data:
 data = self._read_cb(1, timeout=1)

 def _read_packet(self):
 """
 Reads an XModem packet from the remote end.

 Returns:
 Bytearray: the packet data without protocol overheads. If data size
 is 0, it means end of transmission.

 Raises:
 XModemCancelException: if the transfer is cancelled by the remote end.
 XModemException: if there is any error reading the XModem packet.
 """
 block_size = _XModemMode.XMODEM.block_size
 retries = _XMODEM_READ_RETRIES
 # Keep reading until a valid packet is received or retries are consumed.
 while retries > 0:
 if self._log:
 if self._seq_index == 0:
 self._log.debug("Reading block 0 - retry %d" % (_XMODEM_READ_RETRIES - retries + 1))
 elif self._download_file.size != 0 and \
 self._download_file.chunk_index <= self._download_file.num_chunks:
 self._log.debug("Reading chunk %d/%d %d%% - retry %d" % (self._download_file.chunk_index,
 self._download_file.num_chunks,
 self._download_file.percent,
 _XMODEM_WRITE_RETRIES - retries + 1))
 # Read the packet header (first byte). Use a timeout strategy to read it.
 header = 0
 deadline = _get_milliseconds() + (_XMODEM_READ_HEADER_TIMEOUT * 1000)
 while _get_milliseconds() < deadline:
 header = self._read_cb(1, timeout=_XMODEM_READ_DATA_TIMEOUT)
 if not header or len(header) == 0:
 # Wait a bit and continue reading.
 time.sleep(0.2)
 continue
 header = header[0]
 if header == XMODEM_STX:
 block_size = _XModemMode.YMODEM.block_size
 break
 if header == XMODEM_SOH:
 block_size = _XModemMode.XMODEM.block_size
 break
 if header == XMODEM_EOT:
 # Transmission from the remote end has finished. ACK it
 # and return an empty byte array.
 self._send_ack()
 return bytearray(0)
 if header == XMODEM_CAN:
 # The remote end has cancelled the transfer.
 raise XModemCancelException(_ERROR_XMODEM_CANCELLED)
 # Unexpected content, read again.
 continue
 # If header is not valid, consume one retry and try again.
 if header not in (XMODEM_STX, XMODEM_SOH):
 retries -= 1
 continue
 # At this point we have the packet header, SOH/STX. Read the sequence bytes.
 seq_byte = self._read_cb(1, timeout=_XMODEM_READ_DATA_TIMEOUT)
 if not seq_byte or len(seq_byte) == 0:
 raise XModemException(_ERROR_XMODEM_READ_PACKET_TIMEOUT)
 seq_byte = seq_byte[0]
 seq_byte_2 = self._read_cb(1, timeout=_XMODEM_READ_DATA_TIMEOUT)
 if not seq_byte_2 or len(seq_byte_2) == 0:
 raise XModemException(_ERROR_XMODEM_READ_PACKET_TIMEOUT)
 # Second sequence byte should be the same as first as 1's complement
 seq_byte_2 = 0xff - seq_byte_2[0]
 if not (seq_byte == seq_byte_2 == self._seq_index):
 # Invalid block index.
 if self._log:
 self._log.error(_ERROR_XMODEM_BAD_BLOCK_NUMBER % (self._seq_index, seq_byte))
 # Consume data.
 self._read_cb(block_size + self._verification_mode.length)
 else:
 data = self._read_cb(block_size, timeout=_XMODEM_READ_DATA_TIMEOUT)
 if not data or len(data) != block_size:
 raise XModemException(_ERROR_XMODEM_READ_PACKET_TIMEOUT)
 verification = self._read_cb(self._verification_mode.length, timeout=_XMODEM_READ_DATA_TIMEOUT)
 if not verification or len(verification) != self._verification_mode.length:
 raise XModemException(_ERROR_XMODEM_READ_PACKET_TIMEOUT)
 data_valid = True
 if self._verification_mode == _XModemVerificationMode.CHECKSUM:
 checksum = _calculate_checksum(data)
 if checksum != verification[0]:
 data_valid = False
 else:
 crc = _calculate_crc16_ccitt(data)
 if crc[0] != verification[0] or crc[1] != verification[1]:
 data_valid = False
 if data_valid:
 # ACK packet
 self._send_ack()
 self._seq_index = (self._seq_index + 1) & 0xFF
 return data
 # Checksum/CRC is invalid.
 if self._log:
 self._log.error(_ERROR_XMODEM_BAD_DATA)

 # Reaching this point means the packet is not valid. Purge port
 # and send NAK before trying again.
 self._purge()
 self._send_nak()
 retries -= 1

 # All read retries are consumed, throw exception.
 raise XModemException(_ERROR_XMODEM_READ_PACKET % _XMODEM_READ_RETRIES)

 def _read_block_0(self):
 """
 Reads the block 0 of the file download process and extract file information.

 Raises:
 XModemCancelException: if the transfer is cancelled by the remote end.
 XModemException: if there is any error reading the XModem block 0.
 """
 self._seq_index = 0
 data = self._read_packet()
 if not data or len(data) == 0:
 raise XModemException(_ERROR_XMODEM_UNEXPECTED_EOT)
 # If it is an empty header just ACK it and return.
 if all(byte == 0 for byte in data):
 self._send_ack()
 return
 # File name is the first data block until a '0' (0x00) is found.
 index = 0
 name = bytearray()
 for byte in data:
 if byte == 0:
 break
 name.append(byte)
 index += 1
 name = str(encoding='utf8', errors='ignore')
 self._download_file.name = name
 # File size is the next data block until a '0' (0x00) is found.
 size = bytearray()
 for byte in data[index + 1:]:
 if byte == 0:
 break
 size.append(byte)
 index += 1
 try:
 size = int(size.decode(encoding='utf8', errors='ignore'))
 except ValueError:
 raise XModemException("Bad file size")
 self._download_file.size = size

 self._send_ack()
 self._seq_index += 1

 def get_file(self):
 """
 Performs the file read operation.

 Raises:
 XModemCancelException: if the transfer is cancelled by the remote end.
 XModemException: if there is any error during the file read process.
 """
 if self._log:
 self._log.debug("Downloading '%s' file through XModem" % self._dest_path)
 self._download_file = _DownloadFile(self._dest_path, self._mode)
 # Notify we are ready to receive data.
 self._send_verification_char()
 # Execute special protocol pre-actions.
 if self._mode == _XModemMode.YMODEM:
 self._read_block_0()
 else:
 self._seq_index = 1
 # Perform file download process.
 data = self._read_packet()
 previous_percent = None
 while len(data) > 0:
 if self._progress_cb is not None and self._download_file.percent != previous_percent:
 self._progress_cb(self._download_file.percent)
 previous_percent = self._download_file.percent
 self._download_file.write_data_chunk(data)
 data = self._read_packet()
 self._download_file.close_file()
 # Execute special protocol post-actions.
 if self._mode == _XModemMode.YMODEM:
 self._send_verification_char()
 self._read_block_0()

def _calculate_crc16_ccitt(data):
 """
 Calculates and returns the CRC16 CCITT verification sequence of the given
 data.

 Args:
 data (Bytearray): the data to calculate its CRC16 CCITT verification sequence.

 Returns:
 Bytearray: the CRC16 CCITT verification sequence of the given data as a 2 bytes byte array.
 """
 crc = 0x0000
 for val in data:
 crc ^= val << 8
 for _ in range(0, 8):
 if (crc & 0x8000) > 0:
 crc = (crc << 1) ^ XMODEM_CRC_POLYNOMINAL
 else:
 crc = crc << 1
 crc &= 0xFFFF

 return (crc & 0xFFFF).to_bytes(2, byteorder='big')

def _calculate_checksum(data):
 """
 Calculates and returns the checksum verification byte of the given data.

 Args:
 data (Bytearray): the data to calculate its checksum verification byte.

 Returns:
 Integer: the checksum verification byte of the given data.
 """
 checksum = 0
 for byte in data:
 char = byte & 0xFF
 checksum += char

 return checksum & 0xFF

def _get_milliseconds():
 """
 Returns the current time in milliseconds.

 Returns:
 Integer: the current time in milliseconds.
 """
 return int(time.time() * 1000.0)

[docs]def send_file_xmodem(src_path, write_cb, read_cb, progress_cb=None, log=None):
 """
 Sends a file using the XModem protocol to a remote end.

 Args:
 src_path (String): absolute path of the file to transfer.
 write_cb (Function): function to execute in order to write data to the
 remote end. Takes the following arguments:

 * The data to write as byte array.

 The function returns the following:

 Boolean: `True` if the write succeeded, `False` otherwise.

 read_cb (Function): function to execute in order to read data from the
 remote end. Takes the following arguments:

 * The size of the data to read.
 * The timeout to wait for data. (seconds)

 The function returns the following:

 Bytearray: the read data, `None` if data could not be read

 progress_cb (Function, optional): function to execute in order to
 receive progress information. Takes the following arguments:

 * The progress percentage as integer.

 log (:class:`.Logger`, optional): logger used to log transfer debug messages

 Raises:
 ValueError: if any input value is not valid.
 XModemCancelException: if the transfer is cancelled by the remote end.
 XModemException: if there is any error during the file transfer.
 """
 # Sanity checks.
 if not isinstance(src_path, str) or len(src_path) == 0:
 raise ValueError(_ERROR_VALUE_SRC_PATH)
 if not isinstance(write_cb, collections.Callable):
 raise ValueError(_ERROR_VALUE_WRITE_CB)
 if not isinstance(read_cb, collections.Callable):
 raise ValueError(_ERROR_VALUE_READ_CB)

 session = _XModemTransferSession(src_path, write_cb, read_cb, mode=_XModemMode.XMODEM, progress_cb=progress_cb,
 log=log)
 session.transfer_file()

[docs]def send_file_ymodem(src_path, write_cb, read_cb, progress_cb=None, log=None):
 """
 Sends a file using the YModem protocol to a remote end.

 Args:
 src_path (String): absolute path of the file to transfer.
 write_cb (Function): function to execute in order to write data to the
 remote end. Takes the following arguments:

 * The data to write as byte array.

 The function returns the following:

 Boolean: `True` if the write succeeded, `False` otherwise

 read_cb (Function): function to execute in order to read data from the
 remote end. Takes the following arguments:

 * The size of the data to read.
 * The timeout to wait for data. (seconds)

 The function returns the following:

 Bytearray: the read data, `None` if data could not be read

 progress_cb (Function, optional): function to execute in order to
 receive progress information. Takes the following arguments:

 * The progress percentage as integer.

 log (:class:`.Logger`, optional): logger used to log transfer debug messages

 Raises:
 ValueError: if any input value is not valid.
 XModemCancelException: if the transfer is cancelled by the remote end.
 XModemException: if there is any error during the file transfer.
 """
 # Sanity checks.
 if not isinstance(src_path, str) or len(src_path) == 0:
 raise ValueError(_ERROR_VALUE_SRC_PATH)
 if not isinstance(write_cb, collections.Callable):
 raise ValueError(_ERROR_VALUE_WRITE_CB)
 if not isinstance(read_cb, collections.Callable):
 raise ValueError(_ERROR_VALUE_READ_CB)

 session = _XModemTransferSession(
 src_path, write_cb, read_cb, mode=_XModemMode.YMODEM,
 progress_cb=progress_cb, log=log)
 session.transfer_file()

[docs]def get_file_ymodem(dest_path, write_cb, read_cb, crc=True, progress_cb=None, log=None):
 """
 Retrieves a file using the YModem protocol from a remote end.

 Args:
 dest_path (String): absolute path to store downloaded file in.
 write_cb (Function): function to execute in order to write data to the
 remote end. Takes the following arguments:

 * The data to write as byte array.

 The function returns the following:

 Boolean: `True` if the write succeeded, `False` otherwise

 read_cb (Function): function to execute in order to read data from the
 remote end. Takes the following arguments:

 * The size of the data to read.
 * The timeout to wait for data. (seconds)

 The function returns the following:

 Bytearray: the read data, `None` if data could not be read

 crc (Boolean, optional): `True` to use 16-bit CRC verification, `False`
 for standard 1 byte checksum. Defaults to `True`.
 progress_cb (Function, optional): function to execute in order to
 receive progress information. Takes the following arguments:

 * The progress percentage as integer.

 log (:class:`.Logger`, optional): logger used to log download debug messages

 Raises:
 ValueError: if any input value is not valid.
 XModemCancelException: if the file download is cancelled by the remote end.
 XModemException: if there is any error during the file download process.
 """
 # Sanity checks.
 if not isinstance(dest_path, str) or len(dest_path) == 0:
 raise ValueError(_ERROR_VALUE_DEST_PATH)
 if not isinstance(write_cb, collections.Callable):
 raise ValueError(_ERROR_VALUE_WRITE_CB)
 if not isinstance(read_cb, collections.Callable):
 raise ValueError(_ERROR_VALUE_READ_CB)

 if crc:
 session = _XModemReadSession(dest_path, write_cb, read_cb, mode=_XModemMode.YMODEM,
 verification_mode=_XModemVerificationMode.CRC_16,
 progress_cb=progress_cb, log=log)
 else:
 session = _XModemReadSession(dest_path, write_cb, read_cb, mode=_XModemMode.YMODEM,
 verification_mode=_XModemVerificationMode.CHECKSUM,
 progress_cb=progress_cb, log=log)
 session.get_file()

 _images/concepts_protocol.png
o, °
'\..\

PO Tond

A

0*‘»%. /. ZigBee

DigiMesh

o

Multipoint

_images/xbplib_diagram_network.png
Device
running
an XBee
Python

XBee network
application

_images/faq_port_bd.png
Search finished. 1 device(s) found

1 device(s) found Stop

Your device was not found? Click here

s

_images/xbplib_class_hierarchy.png
XBeeDevice

ZigBeeDevice Raws02Device

CellularDevice

nav.xhtml

 Table of Contents

 		
 XBee Python Library

_images/concepts_api_frame.jpg
Start Delimiter Length Frame Data Checksum
(Byte 1) (Bytes 2-3) (Bytes 4-n) (Byten +1)
Ox7E MsB LsB API-specific Structure 1 Byte

_images/concepts_api_frame_explained.jpg
Start Delimiter Length Frame Data Checksum
(Byte 1) (Bytes 2-3) (Bytes 4-n) (Byten +1)
OX7E MsB LsSB API-specific Structure 1 Byte

I
Characters Escaped If Needed

_images/concepts_form_factor.jpg
XBee Through-Hole (THT) XBee Surface Mount (SMT)

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/plus.png

