

XBee Python Library

XBee devices allow you to enable wireless connectivity to your projects creating
a network of connected devices. They provide features to exchange data with
other devices in the network, configure them and control their I/O lines. An
application running in an intelligent device can take advantage of these
features to monitor and manage the entire network.

Despite the available documentation and configuration tools for working with
XBee devices, it is not always easy to develop these kinds of applications.

[image: XBee Python library diagram]
The XBee Python Library is a Python API that dramatically reduces the time to
market of XBee projects developed in Python and facilitates the development of
these types of applications, making it an easy and smooth process. The XBee
Python Library includes the following features:

	Support for multiple XBee devices and protocols.

	High abstraction layer provides an easy-to-use workflow.

	Ability to configure local and remote XBee devices of the network.

	Discovery feature finds remote nodes on the same network as the local module.

	Ability to transmit and receive data from any XBee device on the network.

	Ability to manage the General Purpose Input and Output lines of all your XBee
devices.

	Ability to send and receive data from other XBee interfaces (Serial,
Bluetooth Low Energy and MicroPython).

This portal provides the following documentation to help you with the different
development stages of your Python applications using the XBee Python Library.

Requirements

The XBee Python library requires the following components in order to work
properly:

	Python 3. You can get it from https://www.python.org/getit/

	PySerial 3. Install it with pip (pip install pyserial) or refer to
the PySerial installation guide [http://pythonhosted.org/pyserial/pyserial.html#installation] for further
information about getting PySerial.

	SRP Install it with pip (pip install srp).

Contents

The XBee Python library documentation is split in different sections:

	Getting Started

	User Documentation

	Examples

	FAQ

	API reference

Getting Started

Perform your first steps with the XBee Python library. Learn how to setup your
environment and communicate with your XBee devices using the library.

	Get started with XBee Python library

User Documentation

Access detailed information about the different features and capabilities
provided by the library and how to use them.

	XBee terminology

	Work with XBee classes

	Configure the XBee device

	Discover the XBee network

	Communicate with XBee devices

	Handle analog and digital IO lines

	Update the XBee

	Log events

Examples

The library includes a good amount of examples that demonstrate most of the
functionality that it provides.

	XBee Python samples

FAQ

Find the answer to the most common questions or problems related to the XBee
Python library in the FAQ section.

	Frequently Asked Questions (FAQs)

API reference

The API reference contains more detailed documentation about the API for
developers who are interested in using and extending the library functionality.

	API reference

Indices and tables

	Index

	Module Index

	Search Page

License

Copyright 2017-2019, Digi International Inc.

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, you can obtain one at http://mozilla.org/MPL/2.0/.

THE SOFTWARE IS PROVIDED “AS IS” AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Digi International Inc. 11001 Bren Road East, Minnetonka, MN 55343

Get started with XBee Python library

This getting started guide describes how to set up your environment and use
the XBee Python Library to communicate with your XBee devices. It explains
how to configure your modules and write your first XBee Python application.

The guide is split into 3 main sections:

	Install your software

	Configure your XBee modules

	Run your first XBee Python application

Install your software

The following software components are required to write and run your first
XBee Python application:

	Python 3

	PySerial 3

	SRP

	XBee Python library software

	XCTU

Python 3

The XBee Python library requires Python 3. If you don’t have
Python 3, you can get it from https://www.python.org/getit/.

Warning

The XBee Python library is currently only compatible with Python 3.

PySerial 3

You must be able to communicate with the radio modules over a serial
connection. The XBee Python library uses the PySerial module for that
functionality.

This module is automatically downloaded when you install the XBee Python
library.

SRP

The XBee Python library uses the SRP module to authenticate with
XBee devices over Bluetooth Low Energy.

This module is automatically downloaded when you install the XBee Python
library.

XBee Python library software

The best way to install the XBee Python library is with the
pip [https://pip.pypa.io/en/stable] tool (which is what Python uses to
install packages). The pip tool comes with recent versions of Python.

To install the library, run this command in your terminal application:

$ pip install digi-xbee

The library is automatically downloaded and installed in your Python
interpreter.

Get the source code

The XBee Python library is actively developed on GitHub, where the code is
always available [https://github.com/digidotcom/xbee-python]. You can
clone the repository with:

$ git clone git@github.com:digidotcom/xbee-python.git

XCTU

XCTU is a free multi-platform application that enables developers to interact
with Digi RF modules through a simple-to-use graphical interface. It includes
new tools that make it easy to set up, configure, and test XBee RF modules.

For instructions on downloading and using XCTU, go to:

http://www.digi.com/xctu

Once you have downloaded XCTU, run the installer and follow the steps to finish
the installation process.

After you load XCTU, a message about software updates appears. We recommend you
always update XCTU to the latest available version.

Configure your XBee modules

You need to configure two XBee devices. One module (the sender) sends
“Hello XBee World!” using the Python application. The other device (the
receiver) receives the message.

To communicate, both devices must be working in the same protocol (802.15.4,
ZigBee, DigiMesh, Point-to-Multipoint, or Wi-Fi) and must be configured to
operate in the same network.

Note

If you are getting started with cellular, you only need to configure one
device. Cellular protocol devices are connected directly to the Internet,
so there is no network of remote devices to communicate with them. For
the cellular protocol, the XBee application demonstrated in the getting
started guide differs from other protocols. The cellular protocol sends and
reads data from an echo server.

Use XCTU to configure the devices. Plug the devices into the XBee adapters and
connect them to your computer’s USB or serial ports.

Note

For more information about XCTU, see the XCTU User
Guide [https://www.digi.com/resources/documentation/digidocs/90001458-13].
You can also access the documentation from the Help menu of the tool.

Once XCTU is running, add your devices to the tool and then select them from
the Radio Modules section. When XCTU is finished reading the device
parameters, complete the following steps according to your device type.
Repeat these steps to configure your XBee devices using XCTU.

	802.15.4 devices

	ZigBee devices

	DigiMesh devices

	DigiPoint devices

	Cellular devices

	Wi-Fi devices

802.15.4 devices

	Click Load default firmware settings in the Radio Configuration
toolbar to load the default values for the device firmware.

	Make sure API mode (API1 or API2) is enabled. To do so, set the AP
parameter value to 1 (API mode without escapes) or 2 (API mode
with escapes).

	Configure ID (PAN ID) setting to CAFE.

	Configure CH (Channel setting) to C.

	Click Write radio settings in the Radio Configuration toolbar to
apply the new values to the module.

	Once you have configured both modules, check to make sure they can see each
other. Click Discover radio modules in the same network, the second
button of the device panel in the Radio Modules view. The other device
must be listed in the Discovering remote devices dialog.

Note

If the other module is not listed, reboot both devices by pressing the
Reset button of the carrier board and try adding the device again. If
the list is still empty, see the product manual for your device.

ZigBee devices

	For old ZigBee devices (S2 and S2B), make sure the devices are using
API firmware. The firmware appears in the Function label of the
device in the Radio Modules view.

	One of the devices must be a coordinator - Function: ZigBee Coordinator
API

	Digi recommends the other one is a router - Function: ZigBee Router AP.

Note

If any of the two previous conditions is not satisfied, you must change
the firmware of the device. Click the Update firmware button of the
Radio Configuration toolbar.

	Click Load default firmware settings in the Radio Configuration
toolbar to load the default values for the device firmware.

	Do the following:

	If the device has the AP parameter, set it to 1 (API mode without
escapes) or 2 (API mode with escapes).

	If the device has the CE parameter, set it to Enabled in the
coordinator.

	Configure ID (PAN ID) setting to C001BEE.

	Configure SC (Scan Channels) setting to FFF.

	Click Write radio settings in the Radio Configuration toolbar to
apply the new values to the module.

	Once you have configured both modules, check to make sure they can see each
other. Click Discover radio modules in the same network, the second
button of the device panel in the Radio Modules view. The other device
must be listed in the Discovering remote devices dialog.

Note

If the other module is not listed, reboot both devices by pressing the
Reset button of the carrier board and try adding the device again. If
the list is still empty, go to the corresponding product manual for your
devices.

DigiMesh devices

	Click Load default firmware settings in the Radio Configuration
toolbar to load the default values for the device firmware.

	Ensure the API mode (API1 or API2) is enabled. To do so, the AP
parameter value must be 1 (API mode without escapes) or 2 (API mode
with escapes).

	Configure ID (PAN ID) setting to CAFE.

	Configure CH (Operating Channel) to C.

	Click Write radio settings in the Radio Configuration toolbar to
apply the new values to the module.

	Once you have configured both modules, check to make sure they can see each
other. Click Discover radio modules in the same network, the second
button of the device panel in the Radio Modules view. The other device
must be listed in the Discovering remote devices dialog.

Note

If the other module is not listed, reboot both devices by pressing the
Reset button of the carrier board and try adding the device again. If
the list is still empty, go to the corresponding product manual for your
devices.

DigiPoint devices

	Click Load default firmware settings in the Radio Configuration
toolbar to load the default values for the device firmware.

	Ensure the API mode (API1 or API2) is enabled. To do so, the AP
parameter value must be 1 (API mode without escapes) or 2 (API mode
with escapes).

	Configure ID (PAN ID) setting to CAFE.

	Configure HP (Hopping Channel) to 5.

	Click Write radio settings in the Radio Configuration toolbar to
apply the new values to the module.

	Once you have configured both modules, check to make sure they can see each
other. Click Discover radio modules in the same network, the second
button of the device panel in the Radio Modules view. The other device
must be listed in the Discovering remote devices dialog.

Note

If the other module is not listed, reboot both devices by pressing the
Reset button of the carrier board and try adding the device again. If
the list is still empty, go to the corresponding product manual for your
devices.

Cellular devices

	Click Load default firmware settings in the Radio Configuration toolbar
to load the default values for the device firmware.

	Ensure the API mode (API1 or API2) is enabled. To do so, the AP
parameter value must be 1 (API mode without escapes) or 2 (API mode
with escapes).

	Click Write radio settings in the Radio Configuration toolbar to apply
the new values to the module.

	Verify the module is correctly registered and connected to the Internet.
To do so check that the LED on the development board blinks. If it is solid
or has a double-blink, registration has not occurred properly. Registration
can take several minutes.

Note

In addition to the LED confirmation, you can check the IP address assigned
to the module by reading the MY parameter and verifying it has a value
different than 0.0.0.0.

Wi-Fi devices

	Click Load default firmware settings in the Radio Configuration toolbar
to load the default values for the device firmware.

	Ensure the API mode (API1 or API2) is enabled. To do so, the AP
parameter value must be 1 (API mode without escapes) or 2 (API mode
with escapes).

	Connect to an access point:

	Click the Active Scan button.

	Select the desired access point from the list of the Active Scan
result dialog.

	If the access point requires a password, type your password.

	Click the Connect button and wait for the module to connect to the
access point.

	Click Write radio settings in the Radio Configuration toolbar to apply
the new values to the module.

	Verify the module is correctly connected to the access point by checking
the IP address assigned to the module by reading the MY parameter and
verifying it has a value different than 0.0.0.0.

Run your first XBee Python application

The XBee Python application demonstrated in the guide broadcasts the message
Hello XBee World! from one of the devices connected to your computer (the
sender) to all remote devices on the same network as the sender. Once the
message is sent, the receiver XBee module must receive it. You can use XCTU
to verify receipt.

The commands to be executed depend on the protocol of the XBee devices. Follow
the corresponding steps depending on the protocol of your XBee devices.

	ZigBee, DigiMesh, DigiPoint or 802.15.4 devices

	Wi-Fi devices

	Cellular devices

ZigBee, DigiMesh, DigiPoint or 802.15.4 devices

Follow these steps to send the broadcast message and verify that it is received
successfully:

	First, prepare the receiver XBee device in XCTU to verify
that the broadcast message sent by the sender device is received
successfully. Follow these steps to do so:

	Launch XCTU.

	Add the receiver module to XCTU.

	Click Open the serial connection with the radio module to switch to
Consoles working mode and open the serial connection. This allows
you to see the data when it is received.

	Open the Python interpreter and write the application commands.

	Import the XBeeDevice class by executing the following command:

> from digi.xbee.devices import XBeeDevice

	Instantiate a generic XBee device:

> device = XBeeDevice("COM1", 9600)

Note

Remember to replace the COM port with the one your sender XBee device
is connected to. In UNIX-based systems, the port usually starts with
/dev/tty.

	Open the connection with the device:

> device.open()

	Send the Hello XBee World! broadcast message.

> device.send_data_broadcast("Hello XBee World!")

	Close the connection with the device:

> device.close()

	Verify that the message is received by the receiver XBee in XCTU. An
RX (Receive) frame should be displayed in the Console log with the
following information:

	Start delimiter

	7E

	Length

	Depends on the XBee protocol

	Frame type

	Depends on the XBee protocol

	16/64-bit source address

	XBee sender’s 16/64-bit address

	Options

	02

	RF data/Received data

	48 65 6C 6C 6F 20 58 42 65 65 20 57 6F 72 6C 64 21

Wi-Fi devices

Wi-Fi devices send broadcast data using the send_ip_data_broadcast()
command instead of the send_data_broadcast() one. For that reason, you must
instantiate a WiFiDevice instead of a generic XBeeDevice to execute the
proper command.

Follow these steps to send the broadcast message and verify that it is received
successfully:

	First, prepare the receiver XBee device in XCTU to verify
that the broadcast message sent by the sender device is received
successfully by the receiver device.

	Launch XCTU.

	Add the receiver module to XCTU.

	Click Open the serial connection with the radio module to switch to
Consoles working mode and open the serial connection. This allows
you to see the data when it is received.

	Open the Python interpreter and write the application commands.

	Import the WiFiDevice class by executing the following command:

> from digi.xbee.devices import WiFiDevice

	Instantiate a Wi-Fi XBee device:

> device = WiFiDevice("COM1", 9600)

Note

Remember to replace the COM port with the one your sender XBee device
is connected to. In UNIX-based systems, the port usually starts with
/dev/tty.

	Open the connection with the device:

> device.open()

	Send the Hello XBee World! broadcast message.

> device.send_ip_data_broadcast(9750, "Hello XBee World!")

	Close the connection with the device:

> device.close()

	Verify that the message is received by the receiver XBee in XCTU. An
RX IPv4 frame should be displayed in the Console log with the
following information:

	Start delimiter

	7E

	Length

	00 1C

	Frame type

	B0

	IPv4 source address

	XBee Wi-Fi sender’s IP address

	16-bit dest port

	26 16

	16-bit source port

	26 16

	Protocol

	00

	Status

	00

	RF data

	48 65 6C 6C 6F 20 58 42 65 65 20 57 6F 72 6C 64 21

Cellular devices

Cellular devices are connected directly to the Internet, so there is no
network of remote devices to communicate with them. For cellular
protocol, the application demonstrated in this guide differs from other
protocols.

The application sends and reads data from an echo server. Follow these steps to
execute it:

	Open the Python interpreter and write the application commands.

	Import the CellularDevice, IPProtocol and IPv4Address
classes:

> from digi.xbee.devices import CellularDevice
> from digi.xbee.models.protocol import IPProtocol
> from ipaddress import IPv4Address

	Instantiate a cellular XBee device:

> device = CellularDevice("COM1", 9600)

Note

Remember to replace the COM port by the one your Cellular XBee device
is connected to. In UNIX-based systems, the port usually starts with
/dev/tty.

	Open the connection with the device:

> device.open()

	Send the Hello XBee World! message to the echo server with IP
52.43.121.77 and port 11001 using the TCP IP protocol.

> device.send_ip_data(IPv4Address("52.43.121.77"), 11001, IPProtocol.TCP, "Hello XBee World!")

	Read and print the response from the echo server. If response cannot be
received, print ERROR.

> ip_message = device.read_ip_data()
> print(ip_message.data.decode("utf8") if ip_message is not None else "ERROR")

	Close the connection with the device:

> device.close()

XBee terminology

This section covers basic XBee concepts and terminology. The XBee Python
library manual refers to these concepts frequently, so it is important to
understand these concepts.

RF modules

A radio frequency (RF) module is a small electronic circuit used to transmit
and receive radio signals on different frequencies. Digi produces a wide
variety of RF modules to meet the requirements of almost any wireless solution,
such as long-range, low-cost, and low power modules.

XBee RF modules

XBee is the brand name of a family of RF modules produced by Digi International
Inc. XBee RF modules are modular products that make it easy and cost-effective
to deploy wireless technology. Multiple protocols and RF features are available,
giving customers enormous flexibility to choose the best technology for their
needs.

The XBee RF modules are available in two form factors: Through-Hole and Surface
Mount, with different antenna options. Almost all modules are available in the
Through-Hole form factor and share the same footprint.

[image: XBee form factor]

Radio firmware

Radio firmware is the program code stored in the radio module’s persistent
memory that provides the control program for the device. From the local web
interface of the XBee Gateway, you can update or change the firmware of the
local XBee module or any other module connected to the same network. This is a
common task when changing the role of the device or updating to the latest
version of the firmware.

Radio communication protocols

A radio communication protocol is a set of rules for data exchange between
radio devices. An XBee module supports a specific radio communication protocol
depending on the module and its radio firmware.

Following is the complete list of protocols supported by the XBee radio modules:

	IEEE 802.15.4

	ZigBee

	ZigBee Smart Energy

	DigiMesh (Digi proprietary)

	ZNet

	IEEE 802.11 (Wi-Fi)

	Point-to-multipoint (Digi proprietary)

	XSC (XStream compatibility)

	Cellular

	Thread

[image: RF protocols]

Note

Not all XBee devices can run all these communication protocols. The
combination of XBee hardware and radio firmware determines the protocol that
an XBee device can execute. Refer to the
XBee RF Family Comparison Matrix [https://www.digi.com/pdf/chart_xbee_rf_features.pdf]
for more information about the available XBee RF modules and the protocols
they support.

Radio module operating modes

The operating mode of an XBee radio module establishes the way a user, or any
microcontroller attached to the XBee, communicates with the module through the
Universal Asynchronous Receiver/Transmitter (UART) or serial interface.

Depending on the firmware and its configuration, the radio modules can work in
three different operating modes:

	Application Transparent (AT) operating mode

	API operating mode

	API escaped operating mode

In some cases, the operating mode of a radio module is established by the
firmware version and the firmware’s AP setting. The module’s firmware version
determines whether the operating mode is AT or API. The firmware’s AP setting
determines if the API mode is escaped (AP = 2) or not (AP = 1). In
other cases, the operating mode is only determined by the AP setting, which
allows you to configure the mode to be AT (AP = 0), API (AP = 1) or
API escaped (AP = 2).

Application Transparent (AT) operating mode

In Application Transparent (AT) or transparent operating mode, all serial data
received by the radio module is queued up for RF transmission. When the module
receives RF data, it sends the data out through the serial interface.

To configure an XBee module operating in AT, put the device in command mode to
send the configuration commands.

Command mode

When the radio module is working in AT operating mode, configure settings using
the command mode interface.

To enter command mode, send the 3-character command sequence through the serial
interface of the radio module, usually +++, within one second. Once the
command mode has been established, the module sends the reply OK, the
command mode timer starts, and the radio module can receive AT commands.

The structure of an AT command follows this format:

AT[ASCII command][Space (optional)][Parameter (optional)][Carriage return]

Example:

ATNI MyDevice\r

If no valid AT commands are received within the command mode timeout, the radio
module automatically exits command mode. You can also exit command mode issuing
the CN command (Exit Command mode).

API operating mode

Application Programming Interface (API) operating mode is an alternative to AT
operating mode. API operating mode requires that communication with the module
through a structured interface; that is, data communicated in API frames.

The API specifies how commands, command responses, the module sends and
receives status messages using the serial interface. API operation mode enables
many operations, such as the following:

	Configure the XBee device itself.

	Configure remote devices in the network.

	Manage data transmission to multiple destinations.

	Receive success/failure status of each transmitted RF packet.

	Identify the source address of each received packet.

Depending on the AP parameter value, the device can operate in one of two modes:
API (AP = 1) or API escaped (AP = 2) operating mode.

API escaped operating mode

API escaped operating mode (AP = 2) works similarly to API mode. The only
difference is that when working in API escaped mode, some bytes of the API
frame specific data must be escaped.

Use API escaped operating mode to add reliability to the RF transmission, which
prevents conflicts with special characters such as the start-of-frame byte
(0x7E). Since 0x7E can only appear at the start of an API packet, if 0x7E is
received at any time, you can assume that a new packet has started regardless
of length. In API escaped mode, those special bytes are escaped.

Escape characters

When sending or receiving an API frame in API escaped mode, you must escape
(flag) specific data values so they do not interfere with the data frame
sequence. To escape a data byte, insert 0x7D and follow it with the byte being
escaped, XOR’d with 0x20.

The following data bytes must be escaped:

	0x7E: Frame delimiter

	0x7D: Escape

	0x11: XON

	0x13: XOFF

API frames

An API frame is the structured data sent and received through the serial
interface of the radio module when it is configured in API or API escaped
operating modes. API frames are used to communicate with the module or with
other modules in the network.

An API frame has the following structure:

[image: API frames]

	Start delimiter

	This field is always 0x7E.

	Length

	The length field has a two-byte value that specifies the number of bytes that are contained in the frame data field. It does not include the checksum field.

	Frame Data

	The content of this field is composed by the API identifier and the API identifier specific data. Depending on the API identifier (also called API frame type), the content of the specific data changes.

	Checksum

	Byte containing the hash sum of the API frame bytes.

In API escaped mode, some bytes in the Length, Frame Data and
Checksum fields must be escaped.

[image: API frames escaped]

AT settings or commands

The firmware running in the XBee RF modules contains a group of settings and
commands that you can configure to change the behavior of the module or to
perform any related action. Depending on the protocol, the number of settings
and meanings vary, but all the XBee RF modules can be configured with AT
commands.

All the firmware settings or commands are identified with two ASCII characters
and some applications and documents refer to them as AT settings or
AT commands.

The configuration process of the AT settings varies depending on the operating
mode of the XBee RF module.

	AT operating mode. In this mode, you must put the module in a special mode
called command mode, so it can receive AT commands. For more information about
configuring XBee RF modules working in AT operating mode, see
Application Transparent (AT) operating mode.

	API operating mode. To configure or execute AT commands when the XBee RF
module operates in API mode, you must generate an AT command API frame
containing the AT setting identifier and the value of that setting, and send
it to the XBee RF module. For more information about API frames, see
API frames.

Work with XBee classes

When working with the XBee Python Library, start with an XBee device object
that represents a physical module. A physical XBee device is the combination
of hardware and firmware. Depending on that combination, the device runs a
specific wireless communication protocol such as ZigBee, 802.15.4, DigiMesh,
Wi-Fi, or cellular. An XBeeDevice class represents the XBee module in the
API.

Most of the protocols share the same features and settings, but there are some
differences between them. For that reason, the XBee Python Library also
includes a set of classes that represent XBee devices running different
communication protocols. The XBee Python Library supports one XBee device
class per protocol, as follows:

[image: XBee Class hierarchy]

	XBee ZigBee device (ZigBeeDevice)

	XBee 802.15.4 device (Raw802Device)

	XBee DigiMesh device (DigiMeshDevice)

	XBee Point-to-multipoint device (DigiPointDevice)

	XBee IP devices (This is a non-instantiable class)

	XBee Cellular device (CellularDevice)

	XBee Wi-Fi device (WiFiDevice)

All these XBee device classes allow you to configure the physical XBee device,
communicate with the device, send data to other nodes on the network, receive
data from remote devices, and so on. Depending on the class, you may have
additional methods to execute protocol-specific features or similar methods.

To work with the API and perform actions involving the physical device, you
must instantiate a generic XBeeDevice object or one that is
protocol-specific. This documentation refers to the XBeeDevice object
generically when describing the different features, but they can be applicable
to any XBee device class.

Instantiate an XBee device

When you are working with the XBee Python Library, the first step is to
instantiate an XBee device object. The API works well using the generic
XBeeDevice class, but you can also instantiate a protocol-specific XBee
device object if you know the protocol your physical XBee device is running.

An XBee device is represented as either local or remote in the XBee
Python Library, depending upon how you communicate with the device.

Local XBee device

A local XBee device is the object in the library representing the device that
is physically attached to your PC through a serial or USB port. The classes
you can instantiate to represent a local device are listed in the following
table:

	Class

	Description

	XBeeDevice

	Generic object, protocol-independent

	ZigBeeDevice

	ZigBee protocol

	Raw802Device

	802.15.4 protocol

	DigiMeshDevice

	DigiMesh protocol

	DigiPointDevice

	Point-to-multipoint protocol

	CellularDevice

	Cellular protocol

	WiFiDevice

	Wi-Fi protocol

To instantiate a generic or protocol-specific XBee device, you need to provide
the following two parameters:

	Serial port name

	Serial port baud rate

Instantiate a local XBee device

[...]

xbee = XBeeDevice("COM1", 9600)

[...]

Remote XBee device

Remote XBee device objects represent remote nodes of the network. These are
XBee devices that are not attached to your PC but operate in the same network
as the attached (local) device.

Warning

When working with remote XBee devices, it is very important to understand
that you cannot communicate directly with them. You need to provide a local
XBee device operating in the same network that acts as bridge between your
serial port and the remote node.

Managing remote devices is similar to managing local devices, but with
limitations. You can configure them, handle their IO lines, and so on, in the
same way you manage local devices. Local XBee devices have several methods for
sending data to remote devices, but the remote devices cannot use these
methods because they are already remote. Therefore, a remote device cannot send
data to another remote device.

In the local XBee device instantiation, you can choose between instantiating a
generic remote XBee device object or a protocol-specific remote XBee device.
The following table lists the remote XBee device classes:

	Class

	Description

	RemoteXBeeDevice

	Generic object, protocol independent

	RemoteZigBeeDevice

	ZigBee protocol

	RemoteRaw802Device

	802.15.4 protocol

	RemoteDigiMeshDevice

	DigiMesh protocol

	RemoteDigiPointDevice

	Point-to-multipoint protocol

Note

XBee Cellular and Wi-Fi protocols do not support remote devices.

To instantiate a remote XBee device object, you need to provide the following
parameters:

	Local XBee device attached to your PC that serves as the communication
interface.

	64-bit address of the remote device.

RemoteRaw802Device objects can be also instantiated by providing the local
XBee device attached to your PC and the 16-bit address of the remote
device.

Instantiate a remote XBee device

[...]

local_xbee = XBeeDevice("COM1", 9600)
remote_xbee = RemoteXBeeDevice(local_xbee, XBee64BitAddress.from_hex_string("0013A20012345678"))

[...]

The local device must also be the same protocol for protocol-specific remote
XBee devices.

Open the XBee device connection

Before trying to communicate with the local XBee device attached to your PC,
you need to open its communication interface, which is typically a serial/USB
port. Use the open() method of the instantiated XBee device, and you can
then communicate and configure the device.

Remote XBee devices do not have an open method. They use a local XBee device
as the connection interface. If you want to perform any operation with a remote
XBee device you must open the connection of the associated local device.

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)

Open the device connection.
local_xbee.open()

[...]

The open() method may fail for the following reasons:

	All the possible errors are caught as XBeeException:

	If there is any problem with the communication, throwing a
TimeoutException.

	If the operating mode of the device is not API or API_ESCAPE,
throwing an InvalidOperatingModeException.

	There is an error writing to the XBee interface, or device is closed,
throwing a generic XBeeException.

The open() action performs some other operations apart from opening the
connection interface of the device. It reads the device information (reads
some sensitive data from it) and determines the operating mode of the device.

Use force_settings=True as open() method parameter, to reconfigure
the XBee serial settings (baud rate, data bits, stop bits, etc.) to those
specified in the XBee object constructor.

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)

Open the connection using constructor parameters: 9600 8N1.
This reconfigures the XBee if its serial settings do not match.
local_xbee.open(force_settings=True)

[...]

	Example: Recover XBee serial communication

	The XBee Python Library includes a sample application that displays how to recover the serial connection with a local XBee.
It can be located in the following path:

examples/configuration/RecoverSerialConnection/RecoverSerialConnection.py

Read device information

The read device information process reads the following parameters from the
local or remote XBee device and stores them inside. You can then access
parameters at any time, calling their corresponding getters.

	64-bit address

	16-bit address

	Node identifier

	Firmware version

	Hardware version

	IPv4 address (only for cellular and Wi-Fi modules)

	IMEI (only for cellular modules)

The read process is performed automatically in local XBee devices when
opening them with the open() method. If remote XBee devices cannot be
opened, you must use read_device_info() to read their device information.

Initialize a remote XBee device

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Instantiate a remote XBee device object.
remote_xbee = RemoteXBeeDevice(local_xbee, XBee64BitAddress.from_hex_string("0013A20040XXXXXX"))

Read the device information of the remote XBee device.
remote_xbee.read_device_info()

[...]

The read_device_info() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	If the operating mode of the device is not API or API_ESCAPE,
throwing an InvalidOperatingModeException.

	If the response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, or device is closed,
throwing a generic XBeeException.

Note

Although the readDeviceInfo method is executed automatically in local XBee
devices when they are open, you can issue it at any time to refresh the
information of the device.

Get device information

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Get the 64-bit address of the device.
addr_64 = device.get_64bit_addr()
Get the node identifier of the device.
node_id = device.get_node_id()
Get the hardware version of the device.
hardware_version = device.get_hardware_version()
Get the firmware version of the device.
firmware_version = device.get_firmware_version()

The read device information process also determines the communication protocol
of the local or remote XBee device object. This is typically something you
need to know beforehand if you are not using the generic XBeeDevice object.

However, the API performs this operation to ensure that the class you
instantiated is the correct one. So, if you instantiated a ZigBee device and
the open() process realizes that the physical device is actually a DigiMesh
device, you receive an XBeeDeviceException indicating the device mismatch.

You can retrieve the protocol of the XBee device from the object executing the
corresponding getter.

Get the XBee protocol

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Get the protocol of the device.
protocol = local_xbee.get_protocol()

Device operating mode

The open() process also reads the operating mode of the physical local
device and stores it in the object. As with previous settings, you can
retrieve the operating mode from the object at any time by calling the
corresponding getter.

Get the operating mode

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Get the operating mode of the device.
operating_mode = local_xbee.get_operating_mode()

Remote devices do not have an open() method, so you receive UNKNOWN
when retrieving the operating mode of a remote XBee device.

The XBee Python Library supports two operating modes for local devices:

	API

	API with escaped characters

This means that AT (transparent) mode is not supported by the API. So, if
you try to execute the open() method in a local device working in AT mode,
you get an XBeeException caused by an InvalidOperatingModeException.

Close the XBee device connection

You must call the close() method each time you finish your XBee
application. You can use this in the finally block or something similar.

If you don’t do this, you may have problems with the packet listener
being executed in a separate thread.

This method guarantees that the listener thread will be stopped and the
serial port will be closed.

Close the connection

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)

try:
 xbee.open()

 [...]

finally:
 if xbee is not None and xbee.is_open():
 xbee.close()

Note

Remote XBee devices cannot be opened, so they cannot be closed either. To close
the connection of a remote device you need to close the connection of the local
associated device.

Configure the XBee device

One of the main features of the XBee Python Library is the ability to configure
the parameters of local and remote XBee devices and execute some actions or
commands on them.

To apply a complete configuration profile see Apply an XBee profile.

Warning

The values set on the different parameters are not persistent through
subsequent resets unless you store those changes in the device. For more
information, see Write configuration changes.

Read and set common parameters

Local and remote XBee device objects provide a set of methods to get and set
common parameters of the device. Some of these parameters are saved inside the
XBee device object, and a cached value is returned when the parameter is
requested. Other parameters are read directly from the physical XBee device
when requested.

Cached parameters

Some parameters in an XBee device are used or requested frequently. To avoid
the overhead of those parameters being read from the physical XBee device
every time they are requested, they are saved inside the XBeeDevice
object being returned when the getters are called.

The following table lists cached parameters and their corresponding
getters:

	Parameter

	Method

	64-bit address

	get_64bit_addr()

	16-bit address

	get_16bit_addr()

	Node identifier

	get_node_id()

	Firmware version

	get_firmware_version()

	Hardware version

	get_hardware_version()

	Role

	get_role()

Local XBee devices read and save previous parameters automatically when
opening the connection of the device. In remote XBee devices, you must
issue the read_device_info() method to initialize the parameters.

You can refresh the value of those parameters (that is, read their values and
update them inside the XBee device object) at any time by calling the
read_device_info() method.

	Method

	Description

	read_device_info(init=False)

	Updates cache parameters reading them from the XBee: If init is True it reads all values, else only those not initialized.

Refresh cached parameters

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Refresh the cached values.
local_xbee.refresh_device_info()

[...]

The read_device_info() method may fail for the following reasons:

	There is a timeout getting any of the device parameters, throwing a
TimeoutException.

	The operating mode of the device is not API_MODE or ESCAPED_API_MODE,
throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an ATCommandException.

	There is an error writing to the XBee interface, or device is closed,
throwing a generic XBeeException.

All the cached parameters but the Node Identifier do not change; therefore,
they cannot be set. For the Node Identifier, there is a method within all the
XBee device classes that allows you to change it:

	Method

	Description

	set_node_id(String)

	Specifies the new Node Identifier of the device. This method configures the physical XBee device with the provided Node Identifier and updates the cached value with the one provided.

Non-cached parameters

The following non-cached parameters have their own methods to be
configured within the XBee device classes:

	Destination Address: This setting specifies the default 64-bit
destination address of a module that is used to report data generated by
the XBee device (that is, IO sampling data). This setting can be read and set.

	Method

	Description

	get_dest_address()

	Returns the 64-bit address of the device that data will be reported to.

	set_dest_address(XBee64BitAddress)

	Specifies the 64-bit address of the device where the data will be reported.

	PAN ID: This is the ID of the Personal Area Network the XBee device is
operating in. This setting can be read and set.

	Method

	Description

	get_pan_id()

	Returns a byte array containing the ID of the Personal Area Network where the XBee device is operating.

	set_pan_id(Bytearray)

	Specifies the value in byte array format of the PAN ID where the XBee device should work.

	Power level: This setting specifies the output power level of the XBee
device. This setting can be read and set.

	Method

	Description

	get_power_level()

	Returns a PowerLevel enumeration entry indicating the power level of the XBee device.

	set_power_level(PowerLevel)

	Specifies a PowerLevel enumeration entry containing the desired output level of the XBee device.

Configure non-cached parameters

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Set the destination address of the device.
dest_address = XBee64BitAddress.from_hex_string("0013A20040XXXXXX")
local_xbee.set_dest_address(dest_address)

Read the operating PAN ID of the device.
dest_addr = local_xbee.get_dst_address()

Read the operating PAN ID of the device.
pan_id = local_xbee.get_pan_id()

Read the output power level.
p_level = local_xbee.get_power_level()

[...]

All the previous getters and setters of the different options may fail for
the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

	Example: Common parameters

	The XBee Python Library includes a sample application that displays how to get and set common parameters. It can be located in the following path:

examples/configuration/ManageCommonParametersSample

Read, set and execute other parameters

If you want to read or set a parameter that does not have a custom getter or
setter within the XBee device object, you can do so. All the XBee device
classes (local or remote) include two methods to get and set any AT parameter,
and a third one to run a command in the XBee device.

Get a parameter

You can read the value of any parameter of an XBee device using the
get_parameter() method provided by all the XBee device classes. Use this
method to get the value of a parameter that does not have its getter method
within the XBee device object.

	Method

	Description

	get_parameter(String)

	Specifies the AT command (string format) to retrieve its value. The method returns the value of the parameter in a byte array.

Get a parameter from the XBee device

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Get the value of the Sleep Time (SP) parameter.
sp = local_xbee.get_parameter("SP")

[...]

The get_parameter() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE,
throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

	Example: Set and get parameters

	The XBee Python Library includes a sample application that displays how to get and set parameters using the methods explained previously. It can be located in the following path:

examples/configuration/SetAndGetParametersSample

Set a parameter

To set a parameter that does not have its own setter method, you can use the
set_parameter() method provided by all the XBee device classes.

	Method

	Description

	set_parameter(String, Bytearray)

	Specifies the AT command (String format) to be set in the device and a byte array containing the value of the parameter.

Set a parameter in the XBee device

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Configure the Node ID using the set_parameter() method.
local_xbee.set_parameter("NI", bytearray("Yoda", 'utf8'))

[...]

The set_parameter() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

	Example: Set and get parameters

	The XBee Python Library includes a sample application that displays how to get and set parameters using the methods explained previously. It can be located in the following path:

examples/configuration/SetAndGetParametersSample

Execute a command

There are other AT parameters that cannot be read or written. They are actions
that are executed by the XBee device. The XBee Python library has several
commands that handle most common executable parameters, but to run a parameter
that does not have a custom command, you can use the execute_command()
method provided by all the XBee device classes.

	Method

	Description

	execute_command(String)

	Specifies the AT command (String format) to be run in the device.

Run a command in the XBee device

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Run the apply changes command.
local_xbee.execute_command("AC")

[...]

The execute_command() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

Apply configuration changes

By default, when you perform any configuration on a local or remote XBee
device, the changes are automatically applied. However, there could be some
scenarios when you want to configure different settings or parameters of a
device and apply the changes at the end when everything is configured. For
that purpose, the XBeeDevice and RemoteXBeeDevice objects provide some
methods that allow you to manage when to apply configuration changes.

	Method

	Description

	Notes

	enable_apply_changes(Boolean)

	Specifies whether the changes on settings and parameters are applied when set.

	The apply configuration changes flag is enabled by default.

	is_apply_changes_enabled()

	Returns whether the XBee device is configured to apply parameter changes when they are set.

	

	apply_changes()

	Applies the changes on parameters that were already set but are pending to be applied.

	This method is useful when the XBee device is configured to not apply changes when they are set.

Apply configuration changes

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Check if device is configured to apply changes.
apply_changes_enabled = local_xbee.is_apply_changes_enabled()

Configure the device not to apply parameter changes automatically.
if apply_changes_enabled:
 local_xbee.enable_apply_changes(False)

Set the PAN ID of the XBee device to BABE.
local_xbee.set_pan_id(utils.hex_string_to_bytes("BABE"))

Perform other configurations.
[...]

Apply changes.
local_xbee.apply_changes()

[...]

The apply_changes() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

Write configuration changes

If you want configuration changes performed in an XBee device to persist
through subsequent resets, you need to write those changes in the device.
Writing changes means that the parameter values configured in the device are
written to the non-volatile memory of the XBee device. The module loads the
parameter values from non-volatile memory every time it is started.

The XBee device classes (local and remote) provide a method to write (save)
the parameter modifications in the XBee device memory so they persist through
subsequent resets: write_changes().

Write configuration changes

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Set the PAN ID of the XBee device to BABE.
local_xbee.set_pan_id(utils.hex_string_to_bytes("BABE"))

Perform other configurations.
[...]

Apply changes.
local_xbee.apply_changes()

Write changes.
local_xbee.write_changes()

[...]

The write_changes() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

Reset the device

It may be necessary to reset the XBee device when the system is not
operating properly or you are initializing the system. All the XBee
device classes of the XBee API provide the reset() method to perform a
software reset on the local or remote XBee module.

In local modules, the reset() method blocks until a confirmation from the
module is received, which usually takes one or two seconds. Remote modules do
not send any kind of confirmation, so the method does not block when resetting
them.

Reset the module

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Reset the module.
local_xbee.reset()

[...]

The reset() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

	Example: Reset module

	The XBee Python Library includes a sample application that shows you how to perform a reset on your XBee device. The example is located in the following path:

examples/configuration/ResetModuleSample

Configure Wi-Fi settings

Unlike other protocols such as ZigBee or DigiMesh where devices are connected to
each other, the XBee Wi-Fi protocol requires that the module is connected to
an access point in order to communicate with other TCP/IP devices.

This configuration and connection with access points can be done using
applications such as XCTU; however, the XBee Python Library includes a set of
methods to configure the network settings, scan access points, and connect to
an access point.

	Example: Configure Wi-Fi settings and connect to an access point

	The XBee Python Library includes a sample application that demonstrates how to configure the network settings of a Wi-Fi device and connect to an access point. You can locate the example in the following path:

examples/configuration/ConnectToAccessPointSample

Configure IP addressing mode

Before connecting your Wi-Fi module to an access point, you must decide how
to configure the network settings using the IP addressing mode option. The
supported IP addressing modes are contained in an enumerator called
IPAddressingMode. It allows you to choose between:

	DHCP

	STATIC

	Method

	Description

	set_ip_addressing_mode(IPAddressingMode)

	Sets the IP addressing mode of the Wi-Fi module. Depending on the provided mode, network settings are configured differently:

	DHCP: Network settings are assigned by a server.

	STATIC: Network settings must be provided manually one by one.

Configure IP addressing mode

[...]

Instantiate an XBee device object.
local_xbee = WiFiDevice("COM1", 9600)
local_xbee.open()

Configure the IP addressing mode to DHCP.
local_xbee.set_ip_addressing_mode(IPAddressingMode.DHCP)

Save the IP addressing mode.
local_xbee.write_changes()

[...]

The set_ip_addressing_mode() method may fail for the following reasons:

	There is a timeout setting the IP addressing parameter, throwing a
TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

Configure IP network settings

Like any TCP/IP protocol device, the XBee Wi-Fi modules have the IP address,
subnet mask, default gateway and DNS settings that you can get at any time
using the XBee Python Library.

Unlike some general configuration settings, these parameters are not saved
inside the WiFiDevice object. Every time you request the parameters, they are
read directly from the Wi-Fi module connected to the computer. The following
parameters are used in the configuration of the TCP/IP protocol:

	Parameter

	Method

	IP address

	get_ip_address()

	Subnet mask

	get_mask_address()

	Gateway IP

	get_gateway_address()

	DNS address

	get_dns_address()

Read IP network settings

[...]

Instantiate an XBee device object.
local_xbee = WiFiDevice("COM1", 9600)
local_xbee.open()

Configure the IP addressing mode to DHCP.
local_xbee.set_ip_addressing_mode(IPAddressingMode.DHCP)

Connect to access point with SSID 'My SSID' and password 'myPassword'
local_xbee.connect_by_ssid("My SSID", "myPassword")

Display the IP network settings that were assigned by the DHCP server.
print("- IP address: %s" % local_xbee.get_ip_address())
print("- Subnet mask: %s" % local_xbee.get_mask_address())
print("- Gateway IP address: %s" % local_xbee.get_gateway_address())
print("- DNS IP address: %s" % local_xbee.get_dns_address())

[...]

You can also change those settings when the module has static IP configuration
with the following methods:

	Parameter

	Method

	IP address

	set_ip_addr()

	Subnet mask

	set_mask_address()

	Gateway IP

	set_gateway_address()

	DNS address

	set_dns_address()

Configure Bluetooth settings

Newer XBee3 devices have a Bluetooth® Low Energy (BLE) interface that enables
you to connect your XBee device to another device such as a cellphone. The XBee
device classes (local and remote) offer some methods that allow you to:

	Enable and disable Bluetooth

	Configure the Bluetooth password

	Read the Bluetooth MAC address

Enable and disable Bluetooth

Before connecting to your XBee device over Bluetooth Low Energy, you first have
to enable this interface. The XBee Python Library provides a couple of methods
to enable or disable this interface:

	Method

	Description

	enable_bluetooth()

	Enables the Bluetooth Low Energy interface of your XBee device.

	disable_bluetooth()

	Disables the Bluetooth Low Energy interface of your XBee device.

Enabling and disabling the Bluetooth interface

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Enable the Bluetooth interface.
local_xbee.enable_bluetooth()

[...]

Disable the Bluetooth interface.
local_xbee.disable_bluetooth()

[...]

These methods may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

Configure the Bluetooth password

Once you have enabled the Bluetooth Low Energy, you must configure the password
you will use to connect to the device over that interface (if not previously
done). For this purpose, the API offers the following method:

	Method

	Description

	update_bluetooth_password(String)

	Specifies the new Bluetooth password of the XBee device.

Configuring or changing the Bluetooth password

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

new_password = "myBluetoothPassword" # Do not hard-code it in the app!

Configure the Bluetooth password.
local_xbee.update_bluetooth_password(new_password)

[...]

The update_bluetooth_password method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

Warning

Never hard-code the Bluetooth password in the code, a malicious person could
decompile the application and find it out.

Read the Bluetooth MAC address

Another method that the XBee Java Library provides is
get_bluetooth_mac_addr(), which returns the EUI-48 Bluetooth MAC address of
your XBee device in a format such as “00112233AABB”.

Reading the Bluetooth MAC address

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

print("The Bluetooth MAC address is: %s" % local_xbee.get_bluetooth_mac_addr())

[...]

The get_bluetooth_mac_addr method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

Discover the XBee network

Several XBee modules working together and communicating with each other form a
network. XBee networks have different topologies and behaviors depending on the
protocol of the XBee devices that form it.

The XBee Python Library includes a class, called XBeeNetwork, that represents
the set of nodes forming the actual XBee network. This class allows you to
perform some operations related to the nodes.

Note

There are XBeeNetwork subclasses for different protocols which correspond
to the XBeeDevice subclasses:

	XBee ZigBee network (ZigBeeNetwork)

	XBee 802.15.4 network (Raw802Network)

	XBee DigiMesh network (DigiMeshNetwork)

	XBee DigiPoint network (DigiPointNetwork)

The XBee Network object can be retrieved from a local XBee device after it has
been opened using the get_network() method.

Warning

Because XBee Cellular and Wi-Fi module protocols are directly connected to the
Internet and do not share a connection, these protocols do not support XBee
networks.

Retrieve the XBee network

[...]

Instantiate an XBee device object.
xbee = XBeeDevice("COM1", 9600)
xbee.open()

Get the network.
xnet = xbee.get_network()
[...]

A main feature of the XBeeNetwork class is the ability to
discover the XBee devices that form the network. The XBeeNetwork object
provides the following operations related to the XBee devices discovery feature:

	Configure the discovery process

	Discover the network

	Access the discovered devices

	Add and remove devices manually

	Listen to network modification events

Configure the discovery process

Before discovering all the nodes of a network, you can configure the
settings of that process. The API provides two methods to configure the
discovery timeout and discovery options. These methods set the values
in the module.

	Method

	Description

	set_discovery_timeout(Float)

	Configures the discovery timeout (NT parameter) with the given value in seconds.

	set_discovery_options(Set<DiscoveryOptions>)

	Configures the discovery options (NO parameter) with the set of options. The set of discovery options contains the different DiscoveryOptions configuration values that are applied to the local XBee module when performing the discovery process. These options are the following:

	DiscoveryOptions.APPEND_DD: Appends the device type identifier (DD) to the information retrieved when a node is discovered. This option is valid for DigiMesh, Point-to-multipoint (Digi Point) and ZigBee protocols.

	DiscoveryOptions.DISCOVER_MYSELF: The local XBee device is returned as a discovered device. This option is valid for all protocols.

	DiscoveryOptions.APPEND_RSSI: Appends the RSSI value of the last hop to the information retrieved when a node is discovered. This option is valid for DigiMesh and Point-to-multipoint (Digi Point) protocols.

Configure discovery timeout and options

[...]

Instantiate an XBee device object.
xbee = XBeeDevice(...)

[...]

Get the network.
xnet = xbee.get_network()

Configure the discovery options.
xnet.set_discovery_options({DiscoveryOptions.DISCOVER_MYSELF, DiscoveryOptions.APPEND_DD})

Configure the discovery timeout, in SECONDS.
xnet.set_discovery_timeout(25)

[...]

Discover the network

The XBeeNetwork object discovery process allows you to discover and store
all the XBee devices that form the network. The XBeeNetwork object provides a
method for executing the discovery process:

	Method

	Description

	start_discovery_process()

	Starts the discovery process, saving the remote XBee devices found inside the XBeeNetwork object.

When a discovery process has started, you can monitor and manage it using the
following methods provided by the XBeeNetwork object:

	Method

	Description

	is_discovery_running()

	Returns whether or not the discovery process is running.

	stop_discovery_process()

	Stops the discovery process that is taking place.

Warning

Although you call the stop_discovery_process method, DigiMesh and
DigiPoint devices are blocked until the configured discovery time has elapsed.
If you try to get or set any parameter during that time, a
TimeoutException is thrown.

Once the process has finished, you can retrieve the list of devices that form
the network using the get_devices() method provided by the network object.
If the discovery process is running, this method returns None.

All discovered XBee devices are stored in the XBeeNetwork instance.

Discover the network

[...]

Instantiate an XBee device object.
xbee = XBeeDevice(...)

Get the XBee Network object from the XBee device.
xnet = xbee.get_network()

Start the discovery process and wait for it to be over.
xnet.start_discovery_process()
while xnet.is_discovery_running():
 time.sleep(0.5)

Get a list of the devices added to the network.
devices = xnet.get_devices()

[...]

Discover the network with an event notification

The API also allows you to add a discovery event listener to notify you when new
devices are discovered, the process finishes, or an error occurs during the
process. In this case, you must provide an event listener before
starting the discovery process using the add_device_discovered_callback()
method.

Add a callback to device discovered event

[...]

Instantiate an XBee device object.
xbee = XBeeDevice(...)

Define the device discovered callback.
def callback(remote):
 [...]

Get the XBee Network object from the XBee device.
xnet = xbee.get_network()

Add the device discovered callback.
xnet.add_device_discovered_callback(callback)

Start the discovery process.
xnet.start_discovery_process()

[...]

The behavior of the event is as follows:

	When a new remote XBee device is discovered, the DeviceDiscovered event
is raised, executing all device discovered callbacks, even if the discovered
device is already in the devices list of the network. The callback
receives a RemoteXBeeDevice as argument, with all available information.
Unknown parameters of this remote device will be None.

There is also another event, DiscoveryProcessFinished. This event is raised
all times that a discovery process finishes.

Add a callback to discovery process finished event

[...]

Instantiate an XBee device object.
xbee = XBeeDevice(...)

Define the discovery process finished callback.
def callback(status):
 if status == NetworkDiscoveryStatus.ERROR_READ_TIMEOUT:
 [...]

Add the discovery process finished callback.
xnet.add_discovery_process_finished_callback(callback)

[...]

The behavior of the event is as follows:

	When a discovery process has finished for any reason (either successfully or
with an error), this event is raised, and all callbacks associated with it
are executed. This method receives a NetworkDiscoveryStatus object as
parameter. This status represents the result of the network discovery process.

	Example: Device discovery

	The XBee Python Library includes a sample application that displays how to perform a device discovery using a callback. It can be located in the following path:

examples/network/DiscoverDevicesSample/DiscoverDevicesSample.py

Discover specific devices

The XBeeNetwork object also provides methods to discover specific devices
within a network. This is useful, for example, if you only need
to work with a particular remote device.

	Method

	Description

	discover_device(String)

	Specify the node identifier of the XBee device to be found. Returns the remote XBee device whose node identifier equals the one provided or None if the device was not found. In the case of finding more than one device, it returns the first one.

	discover_devices([String])

	Specify the node identifiers of the XBee devices to be found. Returns a list with the remote XBee devices whose node identifiers equal those provided.

Note

These methods are blocking, so the application will block until the
devices are found or the configured timeout expires.

Discover specific devices

[...]

Instantiate an XBee device object.
xbee = XBeeDevice(...)

[...]

Get the XBee Network object from the XBee device.
xnet = xbee.get_network()

Discover the remote device whose node ID is ‘SOME NODE ID’.
remote = xnet.discover_device("SOME NODE ID")

Discover the remote devices whose node IDs are ‘ID 2’ and ‘ID 3’.
remote_list = xnet.discover_devices(["ID 2", "ID 3"])

[...]

Access the discovered devices

Once a discovery process has finished, the discovered nodes are saved inside
the XBeeNetwork object. This means that you can get a list of discovered
devices at any time. Using the get_devices() method you can obtain all the
devices in this list, as well as work with the list object as you would with
other lists.

This is the list of methods provided by the XBeeNetwork object that allow
you to retrieve already discovered devices:

	Method

	Description

	get_devices(String)

	Returns a copy of the list of remote XBee devices. If some device is added to the network before calling this method, the list returned will not be updated.

	get_device_by_64(XBee64BitAddress)

	Returns the remote device already contained in the network whose 64-bit address matches the given one or None if the device is not in the network.

	get_device_by_16(XBee16BitAddress)

	Returns the remote device already contained in the network whose 16-bit address matches the given one or None if the device is not in the network.

	get_device_by_node_id(String)

	Returns the remote device already contained in the network whose node identifier matches the given one or None if the device is not in the network.

Access discovered devices

[...]

Instantiate an XBee device object.
xbee = XBeeDevice(...)

Get the XBee Network object from the XBee device.
xnet = xbee.get_network()

[...]

x64addr = XBee64BitAddress(...)
node_id = "SOME_XBEE"

Discover a device based on a 64-bit address.
spec_device = xnet.get_device_by_64(x64addr)
if spec_device is None:
 print("Device with 64-bit addr: %s not found" % str(x64addr))

Discover a device based on a Node ID.
spec_device = xnet.get_device_by_node_id(node_id)
if spec_device is not None:
 print("Device with node id: %s not found" % node_id)

[...]

Add and remove devices manually

This section provides information on methods for adding, removing, and clearing
the list of remote XBee devices.

Manually add devices to the XBee network

There are several methods for adding remote XBee devices to an XBee network, in
addition to the discovery methods provided by the XBeeNetwork object.

	Method

	Description

	add_remote(RemoteXBeeDevice)

	Specifies the remote XBee device to be added to the list of remote devices of the XBeeNetwork object.

Notice that this operation does not join the remote XBee device to the network; it just tells the network that it contains that device. However, the device has only been added to the device list, and may not be physically in the same network.

Note that if the given device already exists in the network, it won’t be added, but the device in the current network will be updated with the not None parameters of the given device.

This method returns the given device with the parameters updated. If the device was not in the list yet, this method returns it without changes.

	add_remotes([RemoteXBeeDevice])

	Specifies the remote XBee devices to be added to the list of remote devices of the XBeeNetwork object.

Notice that this operation does not join the remote XBee devices to the network; it just tells the network that it contains those devices. However, the devices have only been added to the device list, and may not be physically in the same network.

Add a remote device manually to the network

[...]

Instantiate an XBee device object.
xbee = XBeeDevice(...)

[...]

Get the XBee Network object from the XBee device.
xnet = xbee.get_network()

Get the remote XBee device.
remote = xnet.get_remote(...)

Add the remote device to the network.
xnet.add_remote(remote)

[...]

Remove an existing device from the XBee network

It is also possible to remove a remote XBee device from the list of remote XBee
devices of the XBeeNetwork object by calling the following method.

	Method

	Description

	remove_device(RemoteXBeeDevice)

	Specifies the remote XBee device to be removed from the list of remote devices of the XBeeNetwork object. If the device was not contained in the list, the method will raise a ValueError.

Notice that this operation does not remove the remote XBee device from the actual XBee network; it just tells the network object that it will no longer contain that device. However, next time you perform a discovery, it could be added again automatically.

Remove a remote device from the network

[...]

Instantiate an XBee device object.
xbee = XBeeDevice(...)

[...]

Get the XBee Network object from the XBee device.
xnet = xbee.get_network()

Get the remote XBee device and add it to the network.
remote = xnet.get_remote(...)
xnet.add_remote(remote)

Remove the remote device from the network.
xnet.remove_device(remote)

[...]

Clear the list of remote XBee devices from the XBee network

The XBeeNetwork object also includes a method to clear the list of remote
devices. This can be useful when you want to perform a clean discovery,
cleaning the list before calling the discovery method.

	Method

	Description

	clear()

	Removes all the devices from the list of remote devices of the network.

Notice that this does not imply removing the XBee devices from the actual XBee network; it just tells the object that the list should be empty now. Next time you perform a discovery, the list could be filled with the remote XBee devices found.

Clear the list of remote devices

[...]

Instantiate an XBee device object.
xbee = XBeeDevice(...)

[...]

Get the XBee Network object from the XBee device.
xnet = xbee.get_network()

Discover devices in the network and add them to the list of devices.
[...]

Clear the list of devices.
xnet.clear()

[...]

Listen to network modification events

When a discovery process finds new nodes that were not in the XBee network
cache (XBeeNetwork or a subclass), they are stored generating a modification
in the XBee network object. A manual removal or addition of an XBee to the
network also causes a modification.

The XBee library notifies about these network cache modification events to
registered callbacks. These events inform about network modifications:

	Addition of new nodes

	Removal of existing nodes

	Update of nodes

	Network clear

To receive any of these modification events you must provide a callback using
the add_network_modified_callback() method.
This callback must follow the format:

def my_callback(event_type, reason, node):
 """
 Callback to notify about a new network modification event.

 Args:
 event_type (:class:`.NetworkEventType`): The type of modification.
 reason (:class:`.NetworkEventReason`): The cause of the modification.
 node (:class:`.AbstractXBeeDevice`): The node involved in the
 modification (``None`` for ``NetworkEventType.CLEAR`` events)
 """
 [...]

When a modification in the network cache occurs, all network modification
callbacks are executed. Each callback receives the following arguments:

	The type of network modification as a NetworkEventType
(addition, removal, update or clear)

	The modification cause as a NetworkEventReason (discovered, received
message, manual)

	The XBee node, local or remote, (AbstractXBeeDevice) involved in the
modification (None for a clear event type)

Register a network modifications callback

[...]

Define the network modified callback.
def cb_network_modified(event_type, reason, node):
 print(" >>>> Network event:")
 print(" Type: %s (%d)" % (event_type.description, event_type.code))
 print(" Reason: %s (%d)" % (reason.description, reason.code))

 if not node:
 return

 print(" Node:")
 print(" %s" % node)

xnet = xbee.get_network()

Add the network modified callback.
xnet.add_network_modified_callback(cb_network_modified)

[...]

Network events

The NetworkEventType class enumerates the possible network cache
modification types:

	Addition (NetworkEventType.ADD): A new XBee has just been added to the
network cache.

	Deletion (NetworkEventType.DEL): An XBee in the network cache has just
been removed.

	Update (NetworkEventType.UPDATE): An existing XBee in the network cache
has just been updated. This means any of its parameters (node id, 16-bit
address, role, …) changed.

	Clear (NetworkEventType.CLEAR): The network cached has just been cleared.

As well, NetworkEventReason enumerates the network modification causes:

	NetworkEventReason.DISCOVERED: The device was added/removed/updated during
a discovery process.

	NetworkEventReason.RECEIVED_MSG: The device was added after receiving a
message from it.

	NetworkEventReason.MANUAL: The device was manually added/removed.

For example, if, during a discovery process, a new device is found and:

	it is not in the network cache yet, the addition triggers a new event with:

	type: NetworkEventType.ADD

	cause: NetworkEventReason.DISCOVERED

	it is already in the network cache but its node identifier is updated, a new
event is raised with:

	type: NetworkEventType.UPDATE

	cause: NetworkEventReason.DISCOVERED

	it is already in the network and nothing has changed, no event is triggered.

	Example: Network modifications

	The XBee Python Library includes a sample application that displays how to receive network modification events. It can be located in the following path:

examples/network/NetworkModificationsSample/NetworkModificationsSample.py

Communicate with XBee devices

The XBee Python Library provides the ability to communicate with remote nodes in
the network, IoT devices and other interfaces of the local device. The
communication between XBee devices in a network involves the transmission and
reception of data.

Warning

Communication features described in this topic and sub-topics are only
applicable for local XBee devices. Remote XBee device classes do not include
methods for transmitting or receiving data.

Send and receive data

XBee modules can communicate with other devices that are on the same network and
use the same radio frequency. The XBee Python Library provides several methods
to send and receive data between the local XBee device and any remote on the
network.

	Send data

	Receive data

Send data

A data transmission operation sends data from your local (attached) XBee device
to a remote device on the network. The operation sends data in API frames, but
the XBee Python library abstracts the process so you only need to specify the
device you want to send data to and the data itself.

You can send data either using a unicast or broadcast transmission. Unicast
transmissions route data from one source device to one destination device,
whereas broadcast transmissions are sent to all devices in the network.

Send data to one device

Unicast transmissions are sent from one source device to another destination
device. The destination device could be an immediate neighbor of the source,
or it could be several hops away.

Data transmission can be synchronous or asynchronous, depending on the method
used.

Synchronous operation

This type of operation is blocking. This means the method waits until the
transmit status response is received or the default timeout is reached.

The XBeeDevice class of the API provides the following method to perform a
synchronous unicast transmission with a remote node of the network:

	Method

	Description

	send_data(RemoteXBeeDevice, String or Bytearray, Integer)

	Specifies the remote XBee destination object, the data to send and optionally the transmit options.

Protocol-specific classes offer additional synchronous unicast transmission
methods apart from the one provided by the XBeeDevice object:

	XBee class

	Method

	Description

	ZigBeeDevice

	send_data_64_16(XBee64BitAddress, XBee16BitAddress, String or Bytearray, Integer)

	Specifies the 64-bit and 16-bit destination addresses, the data to send and optionally the transmit options. If you do not know the 16-bit address, use the XBee16BitAddress.UNKNOWN_ADDRESS.

	Raw802Device

	send_data_16(XBee16BitAddress, String or Bytearray, Integer)

	Specifies the 16-bit destination address, the data to send and optionally the transmit options.

	send_data_64(XBee64BitAddress, String or Bytearray, Integer)

	Specifies the 64-bit destination address, the data to send and optionally the transmit options.

	DigiMeshDevice

	send_data_64(XBee64BitAddress, String or Bytearray, Integer)

	Specifies the 64-bit destination address, the data to send and optionally the transmit options.

	DigiPointDevice

	send_data_64_16(XBee64BitAddress, XBee16BitAddress, String or Bytearray, Integer)

	Specifies the 64-bit and 16-bit destination addresses, the data to send and optionally the transmit options. If you do not know the 16-bit address, use the XBee16BitAddress.UNKNOWN_ADDRESS.

Send data synchronously

[...]

Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

Instantiate a remote XBee device object.
remote_device = RemoteXBeeDevice(device, XBee64BitAddress.from_hex_string("0013A20040XXXXXX"))

Send data using the remote object.
device.send_data(remote_device, "Hello XBee!")

[...]

The previous methods may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API or ESCAPED_API_MODE,
throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

The default timeout to wait for the send status is two seconds. However, you
can configure the timeout using the get_sync_ops_timeout and
set_sync_ops_timeout methods of an XBee device class.

Get/set the timeout for synchronous operations

[...]

NEW_TIMEOUT_FOR_SYNC_OPERATIONS = 5 # 5 seconds

device = [...]

Retrieving the configured timeout for synchronous operations.
print("Current timeout: %d seconds" % device.get_sync_ops_timeout())

[...]

Configuring the new timeout (in seconds) for synchronous operations.
device.set_sync_ops_timeout(NEW_TIMEOUT_FOR_SYNC_OPERATIONS)

[...]

	Example: Synchronous unicast transmission

	The XBee Python Library includes a sample application that shows you how to send data to another XBee device on the network. The example is located in the following path:

examples/communication/SendDataSample

Asynchronous operation

Transmitting data asynchronously means that your application does not block
during the transmit process. However, you cannot ensure that the data was
successfully sent to the remote device.

The XBeeDevice class of the API provides the following method to perform
an asynchronous unicast transmission with a remote node on the network:

	Method

	Description

	send_data_async(RemoteXBeeDevice, String or Bytearray, Integer)

	Specifies the remote XBee destination object, the data to send and optionally the transmit options.

Protocol-specific classes offer some other asynchronous unicast transmission
methods in addition to the one provided by the XBeeDevice object:

	XBee class

	Method

	Description

	ZigBeeDevice

	send_data_async_64_16(XBee64BitAddress, XBee16BitAddress, String or Bytearray, Integer)

	Specifies the 64-bit and 16-bit destination addresses, the data to send and optionally the transmit options. If you do not know the 16-bit address, use the XBee16BitAddress.UNKNOWN_ADDRESS.

	Raw802Device

	send_data_async_16(XBee16BitAddress, String or Bytearray, Integer)

	Specifies the 16-bit destination address, the data to send and optionally the transmit options.

	send_data_async_64(XBee64BitAddress, String or Bytearray, Integer)

	Specifies the 64-bit destination address, the data to send and optionally the transmit options.

	DigiMeshDevice

	send_data_async_64(XBee64BitAddress, String or Bytearray, Integer)

	Specifies the 64-bit destination address, the data to send and optionally the transmit options.

	DigiPointDevice

	send_data_async_64_16(XBee64BitAddress, XBee16BitAddress, String or Bytearray, Integer)

	Specifies the 64-bit and 16-bit destination addresses, the data to send and optionally the transmit options. If you do not know the 16-bit address, use the XBee16BitAddress.UNKNOWN_ADDRESS.

Send data asynchronously

[...]

Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

Instantiate a remote XBee device object.
remote_device = RemoteXBeeDevice(device, XBee64BitAddress.from_hex_string("0013A20040XXXXXX"))

Send data using the remote object.
device.send_data_async(remote_device, "Hello XBee!")

[...]

The previous methods may fail for the following reasons:

	All the possible errors are caught as an XBeeException:

	The operating mode of the device is not API or ESCAPED_API_MODE,
throwing an InvalidOperatingModeException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

	Example: Asynchronous unicast transmission

	The XBee Python Library includes a sample application that shows you how to send data to another XBee device asynchronously. The example is located in the following path:

examples/communication/SendDataAsyncSample

Send data to all devices of the network

Broadcast transmissions are sent from one source device to all the other
devices on the network.

All the XBee device classes (generic and protocol specific) provide the same
method to send broadcast data:

	Method

	Description

	send_data_broadcast(String or Bytearray, Integer)

	Specifies the data to send and optionally the transmit options.

Send broadcast data

[...]

Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

Send broadcast data.
device.send_data_broadcast("Hello XBees!")

[...]

The send_data_broadcast method may fail for the following reasons:

	Transmit status is not received in the configured timeout, throwing a
TimeoutException exception.

	Error types catch as XBeeException:

	The operating mode of the device is not API or ESCAPED_API_MODE,
throwing an InvalidOperatingModeException.

	The transmit status is not SUCCESS, throwing a TransmitException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

	Example: Broadcast transmission

	The XBee Python Library includes a sample application that shows you how to send data to all the devices on the network (broadcast). The example is located in the following path:

examples/communication/SendBroadcastDataSample

Receive data

The data reception operation allows you to receive and handle data sent by
other remote nodes of the network.

There are two different ways to read data from the device:

	Polling for data. This mechanism allows you to read (ask) for new data in
a polling sequence. The read method blocks until data is received or until a
configurable timeout has expired.

	Data reception callback. In this case, you must register a listener that
executes a callback each time new data is received by the local XBee device
(that is, the device attached to your PC) providing data and other related
information.

Polling for data

The simplest way to read for data is by executing the read_data method of
the local XBee device. This method blocks your application until data from any
XBee device of the network is received or the timeout provided has expired:

	Method

	Description

	read_data(Integer)

	Specifies the time to wait for data reception (method blocks during that time and throws a TimeoutException if no data is received). If you do not specify a timeout, the method returns immediately the read message or None if the device did not receive new data.

Reading data from any remote XBee device (polling)

[...]

Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

Read data.
xbee_message = device.read_data()

[...]

The method returns the read data inside an XBeeMessage object. This object
contains the following information:

	RemoteXBeeDevice that sent the message.

	Byte array with the contents of the received data.

	Flag indicating if the data was sent via broadcast.

	Time when the message was received.

You can retrieve the previous information using the corresponding attributes of
the XBeeMessage object:

Get the XBeeMessage information

[...]

xbee_message = device.read_data()

remote_device = xbee_message.remote_device
data = xbee_message.data
is_broadcast = xbee_message.is_broadcast
timestamp = xbee_message.timestamp

[...]

You can also read data from a specific remote XBee device of the network. For
that purpose, the XBee device object provides the read_data_from method:

	Method

	Description

	read_data_from(RemoteXBeeDevice, Integer)

	Specifies the remote XBee device to read data from and the time to wait for data reception (method blocks during that time and throws a TimeoutException if no data is received). If you do not specify a timeout, the method returns immediately the read message or None if the device did not receive new data.

Read data from a specific remote XBee device (polling)

[...]

Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

Instantiate a remote XBee device object.
remote_device = RemoteXBeeDevice(device, XBee64BitAddress.from_hex_string("0013A200XXXXXX"))

Read data sent by the remote device.
xbee_message = device.read_data(remote_device)

[...]

As in the previous method, this method also returns an XBeeMessage object
with all the information inside.

The default timeout to wait for the send status is two seconds. However, you
can configure the timeout using the get_sync_ops_timeout and
set_sync_ops_timeout methods of an XBee device class.

	Example: Receive data with polling

	The XBee Python Library includes a sample application that shows you how to receive data using the polling mechanism. The example is located in the following path:

examples/communication/ReceiveDataPollingSample

Data reception callback

This mechanism for reading data does not block your application. Instead,
you can be notified when new data has been received if you are subscribed or
registered to the data reception service using the
add_data_received_callback method with a data reception callback as
parameter.

Register for data reception

[...]

Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

Define callback.
def my_data_received_callback(xbee_message):
 address = xbee_message.remote_device.get_64bit_addr()
 data = xbee_message.data.decode("utf8")
 print("Received data from %s: %s" % (address, data))

Add the callback.
device.add_data_received_callback(my_data_received_callback)

[...]

When new data is received, your callback is executed providing as parameter an
XBeeMessage object which contains the data and other useful information:

	RemoteXBeeDevice that sent the message.

	Byte array with the contents of the received data.

	Flag indicating if the data was sent via broadcast.

	Time when the message was received.

To stop listening to new received data, use the del_data_received_callback
method to unsubscribe the already-registered callback.

Deregister data reception

[...]

def my_data_received_callback(xbee_message):
 [...]

device.add_data_received_callback(my_data_received_callback)

[...]

Delete the callback
device.del_data_received_callback(my_data_received_callback)

[...]

	Example: Register for data reception

	The XBee Python Library includes a sample application that shows you how to subscribe to the data reception service to receive data. The example is located in the following path:

examples/communication/ReceiveDataSample

Send and receive explicit data

Some ZigBee applications may require communication with third-party (non-Digi)
RF modules. These applications often send and receive data of different public
profiles such as Home Automation or Smart Energy to other modules.

XBee ZigBee modules offer a special type of frame for this purpose. Explicit
frames are used to transmit and receive explicit data. When sending public
profile packets, the frames transmit the data itself plus the application
layer-specific fields—the source and destination endpoints, profile ID, and
cluster ID.

Warning

Only ZigBee, DigiMesh, and Point-to-Multipoint protocols support the
transmission and reception of data in explicit format. This means you cannot
transmit or receive explicit data using a generic XBeeDevice object. You
must use a protocol-specific XBee device object such as a ZigBeeDevice.

	Send explicit data

	Receive explicit data

Send explicit data

You can send explicit data as either unicast or broadcast transmissions.
Unicast transmissions route data from one source device to one destination
device, whereas broadcast transmissions are sent to all devices in the network.

Send explicit data to one device

Unicast transmissions are sent from one source device to another destination
device. The destination device could be an immediate neighbor of the source,
or it could be several hops away.

Unicast explicit data transmission can be a synchronous or asynchronous
operation, depending on the method used.

Synchronous operation

The synchronous data transmission is a blocking operation. That is, the method
waits until it either receives the transmit status response or the default
timeout is reached.

All local XBee device classes that support explicit data transmission provide a
method to transmit unicast and synchronous explicit data to a remote node of
the network:

	Method

	Description

	send_expl_data(RemoteXBeeDevice, Integer, Integer, Integer, Integer, String or Bytearray, Integer)

	Specifies remote XBee destination object, four application layer fields (source endpoint, destination endpoint, cluster ID, and profile ID), the data to send and optionally the transmit options.

Send unicast explicit data synchronously

[...]

Instantiate a ZigBee device object.
device = ZigBeeDevice("COM1", 9600)
device.open()

Instantiate a remote ZigBee device object.
remote_device = RemoteZigBeeDevice(device, XBee64BitAddress.from_hex_string("0013A20040XXXXXX"))

Send explicit data using the remote object.
device.send_expl_data(remote_device, 0xA0, 0xA1, 0x1554, 0xC105, "Hello XBee!")

[...]

The previous methods may fail for the following reasons:

	The method throws a TimeoutException exception if the response is not
received in the configured timeout.

	Other errors register as XBeeException:

	If the operating mode of the device is not API or ESCAPED_API_MODE
, the method throws an InvalidOperatingModeException.

	If the transmit status is not SUCCESS, the method throws a
TransmitException.

	If there is an error writing to the XBee interface, the method throws a
generic XBeeException.

The default timeout to wait for the send status is two seconds. However, you
can configure the timeout using the get_sync_ops_timeout and
set_sync_ops_timeout methods of an XBee device class.

	Example: Transmit explicit synchronous unicast data

	The XBee Python Library includes a sample application that demonstrates how to send explicit data to a remote device of the network (unicast). It can be located in the following path:

examples/communication/explicit/SendExplicitDataSample

Asynchronous operation

Transmitting explicit data asynchronously means that your application does not
block during the transmit process. However, you cannot ensure that the data was
successfully sent to the remote device.

All local XBee device classes that support explicit data transmission provide
a method to transmit unicast and asynchronous explicit data to a remote node
of the network:

	Method

	Description

	send_expl_data_async(RemoteXBeeDevice, Integer, Integer, Integer, Integer, String or Bytearray, Integer)

	Specifies remote XBee destination object, four application layer fields (source endpoint, destination endpoint, cluster ID, and profile ID), the data to send and optionally the transmit options.

Send unicast explicit data asynchronously

[...]

Instantiate a ZigBee device object.
device = ZigBeeDevice("COM1", 9600)
device.open()

Instantiate a remote ZigBee device object.
remote_device = RemoteZigBeeDevice(device, XBee64BitAddress.from_hex_string("0013A20040XXXXXX"))

Send explicit data asynchronously using the remote object.
device.send_expl_data_async(remote_device, 0xA0, 0xA1, 0x1554, 0xC105, "Hello XBee!")

[...]

The previous methods may fail for the following reasons:

	All the possible errors are caught as an XBeeException:

	The operating mode of the device is not API or ESCAPED_API_MODE,
throwing an InvalidOperatingModeException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

	Example: Transmit explicit asynchronous unicast data

	The XBee Python Library includes a sample application that demonstrates how to send explicit data to other XBee devices asynchronously. It can be located in the following path:

examples/communication/explicit/SendExplicitDataAsyncSample

Send explicit data to all devices in the network

Broadcast transmissions are sent from one source device to all other devices in
the network.

All protocol-specific XBee device classes that support the transmission of
explicit data provide the same method to send broadcast explicit data:

	Method

	Description

	send_expl_data_broadcast(Integer, Integer, Integer, Integer, String or Bytearray, Integer)

	Specifies the four application layer fields (source endpoint, destination endpoint, cluster ID, and profile ID), the data to send and optionally the transmit options.

Send broadcast data

[...]

Instantiate a ZigBee device object.
device = ZigBeeDevice("COM1", 9600)
device.open()

Send broadcast data.
device.send_expl_data_broadcast(0xA0, 0xA1, 0x1554, 0xC105, "Hello XBees!")

[...]

The send_expl_data_broadcast method may fail for the following reasons:

	Transmit status is not received in the configured timeout, throwing a
TimeoutException exception.

	Error types catch as XBeeException:

	The operating mode of the device is not API or ESCAPED_API_MODE,
throwing an InvalidOperatingModeException.

	The transmit status is not SUCCESS, throwing a TransmitException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

	Example: Send explicit broadcast data

	The XBee Python Library includes a sample application that demonstrates how to send explicit data to all devices in the network (broadcast). It can be located in the following path:

examples/communication/explicit/SendBroadcastExplicitDataSample

Receive explicit data

Some applications developed with the XBee Python Library may require modules to
receive data in application layer, or explicit, data format.

To receive data in explicit format, you must first configure the data output
mode of the receiver XBee device to explicit format using the
set_api_output_mode_value method.

	Method

	Description

	get_api_output_mode_value()

	Returns the API output mode of the data received by the XBee device.

	set_api_output_mode_value(Integer)

	Specifies the API output mode of the data received by the XBee device. Calculate the mode
with the method calculate_api_output_mode_value with a set of APIOutputModeBit.

Set API output mode

[...]

Instantiate a ZigBee device object.
device = ZigBeeDevice("COM1", 9600)
device.open()

Set explicit output mode
mode = APIOutputModeBit.calculate_api_output_mode_value(device.get_protocol(),
 {APIOutputModeBit.EXPLICIT})
device.set_api_output_mode_value(mode)

Set native output mode
mode = 0
device.set_api_output_mode_value(mode)

Set explicit plus unsupported ZDO request pass-through
mode = APIOutputModeBit.calculate_api_output_mode_value(device.get_protocol(),
 {APIOutputModeBit.EXPLICIT, APIOutputModeBit.UNSUPPORTED_ZDO_PASSTHRU})
device.set_api_output_mode_value(mode)

[...]

Once you have configured the device to receive data in explicit format, you can
read it using one of the following mechanisms provided by the XBee device
object.

Polling for explicit data

The simplest way to read for explicit data is by executing the
read_expl_data method of the local XBee device. This method blocks your
application until explicit data from any XBee device of the network is received
or the provided timeout has expired:

	Method

	Description

	read_expl_data(Integer)

	Specifies the time to wait in seconds for explicit data reception (method blocks during that time and throws a TimeoutException if no data is received). If you do not specify a timeout, the method returns immediately the read message or None if the device did not receive new data.

Read explicit data from any remote XBee device (polling)

[...]

Instantiate a ZigBee device object.
device = ZigBeeDevice("COM1", 9600)
device.open()

Read data.
xbee_message = device.read_expl_data()

[...]

The method returns the read data inside an ExplicitXBeeMessage object. This
object contains the following information:

	RemoteXBeeDevice that sent the message.

	Endpoint of the source that initiated the transmission.

	Endpoint of the destination where the message is addressed.

	Cluster ID where the data was addressed.

	Profile ID where the data was addressed.

	Byte array with the contents of the received data.

	Flag indicating if the data was sent via broadcast.

	Time when the message was received.

You can retrieve the previous information using the corresponding attributes of
the ExplicitXBeeMessage object:

Get the ExplicitXBeeMessage information

[...]

expl_xbee_message = device.read_expl_data()

remote_device = expl_xbee_message.remote_device
source_endpoint = expl_xbee_message.source_endpoint
dest_endpoint = expl_xbee_message.dest_endpoint
cluster_id = expl_xbee_message.cluster_id
profile_id = expl_xbee_message.profile_id
data = xbee_message.data
is_broadcast = expl_xbee_message.is_broadcast
timestamp = expl_xbee_message.timestamp

[...]

You can also read explicit data from a specific remote XBee device of the
network. For that purpose, the XBee device object provides the
read_expl_data_from method:

	Method

	Description

	read_expl_data_from(RemoteXBeeDevice, Integer)

	Specifies the remote XBee device to read explicit data from and the time to wait for explicit data reception (method blocks during that time and throws a TimeoutException if no data is received). If you do not specify a timeout, the method returns immediately the read message or None if the device did not receive new data.

Read explicit data from a specific remote XBee device (polling)

[...]

Instantiate a ZigBee device object.
device = ZigBeeDevice("COM1", 9600)
device.open()

Instantiate a remote ZigBee device object.
remote_device = RemoteZigBeeDevice(device, XBee64BitAddress.from_hex_string("0013A200XXXXXX"))

Read data sent by the remote device.
expl_xbee_message = device.read_expl_data(remote_device)

[...]

As in the previous method, this method also returns an ExplicitXBeeMessage
object with all the information inside.

The default timeout to wait for data is two seconds. However, you
can configure the timeout using the get_sync_ops_timeout and
set_sync_ops_timeout methods of an XBee device class.

	Example: Receive explicit data with polling

	The XBee Python Library includes a sample application that demonstrates how to receive explicit data using the polling mechanism. It can be located in the following path:

examples/communication/explicit/ReceiveExplicitDataPollingSample

Explicit data reception callback

This mechanism for reading explicit data does not block your application.
Instead, you can be notified when new explicit data has been received if you
are subscribed or registered to the explicit data reception service by using the
add_expl_data_received_callback.

Explicit data reception registration

[...]

Instantiate a ZigBee device object.
device = ZigBeeDevice("COM1", 9600)
device.open()

Define callback.
def my_expl_data_received_callback(expl_xbee_message):
 address = expl_xbee_message.remote_device.get_64bit_addr()
 source_endpoint = expl_xbee_message.source_endpoint
 dest_endpoint = expl_xbee_message.dest_endpoint
 cluster = expl_xbee_message.cluster_id
 profile = expl_xbee_message.profile_id
 data = expl_xbee_message.data.decode("utf8")

 print("Received explicit data from %s: %s" % (address, data))

Add the callback.
device.add_expl_data_received_callback(my_expl_data_received_callback)

[...]

When new explicit data is received, your callback is executed providing as
parameter an ExplicitXBeeMessage object which contains the data and other
useful information:

	RemoteXBeeDevice that sent the message.

	Endpoint of the source that initiated the transmission.

	Endpoint of the destination where the message is addressed.

	Cluster ID where the data was addressed.

	Profile ID where the data was addressed.

	Byte array with the contents of the received data.

	Flag indicating if the data was sent via broadcast.

	Time when the message was received.

To stop listening to new received explicit data, use the
del_expl_data_received_callback method to unsubscribe the already-registered
callback.

Explicit data reception deregistration

[...]

def my_expl_data_received_callback(xbee_message):
 [...]

device.add_expl_data_received_callback(my_expl_data_received_callback)

[...]

Delete the callback
device.del_expl_data_received_callback(my_expl_data_received_callback)

[...]

	Example: Receive explicit data via callback

	The XBee Python Library includes a sample application that demonstrates how to subscribe to the explicit data reception service in order to receive explicit data. It can be located in the following path:

examples/communication/explicit/ReceiveExplicitDataSample

Note

If your XBee module is configured to receive explicit data
(API output mode greater than 0) and another device sends non-explicit data or
a IO sample, you receive an explicit message whose application layer field
values are:

	For remote data:

	Source endpoint: 0xE8

	Destination endpoint: 0xE8

	Cluster ID: 0x0011

	Profile ID: 0xC105

	For remote IO sample:

	Source endpoint: 0xE8

	Destination endpoint: 0xE8

	Cluster ID: 0x0092

	Profile ID: 0xC105

That is, when an XBee receives explicit data with these values, the message
notifies the following reception callbacks in case you have registered them:

	Explicit and non-explicit data callbacks when receiving remote data.

	Explicit data callback and IO sample callback when receiving remote samples.

If you read the received data with the polling mechanism, you also receive
the message through both methods.

Send and receive IP data

In contrast to XBee protocols like ZigBee, DigiMesh or 802.15.4, where the
devices are connected each other, in cellular and Wi-Fi protocols the modules
are part of the Internet.

XBee Cellular and Wi-Fi modules offer a special type of frame for communicating
with other Internet-connected devices. It allows sending and receiving data
specifying the destination IP address, port, and protocol (TCP, TCP SSL or UDP).

Warning

Only Cellular and Wi-Fi protocols support the transmission and reception of IP
data. This means you cannot transmit or receive IP data using a generic
XBeeDevice object; you must use the protocol-specific XBee device objects
CellularDevice or WiFiDevice.

	Send IP data

	Receive IP data

Send IP data

IP data transmission can be a synchronous or asynchronous operation, depending
on the method you use.

Synchronous operation

The synchronous data transmission is a blocking operation; that is, the method
waits until it either receives the transmit status response or it reaches the
default timeout.

The CellularDevice and WiFiDevice classes include several methods to
transmit IP data synchronously:

	Method

	Description

	send_ip_data(IPv4Address, Integer, IPProtocol, String or Bytearray, Boolean)

	Specifies the destination IP address, destination port, IP protocol (UDP, TCP or TCP SSL), data to send for transmissions and whether the socket should be closed after the transmission or not (optional).

Send network data synchronously

[...]

Instantiate a Cellular device object.
xbee = CellularDevice("COM1", 9600)
xbee.open()

Send IP data using TCP.
dest_addr = IPv4Address("56.23.102.96")
dest_port = 5050
protocol = IPProtocol.TCP
data = "Hello XBee!"

xbee.send_ip_data(dest_addr, dest_port, protocol, data)

[...]

The send_ip_data method may fail for the following reasons:

	There is a timeout setting the IP addressing parameter, throwing a
TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API or ESCAPED_API_MODE,
throwing an InvalidOperatingModeException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

	Example: Transmit IP data synchronously

	The XBee Python Library includes a sample application that demonstrates how to send IP data. You can locate the example in the following path:

examples/communication/ip/SendIPDataSample

	Example: Transmit UDP data

	The XBee Python Library includes a sample application that demonstrates how to send UDP data. You can locate the example in the following path:

examples/communication/ip/SendUDPDataSample

	Example: Connect to echo server

	The XBee Python Library includes a sample application that demonstrates how to connect to an echo server, send a message to it and receive its response. You can locate the example in the following path:

examples/communication/ip/ConnectToEchoServerSample

Asynchronous operation

Transmitting IP data asynchronously means that your application does not block
during the transmit process. However, you cannot ensure that the data was
successfully sent.

The CellularDevice and WiFiDevice classes include several methods to
transmit IP data asynchronously:

	Method

	Description

	send_ip_data_async(IPv4Address, Integer, IPProtocol, String or Bytearray, Boolean)

	Specifies the destination IP address, destination port, IP protocol (UDP, TCP or TCP SSL), data to send for transmissions and whether the socket should be closed after the transmission or not (optional).

Send network data asynchronously

[...]

Instantiate a Cellular device object.
xbee = CellularDevice("COM1", 9600)
xbee.open()

Send IP data using TCP.
dest_addr = IPv4Address("56.23.102.96")
dest_port = 5050
protocol = IPProtocol.TCP
data = "Hello XBee!"

xbee.send_ip_data_async(dest_addr, dest_port, protocol, data)

[...]

The send_ip_data_async method may fail for the following reasons:

	All possible errors are caught as XBeeException:

	The operating mode of the device is not API or ESCAPED_API_MODE,
throwing an InvalidOperatingModeException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

Receive IP data

Some applications developed with the XBee Python Library may require modules to
receive IP data.

XBee Cellular and Wi-Fi modules operate the same way as other TCP/IP devices.
They can initiate communications with other devices or listen for TCP or UDP
transmissions at a specific port. In either case, you must apply any of the
receive methods explained in this section in order to read IP data from other
devices.

Listen for incoming transmissions

If the cellular or Wi-Fi module operates as a server, listening for incoming
TCP or UDP transmissions, you must start listening at a specific port,
similar to the bind operation of a socket. The XBee Python Library
provides a method to listen for incoming transmissions:

	Method

	Description

	start_listening(Integer)

	Starts listening for incoming IP transmissions in the provided port.

Listen for incoming transmissions

[...]

Instantiate a Cellular device object.
device = CellularDevice("COM1", 9600)
device.open()

Listen for TCP or UDP transmissions at port 1234.
device.start_listening(1234);

[...]

The start_listening method may fail for the following reasons:

	If the listening port provided is lesser than 0 or greater than 65535, the
method throws a ValueError error.

	If there is a timeout setting the listening port, the method throws a
TimeoutException exception .

	Errors that register as an XBeeException:

	If the operating mode of the device is not API or ESCAPED_API_MODE
, the method throws an InvalidOperatingModeException.

	If the response of the listening port command is not valid, the method
throws an ATCommandException.

	If there is an error writing to the XBee interface, the method throws a
generic XBeeException.

You can call the stop_listening method to stop listening for incoming TCP or
UDP transmissions:

	Method

	Description

	stop_listening()

	Stops listening for incoming IP transmissions.

Stop listening for incoming transmissions

[...]

Instantiate a Cellular device object.
device = CellularDevice("COM1", 9600)
device.open()

Stop listening for TCP or UDP transmissions.
device.stop_listening()

[...]

The stop_listening method may fail for the following reasons:

	There is a timeout setting the listening port, throwing a
TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API or ESCAPED_API_MODE,
throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

Polling for IP data

The simplest way to read IP data is by executing the read_ip_data method of
the local Cellular or Wi-Fi devices. This method blocks your application until
IP data is received or the provided timeout has expired.

	Method

	Description

	read_ip_data(Integer)

	Specifies the time to wait in seconds for IP data reception (method blocks during that time or until IP data is received). If you don’t specify a timeout, the method uses the default receive timeout configured in XBeeDevice.

Read IP data (polling)

[...]

Instantiate a Cellular device object.
device = CellularDevice("COM1", 9600)
device.open()

Read IP data.
ip_message = device.read_ip_data()

[...]

The method returns the read data inside an IPMessage object and contains the
following information:

	IP address of the device that sent the data

	Transmission protocol

	Source and destination ports

	Byte array with the contents of the received data

You can retrieve the previous information using the corresponding attributes of
the IPMessage object:

Get the IPMessage information

[...]

Instantiate a cellular device object.
device = CellularDevice("COM1", 9600)
device.open()

Read IP data.
ip_message = device.read_ip_data()

ip_addr = ip_message.ip_addr
source_port = ip_message.source_port
dest_port = ip_message.dest_port
protocol = ip_message.protocol
data = ip_message.data

[...]

You can also read IP data that comes from a specific IP address. For that
purpose, the cellular and Wi-Fi device objects provide the read_ip_data_from
method:

Read IP data from a specific IP address (polling)

[...]

Instantiate a cellular device object.
device = CellularDevice("COM1", 9600)
device.open()

Read IP data.
ip_message = device.read_ip_data_from(IPv4Address("52.36.102.96"))

[...]

This method also returns an IPMessage object containing the same information
described before.

	Example: Receive IP data with polling

	The XBee Python Library includes a sample application that demonstrates how to receive IP data using the polling mechanism. You can locate the example in the following path:

examples/communication/ip/ConnectToEchoServerSample

IP data reception callback

This mechanism for reading IP data does not block your application. Instead,
you can be notified when new IP data has been received if you have subscribed
or registered with the IP data reception service by using the
add_ip_data_received_callback method.

IP data reception registration

[...]

Instantiate a Cellular device object.
device = CellularDevice("COM1", 9600)
device.open()

Define the callback.
def my_ip_data_received_callback(ip_message):
 print("Received IP data from %s: %s" % (ip_message.ip_addr, ip_message.data))

Add the callback.
device.add_ip_data_received_callback(my_ip_data_received_callback)

[...]

When new IP data is received, your callback is executed providing as parameter
an IPMessage object which contains the data and other useful information:

	IP address of the device that sent the data

	Transmission protocol

	Source and destination ports

	Byte array with the contents of the received data

To stop listening to new received IP data, use the
del_ip_data_received_callback method to unsubscribe the already-registered
listener.

Data reception deregistration

[...]

device = [...]

def my_ip_data_received_callback(ip_message):
 [...]

device.add_ip_data_received_callback(my_ip_data_received_callback)

[...]

Delete the IP data callback.
device.del_ip_data_received_callback(my_ip_data_received_callback)

[...]

	Example: Receive IP data with listener

	The XBee Python Library includes a sample application that demonstrates how to receive IP data using the listener. You can locate the example in the following path:

examples/communication/ip/ReceiveIPDataSample

Send and receive SMS messages

Another feature of the XBee Cellular module is the ability to send and receive
Short Message Service (SMS) transmissions. This allows you to send and receive
text messages to and from an SMS capable device such as a mobile phone.

For that purpose, these modules offer a special type of frame for sending and
receiving text messages, specifying the destination phone number and data.

Warning

Only Cellular protocol supports the transmission and reception of SMS. This
means you cannot send or receive text messages using a generic XBeeDevice
object; you must use the protocol-specific XBee device object
CellularDevice.

	Send SMS messages

	Receive SMS messages

Send SMS messages

SMS transmissions can be a synchronous or asynchronous operation, depending on
the method you use.

Synchronous operation

The synchronous SMS transmission is a blocking operation; that is, the method
waits until it either receives the transmit status response or it reaches the
default timeout.

The CellularDevice class includes the following method to send SMS messages
synchronously:

	Method

	Description

	send_sms(String, String)

	Specifies the the phone number to send the SMS to and the data to send as the body of the SMS message.

Send SMS message synchronously

[...]

Instantiate a Cellular device object.
xbee = CellularDevice("COM1", 9600)
xbee.open()

phone_number = "+34665963205"
data = "Hello XBee!"

Send SMS message.
xbee.send_sms(phone_number, data)

[...]

The send_sms method may fail for the following reasons:

	If the response is not received in the configured timeout, the method throws
a TimeoutException.

	If the phone number has an invalid format, the method throws a ValueError.

	Errors register as XBeeException:

	If the operating mode of the device is not API or ESCAPED_API_MODE
, the method throws an InvalidOperatingModeException.

	If there is an error writing to the XBee interface, the method throws a
generic XBeeException.

	Example: Send synchronous SMS

	The XBee Python Library includes a sample application that demonstrates how to send SMS messages. You can locate the example in the following path:

examples/communication/cellular/SendSMSSample

Asynchronous operation

Transmitting SMS messages asynchronously means that your application does not
block during the transmit process. However, you cannot verify the SMS was
successfully sent.

The CellularDevice class includes the following method to send SMS
asynchronously:

	Method

	Description

	send_sms_async(String, String)

	Specifies the the phone number to send the SMS to and the data to send as the body of the SMS message.

Send SMS message asynchronously

[...]

Instantiate a Cellular device object.
xbee = CellularDevice("COM1", 9600)
xbee.open()

phone_number = "+34665963205"
data = "Hello XBee!"

Send SMS message.
xbee.send_sms_async(phone_number, data)

[...]

The send_sms_async method may fail for the following reasons:

	If the phone number has an invalid format, the method throws a ValueError.

	Errors register as XBeeException:

	If the operating mode of the device is not API or ESCAPED_API_MODE
, the method throws an InvalidOperatingModeException.

	If there is an error writing to the XBee interface, the method throws a
generic XBeeException.

Receive SMS messages

Some applications developed with the XBee Python Library may require modules to
receive SMS messages.

SMS reception callback

You can be notified when a new SMS has been received if you are subscribed or
registered to the SMS reception service by using the add_sms_callback
method.

SMS reception registration

[...]

Instantiate a cellular device object.
device = CellularDevice("COM1", 9600)
device.open()

Define the callback.
def my_sms_callback(sms_message):
 print("Received SMS from %s: %s" % (sms_message.phone_number, sms_message.data))

Add the callback.
device.add_sms_callback(my_sms_callback)

[...]

When a new SMS message is received, your callback is executed providing an
SMSMessage object as paramater. This object contains the data and the
phone number that sent the message.

To stop listening to new SMS messages, use the del_sms_callback method to
unsubscribe the already-registered listener.

Deregister SMS reception

[...]

device = [...]

def my_sms_callback(sms_message):
 [...]

device.add_sms_callback(my_sms_callback)

[...]

Delete the SMS callback.
device.del_sms_callback(my_sms_callback)

[...]

	Example: Receive SMS messages

	The XBee Python Library includes a sample application that demonstrates how to subscribe to the SMS reception service in order to receive text messages. You can locate the example in the following path:

examples/communication/cellular/ReceiveSMSSample

Send and receive Bluetooth data

XBee3 modules have the ability to send and receive data from the Bluetooth Low
Energy interface of the local XBee device through User Data Relay frames. This
can be useful if your application wants to transmit or receive data from a
cellphone connected to it over BLE.

Warning

Only XBee3 modules support Bluetooth Low Energy. This means that you cannot
transmit or receive Bluetooth data if you don’t have one of these modules.

	Send Bluetooth data

	Receive Bluetooth data

Send Bluetooth data

The XBeeDevice class and its subclasses provide the following method to
send data to the Bluetooth Low Energy interface:

	Method

	Description

	send_bluetooth_data(Bytearray)

	Specifies the data to send to the Bluetooth Low Energy interface.

This method is asynchronous, which means that your application does not block
during the transmit process.

Send data to Bluetooth

[...]

Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

data = "Bluetooth, are you there?"

Send the data to the Bluetooth interface.
device.send_bluetooth_data(data.encode("utf8"))

[...]

The send_bluetooth_data method may fail for the following reasons:

	Errors register as XBeeException:

	If the operating mode of the device is not API or
ESCAPED_API_MODE, the method throws an
InvalidOperatingModeException.

	If there is an error writing to the XBee interface, the method throws a
generic XBeeException.

	Example: Send Bluetooth data

	The XBee Python Library includes a sample application that demonstrates how to send data to the Bluetooth interface. You can locate the example in the following path:

examples/communication/bluetooth/SendBluetoothDataSample

Receive Bluetooth data

You can be notified when new data from the Bluetooth Low Energy interface has
been received if you are subscribed or registered to the Bluetooth data
reception service by using the add_bluetooth_data_received_callback method.

Bluetooth data reception registration

[...]

Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

Define the callback.
def my_bluetooth_data_callback(data):
 print("Data received from the Bluetooth interface >> '%s'" % data.decode("utf-8"))

Add the callback.
device.add_bluetooth_data_received_callback(my_bluetooth_data_callback)

[...]

When a new data from the Bluetooth interface is received, your callback is
executed providing the data in byte array format as parameter.

To stop listening to new data messages from the Bluetooth interface, use the
del_bluetooth_data_received_callback method to unsubscribe the
already-registered listener.

Deregister Bluetooth data reception

[...]

device = [...]

def my_bluetooth_data_callback(data):
 [...]

device.add_bluetooth_data_received_callback(my_bluetooth_data_callback)

[...]

Delete the Bluetooth data callback.
device.del_bluetooth_data_received_callback(my_bluetooth_data_callback)

[...]

	Example: Receive Bluetooth data

	The XBee Python Library includes a sample application that demonstrates how to subscribe to the Bluetooth data reception service in order to receive data from the Bluetooth Low Energy interface. You can locate the example in the following path:

examples/communication/bluetooth/ReceiveBluetoothDataSample

Send and receive MicroPython data

XBee3 modules have the ability to send and receive data from the MicroPython
interface of the local XBee device through User Data Relay frames. This can be
useful if your application wants to transmit or receive data from a MicroPython
program running on the module.

Warning

Only XBee3 and XBee Cellular modules support MicroPython. This means that you
cannot transmit or receive MicroPython data if you don’t have one of these
modules.

	Send MicroPython data

	Receive MicroPython data

Send MicroPython data

The XBeeDevice class and its subclasses provide the following method to
send data to the MicroPython interface:

	Method

	Description

	send_micropython_data(Bytearray)

	Specifies the data to send to the MicroPython interface.

This method is asynchronous, which means that your application does not block
during the transmit process.

Send data to MicroPython

[...]

Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

data = "MicroPython, are you there?"

Send the data to the MicroPython interface.
device.send_micropython_data(data.encode("utf8"))

[...]

The send_micropython_data method may fail for the following reasons:

	Errors register as XBeeException:

	If the operating mode of the device is not API or
ESCAPED_API_MODE, the method throws an
InvalidOperatingModeException.

	If there is an error writing to the XBee interface, the method throws a
generic XBeeException.

	Example: Send MicroPython data

	The XBee Python Library includes a sample application that demonstrates how to send data to the MicroPython interface. You can locate the example in the following path:

examples/communication/micropython/SendMicroPythonDataSample

Receive MicroPython data

You can be notified when new data from the MicroPython interface has been
received if you are subscribed or registered to the MicroPython data reception
service by using the add_micropython_data_received_callback method.

MicroPython data reception registration

[...]

Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

Define the callback.
def my_micropython_data_callback(data):
 print("Data received from the MicroPython interface >> '%s'" % data.decode("utf-8"))

Add the callback.
device.add_micropython_data_received_callback(my_micropython_data_callback)

[...]

When a new data from the MicroPython interface is received, your callback is
executed providing the data in byte array format as parameter.

To stop listening to new data messages from the MicroPython interface, use the
del_micropython_data_received_callback method to unsubscribe the
already-registered listener.

Deregister MicroPython data reception

[...]

device = [...]

def my_micropython_data_callback(data):
 [...]

device.add_micropython_data_received_callback(my_micropython_data_callback)

[...]

Delete the MicroPython data callback.
device.del_micropython_data_received_callback(my_micropython_data_callback)

[...]

	Example: Receive MicroPython data

	The XBee Python Library includes a sample application that demonstrates how to subscribe to the MicroPython data reception service in order to receive data from the MicroPython interface. You can locate the example in the following path:

examples/communication/micropython/ReceiveMicroPythonDataSample

Receive modem status events

A local XBee device is able to determine when it connects to a network, when it
is disconnected, and when any kind of error or other events occur. The local
device generates these events, and they can be handled using the XBee Python
library via the modem status frames reception.

When a modem status frame is received, you are notified through the callback of
a custom listener so you can take the proper actions depending on the event
received.

For that purpose, you must subscribe or register to the modem status reception
service using a modem status listener as parameter with the method
add_modem_status_received_callback.

Subscribe to modem status reception service

[...]

Instantiate an XBee device object.
device = XBeeDevice("COM1", 9600)
device.open()

Define the callback.
def my_modem_status_callback(status):
 print("Modem status: %s" % status.description)

Add the callback.
device.add_modem_status_received_callback(my_modem_status_callback)

[...]

When a new modem status is received, your callback is executed providing as
parameter a ModemStatus object.

To stop listening to new modem statuses, use the
del_modem_status_received_callback method to unsubscribe the
already-registered listener.

Deregister modem status

[...]

device = [...]

def my_modem_status_callback(status):
 [...]

device.add_modem_status_received_callback(my_modem_status_callback)

[...]

Delete the modem status callback.
device.del_modem_status_received_callback(my_modem_status_callback)

[...]

	Example: Subscribe to modem status reception service

	The XBee Python Library includes a sample application that shows you how to subscribe to the modem status reception service to receive modem status events. The example is located in the following path:

examples/communication/ReceiveModemStatusSample

Communicate using XBee sockets

Starting from firmware versions *13, the XBee Cellular product line includes a
new set of frames to communicate with other Internet-connected devices using
sockets.

The XBee Python Library provides several methods that allow you to create,
connect, bind and close a socket, as well as send and receive data with it. You
can use this API where the existing methods listed in the
Send and receive IP data section limit the possibilities for an
application.

Warning

Only the Cellular protocol supports the use of XBee sockets. This means you
cannot use this API with a generic XBeeDevice object; you must use the
protocol-specific XBee device object CellularDevice.

The XBee socket API is available through the socket class of the
digi.xbee.xsocket module.

Create an XBee socket

Before working with an XBee socket to communicate with other devices, you have
to instantiate a socket object in order to create it. To do so, you need to
provide the following parameters:

	XBee Cellular device object used to work with the socket.

	IP protocol of the socket (optional). It can be IPProtocol.TCP (default),
IPProtocol.UDP or IPProtocol.TCP_SSL.

Create an XBee socket

from digi.xbee import xsocket
from digi.xbee.devices import CellularDevice
from digi.xbee.models.protocol import IPProtocol

Create and open an XBee Cellular device.
device = CellularDevice("COM1", 9600)
device.open()

Create a new XBee socket.
sock = xsocket.socket(device, IPProtocol.TCP)

Work with an XBee socket

Once the XBee socket is created, you can work with it to behave as a client
or a server. The API offers the following methods:

	Method

	Description

	connect(Tuple)

	Connects to a remote socket at the provided address. The address must be a pair (host, port), where host is the domain name or string representation of an IPv4 and port is the numeric port value.

	close()

	Closes the socket.

	bind(Tuple)

	Binds the socket to the provided address. The address must be a pair (host, port), where host is the local interface (not used) and port is the numeric port value. The socket must not already be bound.

	listen(Integer)

	Enables a server to accept connections.

	accept()

	Accepts a connection. The socket must be bound to an address and listening for connections. The return value is a pair (conn, address) where conn is a new socket object usable to send and receive data on the connection, and address is a pair (host, port) with the address bound to the socket on the other end of the connection.

	send(Bytearray)

	Sends the provided data to the socket. The socket must be connected to a remote socket.

	sendto(Bytearray, Tuple)

	Sends the provided data to the socket. The socket should not be connected to a remote socket, since the destination socket is specified by address (a pair (host, port)).

	recv(Integer)

	Receives data from the socket, specifying the maximum amount of data to be received at once. The return value is a bytearray object representing the data received.

	recvfrom(Integer)

	Receives data from the socket, specifying the maximum amount of data to be received at once. The return value is a pair (bytes, address) where bytes is a bytearray object representing the data received and address is the address of the socket sending the data(a pair (host, port)).

	getsockopt(SocketOption)

	Returns the value of the provided socket option.

	setsockopt(SocketOption, Bytearray)

	Sets the value of the provided socket option.

	gettimeout()

	Returns the configured socket timeout in seconds.

	settimeout(Integer)

	Sets the socket timeout in seconds.

	getblocking()

	Returns whether the socket is in blocking mode or not.

	setblocking(Boolean)

	Sets the socket in blocking or non-blocking mode. In blocking mode, operations block until complete or the system returns an error. In non-blocking mode, operations fail if they cannot be completed within the configured timeout.

	get_sock_info()

	Returns the information of the socket, including the socket ID, state, protocol, local port, remote port and remote address.

	add_socket_state_callback(Function)

	Adds the provided callback to be notified when a new socket state is received.

	del_socket_state_callback(Function)

	Deletes the provided socket state callback.

Client sockets

When the socket acts as a client, you just have to create and connect the
socket before sending or receiving data with a remote host.

Work with an XBee socket as client

[...]

HOST = "numbersapi.com"
PORT = "80"
REQUEST = "GET /random/trivia HTTP/1.1\r\nHost: numbersapi.com\r\n\r\n"

Create and open an XBee Cellular device.
device = CellularDevice("COM1", 9600)
device.open()

Create a new XBee socket.
with xsocket.socket(device, IPProtocol.TCP) as sock:
 # Connect the socket.
 sock.connect((HOST, PORT))

 # Send an HTTP request.
 sock.send(REQUEST.encode("utf8"))

 # Receive and print the response.
 data = sock.recv(1024)
 print(data.decode("utf8"))

	Example: Create a TCP client socket

	The XBee Python Library includes a sample application that shows you how to create a TCP client socket to send HTTP requests. The example is located in the following path:

examples/communication/socket/SocketTCPClientSample

Server sockets

When the socket acts as a server, you must create the socket and then perform
the sequence bind(), listen(), accept().

Work with an XBee socket as server

[...]

PORT = "1234"

Create and open an XBee Cellular device.
device = CellularDevice("COM1", 9600)
device.open()

Create a new XBee socket.
with xsocket.socket(device, IPProtocol.TCP) as sock:
 # Bind the socket to the local port.
 sock.bind((None, PORT))

 # Listen for new connections.
 sock.listen()

 # Accept new connections.
 conn, addr = sock.accept()

 with conn:
 print("Connected by %s", str(addr))
 while True:
 # Print the received data (if any).
 data = conn.recv(1024)
 if data:
 print(data.decode("utf8"))

	Example: Create a TCP server socket

	The XBee Python Library includes a sample application that shows you how to create a TCP server socket to receive data from incoming sockets. The example is located in the following path:

examples/communication/socket/SocketTCPServerSample

	Example: Create a UDP server/client socket

	The XBee Python Library includes a sample application that shows how to create a UDP socket to deliver messages to a server and listen for data coming from multiple peers. The example is located in the following path:

examples/communication/socket/SocketUDPServerClientSample

Handle analog and digital IO lines

All the XBee modules, regardless of the protocol they run, have a set of lines
(pins). You can use these pins to connect sensors or actuators and configure
them with specific behavior.

You can configure the IO lines of an XBee device to be digital input/output
(DIO), analog to digital converter (ADC), or pulse-width modulation output
(PWM). The configuration you provide to a line depends on the device where you
want to connect.

Note

All the IO management features displayed in this topic and sub-topics are
applicable for both local and remote XBee devices.

The XBee Python Library exposes an easy way to configure, read, and write the
IO lines of the local and remote XBee devices through the following
corresponding classes:

	XBeeDevice for local devices.

	RemoteXBeeDevice for remotes.

Configure the IO lines

All XBee device objects include a configuration method,
set_io_configuration(), where you can specify the IO line being configured
and the desired function being set.

For the IO line parameter, the API provides an enumerator called IOLine
that helps you specify the desired IO line easily by functional name. This
enumerator is used along all the IO related methods in the API.

The supported functions are also contained in an enumerator called IOMode.
You can choose between the following functions:

	DISABLED

	SPECIAL_FUNCTIONALITY (Shouldn’t be used to configure IOs)

	PWM

	ADC

	DIGITAL_IN

	DIGITAL_OUT_LOW

	DIGITAL_OUT_HIGH

Configure local or remote IO lines

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Instantiate a remote XBee device object.
remote_xbee = RemoteXBeeDevice(local_xbee, XBee64BitAddress.from_hex_string("0013A20012345678"))

Configure the DIO1_AD1 line of the local device to be Digital output (set high by default).
local_xbee.set_io_configuration(IOLine.DIO1_AD1, IOMode.DIGITAL_OUT_HIGH)

Configure the DIO2_AD2 line of the local device to be Digital input.
local_xbee.set_io_configuration(IOLine.DIO2_AD2, IOMode.DIGITAL_IN)

Configure the DIO3_AD3 line of the remote device to be Analog input (ADC).
remote_xbee.set_io_configuration(IOLine.DIO3_AD3, IOMode.ADC)

Configure the DIO10_PWM0 line of the remote device to be PWM output (PWM).
remote_xbee.set_io_configuration(IOLine.DIO10_PWM0, IOMode.PWM)

[...]

The set_io_configuration() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

You can read the current configuration of any IO line the same way an IO line
can be configured with a desired function using the corresponding getter,
get_io_configuration().

Get IO configuration

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Get the configuration mode of the DIO1_AD1 line.
io_mode = local_xbee.get_io_configuration(IOLine.DIO1_AD1)

[...]

The get_io_configuration() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

Digital Input/Output

If your IO line is configured as digital output, you can set its state
(high/low) easily. All the XBee device classes provide the method,
set_dio_value(), with the desired IOLine as the first parameter and an
IOValue as the second. The IOValue enumerator includes HIGH and
LOW as possible values.

Set digital output values

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Set the DIO2_AD2 line low.
local_xbee.set_dio_value(IOLine.DIO2_AD2, IOValue.LOW)

Set the DIO2_AD2 line high.
local_xbee.set_dio_value(IOLine.DIO2_AD2, IOValue.HIGH)

[...]

The set_dio_value() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

You can also read the current status of the pin (high/low) by issuing the
method get_dio_value(). The parameter of the method must be the IO line to
be read.

Read digital input values

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

Get the value of the DIO2_AD2.
value = local_xbee.get_dio_value(IOLine.DIO2_AD2)

[...]

The get_dio_value() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	If the received response does not contain the value for the given IO
line, throwing an OperationNotSupportedException. This can happen (for
example) if you try to read the DIO value of an IO line that is not
configured as DIO.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

	Example: Handle DIO IO lines

	The XBee Python Library includes two sample applications that demonstrate how to handle DIO lines in your local and remote XBee Devices. The examples are located in the following path:

examples/io/LocalDIOSample/LocalDIOSample.py

examples/io/RemoteDIOSample/RemoteDIOSample.py

ADC

When you configure an IO line as analog to digital converter (ADC), you can
only read its value (counts) with get_adc_value(). In this case, the method
used to read ADCs is different than the digital I/O method, but the parameter
provided is the same: the IO line to read the value from.

Read ADC values

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

Get the value of the DIO 3 (analog to digital converter).
value = local_xbee.get_adc_value(IOLine.DIO3_AD3)

[...]

The get_adc_value() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	If the received response does not contain the value for the given IO
line, throwing an OperationNotSupportedException. This can happen (for
example) if you try to read the ADC value of an IO line that is not
configured as ADC.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

	Example: Handle ADC IO lines

	The XBee Python Library includes two sample applications that demonstrate how to handle ADC lines in your local and remote XBee devices. The examples are located in the following path:

examples/io/LocalADCSample/LocalADCSample.py

examples/io/RemoteADCSample/RemoteADCSample.py

PWM

Not all the XBee protocols support pulse-width modulation (PWM) output
handling, but the XBee Python Library provides functionality to manage them.
When you configure an IO line as PWM output, you must use specific methods to
set and read the duty cycle of the PWM.

For the set case, use the method set_pwm_duty_cycle() and provide the IO
line configured as PWM and the value of the duty cycle in % of the PWM. The
duty cycle is the proportion of ‘ON’ time to the regular interval or ‘period’
of time. A high duty cycle corresponds to high power, because the power is ON
for most of the time. The percentage parameter of the set duty cycle method is
a double, which allows you to be more precise in the configuration.

Set the duty cycle of an IO line configure as PWM

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

Set a duty cycle of 75% to the DIO10_PWM0 line (PWM output).
local_xbee.set_pwm_duty_cycle(IOLine.DIO10_PWM0, 75)

[...]

The set_pwm_duty_cycle() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

The get_pwm_duty_cycle(IOLine) method of a PWM line returns a double value
with the current duty cycle percentage of the PWM.

Get the duty cycle of an IO line configured as PWM

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

Get the duty cycle of the DIO10_PWM0 line (PWM output).
duty_cycle = local_xbee.get_pwm_duty_cycle(IOLine.DIO10_PWM0);

[...]

Note

In both cases (get and set), the IO line provided must be PWM capable and must
be configured as PWM output.

Read IO samples

XBee modules can monitor and sample the analog and digital IO
lines. You can read IO samples locally or transmitted to a remote device to
provide an indication of the current IO line states.

There are three ways to obtain IO samples on a local or remote device:

	Queried sampling

	Periodic sampling

	Change detection sampling

The XBee Python Library represents an IO sample by the IOSample class, which
contains:

	Digital and analog channel masks that indicate which lines have sampling
enabled.

	Values of those enabled lines.

You must configure the IO lines you want to receive in the IO samples before
enabling sampling.

Queried sampling

The XBee Python Library provides a method to read an IO sample that contains
all enabled digital IO and analog input channels, read_io_sample(). The
method returns an IOSample object.

Read an IO sample and getting the DIO value

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

Read an IO sample from the device.
io_sample = local_xbee.read_io_sample()

Select the desired IO line.
io_line = IOLine.DIO3_AD3

Check if the IO sample contains the expected IO line and value.
if io_sample.has_digital_value(io_line):
 print("DIO3 value: %s" % io_sample.get_digital_value(ioLine))

[...]

The read_io_sample() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

Periodic sampling

Periodic sampling allows an XBee module to take an IO sample and transmit it
to a remote device at a periodic rate. That remote device is defined in the
destination address through the set_dest_address() method. The XBee Python
Library provides the set_io_sampling_rate() method to configure the periodic
sampling.

The XBee module samples and transmits all enabled digital IO and analog inputs
to the remote device every X seconds. A sample rate of 0 s disables this
feature.

Set the IO sampling rate

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

Set the destination address.
local_xbee.set_dest_address(XBee64BitAddress.from_hex_string("0013A20040XXXXXX"))

Set the IO sampling rate.
local_xbee.set_io_sampling_rate(5) # 5 seconds.

[...]

The set_io_sampling_rate() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

You can also read this value using the get_io_sampling_rate() method. This
method returns the IO sampling rate in milliseconds and ‘0’ when the feature
is disabled.

Get the IO sampling rate

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

Get the IO sampling rate.
value = local_xbee.get_io_sampling_rate()

[...]

The get_io_sampling_rate() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

Change detection sampling

You can configure modules to transmit a data sample immediately whenever a
monitored digital IO pin changes state. The set_dio_change_detection()
method establishes the set of digital IO lines that are monitored for change
detection. A None set disables the change detection sampling.

As in the periodic sampling, change detection samples are transmitted to the
configured destination address.

Note

This feature only monitors and samples digital IOs, so it is not valid for
analog lines.

Set the DIO change detection

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

Set the destination address.
local_xbee.set_dest_address(XBee64BitAddress.from_hex_string("0013A20040XXXXXX"))

Create a set of IO lines to be monitored.
lines = [IOLine.DIO3_AD3, IOLine.DIO4_AD4]

Enable the DIO change detection sampling.
local_xbee.set_dio_change_detection(lines)

[...]

The set_dio_change_detection() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	Other errors caught as XBeeException:

	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

You can also get the lines that are monitored using the
get_dio_change_detection() method. A None value indicates that this
feature is disabled.

Get the DIO change detection

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

Get the set of lines that are monitored.
lines = local_xbee.get_dio_change_detection()

[...]

The get_dio_change_detection() method may fail for the following reasons:

	ACK of the command sent is not received in the configured timeout, throwing
a TimeoutException.

	
	Other errors caught as XBeeException:

	
	The operating mode of the device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

	The response of the command is not valid, throwing an
ATCommandException.

	There is an error writing to the XBee interface, throwing a generic
XBeeException.

Register an IO sample listener

In addition to configuring an XBee device to monitor and sample the analog and
digital IO lines, you must register a callback in the local device where you
want to receive the IO samples. You are then notified when the device receives
a new IO sample.

You must subscribe to the IO samples reception service by using the method
add_io_sample_received_callback() with an IO sample reception callback
function as parameter.

Add an IO sample callback

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

Define the IO sample receive callback.
def io_sample_callback(io_sample, remote_xbee, send_time):
 print("IO sample received at time %s." % str(send_time))
 print("IO sample:")
 print(str(io_sample))

Subscribe to IO samples reception.
local_xbee.add_io_sample_received_callback(io_sample_callback)

[...]

This callback function will receive three parameters when an IO sample receive
event is raised:

	The received IO sample as an IOSample object.

	The remote XBee device that sent the IO sample as a RemoteXBeeDevice
object.

	The time in which the IO sample was received as an Float (calculated
with Python standard time.time()).

To stop receiving notifications of new IO samples, remove the added callback
using the del_io_sample_received_callback() method.

Remove an IO sample callback

[...]

Instantiate an XBee device object.
local_xbee = XBeeDevice("COM1", 9600)
local_xbee.open()

[...]

Define the IO sample receive callback.
def io_sample_callback(io_sample, remote_xbee, send_time):
 print("IO sample received at time %s." % str(send_time))
 print("IO sample:")
 print(str(io_sample))

Subscribe to IO samples reception by adding the callback.
local_xbee.add_io_sample_received_callback(io_sample_callback)

[...]

Unsubscribe from IO samples reception by removing the callback.
local_xbee.del_io_sample_received_callback(io_sample_callback)

[...]

The del_io_sample_received_callback() method will raise a ValueError if
you try to delete a callback that you have not added yet.

	Example: Receive IO samples

	The XBee Python Library includes a sample application that demonstrates how to configure a remote device to monitor IO lines and receive the IO samples in the local device. The example is located in the following path:

examples/io/IOSamplingSample/IOSamplingSample.py

Update the XBee

To keep your XBee devices up to date, the XBee Python Library provides several
methods to update the device software including firmware, file system and XBee
profiles:

	Update the XBee firmware

	Update the XBee file system

	Apply an XBee profile

Warning

At the moment, firmware, file system, and profile updates are only supported
in XBee 3 devices.

Update the XBee firmware

You may need to update the running firmware of your XBee devices to, for
example, change their XBee protocol, fix issues and security risks, or access to
new features and functionality.

The XBee Python Library provides methods to perform firmware updates in local
and remote devices:

	Update the firmware of a local XBee

	Update the firmware of a remote XBee

Warning

At the moment, firmware update is only supported in XBee 3 devices.

Update the firmware of a local XBee

The firmware update process of a local XBee device is performed over the serial
connection. For this operation, you need the following components:

	The XBee device object instance or the serial port name where the device is
attached to.

	The new firmware XML descriptor file.

	The new firmware binary file (*.gbl)

	Optionally, the new bootloader binary file (*.gbl) required by the new
firmware.

Warning

Firmware update will fail if the firmware requires a new bootloader and it is
not provided.

	Example: Local Firmware Update

	The XBee Python Library includes a sample application that displays how to perform a local firmware update. It can be located in the following path:

examples/firmware/LocalFirmwareUpdateSample/LocalFirmwareUpdateSample.py

Update the local firmware using an XBee device object

If you have an object instance of your local XBee device, you have to call
the update_firmware method of the XBeeDevice class providing the
required parameters:

	Method

	Description

	update_firmware(String, String,
String, Integer, Function)

	Performs a firmware update operation of the device.

	xml_firmware_file (String): path of the XML file that describes the firmware to upload.

	xbee_firmware_file (String, optional): location of the XBee binary firmware file (*.gbl).

	bootloader_firmware_file (String, optional): location of the bootloader binary firmware file (*.gbl).

	timeout (Integer, optional): the maximum amount of seconds to wait for target read operations during the update process.

	progress_callback (Function, optional): function to execute to receive progress information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

The update_firmware method may fail for the following reasons:

	The device does not support the firmware update operation, throwing a
OperationNotSupportedException.

	There is an error during the firmware update operation, throwing a
FirmwareUpdateException.

	Other errors caught as XBeeException:

	The device is not open, throwing a generic XBeeException.

	The operating mode of the local XBee device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

Update local XBee device firmware using an XBee device object

[...]

XML_FIRMWARE_FILE = "my_path/my_firmware.xml"
XBEE_FIRMWARE_FILE = "my_path/my_firmware.gbl"
BOOTLOADER_FIRMWARE_FILE = "my_path/my_bootloader.gbl"

[...]

Instantiate an XBee device object.
xbee = XBeeDevice(...)

[...]

Update the XBee device firmware.
device.update_firmware(XML_FIRMWARE_FILE,
 xbee_firmware_file=XBEE_FIRMWARE_FILE,
 bootloader_firmware_file=BOOTLOADER_FIRMWARE_FILE,
 progress_callback=progress_callback,)

[...]

Update the local firmware using a serial port

If you do not know the XBee serial communication parameters or you cannot
instantiate the XBee device object (for example if the device must be
recovered), you can perform the firmware update process by providing the serial
port identifier where the XBee is attached to.

In this scenario, use the update_local_firmware method of the
XBee firmware module providing the required parameters. The library
forces the XBee to reboot into bootloader mode, using the recovery mechanism,
and performs the firmware update from that point.

	Method

	Description

	update_local_firmware(String or XBeeDevice,
String, String, String, Integer, Function)

	Performs a local firmware update operation in the given target.

	target (String or :class:`.XBeeDevice`): target of the firmware upload operation.
* String: serial port identifier.
* :class:`.AbstractXBeeDevice`: the XBee device to upload its firmware.

	xml_firmware_file (String): path of the XML file that describes the firmware to upload.

	xbee_firmware_file (String, optional): location of the XBee binary firmware file (*.gbl).

	bootloader_firmware_file (String, optional): location of the bootloader binary firmware file.

	timeout (Integer, optional): the maximum amount of seconds to wait for target read operations during the update process.

	progress_callback (Function, optional): function to execute to receive progress information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

The update_local_firmware method may fail for the following reasons:

	There is an error during the firmware update operation, throwing a
FirmwareUpdateException.

Update local XBee device firmware using the serial port name

import digi.xbee.firmware

[...]

SERIAL_PORT = "COM1"

XML_FIRMWARE_FILE = "my_path/my_firmware.xml"
XBEE_FIRMWARE_FILE = "my_path/my_firmware.gbl"
BOOTLOADER_FIRMWARE_FILE = "my_path/my_bootloader.gbl"

[...]

Update the XBee device firmware using the serial port name.
firmware.update_local_firmware(SERIAL_PORT,
 XML_FIRMWARE_FILE,
 xbee_firmware_file=XBEE_FIRMWARE_FILE,
 bootloader_firmware_file=BOOTLOADER_FIRMWARE_FILE,
 progress_callback=progress_callback,)

[...]

Update the firmware of a remote XBee

The firmware update process for remote XBee devices is performed over the air
using special XBee frames. For this operation, you need the following
components:

	The remote XBee device object instance.

	The new firmware XML descriptor file.

	The new firmware binary file (*.ota)

	Optionally, the new firmware binary file with the bootloader embedded (*.otb)

Warning

Firmware update fails if the firmware requires a new bootloader and the
*.otb file is not provided.

To perform the remote firmware update, call the
update_firmware method of the RemoteXBeeDevice class providing the
required parameters:

	Method

	Description

	update_firmware(String, String,
String, Integer, Function)

	Performs a remote firmware update operation of the device.

	xml_firmware_file (String): path of the XML file that describes the firmware to upload.

	xbee_firmware_file (String, optional): location of the XBee binary firmware file (*.ota).

	bootloader_firmware_file (String, optional): location of the XBee binary firmware file with bootloader embedded (*.otb).

	timeout (Integer, optional): the maximum amount of seconds to wait for target read operations during the update process.

	progress_callback (Function, optional): function to execute to receive progress information. Receives two arguments:

	The current update task as a String

	The current update task percentage as an Integer

The update_firmware method may fail for the following reasons:

	The remote device does not support the firmware update operation, throwing a
OperationNotSupportedException.

	There is an error during the firmware update operation, throwing a
FirmwareUpdateException.

	Other errors caught as XBeeException:

	The local device is not open, throwing a generic XBeeException.

	The operating mode of the local device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

Update remote XBee device firmware

[...]

XML_FIRMWARE_FILE = "my_path/my_firmware.xml"
OTA_FIRMWARE_FILE = "my_path/my_firmware.ota"
OTB_FIRMWARE_FILE = "my_path/my_firmware.otb"

REMOTE_DEVICE_NAME = "REMOTE"

[...]

Instantiate an XBee device object.
xbee = XBeeDevice(...)

Get the network.
xnet = xbee.get_network()

Get the remote device.
remote = xnet.discover_device(REMOTE_DEVICE_NAME)

Update the remote XBee device firmware.
remote.update_firmware(SERIAL_PORT,
 XML_FIRMWARE_FILE,
 xbee_firmware_file=OTA_FIRMWARE_FILE,
 bootloader_firmware_file=OTB_FIRMWARE_FILE,
 progress_callback=progress_callback,)

[...]

	Example: Remote Firmware Update

	The XBee Python Library includes a sample application that displays how to perform a remote firmware update. It can be located in the following path:

examples/firmware/RemoteFirmwareUpdateSample/RemoteFirmwareUpdateSample.py

Update the XBee file system

XBee 3 devices feature file system capabilities, meaning that they are able to
persistently store files and folders in flash. The XBee Python Library provides
classes and methods to manage these files.

	Create file system manager

	File system operations

Warning

At the moment file system capabilities are only supported in local XBee 3
devices.

Create file system manager

A LocalXBeeFileSystemManager object is required to work with local devices
file system. You can instantiate this class by providing the local XBee device
object. Once you have the object instance, you must call the connect
method to open the file system connection and leave it ready to work.

Warning

File system operations take ownership of the serial port, meaning that you will
stop receiving messages from the device until file system connection is closed.
For this reason it is highly recommended to call the disconnect method of
the file system manager as soon as you finish working with it.

	Method

	Description

	connect()

	Connects the file system manager.

	disconnect()

	Disconnects the file system manager and restores the device connection.

The connect method may fail for the following reasons:

	The device does not support the file system capabilities, throwing a
FileSystemNotSupportedException.

	There is an error during the connect operation, throwing a
FileSystemException.

Create a local file system manager

from digi.xbee.filesystem import LocalXBeeFileSystemManager

[...]

Instantiate an XBee device object.
xbee = XBeeDevice(...)

[...]

Create the file system manager and connect it.
filesystem_manager = LocalXBeeFileSystemManager(device)
filesystem_manager.connect()

[...]

filesystem_manager.disconnect()

[...]

File system operations

The file system manager provides several methods to navigate through the device
file system and operate with the different files and folders:

	Method

	Description

	get_current_directory()

	Returns the current device directory.

	change_directory(String)

	Changes the current device working directory to the given one.

	directory (String): the new directory to change to.

	make_directory(String)

	Creates the provided directory.

	directory (String): the new directory to create.

	list_directory(String)

	Lists the contents of the given directory.

	directory (String, optional): the directory to list its contents. Optional. If not provided, the current directory contents are listed.

	remove_element(String)

	Removes the given file system element path.

	element_path (String): path of the file system element to remove.

	move_element(String, String)

	Moves the given source element to the given destination path.

	source_path (String): source path of the element to move.

	dest_path (String): destination path of the element to move.

	put_file(String, String,
Boolean, Function)

	Transfers the given file in the specified destination path of the XBee device.

	source_path (String): the path of the file to transfer.

	dest_path (String): the destination path to put the file in.

	secure (Boolean, optional): True if the file should be stored securely, False otherwise. Defaults to False.

	progress_callback (Function, optional): function to execute to receive progress information. Takes the following arguments:

	The progress percentage as integer.

	put_dir(String, String, Function)

	Uploads the given source directory contents into the given destination directory in the device.

	source_dir (String): the local directory to upload its contents.

	dest_dir (String, optional): the remote directory to upload the contents to. Defaults to current directory.

	progress_callback (Function, optional): function to execute to receive progress information. Takes the following arguments:

	The file being uploaded as string.

	The progress percentage as integer.

	get_file(String, String,
Function)

	Downloads the given XBee device file in the specified destination path.

	source_path (String): the path of the XBee device file to download.

	dest_path (String): the destination path to store the file in.

	progress_callback (Function, optional): function to execute to receive progress information. Takes the following arguments:

	The progress percentage as integer.

	format_filesystem()

	Formats the device file system.

	get_usage_information()

	Returns the file system usage information.

	get_file_hash(String)

	Returns the SHA256 hash of the given file path.

	file_path (String): path of the file to get its hash.

The methods above may fail for the following reasons:

	There is an error executing the requested operation, throwing a
FileSystemException.

	Example: Format file system

	The XBee Python Library includes a sample application that displays how to format the device file system. It can be located in the following path:

examples/filesystem/FormatFilesystemSample/FormatFilesystemSample.py

	Example: List directory

	The XBee Python Library includes a sample application that displays how to list the contents of a device directory. It can be located in the following path:

examples/filesystem/ListDirectorySample/ListDirectorySample.py

	Example: Upload/download file

	The XBee Python Library includes a sample application that displays how to upload/download a file from the device. It can be located in the following path:

examples/filesystem/UploadDownloadFileSample/UploadDownloadFileSample.py

Apply an XBee profile

An XBee profile is a snapshot of a specific XBee configuration, including
firmware, settings, and file system contents. The XBee Python API includes a
set of classes and methods to work with XBee profiles and apply them to local
and remote devices.

	Read an XBee profile

	Apply an XBee profile to a local device

	Apply an XBee profile to a remote device

To configure individual settings see Configure the XBee device.

Note

Use XCTU [http://www.digi.com/xctu] to create configuration profiles.

Warning

At the moment applying profiles is only supported in XBee 3 devices.

Read an XBee profile

The library provides a class called XBeeProfile that is used to read and
extract information of an existing XBee profile file.

To create an XBeeProfile object, provide the location of the profile file
in the class constructor.

Instantiate an XBee profile

from digi.xbee.profile import XBeeProfile

[...]

PROFILE_PATH = "/home/user/my_profile.xpro"

[...]

Create the XBee profile object.
xbee_profile = XBeeProfile(PROFILE_PATH)

[...]

The creation of the XBee profile object may fail for the following reasons:

	The provided profile file is not valid, throwing a ValueError.

	There is any error reading the profile file, throwing a
ProfileReadException.

Once the XBee profile object is created, you can extract all the profile
information by accessing each of the exposed properties:

	Property

	Description

	profile_file

	Returns the profile file.

	version

	Returns the profile version.

	flash_firmware_option

	Returns the profile flash firmware option.

	description

	Returns the profile description.

	reset_settings

	Returns whether the settings of the XBee device are reset before applying the profile ones or not.

	has_filesystem

	Returns whether the profile has filesystem information or not.

	profile_settings

	Returns all the firmware settings that the profile configures.

	firmware_version

	Returns the compatible firmware version of the profile.

	hardware_version

	Returns the compatible hardware version of the profile.

	firmware_description_file

	Returns the path of the profile firmware description file.

	file_system_path

	Returns the profile file system path.

Read an XBee profile

from digi.xbee.profile import XBeeProfile

[...]

PROFILE_PATH = "/home/user/my_profile.xpro"

[...]

Create the XBee profile object.
xbee_profile = XBeeProfile(PROFILE_PATH)

Print profile compatible hardware and software versions
print(" - Firmware version: %s" % xbee_profile.firmware_version)
print(" - Hardware version: %s" % xbee_profile.hardware_version)

[...]

	Example: Read an XBee profile

	The XBee Python Library includes a sample application that displays how to read an XBee profile. It can be located in the following path:

examples/profile/ReadXBeeProfileSample/ReadXBeeProfileSample.py

Apply an XBee profile to a local device

Applying a profile to a local XBee device requires the following components:

	The local XBee device object instance.

	The profile file to apply (*.xpro).

Note

Use XCTU [http://www.digi.com/xctu] to create configuration profiles.

To apply the XBee profile to a local XBee, you have to call the
apply_profile method of the XBeeDevice class providing the required
parameters:

	Method

	Description

	apply_profile(String, Function)

	Applies the given XBee profile to the XBee device.

	profile_path (String): path of the XBee profile file to apply.

	progress_callback (Function, optional): function to execute to receive progress information. Receives two arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

The apply_profile method may fail for the following reasons:

	The local device does not support the apply profile operation, throwing a
OperationNotSupportedException.

	There is an error while applying the XBee profile, throwing a
UpdateProfileException.

	Other errors caught as XBeeException:

	The local device is not open, throwing a generic XBeeException.

	The operating mode of the local device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

Apply an XBee profile to a local device

[...]

PROFILE_PATH = "/home/user/my_profile.xpro"

[...]

Instantiate an XBee device object.
xbee = XBeeDevice(...)

[...]

Apply the XBee device profile.
device.apply_profile(PROFILE_PATH, progress_callback=progress_callback)

[...]

	Example: Apply local XBee profile

	The XBee Python Library includes a sample application that displays how to apply an XBee profile to a local device. It can be located in the following path:

examples/profile/ApplyXBeeProfileSample/ApplyXBeeProfileSample.py

Apply an XBee profile to a remote device

Applying a profile to a remote XBee requires the following components:

	The remote XBee device object instance.

	The profile file to apply (*.xpro).

Note

Use XCTU [http://www.digi.com/xctu] to create configuration profiles.

To apply the XBee profile to a remote XBee device, you have to call the
apply_profile method of the RemoteXBeeDevice class providing the
required parameters:

	Method

	Description

	apply_profile(String, Function)

	Applies the given XBee profile to the remote XBee device.

	profile_path (String): path of the XBee profile file to apply.

	progress_callback (Function, optional): function to execute to receive progress information. Receives two arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

The apply_profile method may fail for the following reasons:

	The remote device does not support the apply profile operation, throwing a
OperationNotSupportedException.

	There is an error while applying the XBee profile, throwing a
UpdateProfileException.

	Other errors caught as XBeeException:

	The local device is not open, throwing a generic XBeeException.

	The operating mode of the local device is not API_MODE or
ESCAPED_API_MODE, throwing an InvalidOperatingModeException.

Apply an XBee profile to a remote device

[...]

PROFILE_PATH = "/home/user/my_profile.xpro"
REMOTE_DEVICE_NAME = "REMOTE"

[...]

Instantiate an XBee device object.
xbee = XBeeDevice(...)

Get the network.
xnet = xbee.get_network()

Get the remote device.
remote = xnet.discover_device(REMOTE_DEVICE_NAME)

[...]

Apply the XBee device profile.
remote.apply_profile(PROFILE_PATH, progress_callback=progress_callback)

[...]

	Example: Apply remote XBee profile

	The XBee Python Library includes a sample application that displays how to apply an XBee profile to a remote device. It can be located in the following path:

examples/profile/ApplyXBeeProfileRemoteSample/ApplyXBeeProfileRemoteSample.py

Log events

Logging is a fundamental part of applications, and every application includes
this feature. A well-designed logging system is a useful utility for system
administrators, developers, and the support team and can save valuable time in
sorting through the cause of issues. As users execute programs on the front end,
the system invisibly builds a vault of event information (log entries).

The XBee Python Library uses the Python standard logging module for
registering logging events. The logger works at module level; that is, each
module has a logger with a unique name.

The modules that have logging integrated are devices and reader. By
default, all loggers are disabled so you will not see any logging message
in the console if you do not activate them.

In the XBee Python Library, you need three things to enable the logger:

	The logger itself.

	A handler. This will determine if the messages will be displayed in the
console, written in a file, sent through a socket, etc.

	A formatter. This will determine the message format. For example, a format
could be:

	Timestamp with the current date - logger name - level (debug, info,
warning…) - data.

To retrieve the logger, use the get_logger() method of the
logging module, providing the name of the logger that you want to get as
parameter. In the XBee Python Library all loggers have the name of the module
they belong to. For example, the name of the logger of the devices module
is digi.xbee.devices. You can get a module name with the special attribute
__name__.

Retrieve a module name and its logger

import logging

[...]

Get the logger of the devices module.
dev_logger = logging.getLogger(digi.xbee.devices.__name__)

Get the logger of the devices module providing the name.
dev_logger = logging.getLogger("digi.xbee.devices")

[...]

To retrieve a handler, you can use the default Python handler or create your
own one. Depending on which type of handler you use, the messages created by
the logger will be printed in the console, in a file, etc. You can have more
than one handler per logger, this means that you can enable the default XBee
Python Library handler and add your own handlers.

Retrieve a handler and add it to a logger

import logging

[...]

Get the logger of the devices module.
dev_logger = logging.getLogger(digi.xbee.devices.__name__)

Get a handler and add it to the logger.
handler = logging.StreamHandler()
dev_logger.addHandler(handler)

[...]

The previous code snippet shows how to add a handler to a logger, but the
logical way is to add a formatter to a handler, and then add the handler to the
logger.

When you create a formatter, you must specify which information will be printed
and in which format. This guide shows you how to create a formatter with a
simple format. If you want to create more complex formatters or handlers, see
the Python documentation.

Create a formatter and add it to a handler

import logging

[...]

Get a handler.
handler = (...)

Instantiate a formatter so the log entries are represented as defined here.
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - '
 '%(message)s')

Configure the formatter in the handler.
handler.setFormatter(formatter)

[...]

Enable a logger for the devices module

import logging

[...]

Get the logger of the devices module providing the name.
dev_logger = logging.getLogger("digi.xbee.devices")

Get a handler and configure a formatter for it.
handler = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - '
 '%(message)s')
handler.setFormatter(formatter)

Add the handler to the logger.
dev_logger.addHandler(handler)

[...]

Logging level

The XBee Python Library also provides a method in the utils module,
enable_logger(), to enable the logger with the default settings. These
settings are:

	Handler: StreamHandler

	Format: timestamp - logger name - level - message

	Method

	Description

	enable_logger(name, level=logging.DEBUG)

	Enables the logger.

	name: the name of the module whose logger you want to activate.

	level: default DEBUG. The level you want to see.

Enable a logger

import logging

[...]

Enable the logger in the digi.xbee.devices module with INFO level.
dev_logger = enable_logger(digi.xbee.devices.__name__, logging.INFO)

This is a valid method to do the same.
dev_logger = enable_logger("digi.xbee.devices", logging.INFO)

[...]

Enable the logger in the digi.xbee.devices module with the default level
(DEBUG).
dev_logger = enable_logger("digi.xbee.devices")

This is a valid method to do the same.
dev_logger = enable_logger("digi.xbee.devices", logging.DEBUG)

[...]

Note

For further information about the Python logging module, see the
Python logging module official documentation [https://docs.python.org/3/library/logging.html]
or the Python logging cookbook [https://docs.python.org/3/howto/logging-cookbook.html].

XBee Python samples

The XBee Python Library includes several samples to demonstrate how to do the
following:

	Communicate with your modules

	Configure your modules

	Read the IO lines

	Update device’s firmware

	Work with device’s file system

	Apply XBee profiles

	Perform other common operations

All of the sample applications are contained in the examples folder, organized
by category. Every sample includes the source code and a readme.txt file
to clarify the purpose and the required setup to launch the application.

Examples are split by categories:

	Configuration samples

	Network samples

	Communication samples

	IO samples

	Firmware samples

	File system samples

	Profile samples

Configuration samples

Manage common parameters

This sample application shows how to get and set common parameters of the XBee
device. Common parameters are split in cached and non-cached parameters. For
that reason, the application refreshes the cached parameters before reading and
displaying them. The application then configures, reads, and displays the value
of non-cached parameters.

The application uses the specific setters and getters provided by the XBee
device object to configure and read the different parameters.

You can locate the example in the following path:
examples/configuration/ManageCommonParametersSample

Note

For more information about how to manage common parameters, see
Read and set common parameters.

Set and get parameters

This sample application shows how to set and get parameters of a local or
remote XBee device. Use this method when you need to set or get the value of a
parameter that does not have its own getter and setter within the XBee device
object.

The application sets the value of four parameters with different value types:

	String

	Byte

	Array

	Integer

The application then reads the parameters from the device to verify that the
read values are the same as the values that were set.

You can locate the example in the following path:
examples/configuration/SetAndGetParametersSample

Note

For more information about how to get and set other parameters, see
Read, set and execute other parameters.

Reset module

This sample application shows how to perform a software reset on the local XBee
module.

You can locate the example in the following path:
examples/configuration/ResetModuleSample

Note

For more information about how to reset a module, see
Reset the device.

Recover XBee serial connection

This sample application shows how to recover the serial settings of a local XBee.

You can locate the example at the following path:
examples/configuration/RecoverSerialConnection

Note

For more information about this, see Open the XBee device connection.

Connect to access point (Wi-Fi)

This sample application shows how to configure a Wi-Fi module to connect to a
specific access point and read its addressing settings.

You can locate the example at the following path:
examples/configuration/ConnectToAccessPoint

Note

For more information about connecting to an access point, see
Configure Wi-Fi settings.

Network samples

Discover devices

This sample application demonstrates how to obtain the XBee network object
from a local XBee device and discover the remote XBee devices that compose the
network. The example adds a discovery listener, so the callbacks provided by
the listener object receive the events.

The remote XBee devices are printed out as soon as they are found during
discovery.

You can locate the example in the following path:
examples/network/DiscoverDevicesSample

Note

For more information about how to perform a network discovery, see
Discover the network.

Network modifications sample

This sample application demonstrates how to listen to network modification
events. The example adds a modifications network callback, so modifications
events are received and printed out.

A network is modified when:

	a new node is added by discovering, manually, or because data is
received from it

	an existing node is removed from the network

	an existing node is updated with new information

	it is fully cleared

You can locate the example in the following path:
examples/network/NetworkModificationsSample

Note

For more information about how to listen to network modifications, see
Listen to network modification events.

Communication samples

Send data

This sample application shows how to send data from the XBee device to another
remote device on the same network using the XBee Python Library. In this
example, the application sends data using a reliable transmission method. The
application blocks during the transmission request, but you are notified if
there is any error during the process.

The application sends data to a remote XBee device on the network with a
specific node identifier (name).

You can locate the example in the following path:
examples/communication/SendDataSample

Note

For more information about how to send data, see
Send data.

Send data asynchronously

This sample application shows how to send data asynchronously from the XBee
device to another remote device on the same network using the XBee Python
Library. Transmitting data asynchronously means the execution is not blocked
during the transmit request, but you cannot determine if the data was sent
successfully.

The application sends data asynchronously to a remote XBee device on the
network with a specific node identifier (name).

You can locate the example in the following path:
examples/communication/SendDataAsyncSample

Note

For more information about how to send data, see
Send data.

Send broadcast data

This sample application shows how to send data from the local XBee device to
all remote devices on the same network (broadcast) using the XBee Python
Library. The application blocks during the transmission request, but you are
notified if there is any error during the process.

You can locate the example in the following path:
examples/communication/SendBroadcastDataSample

Note

For more information about how to send broadcast data, see
Send data to all devices of the network.

Send explicit data

This sample application shows how to send data in application layer (explicit)
format to a remote Zigbee device on the same network as the local one using the
XBee Python Library. In this example, the XBee module sends explicit data using
a reliable transmission method. The application blocks during the transmission
request, but you are notified if there is any error during the process.

You can locate the example in the following path:
examples/communication/explicit/SendExplicitDataSample

Note

For more information about how to send explicit data, see
Send explicit data.

Send explicit data asynchronously

This sample application shows how to send data in application layer (explicit)
format asynchronously to a remote Zigbee device on the same network as the
local one using the XBee Python Library. Transmitting data asynchronously means
the execution is not blocked during the transmit request, but you cannot
determine if the data was sent successfully.

You can locate the example in the following path:
examples/communication/explicit/SendExplicitDataAsyncSample

Note

For more information about how to send explicit data, see
Send explicit data.

Send broadcast explicit data

This sample application shows how to send data in application layer (explicit)
format to all remote devices on the same network (broadcast) as the local one
using the XBee Python Library. The application blocks during the transmission
request, but you are notified if there is any error during the process.

You can locate the example in the following path:
examples/communication/explicit/SendBroadcastExplicitDataSample

Note

For more information about how to send broadcast explicit data, see
Send explicit data to all devices in the network.

Send IP data (IP devices)

This sample application shows how to send IP data to another device specified
by its IP address and port number.

You can find the example at the following path:
examples/communication/ip/SendIPDataSample

Note

For more information about how to send IP data, see
Send IP data.

Send SMS (cellular devices)

This sample application shows how to send an SMS to a phone or cellular device.

You can find the example at the following path:
examples/communication/cellular/SendSMSSample

Note

For more information about how to send SMS messages, see
Send SMS messages.

Send UDP data (IP devices)

This sample application shows how to send UDP data to another device specified
by its IP address and port number.

You can find the example at the following path:
examples/communication/ip/SendUDPDataSample

Note

For more information about how to send IP data, see
Send IP data.

Send Bluetooth Data

This sample application shows how to send data to the XBee Bluetooth Low Energy
interface.

You can find the example at the following path:
examples/communication/bluetooth/SendBluetoothDataSample

Note

For more information about sending Bluetooth data, see
Send Bluetooth data.

Send MicroPython Data

This sample application shows how to send data to the XBee MicroPython
interface.

You can find the example at the following path:
examples/communication/micropython/SendMicroPythonDataSample

Note

For more information about sending MicroPython data, see
Send MicroPython data.

Send User Data Relay

This sample application shows how to send data to other XBee interface.

You can find the example at the following path:
examples/communication/relay/SendUserDataRelaySample

Note

For more information about sending User Data Relay messages, see
Send Bluetooth data or Send MicroPython data.

Receive data

This sample application shows how data packets are received from another XBee
device on the same network.

The application prints the received data to the standard output in ASCII and
hexadecimal formats after the sender address.

You can locate the example in the following path:
examples/communication/ReceiveDataSample

Note

For more information about how to receive data using a callback, see
Data reception callback.

Receive data polling

This sample application shows how data packets are received from another XBee
device on the same network using a polling mechanism.

The application prints the data that was received to the standard output in
ASCII and hexadecimal formats after the sender address.

You can locate the example in the following path:
examples/communication/ReceiveDataPollingSample

Note

For more information about how to receive data using a polling mechanism,
see Polling for data.

Receive explicit data

This sample application shows how a Zigbee device receives data in application
layer (explicit) format using a callback executed every time new data is
received. Before receiving data in explicit format, the API output mode of the
Zigbee device is configured in explicit mode.

You can locate the example in the following path:
examples/communication/explicit/ReceiveExplicitDataSample

Note

For more information about how to receive explicit data using a callback,
see Explicit data reception callback.

Receive explicit data polling

This sample application shows how a Zigbee device receives data in application
layer (explicit) format using a polling mechanism. Before receiving data in
explicit format, the API output mode of the Zigbee device is configured in
explicit mode.

You can locate the example in the following path:
examples/communication/explicit/ReceiveExplicitDataPollingSample

Note

For more information about how to receive explicit data using a polling
mechanism, see Polling for explicit data.

Receive IP data (IP devices)

This sample application shows how an IP device receives IP data using a
callback executed every time it receives new IP data.

You can find the example at the following path:
examples/communication/ip/ReceiveIPDataSample

Note

For more information about how to receive IP data using a polling mechanism,
see Receive IP data.

Receive SMS (cellular devices)

This sample application shows how to receive SMS messages configuring a
callback executed when new SMS is received.

You can find the example at the following path:
examples/communication/cellular/ReceiveSMSSample

Note

For more information about how to receive SMS messages, see
Receive SMS messages.

Receive Bluetooth data

This sample application shows how to receive data from the XBee Bluetooth Low
Energy interface.

You can find the example at the following path:
examples/communication/bluetooth/ReceiveBluetoothDataSample

Note

For more information about receiving Bluetooth data, see
Receive Bluetooth data.

Receive Bluetooth file

This sample application shows how to receive a file from the XBee Bluetooth Low
Energy interface.

You can find the example at the following path:
examples/communication/bluetooth/ReceiveBluetoothFileSample

Note

For more information about receiving Bluetooth data, see
Receive Bluetooth data.

Receive MicroPython data

This sample application shows how to receive data from the XBee MicroPython
interface.

You can find the example at the following path:
examples/communication/micropython/ReceiveMicroPythonDataSample

Note

For more information about receiving MicroPython data, see
Receive MicroPython data.

Receive User Data Relay

This sample application shows how to receive data from other XBee interface.

You can find the example at the following path:
examples/communication/relay/ReceiveUserDataRelaySample

Note

For more information about receiving User Data Relay messages, see
Receive Bluetooth data or
Receive MicroPython data.

Receive modem status

This sample application shows how modem status packets (events related to the
device and the network) are handled using the API.

The application prints the modem status events to the standard output when
received.

You can locate the example in the following path:
examples/communication/ReceiveModemStatusSample

Note

For more information about how to receive modem status events, see
Receive modem status events.

Connect to echo server (IP devices)

This sample application shows how IP devices can connect to an echo server,
send data to it and reads the echoed data.

You can find the example at the following path:
examples/communication/ip/ConnectToEchoServerSample

Note

For more information about how to send and receive IP data, see
Send IP data and Receive IP data.

Create a TCP client socket (cellular devices)

This sample application shows how to create a TCP client socket to send HTTP
requests.

You can find the example at the following path:
examples/communication/socket/SocketTCPClientSample

Note

For more information about how to use the XBee socket API, see
Communicate using XBee sockets.

Create a TCP server socket (cellular devices)

This sample application shows how to create a TCP server socket to receive data
from incoming sockets.

You can find the example at the following path:
examples/communication/socket/SocketTCPServerSample

Note

For more information about how to use the XBee socket API, see
Communicate using XBee sockets.

Create a UDP server/client socket (cellular devices)

This sample application shows how to create a UDP socket to deliver messages to
a server and listen for data coming from multiple peers.

You can find the example at the following path:
examples/communication/socket/SocketUDPServerClientSample

Note

For more information about how to use the XBee socket API, see
Communicate using XBee sockets.

IO samples

Local DIO

This sample application shows how to set and read XBee digital lines of the
device attached to the serial/USB port of your PC.

The application configures two IO lines of the XBee device: one as a digital
input (button) and the other as a digital output (LED). The application reads
the status of the input line periodically and updates the output to follow the
input.

The LED lights up while you press the button.

You can locate the example in the following path:
examples/io/LocalDIOSample

Note

For more information about how to set and read digital lines, see
Digital Input/Output.

Local ADC

This sample application shows how to read XBee analog inputs of the device
attached to the serial/USB port of your PC.

The application configures an IO line of the XBee device as ADC. It
periodically reads its value and prints it in the output console.

You can locate the example in the following path:
examples/io/LocalADCSample

Note

For more information about how to read analog lines, see
ADC.

Remote DIO

This sample application shows how to set and read XBee digital lines of remote
devices.

The application configures two IO lines of the XBee devices: one in the remote
device as a digital input (button) and the other in the local device as a
digital output (LED). The application reads the status of the input line
periodically and updates the output to follow the input.

The LED lights up while you press the button.

You can locate the example in the following path:
examples/io/RemoteDIOSample

Note

For more information about how to set and read digital lines, see
Digital Input/Output.

Remote ADC

This sample application shows how to read XBee analog inputs of remote XBee
devices.

The application configures an IO line of the remote XBee device as ADC. It
periodically reads its value and prints it in the output console.

You can locate the example in the following path:
examples/io/RemoteADCSample

Note

For more information about how to read analog lines, see
ADC.

IO sampling

This sample application shows how to configure a remote device to send
automatic IO samples and how to read them from the local module.

The application configures two IO lines of the remote XBee device: one as
digital input (button) and the other as ADC, and enables periodic sampling and
change detection. The device sends a sample every five seconds containing the
values of the two monitored lines. The device sends another sample every time
the button is pressed or released, which only contains the value of this
digital line.

The application registers a listener in the local device to receive and handle
all IO samples sent by the remote XBee module.

You can locate the example in the following path:
examples/io/IOSamplingSample

Note

For more information about how to read IO samples, see
Read IO samples.

Firmware samples

Update local firmware

This sample Python application shows how to update the firmware of a local
XBee device.

The application provides the required hardware files to the update method
as well as a callback function to be notified of progress.

You can locate the example in the following path:
examples/firmware/LocalFirmwareUpdateSample

Update remote firmware

This sample Python application shows how to update the firmware of a remote
XBee device.

The application provides the required hardware files to the update method
as well as a callback function to be notified of progress.

You can locate the example in the following path:
examples/firmware/RemotelFirmwareUpdateSample

File system samples

Format file system

This sample Python application shows how to format the filesystem of a
local XBee device and retrieve usage information.

The application uses the LocalXBeeFileSystemManager to access the device
filesystem and execute the required actions.

You can locate the example in the following path:
examples/filesystem/FormatFilesystemSample

List directory contents

This sample Python application shows how to list the contents of an XBee
device filesystem directory.

The application uses the LocalXBeeFileSystemManager to access the device
filesystem and executes the required actions.

You can locate the example in the following path:
examples/filesystem/ListDirectorySample

Upload/download file

This sample Python application shows how to upload and download a file from
a local XBee device filesystem.

The application uses the LocalXBeeFileSystemManager to access the device
filesystem and provides the local file and the necessary paths to the
upload/download methods as well as callback functions to be notified of
progress.

You can locate the example in the following path:
examples/filesystem/UploadDownloadFileSample

Profile samples

Apply local profile

This sample Python application shows how to apply an existing XBee profile
to a XBee device.

The application provides the profile file to the update method as well as a
callback function to be notified of progress.

You can locate the example in the following path:
examples/profile/ApplyXBeeProfileSample

Apply remote profile

This sample Python application shows how to apply an existing XBee profile
to a remote XBee device.

The application provides the profile file to the update method as well as a
callback function to be notified of progress.

You can locate the example in the following path:
examples/profile/ApplyXBeeProfileRemoteSample

Read profile

This sample Python application shows how to read an existing XBee profile
and extract its properties.

The application creates an XBee profile object from an existing XBee profile
file and prints all the accessible settings and properties.

You can locate the example in the following path:
examples/profile/ReadXBeeProfileSample

Frequently Asked Questions (FAQs)

The FAQ section contains answers to general questions related to the XBee
Python Library.

What is XCTU and how do I download it?

XCTU is a free multi-platform application designed to enable developers to
interact with Digi RF modules through a simple-to-use graphical interface. You
can download it at www.digi.com/xctu [http://www.digi.com/xctu].

How do I find the serial port and baud rate of my module?

Open the XCTU application, and click the Discover radio modules connected to your
machine button.

Select all ports to be scanned, click Next and then Finish. Once the
discovery process has finished, a new window notifies you how many devices have
been found and their details. The serial port and the baud rate are shown in
the Port label.

[image: Get port and baudrate]

Note

Note In UNIX systems, the complete name of the serial port contains the
/dev/ prefix.

Can I use the XBee Python Library with modules in AT operating mode?

No, the XBee Python Library only supports API and API Escaped operating
modes.

I get the Python error ImportError: No module named 'serial'

This error means that Python cannot find the serial module, which is used by
the library for the serial communication with the XBee devices.

You can install PySerial running this command in your terminal application:

$ pip install pyserial

For further information about the installation of PySerial, refer to the
PySerial installation guide [http://pythonhosted.org/pyserial/pyserial.html#installation].

I get the Python error ImportError: No module named 'srp'

This error means that Python cannot find the srp module, which is used by
the library to authenticate with XBee devices over Bluetooth Low Energy.

You can install SRP running this command in your terminal application:

$ pip install srp

API reference

Following is API reference material on major parts of XBee Python library.

	digi package
	Subpackages
	digi.xbee package
	Subpackages
	digi.xbee.models package

	digi.xbee.packets package

	digi.xbee.util package

	Submodules
	digi.xbee.comm_interface module

	digi.xbee.devices module

	digi.xbee.exception module

	digi.xbee.filesystem module

	digi.xbee.firmware module

	digi.xbee.io module

	digi.xbee.profile module

	digi.xbee.reader module

	digi.xbee.recovery module

	digi.xbee.serial module

	digi.xbee.xsocket module

digi package

Subpackages

	digi.xbee package
	Subpackages
	digi.xbee.models package
	Submodules
	digi.xbee.models.accesspoint module

	digi.xbee.models.atcomm module

	digi.xbee.models.hw module

	digi.xbee.models.mode module

	digi.xbee.models.address module

	digi.xbee.models.message module

	digi.xbee.models.options module

	digi.xbee.models.protocol module

	digi.xbee.models.status module

	digi.xbee.packets package
	Submodules
	digi.xbee.packets.aft module

	digi.xbee.packets.base module

	digi.xbee.packets.cellular module

	digi.xbee.packets.common module

	digi.xbee.packets.devicecloud module

	digi.xbee.packets.network module

	digi.xbee.packets.raw module

	digi.xbee.packets.relay module

	digi.xbee.packets.socket module

	digi.xbee.packets.wifi module

	digi.xbee.packets.zigbee module

	digi.xbee.packets.factory module

	digi.xbee.util package
	Submodules
	digi.xbee.util.utils module

	Submodules
	digi.xbee.comm_interface module

	digi.xbee.devices module

	digi.xbee.exception module

	digi.xbee.filesystem module

	digi.xbee.firmware module

	digi.xbee.io module

	digi.xbee.profile module

	digi.xbee.reader module

	digi.xbee.recovery module

	digi.xbee.serial module

	digi.xbee.xsocket module

digi.xbee package

Subpackages

	digi.xbee.models package
	Submodules
	digi.xbee.models.accesspoint module

	digi.xbee.models.atcomm module

	digi.xbee.models.hw module

	digi.xbee.models.mode module

	digi.xbee.models.address module

	digi.xbee.models.message module

	digi.xbee.models.options module

	digi.xbee.models.protocol module

	digi.xbee.models.status module

	digi.xbee.packets package
	Submodules
	digi.xbee.packets.aft module

	digi.xbee.packets.base module

	digi.xbee.packets.cellular module

	digi.xbee.packets.common module

	digi.xbee.packets.devicecloud module

	digi.xbee.packets.network module

	digi.xbee.packets.raw module

	digi.xbee.packets.relay module

	digi.xbee.packets.socket module

	digi.xbee.packets.wifi module

	digi.xbee.packets.zigbee module

	digi.xbee.packets.factory module

	digi.xbee.util package
	Submodules
	digi.xbee.util.utils module

Submodules

	digi.xbee.comm_interface module

	digi.xbee.devices module

	digi.xbee.exception module

	digi.xbee.filesystem module

	digi.xbee.firmware module

	digi.xbee.io module

	digi.xbee.profile module

	digi.xbee.reader module

	digi.xbee.recovery module

	digi.xbee.serial module

	digi.xbee.xsocket module

digi.xbee.models package

Submodules

	digi.xbee.models.accesspoint module

	digi.xbee.models.atcomm module

	digi.xbee.models.hw module

	digi.xbee.models.mode module

	digi.xbee.models.address module

	digi.xbee.models.message module

	digi.xbee.models.options module

	digi.xbee.models.protocol module

	digi.xbee.models.status module

digi.xbee.models.accesspoint module

	
class digi.xbee.models.accesspoint.AccessPoint(ssid, encryption_type, channel=0, signal_quality=0)

	Bases: object

This class represents an Access Point for the Wi-Fi protocol. It contains
SSID, the encryption type and the link quality between the Wi-Fi module and
the access point.

This class is used within the library to list the access points
and connect to a specific one in the Wi-Fi protocol.

See also

WiFiEncryptionType

Class constructor. Instantiates a new AccessPoint object with the provided parameters.

	Parameters

	
	ssid (String) – the SSID of the access point.

	encryption_type (WiFiEncryptionType) – the encryption type configured in the access point.

	channel (Integer, optional) – operating channel of the access point. Optional.

	signal_quality (Integer, optional) – signal quality with the access point in %. Optional.

	Raises

	
	ValueError – if length of ssid is 0.

	ValueError – if channel is less than 0.

	ValueError – if signal_quality is less than 0 or greater than 100.

See also

WiFiEncryptionType

	
ssid

	String. SSID of the access point.

	
encryption_type

	WiFiEncryptionType. Encryption type of the access point.

	
channel

	String. Channel of the access point.

	
signal_quality

	String. The signal quality with the access point in %.

	
class digi.xbee.models.accesspoint.WiFiEncryptionType(code, description)

	Bases: enum.Enum

Enumerates the different Wi-Fi encryption types.

Values:

WiFiEncryptionType.NONE = (0, ‘No security’)

WiFiEncryptionType.WPA = (1, ‘WPA (TKIP) security’)

WiFiEncryptionType.WPA2 = (2, ‘WPA2 (AES) security’)

WiFiEncryptionType.WEP = (3, ‘WEP security’)

	
code

	Integer. The Wi-Fi encryption type code.

	
description

	String. The Wi-Fi encryption type description.

digi.xbee.models.atcomm module

	
class digi.xbee.models.atcomm.ATStringCommand(command, description)

	Bases: enum.Enum

This class represents basic AT commands.

Inherited properties:

name (String): name (ID) of this ATStringCommand.

value (String): value of this ATStringCommand.

Values:

ATStringCommand.AC = (‘AC’, ‘Apply changes’)

ATStringCommand.AI = (‘AI’, ‘Association indication’)

ATStringCommand.AO = (‘AO’, ‘API options’)

ATStringCommand.AP = (‘AP’, ‘API enable’)

ATStringCommand.AS = (‘AS’, ‘Active scan’)

ATStringCommand.BD = (‘BD’, ‘UART baudrate’)

ATStringCommand.BL = (‘BL’, ‘Bluetooth address’)

ATStringCommand.BT = (‘BT’, ‘Bluetooth enable’)

ATStringCommand.C0 = (‘C0’, ‘Source port’)

ATStringCommand.C8 = (‘C8’, ‘Compatibility mode’)

ATStringCommand.CC = (‘CC’, ‘Command sequence character’)

ATStringCommand.CE = (‘CE’, ‘Device role’)

ATStringCommand.CN = (‘CN’, ‘Exit command mode’)

ATStringCommand.DA = (‘DA’, ‘Force Disassociation’)

ATStringCommand.DH = (‘DH’, ‘Destination address high’)

ATStringCommand.DL = (‘DL’, ‘Destination address low’)

ATStringCommand.D7 = (‘D7’, ‘CTS configuration’)

ATStringCommand.EE = (‘EE’, ‘Encryption enable’)

ATStringCommand.FR = (‘FR’, ‘Software reset’)

ATStringCommand.FS = (‘FS’, ‘File system’)

ATStringCommand.GW = (‘GW’, ‘Gateway address’)

ATStringCommand.GT = (‘GT’, ‘Guard times’)

ATStringCommand.HV = (‘HV’, ‘Hardware version’)

ATStringCommand.IC = (‘IC’, ‘Digital change detection’)

ATStringCommand.ID = (‘ID’, ‘Network PAN ID/Network ID/SSID’)

ATStringCommand.IR = (‘IR’, ‘I/O sample rate’)

ATStringCommand.IS = (‘IS’, ‘Force sample’)

ATStringCommand.KY = (‘KY’, ‘Link/Encryption key’)

ATStringCommand.MA = (‘MA’, ‘IP addressing mode’)

ATStringCommand.MK = (‘MK’, ‘IP address mask’)

ATStringCommand.MY = (‘MY’, ‘16-bit address/IP address’)

ATStringCommand.NB = (‘NB’, ‘Parity’)

ATStringCommand.NI = (‘NI’, ‘Node identifier’)

ATStringCommand.ND = (‘ND’, ‘Node discover’)

ATStringCommand.NK = (‘NK’, ‘Trust Center network key’)

ATStringCommand.NO = (‘NO’, ‘Node discover options’)

ATStringCommand.NR = (‘NR’, ‘Network reset’)

ATStringCommand.NS = (‘NS’, ‘DNS address’)

ATStringCommand.NT = (‘NT’, ‘Node discover back-off’)

ATStringCommand.N_QUESTION = (‘N?’, ‘Network discovery timeout’)

ATStringCommand.OP = (‘OP’, ‘Operating extended PAN ID’)

ATStringCommand.PK = (‘PK’, ‘Passphrase’)

ATStringCommand.PL = (‘PL’, ‘TX power level’)

ATStringCommand.RE = (‘RE’, ‘Restore defaults’)

ATStringCommand.RR = (‘RR’, ‘XBee retries’)

ATStringCommand.R_QUESTION = (‘R?’, ‘Region lock’)

ATStringCommand.SB = (‘SB’, ‘Stop bits’)

ATStringCommand.SH = (‘SH’, ‘Serial number high’)

ATStringCommand.SI = (‘SI’, ‘Socket info’)

ATStringCommand.SL = (‘SL’, ‘Serial number low’)

ATStringCommand.SM = (‘SM’, ‘Sleep mode’)

ATStringCommand.SS = (‘SS’, ‘Sleep status’)

ATStringCommand.VH = (‘VH’, ‘Bootloader version’)

ATStringCommand.VR = (‘VR’, ‘Firmware version’)

ATStringCommand.WR = (‘WR’, ‘Write’)

ATStringCommand.DOLLAR_S = (‘$S’, ‘SRP salt’)

ATStringCommand.DOLLAR_V = (‘$V’, ‘SRP salt verifier’)

ATStringCommand.DOLLAR_W = (‘$W’, ‘SRP salt verifier’)

ATStringCommand.DOLLAR_X = (‘$X’, ‘SRP salt verifier’)

ATStringCommand.DOLLAR_Y = (‘$Y’, ‘SRP salt verifier’)

ATStringCommand.PERCENT_C = (‘%C’, ‘Hardware/software compatibility’)

ATStringCommand.PERCENT_P = (‘%P’, ‘Invoke bootloader’)

	
command

	String. AT Command alias.

	
description

	String. AT Command description

	
class digi.xbee.models.atcomm.SpecialByte(code)

	Bases: enum.Enum

Enumerates all the special bytes of the XBee protocol that must be escaped
when working on API 2 mode.

Inherited properties:

name (String): name (ID) of this SpecialByte.

value (String): the value of this SpecialByte.

Values:

SpecialByte.ESCAPE_BYTE = 125

SpecialByte.HEADER_BYTE = 126

SpecialByte.XON_BYTE = 17

SpecialByte.XOFF_BYTE = 19

	
code

	Integer. The special byte code.

	
class digi.xbee.models.atcomm.ATCommand(command, parameter=None)

	Bases: object

This class represents an AT command used to read or set different properties
of the XBee device.

AT commands can be sent directly to the connected device or to remote
devices and may have parameters.

After executing an AT Command, an AT Response is received from the device.

Class constructor. Instantiates a new ATCommand object with the provided parameters.

	Parameters

	
	command (String) – AT Command, must have length 2.

	parameter (String or Bytearray, optional) – The AT parameter value. Defaults to None. Optional.

	Raises

	ValueError – if command length is not 2.

	
get_parameter_string()

	Returns this ATCommand parameter as a String.

	Returns

	this ATCommand parameter. None if there is no parameter.

	Return type

	String

	
command

	String. The AT command

	
parameter

	Bytearray. The AT command parameter

	
class digi.xbee.models.atcomm.ATCommandResponse(command, response=None, status=<ATCommandStatus.OK: (0, 'Status OK')>)

	Bases: object

This class represents the response of an AT Command sent by the connected
XBee device or by a remote device after executing an AT Command.

Class constructor.

	Parameters

	
	command (ATCommand) – The AT command that generated the response.

	response (bytearray, optional) – The command response. Default to None.

	status (ATCommandStatus, optional) – The AT command status. Default to ATCommandStatus.OK

	
command

	String. The AT command.

	
response

	Bytearray. The AT command response data.

	
status

	ATCommandStatus. The AT command response status.

digi.xbee.models.hw module

	
class digi.xbee.models.hw.HardwareVersion(code, description)

	Bases: enum.Enum

This class lists all hardware versions.

Inherited properties:

name (String): The name of this HardwareVersion.

value (Integer): The ID of this HardwareVersion.

Values:

HardwareVersion.X09_009 = (1, ‘X09-009’)

HardwareVersion.X09_019 = (2, ‘X09-019’)

HardwareVersion.XH9_009 = (3, ‘XH9-009’)

HardwareVersion.XH9_019 = (4, ‘XH9-019’)

HardwareVersion.X24_009 = (5, ‘X24-009’)

HardwareVersion.X24_019 = (6, ‘X24-019’)

HardwareVersion.X09_001 = (7, ‘X09-001’)

HardwareVersion.XH9_001 = (8, ‘XH9-001’)

HardwareVersion.X08_004 = (9, ‘X08-004’)

HardwareVersion.XC09_009 = (10, ‘XC09-009’)

HardwareVersion.XC09_038 = (11, ‘XC09-038’)

HardwareVersion.X24_038 = (12, ‘X24-038’)

HardwareVersion.X09_009_TX = (13, ‘X09-009-TX’)

HardwareVersion.X09_019_TX = (14, ‘X09-019-TX’)

HardwareVersion.XH9_009_TX = (15, ‘XH9-009-TX’)

HardwareVersion.XH9_019_TX = (16, ‘XH9-019-TX’)

HardwareVersion.X09_001_TX = (17, ‘X09-001-TX’)

HardwareVersion.XH9_001_TX = (18, ‘XH9-001-TX’)

HardwareVersion.XT09B_XXX = (19, ‘XT09B-xxx (Attenuator version)’)

HardwareVersion.XT09_XXX = (20, ‘XT09-xxx’)

HardwareVersion.XC08_009 = (21, ‘XC08-009’)

HardwareVersion.XC08_038 = (22, ‘XC08-038’)

HardwareVersion.XB24_AXX_XX = (23, ‘XB24-Axx-xx’)

HardwareVersion.XBP24_AXX_XX = (24, ‘XBP24-Axx-xx’)

HardwareVersion.XB24_BXIX_XXX = (25, ‘XB24-BxIx-xxx and XB24-Z7xx-xxx’)

HardwareVersion.XBP24_BXIX_XXX = (26, ‘XBP24-BxIx-xxx and XBP24-Z7xx-xxx’)

HardwareVersion.XBP09_DXIX_XXX = (27, ‘XBP09-DxIx-xxx Digi Mesh’)

HardwareVersion.XBP09_XCXX_XXX = (28, ‘XBP09-XCxx-xxx: S3 XSC Compatibility’)

HardwareVersion.XBP08_DXXX_XXX = (29, ‘XBP08-Dxx-xxx 868MHz’)

HardwareVersion.XBP24B = (30, ‘XBP24B: Low cost ZB PRO and PLUS S2B’)

HardwareVersion.XB24_WF = (31, ‘XB24-WF: XBee 802.11 (Redpine module)’)

HardwareVersion.AMBER_MBUS = (32, ‘??????: M-Bus module made by Amber’)

HardwareVersion.XBP24C = (33, ‘XBP24C: XBee PRO SMT Ember 357 S2C PRO’)

HardwareVersion.XB24C = (34, ‘XB24C: XBee SMT Ember 357 S2C’)

HardwareVersion.XSC_GEN3 = (35, ‘XSC_GEN3: XBP9 XSC 24 dBm’)

HardwareVersion.SRD_868_GEN3 = (36, ‘SDR_868_GEN3: XB8 12 dBm’)

HardwareVersion.ABANDONATED = (37, ‘Abandonated’)

HardwareVersion.SMT_900LP = (38, “900LP (SMT): 900LP on ‘S8 HW’”)

HardwareVersion.WIFI_ATHEROS = (39, ‘WiFi Atheros (TH-DIP) XB2S-WF’)

HardwareVersion.SMT_WIFI_ATHEROS = (40, ‘WiFi Atheros (SMT) XB2B-WF’)

HardwareVersion.SMT_475LP = (41, ‘475LP (SMT): Beta 475MHz’)

HardwareVersion.XBEE_CELL_TH = (42, ‘XBee-Cell (TH): XBee Cellular’)

HardwareVersion.XLR_MODULE = (43, ‘XLR Module’)

HardwareVersion.XB900HP_NZ = (44, ‘XB900HP (New Zealand): XB9 NZ HW/SW’)

HardwareVersion.XBP24C_TH_DIP = (45, ‘XBP24C (TH-DIP): XBee PRO DIP’)

HardwareVersion.XB24C_TH_DIP = (46, ‘XB24C (TH-DIP): XBee DIP’)

HardwareVersion.XLR_BASEBOARD = (47, ‘XLR Baseboard’)

HardwareVersion.XBP24C_S2C_SMT = (48, ‘XBee PRO SMT’)

HardwareVersion.SX_PRO = (49, ‘SX Pro’)

HardwareVersion.S2D_SMT_PRO = (50, ‘XBP24D: S2D SMT PRO’)

HardwareVersion.S2D_SMT_REG = (51, ‘XB24D: S2D SMT Reg’)

HardwareVersion.S2D_TH_PRO = (52, ‘XBP24D: S2D TH PRO’)

HardwareVersion.S2D_TH_REG = (53, ‘XB24D: S2D TH Reg’)

HardwareVersion.SX = (62, ‘SX’)

HardwareVersion.XTR = (63, ‘XTR’)

HardwareVersion.CELLULAR_CAT1_LTE_VERIZON = (64, ‘XBee Cellular Cat 1 LTE Verizon’)

HardwareVersion.XBEE3 = (65, ‘XBEE3’)

HardwareVersion.XBEE3_SMT = (66, ‘XBEE3 SMT’)

HardwareVersion.XBEE3_TH = (67, ‘XBEE3 TH’)

HardwareVersion.CELLULAR_3G = (68, ‘XBee Cellular 3G’)

HardwareVersion.XB8X = (69, ‘XB8X’)

HardwareVersion.CELLULAR_LTE_VERIZON = (70, ‘XBee Cellular LTE-M Verizon’)

HardwareVersion.CELLULAR_LTE_ATT = (71, ‘XBee Cellular LTE-M AT&T’)

HardwareVersion.CELLULAR_NBIOT_EUROPE = (72, ‘XBee Cellular NBIoT Europe’)

HardwareVersion.CELLULAR_3_CAT1_LTE_ATT = (73, ‘XBee Cellular 3 Cat 1 LTE AT&T’)

HardwareVersion.CELLULAR_3_LTE_M_VERIZON = (74, ‘XBee Cellular 3 LTE-M Verizon’)

HardwareVersion.CELLULAR_3_LTE_M_ATT = (75, ‘XBee Cellular 3 LTE-M AT&T’)

	
code

	Integer. The hardware version code.

	
description

	String. The hardware version description.

digi.xbee.models.mode module

	
class digi.xbee.models.mode.OperatingMode(code, description)

	Bases: enum.Enum

This class represents all operating modes available.

Inherited properties:

name (String): the name (id) of this OperatingMode.

value (String): the value of this OperatingMode.

Values:

OperatingMode.AT_MODE = (0, ‘AT mode’)

OperatingMode.API_MODE = (1, ‘API mode’)

OperatingMode.ESCAPED_API_MODE = (2, ‘API mode with escaped characters’)

OperatingMode.MICROPYTHON_MODE = (4, ‘MicroPython REPL’)

OperatingMode.BYPASS_MODE = (5, ‘Bypass mode’)

OperatingMode.UNKNOWN = (99, ‘Unknown’)

	
code

	Integer. The operating mode code.

	
description

	The operating mode description.

	Type

	String

	
class digi.xbee.models.mode.APIOutputMode(code, description)

	Bases: enum.Enum

Enumerates the different API output modes. The API output mode establishes
the way data will be output through the serial interface of an XBee device.

Inherited properties:

name (String): the name (id) of this OperatingMode.

value (String): the value of this OperatingMode.

Values:

APIOutputMode.NATIVE = (0, ‘Native’)

APIOutputMode.EXPLICIT = (1, ‘Explicit’)

APIOutputMode.EXPLICIT_ZDO_PASSTHRU = (3, ‘Explicit with ZDO Passthru’)

	
code

	Integer. The API output mode code.

	
description

	The API output mode description.

	Type

	String

	
class digi.xbee.models.mode.APIOutputModeBit(code, description)

	Bases: enum.Enum

Enumerates the different API output mode bit options. The API output mode
establishes the way data will be output through the serial interface of an XBee.

Inherited properties:

name (String): the name (id) of this APIOutputModeBit.

value (String): the value of this APIOutputModeBit.

Values:

APIOutputModeBit.EXPLICIT = (1, ‘Output in Native/Explicit API format’)

APIOutputModeBit.UNSUPPORTED_ZDO_PASSTHRU = (2, ‘Unsupported ZDO request pass-through’)

APIOutputModeBit.SUPPORTED_ZDO_PASSTHRU = (4, ‘Supported ZDO request pass-through’)

APIOutputModeBit.BINDING_PASSTHRU = (8, ‘Binding request pass-through’)

	
code

	Integer. The API output mode bit code.

	
description

	The API output mode bit description.

	Type

	String

	
class digi.xbee.models.mode.IPAddressingMode(code, description)

	Bases: enum.Enum

Enumerates the different IP addressing modes.

Values:

IPAddressingMode.DHCP = (0, ‘DHCP’)

IPAddressingMode.STATIC = (1, ‘Static’)

	
code

	Integer. The IP addressing mode code.

	
description

	String. The IP addressing mode description.

digi.xbee.models.address module

	
class digi.xbee.models.address.XBee16BitAddress(address)

	Bases: object

This class represent a 16-bit network address.

This address is only applicable for:

	802.15.4

	ZigBee

	ZNet 2.5

	XTend (Legacy)

DigiMesh and Point-to-multipoint does not support 16-bit addressing.

Each device has its own 16-bit address which is unique in the network.
It is automatically assigned when the radio joins the network for ZigBee
and Znet 2.5, and manually configured in 802.15.4 radios.

Attributes:

COORDINATOR_ADDRESS (XBee16BitAddress): 16-bit address reserved for the coordinator.

BROADCAST_ADDRESS (XBee16BitAddress): 16-bit broadcast address.

UNKNOWN_ADDRESS (XBee16BitAddress): 16-bit unknown address.

PATTERN (String): Pattern for the 16-bit address string: (0[xX])?[0-9a-fA-F]{1,4}

Class constructor. Instantiates a new XBee16BitAddress object with the provided parameters.

	Parameters

	address (Bytearray) – address as byte array. Must be 1-2 digits.

	Raises

	
	TypeError – if address is None.

	ValueError – if address is None or has less than 1 byte or more than 2.

	
PATTERN = '^(0[xX])?[0-9a-fA-F]{1,4}$'

	16-bit address string pattern.

	
COORDINATOR_ADDRESS = <digi.xbee.models.address.XBee16BitAddress object>

	0000).

	Type

	16-bit address reserved for the coordinator (value

	
BROADCAST_ADDRESS = <digi.xbee.models.address.XBee16BitAddress object>

	FFFF).

	Type

	16-bit broadcast address (value

	
UNKNOWN_ADDRESS = <digi.xbee.models.address.XBee16BitAddress object>

	FFFE).

	Type

	16-bit unknown address (value

	
classmethod from_hex_string(address)

	Class constructor. Instantiates a new :.XBee16BitAddress object from the provided hex string.

	Parameters

	address (String) – String containing the address. Must be made by
hex. digits without blanks. Minimum 1 character, maximum 4 (16-bit).

	Raises

	
	ValueError – if address has less than 1 character.

	ValueError – if address contains non-hexadecimal characters.

	
classmethod from_bytes(hsb, lsb)

	Class constructor. Instantiates a new :.XBee16BitAddress object from the provided high significant byte and
low significant byte.

	Parameters

	
	hsb (Integer) – high significant byte of the address.

	lsb (Integer) – low significant byte of the address.

	Raises

	
	ValueError – if lsb is less than 0 or greater than 255.

	ValueError – if hsb is less than 0 or greater than 255.

	
classmethod is_valid(address)

	Checks if the provided hex string is a valid 16-bit address.

	Parameters

	address (String or Bytearray) – String: String containing the address.
Must be made by hex. digits without blanks. Minimum 1 character, maximum 4 (16-bit).
Bytearray: Address as byte array. Must be 1-2 digits.

	Returns

	True for a valid 16-bit address, False otherwise.

	Return type

	Boolean

	
get_hsb()

	Returns the high part of the bytearray (component 0).

	Returns

	high part of the bytearray.

	Return type

	Integer

	
get_lsb()

	Returns the low part of the bytearray (component 1).

	Returns

	low part of the bytearray.

	Return type

	Integer

	
address

	Bytearray. Bytearray representation of this XBee16BitAddress.

	
class digi.xbee.models.address.XBee64BitAddress(address)

	Bases: object

This class represents a 64-bit address (also known as MAC address).

The 64-bit address is a unique device address assigned during manufacturing.
This address is unique to each physical device.

Class constructor. Instantiates a new XBee64BitAddress object with the provided parameters.

	Parameters

	address (Bytearray) – the XBee 64-bit address as byte array.

	Raise:

	ValueError: if address is None or its length less than 1 or greater than 8.

	
PATTERN = '^(0[xX])?[0-9a-fA-F]{1,16}$'

	64-bit address string pattern.

	
COORDINATOR_ADDRESS = <digi.xbee.models.address.XBee64BitAddress object>

	0000000000000000).

	Type

	64-bit address reserved for the coordinator (value

	
BROADCAST_ADDRESS = <digi.xbee.models.address.XBee64BitAddress object>

	000000000000FFFF).

	Type

	64-bit broadcast address (value

	
UNKNOWN_ADDRESS = <digi.xbee.models.address.XBee64BitAddress object>

	FFFFFFFFFFFFFFFF).

	Type

	64-bit unknown address (value

	
classmethod from_hex_string(address)

	Class constructor. Instantiates a new XBee64BitAddress object from the provided hex string.

	Parameters

	address (String) – The XBee 64-bit address as a string.

	Raises

	ValueError – if the address’ length is less than 1 or does not match
 with the pattern: (0[xX])?[0-9a-fA-F]{1,16}.

	
classmethod from_bytes(*args)

	Class constructor. Instantiates a new XBee64BitAddress object from the provided bytes.

	Parameters

	args (8 Integers) – 8 integers that represent the bytes 1 to 8 of this XBee64BitAddress.

	Raises

	ValueError – if the amount of arguments is not 8 or if any of the arguments is not between 0 and 255.

	
classmethod is_valid(address)

	Checks if the provided hex string is a valid 64-bit address.

	Parameters

	address (String or Bytearray) – The XBee 64-bit address as a string or bytearray.

	Returns

	True for a valid 64-bit address, False otherwise.

	Return type

	Boolean

	
address

	Bytearray. Bytearray representation of this XBee64BitAddress.

	
class digi.xbee.models.address.XBeeIMEIAddress(address)

	Bases: object

This class represents an IMEI address used by cellular devices.

This address is only applicable for Cellular protocol.

Class constructor. Instantiates a new :.XBeeIMEIAddress object with the provided parameters.

	Parameters

	address (Bytearray) – The XBee IMEI address as byte array.

	Raises

	
	ValueError – if address is None.

	ValueError – if length of address greater than 8.

	
PATTERN = '^\\d{0,15}$'

	IMEI address string pattern.

	
classmethod from_string(address)

	Class constructor. Instantiates a new :.XBeeIMEIAddress object from the provided string.

	Parameters

	address (String) – The XBee IMEI address as a string.

	Raises

	
	ValueError – if address is None.

	ValueError – if address does not match the pattern: ^\d{0,15}$.

	
classmethod is_valid(address)

	Checks if the provided hex string is a valid IMEI.

	Parameters

	address (String or Bytearray) – The XBee IMEI address as a string or bytearray.

	Returns

	True for a valid IMEI, False otherwise.

	Return type

	Boolean

	
address

	String. String representation of this XBeeIMEIAddress.

digi.xbee.models.message module

	
class digi.xbee.models.message.XBeeMessage(data, remote_device, timestamp, broadcast=False)

	Bases: object

This class represents a XBee message, which is formed by a RemoteXBeeDevice
(the sender) and some data (the data sent) as a bytearray.

Class constructor.

	Parameters

	
	data (Bytearray) – the data sent.

	remote_device (RemoteXBeeDevice) – the sender.

	broadcast (Boolean, optional, default=``False``) – flag indicating whether the message is
broadcast (True) or not (False). Optional.

	timestamp – instant of time when the message was received.

	
to_dict()

	Returns the message information as a dictionary.

	
data

	Bytearray. Bytearray containing the data of the message.

	
remote_device

	RemoteXBeeDevice. The device that has sent the message.

	
is_broadcast

	Boolean. True to indicate that the message is broadcast, False otherwise.

	
timestamp

	Integer. Instant of time when the message was received.

	
class digi.xbee.models.message.ExplicitXBeeMessage(data, remote_device, timestamp, source_endpoint, dest_endpoint, cluster_id, profile_id, broadcast=False)

	Bases: digi.xbee.models.message.XBeeMessage

This class represents an Explicit XBee message, which is formed by all parameters of a common XBee message and:
Source endpoint, destination endpoint, cluster ID, profile ID.

Class constructor.

	Parameters

	
	data (Bytearray) – the data sent.

	remote_device (RemoteXBeeDevice) – the sender device.

	timestamp – instant of time when the message was received.

	source_endpoint (Integer) – source endpoint of the message. 1 byte.

	dest_endpoint (Integer) – destination endpoint of the message. 1 byte.

	cluster_id (Integer) – cluster id of the message. 2 bytes.

	profile_id (Integer) – profile id of the message. 2 bytes.

	broadcast (Boolean, optional, default=``False``) – flag indicating whether the message is
broadcast (True) or not (False). Optional.

	
to_dict()

	Returns the message information as a dictionary.

	
source_endpoint

	Integer. The source endpoint of the message

	
dest_endpoint

	Integer. The destination endpoint of the message

	
cluster_id

	Integer. The Cluster ID of the message.

	
profile_id

	Integer. The profile ID of the message.

	
data

	Returns the data of the message.

	Returns

	the data of the message.

	Return type

	Bytearray

	
is_broadcast

	Returns whether the message is broadcast or not.

	Returns

	True if the message is broadcast, False otherwise.

	Return type

	Boolean

	
remote_device

	Returns the device which has sent the message.

	Returns

	the device which has sent the message.

	Return type

	RemoteXBeeDevice

	
timestamp

	Returns the moment when the message was received as a time.time()
function returned value.

	Returns

	the returned value of using time.time() function when the message was received.

	Return type

	Float

	
class digi.xbee.models.message.IPMessage(ip_addr, source_port, dest_port, protocol, data)

	Bases: object

This class represents an IP message containing the IP address the message belongs to, the source and destination
ports, the IP protocol, and the content (data) of the message.

Class constructor.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address the message comes from.

	source_port (Integer) – TCP or UDP source port of the transmission.

	dest_port (Integer) – TCP or UDP destination port of the transmission.

	protocol (IPProtocol) – IP protocol used in the transmission.

	data (Bytearray) – the data sent.

	Raises

	
	ValueError – if ip_addr is None.

	ValueError – if protocol is None.

	ValueError – if data is None.

	ValueError – if source_port is less than 0 or greater than 65535.

	ValueError – if dest_port is less than 0 or greater than 65535.

	
to_dict()

	Returns the message information as a dictionary.

	
ip_addr

	ipaddress.IPv4Address. The IPv4 address this message is associated to.

	
source_port

	Integer. The source port of the transmission.

	
dest_port

	Integer. The destination port of the transmission.

	
protocol

	IPProtocol. The protocol used in the transmission.

	
data

	Bytearray. Bytearray containing the data of the message.

	
class digi.xbee.models.message.SMSMessage(phone_number, data)

	Bases: object

This class represents an SMS message containing the phone number that sent
the message and the content (data) of the message.

This class is used within the library to read SMS sent to Cellular devices.

Class constructor. Instantiates a new SMSMessage object with the provided parameters.

	Parameters

	
	phone_number (String) – The phone number that sent the message.

	data (String) – The message text.

	Raises

	
	ValueError – if phone_number is None.

	ValueError – if data is None.

	ValueError – if phone_number is not a valid phone number.

	
to_dict()

	Returns the message information as a dictionary.

	
phone_number

	String. The phone number that sent the message.

	
data

	String. The data of the message.

	
class digi.xbee.models.message.UserDataRelayMessage(local_interface, data)

	Bases: object

This class represents a user data relay message containing the source
interface and the content (data) of the message.

See also

XBeeLocalInterface

Class constructor. Instantiates a new UserDataRelayMessage object with
the provided parameters.

	Parameters

	
	local_interface (XBeeLocalInterface) – The source XBee local interface.

	data (Bytearray) – Byte array containing the data of the message.

	Raises

	ValueError – if relay_interface is None.

See also

XBeeLocalInterface

	
to_dict()

	Returns the message information as a dictionary.

	
local_interface

	XBeeLocalInterface. Source interface that sent the message.

	
data

	Bytearray. The data of the message.

digi.xbee.models.options module

	
class digi.xbee.models.options.ReceiveOptions

	Bases: enum.Enum

This class lists all the possible options that have been set while
receiving an XBee packet.

The receive options are usually set as a bitfield meaning that the
options can be combined using the ‘|’ operand.

Values:

ReceiveOptions.NONE = 0

ReceiveOptions.PACKET_ACKNOWLEDGED = 1

ReceiveOptions.BROADCAST_PACKET = 2

ReceiveOptions.APS_ENCRYPTED = 32

ReceiveOptions.SENT_FROM_END_DEVICE = 64

	
NONE = 0

	No special receive options.

	
PACKET_ACKNOWLEDGED = 1

	Packet was acknowledged.

Not valid for WiFi protocol.

	
BROADCAST_PACKET = 2

	Packet was a broadcast packet.

Not valid for WiFi protocol.

	
APS_ENCRYPTED = 32

	Packet encrypted with APS encryption.

Only valid for ZigBee XBee protocol.

	
SENT_FROM_END_DEVICE = 64

	Packet was sent from an end device (if known).

Only valid for ZigBee XBee protocol.

	
class digi.xbee.models.options.TransmitOptions

	Bases: enum.Enum

This class lists all the possible options that can be set while
transmitting an XBee packet.

The transmit options are usually set as a bitfield meaning that the options
can be combined using the ‘|’ operand.

Not all options are available for all cases, that’s why there are different
names with same values. In each moment, you must be sure that the option
your are going to use, is a valid option in your context.

Values:

TransmitOptions.NONE = 0

TransmitOptions.DISABLE_ACK = 1

TransmitOptions.DONT_ATTEMPT_RD = 2

TransmitOptions.USE_BROADCAST_PAN_ID = 4

TransmitOptions.ENABLE_MULTICAST = 8

TransmitOptions.ENABLE_APS_ENCRYPTION = 32

TransmitOptions.USE_EXTENDED_TIMEOUT = 64

TransmitOptions.REPEATER_MODE = 128

TransmitOptions.DIGIMESH_MODE = 192

	
NONE = 0

	No special transmit options.

	
DISABLE_ACK = 1

	Disables acknowledgments on all unicasts .

Only valid for DigiMesh, 802.15.4 and Point-to-multipoint
protocols.

	
DISABLE_RETRIES_AND_REPAIR = 1

	Disables the retries and router repair in the frame .

Only valid for ZigBee protocol.

	
DONT_ATTEMPT_RD = 2

	Doesn’t attempt Route Discovery .

Disables Route Discovery on all DigiMesh unicasts.

Only valid for DigiMesh protocol.

	
USE_BROADCAST_PAN_ID = 4

	Sends packet with broadcast {@code PAN ID}. Packet will be sent to all
devices in the same channel ignoring the {@code PAN ID}.

It cannot be combined with other options.

Only valid for 802.15.4 XBee protocol.

	
ENABLE_UNICAST_NACK = 4

	Enables unicast NACK messages .

NACK message is enabled on the packet.

Only valid for DigiMesh 868/900 protocol.

	
ENABLE_UNICAST_TRACE_ROUTE = 4

	Enables unicast trace route messages .

Trace route is enabled on the packets.

Only valid for DigiMesh 868/900 protocol.

	
ENABLE_MULTICAST = 8

	Enables multicast transmission request.

Only valid for ZigBee XBee protocol.

	
ENABLE_APS_ENCRYPTION = 32

	Enables APS encryption, only if {@code EE=1} .

Enabling APS encryption decreases the maximum number of RF payload
bytes by 4 (below the value reported by {@code NP}).

Only valid for ZigBee XBee protocol.

	
USE_EXTENDED_TIMEOUT = 64

	Uses the extended transmission timeout .

Setting the extended timeout bit causes the stack to set the
extended transmission timeout for the destination address.

Only valid for ZigBee XBee protocol.

	
POINT_MULTIPOINT_MODE = 64

	Transmission is performed using point-to-Multipoint mode.

Only valid for DigiMesh 868/900 and Point-to-Multipoint 868/900
protocols.

	
REPEATER_MODE = 128

	Transmission is performed using repeater mode .

Only valid for DigiMesh 868/900 and Point-to-Multipoint 868/900
protocols.

	
DIGIMESH_MODE = 192

	Transmission is performed using DigiMesh mode .

Only valid for DigiMesh 868/900 and Point-to-Multipoint 868/900
protocols.

	
class digi.xbee.models.options.RemoteATCmdOptions

	Bases: enum.Enum

This class lists all the possible options that can be set while transmitting
a remote AT Command.

These options are usually set as a bitfield meaning that the options
can be combined using the ‘|’ operand.

Values:

RemoteATCmdOptions.NONE = 0

RemoteATCmdOptions.DISABLE_ACK = 1

RemoteATCmdOptions.APPLY_CHANGES = 2

RemoteATCmdOptions.EXTENDED_TIMEOUT = 64

	
NONE = 0

	No special transmit options

	
DISABLE_ACK = 1

	Disables ACK

	
APPLY_CHANGES = 2

	Applies changes in the remote device.

If this option is not set, AC command must be sent before changes
will take effect.

	
EXTENDED_TIMEOUT = 64

	Uses the extended transmission timeout

Setting the extended timeout bit causes the stack to set the extended
transmission timeout for the destination address.

Only valid for ZigBee XBee protocol.

	
class digi.xbee.models.options.SendDataRequestOptions(code, description)

	Bases: enum.Enum

Enumerates the different options for the SendDataRequestPacket.

Values:

SendDataRequestOptions.OVERWRITE = (0, ‘Overwrite’)

SendDataRequestOptions.ARCHIVE = (1, ‘Archive’)

SendDataRequestOptions.APPEND = (2, ‘Append’)

SendDataRequestOptions.TRANSIENT = (3, ‘Transient data (do not store)’)

	
code

	Integer. The send data request option code.

	
description

	String. The send data request option description.

	
class digi.xbee.models.options.DiscoveryOptions(code, description)

	Bases: enum.Enum

Enumerates the different options used in the discovery process.

Values:

DiscoveryOptions.APPEND_DD = (1, ‘Append device type identifier (DD)’)

DiscoveryOptions.DISCOVER_MYSELF = (2, ‘Local device sends response frame’)

DiscoveryOptions.APPEND_RSSI = (4, ‘Append RSSI (of the last hop)’)

	
APPEND_DD = (1, 'Append device type identifier (DD)')

	Append device type identifier (DD) to the discovery response.

	Valid for the following protocols:

	
	DigiMesh

	Point-to-multipoint (Digi Point)

	ZigBee

	
DISCOVER_MYSELF = (2, 'Local device sends response frame')

	Local device sends response frame when discovery is issued.

	Valid for the following protocols:

	
	DigiMesh

	Point-to-multipoint (Digi Point)

	ZigBee

	802.15.4

	
APPEND_RSSI = (4, 'Append RSSI (of the last hop)')

	Append RSSI of the last hop to the discovery response.

	Valid for the following protocols:

	
	DigiMesh

	Point-to-multipoint (Digi Point)

	
code

	Integer. The discovery option code.

	
description

	String. The discovery option description.

	
class digi.xbee.models.options.XBeeLocalInterface(code, description)

	Bases: enum.Enum

Enumerates the different interfaces for the UserDataRelayPacket
and UserDataRelayOutputPacket.

Inherited properties:

name (String): the name (id) of the XBee local interface.

value (String): the value of the XBee local interface.

Values:

XBeeLocalInterface.SERIAL = (0, ‘Serial port (UART when in API mode, or SPI interface)’)

XBeeLocalInterface.BLUETOOTH = (1, ‘BLE API interface (on XBee devices which support BLE)’)

XBeeLocalInterface.MICROPYTHON = (2, ‘MicroPython’)

XBeeLocalInterface.UNKNOWN = (255, ‘Unknown interface’)

	
code

	Integer. The XBee local interface code.

	
description

	String. The XBee local interface description.

	
class digi.xbee.models.options.RegisterKeyOptions(code, description)

	Bases: enum.Enum

This class lists all the possible options that have been set while
receiving an XBee packet.

The receive options are usually set as a bitfield meaning that the
options can be combined using the ‘|’ operand.

Values:

RegisterKeyOptions.LINK_KEY = (0, ‘Key is a Link Key (KY on joining node)’)

RegisterKeyOptions.INSTALL_CODE = (1, ‘Key is an Install Code (I? on joining node, DC must be set to 1 on joiner)’)

RegisterKeyOptions.UNKNOWN = (255, ‘Unknown key option’)

	
code

	Integer. The register key option code.

	
description

	String. The register key option description.

	
class digi.xbee.models.options.SocketOption(code, description)

	Bases: enum.Enum

Enumerates the different Socket Options.

Values:

SocketOption.TLS_PROFILE = (0, ‘TLS Profile’)

SocketOption.UNKNOWN = (255, ‘Unknown’)

	
code

	Integer. The Socket Option code.

	
description

	String. The Socket Option description.

digi.xbee.models.protocol module

	
class digi.xbee.models.protocol.XBeeProtocol(code, description)

	Bases: enum.Enum

Enumerates the available XBee protocols. The XBee protocol is determined
by the combination of hardware and firmware of an XBee device.

Inherited properties:

name (String): the name (id) of this XBeeProtocol.

value (String): the value of this XBeeProtocol.

Values:

XBeeProtocol.ZIGBEE = (0, ‘ZigBee’)

XBeeProtocol.RAW_802_15_4 = (1, ‘802.15.4’)

XBeeProtocol.XBEE_WIFI = (2, ‘Wi-Fi’)

XBeeProtocol.DIGI_MESH = (3, ‘DigiMesh’)

XBeeProtocol.XCITE = (4, ‘XCite’)

XBeeProtocol.XTEND = (5, ‘XTend (Legacy)’)

XBeeProtocol.XTEND_DM = (6, ‘XTend (DigiMesh)’)

XBeeProtocol.SMART_ENERGY = (7, ‘Smart Energy’)

XBeeProtocol.DIGI_POINT = (8, ‘Point-to-multipoint’)

XBeeProtocol.ZNET = (9, ‘ZNet 2.5’)

XBeeProtocol.XC = (10, ‘XSC’)

XBeeProtocol.XLR = (11, ‘XLR’)

XBeeProtocol.XLR_DM = (12, ‘XLR’)

XBeeProtocol.SX = (13, ‘XBee SX’)

XBeeProtocol.XLR_MODULE = (14, ‘XLR Module’)

XBeeProtocol.CELLULAR = (15, ‘Cellular’)

XBeeProtocol.CELLULAR_NBIOT = (16, ‘Cellular NB-IoT’)

XBeeProtocol.UNKNOWN = (99, ‘Unknown’)

	
code

	Integer. XBee protocol code.

	
description

	String. XBee protocol description.

	
class digi.xbee.models.protocol.IPProtocol(code, description)

	Bases: enum.Enum

Enumerates the available network protocols.

Inherited properties:

name (String): the name (id) of this IPProtocol.

value (String): the value of this IPProtocol.

Values:

IPProtocol.UDP = (0, ‘UDP’)

IPProtocol.TCP = (1, ‘TCP’)

IPProtocol.TCP_SSL = (4, ‘TLS’)

	
code

	IP protocol code.

	Type

	Integer

	
description

	IP protocol description.

	Type

	String

	
class digi.xbee.models.protocol.Role(identifier, description)

	Bases: enum.Enum

Enumerates the available roles for an XBee.

Inherited properties:

name (String): the name (id) of this Role.

value (String): the value of this Role.

Values:

Role.COORDINATOR = (0, ‘Coordinator’)

Role.ROUTER = (1, ‘Router’)

Role.END_DEVICE = (2, ‘End device’)

Role.UNKNOWN = (3, ‘Unknown’)

	
id

	Gets the identifier of the role.

	Returns

	the role identifier.

	Return type

	Integer

	
description

	Gets the description of the role.

	Returns

	the role description.

	Return type

	String

digi.xbee.models.status module

	
class digi.xbee.models.status.ATCommandStatus(code, description)

	Bases: enum.Enum

This class lists all the possible states of an AT command after executing it.

Inherited properties:

name (String): the name (id) of the ATCommandStatus.

value (String): the value of the ATCommandStatus.

Values:

ATCommandStatus.OK = (0, ‘Status OK’)

ATCommandStatus.ERROR = (1, ‘Status Error’)

ATCommandStatus.INVALID_COMMAND = (2, ‘Invalid command’)

ATCommandStatus.INVALID_PARAMETER = (3, ‘Invalid parameter’)

ATCommandStatus.TX_FAILURE = (4, ‘TX failure’)

ATCommandStatus.UNKNOWN = (255, ‘Unknown status’)

	
code

	Integer. The AT command status code.

	
description

	String. The AT command status description.

	
class digi.xbee.models.status.DiscoveryStatus(code, description)

	Bases: enum.Enum

This class lists all the possible states of the discovery process.

Inherited properties:

name (String): The name of the DiscoveryStatus.

value (Integer): The ID of the DiscoveryStatus.

Values:

DiscoveryStatus.NO_DISCOVERY_OVERHEAD = (0, ‘No discovery overhead’)

DiscoveryStatus.ADDRESS_DISCOVERY = (1, ‘Address discovery’)

DiscoveryStatus.ROUTE_DISCOVERY = (2, ‘Route discovery’)

DiscoveryStatus.ADDRESS_AND_ROUTE = (3, ‘Address and route’)

DiscoveryStatus.EXTENDED_TIMEOUT_DISCOVERY = (64, ‘Extended timeout discovery’)

DiscoveryStatus.UNKNOWN = (255, ‘Unknown’)

	
code

	Integer. The discovery status code.

	
description

	String. The discovery status description.

	
class digi.xbee.models.status.TransmitStatus(code, description)

	Bases: enum.Enum

This class represents all available transmit status.

Inherited properties:

name (String): the name (id) of ths TransmitStatus.

value (String): the value of ths TransmitStatus.

Values:

TransmitStatus.SUCCESS = (0, ‘Success.’)

TransmitStatus.NO_ACK = (1, ‘No acknowledgement received.’)

TransmitStatus.CCA_FAILURE = (2, ‘CCA failure.’)

TransmitStatus.PURGED = (3, ‘Transmission purged, it was attempted before stack was up.’)

TransmitStatus.WIFI_PHYSICAL_ERROR = (4, ‘Physical error occurred on the interface with the WiFi transceiver.’)

TransmitStatus.INVALID_DESTINATION = (21, ‘Invalid destination endpoint.’)

TransmitStatus.NO_BUFFERS = (24, ‘No buffers.’)

TransmitStatus.NETWORK_ACK_FAILURE = (33, ‘Network ACK Failure.’)

TransmitStatus.NOT_JOINED_NETWORK = (34, ‘Not joined to network.’)

TransmitStatus.SELF_ADDRESSED = (35, ‘Self-addressed.’)

TransmitStatus.ADDRESS_NOT_FOUND = (36, ‘Address not found.’)

TransmitStatus.ROUTE_NOT_FOUND = (37, ‘Route not found.’)

TransmitStatus.BROADCAST_FAILED = (38, ‘Broadcast source failed to hear a neighbor relay the message.’)

TransmitStatus.INVALID_BINDING_TABLE_INDEX = (43, ‘Invalid binding table index.’)

TransmitStatus.INVALID_ENDPOINT = (44, ‘Invalid endpoint’)

TransmitStatus.BROADCAST_ERROR_APS = (45, ‘Attempted broadcast with APS transmission.’)

TransmitStatus.BROADCAST_ERROR_APS_EE0 = (46, ‘Attempted broadcast with APS transmission, but EE=0.’)

TransmitStatus.SOFTWARE_ERROR = (49, ‘A software error occurred.’)

TransmitStatus.RESOURCE_ERROR = (50, ‘Resource error lack of free buffers, timers, etc.’)

TransmitStatus.PAYLOAD_TOO_LARGE = (116, ‘Data payload too large.’)

TransmitStatus.INDIRECT_MESSAGE_UNREQUESTED = (117, ‘Indirect message unrequested’)

TransmitStatus.SOCKET_CREATION_FAILED = (118, ‘Attempt to create a client socket failed.’)

TransmitStatus.IP_PORT_NOT_EXIST = (119, “TCP connection to given IP address and port doesn’t exist. Source port is non-zero so that a new connection is not attempted.”)

TransmitStatus.UDP_SRC_PORT_NOT_MATCH_LISTENING_PORT = (120, “Source port on a UDP transmission doesn’t match a listening port on the transmitting module.”)

TransmitStatus.TCP_SRC_PORT_NOT_MATCH_LISTENING_PORT = (121, “Source port on a TCP transmission doesn’t match a listening port on the transmitting module.”)

TransmitStatus.INVALID_IP_ADDRESS = (122, ‘Destination IPv4 address is not valid.’)

TransmitStatus.INVALID_IP_PROTOCOL = (123, ‘Protocol on an IPv4 transmission is not valid.’)

TransmitStatus.RELAY_INTERFACE_INVALID = (124, “Destination interface on a User Data Relay Frame doesn’t exist.”)

TransmitStatus.RELAY_INTERFACE_REJECTED = (125, ‘Destination interface on a User Data Relay Frame exists, but the interface is not accepting data.’)

TransmitStatus.SOCKET_CONNECTION_REFUSED = (128, ‘Destination server refused the connection.’)

TransmitStatus.SOCKET_CONNECTION_LOST = (129, ‘The existing connection was lost before the data was sent.’)

TransmitStatus.SOCKET_ERROR_NO_SERVER = (130, ‘The attempted connection timed out.’)

TransmitStatus.SOCKET_ERROR_CLOSED = (131, ‘The existing connection was closed.’)

TransmitStatus.SOCKET_ERROR_UNKNOWN_SERVER = (132, ‘The server could not be found.’)

TransmitStatus.SOCKET_ERROR_UNKNOWN_ERROR = (133, ‘An unknown error occurred.’)

TransmitStatus.INVALID_TLS_CONFIGURATION = (134, “TLS Profile on a 0x23 API request doesn’t exist, or one or more certificates is not valid.”)

TransmitStatus.KEY_NOT_AUTHORIZED = (187, ‘Key not authorized.’)

TransmitStatus.UNKNOWN = (255, ‘Unknown.’)

	
code

	Integer. The transmit status code.

	
description

	String. The transmit status description.

	
class digi.xbee.models.status.ModemStatus(code, description)

	Bases: enum.Enum

Enumerates the different modem status events. This enumeration list is
intended to be used within the ModemStatusPacket packet.

Values:

ModemStatus.HARDWARE_RESET = (0, ‘Device was reset’)

ModemStatus.WATCHDOG_TIMER_RESET = (1, ‘Watchdog timer was reset’)

ModemStatus.JOINED_NETWORK = (2, ‘Device joined to network’)

ModemStatus.DISASSOCIATED = (3, ‘Device disassociated’)

ModemStatus.ERROR_SYNCHRONIZATION_LOST = (4, ‘Configuration error/synchronization lost’)

ModemStatus.COORDINATOR_REALIGNMENT = (5, ‘Coordinator realignment’)

ModemStatus.COORDINATOR_STARTED = (6, ‘The coordinator started’)

ModemStatus.NETWORK_SECURITY_KEY_UPDATED = (7, ‘Network security key was updated’)

ModemStatus.NETWORK_WOKE_UP = (11, ‘Network Woke Up’)

ModemStatus.NETWORK_WENT_TO_SLEEP = (12, ‘Network Went To Sleep’)

ModemStatus.VOLTAGE_SUPPLY_LIMIT_EXCEEDED = (13, ‘Voltage supply limit exceeded’)

ModemStatus.REMOTE_MANAGER_CONNECTED = (14, ‘Remote Manager connected’)

ModemStatus.REMOTE_MANAGER_DISCONNECTED = (15, ‘Remote Manager disconnected’)

ModemStatus.MODEM_CONFIG_CHANGED_WHILE_JOINING = (17, ‘Modem configuration changed while joining’)

ModemStatus.BLUETOOTH_CONNECTED = (50, ‘A Bluetooth connection has been made and API mode has been unlocked.’)

ModemStatus.BLUETOOTH_DISCONNECTED = (51, ‘An unlocked Bluetooth connection has been disconnected.’)

ModemStatus.BANDMASK_CONFIGURATION_ERROR = (52, ‘LTE-M/NB-IoT bandmask configuration has failed.’)

ModemStatus.ERROR_STACK = (128, ‘Stack error’)

ModemStatus.ERROR_AP_NOT_CONNECTED = (130, ‘Send/join command issued without connecting from AP’)

ModemStatus.ERROR_AP_NOT_FOUND = (131, ‘Access point not found’)

ModemStatus.ERROR_PSK_NOT_CONFIGURED = (132, ‘PSK not configured’)

ModemStatus.ERROR_SSID_NOT_FOUND = (135, ‘SSID not found’)

ModemStatus.ERROR_FAILED_JOIN_SECURITY = (136, ‘Failed to join with security enabled’)

ModemStatus.ERROR_INVALID_CHANNEL = (138, ‘Invalid channel’)

ModemStatus.ERROR_FAILED_JOIN_AP = (142, ‘Failed to join access point’)

ModemStatus.UNKNOWN = (255, ‘UNKNOWN’)

	
code

	Integer. The modem status code.

	
description

	String. The modem status description.

	
class digi.xbee.models.status.PowerLevel(code, description)

	Bases: enum.Enum

Enumerates the different power levels. The power level indicates the output
power value of a radio when transmitting data.

Values:

PowerLevel.LEVEL_LOWEST = (0, ‘Lowest’)

PowerLevel.LEVEL_LOW = (1, ‘Low’)

PowerLevel.LEVEL_MEDIUM = (2, ‘Medium’)

PowerLevel.LEVEL_HIGH = (3, ‘High’)

PowerLevel.LEVEL_HIGHEST = (4, ‘Highest’)

PowerLevel.LEVEL_UNKNOWN = (255, ‘Unknown’)

	
code

	Integer. The power level code.

	
description

	String. The power level description.

	
class digi.xbee.models.status.AssociationIndicationStatus(code, description)

	Bases: enum.Enum

Enumerates the different association indication statuses.

Values:

AssociationIndicationStatus.SUCCESSFULLY_JOINED = (0, ‘Successfully formed or joined a network.’)

AssociationIndicationStatus.AS_TIMEOUT = (1, ‘Active Scan Timeout.’)

AssociationIndicationStatus.AS_NO_PANS_FOUND = (2, ‘Active Scan found no PANs.’)

AssociationIndicationStatus.AS_ASSOCIATION_NOT_ALLOWED = (3, ‘Active Scan found PAN, but the CoordinatorAllowAssociation bit is not set.’)

AssociationIndicationStatus.AS_BEACONS_NOT_SUPPORTED = (4, ‘Active Scan found PAN, but Coordinator and End Device are not configured to support beacons.’)

AssociationIndicationStatus.AS_ID_DOESNT_MATCH = (5, ‘Active Scan found PAN, but the Coordinator ID parameter does not match the ID parameter of the End Device.’)

AssociationIndicationStatus.AS_CHANNEL_DOESNT_MATCH = (6, ‘Active Scan found PAN, but the Coordinator CH parameter does not match the CH parameter of the End Device.’)

AssociationIndicationStatus.ENERGY_SCAN_TIMEOUT = (7, ‘Energy Scan Timeout.’)

AssociationIndicationStatus.COORDINATOR_START_REQUEST_FAILED = (8, ‘Coordinator start request failed.’)

AssociationIndicationStatus.COORDINATOR_INVALID_PARAMETER = (9, ‘Coordinator could not start due to invalid parameter.’)

AssociationIndicationStatus.COORDINATOR_REALIGNMENT = (10, ‘Coordinator Realignment is in progress.’)

AssociationIndicationStatus.AR_NOT_SENT = (11, ‘Association Request not sent.’)

AssociationIndicationStatus.AR_TIMED_OUT = (12, ‘Association Request timed out - no reply was received.’)

AssociationIndicationStatus.AR_INVALID_PARAMETER = (13, ‘Association Request had an Invalid Parameter.’)

AssociationIndicationStatus.AR_CHANNEL_ACCESS_FAILURE = (14, ‘Association Request Channel Access Failure. Request was not transmitted - CCA failure.’)

AssociationIndicationStatus.AR_COORDINATOR_ACK_WASNT_RECEIVED = (15, ‘Remote Coordinator did not send an ACK after Association Request was sent.’)

AssociationIndicationStatus.AR_COORDINATOR_DIDNT_REPLY = (16, ‘Remote Coordinator did not reply to the Association Request, but an ACK was received after sending the request.’)

AssociationIndicationStatus.SYNCHRONIZATION_LOST = (18, ‘Sync-Loss - Lost synchronization with a Beaconing Coordinator.’)

AssociationIndicationStatus.DISASSOCIATED = (19, ‘ Disassociated - No longer associated to Coordinator.’)

AssociationIndicationStatus.NO_PANS_FOUND = (33, ‘Scan found no PANs.’)

AssociationIndicationStatus.NO_PANS_WITH_ID_FOUND = (34, ‘Scan found no valid PANs based on current SC and ID settings.’)

AssociationIndicationStatus.NJ_EXPIRED = (35, ‘Valid Coordinator or Routers found, but they are not allowing joining (NJ expired).’)

AssociationIndicationStatus.NO_JOINABLE_BEACONS_FOUND = (36, ‘No joinable beacons were found.’)

AssociationIndicationStatus.UNEXPECTED_STATE = (37, ‘Unexpected state, node should not be attempting to join at this time.’)

AssociationIndicationStatus.JOIN_FAILED = (39, ‘Node Joining attempt failed (typically due to incompatible security settings).’)

AssociationIndicationStatus.COORDINATOR_START_FAILED = (42, ‘Coordinator Start attempt failed.’)

AssociationIndicationStatus.CHECKING_FOR_COORDINATOR = (43, ‘Checking for an existing coordinator.’)

AssociationIndicationStatus.NETWORK_LEAVE_FAILED = (44, ‘Attempt to leave the network failed.’)

AssociationIndicationStatus.DEVICE_DIDNT_RESPOND = (171, ‘Attempted to join a device that did not respond.’)

AssociationIndicationStatus.UNSECURED_KEY_RECEIVED = (172, ‘Secure join error - network security key received unsecured.’)

AssociationIndicationStatus.KEY_NOT_RECEIVED = (173, ‘Secure join error - network security key not received.’)

AssociationIndicationStatus.INVALID_SECURITY_KEY = (175, ‘Secure join error - joining device does not have the right preconfigured link key.’)

AssociationIndicationStatus.SCANNING_NETWORK = (255, ‘Scanning for a network/Attempting to associate.’)

	
code

	Integer. The association indication status code.

	
description

	String. The association indication status description.

	
class digi.xbee.models.status.CellularAssociationIndicationStatus(code, description)

	Bases: enum.Enum

Enumerates the different association indication statuses for the Cellular protocol.

Values:

CellularAssociationIndicationStatus.SUCCESSFULLY_CONNECTED = (0, ‘Connected to the Internet.’)

CellularAssociationIndicationStatus.REGISTERING_CELLULAR_NETWORK = (34, ‘Registering to cellular network’)

CellularAssociationIndicationStatus.CONNECTING_INTERNET = (35, ‘Connecting to the Internet’)

CellularAssociationIndicationStatus.MODEM_FIRMWARE_CORRUPT = (36, ‘The cellular component requires a new firmware image.’)

CellularAssociationIndicationStatus.REGISTRATION_DENIED = (37, ‘Cellular network registration was denied.’)

CellularAssociationIndicationStatus.AIRPLANE_MODE = (42, ‘Airplane mode is active.’)

CellularAssociationIndicationStatus.USB_DIRECT = (43, ‘USB Direct mode is active.’)

CellularAssociationIndicationStatus.PSM_LOW_POWER = (44, ‘The cellular component is in the PSM low-power state.’)

CellularAssociationIndicationStatus.BYPASS_MODE = (47, ‘Bypass mode active’)

CellularAssociationIndicationStatus.INITIALIZING = (255, ‘Initializing’)

	
code

	Integer. The cellular association indication status code.

	
description

	String. The cellular association indication status description.

	
class digi.xbee.models.status.DeviceCloudStatus(code, description)

	Bases: enum.Enum

Enumerates the different Device Cloud statuses.

Values:

DeviceCloudStatus.SUCCESS = (0, ‘Success’)

DeviceCloudStatus.BAD_REQUEST = (1, ‘Bad request’)

DeviceCloudStatus.RESPONSE_UNAVAILABLE = (2, ‘Response unavailable’)

DeviceCloudStatus.DEVICE_CLOUD_ERROR = (3, ‘Device Cloud error’)

DeviceCloudStatus.CANCELED = (32, ‘Device Request canceled by user’)

DeviceCloudStatus.TIME_OUT = (33, ‘Session timed out’)

DeviceCloudStatus.UNKNOWN_ERROR = (64, ‘Unknown error’)

	
code

	Integer. The Device Cloud status code.

	
description

	String. The Device Cloud status description.

	
class digi.xbee.models.status.FrameError(code, description)

	Bases: enum.Enum

Enumerates the different frame errors.

Values:

FrameError.INVALID_TYPE = (2, ‘Invalid frame type’)

FrameError.INVALID_LENGTH = (3, ‘Invalid frame length’)

FrameError.INVALID_CHECKSUM = (4, ‘Erroneous checksum on last frame’)

FrameError.PAYLOAD_TOO_BIG = (5, ‘Payload of last API frame was too big to fit into a buffer’)

FrameError.STRING_ENTRY_TOO_BIG = (6, ‘String entry was too big on last API frame sent’)

FrameError.WRONG_STATE = (7, ‘Wrong state to receive frame’)

FrameError.WRONG_REQUEST_ID = (8, “Device request ID of device response didn’t match the number in the request”)

	
code

	Integer. The frame error code.

	
description

	String. The frame error description.

	
class digi.xbee.models.status.WiFiAssociationIndicationStatus(code, description)

	Bases: enum.Enum

Enumerates the different Wi-Fi association indication statuses.

Values:

WiFiAssociationIndicationStatus.SUCCESSFULLY_JOINED = (0, ‘Successfully joined to access point.’)

WiFiAssociationIndicationStatus.INITIALIZING = (1, ‘Initialization in progress.’)

WiFiAssociationIndicationStatus.INITIALIZED = (2, ‘Initialized, but not yet scanning.’)

WiFiAssociationIndicationStatus.DISCONNECTING = (19, ‘Disconnecting from access point.’)

WiFiAssociationIndicationStatus.SSID_NOT_CONFIGURED = (35, ‘SSID not configured’)

WiFiAssociationIndicationStatus.INVALID_KEY = (36, ‘Encryption key invalid (NULL or invalid length).’)

WiFiAssociationIndicationStatus.JOIN_FAILED = (39, ‘SSID found, but join failed.’)

WiFiAssociationIndicationStatus.WAITING_FOR_AUTH = (64, ‘Waiting for WPA or WPA2 authentication.’)

WiFiAssociationIndicationStatus.WAITING_FOR_IP = (65, ‘Joined to a network and waiting for IP address.’)

WiFiAssociationIndicationStatus.SETTING_UP_SOCKETS = (66, ‘Joined to a network and IP configured. Setting up listening sockets.’)

WiFiAssociationIndicationStatus.SCANNING_FOR_SSID = (255, ‘Scanning for the configured SSID.’)

	
code

	Integer. The Wi-Fi association indication status code.

	
description

	String. The Wi-Fi association indication status description.

	
class digi.xbee.models.status.NetworkDiscoveryStatus(code, description)

	Bases: enum.Enum

Enumerates the different statuses of the network discovery process.

Values:

NetworkDiscoveryStatus.SUCCESS = (0, ‘Success’)

NetworkDiscoveryStatus.ERROR_READ_TIMEOUT = (1, ‘Read timeout error’)

NetworkDiscoveryStatus.ERROR_NET_DISCOVER = (2, ‘Error executing network discovery’)

	
code

	Integer. The network discovery status code.

	
description

	String. The network discovery status description.

	
class digi.xbee.models.status.ZigbeeRegisterStatus(code, description)

	Bases: enum.Enum

Enumerates the different statuses of the Zigbee Device Register process.

Values:

ZigbeeRegisterStatus.SUCCESS = (0, ‘Success’)

ZigbeeRegisterStatus.KEY_TOO_LONG = (1, ‘Key too long’)

ZigbeeRegisterStatus.ADDRESS_NOT_FOUND = (177, ‘Address not found in the key table’)

ZigbeeRegisterStatus.INVALID_KEY = (178, ‘Key is invalid (00 and FF are reserved)’)

ZigbeeRegisterStatus.INVALID_ADDRESS = (179, ‘Invalid address’)

ZigbeeRegisterStatus.KEY_TABLE_FULL = (180, ‘Key table is full’)

ZigbeeRegisterStatus.KEY_NOT_FOUND = (255, ‘Key not found’)

ZigbeeRegisterStatus.UNKNOWN = (238, ‘Unknown’)

	
code

	Integer. The Zigbee Device Register status code.

	
description

	String. The Zigbee Device Register status description.

	
class digi.xbee.models.status.SocketStatus(code, description)

	Bases: enum.Enum

Enumerates the different Socket statuses.

Values:

SocketStatus.SUCCESS = (0, ‘Operation successful’)

SocketStatus.INVALID_PARAM = (1, ‘Invalid parameters’)

SocketStatus.FAILED_TO_READ = (2, ‘Failed to retrieve option value’)

SocketStatus.CONNECTION_IN_PROGRESS = (3, ‘Connection already in progress’)

SocketStatus.ALREADY_CONNECTED = (4, ‘Already connected/bound/listening’)

SocketStatus.UNKNOWN_ERROR = (5, ‘Unknown error’)

SocketStatus.BAD_SOCKET = (32, ‘Bad socket ID’)

SocketStatus.NOT_REGISTERED = (34, ‘Not registered to cell network’)

SocketStatus.INTERNAL_ERROR = (49, ‘Internal error’)

SocketStatus.RESOURCE_ERROR = (50, ‘Resource error: retry the operation later’)

SocketStatus.INVALID_PROTOCOL = (123, ‘Invalid protocol’)

SocketStatus.UNKNOWN = (255, ‘Unknown’)

	
code

	Integer. The Socket status code.

	
description

	String. The Socket status description.

	
class digi.xbee.models.status.SocketState(code, description)

	Bases: enum.Enum

Enumerates the different Socket states.

Values:

SocketState.CONNECTED = (0, ‘Connected’)

SocketState.FAILED_DNS = (1, ‘Failed DNS lookup’)

SocketState.CONNECTION_REFUSED = (2, ‘Connection refused’)

SocketState.TRANSPORT_CLOSED = (3, ‘Transport closed’)

SocketState.TIMED_OUT = (4, ‘Timed out’)

SocketState.INTERNAL_ERROR = (5, ‘Internal error’)

SocketState.HOST_UNREACHABLE = (6, ‘Host unreachable’)

SocketState.CONNECTION_LOST = (7, ‘Connection lost’)

SocketState.UNKNOWN_ERROR = (8, ‘Unknown error’)

SocketState.UNKNOWN_SERVER = (9, ‘Unknown server’)

SocketState.RESOURCE_ERROR = (10, ‘Resource error’)

SocketState.LISTENER_CLOSED = (11, ‘Listener closed’)

SocketState.UNKNOWN = (255, ‘Unknown’)

	
code

	Integer. The Socket state code.

	
description

	String. The Socket state description.

	
class digi.xbee.models.status.SocketInfoState(code, description)

	Bases: enum.Enum

Enumerates the different Socket info states.

Values:

SocketInfoState.ALLOCATED = (0, ‘Allocated’)

SocketInfoState.CONNECTING = (1, ‘Connecting’)

SocketInfoState.CONNECTED = (2, ‘Connected’)

SocketInfoState.LISTENING = (3, ‘Listening’)

SocketInfoState.BOUND = (4, ‘Bound’)

SocketInfoState.CLOSING = (5, ‘Closing’)

SocketInfoState.UNKNOWN = (255, ‘Unknown’)

	
code

	Integer. The Socket info state code.

	
description

	String. The Socket info state description.

digi.xbee.packets package

Submodules

	digi.xbee.packets.aft module

	digi.xbee.packets.base module

	digi.xbee.packets.cellular module

	digi.xbee.packets.common module

	digi.xbee.packets.devicecloud module

	digi.xbee.packets.network module

	digi.xbee.packets.raw module

	digi.xbee.packets.relay module

	digi.xbee.packets.socket module

	digi.xbee.packets.wifi module

	digi.xbee.packets.zigbee module

	digi.xbee.packets.factory module

digi.xbee.packets.aft module

	
class digi.xbee.packets.aft.ApiFrameType(code, description)

	Bases: enum.Enum

This enumeration lists all the available frame types used in any XBee protocol.

Inherited properties:

name (String): the name (id) of this ApiFrameType.

value (String): the value of this ApiFrameType.

Values:

ApiFrameType.TX_64 = (0, ‘TX (Transmit) Request 64-bit address’)

ApiFrameType.TX_16 = (1, ‘TX (Transmit) Request 16-bit address’)

ApiFrameType.REMOTE_AT_COMMAND_REQUEST_WIFI = (7, ‘Remote AT Command Request (Wi-Fi)’)

ApiFrameType.AT_COMMAND = (8, ‘AT Command’)

ApiFrameType.AT_COMMAND_QUEUE = (9, ‘AT Command Queue’)

ApiFrameType.TRANSMIT_REQUEST = (16, ‘Transmit Request’)

ApiFrameType.EXPLICIT_ADDRESSING = (17, ‘Explicit Addressing Command Frame’)

ApiFrameType.REMOTE_AT_COMMAND_REQUEST = (23, ‘Remote AT Command Request’)

ApiFrameType.TX_SMS = (31, ‘TX SMS’)

ApiFrameType.TX_IPV4 = (32, ‘TX IPv4’)

ApiFrameType.REGISTER_JOINING_DEVICE = (36, ‘Register Joining Device’)

ApiFrameType.SEND_DATA_REQUEST = (40, ‘Send Data Request’)

ApiFrameType.DEVICE_RESPONSE = (42, ‘Device Response’)

ApiFrameType.USER_DATA_RELAY_REQUEST = (45, ‘User Data Relay Request’)

ApiFrameType.SOCKET_CREATE = (64, ‘Socket Create’)

ApiFrameType.SOCKET_OPTION_REQUEST = (65, ‘Socket Option Request’)

ApiFrameType.SOCKET_CONNECT = (66, ‘Socket Connect’)

ApiFrameType.SOCKET_CLOSE = (67, ‘Socket Close’)

ApiFrameType.SOCKET_SEND = (68, ‘Socket Send (Transmit)’)

ApiFrameType.SOCKET_SENDTO = (69, ‘Socket SendTo (Transmit Explicit Data): IPv4’)

ApiFrameType.SOCKET_BIND = (70, ‘Socket Bind/Listen’)

ApiFrameType.RX_64 = (128, ‘RX (Receive) Packet 64-bit Address’)

ApiFrameType.RX_16 = (129, ‘RX (Receive) Packet 16-bit Address’)

ApiFrameType.RX_IO_64 = (130, ‘IO Data Sample RX 64-bit Address Indicator’)

ApiFrameType.RX_IO_16 = (131, ‘IO Data Sample RX 16-bit Address Indicator’)

ApiFrameType.REMOTE_AT_COMMAND_RESPONSE_WIFI = (135, ‘Remote AT Command Response (Wi-Fi)’)

ApiFrameType.AT_COMMAND_RESPONSE = (136, ‘AT Command Response’)

ApiFrameType.TX_STATUS = (137, ‘TX (Transmit) Status’)

ApiFrameType.MODEM_STATUS = (138, ‘Modem Status’)

ApiFrameType.TRANSMIT_STATUS = (139, ‘Transmit Status’)

ApiFrameType.IO_DATA_SAMPLE_RX_INDICATOR_WIFI = (143, ‘IO Data Sample RX Indicator (Wi-Fi)’)

ApiFrameType.RECEIVE_PACKET = (144, ‘Receive Packet’)

ApiFrameType.EXPLICIT_RX_INDICATOR = (145, ‘Explicit RX Indicator’)

ApiFrameType.IO_DATA_SAMPLE_RX_INDICATOR = (146, ‘IO Data Sample RX Indicator’)

ApiFrameType.REMOTE_AT_COMMAND_RESPONSE = (151, ‘Remote Command Response’)

ApiFrameType.RX_SMS = (159, ‘RX SMS’)

ApiFrameType.REGISTER_JOINING_DEVICE_STATUS = (164, ‘Register Joining Device Status’)

ApiFrameType.USER_DATA_RELAY_OUTPUT = (173, ‘User Data Relay Output’)

ApiFrameType.RX_IPV4 = (176, ‘RX IPv4’)

ApiFrameType.SEND_DATA_RESPONSE = (184, ‘Send Data Response’)

ApiFrameType.DEVICE_REQUEST = (185, ‘Device Request’)

ApiFrameType.DEVICE_RESPONSE_STATUS = (186, ‘Device Response Status’)

ApiFrameType.SOCKET_CREATE_RESPONSE = (192, ‘Socket Create Response’)

ApiFrameType.SOCKET_OPTION_RESPONSE = (193, ‘Socket Option Response’)

ApiFrameType.SOCKET_CONNECT_RESPONSE = (194, ‘Socket Connect Response’)

ApiFrameType.SOCKET_CLOSE_RESPONSE = (195, ‘Socket Close Response’)

ApiFrameType.SOCKET_LISTEN_RESPONSE = (198, ‘Socket Listen Response’)

ApiFrameType.SOCKET_NEW_IPV4_CLIENT = (204, ‘Socket New IPv4 Client’)

ApiFrameType.SOCKET_RECEIVE = (205, ‘Socket Receive’)

ApiFrameType.SOCKET_RECEIVE_FROM = (206, ‘Socket Receive From’)

ApiFrameType.SOCKET_STATE = (207, ‘Socket State’)

ApiFrameType.FRAME_ERROR = (254, ‘Frame Error’)

ApiFrameType.GENERIC = (255, ‘Generic’)

ApiFrameType.UNKNOWN = (-1, ‘Unknown Packet’)

	
code

	Integer. The API frame type code.

	
description

	String. The API frame type description.

digi.xbee.packets.base module

	
class digi.xbee.packets.base.DictKeys

	Bases: enum.Enum

This enumeration contains all keys used in dictionaries returned by to_dict()
method of XBeePacket.

	
class digi.xbee.packets.base.XBeePacket

	Bases: object

This abstract class represents the basic structure of an XBee packet.

Derived classes should implement their own payload generation depending on their type.

Generic actions like checksum compute or packet length calculation is performed here.

Class constructor. Instantiates a new XBeePacket object.

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static create_packet(raw, operating_mode)

	Abstract method.
Creates a full XBeePacket with the given parameters.
This function ensures that the XBeePacket returned is valid and is well built (if not exceptions are raised).

If _OPERATING_MODE is API2 (API escaped) this method des-escape ‘raw’ and build the XBeePacket.
Then, you can use XBeePacket.output() to get the escaped bytearray or not escaped.

	Parameters

	
	raw (Bytearray) – bytearray with which the frame will be built. Must be a full frame
represented by a bytearray.

	operating_mode (OperatingMode) – The mode in which the frame (‘byteArray’) was captured.

	Returns

	the XBee packet created.

	Return type

	XBeePacket

	Raises

	InvalidPacketException – if something is wrong with raw and the packet cannot be built well.

	
get_frame_spec_data()

	Returns the data between the length field and the checksum field as bytearray.
This data is never escaped.

	Returns

	the data between the length field and the checksum field as bytearray.

	Return type

	Bytearray

See also

factory

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.base.XBeeAPIPacket(api_frame_type)

	Bases: digi.xbee.packets.base.XBeePacket

This abstract class provides the basic structure of a API frame.

Derived classes should implement their own methods to generate the API
data and frame ID in case they support it.

Basic operations such as frame type retrieval are performed in this class.

See also

XBeePacket

Class constructor. Instantiates a new XBeeAPIPacket object with the provided parameters.

	Parameters

	api_frame_type (ApiFrameType or Integer) – The API frame type.

See also

ApiFrameType

XBeePacket

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
needs_id()

	Returns whether the packet requires frame ID or not.

	Returns

	True if the packet needs frame ID, False otherwise.

	Return type

	Boolean

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
static create_packet(raw, operating_mode)

	Abstract method.
Creates a full XBeePacket with the given parameters.
This function ensures that the XBeePacket returned is valid and is well built (if not exceptions are raised).

If _OPERATING_MODE is API2 (API escaped) this method des-escape ‘raw’ and build the XBeePacket.
Then, you can use XBeePacket.output() to get the escaped bytearray or not escaped.

	Parameters

	
	raw (Bytearray) – bytearray with which the frame will be built. Must be a full frame
represented by a bytearray.

	operating_mode (OperatingMode) – The mode in which the frame (‘byteArray’) was captured.

	Returns

	the XBee packet created.

	Return type

	XBeePacket

	Raises

	InvalidPacketException – if something is wrong with raw and the packet cannot be built well.

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.base.GenericXBeePacket(rf_data)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a basic and Generic XBee packet.

See also

XBeeAPIPacket

Class constructor. Instantiates a GenericXBeePacket object with the provided parameters.

	Parameters

	rf_data (bytearray) – the frame specific data without frame type and frame ID.

See also

factory

XBeeAPIPacket

	
static create_packet(raw, operating_mode=<OperatingMode.API_MODE: (1, 'API mode')>)

	Override method.

	Returns

	the GenericXBeePacket generated.

	Return type

	GenericXBeePacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 5. (start delim. + length (2 bytes) +
 frame type + checksum = 5 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is different than ApiFrameType.GENERIC.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.base.UnknownXBeePacket(api_frame, rf_data)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an unknown XBee packet.

See also

XBeeAPIPacket

Class constructor. Instantiates a UnknownXBeePacket object with the provided parameters.

	Parameters

	
	api_frame (Integer) – the API frame integer value of this packet.

	rf_data (bytearray) – the frame specific data without frame type and frame ID.

See also

factory

XBeeAPIPacket

	
static create_packet(raw, operating_mode=<OperatingMode.API_MODE: (1, 'API mode')>)

	Override method.

	Returns

	the UnknownXBeePacket generated.

	Return type

	UnknownXBeePacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 5. (start delim. + length (2 bytes) +
 frame type + checksum = 5 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

digi.xbee.packets.cellular module

	
digi.xbee.packets.cellular.PATTERN_PHONE_NUMBER = '^\\+?\\d+$'

	Pattern used to validate the phone number parameter of SMS packets.

	
class digi.xbee.packets.cellular.RXSMSPacket(phone_number, data)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an RX (Receive) SMS packet. Packet is built
using the parameters of the constructor or providing a valid byte array.

See also

TXSMSPacket

XBeeAPIPacket

Class constructor. Instantiates a new RXSMSPacket object withe the provided parameters.

	Parameters

	
	phone_number (String) – phone number of the device that sent the SMS.

	data (String) – packet data (text of the SMS).

	Raises

	
	ValueError – if length of phone_number is greater than 20.

	ValueError – if phone_number is not a valid phone number.

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	RXSMSPacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 25. (start delim + length (2 bytes) +
 frame type + phone number (20 bytes) + checksum = 25 bytes)

	InvalidPacketException – if the length field of raw is different than its real length. (length field:
 bytes 2 and 3)

	InvalidPacketException – if the first byte of raw is not the header byte. See SPECIAL_BYTE.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is different than ApiFrameType.RX_SMS.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
get_phone_number_byte_array()

	Returns the phone number byte array.

	Returns

	phone number of the device that sent the SMS.

	Return type

	Bytearray

	
phone_number

	String. Phone number that sent the SMS.

	
data

	String. Data of the SMS.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.cellular.TXSMSPacket(frame_id, phone_number, data)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a TX (Transmit) SMS packet. Packet is built
using the parameters of the constructor or providing a valid byte array.

See also

RXSMSPacket

XBeeAPIPacket

Class constructor. Instantiates a new TXSMSPacket object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID. Must be between 0 and 255.

	phone_number (String) – the phone number.

	data (String) – this packet’s data.

	Raises

	
	ValueError – if frame_id is not between 0 and 255.

	ValueError – if length of phone_number is greater than 20.

	ValueError – if phone_number is not a valid phone number.

See also

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	TXSMSPacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 27. (start delim, length (2 bytes), frame type,
 frame id, transmit options, phone number (20 bytes), checksum)

	InvalidPacketException – if the length field of raw is different than its real length. (length field:
 bytes 2 and 3)

	InvalidPacketException – if the first byte of raw is not the header byte. See SPECIAL_BYTE.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is different than ApiFrameType.TX_SMS.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
get_phone_number_byte_array()

	Returns the phone number byte array.

	Returns

	phone number of the device that sent the SMS.

	Return type

	Bytearray

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
phone_number

	String. Phone number that sent the SMS.

	
data

	String. Data of the SMS.

digi.xbee.packets.common module

	
class digi.xbee.packets.common.ATCommPacket(frame_id, command, parameter=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an AT command packet.

Used to query or set module parameters on the local device. This API
command applies changes after executing the command. (Changes made to
module parameters take effect once changes are applied.).

Command response is received as an ATCommResponsePacket.

See also

ATCommResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new ATCommPacket object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	command (String) – the AT command of the packet. Must be a string.

	parameter (Bytearray, optional) – the AT command parameter. Optional.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if length of command is different than 2.

See also

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	ATCommPacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 6. (start delim. + length (2 bytes) + frame
 type + frame id + checksum = 6 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is different than ApiFrameType.AT_COMMAND.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
command

	String. AT command.

	
parameter

	Bytearray. AT command parameter.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.common.ATCommQueuePacket(frame_id, command, parameter=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an AT command Queue packet.

Used to query or set module parameters on the local device.

In contrast to the ATCommPacket API packet, new parameter
values are queued and not applied until either an ATCommPacket
is sent or the applyChanges() method of the XBeeDevice
class is issued.

Command response is received as an ATCommResponsePacket.

See also

ATCommResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new ATCommQueuePacket object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	command (String) – the AT command of the packet. Must be a string.

	parameter (Bytearray, optional) – the AT command parameter. Optional.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if length of command is different than 2.

See also

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	ATCommQueuePacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 6. (start delim. + length (2 bytes) + frame
 type + frame id + checksum = 6 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is different than ApiFrameType.AT_COMMAND_QUEUE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
command

	String. AT command.

	
parameter

	Bytearray. AT command parameter.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.common.ATCommResponsePacket(frame_id, command, response_status=<ATCommandStatus.OK: (0, 'Status OK')>, comm_value=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an AT command response packet.

In response to an AT command message, the module will send an AT command
response message. Some commands will send back multiple frames (for example,
the ND - Node Discover command).

This packet is received in response of an ATCommPacket.

Response also includes an ATCommandStatus object with the status
of the AT command.

See also

ATCommPacket

ATCommandStatus

XBeeAPIPacket

Class constructor. Instantiates a new ATCommResponsePacket object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet. Must be between 0 and 255.

	command (String) – the AT command of the packet. Must be a string.

	response_status (ATCommandStatus) – the status of the AT command.

	comm_value (Bytearray, optional) – the AT command response value. Optional.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if length of command is different than 2.

See also

ATCommandStatus

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	ATCommResponsePacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 9. (start delim. + length (2 bytes) +
 frame type + frame id + at command (2 bytes) + command status + checksum = 9 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is different than ApiFrameType.AT_COMMAND_RESPONSE.

	InvalidPacketException – if the command status field is not a valid value. See ATCommandStatus.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
command

	String. AT command.

	
command_value

	Bytearray. AT command value.

	
status

	ATCommandStatus. AT command response status.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.common.ReceivePacket(x64bit_addr, x16bit_addr, receive_options, rf_data=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a receive packet. Packet is built using the parameters
of the constructor or providing a valid byte array.

When the module receives an RF packet, it is sent out the UART using this
message type.

This packet is received when external devices send transmit request
packets to this module.

Among received data, some options can also be received indicating
transmission parameters.

See also

TransmitPacket

ReceiveOptions

XBeeAPIPacket

Class constructor. Instantiates a new ReceivePacket object with the provided parameters.

	Parameters

	
	x64bit_addr (XBee64BitAddress) – the 64-bit source address.

	x16bit_addr (XBee16BitAddress) – the 16-bit source address.

	receive_options (Integer) – bitfield indicating the receive options.

	rf_data (Bytearray, optional) – received RF data. Optional.

See also

ReceiveOptions

XBee16BitAddress

XBee64BitAddress

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	ATCommResponsePacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 16. (start delim. + length (2 bytes) + frame
 type + frame id + 64bit addr. + 16bit addr. + Receive options + checksum = 16 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.RECEIVE_PACKET.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
is_broadcast()

	Override method.

See also

XBeeAPIPacket.is_broadcast()

	
x64bit_source_addr

	XBee64BitAddress. 64-bit source address.

	
x16bit_source_addr

	XBee16BitAddress. 16-bit source address.

	
receive_options

	Integer. Receive options bitfield.

	
rf_data

	Bytearray. Received RF data.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.common.RemoteATCommandPacket(frame_id, x64bit_addr, x16bit_addr, transmit_options, command, parameter=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Remote AT command Request packet. Packet is built
using the parameters of the constructor or providing a valid byte array.

Used to query or set module parameters on a remote device. For parameter
changes on the remote device to take effect, changes must be applied, either
by setting the apply changes options bit, or by sending an AC command
to the remote node.

Remote command options are set as a bitfield.

If configured, command response is received as a RemoteATCommandResponsePacket.

See also

RemoteATCommandResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new RemoteATCommandPacket object with the provided parameters.

	Parameters

	
	frame_id (integer) – the frame ID of the packet.

	x64bit_addr (XBee64BitAddress) – the 64-bit destination address.

	x16bit_addr (XBee16BitAddress) – the 16-bit destination address.

	transmit_options (Integer) – bitfield of supported transmission options.

	command (String) – AT command to send.

	parameter (Bytearray, optional) – AT command parameter. Optional.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if length of command is different than 2.

See also

RemoteATCmdOptions

XBee16BitAddress

XBee64BitAddress

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	RemoteATCommandPacket

	Raises

	
	InvalidPacketException – if the Bytearray length is less than 19. (start delim. + length (2 bytes) + frame
 type + frame id + 64bit addr. + 16bit addr. + transmit options + command (2 bytes) + checksum =
 19 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.REMOTE_AT_COMMAND_REQUEST.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
x64bit_dest_addr

	XBee64BitAddress. 64-bit destination address.

	
x16bit_dest_addr

	XBee16BitAddress. 16-bit destination address.

	
transmit_options

	Integer. Transmit options bitfield.

	
command

	String. AT command.

	
parameter

	Bytearray. AT command parameter.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.common.RemoteATCommandResponsePacket(frame_id, x64bit_addr, x16bit_addr, command, response_status, comm_value=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a remote AT command response packet. Packet is built
using the parameters of the constructor or providing a valid byte array.

If a module receives a remote command response RF data frame in response
to a remote AT command request, the module will send a remote AT command
response message out the UART. Some commands may send back multiple frames,
for example, Node Discover (ND) command.

This packet is received in response of a RemoteATCommandPacket.

Response also includes an object with the status of the AT command.

See also

RemoteATCommandPacket

ATCommandStatus

XBeeAPIPacket

Class constructor. Instantiates a new RemoteATCommandResponsePacket object with the provided
parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	x64bit_addr (XBee64BitAddress) – the 64-bit source address

	x16bit_addr (XBee16BitAddress) – the 16-bit source address.

	command (String) – the AT command of the packet. Must be a string.

	response_status (ATCommandStatus) – the status of the AT command.

	comm_value (Bytearray, optional) – the AT command response value. Optional.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if length of command is different than 2.

See also

ATCommandStatus

XBee16BitAddress

XBee64BitAddress

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	RemoteATCommandResponsePacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 19. (start delim. + length (2 bytes) + frame
 type + frame id + 64bit addr. + 16bit addr. + receive options + command (2 bytes) + checksum =
 19 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.REMOTE_AT_COMMAND_RESPONSE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
x64bit_source_addr

	XBee64BitAddress. 64-bit source address.

	
x16bit_source_addr

	XBee16BitAddress. 16-bit source address.

	
command

	String. AT command.

	
command_value

	Bytearray. AT command value.

	
status

	ATCommandStatus. AT command response status.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.common.TransmitPacket(frame_id, x64bit_addr, x16bit_addr, broadcast_radius, transmit_options, rf_data=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a transmit request packet. Packet is built using the parameters
of the constructor or providing a valid API byte array.

A transmit request API frame causes the module to send data as an RF
packet to the specified destination.

The 64-bit destination address should be set to 0x000000000000FFFF
for a broadcast transmission (to all devices).

The coordinator can be addressed by either setting the 64-bit address to
all 0x00} and the 16-bit address to 0xFFFE, OR by setting the
64-bit address to the coordinator’s 64-bit address and the 16-bit address to
0x0000.

For all other transmissions, setting the 16-bit address to the correct
16-bit address can help improve performance when transmitting to multiple
destinations.

If a 16-bit address is not known, this field should be set to
0xFFFE (unknown).

The transmit status frame (ApiFrameType.TRANSMIT_STATUS) will
indicate the discovered 16-bit address, if successful (see TransmitStatusPacket).

The broadcast radius can be set from 0 up to NH. If set
to 0, the value of NH specifies the broadcast radius
(recommended). This parameter is only used for broadcast transmissions.

The maximum number of payload bytes can be read with the NP
command.

Several transmit options can be set using the transmit options bitfield.

See also

TransmitOptions

XBee16BitAddress.COORDINATOR_ADDRESS

XBee16BitAddress.UNKNOWN_ADDRESS

XBee64BitAddress.BROADCAST_ADDRESS

XBee64BitAddress.COORDINATOR_ADDRESS

XBeeAPIPacket

Class constructor. Instantiates a new TransmitPacket object with the provided parameters.

	Parameters

	
	frame_id (integer) – the frame ID of the packet.

	x64bit_addr (XBee64BitAddress) – the 64-bit destination address.

	x16bit_addr (XBee16BitAddress) – the 16-bit destination address.

	broadcast_radius (Integer) – maximum number of hops a broadcast transmission can occur.

	transmit_options (Integer) – bitfield of supported transmission options.

	rf_data (Bytearray, optional) – RF data that is sent to the destination device. Optional.

See also

TransmitOptions

XBee16BitAddress

XBee64BitAddress

XBeeAPIPacket

	Raises

	ValueError – if frame_id is less than 0 or greater than 255.

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	TransmitPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 18. (start delim. + length (2 bytes) + frame
 type + frame id + 64bit addr. + 16bit addr. + Receive options + checksum = 16 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.TRANSMIT_REQUEST.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
x64bit_dest_addr

	XBee64BitAddress. 64-bit destination address.

	
x16bit_dest_addr

	XBee16BitAddress. 16-bit destination address.

	
transmit_options

	Integer. Transmit options bitfield.

	
broadcast_radius

	Integer. Broadcast radius.

	
rf_data

	Bytearray. RF data to send.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.common.TransmitStatusPacket(frame_id, x16bit_addr, transmit_retry_count, transmit_status=<TransmitStatus.SUCCESS: (0, 'Success.')>, discovery_status=<DiscoveryStatus.NO_DISCOVERY_OVERHEAD: (0, 'No discovery overhead')>)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a transmit status packet. Packet is built using the
parameters of the constructor or providing a valid raw byte array.

When a Transmit Request is completed, the module sends a transmit status
message. This message will indicate if the packet was transmitted
successfully or if there was a failure.

This packet is the response to standard and explicit transmit requests.

See also

TransmitPacket

Class constructor. Instantiates a new TransmitStatusPacket object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	x16bit_addr (XBee16BitAddress) – 16-bit network address the packet was delivered to.

	transmit_retry_count (Integer) – the number of application transmission retries that took place.

	transmit_status (TransmitStatus, optional) – transmit status. Default: SUCCESS. Optional.

	discovery_status (DiscoveryStatus, optional) – discovery status. Default: NO_DISCOVERY_OVERHEAD.
Optional.

	Raises

	ValueError – if frame_id is less than 0 or greater than 255.

See also

DiscoveryStatus

TransmitStatus

XBee16BitAddress

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	TransmitStatusPacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 11. (start delim. + length (2 bytes) + frame
 type + frame id + 16bit addr. + transmit retry count + delivery status + discovery status + checksum =
 11 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.TRANSMIT_STATUS.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
x16bit_dest_addr

	XBee16BitAddress. 16-bit destination address.

	
transmit_retry_count

	Integer. Transmit retry count value.

	
transmit_status

	TransmitStatus. Transmit status.

	
discovery_status

	DiscoveryStatus. Discovery status.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.common.ModemStatusPacket(modem_status)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a modem status packet. Packet is built using the
parameters of the constructor or providing a valid API raw byte array.

RF module status messages are sent from the module in response to specific
conditions and indicates the state of the modem in that moment.

See also

XBeeAPIPacket

Class constructor. Instantiates a new ModemStatusPacket object with the provided parameters.

	Parameters

	modem_status (ModemStatus) – the modem status event.

See also

ModemStatus

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	ModemStatusPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 6. (start delim. + length (2 bytes) + frame
 type + modem status + checksum = 6 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.MODEM_STATUS.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
modem_status

	ModemStatus. Modem status event.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.common.IODataSampleRxIndicatorPacket(x64bit_addr, x16bit_addr, receive_options, rf_data=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an IO data sample RX indicator packet. Packet is built
using the parameters of the constructor or providing a valid API byte array.

When the module receives an IO sample frame from a remote device, it
sends the sample out the UART using this frame type (when AO=0). Only modules
running API firmware will send IO samples out the UART.

Among received data, some options can also be received indicating
transmission parameters.

See also

XBeeAPIPacket

ReceiveOptions

Class constructor. Instantiates a new IODataSampleRxIndicatorPacket object with the provided
parameters.

	Parameters

	
	x64bit_addr (XBee64BitAddress) – the 64-bit source address.

	x16bit_addr (XBee16BitAddress) – the 16-bit source address.

	receive_options (Integer) – bitfield indicating the receive options.

	rf_data (Bytearray, optional) – received RF data. Optional.

	Raises

	ValueError – if rf_data is not None and it’s not valid for create an IOSample.

See also

IOSample

ReceiveOptions

XBee16BitAddress

XBee64BitAddress

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	IODataSampleRxIndicatorPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 20. (start delim. + length (2 bytes) + frame
 type + 64bit addr. + 16bit addr. + rf data (5 bytes) + checksum = 20 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.IO_DATA_SAMPLE_RX_INDICATOR.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
is_broadcast()

	Override method.

See also

XBeeAPIPacket.is_broadcast()

	
x64bit_source_addr

	XBee64BitAddress. 64-bit source address.

	
x16bit_source_addr

	XBee16BitAddress. 16-bit source address.

	
receive_options

	Integer. Receive options bitfield.

	
rf_data

	Bytearray. Received RF data.

	
io_sample

	IO sample corresponding to the data contained in the packet.

	Type

	IOSample

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.common.ExplicitAddressingPacket(frame_id, x64bit_addr, x16bit_addr, source_endpoint, dest_endpoint, cluster_id, profile_id, broadcast_radius=0, transmit_options=0, rf_data=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an explicit addressing command packet. Packet is
built using the parameters of the constructor or providing a valid API
payload.

Allows application layer fields (endpoint and cluster ID) to be
specified for a data transmission. Similar to the transmit request, but
also requires application layer addressing fields to be specified
(endpoints, cluster ID, profile ID). An explicit addressing request API
frame causes the module to send data as an RF packet to the specified
destination, using the specified source and destination endpoints, cluster
ID, and profile ID.

The 64-bit destination address should be set to 0x000000000000FFFF for
a broadcast transmission (to all devices).

The coordinator can be addressed by either setting the 64-bit address to all
0x00 and the 16-bit address to 0xFFFE, OR by setting the 64-bit
address to the coordinator’s 64-bit address and the 16-bit address to 0x0000.

For all other transmissions, setting the 16-bit address to the correct
16-bit address can help improve performance when transmitting to
multiple destinations.

If a 16-bit address is not known, this field should be set to
0xFFFE (unknown).

The transmit status frame (ApiFrameType.TRANSMIT_STATUS) will
indicate the discovered 16-bit address, if successful (see TransmitStatusPacket)).

The broadcast radius can be set from 0 up to NH. If set
to 0, the value of NH specifies the broadcast radius
(recommended). This parameter is only used for broadcast transmissions.

The maximum number of payload bytes can be read with the NP
command. Note: if source routing is used, the RF payload will be reduced
by two bytes per intermediate hop in the source route.

Several transmit options can be set using the transmit options bitfield.

See also

TransmitOptions

XBee16BitAddress.COORDINATOR_ADDRESS

XBee16BitAddress.UNKNOWN_ADDRESS

XBee64BitAddress.BROADCAST_ADDRESS

XBee64BitAddress.COORDINATOR_ADDRESS

ExplicitRXIndicatorPacket

XBeeAPIPacket

Class constructor. . Instantiates a new ExplicitAddressingPacket object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	x64bit_addr (XBee64BitAddress) – the 64-bit address.

	x16bit_addr (XBee16BitAddress) – the 16-bit address.

	source_endpoint (Integer) – source endpoint. 1 byte.

	dest_endpoint (Integer) – destination endpoint. 1 byte.

	cluster_id (Integer) – cluster id. Must be between 0 and 0xFFFF.

	profile_id (Integer) – profile id. Must be between 0 and 0xFFFF.

	broadcast_radius (Integer) – maximum number of hops a broadcast transmission can occur.

	transmit_options (Integer) – bitfield of supported transmission options.

	rf_data (Bytearray, optional) – RF data that is sent to the destination device. Optional.

	Raises

	
	ValueError – if frame_id, src_endpoint or dst_endpoint are less than 0 or greater than 255.

	ValueError – if lengths of cluster_id or profile_id (respectively) are less than 0 or greater than
 0xFFFF.

See also

XBee16BitAddress

XBee64BitAddress

TransmitOptions

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	ExplicitAddressingPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 24. (start delim. + length (2 bytes) + frame
 type + frame ID + 64bit addr. + 16bit addr. + source endpoint + dest. endpoint + cluster ID (2 bytes) +
 profile ID (2 bytes) + broadcast radius + transmit options + checksum = 24 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is different than ApiFrameType.EXPLICIT_ADDRESSING.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
x64bit_dest_addr

	XBee64BitAddress. 64-bit destination address.

	
x16bit_dest_addr

	XBee16BitAddress. 16-bit destination address.

	
transmit_options

	Integer. Transmit options bitfield.

	
broadcast_radius

	Integer. Broadcast radius.

	
source_endpoint

	Integer. Source endpoint of the transmission.

	
dest_endpoint

	Integer. Destination endpoint of the transmission.

	
cluster_id

	Integer. Cluster ID of the transmission.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
profile_id

	Integer. Profile ID of the transmission.

	
rf_data

	Bytearray. RF data to send.

	
class digi.xbee.packets.common.ExplicitRXIndicatorPacket(x64bit_addr, x16bit_addr, source_endpoint, dest_endpoint, cluster_id, profile_id, receive_options, rf_data=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an explicit RX indicator packet. Packet is
built using the parameters of the constructor or providing a valid API
payload.

When the modem receives an RF packet it is sent out the UART using this
message type (when AO=1).

This packet is received when external devices send explicit addressing
packets to this module.

Among received data, some options can also be received indicating
transmission parameters.

See also

XBeeReceiveOptions

ExplicitAddressingPacket

XBeeAPIPacket

Class constructor. Instantiates a new ExplicitRXIndicatorPacket object with the provided parameters.

	Parameters

	
	x64bit_addr (XBee64BitAddress) – the 64-bit source address.

	x16bit_addr (XBee16BitAddress) – the 16-bit source address.

	source_endpoint (Integer) – source endpoint. 1 byte.

	dest_endpoint (Integer) – destination endpoint. 1 byte.

	cluster_id (Integer) – cluster ID. Must be between 0 and 0xFFFF.

	profile_id (Integer) – profile ID. Must be between 0 and 0xFFFF.

	receive_options (Integer) – bitfield indicating the receive options.

	rf_data (Bytearray, optional) – received RF data. Optional.

	Raises

	
	ValueError – if src_endpoint or dst_endpoint are less than 0 or greater than 255.

	ValueError – if lengths of cluster_id or profile_id (respectively) are different than 2.

See also

XBee16BitAddress

XBee64BitAddress

XBeeReceiveOptions

XBeeAPIPacket

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	ExplicitRXIndicatorPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 22. (start delim. + length (2 bytes) + frame
 type + 64bit addr. + 16bit addr. + source endpoint + dest. endpoint + cluster ID (2 bytes) +
 profile ID (2 bytes) + receive options + checksum = 22 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is different than ApiFrameType.EXPLICIT_RX_INDICATOR.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
is_broadcast()

	Override method.

See also

XBeeAPIPacket.is_broadcast()

	
x64bit_source_addr

	XBee64BitAddress. 64-bit source address.

	
x16bit_source_addr

	XBee16BitAddress. 16-bit source address.

	
receive_options

	Integer. Receive options bitfield.

	
source_endpoint

	Integer. Source endpoint of the transmission.

	
dest_endpoint

	Integer. Destination endpoint of the transmission.

	
cluster_id

	Integer. Cluster ID of the transmission.

	
profile_id

	Integer. Profile ID of the transmission.

	
rf_data

	Bytearray. Received RF data.

digi.xbee.packets.devicecloud module

	
class digi.xbee.packets.devicecloud.DeviceRequestPacket(request_id, target=None, request_data=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a device request packet. Packet is built
using the parameters of the constructor or providing a valid API payload.

This frame type is sent out the serial port when the XBee module receives
a valid device request from Device Cloud.

See also

DeviceResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new DeviceRequestPacket object with the provided parameters.

	Parameters

	
	request_id (Integer) – number that identifies the device request. (0 has no special meaning)

	target (String) – device request target.

	request_data (Bytearray, optional) – data of the request. Optional.

	Raises

	
	ValueError – if request_id is less than 0 or greater than 255.

	ValueError – if length of target is greater than 255.

See also

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	DeviceRequestPacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 9. (start delim. + length (2 bytes) + frame
 type + request id + transport + flags + target length + checksum = 9 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is different than ApiFrameType.DEVICE_REQUEST.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
request_id

	Integer. Request ID of the packet.

	
transport

	Integer. Transport (reserved).

	
flags

	Integer. Flags (reserved).

	
target

	String. Request target of the packet.

	
request_data

	Bytearray. Data of the device request.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.devicecloud.DeviceResponsePacket(frame_id, request_id, response_data=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a device response packet. Packet is built
using the parameters of the constructor or providing a valid API payload.

This frame type is sent to the serial port by the host in response to the
DeviceRequestPacket. It should be sent within five seconds to avoid
a timeout error.

See also

DeviceRequestPacket

XBeeAPIPacket

Class constructor. Instantiates a new DeviceResponsePacket object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	request_id (Integer) – device Request ID. This number should match the device request ID in the
device request. Otherwise, an error will occur. (0 has no special meaning)

	response_data (Bytearray, optional) – data of the response. Optional.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if request_id is less than 0 or greater than 255.

See also

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	DeviceResponsePacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 8. (start delim. + length (2 bytes) + frame
 type + frame id + request id + reserved + checksum = 8 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is different than ApiFrameType.DEVICE_RESPONSE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
request_id

	Integer. Request ID of the packet.

	
request_data

	Bytearray. Data of the device response.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.devicecloud.DeviceResponseStatusPacket(frame_id, status)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a device response status packet. Packet is built
using the parameters of the constructor or providing a valid API payload.

This frame type is sent to the serial port after the serial port sends a
DeviceResponsePacket.

See also

DeviceResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new DeviceResponseStatusPacket object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	status (DeviceCloudStatus) – device response status.

	Raises

	ValueError – if frame_id is less than 0 or greater than 255.

See also

DeviceCloudStatus

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	DeviceResponseStatusPacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 7. (start delim. + length (2 bytes) + frame
 type + frame id + device response status + checksum = 7 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is different than ApiFrameType.DEVICE_RESPONSE_STATUS.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
status

	DeviceCloudStatus. Status of the device response.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.devicecloud.FrameErrorPacket(frame_error)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a frame error packet. Packet is built
using the parameters of the constructor or providing a valid API payload.

This frame type is sent to the serial port for any type of frame error.

See also

FrameError

XBeeAPIPacket

Class constructor. Instantiates a new FrameErrorPacket object with the provided parameters.

	Parameters

	frame_error (FrameError) – the frame error.

See also

FrameError

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	FrameErrorPacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 6. (start delim. + length (2 bytes) + frame
 type + frame error + checksum = 6 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is different than ApiFrameType.FRAME_ERROR.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
error

	FrameError. Frame error of the packet.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.devicecloud.SendDataRequestPacket(frame_id, path, content_type, options, file_data=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a send data request packet. Packet is built
using the parameters of the constructor or providing a valid API payload.

This frame type is used to send a file of the given name and type to
Device Cloud.

If the frame ID is non-zero, a SendDataResponsePacket will be
received.

See also

SendDataResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new SendDataRequestPacket object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	path (String) – path of the file to upload to Device Cloud.

	content_type (String) – content type of the file to upload.

	options (SendDataRequestOptions) – the action when uploading a file.

	file_data (Bytearray, optional) – data of the file to upload. Optional.

	Raises

	ValueError – if frame_id is less than 0 or greater than 255.

See also

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	SendDataRequestPacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 10. (start delim. + length (2 bytes) + frame
 type + frame id + path length + content type length + transport + options + checksum = 10 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is different than ApiFrameType.SEND_DATA_REQUEST.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
path

	String. Path of the file to upload to Device Cloud.

	
content_type

	String. The content type of the file to upload.

	
options

	SendDataRequestOptions. File upload operation options.

	
file_data

	Bytearray. Data of the file to upload.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.devicecloud.SendDataResponsePacket(frame_id, status)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a send data response packet. Packet is built
using the parameters of the constructor or providing a valid API payload.

This frame type is sent out the serial port in response to the
SendDataRequestPacket, providing its frame ID is non-zero.

See also

SendDataRequestPacket

XBeeAPIPacket

Class constructor. Instantiates a new SendDataResponsePacket object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	status (DeviceCloudStatus) – the file upload status.

	Raises

	ValueError – if frame_id is less than 0 or greater than 255.

See also

DeviceCloudStatus

XBeeAPIPacket

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	SendDataResponsePacket

	Raises

	
	InvalidPacketException – if the bytearray length is less than 10. (start delim. + length (2 bytes) + frame
 type + frame id + status + checksum = 7 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is different than ApiFrameType.SEND_DATA_RESPONSE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
status

	DeviceCloudStatus. The file upload status.

digi.xbee.packets.network module

	
class digi.xbee.packets.network.RXIPv4Packet(source_address, dest_port, source_port, ip_protocol, data=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an RX (Receive) IPv4 packet. Packet is built
using the parameters of the constructor or providing a valid byte array.

See also

TXIPv4Packet

XBeeAPIPacket

Class constructor. Instantiates a new RXIPv4Packet object with the provided parameters.

	Parameters

	
	source_address (IPv4Address) – IPv4 address of the source device.

	dest_port (Integer) – destination port number.

	source_port (Integer) – source port number.

	ip_protocol (IPProtocol) – IP protocol used for transmitted data.

	data (Bytearray, optional) – data that is sent to the destination device. Optional.

	Raises

	
	ValueError – if dest_port is less than 0 or greater than 65535 or

	ValueError – if source_port is less than 0 or greater than 65535.

See also

IPProtocol

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	RXIPv4Packet.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 15. (start delim + length (2 bytes) + frame
 type + source address (4 bytes) + dest port (2 bytes) + source port (2 bytes) + network protocol +
 status + checksum = 15 bytes)

	InvalidPacketException – if the length field of raw is different than its real length. (length field:
 bytes 2 and 3)

	InvalidPacketException – if the first byte of raw is not the header byte. See SPECIAL_BYTE.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.RX_IPV4.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
source_address

	ipaddress.IPv4Address. IPv4 address of the source device.

	
dest_port

	Integer. Destination port.

	
source_port

	Integer. Source port.

	
ip_protocol

	IPProtocol. IP protocol used in the transmission.

	
data

	Bytearray. Data of the packet.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.network.TXIPv4Packet(frame_id, dest_address, dest_port, source_port, ip_protocol, transmit_options, data=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an TX (Transmit) IPv4 packet. Packet is built
using the parameters of the constructor or providing a valid byte array.

See also

RXIPv4Packet

XBeeAPIPacket

Class constructor. Instantiates a new TXIPv4Packet object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID. Must be between 0 and 255.

	dest_address (IPv4Address) – IPv4 address of the destination device.

	dest_port (Integer) – destination port number.

	source_port (Integer) – source port number.

	ip_protocol (IPProtocol) – IP protocol used for transmitted data.

	transmit_options (Integer) – the transmit options of the packet.

	data (Bytearray, optional) – data that is sent to the destination device. Optional.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if dest_port is less than 0 or greater than 65535.

	ValueError – if source_port is less than 0 or greater than 65535.

See also

IPProtocol

	
OPTIONS_CLOSE_SOCKET = 2

	This option will close the socket after the transmission.

	
OPTIONS_LEAVE_SOCKET_OPEN = 0

	This option will leave socket open after the transmission.

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	TXIPv4Packet.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 16. (start delim + length (2 bytes) + frame
 type + frame id + dest address (4 bytes) + dest port (2 bytes) + source port (2 bytes) + network
 protocol + transmit options + checksum = 16 bytes)

	InvalidPacketException – if the length field of raw is different than its real length. (length field:
 bytes 2 and 3)

	InvalidPacketException – if the first byte of raw is not the header byte. See SPECIAL_BYTE.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.TX_IPV4.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
dest_address

	ipaddress.IPv4Address. IPv4 address of the destination device.

	
dest_port

	Integer. Destination port.

	
source_port

	Integer. Source port.

	
ip_protocol

	IPProtocol. IP protocol.

	
transmit_options

	Integer. Transmit options.

	
data

	Bytearray. Data of the packet.

digi.xbee.packets.raw module

	
class digi.xbee.packets.raw.TX64Packet(frame_id, x64bit_addr, transmit_options, rf_data=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a TX (Transmit) 64 Request packet. Packet is built
using the parameters of the constructor or providing a valid byte array.

A TX Request message will cause the module to transmit data as an RF
Packet.

See also

XBeeAPIPacket

Class constructor. Instantiates a new TX64Packet object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	x64bit_addr (XBee64BitAddress) – the 64-bit destination address.

	transmit_options (Integer) – bitfield of supported transmission options.

	rf_data (Bytearray, optional) – RF data that is sent to the destination device. Optional.

See also

TransmitOptions

XBee64BitAddress

XBeeAPIPacket

	Raises

	ValueError – if frame_id is less than 0 or greater than 255.

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	TX64Packet.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 15. (start delim. + length (2 bytes) + frame
 type + frame id + 64bit addr. + transmit options + checksum = 15 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is different than ApiFrameType.TX_64.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
x64bit_dest_addr

	XBee64BitAddress. 64-bit destination address.

	
transmit_options

	Integer. Transmit options bitfield.

	
rf_data

	Bytearray. RF data to send.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.raw.TX16Packet(frame_id, x16bit_addr, transmit_options, rf_data=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a TX (Transmit) 16 Request packet. Packet is built
using the parameters of the constructor or providing a valid byte array.

A TX request message will cause the module to transmit data as an RF
packet.

See also

XBeeAPIPacket

Class constructor. Instantiates a new TX16Packet object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	x16bit_addr (XBee16BitAddress) – the 16-bit destination address.

	transmit_options (Integer) – bitfield of supported transmission options.

	rf_data (Bytearray, optional) – RF data that is sent to the destination device. Optional.

See also

TransmitOptions

XBee16BitAddress

XBeeAPIPacket

	Raises

	ValueError – if frame_id is less than 0 or greater than 255.

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	TX16Packet.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 9. (start delim. + length (2 bytes) + frame
 type + frame id + 16bit addr. + transmit options + checksum = 9 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is different than ApiFrameType.TX_16.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
x16bit_dest_addr

	XBee64BitAddress. 16-bit destination address.

	
transmit_options

	Integer. Transmit options bitfield.

	
rf_data

	Bytearray. RF data to send.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.raw.TXStatusPacket(frame_id, transmit_status)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a TX (Transmit) status packet. Packet is built using
the parameters of the constructor or providing a valid API payload.

When a TX request is completed, the module sends a TX status message.
This message will indicate if the packet was transmitted successfully or if
there was a failure.

See also

TX16Packet

TX64Packet

XBeeAPIPacket

Class constructor. Instantiates a new TXStatusPacket object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	transmit_status (TransmitStatus) – transmit status. Default: SUCCESS.

	Raises

	ValueError – if frame_id is less than 0 or greater than 255.

See also

TransmitStatus

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	TXStatusPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 7. (start delim. + length (2 bytes) + frame
 type + frame id + transmit status + checksum = 7 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is different than ApiFrameType.TX_16.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
transmit_status

	TransmitStatus. Transmit status.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.raw.RX64Packet(x64bit_addr, rssi, receive_options, rf_data=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an RX (Receive) 64 request packet. Packet is built
using the parameters of the constructor or providing a valid API byte array.

When the module receives an RF packet, it is sent out the UART using
this message type.

This packet is the response to TX (transmit) 64 request packets.

See also

ReceiveOptions

TX64Packet

XBeeAPIPacket

Class constructor. Instantiates a RX64Packet object with the provided parameters.

	Parameters

	
	x64bit_addr (XBee64BitAddress) – the 64-bit source address.

	rssi (Integer) – received signal strength indicator.

	receive_options (Integer) – bitfield indicating the receive options.

	rf_data (Bytearray, optional) – received RF data. Optional.

See also

ReceiveOptions

XBee64BitAddress

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	RX64Packet

	Raises

	
	InvalidPacketException – if the bytearray length is less than 15. (start delim. + length (2 bytes) + frame
 type + 64bit addr. + rssi + receive options + checksum = 15 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is different than ApiFrameType.RX_64.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
is_broadcast()

	Override method.

See also

XBeeAPIPacket.is_broadcast()

	
x64bit_source_addr

	XBee64BitAddress. 64-bit source address.

	
rssi

	Integer. Received Signal Strength Indicator (RSSI) value.

	
receive_options

	Integer. Receive options bitfield.

	
rf_data

	Bytearray. Received RF data.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.raw.RX16Packet(x16bit_addr, rssi, receive_options, rf_data=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an RX (Receive) 16 Request packet. Packet is built
using the parameters of the constructor or providing a valid API byte array.

When the module receives an RF packet, it is sent out the UART using this
message type

This packet is the response to TX (Transmit) 16 Request packets.

See also

ReceiveOptions

TX16Packet

XBeeAPIPacket

Class constructor. Instantiates a RX16Packet object with the provided parameters.

	Parameters

	
	x16bit_addr (XBee16BitAddress) – the 16-bit source address.

	rssi (Integer) – received signal strength indicator.

	receive_options (Integer) – bitfield indicating the receive options.

	rf_data (Bytearray, optional) – received RF data. Optional.

See also

ReceiveOptions

XBee16BitAddress

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	RX16Packet.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 9. (start delim. + length (2 bytes) + frame
 type + 16bit addr. + rssi + receive options + checksum = 9 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is different than ApiFrameType.RX_16.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
is_broadcast()

	Override method.

See also

XBeeAPIPacket.is_broadcast()

	
x16bit_source_addr

	XBee16BitAddress. 16-bit source address.

	
rssi

	Integer. Received Signal Strength Indicator (RSSI) value.

	
receive_options

	Integer. Receive options bitfield.

	
rf_data

	Bytearray. Received RF data.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.raw.RX64IOPacket(x64bit_addr, rssi, receive_options, rf_data)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an RX64 address IO packet. Packet is built using the
parameters of the constructor or providing a valid API payload.

I/O data is sent out the UART using an API frame.

See also

XBeeAPIPacket

Class constructor. Instantiates an RX64IOPacket object with the provided parameters.

	Parameters

	
	x64bit_addr (XBee64BitAddress) – the 64-bit source address.

	rssi (Integer) – received signal strength indicator.

	receive_options (Integer) – bitfield indicating the receive options.

	rf_data (Bytearray) – received RF data.

See also

ReceiveOptions

XBee64BitAddress

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	RX64IOPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 20. (start delim. + length (2 bytes) + frame
 type + 64bit addr. + rssi + receive options + rf data (5 bytes) + checksum = 20 bytes)

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is different than ApiFrameType.RX_IO_64.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
is_broadcast()

	Override method.

See also

XBeeAPIPacket.is_broadcast()

	
x64bit_source_addr

	XBee64BitAddress. 64-bit source address.

	
rssi

	Integer. Received Signal Strength Indicator (RSSI) value.

	
receive_options

	Integer. Receive options bitfield.

	
rf_data

	Bytearray. Received RF data.

	
io_sample

	IO sample corresponding to the data contained in the packet.

	Type

	IOSample

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.raw.RX16IOPacket(x16bit_addr, rssi, receive_options, rf_data)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents an RX16 address IO packet. Packet is built using the
parameters of the constructor or providing a valid byte array.

I/O data is sent out the UART using an API frame.

See also

XBeeAPIPacket

Class constructor. Instantiates an RX16IOPacket object with the provided parameters.

	Parameters

	
	x16bit_addr (XBee16BitAddress) – the 16-bit source address.

	rssi (Integer) – received signal strength indicator.

	receive_options (Integer) – bitfield indicating the receive options.

	rf_data (Bytearray) – received RF data.

See also

ReceiveOptions

XBee16BitAddress

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	RX16IOPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 14. (start delim. + length (2 bytes) + frame
 type + 16bit addr. + rssi + receive options + rf data (5 bytes) + checksum = 14 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is different than ApiFrameType.RX_IO_16.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
is_broadcast()

	Override method.

See also

XBeeAPIPacket.is_broadcast()

	
x16bit_source_addr

	XBee16BitAddress. 16-bit source address.

	
rssi

	Integer. Received Signal Strength Indicator (RSSI) value.

	
receive_options

	Integer. Receive options bitfield.

	
rf_data

	Bytearray. Received RF data.

	
io_sample

	IO sample corresponding to the data contained in the packet.

	Type

	IOSample

digi.xbee.packets.relay module

	
class digi.xbee.packets.relay.UserDataRelayPacket(frame_id, local_interface, data=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a User Data Relay packet. Packet is built using the
parameters of the constructor.

The User Data Relay packet allows for data to come in on an interface with
a designation of the target interface for the data to be output on.

The destination interface must be one of the interfaces found in the
corresponding enumerator (see XBeeLocalInterface).

See also

UserDataRelayOutputPacket

XBeeAPIPacket

XBeeLocalInterface

Class constructor. Instantiates a new UserDataRelayPacket object with the provided parameters.

	Parameters

	
	frame_id (integer) – the frame ID of the packet.

	local_interface (XBeeLocalInterface) – the destination interface.

	data (Bytearray, optional) – Data to send to the destination interface.

See also

XBeeAPIPacket

XBeeLocalInterface

	Raises

	
	ValueError – if local_interface is None.

	ValueError – if frame_id is less than 0 or greater than 255.

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	UserDataRelayPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 7. (start delim. + length (2 bytes) + frame
 type + frame id + relay interface + checksum = 7 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.USER_DATA_RELAY_REQUEST.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
dest_interface

	XBeeLocalInterface. Destination local interface.

	
data

	Bytearray. Data to send.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.relay.UserDataRelayOutputPacket(local_interface, data=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a User Data Relay Output packet. Packet is built
using the parameters of the constructor.

The User Data Relay Output packet can be received from any relay interface.

The source interface must be one of the interfaces found in the
corresponding enumerator (see XBeeLocalInterface).

See also

UserDataRelayPacket

XBeeAPIPacket

XBeeLocalInterface

Class constructor. Instantiates a new
UserDataRelayOutputPacket object with the provided
parameters.

	Parameters

	
	local_interface (XBeeLocalInterface) – the source interface.

	data (Bytearray, optional) – Data received from the source interface.

	Raises

	ValueError – if local_interface is None.

See also

XBeeAPIPacket

XBeeLocalInterface

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	UserDataRelayOutputPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 6. (start delim. + length (2 bytes) + frame
 type + relay interface + checksum = 6 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.USER_DATA_RELAY_OUTPUT.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
src_interface

	XBeeLocalInterface. Source local interface.

	
data

	Bytearray. Received data.

digi.xbee.packets.socket module

	
class digi.xbee.packets.socket.SocketCreatePacket(frame_id, protocol)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Create packet. Packet is built using the
parameters of the constructor.

Use this frame to create a new socket with the following protocols: TCP,
UDP, or TLS.

See also

SocketCreateResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketCreatePacket object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	protocol (IPProtocol) – the protocol used to create the socket.

See also

XBeeAPIPacket

IPProtocol

	Raises

	ValueError – if frame_id is less than 0 or greater than 255.

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	SocketCreatePacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 7. (start delim. + length (2 bytes) + frame
 type + frame id + protocol + checksum = 7 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.SOCKET_CREATE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
protocol

	IPProtocol. Communication protocol.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketCreateResponsePacket(frame_id, socket_id, status)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Create Response packet. Packet is built using
the parameters of the constructor.

The device sends this frame in response to a Socket Create (0x40) frame. It
contains a socket ID that should be used for future transactions with the
socket and a status field.

If the status field is non-zero, which indicates an error, the socket ID
will be set to 0xFF and the socket will not be opened.

See also

SocketCreatePacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketCreateResponsePacket object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	socket_id (Integer) – the unique socket ID to address the socket.

	status (SocketStatus) – the socket create status.

See also

XBeeAPIPacket

SocketStatus

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if socket_id is less than 0 or greater than 255.

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	SocketCreateResponsePacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 8. (start delim. + length (2 bytes) + frame
 type + frame id + socket id + status + checksum = 8 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.SOCKET_CREATE_RESPONSE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Integer. Socket ID.

	
status

	SocketStatus. Socket create status.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketOptionRequestPacket(frame_id, socket_id, option, option_data=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Option Request packet. Packet is built using
the parameters of the constructor.

Use this frame to modify the behavior of sockets to be different from the
normal default behavior.

If the Option Data field is zero-length, the Socket Option Response Packet
(0xC1) reports the current effective value.

See also

SocketOptionResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketOptionRequestPacket object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	socket_id (Integer) – the socket ID to modify.

	option (SocketOption) – the socket option of the parameter to change.

	option_data (Bytearray, optional) – the option data. Optional.

See also

XBeeAPIPacket

SocketOption

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if socket_id is less than 0 or greater than 255.

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	SocketOptionRequestPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 8. (start delim. + length (2 bytes) + frame
 type + frame id + socket id + option + checksum = 8 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.SOCKET_OPTION_REQUEST.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Integer. Socket ID.

	
option

	SocketOption. Socket option.

	
option_data

	Bytearray. Socket option data.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketOptionResponsePacket(frame_id, socket_id, option, status, option_data=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Option Response packet. Packet is built using
the parameters of the constructor.

Reports the status of requests made with the Socket Option Request (0x41)
packet.

See also

SocketOptionRequestPacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketOptionResponsePacket object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	socket_id (Integer) – the socket ID for which modification was requested.

	option (SocketOption) – the socket option of the parameter requested.

	status (SocketStatus) – the socket option status of the parameter requested.

	option_data (Bytearray, optional) – the option data. Optional.

See also

XBeeAPIPacket

SocketOption

SocketStatus

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if socket_id is less than 0 or greater than 255.

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	SocketOptionResponsePacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 9. (start delim. + length (2 bytes) + frame
 type + frame id + socket id + option + status + checksum = 9 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.SOCKET_OPTION_RESPONSE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Integer. Socket ID.

	
option

	SocketOption. Socket option.

	
status

	SocketStatus. Socket option status

	
option_data

	Bytearray. Socket option data.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketConnectPacket(frame_id, socket_id, dest_port, dest_address_type, dest_address)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Connect packet. Packet is built using the
parameters of the constructor.

Use this frame to create a socket connect message that causes the device to
connect a socket to the given address and port.

For a UDP socket, this filters out any received responses that are not from
the specified remote address and port.

Two frames occur in response:

	Socket Connect Response frame (SocketConnectResponsePacket):
Arrives immediately and confirms the request.

	Socket Status frame (SocketStatePacket): Indicates if the
connection was successful.

See also

SocketConnectResponsePacket

SocketStatePacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketConnectPacket object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	socket_id (Integer) – the ID of the socket to connect.

	dest_port (Integer) – the destination port number.

	dest_address_type (Integer) – the destination address type. One of
SocketConnectPacket.DEST_ADDRESS_BINARY or
SocketConnectPacket.DEST_ADDRESS_STRING.

	dest_address (Bytearray or String) – the destination address.

See also

SocketConnectPacket.DEST_ADDRESS_BINARY

SocketConnectPacket.DEST_ADDRESS_STRING

XBeeAPIPacket

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if socket_id is less than 0 or greater than 255.

	ValueError – if dest_port is less than 0 or greater than 65535.

	ValueError – if dest_address_type is different than SocketConnectPacket.DEST_ADDRESS_BINARY and
 SocketConnectPacket.DEST_ADDRESS_STRING.

	ValueError – if dest_address is None or does not follow the format specified in the configured type.

	
DEST_ADDRESS_BINARY = 0

	Indicates the destination address field is a binary IPv4 address in network byte order.

	
DEST_ADDRESS_STRING = 1

	Indicates the destination address field is a string containing either a dotted quad value or a domain name to be
resolved.

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	SocketConnectPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 11. (start delim. + length (2 bytes) + frame
 type + frame id + socket id + dest port (2 bytes) + dest address type + dest_address + checksum =
 11 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.SOCKET_CONNECT.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Integer. Socket ID.

	
dest_port

	Integer. Destination port.

	
dest_address_type

	Integer. Destination address type.

	
dest_address

	Bytearray. Destination address.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketConnectResponsePacket(frame_id, socket_id, status)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Connect Response packet. Packet is built
using the parameters of the constructor.

The device sends this frame in response to a Socket Connect (0x42) frame.
The frame contains a status regarding the initiation of the connect.

See also

SocketConnectPacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketConnectPacket object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	socket_id (Integer) – the ID of the socket to connect.

	status (SocketStatus) – the socket connect status.

See also

XBeeAPIPacket

SocketStatus

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if socket_id is less than 0 or greater than 255.

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	SocketConnectResponsePacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 8. (start delim. + length (2 bytes) + frame
 type + frame id + socket id + status + checksum = 8 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.SOCKET_CONNECT_RESPONSE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Integer. Socket ID.

	
status

	SocketStatus. Socket connect status.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketClosePacket(frame_id, socket_id)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Close packet. Packet is built using the
parameters of the constructor.

Use this frame to close a socket when given an identifier.

See also

SocketCloseResponsePacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketClosePacket object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	socket_id (Integer) – the ID of the socket to close.

See also

XBeeAPIPacket

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if socket_id is less than 0 or greater than 255.

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	SocketClosePacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 7. (start delim. + length (2 bytes) + frame
 type + frame id + socket id + checksum = 7 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.SOCKET_CLOSE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Integer. Socket ID.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketCloseResponsePacket(frame_id, socket_id, status)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Close Response packet. Packet is built using
the parameters of the constructor.

The device sends this frame in response to a Socket Close (0x43) frame.
Since a close will always succeed for a socket that exists, the status can
be only one of two values:

	Success.

	Bad socket ID.

See also

SocketClosePacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketCloseResponsePacket object with the provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	socket_id (Integer) – the ID of the socket to close.

	status (SocketStatus) – the socket close status.

See also

XBeeAPIPacket

SocketStatus

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if socket_id is less than 0 or greater than 255.

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	SocketCloseResponsePacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 8. (start delim. + length (2 bytes) + frame
 type + frame id + socket id + status + checksum = 8 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.SOCKET_CLOSE_RESPONSE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Integer. Socket ID.

	
status

	SocketStatus. Socket close status.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketSendPacket(frame_id, socket_id, payload=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Send packet. Packet is built using the
parameters of the constructor.

A Socket Send message causes the device to transmit data using the
current connection. For a nonzero frame ID, this will elicit a Transmit
(TX) Status - 0x89 frame (TransmitStatusPacket).

This frame requires a successful Socket Connect - 0x42 frame first
(SocketConnectPacket). For a socket that is not connected, the
device responds with a Transmit (TX) Status - 0x89 frame with an
error.

See also

TransmitStatusPacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketSendPacket object with the
provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	socket_id (Integer) – the socket identifier.

	payload (Bytearray, optional) – data that is sent.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if socket_id is less than 0 or greater than 255.

See also

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	SocketSendPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 7. (start delim. + length (2 bytes) + frame
 type + frame id + socket ID + checksum = 7 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.SOCKET_SEND.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Integer. Socket ID.

	
payload

	Bytearray. Payload to send.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketSendToPacket(frame_id, socket_id, dest_address, dest_port, payload=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Send packet. Packet is built using the
parameters of the constructor.

A Socket SendTo (Transmit Explicit Data) message causes the device to
transmit data using an IPv4 address and port. For a non-zero frame ID,
this will elicit a Transmit (TX) Status - 0x89 frame
(TransmitStatusPacket).

If this frame is used with a TCP, SSL, or a connected UDP socket, the
address and port fields are ignored.

See also

TransmitStatusPacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketSendToPacket object with the
provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	socket_id (Integer) – the socket identifier.

	dest_address (IPv4Address) – IPv4 address of the destination device.

	dest_port (Integer) – destination port number.

	payload (Bytearray, optional) – data that is sent.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if socket_id is less than 0 or greater than 255.

	ValueError – if dest_port is less than 0 or greater than 65535.

See also

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	SocketSendToPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 14. (start delim. + length (2 bytes) + frame
 type + frame id + socket ID + dest address (4 bytes) + dest port (2 bytes) + transmit options +
 checksum = 14 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.SOCKET_SENDTO.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Integer. Socket ID.

	
dest_address

	ipaddress.IPv4Address. IPv4 address of the destination device.

	
dest_port

	Integer. Destination port.

	
payload

	Bytearray. Payload to send.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketBindListenPacket(frame_id, socket_id, source_port)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Bind/Listen packet. Packet is built using the
parameters of the constructor.

Opens a listener socket that listens for incoming connections.

When there is an incoming connection on the listener socket, a Socket New
IPv4 Client - 0xCC frame (SocketNewIPv4ClientPacket) is sent,
indicating the socket ID for the new connection along with the remote
address information.

For a UDP socket, this frame binds the socket to a given port. A bound
UDP socket can receive data with a Socket Receive From: IPv4 - 0xCE frame
(SocketReceiveFromIPv4Packet).

See also

SocketNewIPv4ClientPacket

SocketReceiveFromIPv4Packet

XBeeAPIPacket

Class constructor. Instantiates a new SocketBindListenPacket object with the
provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	socket_id (Integer) – socket ID to listen on.

	source_port (Integer) – the port to listen on.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if socket_id is less than 0 or greater than 255.

	ValueError – if source_port is less than 0 or greater than 65535.

See also

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	SocketBindListenPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 9. (start delim. + length (2 bytes) + frame
 type + frame id + socket ID + source port (2 bytes) + checksum = 9 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.SOCKET_BIND.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Integer. Socket ID.

	
source_port

	Integer. Source port.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketListenResponsePacket(frame_id, socket_id, status)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Listen Response packet. Packet is built using
the parameters of the constructor.

The device sends this frame in response to a Socket Bind/Listen (0x46)
frame (SocketBindListenPacket).

See also

SocketBindListenPacket

XBeeAPIPacket

Class constructor. Instantiates a new SocketListenResponsePacket object with the
provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	socket_id (Integer) – socket ID.

	status (SocketStatus) – socket listen status.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if socket_id is less than 0 or greater than 255.

See also

XBeeAPIPacket

SocketStatus

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	SocketListenResponsePacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 8. (start delim. + length (2 bytes) + frame
 type + frame id + socket ID + status + checksum = 8 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.SOCKET_LISTEN_RESPONSE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Integer. Socket ID.

	
status

	SocketStatus. Socket listen status.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketNewIPv4ClientPacket(socket_id, client_socket_id, remote_address, remote_port)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket New IPv4 Client packet. Packet is built using
the parameters of the constructor.

XBee Cellular modem uses this frame when an incoming connection is
accepted on a listener socket.

This frame contains the original listener’s socket ID and a new socket ID
of the incoming connection, along with the connection’s remote address
information.

See also

XBeeAPIPacket

Class constructor. Instantiates a new SocketNewIPv4ClientPacket object with the
provided parameters.

	Parameters

	
	socket_id (Integer) – the socket ID of the listener socket.

	client_socket_id (Integer) – the socket ID of the new connection.

	remote_address (IPv4Address) – the remote IPv4 address.

	remote_port (Integer) – the remote port number.

	Raises

	
	ValueError – if socket_id is less than 0 or greater than 255.

	ValueError – if client_socket_id is less than 0 or greater than 255.

	ValueError – if remote_port is less than 0 or greater than 65535.

See also

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	SocketNewIPv4ClientPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 13. (start delim. + length (2 bytes) + frame
 type + socket ID + client socket ID + remote address (4 bytes) + remote port (2 bytes)
 + checksum = 13 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.SOCKET_NEW_IPV4_CLIENT.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Integer. Socket ID.

	
client_socket_id

	Integer. Client socket ID.

	
remote_address

	ipaddress.IPv4Address. Remote IPv4 address.

	
remote_port

	Integer. Remote port.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketReceivePacket(frame_id, socket_id, payload=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Receive packet. Packet is built using
the parameters of the constructor.

XBee Cellular modem uses this frame when it receives RF data on the
specified socket.

See also

XBeeAPIPacket

Class constructor. Instantiates a new SocketReceivePacket object with the
provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	socket_id (Integer) – the ID of the socket the data has been received on.

	payload (Bytearray, optional) – data that is received.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if socket_id is less than 0 or greater than 255.

See also

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	SocketReceivePacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 7. (start delim. + length (2 bytes) + frame
 type + frame id + socket ID + checksum = 7 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.SOCKET_RECEIVE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Integer. Socket ID.

	
payload

	Bytearray. Payload that was received.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.socket.SocketReceiveFromPacket(frame_id, socket_id, source_address, source_port, payload=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket Receive From packet. Packet is built using
the parameters of the constructor.

XBee Cellular modem uses this frame when it receives RF data on the
specified socket. The frame also contains addressing information about
the source.

See also

XBeeAPIPacket

Class constructor. Instantiates a new SocketReceiveFromPacket object with the
provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	socket_id (Integer) – the ID of the socket the data has been received on.

	source_address (IPv4Address) – IPv4 address of the source device.

	source_port (Integer) – source port number.

	payload (Bytearray, optional) – data that is received.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if socket_id is less than 0 or greater than 255.

	ValueError – if source_port is less than 0 or greater than 65535.

See also

XBeeAPIPacket

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	SocketReceiveFromPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 13. (start delim. + length (2 bytes) + frame
 type + frame id + socket ID + source address (4 bytes) + source port (2 bytes) + status +
 checksum = 14 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.SOCKET_RECEIVE_FROM.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Integer. Socket ID.

	
source_address

	ipaddress.IPv4Address. IPv4 address of the source device.

	
source_port

	Integer. Source port.

	
payload

	Bytearray. Payload that has been received.

	
class digi.xbee.packets.socket.SocketStatePacket(socket_id, state)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Socket State packet. Packet is built using the
parameters of the constructor.

This frame is sent out the device’s serial port to indicate the state
related to the socket.

See also

XBeeAPIPacket

Class constructor. Instantiates a new SocketStatePacket object with the
provided parameters.

	Parameters

	
	socket_id (Integer) – the socket identifier.

	state (SocketState) – socket status.

	Raises

	ValueError – if socket_id is less than 0 or greater than 255.

See also

SockeState

XBeeAPIPacket

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	SocketStatePacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 7. (start delim. + length (2 bytes) + frame
 type + socket ID + state + checksum = 7 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.SOCKET_STATUS.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
socket_id

	Integer. Socket ID.

	
state

	SocketState. Socket state.

digi.xbee.packets.wifi module

	
class digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket(source_address, rssi, receive_options, rf_data=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a IO data sample RX indicator (Wi-Fi) packet. Packet is
built using the parameters of the constructor or providing a valid API
payload.

When the module receives an IO sample frame from a remote device, it sends
the sample out the UART or SPI using this frame type. Only modules running
API mode will be able to receive IO samples.

Among received data, some options can also be received indicating
transmission parameters.

See also

XBeeAPIPacket

Class constructor. Instantiates a new IODataSampleRxIndicatorWifiPacket object with the
provided parameters.

	Parameters

	
	source_address (ipaddress.IPv4Address) – the 64-bit source address.

	rssi (Integer) – received signal strength indicator.

	receive_options (Integer) – bitfield indicating the receive options.

	rf_data (Bytearray, optional) – received RF data. Optional.

	Raises

	ValueError – if rf_data is not None and it’s not valid for create an IOSample.

See also

IOSample

ipaddress.IPv4Address

ReceiveOptions

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	IODataSampleRxIndicatorWifiPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 16. (start delim. + length (2 bytes) + frame
 type + source addr. (4 bytes) + rssi + receive options + rf data (5 bytes) + checksum = 16 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.IO_DATA_SAMPLE_RX_INDICATOR_WIFI.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
source_address

	ipaddress.IPv4Address. IPv4 source address.

	
rssi

	Integer. Received Signal Strength Indicator (RSSI) value.

	
receive_options

	Integer. Receive options bitfield.

	
rf_data

	Bytearray. Received RF data.

	
io_sample

	IO sample corresponding to the data contained in the packet.

	Type

	IOSample

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.wifi.RemoteATCommandWifiPacket(frame_id, dest_address, transmit_options, command, parameter=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a remote AT command request (Wi-Fi) packet. Packet is
built using the parameters of the constructor or providing a valid API
payload.

Used to query or set module parameters on a remote device. For parameter
changes on the remote device to take effect, changes must be applied, either
by setting the apply changes options bit, or by sending an AC command
to the remote node.

Remote command options are set as a bitfield.

If configured, command response is received as a RemoteATCommandResponseWifiPacket.

See also

RemoteATCommandResponseWifiPacket

XBeeAPIPacket

Class constructor. Instantiates a new RemoteATCommandWifiPacket object with the provided parameters.

	Parameters

	
	frame_id (integer) – the frame ID of the packet.

	dest_address (ipaddress.IPv4Address) – the IPv4 address of the destination device.

	transmit_options (Integer) – bitfield of supported transmission options.

	command (String) – AT command to send.

	parameter (Bytearray, optional) – AT command parameter. Optional.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if length of command is different than 2.

See also

ipaddress.IPv4Address

RemoteATCmdOptions

XBeeAPIPacket

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	RemoteATCommandWifiPacket

	Raises

	
	InvalidPacketException – if the Bytearray length is less than 17. (start delim. + length (2 bytes) + frame
 type + frame id + dest. addr. (8 bytes) + transmit options + command (2 bytes) + checksum = 17 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.REMOTE_AT_COMMAND_REQUEST_WIFI.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
dest_address

	ipaddress.IPv4Address. IPv4 destination address.

	
transmit_options

	Integer. Transmit options bitfield.

	
command

	String. AT command.

	
parameter

	Bytearray. AT command parameter.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket(frame_id, source_address, command, response_status, comm_value=None)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a remote AT command response (Wi-Fi) packet. Packet is
built using the parameters of the constructor or providing a valid API
payload.

If a module receives a remote command response RF data frame in response
to a Remote AT Command Request, the module will send a Remote AT Command
Response message out the UART. Some commands may send back multiple frames
for example, Node Discover (ND) command.

This packet is received in response of a RemoteATCommandPacket.

Response also includes an ATCommandStatus object with the status
of the AT command.

See also

RemoteATCommandWifiPacket

ATCommandStatus

XBeeAPIPacket

Class constructor. Instantiates a new RemoteATCommandResponseWifiPacket object with the
provided parameters.

	Parameters

	
	frame_id (Integer) – the frame ID of the packet.

	source_address (ipaddress.IPv4Address) – the IPv4 address of the source device.

	command (String) – the AT command of the packet. Must be a string.

	response_status (ATCommandStatus) – the status of the AT command.

	comm_value (Bytearray, optional) – the AT command response value.

	Raises

	
	ValueError – if frame_id is less than 0 or greater than 255.

	ValueError – if length of command is different than 2.

See also

ATCommandStatus

ipaddress.IPv4Address

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	RemoteATCommandResponseWifiPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 17. (start delim. + length (2 bytes) + frame
 type + frame id + source addr. (8 bytes) + command (2 bytes) + receive options + checksum = 17 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.REMOTE_AT_COMMAND_RESPONSE_WIFI.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
source_address

	ipaddress.IPv4Address. IPv4 source address.

	
command

	String. AT command.

	
status

	ATCommandStatus. AT command response status.

	
command_value

	Bytearray. AT command value.

digi.xbee.packets.zigbee module

	
class digi.xbee.packets.zigbee.RegisterJoiningDevicePacket(frame_id, registrant_address, options, key)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Register Joining Device packet. Packet is built
using the parameters of the constructor or providing a valid API
payload.

Use this frame to securely register a joining device to a trust center.
Registration is the process by which a node is authorized to join the
network using a preconfigured link key or installation code that is
conveyed to the trust center out-of-band (using a physical interface and
not over-the-air).

If registering a device with a centralized trust center (EO = 2), then the
key entry will only persist for KT seconds before expiring.

Registering devices in a distributed trust center (EO = 0) is persistent
and the key entry will never expire unless explicitly removed.

To remove a key entry on a distributed trust center, this frame should be
issued with a null (None) key. In a centralized trust center you cannot
use this method to explicitly remove the key entries.

See also

XBeeAPIPacket

Class constructor. Instantiates a new RegisterJoiningDevicePacket object with the
provided parameters.

	Parameters

	
	frame_id (integer) – the frame ID of the packet.

	registrant_address (XBee64BitAddress) – the 64-bit address of the destination device.

	options (RegisterKeyOptions) – the register options indicating the key source.

	key (Bytearray) – key of the device to register. Up to 16 bytes if entering a Link Key or up to
18 bytes (16-byte code + 2 byte CRC) if entering an Install Code.

	Raises

	ValueError – if frame_id is less than 0 or greater than 255.

See also

XBee64BitAddress

XBeeAPIPacket

RegisterKeyOptions

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	RegisterJoiningDevicePacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 17. (start delim. + length (2 bytes) + frame
 type + frame id + 64-bit registrant addr. (8 bytes) + 16-bit registrant addr. (2 bytes) + options
 + checksum = 17 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 2 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.REGISTER_JOINING_DEVICE.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
registrant_address

	XBee64BitAddress. Registrant 64-bit address.

	
options

	RegisterKeyOptions. Register options.

	
key

	Bytearray. Register key.

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
class digi.xbee.packets.zigbee.RegisterDeviceStatusPacket(frame_id, status)

	Bases: digi.xbee.packets.base.XBeeAPIPacket

This class represents a Register Device Status packet. Packet is built
using the parameters of the constructor or providing a valid API
payload.

This frame is sent out of the UART of the trust center as a response to
a 0x24 Register Device frame, indicating whether the registration was
successful or not.

See also

RegisterJoiningDevicePacket

XBeeAPIPacket

Class constructor. Instantiates a new RegisterDeviceStatusPacket object with the
provided parameters.

	Parameters

	
	frame_id (integer) – the frame ID of the packet.

	status (ZigbeeRegisterStatus) – status of the register device operation.

	Raises

	ValueError – if frame_id is less than 0 or greater than 255.

See also

XBeeAPIPacket

ZigbeeRegisterStatus

	
static create_packet(raw, operating_mode)

	Override method.

	Returns

	RegisterDeviceStatusPacket.

	Raises

	
	InvalidPacketException – if the bytearray length is less than 17. (start delim. + length (2 bytes) + frame
 type + frame id + status + checksum = 7 bytes).

	InvalidPacketException – if the length field of ‘raw’ is different than its real length. (length field: bytes
 1 and 3)

	InvalidPacketException – if the first byte of ‘raw’ is not the header byte. See SpecialByte.

	InvalidPacketException – if the calculated checksum is different than the checksum field value (last byte).

	InvalidPacketException – if the frame type is not ApiFrameType.REGISTER_JOINING_DEVICE_STATUS.

	InvalidOperatingModeException – if operating_mode is not supported.

See also

XBeePacket.create_packet()

XBeeAPIPacket._check_api_packet()

	
needs_id()

	Override method.

See also

XBeeAPIPacket.needs_id()

	
frame_id

	Returns the frame ID of the packet.

	Returns

	the frame ID of the packet.

	Return type

	Integer

	
get_checksum()

	Returns the checksum value of this XBeePacket.

The checksum is the last 8 bits of the sum of the bytes between the length field and the checksum field.

	Returns

	checksum value of this XBeePacket.

	Return type

	Integer

See also

factory

	
get_frame_spec_data()

	Override method.

See also

XBeePacket.get_frame_spec_data()

	
get_frame_type()

	Returns the frame type of this packet.

	Returns

	the frame type of this packet.

	Return type

	ApiFrameType

See also

ApiFrameType

	
get_frame_type_value()

	Returns the frame type integer value of this packet.

	Returns

	the frame type integer value of this packet.

	Return type

	Integer

See also

ApiFrameType

	
is_broadcast()

	Returns whether this packet is broadcast or not.

	Returns

	True if this packet is broadcast, False otherwise.

	Return type

	Boolean

	
output(escaped=False)

	Returns the raw bytearray of this XBeePacket, ready to be send by the serial port.

	Parameters

	escaped (Boolean) – indicates if the raw bytearray will be escaped or not.

	Returns

	raw bytearray of the XBeePacket.

	Return type

	Bytearray

	
to_dict()

	Returns a dictionary with all information of the XBeePacket fields.

	Returns

	dictionary with all information of the XBeePacket fields.

	Return type

	Dictionary

	
static unescape_data(data)

	Un-escapes the provided bytearray data.

	Parameters

	data (Bytearray) – the bytearray to unescape.

	Returns

	data unescaped.

	Return type

	Bytearray

	
status

	ZigbeeRegisterStatus. Register device status.

digi.xbee.packets.factory module

	
digi.xbee.packets.factory.build_frame(packet_bytearray, operating_mode=<OperatingMode.API_MODE: (1, 'API mode')>)

	Creates a packet from raw data.

	Parameters

	
	packet_bytearray (Bytearray) – the raw data of the packet to build.

	operating_mode (OperatingMode) – the operating mode in which the raw data has been captured.

See also

OperatingMode

digi.xbee.util package

Submodules

	digi.xbee.util.utils module

digi.xbee.util.utils module

	
digi.xbee.util.utils.is_bit_enabled(number, position)

	Returns whether the bit located at position within number is enabled or not.

	Parameters

	
	number (Integer) – the number to check if a bit is enabled.

	position (Integer) – the position of the bit to check if is enabled in number.

	Returns

	True if the bit located at position within number is enabled, False otherwise.

	Return type

	Boolean

	
digi.xbee.util.utils.get_int_from_byte(number, offset, length)

	Reads an integer value from the given byte using the provived bit offset and length.

	Parameters

	
	number (Integer) – Byte to read the integer from.

	offset (Integer) – Bit offset inside the byte to start reading (LSB = 0, MSB = 7).

	length (Integer) – Number of bits to read.

	Returns

	The integer value read.

	Return type

	Integer

	Raises

	ValueError – If number is lower than 0 or higher than 255.
 If offset is lower than 0 or higher than 7.
 If length is lower than 0 or higher than 8.
 If offset + length is higher than 8.

	
digi.xbee.util.utils.hex_string_to_bytes(hex_string)

	Converts a String (composed by hex. digits) into a bytearray with same digits.

	Parameters

	hex_string (String) – String (made by hex. digits) with “0x” header or not.

	Returns

	bytearray containing the numeric value of the hexadecimal digits.

	Return type

	Bytearray

	Raises

	ValueError – if invalid literal for int() with base 16 is provided.

Example

>>> a = "0xFFFE"
>>> for i in hex_string_to_bytes(a): print(i)
255
254
>>> print(type(hex_string_to_bytes(a)))
<type 'bytearray'>

>>> b = "FFFE"
>>> for i in hex_string_to_bytes(b): print(i)
255
254
>>> print(type(hex_string_to_bytes(b)))
<type 'bytearray'>

	
digi.xbee.util.utils.int_to_bytes(number, num_bytes=None)

	Converts the provided integer into a bytearray.

If number has less bytes than num_bytes, the resultant bytearray
is filled with zeros (0x00) starting at the beginning.

If number has more bytes than num_bytes, the resultant bytearray
is returned without changes.

	Parameters

	
	number (Integer) – the number to convert to a bytearray.

	num_bytes (Integer) – the number of bytes that the resultant bytearray will have.

	Returns

	the bytearray corresponding to the provided number.

	Return type

	Bytearray

Example

>>> a=0xFFFE
>>> print([i for i in int_to_bytes(a)])
[255,254]
>>> print(type(int_to_bytes(a)))
<type 'bytearray'>

	
digi.xbee.util.utils.length_to_int(byte_array)

	Calculates the length value for the given length field of a packet.
Length field are bytes 1 and 2 of any packet.

	Parameters

	byte_array (Bytearray) – length field of a packet.

	Returns

	the length value.

	Return type

	Integer

	Raises

	ValueError – if byte_array is not a valid length field (it has length distinct than 0).

Example

>>> b = bytearray([13,14])
>>> c = length_to_int(b)
>>> print("0x%02X" % c)
0x1314
>>> print(c)
4884

	
digi.xbee.util.utils.bytes_to_int(byte_array)

	Converts the provided bytearray in an Integer.
This integer is result of concatenate all components of byte_array
and convert that hex number to a decimal number.

	Parameters

	byte_array (Bytearray) – bytearray to convert in integer.

	Returns

	the integer corresponding to the provided bytearray.

	Return type

	Integer

Example

>>> x = bytearray([0xA,0x0A,0x0A]) #this is 0xA0A0A
>>> print(bytes_to_int(x))
657930
>>> b = bytearray([0x0A,0xAA]) #this is 0xAAA
>>> print(bytes_to_int(b))
2730

	
digi.xbee.util.utils.ascii_to_int(ni)

	Converts a bytearray containing the ASCII code of each number digit in an Integer.
This integer is result of the number formed by all ASCII codes of the bytearray.

Example

>>> x = bytearray([0x31,0x30,0x30]) #0x31 => ASCII code for number 1.
 #0x31,0x30,0x30 <==> 1,0,0
>>> print(ascii_to_int(x))
100

	
digi.xbee.util.utils.int_to_ascii(number)

	Converts an integer number to a bytearray. Each element of the bytearray is the ASCII
code that corresponds to the digit of its position.

	Parameters

	number (Integer) – the number to convert to an ASCII bytearray.

	Returns

	the bytearray containing the ASCII value of each digit of the number.

	Return type

	Bytearray

Example

>>> x = int_to_ascii(100)
>>> print(x)
100
>>> print([i for i in x])
[49, 48, 48]

	
digi.xbee.util.utils.int_to_length(number)

	Converts am integer into a bytearray of 2 bytes corresponding to the length field of a
packet. If this bytearray has length 1, a byte with value 0 is added at the beginning.

	Parameters

	number (Integer) – the number to convert to a length field.

Returns:

	Raises

	ValueError – if number is less than 0 or greater than 0xFFFF.

Example

>>> a = 0
>>> print(hex_to_string(int_to_length(a)))
00 00

>>> a = 8
>>> print(hex_to_string(int_to_length(a)))
00 08

>>> a = 200
>>> print(hex_to_string(int_to_length(a)))
00 C8

>>> a = 0xFF00
>>> print(hex_to_string(int_to_length(a)))
FF 00

>>> a = 0xFF
>>> print(hex_to_string(int_to_length(a)))
00 FF

	
digi.xbee.util.utils.hex_to_string(byte_array, pretty=True)

	Returns the provided bytearray in a pretty string format. All bytes are separated by blank spaces and
printed in hex format.

	Parameters

	
	byte_array (Bytearray) – the bytearray to print in pretty string.

	pretty (Boolean, optional) – True for pretty string format, False for plain string format.
Default to True.

	Returns

	the bytearray formatted in a string format.

	Return type

	String

	
digi.xbee.util.utils.doc_enum(enum_class, descriptions=None)

	Returns a string with the description of each value of an enumeration.

	Parameters

	
	enum_class (Enumeration) – the Enumeration to get its values documentation.

	descriptions (dictionary) – each enumeration’s item description. The key is the enumeration element name
and the value is the description.

	Returns

	the string listing all the enumeration values and their descriptions.

	Return type

	String

	
digi.xbee.util.utils.enable_logger(name, level=10)

	Enables a logger with the given name and level.

	Parameters

	
	name (String) – name of the logger to enable.

	level (Integer) – logging level value.

Assigns a default formatter and a default handler (for console).

	
digi.xbee.util.utils.disable_logger(name)

	Disables the logger with the give name.

	Parameters

	name (String) – the name of the logger to disable.

	
digi.xbee.util.utils.deprecated(version, details='None')

	Decorates a method to mark as deprecated.
This adds a deprecation note to the method docstring and also raises a
:class:warning.DeprecationWarning.

	Parameters

	
	version (String) – Version that deprecates this feature.

	details (String, optional, default=``None``) – Extra details to be added to the
method docstring and warning.

digi.xbee.comm_interface module

	
class digi.xbee.comm_interface.XBeeCommunicationInterface

	Bases: object

This class represents the way the communication with the local XBee is established.

	
open()

	Establishes the underlying hardware communication interface.

Subclasses may throw specific exceptions to signal implementation specific
errors.

	
close()

	Terminates the underlying hardware communication interface.

Subclasses may throw specific exceptions to signal implementation specific
hardware errors.

	
is_interface_open

	Returns whether the underlying hardware communication interface is active or not.

	Returns

	Boolean. True if the interface is active, False otherwise.

	
wait_for_frame(operating_mode)

	Reads the next API frame packet.

	This method blocks until:

	
	A complete frame is read, in which case returns it.

	The configured timeout goes by, in which case returns None.

	Another thread calls quit_reading, in which case returns None.

This method is not thread-safe, so no more than one thread should invoke it at the same time.

Subclasses may throw specific exceptions to signal implementation specific
hardware errors.

	Parameters

	operating_mode (OperatingMode) – the operating mode of the XBee connected to this hardware
interface.
Note: if this parameter does not match the connected XBee configuration, the behavior is undefined.

	Returns

	the read packet as bytearray if a packet is read, None otherwise.

	Return type

	Bytearray

	
quit_reading()

	Makes the thread (if any) blocking on wait_for_frame return.

If a thread was blocked on wait_for_frame, this method blocks (for a maximum of ‘timeout’ seconds) until
the blocked thread is resumed.

	
write_frame(frame)

	Writes an XBee frame to the underlying hardware interface.

Subclasses may throw specific exceptions to signal implementation specific
hardware errors.

	Parameters

	frame (Bytearray) – The XBee API frame packet to write. If the bytearray does not
correctly represent an XBee frame, the behaviour is undefined.

	
timeout

	Returns the read timeout.

	Returns

	read timeout in seconds.

	Return type

	Integer

digi.xbee.devices module

	
class digi.xbee.devices.AbstractXBeeDevice(local_xbee_device=None, serial_port=None, sync_ops_timeout=4, comm_iface=None)

	Bases: object

This class provides common functionality for all XBee devices.

Class constructor. Instantiates a new AbstractXBeeDevice object with the provided parameters.

	Parameters

	
	local_xbee_device (XBeeDevice, optional) – only necessary if XBee device is remote. The local
XBee device that will behave as connection interface to communicate with the remote XBee one.

	serial_port (XBeeSerialPort, optional) – only necessary if the XBee device is local. The serial
port that will be used to communicate with this XBee.

	(Integer, default (sync_ops_timeout) – AbstractXBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS): the
timeout (in seconds) that will be applied for all synchronous operations.

	comm_iface (XBeeCommunicationInterface, optional) – only necessary if the XBee device is local. The
hardware interface that will be used to communicate with this XBee.

See also

XBeeDevice

XBeeSerialPort

	
LOG_PATTERN = '{comm_iface:s} - {event:s} - {opmode:s}: {content:s}'

	Pattern used to log packet events.

	
update_device_data_from(device)

	Updates the current device reference with the data provided for the given device.

This is only for internal use.

	Parameters

	device (AbstractXBeeDevice) – the XBee device to get the data from.

	Returns

	True if the device data has been updated, False otherwise.

	Return type

	Boolean

	
get_parameter(parameter, parameter_value=None)

	Returns the value of the provided parameter via an AT Command.

	Parameters

	
	parameter (String) – parameter to get.

	parameter_value (Bytearray, optional) – The value of the parameter to execute (if any).

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
set_parameter(parameter, value)

	Sets the value of a parameter via an AT Command.

If you send parameter to a local XBee device, all changes
will be applied automatically, except for non-volatile memory,
in which case you will need to execute the parameter “WR” via
AbstractXBeeDevice.execute_command() method, or
AbstractXBeeDevice.apply_changes() method.

If you are sending parameters to a remote XBee device,
the changes will be not applied automatically, unless the “apply_changes”
flag is activated.

You can set this flag via the method AbstractXBeeDevice.enable_apply_changes().

This flag only works for volatile memory, if you want to save
changed parameters in non-volatile memory, even for remote devices,
you must execute “WR” command by one of the 2 ways mentioned above.

	Parameters

	
	parameter (String) – parameter to set.

	value (Bytearray) – value of the parameter.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if parameter is None or value is None.

	
execute_command(parameter)

	Executes the provided command.

	Parameters

	parameter (String) – The name of the AT command to be executed.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
apply_changes()

	Applies changes via AC command.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee device so that parameter modifications persist through subsequent
resets.

Parameters values remain in this device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them to non-volatile memory, the
module reverts back to previously saved parameters the next time the
module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_configuration_changes_enabled() to get its status and
enable_apply_configuration_changes() to enable/disable the
option. If it is disabled, method apply_changes() can be used in
order to manually apply the changes.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
reset()

	Performs a software reset on this XBee device and blocks until the process is completed.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
read_device_info(init=True)

	Updates all instance parameters reading them from the XBee device.

	Parameters

	init (Boolean, optional, default=`True`) – If False only not initialized parameters
are read, all if True.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_node_id()

	Returns the Node Identifier (NI) value of the XBee device.

	Returns

	the Node Identifier (NI) of the XBee device.

	Return type

	String

	
set_node_id(node_id)

	Sets the Node Identifier (NI) value of the XBee device..

	Parameters

	node_id (String) – the new Node Identifier (NI) of the XBee device.

	Raises

	
	ValueError – if node_id is None or its length is greater than 20.

	TimeoutException – if the response is not received before the read timeout expires.

	
get_hardware_version()

	Returns the hardware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_firmware_version()

	Returns the firmware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	Bytearray

	
get_protocol()

	Returns the current protocol of the XBee device.

	Returns

	the current protocol of the XBee device.

	Return type

	XBeeProtocol

See also

XBeeProtocol

	
get_16bit_addr()

	Returns the 16-bit address of the XBee device.

	Returns

	the 16-bit address of the XBee device.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee device.

	Parameters

	value (XBee16BitAddress) – the new 16-bit address of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is not 802.15.4.

	
get_64bit_addr()

	Returns the 64-bit address of the XBee device.

	Returns

	the 64-bit address of the XBee device.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	digi.xbee.models.protocol.Role

See also

digi.xbee.models.protocol.Role

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	the last used frame ID.

	Return type

	Integer

	
enable_apply_changes(value)

	Sets the apply_changes flag.

	Parameters

	value (Boolean) – True to enable the apply changes flag, False to disable it.

	
is_apply_changes_enabled()

	Returns whether the apply_changes flag is enabled or not.

	Returns

	True if the apply_changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_remote()

	Determines whether the XBee device is remote or not.

	Returns

	True if the XBee device is remote, False otherwise.

	Return type

	Boolean

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – the read timeout, expressed in seconds.

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	the serial port read timeout in seconds.

	Return type

	Integer

	
get_dest_address()

	Returns the 64-bit address of the XBee device that data will be reported to.

	Returns

	the address.

	Return type

	XBee64BitAddress

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

XBee64BitAddress

	
set_dest_address(addr)

	Sets the 64-bit address of the XBee device that data will be reported to.

	Parameters

	addr (XBee64BitAddress or RemoteXBeeDevice) – the address itself or the remote XBee
device that you want to set up its address as destination address.

	Raises

	
	TimeoutException – If the response is not received before the read timeout expires.

	XBeeException – If the XBee device’s serial port is closed.

	InvalidOperatingModeException – If the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – If the response is not as expected.

	ValueError – If addr is None.

	
get_pan_id()

	Returns the operating PAN ID of the XBee device.

	Returns

	operating PAN ID of the XBee device.

	Return type

	Bytearray

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

	
set_pan_id(value)

	Sets the operating PAN ID of the XBee device.

	Parameters

	value (Bytearray) – the new operating PAN ID of the XBee device.. Must have only 1 or 2 bytes.

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

	
get_power_level()

	Returns the power level of the XBee device.

	Returns

	the power level of the XBee device.

	Return type

	PowerLevel

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

PowerLevel

	
set_power_level(power_level)

	Sets the power level of the XBee device.

	Parameters

	power_level (PowerLevel) – the new power level of the XBee device.

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

PowerLevel

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – the IO line to configure.

	io_mode (IOMode) – the IO mode to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOMode

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – the io line to configure.

	Returns

	the IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the received data is not an IO mode.

	
get_io_sampling_rate()

	Returns the IO sampling rate of the XBee device.

	Returns

	the IO sampling rate of XBee device.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
set_io_sampling_rate(rate)

	Sets the IO sampling rate of the XBee device in seconds. A sample rate of 0 means the IO sampling feature is
disabled.

	Parameters

	rate (Integer) – the new IO sampling rate of the XBee device in seconds.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
read_io_sample()

	Returns an IO sample from the XBee device containing the value of all enabled digital IO and
analog input channels.

	Returns

	the IO sample read from the XBee device.

	Return type

	IOSample

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOSample

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – the IO line to get its ADC value.

	Returns

	the analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – the IO Line to be assigned.

	cycle (Integer) – duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the given IO line does not have PWM capability or cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – the IO line to get its PWM duty cycle.

	Returns

	the PWM duty cycle of the given IO line or None if the response is empty.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the passed IO_LINE has no PWM capability.

See also

IOLine

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

IOValue

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – the digital IO line to sets its value.

	io_value (IOValue) – the IO value to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOValue

	
set_dio_change_detection(io_lines_set)

	Sets the digital IO lines to be monitored and sampled whenever their status changes.

A None set of lines disables this feature.

	Parameters

	io_lines_set – set of IOLine.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee device.

The API output mode determines the format that the received data is
output through the serial interface of the XBee device.

	Returns

	the API output mode of the XBee device.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or
 ESCAPED API. This method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee device.

	Parameters

	api_output_mode (APIOutputMode) – the new API output mode of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is ZigBee

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – new API output mode options. Calculate this value using
the method
digi.xbee.models.mode.APIOutputModeBit.calculate_api_output_mode_value()
with a set of digi.xbee.models.mode.APIOutputModeBit.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee device.

To work with this interface, you must also configure the Bluetooth password if not done previously.
You can use the AbstractXBeeDevice.update_bluetooth_password() method for that purpose.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee device.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee device in a format such as 00112233AABB.

Note that your device must have Bluetooth Low Energy support to use this method.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
update_bluetooth_password(new_password)

	Changes the password of this Bluetooth device with the new one provided.

Note that your device must have Bluetooth Low Energy support to use this method.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the device.

	Parameters

	
	xml_firmware_file (String) – path of the XML file that describes the firmware to upload.

	xbee_firmware_file (String, optional) – location of the XBee binary firmware file.

	bootloader_firmware_file (String, optional) – location of the bootloader binary firmware file.

	timeout (Integer, optional) – the maximum time to wait for target read operations during the update process.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	OperationNotSupportedException – if the firmware update is not supported in the XBee device.

	FirmwareUpdateException – if there is any error performing the firmware update.

	
apply_profile(profile_path, progress_callback=None)

	Applies the given XBee profile to the XBee device.

	Parameters

	
	profile_path (String) – path of the XBee profile file to apply.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	UpdateProfileException – if there is any error applying the XBee profile.

	OperationNotSupportedException – if XBee profiles are not supported in the XBee device.

	
log

	Logger. The XBee device logger.

	
class digi.xbee.devices.XBeeDevice(port=None, baud_rate=None, data_bits=<sphinx.ext.autodoc.importer._MockObject object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject object>, parity=<sphinx.ext.autodoc.importer._MockObject object>, flow_control=<FlowControl.NONE: None>, _sync_ops_timeout=4, comm_iface=None)

	Bases: digi.xbee.devices.AbstractXBeeDevice

This class represents a non-remote generic XBee device.

This class has fields that are events. Its recommended to use only the
append() and remove() method on them, or -= and += operators.
If you do something more with them, it’s for your own risk.

Class constructor. Instantiates a new XBeeDevice with the provided parameters.

	Parameters

	
	port (Integer or String) – serial port identifier.
Integer: number of XBee device, numbering starts at zero.
Device name: depending on operating system. e.g. ‘/dev/ttyUSB0’ on ‘GNU/Linux’ or ‘COM3’ on Windows.

	baud_rate (Integer) – the serial port baud rate.

	(Integer, default (_sync_ops_timeout) – serial.EIGHTBITS): comm port bitsize.

	(Integer, default – serial.STOPBITS_ONE): comm port stop bits.

	(Character, default (parity) – serial.PARITY_NONE): comm port parity.

	(Integer, default – FlowControl.NONE): comm port flow control.

	(Integer, default – 3): the read timeout (in seconds).

	comm_iface (XBeeCommunicationInterface) – the communication interface.

	Raises

	All exceptions raised by PySerial's Serial class constructor. –

See also

PySerial documentation: http://pyserial.sourceforge.net

	
TIMEOUT_READ_PACKET = 3

	Timeout to read packets.

	
classmethod create_xbee_device(comm_port_data)

	Creates and returns an XBeeDevice from data of the port to which is connected.

	Parameters

	
	comm_port_data (Dictionary) – dictionary with all comm port data needed.

	dictionary keys are (The) –
“baudRate” –> Baud rate.

”port” –> Port number.

”bitSize” –> Bit size.

”stopBits” –> Stop bits.

”parity” –> Parity.

”flowControl” –> Flow control.

”timeout” for –> Timeout for synchronous operations (in seconds).

	Returns

	the XBee device created.

	Return type

	XBeeDevice

	Raises

	SerialException – if the port you want to open does not exist or is already opened.

See also

XBeeDevice

	
open(force_settings=False)

	Opens the communication with the XBee device and loads some information about it.

	Parameters

	force_settings (Boolean, optional) – True to open the device ensuring/forcing that the specified
serial settings are applied even if the current configuration is different,
False to open the device with the current configuration. Default to False.

	Raises

	
	TimeoutException – if there is any problem with the communication.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if the XBee device is already open.

	
close()

	Closes the communication with the XBee device.

This method guarantees that all threads running are stopped and
the serial port is closed.

	
get_parameter(param, parameter_value=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
set_parameter(param, value)

	Override.

	See:

	AbstractXBeeDevice.set_parameter()

	
send_data(remote_xbee_device, data, transmit_options=0)

	Blocking method. This method sends data to a remote XBee device synchronously.

This method will wait for the packet response.

The default timeout for this method is XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS.

	Parameters

	
	remote_xbee_device (RemoteXBeeDevice) – the remote XBee device to send data to.

	data (String or Bytearray) – the raw data to send.

	transmit_options (Integer, optional) – transmit options, bitfield of TransmitOptions. Default to
TransmitOptions.NONE.value.

	Returns

	XBeePacket the response.

	Raises

	
	ValueError – if remote_xbee_device is None.

	TimeoutException – if this method can’t read a response packet in
 XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS seconds.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	TransmitException – if the status of the response received is not OK.

	XBeeException – if the XBee device’s serial port is closed.

See also

RemoteXBeeDevice

XBeePacket

	
send_data_async(remote_xbee_device, data, transmit_options=0)

	Non-blocking method. This method sends data to a remote XBee device.

This method won’t wait for the response.

	Parameters

	
	remote_xbee_device (RemoteXBeeDevice) – the remote XBee device to send data to.

	data (String or Bytearray) – the raw data to send.

	transmit_options (Integer, optional) – transmit options, bitfield of TransmitOptions. Default to
TransmitOptions.NONE.value.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if the XBee device’s serial port is closed.

See also

RemoteXBeeDevice

	
send_data_broadcast(data, transmit_options=0)

	Sends the provided data to all the XBee nodes of the network (broadcast).

This method blocks till a success or error transmit status arrives or
the configured receive timeout expires.

The received timeout is configured using the AbstractXBeeDevice.set_sync_ops_timeout()
method and can be consulted with AbstractXBeeDevice.get_sync_ops_timeout() method.

	Parameters

	
	data (String or Bytearray) – data to send.

	transmit_options (Integer, optional) – transmit options, bitfield of TransmitOptions. Default to
TransmitOptions.NONE.value.

	Raises

	
	TimeoutException – if this method can’t read a response packet in
 XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS seconds.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	TransmitException – if the status of the response received is not OK.

	XBeeException – if the XBee device’s serial port is closed.

	
send_user_data_relay(local_interface, data)

	Sends the given data to the given XBee local interface.

	Parameters

	
	local_interface (XBeeLocalInterface) – Destination XBee local interface.

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ValueError – if local_interface is None.

	XBeeException – if there is any problem sending the User Data Relay.

See also

XBeeLocalInterface

	
send_bluetooth_data(data)

	Sends the given data to the Bluetooth interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if there is any problem sending the data.

See also

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

	
send_micropython_data(data)

	Sends the given data to the MicroPython interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if there is any problem sending the data.

See also

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

	
read_data(timeout=None)

	Reads new data received by this XBee device.

If a timeout is specified, this method blocks until new data is received or the timeout expires,
throwing in that case a TimeoutException.

	Parameters

	timeout (Integer, optional) – read timeout in seconds. If it’s None, this method is non-blocking
and will return None if there is no data available.

	Returns

	the read message or None if this XBee did not receive new data.

	Return type

	XBeeMessage

	Raises

	
	ValueError – if a timeout is specified and is less than 0.

	TimeoutException – if a timeout is specified and no data was received during that time.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if the XBee device’s serial port is closed.

See also

XBeeMessage

	
read_data_from(remote_xbee_device, timeout=None)

	Reads new data received from the given remote XBee device.

If a timeout is specified, this method blocks until new data is received or the timeout expires,
throwing in that case a TimeoutException.

	Parameters

	
	remote_xbee_device (RemoteXBeeDevice) – the remote XBee device that sent the data.

	timeout (Integer, optional) – read timeout in seconds. If it’s None, this method is non-blocking
and will return None if there is no data available.

	Returns

	
	the read message sent by remote_xbee_device or None if this XBee did

	not receive new data.

	Return type

	XBeeMessage

	Raises

	
	ValueError – if a timeout is specified and is less than 0.

	TimeoutException – if a timeout is specified and no data was received during that time.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if the XBee device’s serial port is closed.

See also

XBeeMessage

RemoteXBeeDevice

	
has_packets()

	Returns whether the XBee device’s queue has packets or not.
This do not include explicit packets.

	Returns

	True if this XBee device’s queue has packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_explicit_packets()

	
has_explicit_packets()

	Returns whether the XBee device’s queue has explicit packets or not.
This do not include non-explicit packets.

	Returns

	True if this XBee device’s queue has explicit packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_packets()

	
flush_queues()

	Flushes the packets queue.

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
add_packet_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.PacketReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The received packet as a digi.xbee.packets.base.XBeeAPIPacket

	
add_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.DataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The data received as an digi.xbee.models.message.XBeeMessage

	
add_modem_status_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.ModemStatusReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The modem status as a digi.xbee.models.status.ModemStatus

	
add_io_sample_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.IOSampleReceived.

	Parameters

	callback (Function) – the callback. Receives three arguments.

	The received IO sample as an digi.xbee.io.IOSample

	The remote XBee device who has sent the packet as a RemoteXBeeDevice

	The time in which the packet was received as an Integer

	
add_expl_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.ExplicitDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The explicit data received as a
digi.xbee.models.message.ExplicitXBeeMessage.

	
add_user_data_relay_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.RelayDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The relay data as a digi.xbee.models.message.UserDataRelayMessage

	
add_bluetooth_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.BluetoothDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The Bluetooth data as a Bytearray

	
add_micropython_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.MicroPythonDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The MicroPython data as a Bytearray

	
add_socket_state_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketStateReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The socket ID as an Integer.

	The state received as a SocketState

	
add_socket_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketDataReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The socket ID as an Integer.

	The data received as Bytearray

	
add_socket_data_received_from_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketDataReceivedFrom.

	Parameters

	callback (Function) – the callback. Receives three arguments.

	The socket ID as an Integer.

	
	A pair (host, port) of the source address where host is a string

	representing an IPv4 address like ‘100.50.200.5’, and port is an
integer.

	The data received as Bytearray

	
del_packet_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.PacketReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.PacketReceived event.

	
del_data_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.DataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.DataReceived event.

	
del_modem_status_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.ModemStatusReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.ModemStatusReceived event.

	
del_io_sample_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.IOSampleReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.IOSampleReceived event.

	
del_expl_data_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.ExplicitDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.ExplicitDataReceived event.

	
del_user_data_relay_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.RelayDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.RelayDataReceived event.

	
del_bluetooth_data_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.BluetoothDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.BluetoothDataReceived event.

	
del_micropython_data_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.MicroPythonDataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.MicroPythonDataReceived event.

	
del_socket_state_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketStateReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketStateReceived event.

	
del_socket_data_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketDataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketDataReceived event.

	
del_socket_data_received_from_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketDataReceivedFrom event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketDataReceivedFrom event.

	
get_xbee_device_callbacks()

	Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee to get its callbacks. These
callbacks will be executed before user callbacks.

	Returns

	PacketReceived

	
is_open()

	Returns whether this XBee device is open or not.

	Returns

	Boolean. True if this XBee device is open, False otherwise.

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
get_network()

	Returns this XBee device’s current network.

	Returns

	XBeeDevice.XBeeNetwork

	
send_packet_sync_and_get_response(packet_to_send, timeout=None)

	Override method.

See also

AbstractXBeeDevice._send_packet_sync_and_get_response()

	
send_packet(packet, sync=False)

	Override method.

See also

AbstractXBeeDevice._send_packet()

	
get_next_frame_id()

	Returns the next frame ID of the XBee device.

	Returns

	The next frame ID of the XBee device.

	Return type

	Integer

	
comm_iface

	XBeeCommunicationInterface. The hardware interface associated to the XBee device.

	
serial_port

	XBeeSerialPort. The serial port associated to the XBee device.

	
operating_mode

	OperatingMode. The operating mode of the XBee device.

	
apply_changes()

	Applies changes via AC command.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
apply_profile(profile_path, progress_callback=None)

	Applies the given XBee profile to the XBee device.

	Parameters

	
	profile_path (String) – path of the XBee profile file to apply.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	UpdateProfileException – if there is any error applying the XBee profile.

	OperationNotSupportedException – if XBee profiles are not supported in the XBee device.

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee device.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
enable_apply_changes(value)

	Sets the apply_changes flag.

	Parameters

	value (Boolean) – True to enable the apply changes flag, False to disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee device.

To work with this interface, you must also configure the Bluetooth password if not done previously.
You can use the AbstractXBeeDevice.update_bluetooth_password() method for that purpose.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
execute_command(parameter)

	Executes the provided command.

	Parameters

	parameter (String) – The name of the AT command to be executed.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_16bit_addr()

	Returns the 16-bit address of the XBee device.

	Returns

	the 16-bit address of the XBee device.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
get_64bit_addr()

	Returns the 64-bit address of the XBee device.

	Returns

	the 64-bit address of the XBee device.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – the IO line to get its ADC value.

	Returns

	the analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee device.

The API output mode determines the format that the received data is
output through the serial interface of the XBee device.

	Returns

	the API output mode of the XBee device.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or
 ESCAPED API. This method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee device in a format such as 00112233AABB.

Note that your device must have Bluetooth Low Energy support to use this method.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	the last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Returns the 64-bit address of the XBee device that data will be reported to.

	Returns

	the address.

	Return type

	XBee64BitAddress

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

XBee64BitAddress

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

IOValue

	
get_firmware_version()

	Returns the firmware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – the io line to configure.

	Returns

	the IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the received data is not an IO mode.

	
get_io_sampling_rate()

	Returns the IO sampling rate of the XBee device.

	Returns

	the IO sampling rate of XBee device.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_node_id()

	Returns the Node Identifier (NI) value of the XBee device.

	Returns

	the Node Identifier (NI) of the XBee device.

	Return type

	String

	
get_pan_id()

	Returns the operating PAN ID of the XBee device.

	Returns

	operating PAN ID of the XBee device.

	Return type

	Bytearray

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

	
get_power_level()

	Returns the power level of the XBee device.

	Returns

	the power level of the XBee device.

	Return type

	PowerLevel

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

PowerLevel

	
get_protocol()

	Returns the current protocol of the XBee device.

	Returns

	the current protocol of the XBee device.

	Return type

	XBeeProtocol

See also

XBeeProtocol

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – the IO line to get its PWM duty cycle.

	Returns

	the PWM duty cycle of the given IO line or None if the response is empty.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the passed IO_LINE has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	digi.xbee.models.protocol.Role

See also

digi.xbee.models.protocol.Role

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	the serial port read timeout in seconds.

	Return type

	Integer

	
is_apply_changes_enabled()

	Returns whether the apply_changes flag is enabled or not.

	Returns

	True if the apply_changes flag is enabled, False otherwise.

	Return type

	Boolean

	
log

	Returns the XBee device log.

	Returns

	the XBee device logger.

	Return type

	Logger

	
read_device_info(init=True)

	Updates all instance parameters reading them from the XBee device.

	Parameters

	init (Boolean, optional, default=`True`) – If False only not initialized parameters
are read, all if True.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
read_io_sample()

	Returns an IO sample from the XBee device containing the value of all enabled digital IO and
analog input channels.

	Returns

	the IO sample read from the XBee device.

	Return type

	IOSample

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOSample

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee device.

	Parameters

	value (XBee16BitAddress) – the new 16-bit address of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee device.

	Parameters

	api_output_mode (APIOutputMode) – the new API output mode of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is ZigBee

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – new API output mode options. Calculate this value using
the method
digi.xbee.models.mode.APIOutputModeBit.calculate_api_output_mode_value()
with a set of digi.xbee.models.mode.APIOutputModeBit.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
set_dest_address(addr)

	Sets the 64-bit address of the XBee device that data will be reported to.

	Parameters

	addr (XBee64BitAddress or RemoteXBeeDevice) – the address itself or the remote XBee
device that you want to set up its address as destination address.

	Raises

	
	TimeoutException – If the response is not received before the read timeout expires.

	XBeeException – If the XBee device’s serial port is closed.

	InvalidOperatingModeException – If the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – If the response is not as expected.

	ValueError – If addr is None.

	
set_dio_change_detection(io_lines_set)

	Sets the digital IO lines to be monitored and sampled whenever their status changes.

A None set of lines disables this feature.

	Parameters

	io_lines_set – set of IOLine.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – the digital IO line to sets its value.

	io_value (IOValue) – the IO value to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – the IO line to configure.

	io_mode (IOMode) – the IO mode to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOMode

	
set_io_sampling_rate(rate)

	Sets the IO sampling rate of the XBee device in seconds. A sample rate of 0 means the IO sampling feature is
disabled.

	Parameters

	rate (Integer) – the new IO sampling rate of the XBee device in seconds.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
set_node_id(node_id)

	Sets the Node Identifier (NI) value of the XBee device..

	Parameters

	node_id (String) – the new Node Identifier (NI) of the XBee device.

	Raises

	
	ValueError – if node_id is None or its length is greater than 20.

	TimeoutException – if the response is not received before the read timeout expires.

	
set_pan_id(value)

	Sets the operating PAN ID of the XBee device.

	Parameters

	value (Bytearray) – the new operating PAN ID of the XBee device.. Must have only 1 or 2 bytes.

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

	
set_power_level(power_level)

	Sets the power level of the XBee device.

	Parameters

	power_level (PowerLevel) – the new power level of the XBee device.

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

PowerLevel

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – the IO Line to be assigned.

	cycle (Integer) – duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the given IO line does not have PWM capability or cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – the read timeout, expressed in seconds.

	
update_bluetooth_password(new_password)

	Changes the password of this Bluetooth device with the new one provided.

Note that your device must have Bluetooth Low Energy support to use this method.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
update_device_data_from(device)

	Updates the current device reference with the data provided for the given device.

This is only for internal use.

	Parameters

	device (AbstractXBeeDevice) – the XBee device to get the data from.

	Returns

	True if the device data has been updated, False otherwise.

	Return type

	Boolean

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the device.

	Parameters

	
	xml_firmware_file (String) – path of the XML file that describes the firmware to upload.

	xbee_firmware_file (String, optional) – location of the XBee binary firmware file.

	bootloader_firmware_file (String, optional) – location of the bootloader binary firmware file.

	timeout (Integer, optional) – the maximum time to wait for target read operations during the update process.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	OperationNotSupportedException – if the firmware update is not supported in the XBee device.

	FirmwareUpdateException – if there is any error performing the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee device so that parameter modifications persist through subsequent
resets.

Parameters values remain in this device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them to non-volatile memory, the
module reverts back to previously saved parameters the next time the
module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_configuration_changes_enabled() to get its status and
enable_apply_configuration_changes() to enable/disable the
option. If it is disabled, method apply_changes() can be used in
order to manually apply the changes.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
class digi.xbee.devices.Raw802Device(port=None, baud_rate=None, data_bits=<sphinx.ext.autodoc.importer._MockObject object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject object>, parity=<sphinx.ext.autodoc.importer._MockObject object>, flow_control=<FlowControl.NONE: None>, _sync_ops_timeout=4, comm_iface=None)

	Bases: digi.xbee.devices.XBeeDevice

This class represents a local 802.15.4 XBee device.

Class constructor. Instantiates a new Raw802Device with the provided parameters.

	Parameters

	
	port (Integer or String) – serial port identifier.
Integer: number of XBee device, numbering starts at zero.
Device name: depending on operating system. e.g. ‘/dev/ttyUSB0’ on ‘GNU/Linux’ or
‘COM3’ on Windows.

	baud_rate (Integer) – the serial port baud rate.

	(Integer, default (flow_control) – serial.EIGHTBITS): comm port bitsize.

	(Integer, default – serial.STOPBITS_ONE): comm port stop bits.

	(Character, default (parity) – serial.PARITY_NONE): comm port parity.

	(Integer, default – FlowControl.NONE): comm port flow control.

	_sync_ops_timeout (Integer, default: 3): the read timeout (in seconds).

	comm_iface (XBeeCommunicationInterface): the communication interface.

:raises All exceptions raised by XBeeDevice.__init__() constructor.:

See also

XBeeDevice

XBeeDevice.__init__()

	
open(force_settings=False)

	Override.

	Raises

	
	TimeoutException – If there is any problem with the communication.

	InvalidOperatingModeException – If the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – If the protocol is invalid or if the XBee device is already open.

See also

XBeeDevice.open()

	
get_protocol()

	Override.

See also

XBeeDevice.get_protocol()

	
get_ai_status()

	Override.

See also

AbstractXBeeDevice._get_ai_status()

	
send_data_64(x64addr, data, transmit_options=0)

	Override.

See also

XBeeDevice.send_data_64()

	
send_data_async_64(x64addr, data, transmit_options=0)

	Override.

See also

XBeeDevice.send_data_async_64()

	
send_data_16(x16addr, data, transmit_options=0)

	Override.

See also

XBeeDevice._send_data_16()

	
send_data_async_16(x16addr, data, transmit_options=0)

	Override.

See also

XBeeDevice._send_data_async_16()

	
add_bluetooth_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.BluetoothDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The Bluetooth data as a Bytearray

	
add_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.DataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The data received as an digi.xbee.models.message.XBeeMessage

	
add_expl_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.ExplicitDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The explicit data received as a
digi.xbee.models.message.ExplicitXBeeMessage.

	
add_io_sample_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.IOSampleReceived.

	Parameters

	callback (Function) – the callback. Receives three arguments.

	The received IO sample as an digi.xbee.io.IOSample

	The remote XBee device who has sent the packet as a RemoteXBeeDevice

	The time in which the packet was received as an Integer

	
add_micropython_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.MicroPythonDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The MicroPython data as a Bytearray

	
add_modem_status_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.ModemStatusReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The modem status as a digi.xbee.models.status.ModemStatus

	
add_packet_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.PacketReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The received packet as a digi.xbee.packets.base.XBeeAPIPacket

	
add_socket_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketDataReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The socket ID as an Integer.

	The data received as Bytearray

	
add_socket_data_received_from_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketDataReceivedFrom.

	Parameters

	callback (Function) – the callback. Receives three arguments.

	The socket ID as an Integer.

	
	A pair (host, port) of the source address where host is a string

	representing an IPv4 address like ‘100.50.200.5’, and port is an
integer.

	The data received as Bytearray

	
add_socket_state_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketStateReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The socket ID as an Integer.

	The state received as a SocketState

	
add_user_data_relay_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.RelayDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The relay data as a digi.xbee.models.message.UserDataRelayMessage

	
apply_changes()

	Applies changes via AC command.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
apply_profile(profile_path, progress_callback=None)

	Applies the given XBee profile to the XBee device.

	Parameters

	
	profile_path (String) – path of the XBee profile file to apply.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	UpdateProfileException – if there is any error applying the XBee profile.

	OperationNotSupportedException – if XBee profiles are not supported in the XBee device.

	
close()

	Closes the communication with the XBee device.

This method guarantees that all threads running are stopped and
the serial port is closed.

	
comm_iface

	Returns the hardware interface associated to the XBee device.

	Returns

	the hardware interface associated to the XBee device.

	Return type

	XBeeCommunicationInterface

See also

XBeeSerialPort

	
classmethod create_xbee_device(comm_port_data)

	Creates and returns an XBeeDevice from data of the port to which is connected.

	Parameters

	
	comm_port_data (Dictionary) – dictionary with all comm port data needed.

	dictionary keys are (The) –
“baudRate” –> Baud rate.

”port” –> Port number.

”bitSize” –> Bit size.

”stopBits” –> Stop bits.

”parity” –> Parity.

”flowControl” –> Flow control.

”timeout” for –> Timeout for synchronous operations (in seconds).

	Returns

	the XBee device created.

	Return type

	XBeeDevice

	Raises

	SerialException – if the port you want to open does not exist or is already opened.

See also

XBeeDevice

	
del_bluetooth_data_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.BluetoothDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.BluetoothDataReceived event.

	
del_data_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.DataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.DataReceived event.

	
del_expl_data_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.ExplicitDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.ExplicitDataReceived event.

	
del_io_sample_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.IOSampleReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.IOSampleReceived event.

	
del_micropython_data_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.MicroPythonDataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.MicroPythonDataReceived event.

	
del_modem_status_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.ModemStatusReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.ModemStatusReceived event.

	
del_packet_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.PacketReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.PacketReceived event.

	
del_socket_data_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketDataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketDataReceived event.

	
del_socket_data_received_from_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketDataReceivedFrom event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketDataReceivedFrom event.

	
del_socket_state_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketStateReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketStateReceived event.

	
del_user_data_relay_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.RelayDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.RelayDataReceived event.

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee device.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
enable_apply_changes(value)

	Sets the apply_changes flag.

	Parameters

	value (Boolean) – True to enable the apply changes flag, False to disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee device.

To work with this interface, you must also configure the Bluetooth password if not done previously.
You can use the AbstractXBeeDevice.update_bluetooth_password() method for that purpose.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
execute_command(parameter)

	Executes the provided command.

	Parameters

	parameter (String) – The name of the AT command to be executed.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
flush_queues()

	Flushes the packets queue.

	
get_16bit_addr()

	Returns the 16-bit address of the XBee device.

	Returns

	the 16-bit address of the XBee device.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
get_64bit_addr()

	Returns the 64-bit address of the XBee device.

	Returns

	the 64-bit address of the XBee device.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – the IO line to get its ADC value.

	Returns

	the analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee device.

The API output mode determines the format that the received data is
output through the serial interface of the XBee device.

	Returns

	the API output mode of the XBee device.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or
 ESCAPED API. This method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee device in a format such as 00112233AABB.

Note that your device must have Bluetooth Low Energy support to use this method.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	the last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Returns the 64-bit address of the XBee device that data will be reported to.

	Returns

	the address.

	Return type

	XBee64BitAddress

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

XBee64BitAddress

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

IOValue

	
get_firmware_version()

	Returns the firmware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – the io line to configure.

	Returns

	the IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the received data is not an IO mode.

	
get_io_sampling_rate()

	Returns the IO sampling rate of the XBee device.

	Returns

	the IO sampling rate of XBee device.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_network()

	Returns this XBee device’s current network.

	Returns

	XBeeDevice.XBeeNetwork

	
get_next_frame_id()

	Returns the next frame ID of the XBee device.

	Returns

	The next frame ID of the XBee device.

	Return type

	Integer

	
get_node_id()

	Returns the Node Identifier (NI) value of the XBee device.

	Returns

	the Node Identifier (NI) of the XBee device.

	Return type

	String

	
get_pan_id()

	Returns the operating PAN ID of the XBee device.

	Returns

	operating PAN ID of the XBee device.

	Return type

	Bytearray

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

	
get_parameter(param, parameter_value=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
get_power_level()

	Returns the power level of the XBee device.

	Returns

	the power level of the XBee device.

	Return type

	PowerLevel

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

PowerLevel

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – the IO line to get its PWM duty cycle.

	Returns

	the PWM duty cycle of the given IO line or None if the response is empty.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the passed IO_LINE has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	digi.xbee.models.protocol.Role

See also

digi.xbee.models.protocol.Role

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	the serial port read timeout in seconds.

	Return type

	Integer

	
get_xbee_device_callbacks()

	Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee to get its callbacks. These
callbacks will be executed before user callbacks.

	Returns

	PacketReceived

	
has_explicit_packets()

	Returns whether the XBee device’s queue has explicit packets or not.
This do not include non-explicit packets.

	Returns

	True if this XBee device’s queue has explicit packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_packets()

	
has_packets()

	Returns whether the XBee device’s queue has packets or not.
This do not include explicit packets.

	Returns

	True if this XBee device’s queue has packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_explicit_packets()

	
is_apply_changes_enabled()

	Returns whether the apply_changes flag is enabled or not.

	Returns

	True if the apply_changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_open()

	Returns whether this XBee device is open or not.

	Returns

	Boolean. True if this XBee device is open, False otherwise.

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
log

	Returns the XBee device log.

	Returns

	the XBee device logger.

	Return type

	Logger

	
operating_mode

	Returns this XBee device’s operating mode.

	Returns

	OperatingMode. This XBee device’s operating mode.

	
read_data(timeout=None)

	Reads new data received by this XBee device.

If a timeout is specified, this method blocks until new data is received or the timeout expires,
throwing in that case a TimeoutException.

	Parameters

	timeout (Integer, optional) – read timeout in seconds. If it’s None, this method is non-blocking
and will return None if there is no data available.

	Returns

	the read message or None if this XBee did not receive new data.

	Return type

	XBeeMessage

	Raises

	
	ValueError – if a timeout is specified and is less than 0.

	TimeoutException – if a timeout is specified and no data was received during that time.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if the XBee device’s serial port is closed.

See also

XBeeMessage

	
read_data_from(remote_xbee_device, timeout=None)

	Reads new data received from the given remote XBee device.

If a timeout is specified, this method blocks until new data is received or the timeout expires,
throwing in that case a TimeoutException.

	Parameters

	
	remote_xbee_device (RemoteXBeeDevice) – the remote XBee device that sent the data.

	timeout (Integer, optional) – read timeout in seconds. If it’s None, this method is non-blocking
and will return None if there is no data available.

	Returns

	
	the read message sent by remote_xbee_device or None if this XBee did

	not receive new data.

	Return type

	XBeeMessage

	Raises

	
	ValueError – if a timeout is specified and is less than 0.

	TimeoutException – if a timeout is specified and no data was received during that time.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if the XBee device’s serial port is closed.

See also

XBeeMessage

RemoteXBeeDevice

	
read_device_info(init=True)

	Updates all instance parameters reading them from the XBee device.

	Parameters

	init (Boolean, optional, default=`True`) – If False only not initialized parameters
are read, all if True.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
read_io_sample()

	Returns an IO sample from the XBee device containing the value of all enabled digital IO and
analog input channels.

	Returns

	the IO sample read from the XBee device.

	Return type

	IOSample

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOSample

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
send_bluetooth_data(data)

	Sends the given data to the Bluetooth interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if there is any problem sending the data.

See also

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

	
send_data(remote_xbee_device, data, transmit_options=0)

	Blocking method. This method sends data to a remote XBee device synchronously.

This method will wait for the packet response.

The default timeout for this method is XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS.

	Parameters

	
	remote_xbee_device (RemoteXBeeDevice) – the remote XBee device to send data to.

	data (String or Bytearray) – the raw data to send.

	transmit_options (Integer, optional) – transmit options, bitfield of TransmitOptions. Default to
TransmitOptions.NONE.value.

	Returns

	XBeePacket the response.

	Raises

	
	ValueError – if remote_xbee_device is None.

	TimeoutException – if this method can’t read a response packet in
 XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS seconds.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	TransmitException – if the status of the response received is not OK.

	XBeeException – if the XBee device’s serial port is closed.

See also

RemoteXBeeDevice

XBeePacket

	
send_data_async(remote_xbee_device, data, transmit_options=0)

	Non-blocking method. This method sends data to a remote XBee device.

This method won’t wait for the response.

	Parameters

	
	remote_xbee_device (RemoteXBeeDevice) – the remote XBee device to send data to.

	data (String or Bytearray) – the raw data to send.

	transmit_options (Integer, optional) – transmit options, bitfield of TransmitOptions. Default to
TransmitOptions.NONE.value.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if the XBee device’s serial port is closed.

See also

RemoteXBeeDevice

	
send_data_broadcast(data, transmit_options=0)

	Sends the provided data to all the XBee nodes of the network (broadcast).

This method blocks till a success or error transmit status arrives or
the configured receive timeout expires.

The received timeout is configured using the AbstractXBeeDevice.set_sync_ops_timeout()
method and can be consulted with AbstractXBeeDevice.get_sync_ops_timeout() method.

	Parameters

	
	data (String or Bytearray) – data to send.

	transmit_options (Integer, optional) – transmit options, bitfield of TransmitOptions. Default to
TransmitOptions.NONE.value.

	Raises

	
	TimeoutException – if this method can’t read a response packet in
 XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS seconds.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	TransmitException – if the status of the response received is not OK.

	XBeeException – if the XBee device’s serial port is closed.

	
send_micropython_data(data)

	Sends the given data to the MicroPython interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if there is any problem sending the data.

See also

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

	
send_packet(packet, sync=False)

	Override method.

See also

AbstractXBeeDevice._send_packet()

	
send_packet_sync_and_get_response(packet_to_send, timeout=None)

	Override method.

See also

AbstractXBeeDevice._send_packet_sync_and_get_response()

	
send_user_data_relay(local_interface, data)

	Sends the given data to the given XBee local interface.

	Parameters

	
	local_interface (XBeeLocalInterface) – Destination XBee local interface.

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ValueError – if local_interface is None.

	XBeeException – if there is any problem sending the User Data Relay.

See also

XBeeLocalInterface

	
serial_port

	Returns the serial port associated to the XBee device, if any.

	Returns

	
	the serial port associated to the XBee device. Returns None if the local XBee

	does not use serial communication.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee device.

	Parameters

	value (XBee16BitAddress) – the new 16-bit address of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee device.

	Parameters

	api_output_mode (APIOutputMode) – the new API output mode of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is ZigBee

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – new API output mode options. Calculate this value using
the method
digi.xbee.models.mode.APIOutputModeBit.calculate_api_output_mode_value()
with a set of digi.xbee.models.mode.APIOutputModeBit.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
set_dest_address(addr)

	Sets the 64-bit address of the XBee device that data will be reported to.

	Parameters

	addr (XBee64BitAddress or RemoteXBeeDevice) – the address itself or the remote XBee
device that you want to set up its address as destination address.

	Raises

	
	TimeoutException – If the response is not received before the read timeout expires.

	XBeeException – If the XBee device’s serial port is closed.

	InvalidOperatingModeException – If the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – If the response is not as expected.

	ValueError – If addr is None.

	
set_dio_change_detection(io_lines_set)

	Sets the digital IO lines to be monitored and sampled whenever their status changes.

A None set of lines disables this feature.

	Parameters

	io_lines_set – set of IOLine.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – the digital IO line to sets its value.

	io_value (IOValue) – the IO value to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – the IO line to configure.

	io_mode (IOMode) – the IO mode to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOMode

	
set_io_sampling_rate(rate)

	Sets the IO sampling rate of the XBee device in seconds. A sample rate of 0 means the IO sampling feature is
disabled.

	Parameters

	rate (Integer) – the new IO sampling rate of the XBee device in seconds.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
set_node_id(node_id)

	Sets the Node Identifier (NI) value of the XBee device..

	Parameters

	node_id (String) – the new Node Identifier (NI) of the XBee device.

	Raises

	
	ValueError – if node_id is None or its length is greater than 20.

	TimeoutException – if the response is not received before the read timeout expires.

	
set_pan_id(value)

	Sets the operating PAN ID of the XBee device.

	Parameters

	value (Bytearray) – the new operating PAN ID of the XBee device.. Must have only 1 or 2 bytes.

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

	
set_parameter(param, value)

	Override.

	See:

	AbstractXBeeDevice.set_parameter()

	
set_power_level(power_level)

	Sets the power level of the XBee device.

	Parameters

	power_level (PowerLevel) – the new power level of the XBee device.

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

PowerLevel

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – the IO Line to be assigned.

	cycle (Integer) – duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the given IO line does not have PWM capability or cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – the read timeout, expressed in seconds.

	
update_bluetooth_password(new_password)

	Changes the password of this Bluetooth device with the new one provided.

Note that your device must have Bluetooth Low Energy support to use this method.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
update_device_data_from(device)

	Updates the current device reference with the data provided for the given device.

This is only for internal use.

	Parameters

	device (AbstractXBeeDevice) – the XBee device to get the data from.

	Returns

	True if the device data has been updated, False otherwise.

	Return type

	Boolean

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the device.

	Parameters

	
	xml_firmware_file (String) – path of the XML file that describes the firmware to upload.

	xbee_firmware_file (String, optional) – location of the XBee binary firmware file.

	bootloader_firmware_file (String, optional) – location of the bootloader binary firmware file.

	timeout (Integer, optional) – the maximum time to wait for target read operations during the update process.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	OperationNotSupportedException – if the firmware update is not supported in the XBee device.

	FirmwareUpdateException – if there is any error performing the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee device so that parameter modifications persist through subsequent
resets.

Parameters values remain in this device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them to non-volatile memory, the
module reverts back to previously saved parameters the next time the
module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_configuration_changes_enabled() to get its status and
enable_apply_configuration_changes() to enable/disable the
option. If it is disabled, method apply_changes() can be used in
order to manually apply the changes.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
class digi.xbee.devices.DigiMeshDevice(port=None, baud_rate=None, data_bits=<sphinx.ext.autodoc.importer._MockObject object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject object>, parity=<sphinx.ext.autodoc.importer._MockObject object>, flow_control=<FlowControl.NONE: None>, _sync_ops_timeout=4, comm_iface=None)

	Bases: digi.xbee.devices.XBeeDevice

This class represents a local DigiMesh XBee device.

Class constructor. Instantiates a new DigiMeshDevice with the provided parameters.

	Parameters

	
	port (Integer or String) – serial port identifier.
Integer: number of XBee device, numbering starts at zero.
Device name: depending on operating system. e.g. ‘/dev/ttyUSB0’ on ‘GNU/Linux’ or
‘COM3’ on Windows.

	baud_rate (Integer) – the serial port baud rate.

	(Integer, default (flow_control) – serial.EIGHTBITS): comm port bitsize.

	(Integer, default – serial.STOPBITS_ONE): comm port stop bits.

	(Character, default (parity) – serial.PARITY_NONE): comm port parity.

	(Integer, default – FlowControl.NONE): comm port flow control.

	_sync_ops_timeout (Integer, default: 3): the read timeout (in seconds).

	comm_iface (XBeeCommunicationInterface): the communication interface.

:raises All exceptions raised by XBeeDevice.__init__() constructor.:

See also

XBeeDevice

XBeeDevice.__init__()

	
open(force_settings=False)

	Override.

	Raises

	
	TimeoutException – If there is any problem with the communication.

	InvalidOperatingModeException – If the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – If the protocol is invalid or if the XBee device is already open.

See also

XBeeDevice.open()

	
get_protocol()

	Override.

See also

XBeeDevice.get_protocol()

	
send_data_64(x64addr, data, transmit_options=0)

	Override.

See also

XBeeDevice.send_data_64()

	
send_data_async_64(x64addr, data, transmit_options=0)

	Override.

See also

XBeeDevice.send_data_async_64()

	
read_expl_data(timeout=None)

	Override.

See also

XBeeDevice.read_expl_data()

	
read_expl_data_from(remote_xbee_device, timeout=None)

	Override.

See also

XBeeDevice.read_expl_data_from()

	
send_expl_data(remote_xbee_device, data, src_endpoint, dest_endpoint, cluster_id, profile_id, transmit_options=0)

	Override.

See also

XBeeDevice.send_expl_data()

	
send_expl_data_broadcast(data, src_endpoint, dest_endpoint, cluster_id, profile_id, transmit_options=0)

	Override.

See also

XBeeDevice._send_expl_data_broadcast()

	
send_expl_data_async(remote_xbee_device, data, src_endpoint, dest_endpoint, cluster_id, profile_id, transmit_options=0)

	Override.

See also

XBeeDevice.send_expl_data_async()

	
add_bluetooth_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.BluetoothDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The Bluetooth data as a Bytearray

	
add_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.DataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The data received as an digi.xbee.models.message.XBeeMessage

	
add_expl_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.ExplicitDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The explicit data received as a
digi.xbee.models.message.ExplicitXBeeMessage.

	
add_io_sample_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.IOSampleReceived.

	Parameters

	callback (Function) – the callback. Receives three arguments.

	The received IO sample as an digi.xbee.io.IOSample

	The remote XBee device who has sent the packet as a RemoteXBeeDevice

	The time in which the packet was received as an Integer

	
add_micropython_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.MicroPythonDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The MicroPython data as a Bytearray

	
add_modem_status_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.ModemStatusReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The modem status as a digi.xbee.models.status.ModemStatus

	
add_packet_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.PacketReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The received packet as a digi.xbee.packets.base.XBeeAPIPacket

	
add_socket_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketDataReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The socket ID as an Integer.

	The data received as Bytearray

	
add_socket_data_received_from_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketDataReceivedFrom.

	Parameters

	callback (Function) – the callback. Receives three arguments.

	The socket ID as an Integer.

	
	A pair (host, port) of the source address where host is a string

	representing an IPv4 address like ‘100.50.200.5’, and port is an
integer.

	The data received as Bytearray

	
add_socket_state_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketStateReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The socket ID as an Integer.

	The state received as a SocketState

	
add_user_data_relay_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.RelayDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The relay data as a digi.xbee.models.message.UserDataRelayMessage

	
apply_changes()

	Applies changes via AC command.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
apply_profile(profile_path, progress_callback=None)

	Applies the given XBee profile to the XBee device.

	Parameters

	
	profile_path (String) – path of the XBee profile file to apply.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	UpdateProfileException – if there is any error applying the XBee profile.

	OperationNotSupportedException – if XBee profiles are not supported in the XBee device.

	
close()

	Closes the communication with the XBee device.

This method guarantees that all threads running are stopped and
the serial port is closed.

	
comm_iface

	Returns the hardware interface associated to the XBee device.

	Returns

	the hardware interface associated to the XBee device.

	Return type

	XBeeCommunicationInterface

See also

XBeeSerialPort

	
classmethod create_xbee_device(comm_port_data)

	Creates and returns an XBeeDevice from data of the port to which is connected.

	Parameters

	
	comm_port_data (Dictionary) – dictionary with all comm port data needed.

	dictionary keys are (The) –
“baudRate” –> Baud rate.

”port” –> Port number.

”bitSize” –> Bit size.

”stopBits” –> Stop bits.

”parity” –> Parity.

”flowControl” –> Flow control.

”timeout” for –> Timeout for synchronous operations (in seconds).

	Returns

	the XBee device created.

	Return type

	XBeeDevice

	Raises

	SerialException – if the port you want to open does not exist or is already opened.

See also

XBeeDevice

	
del_bluetooth_data_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.BluetoothDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.BluetoothDataReceived event.

	
del_data_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.DataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.DataReceived event.

	
del_expl_data_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.ExplicitDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.ExplicitDataReceived event.

	
del_io_sample_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.IOSampleReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.IOSampleReceived event.

	
del_micropython_data_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.MicroPythonDataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.MicroPythonDataReceived event.

	
del_modem_status_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.ModemStatusReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.ModemStatusReceived event.

	
del_packet_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.PacketReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.PacketReceived event.

	
del_socket_data_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketDataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketDataReceived event.

	
del_socket_data_received_from_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketDataReceivedFrom event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketDataReceivedFrom event.

	
del_socket_state_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketStateReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketStateReceived event.

	
del_user_data_relay_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.RelayDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.RelayDataReceived event.

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee device.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
enable_apply_changes(value)

	Sets the apply_changes flag.

	Parameters

	value (Boolean) – True to enable the apply changes flag, False to disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee device.

To work with this interface, you must also configure the Bluetooth password if not done previously.
You can use the AbstractXBeeDevice.update_bluetooth_password() method for that purpose.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
execute_command(parameter)

	Executes the provided command.

	Parameters

	parameter (String) – The name of the AT command to be executed.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
flush_queues()

	Flushes the packets queue.

	
get_16bit_addr()

	Returns the 16-bit address of the XBee device.

	Returns

	the 16-bit address of the XBee device.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
get_64bit_addr()

	Returns the 64-bit address of the XBee device.

	Returns

	the 64-bit address of the XBee device.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – the IO line to get its ADC value.

	Returns

	the analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee device.

The API output mode determines the format that the received data is
output through the serial interface of the XBee device.

	Returns

	the API output mode of the XBee device.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or
 ESCAPED API. This method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee device in a format such as 00112233AABB.

Note that your device must have Bluetooth Low Energy support to use this method.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	the last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Returns the 64-bit address of the XBee device that data will be reported to.

	Returns

	the address.

	Return type

	XBee64BitAddress

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

XBee64BitAddress

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

IOValue

	
get_firmware_version()

	Returns the firmware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – the io line to configure.

	Returns

	the IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the received data is not an IO mode.

	
get_io_sampling_rate()

	Returns the IO sampling rate of the XBee device.

	Returns

	the IO sampling rate of XBee device.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_network()

	Returns this XBee device’s current network.

	Returns

	XBeeDevice.XBeeNetwork

	
get_next_frame_id()

	Returns the next frame ID of the XBee device.

	Returns

	The next frame ID of the XBee device.

	Return type

	Integer

	
get_node_id()

	Returns the Node Identifier (NI) value of the XBee device.

	Returns

	the Node Identifier (NI) of the XBee device.

	Return type

	String

	
get_pan_id()

	Returns the operating PAN ID of the XBee device.

	Returns

	operating PAN ID of the XBee device.

	Return type

	Bytearray

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

	
get_parameter(param, parameter_value=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
get_power_level()

	Returns the power level of the XBee device.

	Returns

	the power level of the XBee device.

	Return type

	PowerLevel

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

PowerLevel

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – the IO line to get its PWM duty cycle.

	Returns

	the PWM duty cycle of the given IO line or None if the response is empty.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the passed IO_LINE has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	digi.xbee.models.protocol.Role

See also

digi.xbee.models.protocol.Role

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	the serial port read timeout in seconds.

	Return type

	Integer

	
get_xbee_device_callbacks()

	Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee to get its callbacks. These
callbacks will be executed before user callbacks.

	Returns

	PacketReceived

	
has_explicit_packets()

	Returns whether the XBee device’s queue has explicit packets or not.
This do not include non-explicit packets.

	Returns

	True if this XBee device’s queue has explicit packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_packets()

	
has_packets()

	Returns whether the XBee device’s queue has packets or not.
This do not include explicit packets.

	Returns

	True if this XBee device’s queue has packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_explicit_packets()

	
is_apply_changes_enabled()

	Returns whether the apply_changes flag is enabled or not.

	Returns

	True if the apply_changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_open()

	Returns whether this XBee device is open or not.

	Returns

	Boolean. True if this XBee device is open, False otherwise.

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
log

	Returns the XBee device log.

	Returns

	the XBee device logger.

	Return type

	Logger

	
operating_mode

	Returns this XBee device’s operating mode.

	Returns

	OperatingMode. This XBee device’s operating mode.

	
read_data(timeout=None)

	Reads new data received by this XBee device.

If a timeout is specified, this method blocks until new data is received or the timeout expires,
throwing in that case a TimeoutException.

	Parameters

	timeout (Integer, optional) – read timeout in seconds. If it’s None, this method is non-blocking
and will return None if there is no data available.

	Returns

	the read message or None if this XBee did not receive new data.

	Return type

	XBeeMessage

	Raises

	
	ValueError – if a timeout is specified and is less than 0.

	TimeoutException – if a timeout is specified and no data was received during that time.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if the XBee device’s serial port is closed.

See also

XBeeMessage

	
read_data_from(remote_xbee_device, timeout=None)

	Reads new data received from the given remote XBee device.

If a timeout is specified, this method blocks until new data is received or the timeout expires,
throwing in that case a TimeoutException.

	Parameters

	
	remote_xbee_device (RemoteXBeeDevice) – the remote XBee device that sent the data.

	timeout (Integer, optional) – read timeout in seconds. If it’s None, this method is non-blocking
and will return None if there is no data available.

	Returns

	
	the read message sent by remote_xbee_device or None if this XBee did

	not receive new data.

	Return type

	XBeeMessage

	Raises

	
	ValueError – if a timeout is specified and is less than 0.

	TimeoutException – if a timeout is specified and no data was received during that time.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if the XBee device’s serial port is closed.

See also

XBeeMessage

RemoteXBeeDevice

	
read_device_info(init=True)

	Updates all instance parameters reading them from the XBee device.

	Parameters

	init (Boolean, optional, default=`True`) – If False only not initialized parameters
are read, all if True.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
read_io_sample()

	Returns an IO sample from the XBee device containing the value of all enabled digital IO and
analog input channels.

	Returns

	the IO sample read from the XBee device.

	Return type

	IOSample

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOSample

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
send_bluetooth_data(data)

	Sends the given data to the Bluetooth interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if there is any problem sending the data.

See also

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

	
send_data(remote_xbee_device, data, transmit_options=0)

	Blocking method. This method sends data to a remote XBee device synchronously.

This method will wait for the packet response.

The default timeout for this method is XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS.

	Parameters

	
	remote_xbee_device (RemoteXBeeDevice) – the remote XBee device to send data to.

	data (String or Bytearray) – the raw data to send.

	transmit_options (Integer, optional) – transmit options, bitfield of TransmitOptions. Default to
TransmitOptions.NONE.value.

	Returns

	XBeePacket the response.

	Raises

	
	ValueError – if remote_xbee_device is None.

	TimeoutException – if this method can’t read a response packet in
 XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS seconds.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	TransmitException – if the status of the response received is not OK.

	XBeeException – if the XBee device’s serial port is closed.

See also

RemoteXBeeDevice

XBeePacket

	
send_data_async(remote_xbee_device, data, transmit_options=0)

	Non-blocking method. This method sends data to a remote XBee device.

This method won’t wait for the response.

	Parameters

	
	remote_xbee_device (RemoteXBeeDevice) – the remote XBee device to send data to.

	data (String or Bytearray) – the raw data to send.

	transmit_options (Integer, optional) – transmit options, bitfield of TransmitOptions. Default to
TransmitOptions.NONE.value.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if the XBee device’s serial port is closed.

See also

RemoteXBeeDevice

	
send_data_broadcast(data, transmit_options=0)

	Sends the provided data to all the XBee nodes of the network (broadcast).

This method blocks till a success or error transmit status arrives or
the configured receive timeout expires.

The received timeout is configured using the AbstractXBeeDevice.set_sync_ops_timeout()
method and can be consulted with AbstractXBeeDevice.get_sync_ops_timeout() method.

	Parameters

	
	data (String or Bytearray) – data to send.

	transmit_options (Integer, optional) – transmit options, bitfield of TransmitOptions. Default to
TransmitOptions.NONE.value.

	Raises

	
	TimeoutException – if this method can’t read a response packet in
 XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS seconds.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	TransmitException – if the status of the response received is not OK.

	XBeeException – if the XBee device’s serial port is closed.

	
send_micropython_data(data)

	Sends the given data to the MicroPython interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if there is any problem sending the data.

See also

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

	
send_packet(packet, sync=False)

	Override method.

See also

AbstractXBeeDevice._send_packet()

	
send_packet_sync_and_get_response(packet_to_send, timeout=None)

	Override method.

See also

AbstractXBeeDevice._send_packet_sync_and_get_response()

	
send_user_data_relay(local_interface, data)

	Sends the given data to the given XBee local interface.

	Parameters

	
	local_interface (XBeeLocalInterface) – Destination XBee local interface.

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ValueError – if local_interface is None.

	XBeeException – if there is any problem sending the User Data Relay.

See also

XBeeLocalInterface

	
serial_port

	Returns the serial port associated to the XBee device, if any.

	Returns

	
	the serial port associated to the XBee device. Returns None if the local XBee

	does not use serial communication.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee device.

	Parameters

	value (XBee16BitAddress) – the new 16-bit address of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee device.

	Parameters

	api_output_mode (APIOutputMode) – the new API output mode of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is ZigBee

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – new API output mode options. Calculate this value using
the method
digi.xbee.models.mode.APIOutputModeBit.calculate_api_output_mode_value()
with a set of digi.xbee.models.mode.APIOutputModeBit.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
set_dest_address(addr)

	Sets the 64-bit address of the XBee device that data will be reported to.

	Parameters

	addr (XBee64BitAddress or RemoteXBeeDevice) – the address itself or the remote XBee
device that you want to set up its address as destination address.

	Raises

	
	TimeoutException – If the response is not received before the read timeout expires.

	XBeeException – If the XBee device’s serial port is closed.

	InvalidOperatingModeException – If the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – If the response is not as expected.

	ValueError – If addr is None.

	
set_dio_change_detection(io_lines_set)

	Sets the digital IO lines to be monitored and sampled whenever their status changes.

A None set of lines disables this feature.

	Parameters

	io_lines_set – set of IOLine.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – the digital IO line to sets its value.

	io_value (IOValue) – the IO value to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – the IO line to configure.

	io_mode (IOMode) – the IO mode to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOMode

	
set_io_sampling_rate(rate)

	Sets the IO sampling rate of the XBee device in seconds. A sample rate of 0 means the IO sampling feature is
disabled.

	Parameters

	rate (Integer) – the new IO sampling rate of the XBee device in seconds.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
set_node_id(node_id)

	Sets the Node Identifier (NI) value of the XBee device..

	Parameters

	node_id (String) – the new Node Identifier (NI) of the XBee device.

	Raises

	
	ValueError – if node_id is None or its length is greater than 20.

	TimeoutException – if the response is not received before the read timeout expires.

	
set_pan_id(value)

	Sets the operating PAN ID of the XBee device.

	Parameters

	value (Bytearray) – the new operating PAN ID of the XBee device.. Must have only 1 or 2 bytes.

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

	
set_parameter(param, value)

	Override.

	See:

	AbstractXBeeDevice.set_parameter()

	
set_power_level(power_level)

	Sets the power level of the XBee device.

	Parameters

	power_level (PowerLevel) – the new power level of the XBee device.

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

PowerLevel

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – the IO Line to be assigned.

	cycle (Integer) – duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the given IO line does not have PWM capability or cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – the read timeout, expressed in seconds.

	
update_bluetooth_password(new_password)

	Changes the password of this Bluetooth device with the new one provided.

Note that your device must have Bluetooth Low Energy support to use this method.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
update_device_data_from(device)

	Updates the current device reference with the data provided for the given device.

This is only for internal use.

	Parameters

	device (AbstractXBeeDevice) – the XBee device to get the data from.

	Returns

	True if the device data has been updated, False otherwise.

	Return type

	Boolean

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the device.

	Parameters

	
	xml_firmware_file (String) – path of the XML file that describes the firmware to upload.

	xbee_firmware_file (String, optional) – location of the XBee binary firmware file.

	bootloader_firmware_file (String, optional) – location of the bootloader binary firmware file.

	timeout (Integer, optional) – the maximum time to wait for target read operations during the update process.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	OperationNotSupportedException – if the firmware update is not supported in the XBee device.

	FirmwareUpdateException – if there is any error performing the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee device so that parameter modifications persist through subsequent
resets.

Parameters values remain in this device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them to non-volatile memory, the
module reverts back to previously saved parameters the next time the
module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_configuration_changes_enabled() to get its status and
enable_apply_configuration_changes() to enable/disable the
option. If it is disabled, method apply_changes() can be used in
order to manually apply the changes.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
class digi.xbee.devices.DigiPointDevice(port=None, baud_rate=None, data_bits=<sphinx.ext.autodoc.importer._MockObject object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject object>, parity=<sphinx.ext.autodoc.importer._MockObject object>, flow_control=<FlowControl.NONE: None>, _sync_ops_timeout=4, comm_iface=None)

	Bases: digi.xbee.devices.XBeeDevice

This class represents a local DigiPoint XBee device.

Class constructor. Instantiates a new DigiPointDevice with the provided
parameters.

	Parameters

	
	port (Integer or String) – serial port identifier.
Integer: number of XBee device, numbering starts at zero.
Device name: depending on operating system. e.g. ‘/dev/ttyUSB0’ on ‘GNU/Linux’ or
‘COM3’ on Windows.

	baud_rate (Integer) – the serial port baud rate.

	(Integer, default (_sync_ops_timeout) – serial.EIGHTBITS): comm port bitsize.

	(Integer, default – serial.STOPBITS_ONE): comm port stop bits.

	(Character, default (parity) – serial.PARITY_NONE): comm port parity.

	(Integer, default – FlowControl.NONE): comm port flow control.

	(Integer, default – 3): the read timeout (in seconds).

	comm_iface (XBeeCommunicationInterface) – the communication interface.

:raises All exceptions raised by XBeeDevice.__init__() constructor.:

See also

XBeeDevice

XBeeDevice.__init__()

	
open(force_settings=False)

	Override.

	Raises

	
	TimeoutException – If there is any problem with the communication.

	InvalidOperatingModeException – If the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – If the protocol is invalid or if the XBee device is already open.

See also

XBeeDevice.open()

	
get_protocol()

	Override.

See also

XBeeDevice.get_protocol()

	
send_data_64_16(x64addr, x16addr, data, transmit_options=0)

	Override.

See also

XBeeDevice.send_data_64_16()

	
send_data_async_64_16(x64addr, x16addr, data, transmit_options=0)

	Override.

See also

XBeeDevice.send_data_async_64_16()

	
read_expl_data(timeout=None)

	Override.

See also

XBeeDevice.read_expl_data()

	
read_expl_data_from(remote_xbee_device, timeout=None)

	Override.

See also

XBeeDevice.read_expl_data_from()

	
send_expl_data(remote_xbee_device, data, src_endpoint, dest_endpoint, cluster_id, profile_id, transmit_options=0)

	Override.

See also

XBeeDevice.send_expl_data()

	
send_expl_data_broadcast(data, src_endpoint, dest_endpoint, cluster_id, profile_id, transmit_options=0)

	Override.

See also

XBeeDevice._send_expl_data_broadcast()

	
send_expl_data_async(remote_xbee_device, data, src_endpoint, dest_endpoint, cluster_id, profile_id, transmit_options=0)

	Override.

See also

XBeeDevice.send_expl_data_async()

	
add_bluetooth_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.BluetoothDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The Bluetooth data as a Bytearray

	
add_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.DataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The data received as an digi.xbee.models.message.XBeeMessage

	
add_expl_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.ExplicitDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The explicit data received as a
digi.xbee.models.message.ExplicitXBeeMessage.

	
add_io_sample_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.IOSampleReceived.

	Parameters

	callback (Function) – the callback. Receives three arguments.

	The received IO sample as an digi.xbee.io.IOSample

	The remote XBee device who has sent the packet as a RemoteXBeeDevice

	The time in which the packet was received as an Integer

	
add_micropython_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.MicroPythonDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The MicroPython data as a Bytearray

	
add_modem_status_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.ModemStatusReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The modem status as a digi.xbee.models.status.ModemStatus

	
add_packet_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.PacketReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The received packet as a digi.xbee.packets.base.XBeeAPIPacket

	
add_socket_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketDataReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The socket ID as an Integer.

	The data received as Bytearray

	
add_socket_data_received_from_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketDataReceivedFrom.

	Parameters

	callback (Function) – the callback. Receives three arguments.

	The socket ID as an Integer.

	
	A pair (host, port) of the source address where host is a string

	representing an IPv4 address like ‘100.50.200.5’, and port is an
integer.

	The data received as Bytearray

	
add_socket_state_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketStateReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The socket ID as an Integer.

	The state received as a SocketState

	
add_user_data_relay_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.RelayDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The relay data as a digi.xbee.models.message.UserDataRelayMessage

	
apply_changes()

	Applies changes via AC command.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
apply_profile(profile_path, progress_callback=None)

	Applies the given XBee profile to the XBee device.

	Parameters

	
	profile_path (String) – path of the XBee profile file to apply.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	UpdateProfileException – if there is any error applying the XBee profile.

	OperationNotSupportedException – if XBee profiles are not supported in the XBee device.

	
close()

	Closes the communication with the XBee device.

This method guarantees that all threads running are stopped and
the serial port is closed.

	
comm_iface

	Returns the hardware interface associated to the XBee device.

	Returns

	the hardware interface associated to the XBee device.

	Return type

	XBeeCommunicationInterface

See also

XBeeSerialPort

	
classmethod create_xbee_device(comm_port_data)

	Creates and returns an XBeeDevice from data of the port to which is connected.

	Parameters

	
	comm_port_data (Dictionary) – dictionary with all comm port data needed.

	dictionary keys are (The) –
“baudRate” –> Baud rate.

”port” –> Port number.

”bitSize” –> Bit size.

”stopBits” –> Stop bits.

”parity” –> Parity.

”flowControl” –> Flow control.

”timeout” for –> Timeout for synchronous operations (in seconds).

	Returns

	the XBee device created.

	Return type

	XBeeDevice

	Raises

	SerialException – if the port you want to open does not exist or is already opened.

See also

XBeeDevice

	
del_bluetooth_data_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.BluetoothDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.BluetoothDataReceived event.

	
del_data_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.DataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.DataReceived event.

	
del_expl_data_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.ExplicitDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.ExplicitDataReceived event.

	
del_io_sample_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.IOSampleReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.IOSampleReceived event.

	
del_micropython_data_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.MicroPythonDataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.MicroPythonDataReceived event.

	
del_modem_status_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.ModemStatusReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.ModemStatusReceived event.

	
del_packet_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.PacketReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.PacketReceived event.

	
del_socket_data_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketDataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketDataReceived event.

	
del_socket_data_received_from_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketDataReceivedFrom event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketDataReceivedFrom event.

	
del_socket_state_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketStateReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketStateReceived event.

	
del_user_data_relay_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.RelayDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.RelayDataReceived event.

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee device.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
enable_apply_changes(value)

	Sets the apply_changes flag.

	Parameters

	value (Boolean) – True to enable the apply changes flag, False to disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee device.

To work with this interface, you must also configure the Bluetooth password if not done previously.
You can use the AbstractXBeeDevice.update_bluetooth_password() method for that purpose.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
execute_command(parameter)

	Executes the provided command.

	Parameters

	parameter (String) – The name of the AT command to be executed.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
flush_queues()

	Flushes the packets queue.

	
get_16bit_addr()

	Returns the 16-bit address of the XBee device.

	Returns

	the 16-bit address of the XBee device.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
get_64bit_addr()

	Returns the 64-bit address of the XBee device.

	Returns

	the 64-bit address of the XBee device.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – the IO line to get its ADC value.

	Returns

	the analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee device.

The API output mode determines the format that the received data is
output through the serial interface of the XBee device.

	Returns

	the API output mode of the XBee device.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or
 ESCAPED API. This method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee device in a format such as 00112233AABB.

Note that your device must have Bluetooth Low Energy support to use this method.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	the last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Returns the 64-bit address of the XBee device that data will be reported to.

	Returns

	the address.

	Return type

	XBee64BitAddress

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

XBee64BitAddress

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

IOValue

	
get_firmware_version()

	Returns the firmware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – the io line to configure.

	Returns

	the IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the received data is not an IO mode.

	
get_io_sampling_rate()

	Returns the IO sampling rate of the XBee device.

	Returns

	the IO sampling rate of XBee device.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_network()

	Returns this XBee device’s current network.

	Returns

	XBeeDevice.XBeeNetwork

	
get_next_frame_id()

	Returns the next frame ID of the XBee device.

	Returns

	The next frame ID of the XBee device.

	Return type

	Integer

	
get_node_id()

	Returns the Node Identifier (NI) value of the XBee device.

	Returns

	the Node Identifier (NI) of the XBee device.

	Return type

	String

	
get_pan_id()

	Returns the operating PAN ID of the XBee device.

	Returns

	operating PAN ID of the XBee device.

	Return type

	Bytearray

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

	
get_parameter(param, parameter_value=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
get_power_level()

	Returns the power level of the XBee device.

	Returns

	the power level of the XBee device.

	Return type

	PowerLevel

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

PowerLevel

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – the IO line to get its PWM duty cycle.

	Returns

	the PWM duty cycle of the given IO line or None if the response is empty.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the passed IO_LINE has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	digi.xbee.models.protocol.Role

See also

digi.xbee.models.protocol.Role

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	the serial port read timeout in seconds.

	Return type

	Integer

	
get_xbee_device_callbacks()

	Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee to get its callbacks. These
callbacks will be executed before user callbacks.

	Returns

	PacketReceived

	
has_explicit_packets()

	Returns whether the XBee device’s queue has explicit packets or not.
This do not include non-explicit packets.

	Returns

	True if this XBee device’s queue has explicit packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_packets()

	
has_packets()

	Returns whether the XBee device’s queue has packets or not.
This do not include explicit packets.

	Returns

	True if this XBee device’s queue has packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_explicit_packets()

	
is_apply_changes_enabled()

	Returns whether the apply_changes flag is enabled or not.

	Returns

	True if the apply_changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_open()

	Returns whether this XBee device is open or not.

	Returns

	Boolean. True if this XBee device is open, False otherwise.

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
log

	Returns the XBee device log.

	Returns

	the XBee device logger.

	Return type

	Logger

	
operating_mode

	Returns this XBee device’s operating mode.

	Returns

	OperatingMode. This XBee device’s operating mode.

	
read_data(timeout=None)

	Reads new data received by this XBee device.

If a timeout is specified, this method blocks until new data is received or the timeout expires,
throwing in that case a TimeoutException.

	Parameters

	timeout (Integer, optional) – read timeout in seconds. If it’s None, this method is non-blocking
and will return None if there is no data available.

	Returns

	the read message or None if this XBee did not receive new data.

	Return type

	XBeeMessage

	Raises

	
	ValueError – if a timeout is specified and is less than 0.

	TimeoutException – if a timeout is specified and no data was received during that time.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if the XBee device’s serial port is closed.

See also

XBeeMessage

	
read_data_from(remote_xbee_device, timeout=None)

	Reads new data received from the given remote XBee device.

If a timeout is specified, this method blocks until new data is received or the timeout expires,
throwing in that case a TimeoutException.

	Parameters

	
	remote_xbee_device (RemoteXBeeDevice) – the remote XBee device that sent the data.

	timeout (Integer, optional) – read timeout in seconds. If it’s None, this method is non-blocking
and will return None if there is no data available.

	Returns

	
	the read message sent by remote_xbee_device or None if this XBee did

	not receive new data.

	Return type

	XBeeMessage

	Raises

	
	ValueError – if a timeout is specified and is less than 0.

	TimeoutException – if a timeout is specified and no data was received during that time.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if the XBee device’s serial port is closed.

See also

XBeeMessage

RemoteXBeeDevice

	
read_device_info(init=True)

	Updates all instance parameters reading them from the XBee device.

	Parameters

	init (Boolean, optional, default=`True`) – If False only not initialized parameters
are read, all if True.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
read_io_sample()

	Returns an IO sample from the XBee device containing the value of all enabled digital IO and
analog input channels.

	Returns

	the IO sample read from the XBee device.

	Return type

	IOSample

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOSample

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
send_bluetooth_data(data)

	Sends the given data to the Bluetooth interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if there is any problem sending the data.

See also

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

	
send_data(remote_xbee_device, data, transmit_options=0)

	Blocking method. This method sends data to a remote XBee device synchronously.

This method will wait for the packet response.

The default timeout for this method is XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS.

	Parameters

	
	remote_xbee_device (RemoteXBeeDevice) – the remote XBee device to send data to.

	data (String or Bytearray) – the raw data to send.

	transmit_options (Integer, optional) – transmit options, bitfield of TransmitOptions. Default to
TransmitOptions.NONE.value.

	Returns

	XBeePacket the response.

	Raises

	
	ValueError – if remote_xbee_device is None.

	TimeoutException – if this method can’t read a response packet in
 XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS seconds.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	TransmitException – if the status of the response received is not OK.

	XBeeException – if the XBee device’s serial port is closed.

See also

RemoteXBeeDevice

XBeePacket

	
send_data_async(remote_xbee_device, data, transmit_options=0)

	Non-blocking method. This method sends data to a remote XBee device.

This method won’t wait for the response.

	Parameters

	
	remote_xbee_device (RemoteXBeeDevice) – the remote XBee device to send data to.

	data (String or Bytearray) – the raw data to send.

	transmit_options (Integer, optional) – transmit options, bitfield of TransmitOptions. Default to
TransmitOptions.NONE.value.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if the XBee device’s serial port is closed.

See also

RemoteXBeeDevice

	
send_data_broadcast(data, transmit_options=0)

	Sends the provided data to all the XBee nodes of the network (broadcast).

This method blocks till a success or error transmit status arrives or
the configured receive timeout expires.

The received timeout is configured using the AbstractXBeeDevice.set_sync_ops_timeout()
method and can be consulted with AbstractXBeeDevice.get_sync_ops_timeout() method.

	Parameters

	
	data (String or Bytearray) – data to send.

	transmit_options (Integer, optional) – transmit options, bitfield of TransmitOptions. Default to
TransmitOptions.NONE.value.

	Raises

	
	TimeoutException – if this method can’t read a response packet in
 XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS seconds.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	TransmitException – if the status of the response received is not OK.

	XBeeException – if the XBee device’s serial port is closed.

	
send_micropython_data(data)

	Sends the given data to the MicroPython interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if there is any problem sending the data.

See also

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

	
send_packet(packet, sync=False)

	Override method.

See also

AbstractXBeeDevice._send_packet()

	
send_packet_sync_and_get_response(packet_to_send, timeout=None)

	Override method.

See also

AbstractXBeeDevice._send_packet_sync_and_get_response()

	
send_user_data_relay(local_interface, data)

	Sends the given data to the given XBee local interface.

	Parameters

	
	local_interface (XBeeLocalInterface) – Destination XBee local interface.

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ValueError – if local_interface is None.

	XBeeException – if there is any problem sending the User Data Relay.

See also

XBeeLocalInterface

	
serial_port

	Returns the serial port associated to the XBee device, if any.

	Returns

	
	the serial port associated to the XBee device. Returns None if the local XBee

	does not use serial communication.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee device.

	Parameters

	value (XBee16BitAddress) – the new 16-bit address of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee device.

	Parameters

	api_output_mode (APIOutputMode) – the new API output mode of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is ZigBee

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – new API output mode options. Calculate this value using
the method
digi.xbee.models.mode.APIOutputModeBit.calculate_api_output_mode_value()
with a set of digi.xbee.models.mode.APIOutputModeBit.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
set_dest_address(addr)

	Sets the 64-bit address of the XBee device that data will be reported to.

	Parameters

	addr (XBee64BitAddress or RemoteXBeeDevice) – the address itself or the remote XBee
device that you want to set up its address as destination address.

	Raises

	
	TimeoutException – If the response is not received before the read timeout expires.

	XBeeException – If the XBee device’s serial port is closed.

	InvalidOperatingModeException – If the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – If the response is not as expected.

	ValueError – If addr is None.

	
set_dio_change_detection(io_lines_set)

	Sets the digital IO lines to be monitored and sampled whenever their status changes.

A None set of lines disables this feature.

	Parameters

	io_lines_set – set of IOLine.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – the digital IO line to sets its value.

	io_value (IOValue) – the IO value to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – the IO line to configure.

	io_mode (IOMode) – the IO mode to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOMode

	
set_io_sampling_rate(rate)

	Sets the IO sampling rate of the XBee device in seconds. A sample rate of 0 means the IO sampling feature is
disabled.

	Parameters

	rate (Integer) – the new IO sampling rate of the XBee device in seconds.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
set_node_id(node_id)

	Sets the Node Identifier (NI) value of the XBee device..

	Parameters

	node_id (String) – the new Node Identifier (NI) of the XBee device.

	Raises

	
	ValueError – if node_id is None or its length is greater than 20.

	TimeoutException – if the response is not received before the read timeout expires.

	
set_pan_id(value)

	Sets the operating PAN ID of the XBee device.

	Parameters

	value (Bytearray) – the new operating PAN ID of the XBee device.. Must have only 1 or 2 bytes.

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

	
set_parameter(param, value)

	Override.

	See:

	AbstractXBeeDevice.set_parameter()

	
set_power_level(power_level)

	Sets the power level of the XBee device.

	Parameters

	power_level (PowerLevel) – the new power level of the XBee device.

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

PowerLevel

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – the IO Line to be assigned.

	cycle (Integer) – duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the given IO line does not have PWM capability or cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – the read timeout, expressed in seconds.

	
update_bluetooth_password(new_password)

	Changes the password of this Bluetooth device with the new one provided.

Note that your device must have Bluetooth Low Energy support to use this method.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
update_device_data_from(device)

	Updates the current device reference with the data provided for the given device.

This is only for internal use.

	Parameters

	device (AbstractXBeeDevice) – the XBee device to get the data from.

	Returns

	True if the device data has been updated, False otherwise.

	Return type

	Boolean

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the device.

	Parameters

	
	xml_firmware_file (String) – path of the XML file that describes the firmware to upload.

	xbee_firmware_file (String, optional) – location of the XBee binary firmware file.

	bootloader_firmware_file (String, optional) – location of the bootloader binary firmware file.

	timeout (Integer, optional) – the maximum time to wait for target read operations during the update process.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	OperationNotSupportedException – if the firmware update is not supported in the XBee device.

	FirmwareUpdateException – if there is any error performing the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee device so that parameter modifications persist through subsequent
resets.

Parameters values remain in this device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them to non-volatile memory, the
module reverts back to previously saved parameters the next time the
module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_configuration_changes_enabled() to get its status and
enable_apply_configuration_changes() to enable/disable the
option. If it is disabled, method apply_changes() can be used in
order to manually apply the changes.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
class digi.xbee.devices.ZigBeeDevice(port=None, baud_rate=None, data_bits=<sphinx.ext.autodoc.importer._MockObject object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject object>, parity=<sphinx.ext.autodoc.importer._MockObject object>, flow_control=<FlowControl.NONE: None>, _sync_ops_timeout=4, comm_iface=None)

	Bases: digi.xbee.devices.XBeeDevice

This class represents a local ZigBee XBee device.

Class constructor. Instantiates a new ZigBeeDevice with the provided parameters.

	Parameters

	
	port (Integer or String) – serial port identifier.
Integer: number of XBee device, numbering starts at zero.
Device name: depending on operating system. e.g. ‘/dev/ttyUSB0’ on ‘GNU/Linux’ or
‘COM3’ on Windows.

	baud_rate (Integer) – the serial port baud rate.

	(Integer, default (flow_control) – serial.EIGHTBITS): comm port bitsize.

	(Integer, default – serial.STOPBITS_ONE): comm port stop bits.

	(Character, default (parity) – serial.PARITY_NONE): comm port parity.

	(Integer, default – FlowControl.NONE): comm port flow control.

	_sync_ops_timeout (Integer, default: 3): the read timeout (in seconds).

	comm_iface (XBeeCommunicationInterface): the communication interface.

:raises All exceptions raised by XBeeDevice.__init__() constructor.:

See also

XBeeDevice

XBeeDevice.__init__()

	
open(force_settings=False)

	Override.

	Raises

	
	TimeoutException – If there is any problem with the communication.

	InvalidOperatingModeException – If the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – If the protocol is invalid or if the XBee device is already open.

See also

XBeeDevice.open()

	
get_protocol()

	Override.

See also

XBeeDevice.get_protocol()

	
get_ai_status()

	Override.

See also

AbstractXBeeDevice._get_ai_status()

	
force_disassociate()

	Override.

See also

AbstractXBeeDevice._force_disassociate()

	
send_data_64_16(x64addr, x16addr, data, transmit_options=0)

	Override.

See also

XBeeDevice.send_data_64_16()

	
send_data_async_64_16(x64addr, x16addr, data, transmit_options=0)

	Override.

See also

XBeeDevice.send_data_async_64_16()

	
read_expl_data(timeout=None)

	Override.

See also

XBeeDevice._read_expl_data()

	
read_expl_data_from(remote_xbee_device, timeout=None)

	Override.

See also

XBeeDevice._read_expl_data_from()

	
send_expl_data(remote_xbee_device, data, src_endpoint, dest_endpoint, cluster_id, profile_id, transmit_options=0)

	Override.

See also

XBeeDevice._send_expl_data()

	
send_expl_data_broadcast(data, src_endpoint, dest_endpoint, cluster_id, profile_id, transmit_options=0)

	Override.

See also

XBeeDevice._send_expl_data_broadcast()

	
send_expl_data_async(remote_xbee_device, data, src_endpoint, dest_endpoint, cluster_id, profile_id, transmit_options=0)

	Override.

See also

XBeeDevice.send_expl_data_async()

	
send_multicast_data(group_id, data, src_endpoint, dest_endpoint, cluster_id, profile_id)

	Blocking method. This method sends multicast data to the provided group ID
synchronously.

This method will wait for the packet response.

The default timeout for this method is XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS.

	Parameters

	
	group_id (XBee16BitAddress) – the 16 bit address of the multicast group.

	data (Bytearray) – the raw data to send.

	src_endpoint (Integer) – source endpoint of the transmission. 1 byte.

	dest_endpoint (Integer) – destination endpoint of the transmission. 1 byte.

	cluster_id (Integer) – Cluster ID of the transmission. Must be between 0x0 and 0xFFFF.

	profile_id (Integer) – Profile ID of the transmission. Must be between 0x0 and 0xFFFF.

	Returns

	the response packet.

	Return type

	XBeePacket

	Raises

	
	TimeoutException – if this method can’t read a response packet in
 XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS seconds.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if the XBee device’s serial port is closed.

	XBeeException – if the status of the response received is not OK.

See also

XBee16BitAddress

XBeePacket

	
send_multicast_data_async(group_id, data, src_endpoint, dest_endpoint, cluster_id, profile_id)

	Non-blocking method. This method sends multicast data to the provided group ID.

This method won’t wait for the response.

	Parameters

	
	group_id (XBee16BitAddress) – the 16 bit address of the multicast group.

	data (Bytearray) – the raw data to send.

	src_endpoint (Integer) – source endpoint of the transmission. 1 byte.

	dest_endpoint (Integer) – destination endpoint of the transmission. 1 byte.

	cluster_id (Integer) – Cluster ID of the transmission. Must be between 0x0 and 0xFFFF.

	profile_id (Integer) – Profile ID of the transmission. Must be between 0x0 and 0xFFFF.

	Raises

	
	TimeoutException – if this method can’t read a response packet in
 XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS seconds.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if the XBee device’s serial port is closed.

See also

XBee16BitAddress

	
register_joining_device(registrant_address, options, key)

	Securely registers a joining device to a trust center. Registration is the process by which a node is
authorized to join the network using a preconfigured link key or installation code that is conveyed to
the trust center out-of-band (using a physical interface and not over-the-air).

This method is synchronous, it sends the register joining device packet and waits for the answer of the
operation. Then, returns the corresponding status.

	Parameters

	
	registrant_address (XBee64BitAddress) – the 64-bit address of the device to register.

	options (RegisterKeyOptions) – the register options indicating the key source.

	key (Bytearray) – key of the device to register.

	Returns

	
	the register device operation status or None if the answer

	received is not a RegisterDeviceStatusPacket.

	Return type

	ZigbeeRegisterStatus

	Raises

	
	TimeoutException – if the answer is not received in the configured timeout.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if the XBee device’s serial port is closed.

	ValueError – if registrant_address is None or if options is None.

See also

RegisterKeyOptions

XBee64BitAddress

ZigbeeRegisterStatus

	
register_joining_device_async(registrant_address, options, key)

	Securely registers a joining device to a trust center. Registration is the process by which a node is
authorized to join the network using a preconfigured link key or installation code that is conveyed to
the trust center out-of-band (using a physical interface and not over-the-air).

This method is asynchronous, which means that it will not wait for an answer after sending the
register frame.

	Parameters

	
	registrant_address (XBee64BitAddress) – the 64-bit address of the device to register.

	options (RegisterKeyOptions) – the register options indicating the key source.

	key (Bytearray) – key of the device to register.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if the XBee device’s serial port is closed.

	ValueError – if registrant_address is None or if options is None.

See also

RegisterKeyOptions

XBee64BitAddress

	
unregister_joining_device(unregistrant_address)

	Unregisters a joining device from a trust center.

This method is synchronous, it sends the unregister joining device packet and waits for the answer of the
operation. Then, returns the corresponding status.

	Parameters

	unregistrant_address (XBee64BitAddress) – the 64-bit address of the device to unregister.

	Returns

	
	the unregister device operation status or None if the answer

	received is not a RegisterDeviceStatusPacket.

	Return type

	ZigbeeRegisterStatus

	Raises

	
	TimeoutException – if the answer is not received in the configured timeout.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if the XBee device’s serial port is closed.

	ValueError – if registrant_address is None.

See also

XBee64BitAddress

ZigbeeRegisterStatus

	
unregister_joining_device_async(unregistrant_address)

	Unregisters a joining device from a trust center.

This method is asynchronous, which means that it will not wait for an answer after sending the
uregister frame.

	Parameters

	unregistrant_address (XBee64BitAddress) – the 64-bit address of the device to unregister.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if the XBee device’s serial port is closed.

	ValueError – if registrant_address is None.

See also

XBee64BitAddress

	
add_bluetooth_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.BluetoothDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The Bluetooth data as a Bytearray

	
add_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.DataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The data received as an digi.xbee.models.message.XBeeMessage

	
add_expl_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.ExplicitDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The explicit data received as a
digi.xbee.models.message.ExplicitXBeeMessage.

	
add_io_sample_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.IOSampleReceived.

	Parameters

	callback (Function) – the callback. Receives three arguments.

	The received IO sample as an digi.xbee.io.IOSample

	The remote XBee device who has sent the packet as a RemoteXBeeDevice

	The time in which the packet was received as an Integer

	
add_micropython_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.MicroPythonDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The MicroPython data as a Bytearray

	
add_modem_status_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.ModemStatusReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The modem status as a digi.xbee.models.status.ModemStatus

	
add_packet_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.PacketReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The received packet as a digi.xbee.packets.base.XBeeAPIPacket

	
add_socket_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketDataReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The socket ID as an Integer.

	The data received as Bytearray

	
add_socket_data_received_from_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketDataReceivedFrom.

	Parameters

	callback (Function) – the callback. Receives three arguments.

	The socket ID as an Integer.

	
	A pair (host, port) of the source address where host is a string

	representing an IPv4 address like ‘100.50.200.5’, and port is an
integer.

	The data received as Bytearray

	
add_socket_state_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketStateReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The socket ID as an Integer.

	The state received as a SocketState

	
add_user_data_relay_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.RelayDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The relay data as a digi.xbee.models.message.UserDataRelayMessage

	
apply_changes()

	Applies changes via AC command.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
apply_profile(profile_path, progress_callback=None)

	Applies the given XBee profile to the XBee device.

	Parameters

	
	profile_path (String) – path of the XBee profile file to apply.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	UpdateProfileException – if there is any error applying the XBee profile.

	OperationNotSupportedException – if XBee profiles are not supported in the XBee device.

	
close()

	Closes the communication with the XBee device.

This method guarantees that all threads running are stopped and
the serial port is closed.

	
comm_iface

	Returns the hardware interface associated to the XBee device.

	Returns

	the hardware interface associated to the XBee device.

	Return type

	XBeeCommunicationInterface

See also

XBeeSerialPort

	
classmethod create_xbee_device(comm_port_data)

	Creates and returns an XBeeDevice from data of the port to which is connected.

	Parameters

	
	comm_port_data (Dictionary) – dictionary with all comm port data needed.

	dictionary keys are (The) –
“baudRate” –> Baud rate.

”port” –> Port number.

”bitSize” –> Bit size.

”stopBits” –> Stop bits.

”parity” –> Parity.

”flowControl” –> Flow control.

”timeout” for –> Timeout for synchronous operations (in seconds).

	Returns

	the XBee device created.

	Return type

	XBeeDevice

	Raises

	SerialException – if the port you want to open does not exist or is already opened.

See also

XBeeDevice

	
del_bluetooth_data_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.BluetoothDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.BluetoothDataReceived event.

	
del_data_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.DataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.DataReceived event.

	
del_expl_data_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.ExplicitDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.ExplicitDataReceived event.

	
del_io_sample_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.IOSampleReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.IOSampleReceived event.

	
del_micropython_data_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.MicroPythonDataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.MicroPythonDataReceived event.

	
del_modem_status_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.ModemStatusReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.ModemStatusReceived event.

	
del_packet_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.PacketReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.PacketReceived event.

	
del_socket_data_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketDataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketDataReceived event.

	
del_socket_data_received_from_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketDataReceivedFrom event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketDataReceivedFrom event.

	
del_socket_state_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketStateReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketStateReceived event.

	
del_user_data_relay_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.RelayDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.RelayDataReceived event.

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee device.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
enable_apply_changes(value)

	Sets the apply_changes flag.

	Parameters

	value (Boolean) – True to enable the apply changes flag, False to disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee device.

To work with this interface, you must also configure the Bluetooth password if not done previously.
You can use the AbstractXBeeDevice.update_bluetooth_password() method for that purpose.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
execute_command(parameter)

	Executes the provided command.

	Parameters

	parameter (String) – The name of the AT command to be executed.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
flush_queues()

	Flushes the packets queue.

	
get_16bit_addr()

	Returns the 16-bit address of the XBee device.

	Returns

	the 16-bit address of the XBee device.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
get_64bit_addr()

	Returns the 64-bit address of the XBee device.

	Returns

	the 64-bit address of the XBee device.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – the IO line to get its ADC value.

	Returns

	the analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee device.

The API output mode determines the format that the received data is
output through the serial interface of the XBee device.

	Returns

	the API output mode of the XBee device.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or
 ESCAPED API. This method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee device in a format such as 00112233AABB.

Note that your device must have Bluetooth Low Energy support to use this method.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	the last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Returns the 64-bit address of the XBee device that data will be reported to.

	Returns

	the address.

	Return type

	XBee64BitAddress

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

XBee64BitAddress

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

IOValue

	
get_firmware_version()

	Returns the firmware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – the io line to configure.

	Returns

	the IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the received data is not an IO mode.

	
get_io_sampling_rate()

	Returns the IO sampling rate of the XBee device.

	Returns

	the IO sampling rate of XBee device.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_network()

	Returns this XBee device’s current network.

	Returns

	XBeeDevice.XBeeNetwork

	
get_next_frame_id()

	Returns the next frame ID of the XBee device.

	Returns

	The next frame ID of the XBee device.

	Return type

	Integer

	
get_node_id()

	Returns the Node Identifier (NI) value of the XBee device.

	Returns

	the Node Identifier (NI) of the XBee device.

	Return type

	String

	
get_pan_id()

	Returns the operating PAN ID of the XBee device.

	Returns

	operating PAN ID of the XBee device.

	Return type

	Bytearray

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

	
get_parameter(param, parameter_value=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
get_power_level()

	Returns the power level of the XBee device.

	Returns

	the power level of the XBee device.

	Return type

	PowerLevel

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

PowerLevel

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – the IO line to get its PWM duty cycle.

	Returns

	the PWM duty cycle of the given IO line or None if the response is empty.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the passed IO_LINE has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	digi.xbee.models.protocol.Role

See also

digi.xbee.models.protocol.Role

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	the serial port read timeout in seconds.

	Return type

	Integer

	
get_xbee_device_callbacks()

	Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee to get its callbacks. These
callbacks will be executed before user callbacks.

	Returns

	PacketReceived

	
has_explicit_packets()

	Returns whether the XBee device’s queue has explicit packets or not.
This do not include non-explicit packets.

	Returns

	True if this XBee device’s queue has explicit packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_packets()

	
has_packets()

	Returns whether the XBee device’s queue has packets or not.
This do not include explicit packets.

	Returns

	True if this XBee device’s queue has packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_explicit_packets()

	
is_apply_changes_enabled()

	Returns whether the apply_changes flag is enabled or not.

	Returns

	True if the apply_changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_open()

	Returns whether this XBee device is open or not.

	Returns

	Boolean. True if this XBee device is open, False otherwise.

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
log

	Returns the XBee device log.

	Returns

	the XBee device logger.

	Return type

	Logger

	
operating_mode

	Returns this XBee device’s operating mode.

	Returns

	OperatingMode. This XBee device’s operating mode.

	
read_data(timeout=None)

	Reads new data received by this XBee device.

If a timeout is specified, this method blocks until new data is received or the timeout expires,
throwing in that case a TimeoutException.

	Parameters

	timeout (Integer, optional) – read timeout in seconds. If it’s None, this method is non-blocking
and will return None if there is no data available.

	Returns

	the read message or None if this XBee did not receive new data.

	Return type

	XBeeMessage

	Raises

	
	ValueError – if a timeout is specified and is less than 0.

	TimeoutException – if a timeout is specified and no data was received during that time.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if the XBee device’s serial port is closed.

See also

XBeeMessage

	
read_data_from(remote_xbee_device, timeout=None)

	Reads new data received from the given remote XBee device.

If a timeout is specified, this method blocks until new data is received or the timeout expires,
throwing in that case a TimeoutException.

	Parameters

	
	remote_xbee_device (RemoteXBeeDevice) – the remote XBee device that sent the data.

	timeout (Integer, optional) – read timeout in seconds. If it’s None, this method is non-blocking
and will return None if there is no data available.

	Returns

	
	the read message sent by remote_xbee_device or None if this XBee did

	not receive new data.

	Return type

	XBeeMessage

	Raises

	
	ValueError – if a timeout is specified and is less than 0.

	TimeoutException – if a timeout is specified and no data was received during that time.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if the XBee device’s serial port is closed.

See also

XBeeMessage

RemoteXBeeDevice

	
read_device_info(init=True)

	Updates all instance parameters reading them from the XBee device.

	Parameters

	init (Boolean, optional, default=`True`) – If False only not initialized parameters
are read, all if True.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
read_io_sample()

	Returns an IO sample from the XBee device containing the value of all enabled digital IO and
analog input channels.

	Returns

	the IO sample read from the XBee device.

	Return type

	IOSample

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOSample

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
send_bluetooth_data(data)

	Sends the given data to the Bluetooth interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if there is any problem sending the data.

See also

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

	
send_data(remote_xbee_device, data, transmit_options=0)

	Blocking method. This method sends data to a remote XBee device synchronously.

This method will wait for the packet response.

The default timeout for this method is XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS.

	Parameters

	
	remote_xbee_device (RemoteXBeeDevice) – the remote XBee device to send data to.

	data (String or Bytearray) – the raw data to send.

	transmit_options (Integer, optional) – transmit options, bitfield of TransmitOptions. Default to
TransmitOptions.NONE.value.

	Returns

	XBeePacket the response.

	Raises

	
	ValueError – if remote_xbee_device is None.

	TimeoutException – if this method can’t read a response packet in
 XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS seconds.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	TransmitException – if the status of the response received is not OK.

	XBeeException – if the XBee device’s serial port is closed.

See also

RemoteXBeeDevice

XBeePacket

	
send_data_async(remote_xbee_device, data, transmit_options=0)

	Non-blocking method. This method sends data to a remote XBee device.

This method won’t wait for the response.

	Parameters

	
	remote_xbee_device (RemoteXBeeDevice) – the remote XBee device to send data to.

	data (String or Bytearray) – the raw data to send.

	transmit_options (Integer, optional) – transmit options, bitfield of TransmitOptions. Default to
TransmitOptions.NONE.value.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if the XBee device’s serial port is closed.

See also

RemoteXBeeDevice

	
send_data_broadcast(data, transmit_options=0)

	Sends the provided data to all the XBee nodes of the network (broadcast).

This method blocks till a success or error transmit status arrives or
the configured receive timeout expires.

The received timeout is configured using the AbstractXBeeDevice.set_sync_ops_timeout()
method and can be consulted with AbstractXBeeDevice.get_sync_ops_timeout() method.

	Parameters

	
	data (String or Bytearray) – data to send.

	transmit_options (Integer, optional) – transmit options, bitfield of TransmitOptions. Default to
TransmitOptions.NONE.value.

	Raises

	
	TimeoutException – if this method can’t read a response packet in
 XBeeDevice._DEFAULT_TIMEOUT_SYNC_OPERATIONS seconds.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	TransmitException – if the status of the response received is not OK.

	XBeeException – if the XBee device’s serial port is closed.

	
send_micropython_data(data)

	Sends the given data to the MicroPython interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if there is any problem sending the data.

See also

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

	
send_packet(packet, sync=False)

	Override method.

See also

AbstractXBeeDevice._send_packet()

	
send_packet_sync_and_get_response(packet_to_send, timeout=None)

	Override method.

See also

AbstractXBeeDevice._send_packet_sync_and_get_response()

	
send_user_data_relay(local_interface, data)

	Sends the given data to the given XBee local interface.

	Parameters

	
	local_interface (XBeeLocalInterface) – Destination XBee local interface.

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ValueError – if local_interface is None.

	XBeeException – if there is any problem sending the User Data Relay.

See also

XBeeLocalInterface

	
serial_port

	Returns the serial port associated to the XBee device, if any.

	Returns

	
	the serial port associated to the XBee device. Returns None if the local XBee

	does not use serial communication.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee device.

	Parameters

	value (XBee16BitAddress) – the new 16-bit address of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee device.

	Parameters

	api_output_mode (APIOutputMode) – the new API output mode of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is ZigBee

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – new API output mode options. Calculate this value using
the method
digi.xbee.models.mode.APIOutputModeBit.calculate_api_output_mode_value()
with a set of digi.xbee.models.mode.APIOutputModeBit.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
set_dest_address(addr)

	Sets the 64-bit address of the XBee device that data will be reported to.

	Parameters

	addr (XBee64BitAddress or RemoteXBeeDevice) – the address itself or the remote XBee
device that you want to set up its address as destination address.

	Raises

	
	TimeoutException – If the response is not received before the read timeout expires.

	XBeeException – If the XBee device’s serial port is closed.

	InvalidOperatingModeException – If the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – If the response is not as expected.

	ValueError – If addr is None.

	
set_dio_change_detection(io_lines_set)

	Sets the digital IO lines to be monitored and sampled whenever their status changes.

A None set of lines disables this feature.

	Parameters

	io_lines_set – set of IOLine.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – the digital IO line to sets its value.

	io_value (IOValue) – the IO value to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – the IO line to configure.

	io_mode (IOMode) – the IO mode to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOMode

	
set_io_sampling_rate(rate)

	Sets the IO sampling rate of the XBee device in seconds. A sample rate of 0 means the IO sampling feature is
disabled.

	Parameters

	rate (Integer) – the new IO sampling rate of the XBee device in seconds.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
set_node_id(node_id)

	Sets the Node Identifier (NI) value of the XBee device..

	Parameters

	node_id (String) – the new Node Identifier (NI) of the XBee device.

	Raises

	
	ValueError – if node_id is None or its length is greater than 20.

	TimeoutException – if the response is not received before the read timeout expires.

	
set_pan_id(value)

	Sets the operating PAN ID of the XBee device.

	Parameters

	value (Bytearray) – the new operating PAN ID of the XBee device.. Must have only 1 or 2 bytes.

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

	
set_parameter(param, value)

	Override.

	See:

	AbstractXBeeDevice.set_parameter()

	
set_power_level(power_level)

	Sets the power level of the XBee device.

	Parameters

	power_level (PowerLevel) – the new power level of the XBee device.

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

PowerLevel

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – the IO Line to be assigned.

	cycle (Integer) – duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the given IO line does not have PWM capability or cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – the read timeout, expressed in seconds.

	
update_bluetooth_password(new_password)

	Changes the password of this Bluetooth device with the new one provided.

Note that your device must have Bluetooth Low Energy support to use this method.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
update_device_data_from(device)

	Updates the current device reference with the data provided for the given device.

This is only for internal use.

	Parameters

	device (AbstractXBeeDevice) – the XBee device to get the data from.

	Returns

	True if the device data has been updated, False otherwise.

	Return type

	Boolean

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the device.

	Parameters

	
	xml_firmware_file (String) – path of the XML file that describes the firmware to upload.

	xbee_firmware_file (String, optional) – location of the XBee binary firmware file.

	bootloader_firmware_file (String, optional) – location of the bootloader binary firmware file.

	timeout (Integer, optional) – the maximum time to wait for target read operations during the update process.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	OperationNotSupportedException – if the firmware update is not supported in the XBee device.

	FirmwareUpdateException – if there is any error performing the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee device so that parameter modifications persist through subsequent
resets.

Parameters values remain in this device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them to non-volatile memory, the
module reverts back to previously saved parameters the next time the
module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_configuration_changes_enabled() to get its status and
enable_apply_configuration_changes() to enable/disable the
option. If it is disabled, method apply_changes() can be used in
order to manually apply the changes.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
class digi.xbee.devices.IPDevice(port=None, baud_rate=None, data_bits=<sphinx.ext.autodoc.importer._MockObject object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject object>, parity=<sphinx.ext.autodoc.importer._MockObject object>, flow_control=<FlowControl.NONE: None>, _sync_ops_timeout=4, comm_iface=None)

	Bases: digi.xbee.devices.XBeeDevice

This class provides common functionality for XBee IP devices.

Class constructor. Instantiates a new IPDevice with the provided parameters.

	Parameters

	
	port (Integer or String) – serial port identifier.
Integer: number of XBee device, numbering starts at zero.
Device name: depending on operating system. e.g. ‘/dev/ttyUSB0’ on ‘GNU/Linux’ or
‘COM3’ on Windows.

	baud_rate (Integer) – the serial port baud rate.

	(Integer, default (_sync_ops_timeout) – serial.EIGHTBITS): comm port bitsize.

	(Integer, default – serial.STOPBITS_ONE): comm port stop bits.

	(Character, default (parity) – serial.PARITY_NONE): comm port parity.

	(Integer, default – FlowControl.NONE): comm port flow control.

	(Integer, default – 3): the read timeout (in seconds).

	comm_iface (XBeeCommunicationInterface) – the communication interface.

:raises All exceptions raised by XBeeDevice.__init__() constructor.:

See also

XBeeDevice

XBeeDevice.__init__()

	
read_device_info(init=True)

	Override.

See also

AbstractXBeeDevice.read_device_info()

	
get_ip_addr()

	Returns the IP address of this IP device.

To refresh this value use the method IPDevice.read_device_info().

	Returns

	The IP address of this IP device.

	Return type

	ipaddress.IPv4Address

See also

ipaddress.IPv4Address

	
set_dest_ip_addr(address)

	Sets the destination IP address.

	Parameters

	address (ipaddress.IPv4Address) – Destination IP address.

	Raises

	
	ValueError – if address is None.

	TimeoutException – if there is a timeout setting the destination IP address.

	XBeeException – if there is any other XBee related exception.

See also

ipaddress.IPv4Address

	
get_dest_ip_addr()

	Returns the destination IP address.

	Returns

	The configured destination IP address.

	Return type

	ipaddress.IPv4Address

	Raises

	
	TimeoutException – if there is a timeout getting the destination IP address.

	XBeeException – if there is any other XBee related exception.

See also

ipaddress.IPv4Address

	
add_ip_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.IPDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The data received as an digi.xbee.models.message.IPMessage

	
del_ip_data_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.IPDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.IPDataReceived event.

	
start_listening(source_port)

	Starts listening for incoming IP transmissions in the provided port.

	Parameters

	source_port (Integer) – Port to listen for incoming transmissions.

	Raises

	
	ValueError – if source_port is less than 0 or greater than 65535.

	TimeoutException – if there is a timeout setting the source port.

	XBeeException – if there is any other XBee related exception.

	
stop_listening()

	Stops listening for incoming IP transmissions.

	Raises

	
	TimeoutException – if there is a timeout processing the operation.

	XBeeException – if there is any other XBee related exception.

	
send_ip_data(ip_addr, dest_port, protocol, data, close_socket=False)

	Sends the provided IP data to the given IP address and port using
the specified IP protocol. For TCP and TCP SSL protocols, you can
also indicate if the socket should be closed when data is sent.

This method blocks till a success or error response arrives or the
configured receive timeout expires.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

	dest_port (Integer) – The destination port of the transmission.

	protocol (IPProtocol) – The IP protocol used for the transmission.

	data (String or Bytearray) – The IP data to be sent.

	close_socket (Boolean, optional) – True to close the socket just after the
transmission. False to keep it open. Default to False.

	Raises

	
	ValueError – if ip_addr is None.

	ValueError – if protocol is None.

	ValueError – if data is None.

	ValueError – if dest_port is less than 0 or greater than 65535.

	OperationNotSupportedException – if the device is remote.

	TimeoutException – if there is a timeout sending the data.

	XBeeException – if there is any other XBee related exception.

	
send_ip_data_async(ip_addr, dest_port, protocol, data, close_socket=False)

	Sends the provided IP data to the given IP address and port
asynchronously using the specified IP protocol. For TCP and TCP SSL
protocols, you can also indicate if the socket should be closed when
data is sent.

Asynchronous transmissions do not wait for answer from the remote
device or for transmit status packet.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

	dest_port (Integer) – The destination port of the transmission.

	protocol (IPProtocol) – The IP protocol used for the transmission.

	data (String or Bytearray) – The IP data to be sent.

	close_socket (Boolean, optional) – True to close the socket just after the
transmission. False to keep it open. Default to False.

	Raises

	
	ValueError – if ip_addr is None.

	ValueError – if protocol is None.

	ValueError – if data is None.

	ValueError – if dest_port is less than 0 or greater than 65535.

	OperationNotSupportedException – if the device is remote.

	XBeeException – if there is any other XBee related exception.

	
send_ip_data_broadcast(dest_port, data)

	Sends the provided IP data to all clients.

This method blocks till a success or error transmit status arrives or
the configured receive timeout expires.

	Parameters

	
	dest_port (Integer) – The destination port of the transmission.

	data (String or Bytearray) – The IP data to be sent.

	Raises

	
	ValueError – if data is None.

	ValueError – if dest_port is less than 0 or greater than 65535.

	TimeoutException – if there is a timeout sending the data.

	XBeeException – if there is any other XBee related exception.

	
read_ip_data(timeout=3)

	Reads new IP data received by this XBee device during the
provided timeout.

This method blocks until new IP data is received or the provided
timeout expires.

For non-blocking operations, register a callback and use the method
IPDevice.add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming
IP data at a specific port. Use the method IPDevice.start_listening()
for that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

	Parameters

	timeout (Integer, optional) – The time to wait for new IP data in seconds.

	Returns

	IP message, None if this device did not receive new data.

	Return type

	IPMessage

	Raises

	ValueError – if timeout is less than 0.

	
read_ip_data_from(ip_addr, timeout=3)

	Reads new IP data received from the given IP address during the
provided timeout.

This method blocks until new IP data from the provided IP
address is received or the given timeout expires.

For non-blocking operations, register a callback and use the method
IPDevice.add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming
IP data at a specific port. Use the method IPDevice.start_listening()
for that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to read data from.

	timeout (Integer, optional) – The time to wait for new IP data in seconds.

	Returns

	
	IP message, None if this device did not

	receive new data from the provided IP address.

	Return type

	IPMessage

	Raises

	ValueError – if timeout is less than 0.

	
get_network()

	Deprecated.

This protocol does not support the network functionality.

	
get_16bit_addr()

	Deprecated.

This protocol does not have an associated 16-bit address.

	
get_dest_address()

	Deprecated.

Operation not supported in this protocol. Use IPDevice.get_dest_ip_addr() instead.
This method will raise an AttributeError.

	
set_dest_address(addr)

	Deprecated.

Operation not supported in this protocol. Use IPDevice.set_dest_ip_addr() instead.
This method will raise an AttributeError.

	
get_pan_id()

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
set_pan_id(value)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
add_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
del_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
add_expl_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
del_expl_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
read_data(timeout=None, explicit=False)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
read_data_from(remote_xbee_device, timeout=None, explicit=False)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
send_data_broadcast(data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
send_data(remote_xbee_device, data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
send_data_async(remote_xbee_device, data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
add_bluetooth_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.BluetoothDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The Bluetooth data as a Bytearray

	
add_io_sample_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.IOSampleReceived.

	Parameters

	callback (Function) – the callback. Receives three arguments.

	The received IO sample as an digi.xbee.io.IOSample

	The remote XBee device who has sent the packet as a RemoteXBeeDevice

	The time in which the packet was received as an Integer

	
add_micropython_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.MicroPythonDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The MicroPython data as a Bytearray

	
add_modem_status_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.ModemStatusReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The modem status as a digi.xbee.models.status.ModemStatus

	
add_packet_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.PacketReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The received packet as a digi.xbee.packets.base.XBeeAPIPacket

	
add_socket_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketDataReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The socket ID as an Integer.

	The data received as Bytearray

	
add_socket_data_received_from_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketDataReceivedFrom.

	Parameters

	callback (Function) – the callback. Receives three arguments.

	The socket ID as an Integer.

	
	A pair (host, port) of the source address where host is a string

	representing an IPv4 address like ‘100.50.200.5’, and port is an
integer.

	The data received as Bytearray

	
add_socket_state_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketStateReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The socket ID as an Integer.

	The state received as a SocketState

	
add_user_data_relay_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.RelayDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The relay data as a digi.xbee.models.message.UserDataRelayMessage

	
apply_changes()

	Applies changes via AC command.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
apply_profile(profile_path, progress_callback=None)

	Applies the given XBee profile to the XBee device.

	Parameters

	
	profile_path (String) – path of the XBee profile file to apply.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	UpdateProfileException – if there is any error applying the XBee profile.

	OperationNotSupportedException – if XBee profiles are not supported in the XBee device.

	
close()

	Closes the communication with the XBee device.

This method guarantees that all threads running are stopped and
the serial port is closed.

	
comm_iface

	Returns the hardware interface associated to the XBee device.

	Returns

	the hardware interface associated to the XBee device.

	Return type

	XBeeCommunicationInterface

See also

XBeeSerialPort

	
classmethod create_xbee_device(comm_port_data)

	Creates and returns an XBeeDevice from data of the port to which is connected.

	Parameters

	
	comm_port_data (Dictionary) – dictionary with all comm port data needed.

	dictionary keys are (The) –
“baudRate” –> Baud rate.

”port” –> Port number.

”bitSize” –> Bit size.

”stopBits” –> Stop bits.

”parity” –> Parity.

”flowControl” –> Flow control.

”timeout” for –> Timeout for synchronous operations (in seconds).

	Returns

	the XBee device created.

	Return type

	XBeeDevice

	Raises

	SerialException – if the port you want to open does not exist or is already opened.

See also

XBeeDevice

	
del_bluetooth_data_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.BluetoothDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.BluetoothDataReceived event.

	
del_io_sample_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.IOSampleReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.IOSampleReceived event.

	
del_micropython_data_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.MicroPythonDataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.MicroPythonDataReceived event.

	
del_modem_status_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.ModemStatusReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.ModemStatusReceived event.

	
del_packet_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.PacketReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.PacketReceived event.

	
del_socket_data_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketDataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketDataReceived event.

	
del_socket_data_received_from_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketDataReceivedFrom event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketDataReceivedFrom event.

	
del_socket_state_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketStateReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketStateReceived event.

	
del_user_data_relay_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.RelayDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.RelayDataReceived event.

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee device.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
enable_apply_changes(value)

	Sets the apply_changes flag.

	Parameters

	value (Boolean) – True to enable the apply changes flag, False to disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee device.

To work with this interface, you must also configure the Bluetooth password if not done previously.
You can use the AbstractXBeeDevice.update_bluetooth_password() method for that purpose.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
execute_command(parameter)

	Executes the provided command.

	Parameters

	parameter (String) – The name of the AT command to be executed.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
flush_queues()

	Flushes the packets queue.

	
get_64bit_addr()

	Returns the 64-bit address of the XBee device.

	Returns

	the 64-bit address of the XBee device.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – the IO line to get its ADC value.

	Returns

	the analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee device.

The API output mode determines the format that the received data is
output through the serial interface of the XBee device.

	Returns

	the API output mode of the XBee device.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or
 ESCAPED API. This method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee device in a format such as 00112233AABB.

Note that your device must have Bluetooth Low Energy support to use this method.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	the last used frame ID.

	Return type

	Integer

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

IOValue

	
get_firmware_version()

	Returns the firmware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – the io line to configure.

	Returns

	the IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the received data is not an IO mode.

	
get_io_sampling_rate()

	Returns the IO sampling rate of the XBee device.

	Returns

	the IO sampling rate of XBee device.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_next_frame_id()

	Returns the next frame ID of the XBee device.

	Returns

	The next frame ID of the XBee device.

	Return type

	Integer

	
get_node_id()

	Returns the Node Identifier (NI) value of the XBee device.

	Returns

	the Node Identifier (NI) of the XBee device.

	Return type

	String

	
get_parameter(param, parameter_value=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
get_power_level()

	Returns the power level of the XBee device.

	Returns

	the power level of the XBee device.

	Return type

	PowerLevel

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

PowerLevel

	
get_protocol()

	Returns the current protocol of the XBee device.

	Returns

	the current protocol of the XBee device.

	Return type

	XBeeProtocol

See also

XBeeProtocol

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – the IO line to get its PWM duty cycle.

	Returns

	the PWM duty cycle of the given IO line or None if the response is empty.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the passed IO_LINE has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	digi.xbee.models.protocol.Role

See also

digi.xbee.models.protocol.Role

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	the serial port read timeout in seconds.

	Return type

	Integer

	
get_xbee_device_callbacks()

	Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee to get its callbacks. These
callbacks will be executed before user callbacks.

	Returns

	PacketReceived

	
has_explicit_packets()

	Returns whether the XBee device’s queue has explicit packets or not.
This do not include non-explicit packets.

	Returns

	True if this XBee device’s queue has explicit packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_packets()

	
has_packets()

	Returns whether the XBee device’s queue has packets or not.
This do not include explicit packets.

	Returns

	True if this XBee device’s queue has packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_explicit_packets()

	
is_apply_changes_enabled()

	Returns whether the apply_changes flag is enabled or not.

	Returns

	True if the apply_changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_open()

	Returns whether this XBee device is open or not.

	Returns

	Boolean. True if this XBee device is open, False otherwise.

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
log

	Returns the XBee device log.

	Returns

	the XBee device logger.

	Return type

	Logger

	
open(force_settings=False)

	Opens the communication with the XBee device and loads some information about it.

	Parameters

	force_settings (Boolean, optional) – True to open the device ensuring/forcing that the specified
serial settings are applied even if the current configuration is different,
False to open the device with the current configuration. Default to False.

	Raises

	
	TimeoutException – if there is any problem with the communication.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if the XBee device is already open.

	
operating_mode

	Returns this XBee device’s operating mode.

	Returns

	OperatingMode. This XBee device’s operating mode.

	
read_io_sample()

	Returns an IO sample from the XBee device containing the value of all enabled digital IO and
analog input channels.

	Returns

	the IO sample read from the XBee device.

	Return type

	IOSample

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOSample

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
send_bluetooth_data(data)

	Sends the given data to the Bluetooth interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if there is any problem sending the data.

See also

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

	
send_micropython_data(data)

	Sends the given data to the MicroPython interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if there is any problem sending the data.

See also

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

	
send_packet(packet, sync=False)

	Override method.

See also

AbstractXBeeDevice._send_packet()

	
send_packet_sync_and_get_response(packet_to_send, timeout=None)

	Override method.

See also

AbstractXBeeDevice._send_packet_sync_and_get_response()

	
send_user_data_relay(local_interface, data)

	Sends the given data to the given XBee local interface.

	Parameters

	
	local_interface (XBeeLocalInterface) – Destination XBee local interface.

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ValueError – if local_interface is None.

	XBeeException – if there is any problem sending the User Data Relay.

See also

XBeeLocalInterface

	
serial_port

	Returns the serial port associated to the XBee device, if any.

	Returns

	
	the serial port associated to the XBee device. Returns None if the local XBee

	does not use serial communication.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee device.

	Parameters

	value (XBee16BitAddress) – the new 16-bit address of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee device.

	Parameters

	api_output_mode (APIOutputMode) – the new API output mode of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is ZigBee

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – new API output mode options. Calculate this value using
the method
digi.xbee.models.mode.APIOutputModeBit.calculate_api_output_mode_value()
with a set of digi.xbee.models.mode.APIOutputModeBit.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
set_dio_change_detection(io_lines_set)

	Sets the digital IO lines to be monitored and sampled whenever their status changes.

A None set of lines disables this feature.

	Parameters

	io_lines_set – set of IOLine.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – the digital IO line to sets its value.

	io_value (IOValue) – the IO value to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – the IO line to configure.

	io_mode (IOMode) – the IO mode to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOMode

	
set_io_sampling_rate(rate)

	Sets the IO sampling rate of the XBee device in seconds. A sample rate of 0 means the IO sampling feature is
disabled.

	Parameters

	rate (Integer) – the new IO sampling rate of the XBee device in seconds.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
set_node_id(node_id)

	Sets the Node Identifier (NI) value of the XBee device..

	Parameters

	node_id (String) – the new Node Identifier (NI) of the XBee device.

	Raises

	
	ValueError – if node_id is None or its length is greater than 20.

	TimeoutException – if the response is not received before the read timeout expires.

	
set_parameter(param, value)

	Override.

	See:

	AbstractXBeeDevice.set_parameter()

	
set_power_level(power_level)

	Sets the power level of the XBee device.

	Parameters

	power_level (PowerLevel) – the new power level of the XBee device.

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

PowerLevel

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – the IO Line to be assigned.

	cycle (Integer) – duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the given IO line does not have PWM capability or cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – the read timeout, expressed in seconds.

	
update_bluetooth_password(new_password)

	Changes the password of this Bluetooth device with the new one provided.

Note that your device must have Bluetooth Low Energy support to use this method.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
update_device_data_from(device)

	Updates the current device reference with the data provided for the given device.

This is only for internal use.

	Parameters

	device (AbstractXBeeDevice) – the XBee device to get the data from.

	Returns

	True if the device data has been updated, False otherwise.

	Return type

	Boolean

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the device.

	Parameters

	
	xml_firmware_file (String) – path of the XML file that describes the firmware to upload.

	xbee_firmware_file (String, optional) – location of the XBee binary firmware file.

	bootloader_firmware_file (String, optional) – location of the bootloader binary firmware file.

	timeout (Integer, optional) – the maximum time to wait for target read operations during the update process.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	OperationNotSupportedException – if the firmware update is not supported in the XBee device.

	FirmwareUpdateException – if there is any error performing the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee device so that parameter modifications persist through subsequent
resets.

Parameters values remain in this device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them to non-volatile memory, the
module reverts back to previously saved parameters the next time the
module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_configuration_changes_enabled() to get its status and
enable_apply_configuration_changes() to enable/disable the
option. If it is disabled, method apply_changes() can be used in
order to manually apply the changes.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
class digi.xbee.devices.CellularDevice(port=None, baud_rate=None, data_bits=<sphinx.ext.autodoc.importer._MockObject object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject object>, parity=<sphinx.ext.autodoc.importer._MockObject object>, flow_control=<FlowControl.NONE: None>, _sync_ops_timeout=4, comm_iface=None)

	Bases: digi.xbee.devices.IPDevice

This class represents a local Cellular device.

Class constructor. Instantiates a new CellularDevice with the provided parameters.

	Parameters

	
	port (Integer or String) – serial port identifier.
Integer: number of XBee device, numbering starts at zero.
Device name: depending on operating system. e.g. ‘/dev/ttyUSB0’ on ‘GNU/Linux’ or
‘COM3’ on Windows.

	baud_rate (Integer) – the serial port baud rate.

	(Integer, default (_sync_ops_timeout) – serial.EIGHTBITS): comm port bitsize.

	(Integer, default – serial.STOPBITS_ONE): comm port stop bits.

	(Character, default (parity) – serial.PARITY_NONE): comm port parity.

	(Integer, default – FlowControl.NONE): comm port flow control.

	(Integer, default – 3): the read timeout (in seconds).

	comm_iface (XBeeCommunicationInterface) – the communication interface.

:raises All exceptions raised by XBeeDevice.__init__() constructor.:

See also

XBeeDevice

XBeeDevice.__init__()

	
open(force_settings=False)

	Override.

	Raises

	
	TimeoutException – If there is any problem with the communication.

	InvalidOperatingModeException – If the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – If the protocol is invalid or if the XBee device is already open.

See also

XBeeDevice.open()

	
get_protocol()

	Override.

See also

XBeeDevice.get_protocol()

	
read_device_info(init=True)

	Override.

See also

XBeeDevice.read_device _info()

	
is_connected()

	Returns whether the device is connected to the Internet or not.

	Returns

	True if the device is connected to the Internet, False otherwise.

	Return type

	Boolean

	Raises

	
	TimeoutException – if there is a timeout getting the association indication status.

	XBeeException – if there is any other XBee related exception.

	
get_cellular_ai_status()

	Returns the current association status of this Cellular device.

It indicates occurrences of errors during the modem initialization
and connection.

	Returns

	The association indication status of the Cellular device.

	Return type

	CellularAssociationIndicationStatus

	Raises

	
	TimeoutException – if there is a timeout getting the association indication status.

	XBeeException – if there is any other XBee related exception.

	
add_sms_callback(callback)

	Adds a callback for the event digi.xbee.reader.SMSReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The data received as an digi.xbee.models.message.SMSMessage

	
del_sms_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.SMSReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SMSReceived event.

	
get_imei_addr()

	Returns the IMEI address of this Cellular device.

To refresh this value use the method CellularDevice.read_device_info().

	Returns

	The IMEI address of this Cellular device.

	Return type

	XBeeIMEIAddress

	
send_sms(phone_number, data)

	Sends the provided SMS message to the given phone number.

This method blocks till a success or error response arrives or the
configured receive timeout expires.

For non-blocking operations use the method CellularDevice.send_sms_async().

	Parameters

	
	phone_number (String) – The phone number to send the SMS to.

	data (String) – Text of the SMS.

	Raises

	
	ValueError – if phone_number is None.

	ValueError – if data is None.

	OperationNotSupportedException – if the device is remote.

	TimeoutException – if there is a timeout sending the SMS.

	XBeeException – if there is any other XBee related exception.

	
send_sms_async(phone_number, data)

	Sends asynchronously the provided SMS to the given phone number.

Asynchronous transmissions do not wait for answer or for transmit
status packet.

	Parameters

	
	phone_number (String) – The phone number to send the SMS to.

	data (String) – Text of the SMS.

	Raises

	
	ValueError – if phone_number is None.

	ValueError – if data is None.

	OperationNotSupportedException – if the device is remote.

	XBeeException – if there is any other XBee related exception.

	
get_sockets_list()

	Returns a list with the IDs of all active (open) sockets.

	Returns

	list with the IDs of all active (open) sockets, or empty list if there is not any active socket.

	Return type

	List

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	
get_socket_info(socket_id)

	Returns the information of the socket with the given socket ID.

	Parameters

	socket_id (Integer) – ID of the socket.

	Returns

	The socket information, or None if the socket with that ID does not exist.

	Return type

	SocketInfo

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

See also

SocketInfo

	
get_64bit_addr()

	Deprecated.

Cellular protocol does not have an associated 64-bit address.

	
add_io_sample_received_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
del_io_sample_received_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
set_dio_change_detection(io_lines_set)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
get_io_sampling_rate()

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
set_io_sampling_rate(rate)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
get_node_id()

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
set_node_id(node_id)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
get_power_level()

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
set_power_level(power_level)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
add_bluetooth_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.BluetoothDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The Bluetooth data as a Bytearray

	
add_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
add_expl_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
add_ip_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.IPDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The data received as an digi.xbee.models.message.IPMessage

	
add_micropython_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.MicroPythonDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The MicroPython data as a Bytearray

	
add_modem_status_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.ModemStatusReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The modem status as a digi.xbee.models.status.ModemStatus

	
add_packet_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.PacketReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The received packet as a digi.xbee.packets.base.XBeeAPIPacket

	
add_socket_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketDataReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The socket ID as an Integer.

	The data received as Bytearray

	
add_socket_data_received_from_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketDataReceivedFrom.

	Parameters

	callback (Function) – the callback. Receives three arguments.

	The socket ID as an Integer.

	
	A pair (host, port) of the source address where host is a string

	representing an IPv4 address like ‘100.50.200.5’, and port is an
integer.

	The data received as Bytearray

	
add_socket_state_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketStateReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The socket ID as an Integer.

	The state received as a SocketState

	
add_user_data_relay_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.RelayDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The relay data as a digi.xbee.models.message.UserDataRelayMessage

	
apply_changes()

	Applies changes via AC command.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
apply_profile(profile_path, progress_callback=None)

	Applies the given XBee profile to the XBee device.

	Parameters

	
	profile_path (String) – path of the XBee profile file to apply.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	UpdateProfileException – if there is any error applying the XBee profile.

	OperationNotSupportedException – if XBee profiles are not supported in the XBee device.

	
close()

	Closes the communication with the XBee device.

This method guarantees that all threads running are stopped and
the serial port is closed.

	
comm_iface

	Returns the hardware interface associated to the XBee device.

	Returns

	the hardware interface associated to the XBee device.

	Return type

	XBeeCommunicationInterface

See also

XBeeSerialPort

	
classmethod create_xbee_device(comm_port_data)

	Creates and returns an XBeeDevice from data of the port to which is connected.

	Parameters

	
	comm_port_data (Dictionary) – dictionary with all comm port data needed.

	dictionary keys are (The) –
“baudRate” –> Baud rate.

”port” –> Port number.

”bitSize” –> Bit size.

”stopBits” –> Stop bits.

”parity” –> Parity.

”flowControl” –> Flow control.

”timeout” for –> Timeout for synchronous operations (in seconds).

	Returns

	the XBee device created.

	Return type

	XBeeDevice

	Raises

	SerialException – if the port you want to open does not exist or is already opened.

See also

XBeeDevice

	
del_bluetooth_data_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.BluetoothDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.BluetoothDataReceived event.

	
del_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
del_expl_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
del_ip_data_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.IPDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.IPDataReceived event.

	
del_micropython_data_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.MicroPythonDataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.MicroPythonDataReceived event.

	
del_modem_status_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.ModemStatusReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.ModemStatusReceived event.

	
del_packet_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.PacketReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.PacketReceived event.

	
del_socket_data_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketDataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketDataReceived event.

	
del_socket_data_received_from_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketDataReceivedFrom event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketDataReceivedFrom event.

	
del_socket_state_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketStateReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketStateReceived event.

	
del_user_data_relay_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.RelayDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.RelayDataReceived event.

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee device.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
enable_apply_changes(value)

	Sets the apply_changes flag.

	Parameters

	value (Boolean) – True to enable the apply changes flag, False to disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee device.

To work with this interface, you must also configure the Bluetooth password if not done previously.
You can use the AbstractXBeeDevice.update_bluetooth_password() method for that purpose.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
execute_command(parameter)

	Executes the provided command.

	Parameters

	parameter (String) – The name of the AT command to be executed.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
flush_queues()

	Flushes the packets queue.

	
get_16bit_addr()

	Deprecated.

This protocol does not have an associated 16-bit address.

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – the IO line to get its ADC value.

	Returns

	the analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee device.

The API output mode determines the format that the received data is
output through the serial interface of the XBee device.

	Returns

	the API output mode of the XBee device.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or
 ESCAPED API. This method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee device in a format such as 00112233AABB.

Note that your device must have Bluetooth Low Energy support to use this method.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	the last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Deprecated.

Operation not supported in this protocol. Use IPDevice.get_dest_ip_addr() instead.
This method will raise an AttributeError.

	
get_dest_ip_addr()

	Returns the destination IP address.

	Returns

	The configured destination IP address.

	Return type

	ipaddress.IPv4Address

	Raises

	
	TimeoutException – if there is a timeout getting the destination IP address.

	XBeeException – if there is any other XBee related exception.

See also

ipaddress.IPv4Address

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

IOValue

	
get_firmware_version()

	Returns the firmware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – the io line to configure.

	Returns

	the IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the received data is not an IO mode.

	
get_ip_addr()

	Returns the IP address of this IP device.

To refresh this value use the method IPDevice.read_device_info().

	Returns

	The IP address of this IP device.

	Return type

	ipaddress.IPv4Address

See also

ipaddress.IPv4Address

	
get_network()

	Deprecated.

This protocol does not support the network functionality.

	
get_next_frame_id()

	Returns the next frame ID of the XBee device.

	Returns

	The next frame ID of the XBee device.

	Return type

	Integer

	
get_pan_id()

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
get_parameter(param, parameter_value=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – the IO line to get its PWM duty cycle.

	Returns

	the PWM duty cycle of the given IO line or None if the response is empty.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the passed IO_LINE has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	digi.xbee.models.protocol.Role

See also

digi.xbee.models.protocol.Role

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	the serial port read timeout in seconds.

	Return type

	Integer

	
get_xbee_device_callbacks()

	Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee to get its callbacks. These
callbacks will be executed before user callbacks.

	Returns

	PacketReceived

	
has_explicit_packets()

	Returns whether the XBee device’s queue has explicit packets or not.
This do not include non-explicit packets.

	Returns

	True if this XBee device’s queue has explicit packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_packets()

	
has_packets()

	Returns whether the XBee device’s queue has packets or not.
This do not include explicit packets.

	Returns

	True if this XBee device’s queue has packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_explicit_packets()

	
is_apply_changes_enabled()

	Returns whether the apply_changes flag is enabled or not.

	Returns

	True if the apply_changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_open()

	Returns whether this XBee device is open or not.

	Returns

	Boolean. True if this XBee device is open, False otherwise.

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
log

	Returns the XBee device log.

	Returns

	the XBee device logger.

	Return type

	Logger

	
operating_mode

	Returns this XBee device’s operating mode.

	Returns

	OperatingMode. This XBee device’s operating mode.

	
read_data(timeout=None, explicit=False)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
read_data_from(remote_xbee_device, timeout=None, explicit=False)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
read_io_sample()

	Returns an IO sample from the XBee device containing the value of all enabled digital IO and
analog input channels.

	Returns

	the IO sample read from the XBee device.

	Return type

	IOSample

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOSample

	
read_ip_data(timeout=3)

	Reads new IP data received by this XBee device during the
provided timeout.

This method blocks until new IP data is received or the provided
timeout expires.

For non-blocking operations, register a callback and use the method
IPDevice.add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming
IP data at a specific port. Use the method IPDevice.start_listening()
for that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

	Parameters

	timeout (Integer, optional) – The time to wait for new IP data in seconds.

	Returns

	IP message, None if this device did not receive new data.

	Return type

	IPMessage

	Raises

	ValueError – if timeout is less than 0.

	
read_ip_data_from(ip_addr, timeout=3)

	Reads new IP data received from the given IP address during the
provided timeout.

This method blocks until new IP data from the provided IP
address is received or the given timeout expires.

For non-blocking operations, register a callback and use the method
IPDevice.add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming
IP data at a specific port. Use the method IPDevice.start_listening()
for that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to read data from.

	timeout (Integer, optional) – The time to wait for new IP data in seconds.

	Returns

	
	IP message, None if this device did not

	receive new data from the provided IP address.

	Return type

	IPMessage

	Raises

	ValueError – if timeout is less than 0.

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
send_bluetooth_data(data)

	Sends the given data to the Bluetooth interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if there is any problem sending the data.

See also

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

	
send_data(remote_xbee_device, data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
send_data_async(remote_xbee_device, data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
send_data_broadcast(data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
send_ip_data(ip_addr, dest_port, protocol, data, close_socket=False)

	Sends the provided IP data to the given IP address and port using
the specified IP protocol. For TCP and TCP SSL protocols, you can
also indicate if the socket should be closed when data is sent.

This method blocks till a success or error response arrives or the
configured receive timeout expires.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

	dest_port (Integer) – The destination port of the transmission.

	protocol (IPProtocol) – The IP protocol used for the transmission.

	data (String or Bytearray) – The IP data to be sent.

	close_socket (Boolean, optional) – True to close the socket just after the
transmission. False to keep it open. Default to False.

	Raises

	
	ValueError – if ip_addr is None.

	ValueError – if protocol is None.

	ValueError – if data is None.

	ValueError – if dest_port is less than 0 or greater than 65535.

	OperationNotSupportedException – if the device is remote.

	TimeoutException – if there is a timeout sending the data.

	XBeeException – if there is any other XBee related exception.

	
send_ip_data_async(ip_addr, dest_port, protocol, data, close_socket=False)

	Sends the provided IP data to the given IP address and port
asynchronously using the specified IP protocol. For TCP and TCP SSL
protocols, you can also indicate if the socket should be closed when
data is sent.

Asynchronous transmissions do not wait for answer from the remote
device or for transmit status packet.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

	dest_port (Integer) – The destination port of the transmission.

	protocol (IPProtocol) – The IP protocol used for the transmission.

	data (String or Bytearray) – The IP data to be sent.

	close_socket (Boolean, optional) – True to close the socket just after the
transmission. False to keep it open. Default to False.

	Raises

	
	ValueError – if ip_addr is None.

	ValueError – if protocol is None.

	ValueError – if data is None.

	ValueError – if dest_port is less than 0 or greater than 65535.

	OperationNotSupportedException – if the device is remote.

	XBeeException – if there is any other XBee related exception.

	
send_ip_data_broadcast(dest_port, data)

	Sends the provided IP data to all clients.

This method blocks till a success or error transmit status arrives or
the configured receive timeout expires.

	Parameters

	
	dest_port (Integer) – The destination port of the transmission.

	data (String or Bytearray) – The IP data to be sent.

	Raises

	
	ValueError – if data is None.

	ValueError – if dest_port is less than 0 or greater than 65535.

	TimeoutException – if there is a timeout sending the data.

	XBeeException – if there is any other XBee related exception.

	
send_micropython_data(data)

	Sends the given data to the MicroPython interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if there is any problem sending the data.

See also

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

	
send_packet(packet, sync=False)

	Override method.

See also

AbstractXBeeDevice._send_packet()

	
send_packet_sync_and_get_response(packet_to_send, timeout=None)

	Override method.

See also

AbstractXBeeDevice._send_packet_sync_and_get_response()

	
send_user_data_relay(local_interface, data)

	Sends the given data to the given XBee local interface.

	Parameters

	
	local_interface (XBeeLocalInterface) – Destination XBee local interface.

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ValueError – if local_interface is None.

	XBeeException – if there is any problem sending the User Data Relay.

See also

XBeeLocalInterface

	
serial_port

	Returns the serial port associated to the XBee device, if any.

	Returns

	
	the serial port associated to the XBee device. Returns None if the local XBee

	does not use serial communication.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee device.

	Parameters

	value (XBee16BitAddress) – the new 16-bit address of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee device.

	Parameters

	api_output_mode (APIOutputMode) – the new API output mode of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is ZigBee

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – new API output mode options. Calculate this value using
the method
digi.xbee.models.mode.APIOutputModeBit.calculate_api_output_mode_value()
with a set of digi.xbee.models.mode.APIOutputModeBit.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
set_dest_address(addr)

	Deprecated.

Operation not supported in this protocol. Use IPDevice.set_dest_ip_addr() instead.
This method will raise an AttributeError.

	
set_dest_ip_addr(address)

	Sets the destination IP address.

	Parameters

	address (ipaddress.IPv4Address) – Destination IP address.

	Raises

	
	ValueError – if address is None.

	TimeoutException – if there is a timeout setting the destination IP address.

	XBeeException – if there is any other XBee related exception.

See also

ipaddress.IPv4Address

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – the digital IO line to sets its value.

	io_value (IOValue) – the IO value to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – the IO line to configure.

	io_mode (IOMode) – the IO mode to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOMode

	
set_pan_id(value)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
set_parameter(param, value)

	Override.

	See:

	AbstractXBeeDevice.set_parameter()

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – the IO Line to be assigned.

	cycle (Integer) – duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the given IO line does not have PWM capability or cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – the read timeout, expressed in seconds.

	
start_listening(source_port)

	Starts listening for incoming IP transmissions in the provided port.

	Parameters

	source_port (Integer) – Port to listen for incoming transmissions.

	Raises

	
	ValueError – if source_port is less than 0 or greater than 65535.

	TimeoutException – if there is a timeout setting the source port.

	XBeeException – if there is any other XBee related exception.

	
stop_listening()

	Stops listening for incoming IP transmissions.

	Raises

	
	TimeoutException – if there is a timeout processing the operation.

	XBeeException – if there is any other XBee related exception.

	
update_bluetooth_password(new_password)

	Changes the password of this Bluetooth device with the new one provided.

Note that your device must have Bluetooth Low Energy support to use this method.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
update_device_data_from(device)

	Updates the current device reference with the data provided for the given device.

This is only for internal use.

	Parameters

	device (AbstractXBeeDevice) – the XBee device to get the data from.

	Returns

	True if the device data has been updated, False otherwise.

	Return type

	Boolean

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the device.

	Parameters

	
	xml_firmware_file (String) – path of the XML file that describes the firmware to upload.

	xbee_firmware_file (String, optional) – location of the XBee binary firmware file.

	bootloader_firmware_file (String, optional) – location of the bootloader binary firmware file.

	timeout (Integer, optional) – the maximum time to wait for target read operations during the update process.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	OperationNotSupportedException – if the firmware update is not supported in the XBee device.

	FirmwareUpdateException – if there is any error performing the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee device so that parameter modifications persist through subsequent
resets.

Parameters values remain in this device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them to non-volatile memory, the
module reverts back to previously saved parameters the next time the
module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_configuration_changes_enabled() to get its status and
enable_apply_configuration_changes() to enable/disable the
option. If it is disabled, method apply_changes() can be used in
order to manually apply the changes.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
class digi.xbee.devices.LPWANDevice(port=None, baud_rate=None, data_bits=<sphinx.ext.autodoc.importer._MockObject object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject object>, parity=<sphinx.ext.autodoc.importer._MockObject object>, flow_control=<FlowControl.NONE: None>, _sync_ops_timeout=4, comm_iface=None)

	Bases: digi.xbee.devices.CellularDevice

This class provides common functionality for XBee Low-Power Wide-Area Network
devices.

Class constructor. Instantiates a new LPWANDevice with the provided parameters.

	Parameters

	
	port (Integer or String) – serial port identifier.
Integer: number of XBee device, numbering starts at zero.
Device name: depending on operating system. e.g. ‘/dev/ttyUSB0’ on ‘GNU/Linux’ or
‘COM3’ on Windows.

	baud_rate (Integer) – the serial port baud rate.

	(Integer, default (_sync_ops_timeout) – serial.EIGHTBITS): comm port bitsize.

	(Integer, default – serial.STOPBITS_ONE): comm port stop bits.

	(Character, default (parity) – serial.PARITY_NONE): comm port parity.

	(Integer, default – FlowControl.NONE): comm port flow control.

	(Integer, default – 3): the read timeout (in seconds).

	comm_iface (XBeeCommunicationInterface) – the communication interface.

:raises All exceptions raised by XBeeDevice.__init__() constructor.:

See also

CellularDevice

CellularDevice.__init__()

	
send_ip_data(ip_addr, dest_port, protocol, data, close_socket=False)

	Sends the provided IP data to the given IP address and port using
the specified IP protocol.

This method blocks till a success or error response arrives or the
configured receive timeout expires.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

	dest_port (Integer) – The destination port of the transmission.

	protocol (IPProtocol) – The IP protocol used for the transmission.

	data (String or Bytearray) – The IP data to be sent.

	close_socket (Boolean, optional) – Must be False.

	Raises

	ValueError – if protocol is not UDP.

	
send_ip_data_async(ip_addr, dest_port, protocol, data, close_socket=False)

	Sends the provided IP data to the given IP address and port
asynchronously using the specified IP protocol.

Asynchronous transmissions do not wait for answer from the remote
device or for transmit status packet.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

	dest_port (Integer) – The destination port of the transmission.

	protocol (IPProtocol) – The IP protocol used for the transmission.

	data (String or Bytearray) – The IP data to be sent.

	close_socket (Boolean, optional) – Must be False.

	Raises

	ValueError – if protocol is not UDP.

	
add_sms_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
del_sms_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
send_sms(phone_number, data)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
send_sms_async(phone_number, data)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
add_bluetooth_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.BluetoothDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The Bluetooth data as a Bytearray

	
add_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
add_expl_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
add_io_sample_received_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
add_ip_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.IPDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The data received as an digi.xbee.models.message.IPMessage

	
add_micropython_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.MicroPythonDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The MicroPython data as a Bytearray

	
add_modem_status_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.ModemStatusReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The modem status as a digi.xbee.models.status.ModemStatus

	
add_packet_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.PacketReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The received packet as a digi.xbee.packets.base.XBeeAPIPacket

	
add_socket_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketDataReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The socket ID as an Integer.

	The data received as Bytearray

	
add_socket_data_received_from_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketDataReceivedFrom.

	Parameters

	callback (Function) – the callback. Receives three arguments.

	The socket ID as an Integer.

	
	A pair (host, port) of the source address where host is a string

	representing an IPv4 address like ‘100.50.200.5’, and port is an
integer.

	The data received as Bytearray

	
add_socket_state_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketStateReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The socket ID as an Integer.

	The state received as a SocketState

	
add_user_data_relay_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.RelayDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The relay data as a digi.xbee.models.message.UserDataRelayMessage

	
apply_changes()

	Applies changes via AC command.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
apply_profile(profile_path, progress_callback=None)

	Applies the given XBee profile to the XBee device.

	Parameters

	
	profile_path (String) – path of the XBee profile file to apply.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	UpdateProfileException – if there is any error applying the XBee profile.

	OperationNotSupportedException – if XBee profiles are not supported in the XBee device.

	
close()

	Closes the communication with the XBee device.

This method guarantees that all threads running are stopped and
the serial port is closed.

	
comm_iface

	Returns the hardware interface associated to the XBee device.

	Returns

	the hardware interface associated to the XBee device.

	Return type

	XBeeCommunicationInterface

See also

XBeeSerialPort

	
classmethod create_xbee_device(comm_port_data)

	Creates and returns an XBeeDevice from data of the port to which is connected.

	Parameters

	
	comm_port_data (Dictionary) – dictionary with all comm port data needed.

	dictionary keys are (The) –
“baudRate” –> Baud rate.

”port” –> Port number.

”bitSize” –> Bit size.

”stopBits” –> Stop bits.

”parity” –> Parity.

”flowControl” –> Flow control.

”timeout” for –> Timeout for synchronous operations (in seconds).

	Returns

	the XBee device created.

	Return type

	XBeeDevice

	Raises

	SerialException – if the port you want to open does not exist or is already opened.

See also

XBeeDevice

	
del_bluetooth_data_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.BluetoothDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.BluetoothDataReceived event.

	
del_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
del_expl_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
del_io_sample_received_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
del_ip_data_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.IPDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.IPDataReceived event.

	
del_micropython_data_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.MicroPythonDataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.MicroPythonDataReceived event.

	
del_modem_status_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.ModemStatusReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.ModemStatusReceived event.

	
del_packet_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.PacketReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.PacketReceived event.

	
del_socket_data_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketDataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketDataReceived event.

	
del_socket_data_received_from_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketDataReceivedFrom event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketDataReceivedFrom event.

	
del_socket_state_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketStateReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketStateReceived event.

	
del_user_data_relay_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.RelayDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.RelayDataReceived event.

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee device.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
enable_apply_changes(value)

	Sets the apply_changes flag.

	Parameters

	value (Boolean) – True to enable the apply changes flag, False to disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee device.

To work with this interface, you must also configure the Bluetooth password if not done previously.
You can use the AbstractXBeeDevice.update_bluetooth_password() method for that purpose.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
execute_command(parameter)

	Executes the provided command.

	Parameters

	parameter (String) – The name of the AT command to be executed.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
flush_queues()

	Flushes the packets queue.

	
get_16bit_addr()

	Deprecated.

This protocol does not have an associated 16-bit address.

	
get_64bit_addr()

	Deprecated.

Cellular protocol does not have an associated 64-bit address.

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – the IO line to get its ADC value.

	Returns

	the analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee device.

The API output mode determines the format that the received data is
output through the serial interface of the XBee device.

	Returns

	the API output mode of the XBee device.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or
 ESCAPED API. This method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee device in a format such as 00112233AABB.

Note that your device must have Bluetooth Low Energy support to use this method.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
get_cellular_ai_status()

	Returns the current association status of this Cellular device.

It indicates occurrences of errors during the modem initialization
and connection.

	Returns

	The association indication status of the Cellular device.

	Return type

	CellularAssociationIndicationStatus

	Raises

	
	TimeoutException – if there is a timeout getting the association indication status.

	XBeeException – if there is any other XBee related exception.

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	the last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Deprecated.

Operation not supported in this protocol. Use IPDevice.get_dest_ip_addr() instead.
This method will raise an AttributeError.

	
get_dest_ip_addr()

	Returns the destination IP address.

	Returns

	The configured destination IP address.

	Return type

	ipaddress.IPv4Address

	Raises

	
	TimeoutException – if there is a timeout getting the destination IP address.

	XBeeException – if there is any other XBee related exception.

See also

ipaddress.IPv4Address

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

IOValue

	
get_firmware_version()

	Returns the firmware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_imei_addr()

	Returns the IMEI address of this Cellular device.

To refresh this value use the method CellularDevice.read_device_info().

	Returns

	The IMEI address of this Cellular device.

	Return type

	XBeeIMEIAddress

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – the io line to configure.

	Returns

	the IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the received data is not an IO mode.

	
get_io_sampling_rate()

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
get_ip_addr()

	Returns the IP address of this IP device.

To refresh this value use the method IPDevice.read_device_info().

	Returns

	The IP address of this IP device.

	Return type

	ipaddress.IPv4Address

See also

ipaddress.IPv4Address

	
get_network()

	Deprecated.

This protocol does not support the network functionality.

	
get_next_frame_id()

	Returns the next frame ID of the XBee device.

	Returns

	The next frame ID of the XBee device.

	Return type

	Integer

	
get_node_id()

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
get_pan_id()

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
get_parameter(param, parameter_value=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
get_power_level()

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
get_protocol()

	Override.

See also

XBeeDevice.get_protocol()

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – the IO line to get its PWM duty cycle.

	Returns

	the PWM duty cycle of the given IO line or None if the response is empty.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the passed IO_LINE has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	digi.xbee.models.protocol.Role

See also

digi.xbee.models.protocol.Role

	
get_socket_info(socket_id)

	Returns the information of the socket with the given socket ID.

	Parameters

	socket_id (Integer) – ID of the socket.

	Returns

	The socket information, or None if the socket with that ID does not exist.

	Return type

	SocketInfo

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

See also

SocketInfo

	
get_sockets_list()

	Returns a list with the IDs of all active (open) sockets.

	Returns

	list with the IDs of all active (open) sockets, or empty list if there is not any active socket.

	Return type

	List

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	the serial port read timeout in seconds.

	Return type

	Integer

	
get_xbee_device_callbacks()

	Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee to get its callbacks. These
callbacks will be executed before user callbacks.

	Returns

	PacketReceived

	
has_explicit_packets()

	Returns whether the XBee device’s queue has explicit packets or not.
This do not include non-explicit packets.

	Returns

	True if this XBee device’s queue has explicit packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_packets()

	
has_packets()

	Returns whether the XBee device’s queue has packets or not.
This do not include explicit packets.

	Returns

	True if this XBee device’s queue has packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_explicit_packets()

	
is_apply_changes_enabled()

	Returns whether the apply_changes flag is enabled or not.

	Returns

	True if the apply_changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_connected()

	Returns whether the device is connected to the Internet or not.

	Returns

	True if the device is connected to the Internet, False otherwise.

	Return type

	Boolean

	Raises

	
	TimeoutException – if there is a timeout getting the association indication status.

	XBeeException – if there is any other XBee related exception.

	
is_open()

	Returns whether this XBee device is open or not.

	Returns

	Boolean. True if this XBee device is open, False otherwise.

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
log

	Returns the XBee device log.

	Returns

	the XBee device logger.

	Return type

	Logger

	
open(force_settings=False)

	Override.

	Raises

	
	TimeoutException – If there is any problem with the communication.

	InvalidOperatingModeException – If the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – If the protocol is invalid or if the XBee device is already open.

See also

XBeeDevice.open()

	
operating_mode

	Returns this XBee device’s operating mode.

	Returns

	OperatingMode. This XBee device’s operating mode.

	
read_data(timeout=None, explicit=False)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
read_data_from(remote_xbee_device, timeout=None, explicit=False)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
read_device_info(init=True)

	Override.

See also

XBeeDevice.read_device _info()

	
read_io_sample()

	Returns an IO sample from the XBee device containing the value of all enabled digital IO and
analog input channels.

	Returns

	the IO sample read from the XBee device.

	Return type

	IOSample

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOSample

	
read_ip_data(timeout=3)

	Reads new IP data received by this XBee device during the
provided timeout.

This method blocks until new IP data is received or the provided
timeout expires.

For non-blocking operations, register a callback and use the method
IPDevice.add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming
IP data at a specific port. Use the method IPDevice.start_listening()
for that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

	Parameters

	timeout (Integer, optional) – The time to wait for new IP data in seconds.

	Returns

	IP message, None if this device did not receive new data.

	Return type

	IPMessage

	Raises

	ValueError – if timeout is less than 0.

	
read_ip_data_from(ip_addr, timeout=3)

	Reads new IP data received from the given IP address during the
provided timeout.

This method blocks until new IP data from the provided IP
address is received or the given timeout expires.

For non-blocking operations, register a callback and use the method
IPDevice.add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming
IP data at a specific port. Use the method IPDevice.start_listening()
for that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to read data from.

	timeout (Integer, optional) – The time to wait for new IP data in seconds.

	Returns

	
	IP message, None if this device did not

	receive new data from the provided IP address.

	Return type

	IPMessage

	Raises

	ValueError – if timeout is less than 0.

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
send_bluetooth_data(data)

	Sends the given data to the Bluetooth interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if there is any problem sending the data.

See also

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

	
send_data(remote_xbee_device, data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
send_data_async(remote_xbee_device, data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
send_data_broadcast(data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
send_ip_data_broadcast(dest_port, data)

	Sends the provided IP data to all clients.

This method blocks till a success or error transmit status arrives or
the configured receive timeout expires.

	Parameters

	
	dest_port (Integer) – The destination port of the transmission.

	data (String or Bytearray) – The IP data to be sent.

	Raises

	
	ValueError – if data is None.

	ValueError – if dest_port is less than 0 or greater than 65535.

	TimeoutException – if there is a timeout sending the data.

	XBeeException – if there is any other XBee related exception.

	
send_micropython_data(data)

	Sends the given data to the MicroPython interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if there is any problem sending the data.

See also

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

	
send_packet(packet, sync=False)

	Override method.

See also

AbstractXBeeDevice._send_packet()

	
send_packet_sync_and_get_response(packet_to_send, timeout=None)

	Override method.

See also

AbstractXBeeDevice._send_packet_sync_and_get_response()

	
send_user_data_relay(local_interface, data)

	Sends the given data to the given XBee local interface.

	Parameters

	
	local_interface (XBeeLocalInterface) – Destination XBee local interface.

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ValueError – if local_interface is None.

	XBeeException – if there is any problem sending the User Data Relay.

See also

XBeeLocalInterface

	
serial_port

	Returns the serial port associated to the XBee device, if any.

	Returns

	
	the serial port associated to the XBee device. Returns None if the local XBee

	does not use serial communication.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee device.

	Parameters

	value (XBee16BitAddress) – the new 16-bit address of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee device.

	Parameters

	api_output_mode (APIOutputMode) – the new API output mode of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is ZigBee

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – new API output mode options. Calculate this value using
the method
digi.xbee.models.mode.APIOutputModeBit.calculate_api_output_mode_value()
with a set of digi.xbee.models.mode.APIOutputModeBit.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
set_dest_address(addr)

	Deprecated.

Operation not supported in this protocol. Use IPDevice.set_dest_ip_addr() instead.
This method will raise an AttributeError.

	
set_dest_ip_addr(address)

	Sets the destination IP address.

	Parameters

	address (ipaddress.IPv4Address) – Destination IP address.

	Raises

	
	ValueError – if address is None.

	TimeoutException – if there is a timeout setting the destination IP address.

	XBeeException – if there is any other XBee related exception.

See also

ipaddress.IPv4Address

	
set_dio_change_detection(io_lines_set)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – the digital IO line to sets its value.

	io_value (IOValue) – the IO value to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – the IO line to configure.

	io_mode (IOMode) – the IO mode to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOMode

	
set_io_sampling_rate(rate)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
set_node_id(node_id)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
set_pan_id(value)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
set_parameter(param, value)

	Override.

	See:

	AbstractXBeeDevice.set_parameter()

	
set_power_level(power_level)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – the IO Line to be assigned.

	cycle (Integer) – duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the given IO line does not have PWM capability or cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – the read timeout, expressed in seconds.

	
start_listening(source_port)

	Starts listening for incoming IP transmissions in the provided port.

	Parameters

	source_port (Integer) – Port to listen for incoming transmissions.

	Raises

	
	ValueError – if source_port is less than 0 or greater than 65535.

	TimeoutException – if there is a timeout setting the source port.

	XBeeException – if there is any other XBee related exception.

	
stop_listening()

	Stops listening for incoming IP transmissions.

	Raises

	
	TimeoutException – if there is a timeout processing the operation.

	XBeeException – if there is any other XBee related exception.

	
update_bluetooth_password(new_password)

	Changes the password of this Bluetooth device with the new one provided.

Note that your device must have Bluetooth Low Energy support to use this method.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
update_device_data_from(device)

	Updates the current device reference with the data provided for the given device.

This is only for internal use.

	Parameters

	device (AbstractXBeeDevice) – the XBee device to get the data from.

	Returns

	True if the device data has been updated, False otherwise.

	Return type

	Boolean

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the device.

	Parameters

	
	xml_firmware_file (String) – path of the XML file that describes the firmware to upload.

	xbee_firmware_file (String, optional) – location of the XBee binary firmware file.

	bootloader_firmware_file (String, optional) – location of the bootloader binary firmware file.

	timeout (Integer, optional) – the maximum time to wait for target read operations during the update process.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	OperationNotSupportedException – if the firmware update is not supported in the XBee device.

	FirmwareUpdateException – if there is any error performing the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee device so that parameter modifications persist through subsequent
resets.

Parameters values remain in this device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them to non-volatile memory, the
module reverts back to previously saved parameters the next time the
module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_configuration_changes_enabled() to get its status and
enable_apply_configuration_changes() to enable/disable the
option. If it is disabled, method apply_changes() can be used in
order to manually apply the changes.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
class digi.xbee.devices.NBIoTDevice(port=None, baud_rate=None, data_bits=<sphinx.ext.autodoc.importer._MockObject object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject object>, parity=<sphinx.ext.autodoc.importer._MockObject object>, flow_control=<FlowControl.NONE: None>, _sync_ops_timeout=4, comm_iface=None)

	Bases: digi.xbee.devices.LPWANDevice

This class represents a local NB-IoT device.

Class constructor. Instantiates a new NBIoTDevice with the provided parameters.

	Parameters

	
	port (Integer or String) – serial port identifier.
Integer: number of XBee device, numbering starts at zero.
Device name: depending on operating system. e.g. ‘/dev/ttyUSB0’ on ‘GNU/Linux’ or
‘COM3’ on Windows.

	baud_rate (Integer) – the serial port baud rate.

	(Integer, default (_sync_ops_timeout) – serial.EIGHTBITS): comm port bitsize.

	(Integer, default – serial.STOPBITS_ONE): comm port stop bits.

	(Character, default (parity) – serial.PARITY_NONE): comm port parity.

	(Integer, default – FlowControl.NONE): comm port flow control.

	(Integer, default – 3): the read timeout (in seconds).

	comm_iface (XBeeCommunicationInterface) – the communication interface.

:raises All exceptions raised by XBeeDevice.__init__() constructor.:

See also

LPWANDevice

LPWANDevice.__init__()

	
open(force_settings=False)

	Override.

	Raises

	
	TimeoutException – If there is any problem with the communication.

	InvalidOperatingModeException – If the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – If the protocol is invalid or if the XBee device is already open.

See also

XBeeDevice.open()

	
get_protocol()

	Override.

See also

XBeeDevice.get_protocol()

	
add_bluetooth_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.BluetoothDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The Bluetooth data as a Bytearray

	
add_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
add_expl_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
add_io_sample_received_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
add_ip_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.IPDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The data received as an digi.xbee.models.message.IPMessage

	
add_micropython_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.MicroPythonDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The MicroPython data as a Bytearray

	
add_modem_status_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.ModemStatusReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The modem status as a digi.xbee.models.status.ModemStatus

	
add_packet_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.PacketReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The received packet as a digi.xbee.packets.base.XBeeAPIPacket

	
add_sms_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
add_socket_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketDataReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The socket ID as an Integer.

	The data received as Bytearray

	
add_socket_data_received_from_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketDataReceivedFrom.

	Parameters

	callback (Function) – the callback. Receives three arguments.

	The socket ID as an Integer.

	
	A pair (host, port) of the source address where host is a string

	representing an IPv4 address like ‘100.50.200.5’, and port is an
integer.

	The data received as Bytearray

	
add_socket_state_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketStateReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The socket ID as an Integer.

	The state received as a SocketState

	
add_user_data_relay_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.RelayDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The relay data as a digi.xbee.models.message.UserDataRelayMessage

	
apply_changes()

	Applies changes via AC command.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
apply_profile(profile_path, progress_callback=None)

	Applies the given XBee profile to the XBee device.

	Parameters

	
	profile_path (String) – path of the XBee profile file to apply.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	UpdateProfileException – if there is any error applying the XBee profile.

	OperationNotSupportedException – if XBee profiles are not supported in the XBee device.

	
close()

	Closes the communication with the XBee device.

This method guarantees that all threads running are stopped and
the serial port is closed.

	
comm_iface

	Returns the hardware interface associated to the XBee device.

	Returns

	the hardware interface associated to the XBee device.

	Return type

	XBeeCommunicationInterface

See also

XBeeSerialPort

	
classmethod create_xbee_device(comm_port_data)

	Creates and returns an XBeeDevice from data of the port to which is connected.

	Parameters

	
	comm_port_data (Dictionary) – dictionary with all comm port data needed.

	dictionary keys are (The) –
“baudRate” –> Baud rate.

”port” –> Port number.

”bitSize” –> Bit size.

”stopBits” –> Stop bits.

”parity” –> Parity.

”flowControl” –> Flow control.

”timeout” for –> Timeout for synchronous operations (in seconds).

	Returns

	the XBee device created.

	Return type

	XBeeDevice

	Raises

	SerialException – if the port you want to open does not exist or is already opened.

See also

XBeeDevice

	
del_bluetooth_data_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.BluetoothDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.BluetoothDataReceived event.

	
del_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
del_expl_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
del_io_sample_received_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
del_ip_data_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.IPDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.IPDataReceived event.

	
del_micropython_data_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.MicroPythonDataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.MicroPythonDataReceived event.

	
del_modem_status_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.ModemStatusReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.ModemStatusReceived event.

	
del_packet_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.PacketReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.PacketReceived event.

	
del_sms_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
del_socket_data_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketDataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketDataReceived event.

	
del_socket_data_received_from_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketDataReceivedFrom event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketDataReceivedFrom event.

	
del_socket_state_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketStateReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketStateReceived event.

	
del_user_data_relay_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.RelayDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.RelayDataReceived event.

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee device.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
enable_apply_changes(value)

	Sets the apply_changes flag.

	Parameters

	value (Boolean) – True to enable the apply changes flag, False to disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee device.

To work with this interface, you must also configure the Bluetooth password if not done previously.
You can use the AbstractXBeeDevice.update_bluetooth_password() method for that purpose.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
execute_command(parameter)

	Executes the provided command.

	Parameters

	parameter (String) – The name of the AT command to be executed.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
flush_queues()

	Flushes the packets queue.

	
get_16bit_addr()

	Deprecated.

This protocol does not have an associated 16-bit address.

	
get_64bit_addr()

	Deprecated.

Cellular protocol does not have an associated 64-bit address.

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – the IO line to get its ADC value.

	Returns

	the analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee device.

The API output mode determines the format that the received data is
output through the serial interface of the XBee device.

	Returns

	the API output mode of the XBee device.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or
 ESCAPED API. This method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee device in a format such as 00112233AABB.

Note that your device must have Bluetooth Low Energy support to use this method.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
get_cellular_ai_status()

	Returns the current association status of this Cellular device.

It indicates occurrences of errors during the modem initialization
and connection.

	Returns

	The association indication status of the Cellular device.

	Return type

	CellularAssociationIndicationStatus

	Raises

	
	TimeoutException – if there is a timeout getting the association indication status.

	XBeeException – if there is any other XBee related exception.

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	the last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Deprecated.

Operation not supported in this protocol. Use IPDevice.get_dest_ip_addr() instead.
This method will raise an AttributeError.

	
get_dest_ip_addr()

	Returns the destination IP address.

	Returns

	The configured destination IP address.

	Return type

	ipaddress.IPv4Address

	Raises

	
	TimeoutException – if there is a timeout getting the destination IP address.

	XBeeException – if there is any other XBee related exception.

See also

ipaddress.IPv4Address

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

IOValue

	
get_firmware_version()

	Returns the firmware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_imei_addr()

	Returns the IMEI address of this Cellular device.

To refresh this value use the method CellularDevice.read_device_info().

	Returns

	The IMEI address of this Cellular device.

	Return type

	XBeeIMEIAddress

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – the io line to configure.

	Returns

	the IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the received data is not an IO mode.

	
get_io_sampling_rate()

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
get_ip_addr()

	Returns the IP address of this IP device.

To refresh this value use the method IPDevice.read_device_info().

	Returns

	The IP address of this IP device.

	Return type

	ipaddress.IPv4Address

See also

ipaddress.IPv4Address

	
get_network()

	Deprecated.

This protocol does not support the network functionality.

	
get_next_frame_id()

	Returns the next frame ID of the XBee device.

	Returns

	The next frame ID of the XBee device.

	Return type

	Integer

	
get_node_id()

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
get_pan_id()

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
get_parameter(param, parameter_value=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
get_power_level()

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – the IO line to get its PWM duty cycle.

	Returns

	the PWM duty cycle of the given IO line or None if the response is empty.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the passed IO_LINE has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	digi.xbee.models.protocol.Role

See also

digi.xbee.models.protocol.Role

	
get_socket_info(socket_id)

	Returns the information of the socket with the given socket ID.

	Parameters

	socket_id (Integer) – ID of the socket.

	Returns

	The socket information, or None if the socket with that ID does not exist.

	Return type

	SocketInfo

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

See also

SocketInfo

	
get_sockets_list()

	Returns a list with the IDs of all active (open) sockets.

	Returns

	list with the IDs of all active (open) sockets, or empty list if there is not any active socket.

	Return type

	List

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	the serial port read timeout in seconds.

	Return type

	Integer

	
get_xbee_device_callbacks()

	Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee to get its callbacks. These
callbacks will be executed before user callbacks.

	Returns

	PacketReceived

	
has_explicit_packets()

	Returns whether the XBee device’s queue has explicit packets or not.
This do not include non-explicit packets.

	Returns

	True if this XBee device’s queue has explicit packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_packets()

	
has_packets()

	Returns whether the XBee device’s queue has packets or not.
This do not include explicit packets.

	Returns

	True if this XBee device’s queue has packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_explicit_packets()

	
is_apply_changes_enabled()

	Returns whether the apply_changes flag is enabled or not.

	Returns

	True if the apply_changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_connected()

	Returns whether the device is connected to the Internet or not.

	Returns

	True if the device is connected to the Internet, False otherwise.

	Return type

	Boolean

	Raises

	
	TimeoutException – if there is a timeout getting the association indication status.

	XBeeException – if there is any other XBee related exception.

	
is_open()

	Returns whether this XBee device is open or not.

	Returns

	Boolean. True if this XBee device is open, False otherwise.

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
log

	Returns the XBee device log.

	Returns

	the XBee device logger.

	Return type

	Logger

	
operating_mode

	Returns this XBee device’s operating mode.

	Returns

	OperatingMode. This XBee device’s operating mode.

	
read_data(timeout=None, explicit=False)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
read_data_from(remote_xbee_device, timeout=None, explicit=False)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
read_device_info(init=True)

	Override.

See also

XBeeDevice.read_device _info()

	
read_io_sample()

	Returns an IO sample from the XBee device containing the value of all enabled digital IO and
analog input channels.

	Returns

	the IO sample read from the XBee device.

	Return type

	IOSample

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOSample

	
read_ip_data(timeout=3)

	Reads new IP data received by this XBee device during the
provided timeout.

This method blocks until new IP data is received or the provided
timeout expires.

For non-blocking operations, register a callback and use the method
IPDevice.add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming
IP data at a specific port. Use the method IPDevice.start_listening()
for that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

	Parameters

	timeout (Integer, optional) – The time to wait for new IP data in seconds.

	Returns

	IP message, None if this device did not receive new data.

	Return type

	IPMessage

	Raises

	ValueError – if timeout is less than 0.

	
read_ip_data_from(ip_addr, timeout=3)

	Reads new IP data received from the given IP address during the
provided timeout.

This method blocks until new IP data from the provided IP
address is received or the given timeout expires.

For non-blocking operations, register a callback and use the method
IPDevice.add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming
IP data at a specific port. Use the method IPDevice.start_listening()
for that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to read data from.

	timeout (Integer, optional) – The time to wait for new IP data in seconds.

	Returns

	
	IP message, None if this device did not

	receive new data from the provided IP address.

	Return type

	IPMessage

	Raises

	ValueError – if timeout is less than 0.

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
send_bluetooth_data(data)

	Sends the given data to the Bluetooth interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if there is any problem sending the data.

See also

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

	
send_data(remote_xbee_device, data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
send_data_async(remote_xbee_device, data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
send_data_broadcast(data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
send_ip_data(ip_addr, dest_port, protocol, data, close_socket=False)

	Sends the provided IP data to the given IP address and port using
the specified IP protocol.

This method blocks till a success or error response arrives or the
configured receive timeout expires.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

	dest_port (Integer) – The destination port of the transmission.

	protocol (IPProtocol) – The IP protocol used for the transmission.

	data (String or Bytearray) – The IP data to be sent.

	close_socket (Boolean, optional) – Must be False.

	Raises

	ValueError – if protocol is not UDP.

	
send_ip_data_async(ip_addr, dest_port, protocol, data, close_socket=False)

	Sends the provided IP data to the given IP address and port
asynchronously using the specified IP protocol.

Asynchronous transmissions do not wait for answer from the remote
device or for transmit status packet.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

	dest_port (Integer) – The destination port of the transmission.

	protocol (IPProtocol) – The IP protocol used for the transmission.

	data (String or Bytearray) – The IP data to be sent.

	close_socket (Boolean, optional) – Must be False.

	Raises

	ValueError – if protocol is not UDP.

	
send_ip_data_broadcast(dest_port, data)

	Sends the provided IP data to all clients.

This method blocks till a success or error transmit status arrives or
the configured receive timeout expires.

	Parameters

	
	dest_port (Integer) – The destination port of the transmission.

	data (String or Bytearray) – The IP data to be sent.

	Raises

	
	ValueError – if data is None.

	ValueError – if dest_port is less than 0 or greater than 65535.

	TimeoutException – if there is a timeout sending the data.

	XBeeException – if there is any other XBee related exception.

	
send_micropython_data(data)

	Sends the given data to the MicroPython interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if there is any problem sending the data.

See also

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

	
send_packet(packet, sync=False)

	Override method.

See also

AbstractXBeeDevice._send_packet()

	
send_packet_sync_and_get_response(packet_to_send, timeout=None)

	Override method.

See also

AbstractXBeeDevice._send_packet_sync_and_get_response()

	
send_sms(phone_number, data)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
send_sms_async(phone_number, data)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
send_user_data_relay(local_interface, data)

	Sends the given data to the given XBee local interface.

	Parameters

	
	local_interface (XBeeLocalInterface) – Destination XBee local interface.

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ValueError – if local_interface is None.

	XBeeException – if there is any problem sending the User Data Relay.

See also

XBeeLocalInterface

	
serial_port

	Returns the serial port associated to the XBee device, if any.

	Returns

	
	the serial port associated to the XBee device. Returns None if the local XBee

	does not use serial communication.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee device.

	Parameters

	value (XBee16BitAddress) – the new 16-bit address of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee device.

	Parameters

	api_output_mode (APIOutputMode) – the new API output mode of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is ZigBee

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – new API output mode options. Calculate this value using
the method
digi.xbee.models.mode.APIOutputModeBit.calculate_api_output_mode_value()
with a set of digi.xbee.models.mode.APIOutputModeBit.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
set_dest_address(addr)

	Deprecated.

Operation not supported in this protocol. Use IPDevice.set_dest_ip_addr() instead.
This method will raise an AttributeError.

	
set_dest_ip_addr(address)

	Sets the destination IP address.

	Parameters

	address (ipaddress.IPv4Address) – Destination IP address.

	Raises

	
	ValueError – if address is None.

	TimeoutException – if there is a timeout setting the destination IP address.

	XBeeException – if there is any other XBee related exception.

See also

ipaddress.IPv4Address

	
set_dio_change_detection(io_lines_set)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – the digital IO line to sets its value.

	io_value (IOValue) – the IO value to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – the IO line to configure.

	io_mode (IOMode) – the IO mode to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOMode

	
set_io_sampling_rate(rate)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
set_node_id(node_id)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
set_pan_id(value)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
set_parameter(param, value)

	Override.

	See:

	AbstractXBeeDevice.set_parameter()

	
set_power_level(power_level)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – the IO Line to be assigned.

	cycle (Integer) – duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the given IO line does not have PWM capability or cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – the read timeout, expressed in seconds.

	
start_listening(source_port)

	Starts listening for incoming IP transmissions in the provided port.

	Parameters

	source_port (Integer) – Port to listen for incoming transmissions.

	Raises

	
	ValueError – if source_port is less than 0 or greater than 65535.

	TimeoutException – if there is a timeout setting the source port.

	XBeeException – if there is any other XBee related exception.

	
stop_listening()

	Stops listening for incoming IP transmissions.

	Raises

	
	TimeoutException – if there is a timeout processing the operation.

	XBeeException – if there is any other XBee related exception.

	
update_bluetooth_password(new_password)

	Changes the password of this Bluetooth device with the new one provided.

Note that your device must have Bluetooth Low Energy support to use this method.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
update_device_data_from(device)

	Updates the current device reference with the data provided for the given device.

This is only for internal use.

	Parameters

	device (AbstractXBeeDevice) – the XBee device to get the data from.

	Returns

	True if the device data has been updated, False otherwise.

	Return type

	Boolean

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the device.

	Parameters

	
	xml_firmware_file (String) – path of the XML file that describes the firmware to upload.

	xbee_firmware_file (String, optional) – location of the XBee binary firmware file.

	bootloader_firmware_file (String, optional) – location of the bootloader binary firmware file.

	timeout (Integer, optional) – the maximum time to wait for target read operations during the update process.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	OperationNotSupportedException – if the firmware update is not supported in the XBee device.

	FirmwareUpdateException – if there is any error performing the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee device so that parameter modifications persist through subsequent
resets.

Parameters values remain in this device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them to non-volatile memory, the
module reverts back to previously saved parameters the next time the
module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_configuration_changes_enabled() to get its status and
enable_apply_configuration_changes() to enable/disable the
option. If it is disabled, method apply_changes() can be used in
order to manually apply the changes.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
class digi.xbee.devices.WiFiDevice(port=None, baud_rate=None, data_bits=<sphinx.ext.autodoc.importer._MockObject object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject object>, parity=<sphinx.ext.autodoc.importer._MockObject object>, flow_control=<FlowControl.NONE: None>, _sync_ops_timeout=4, comm_iface=None)

	Bases: digi.xbee.devices.IPDevice

This class represents a local Wi-Fi XBee device.

Class constructor. Instantiates a new WiFiDevice with the provided parameters.

	Parameters

	
	port (Integer or String) – serial port identifier.
Integer: number of XBee device, numbering starts at zero.
Device name: depending on operating system. e.g. ‘/dev/ttyUSB0’ on ‘GNU/Linux’ or
‘COM3’ on Windows.

	baud_rate (Integer) – the serial port baud rate.

	(Integer, default (_sync_ops_timeout) – serial.EIGHTBITS): comm port bitsize.

	(Integer, default – serial.STOPBITS_ONE): comm port stop bits.

	(Character, default (parity) – serial.PARITY_NONE): comm port parity.

	(Integer, default – FlowControl.NONE): comm port flow control.

	(Integer, default – 3): the read timeout (in seconds).

	comm_iface (XBeeCommunicationInterface) – the communication interface.

:raises All exceptions raised by XBeeDevice.__init__() constructor.:

See also

IPDevice

v.__init__()

	
open(force_settings=False)

	Override.

	Raises

	
	TimeoutException – If there is any problem with the communication.

	InvalidOperatingModeException – If the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – If the protocol is invalid or if the XBee device is already open.

See also

XBeeDevice.open()

	
get_protocol()

	Override.

See also

XBeeDevice.get_protocol()

	
get_wifi_ai_status()

	Returns the current association status of the device.

	Returns

	the current association status of the device.

	Return type

	WiFiAssociationIndicationStatus

	Raises

	
	TimeoutException – if there is a timeout getting the association indication status.

	XBeeException – if there is any other XBee related exception.

See also

WiFiAssociationIndicationStatus

	
get_access_point(ssid)

	Finds and returns the access point that matches the supplied SSID.

	Parameters

	ssid (String) – the SSID of the access point to get.

	Returns

	
	the discovered access point with the provided SSID, or None

	if the timeout expires and the access point was not found.

	Return type

	AccessPoint

	Raises

	
	TimeoutException – if there is a timeout getting the access point.

	XBeeException – if there is an error sending the discovery command.

See also

AccessPoint

	
scan_access_points()

	Performs a scan to search for access points in the vicinity.

This method blocks until all the access points are discovered or the
configured access point timeout expires.

The access point timeout is configured using the WiFiDevice.set_access_point_timeout()
method and can be consulted with WiFiDevice.get_access_point_timeout() method.

	Returns

	the list of AccessPoint objects discovered.

	Return type

	List

	Raises

	
	TimeoutException – if there is a timeout scanning the access points.

	XBeeException – if there is any other XBee related exception.

See also

AccessPoint

	
connect_by_ap(access_point, password=None)

	Connects to the provided access point.

This method blocks until the connection with the access point is
established or the configured access point timeout expires.

The access point timeout is configured using the
WiFiDevice.set_access_point_timeout() method and can be consulted with
WiFiDevice.get_access_point_timeout() method.

Once the module is connected to the access point, you can issue
the WiFiDevice.write_changes() method to save the connection settings. This
way the module will try to connect to the access point every time it
is powered on.

	Parameters

	
	access_point (AccessPoint) – The access point to connect to.

	password (String, optional) – The password for the access point, None if it does not have
any encryption enabled. Optional.

	Returns

	True if the module connected to the access point successfully, False otherwise.

	Return type

	Boolean

	Raises

	
	ValueError – if access_point is None.

	TimeoutException – if there is a timeout sending the connect commands.

	XBeeException – if there is any other XBee related exception.

See also

WiFiDevice.connect_by_ssid()

WiFiDevice.disconnect()

WiFiDevice.get_access_point()

WiFiDevice.get_access_point_timeout()

WiFiDevice.scan_access_points()

WiFiDevice.set_access_point_timeout()

	
connect_by_ssid(ssid, password=None)

	Connects to the access point with provided SSID.

This method blocks until the connection with the access point is
established or the configured access point timeout expires.

The access point timeout is configured using the
WiFiDevice.set_access_point_timeout() method and can be consulted with
WiFiDevice.get_access_point_timeout() method.

Once the module is connected to the access point, you can issue
the WiFiDevice.write_changes() method to save the connection settings. This
way the module will try to connect to the access point every time it
is powered on.

	Parameters

	
	ssid (String) – the SSID of the access point to connect to.

	password (String, optional) – The password for the access point, None if it does not have
any encryption enabled. Optional.

	Returns

	True if the module connected to the access point successfully, False otherwise.

	Return type

	Boolean

	Raises

	
	ValueError – if ssid is None.

	TimeoutException – if there is a timeout sending the connect commands.

	XBeeException – if the access point with the provided SSID cannot be found.

	XBeeException – if there is any other XBee related exception.

See also

WiFiDevice.connect_by_ap()

WiFiDevice.disconnect()

WiFiDevice.get_access_point()

WiFiDevice.get_access_point_timeout()

WiFiDevice.scan_access_points()

WiFiDevice.set_access_point_timeout()

	
disconnect()

	Disconnects from the access point that the device is connected to.

This method blocks until the device disconnects totally from the
access point or the configured access point timeout expires.

The access point timeout is configured using the
WiFiDevice.set_access_point_timeout() method and can be consulted with
WiFiDevice.get_access_point_timeout() method.

	Returns

	True if the module disconnected from the access point successfully, False otherwise.

	Return type

	Boolean

	Raises

	
	TimeoutException – if there is a timeout sending the disconnect command.

	XBeeException – if there is any other XBee related exception.

See also

WiFiDevice.connect_by_ap()

WiFiDevice.connect_by_ssid()

WiFiDevice.get_access_point_timeout()

WiFiDevice.set_access_point_timeout()

	
is_connected()

	Returns whether the device is connected to an access point or not.

	Returns

	True if the device is connected to an access point, False otherwise.

	Return type

	Boolean

	Raises

	TimeoutException – if there is a timeout getting the association indication status.

See also

WiFiDevice.get_wifi_ai_status()

WiFiAssociationIndicationStatus

	
get_access_point_timeout()

	Returns the configured access point timeout for connecting,
disconnecting and scanning access points.

	Returns

	the current access point timeout in milliseconds.

	Return type

	Integer

See also

WiFiDevice.set_access_point_timeout()

	
set_access_point_timeout(ap_timeout)

	Configures the access point timeout in milliseconds for connecting,
disconnecting and scanning access points.

	Parameters

	ap_timeout (Integer) – the new access point timeout in milliseconds.

	Raises

	ValueError – if ap_timeout is less than 0.

See also

WiFiDevice.get_access_point_timeout()

	
get_ip_addressing_mode()

	Returns the IP addressing mode of the device.

	Returns

	the IP addressing mode.

	Return type

	IPAddressingMode

	Raises

	TimeoutException – if there is a timeout reading the IP addressing mode.

See also

WiFiDevice.set_ip_addressing_mode()

IPAddressingMode

	
set_ip_addressing_mode(mode)

	Sets the IP addressing mode of the device.

	Parameters

	mode (IPAddressingMode) – the new IP addressing mode to set.

	Raises

	TimeoutException – if there is a timeout setting the IP addressing mode.

See also

WiFiDevice.get_ip_addressing_mode()

IPAddressingMode

	
set_ip_address(ip_address)

	Sets the IP address of the module.

This method can only be called if the module is configured
in IPAddressingMode.STATIC mode. Otherwise an XBeeException
will be thrown.

	Parameters

	ip_address (ipaddress.IPv4Address) – the new IP address to set.

	Raises

	TimeoutException – if there is a timeout setting the IP address.

See also

WiFiDevice.get_mask_address()

ipaddress.IPv4Address

	
get_mask_address()

	Returns the subnet mask IP address.

	Returns

	the subnet mask IP address.

	Return type

	ipaddress.IPv4Address

	Raises

	TimeoutException – if there is a timeout reading the subnet mask address.

See also

WiFiDevice.set_mask_address()

ipaddress.IPv4Address

	
set_mask_address(mask_address)

	Sets the subnet mask IP address.

This method can only be called if the module is configured
in IPAddressingMode.STATIC mode. Otherwise an XBeeException
will be thrown.

	Parameters

	mask_address (ipaddress.IPv4Address) – the new subnet mask address to set.

	Raises

	TimeoutException – if there is a timeout setting the subnet mask address.

See also

WiFiDevice.get_mask_address()

ipaddress.IPv4Address

	
get_gateway_address()

	Returns the IP address of the gateway.

	Returns

	the IP address of the gateway.

	Return type

	ipaddress.IPv4Address

	Raises

	TimeoutException – if there is a timeout reading the gateway address.

See also

WiFiDevice.set_dns_address()

ipaddress.IPv4Address

	
set_gateway_address(gateway_address)

	Sets the IP address of the gateway.

This method can only be called if the module is configured
in IPAddressingMode.STATIC mode. Otherwise an XBeeException
will be thrown.

	Parameters

	gateway_address (ipaddress.IPv4Address) – the new gateway address to set.

	Raises

	TimeoutException – if there is a timeout setting the gateway address.

See also

WiFiDevice.get_gateway_address()

ipaddress.IPv4Address

	
get_dns_address()

	Returns the IP address of Domain Name Server (DNS).

	Returns

	the DNS address configured.

	Return type

	ipaddress.IPv4Address

	Raises

	TimeoutException – if there is a timeout reading the DNS address.

See also

WiFiDevice.set_dns_address()

ipaddress.IPv4Address

	
set_dns_address(dns_address)

	Sets the IP address of Domain Name Server (DNS).

	Parameters

	dns_address (ipaddress.IPv4Address) – the new DNS address to set.

	Raises

	TimeoutException – if there is a timeout setting the DNS address.

See also

WiFiDevice.get_dns_address()

ipaddress.IPv4Address

	
add_bluetooth_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.BluetoothDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The Bluetooth data as a Bytearray

	
add_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
add_expl_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
add_io_sample_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.IOSampleReceived.

	Parameters

	callback (Function) – the callback. Receives three arguments.

	The received IO sample as an digi.xbee.io.IOSample

	The remote XBee device who has sent the packet as a RemoteXBeeDevice

	The time in which the packet was received as an Integer

	
add_ip_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.IPDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The data received as an digi.xbee.models.message.IPMessage

	
add_micropython_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.MicroPythonDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The MicroPython data as a Bytearray

	
add_modem_status_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.ModemStatusReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The modem status as a digi.xbee.models.status.ModemStatus

	
add_packet_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.PacketReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The received packet as a digi.xbee.packets.base.XBeeAPIPacket

	
add_socket_data_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketDataReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The socket ID as an Integer.

	The data received as Bytearray

	
add_socket_data_received_from_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketDataReceivedFrom.

	Parameters

	callback (Function) – the callback. Receives three arguments.

	The socket ID as an Integer.

	
	A pair (host, port) of the source address where host is a string

	representing an IPv4 address like ‘100.50.200.5’, and port is an
integer.

	The data received as Bytearray

	
add_socket_state_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketStateReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The socket ID as an Integer.

	The state received as a SocketState

	
add_user_data_relay_received_callback(callback)

	Adds a callback for the event digi.xbee.reader.RelayDataReceived.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The relay data as a digi.xbee.models.message.UserDataRelayMessage

	
apply_changes()

	Applies changes via AC command.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
apply_profile(profile_path, progress_callback=None)

	Applies the given XBee profile to the XBee device.

	Parameters

	
	profile_path (String) – path of the XBee profile file to apply.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	UpdateProfileException – if there is any error applying the XBee profile.

	OperationNotSupportedException – if XBee profiles are not supported in the XBee device.

	
close()

	Closes the communication with the XBee device.

This method guarantees that all threads running are stopped and
the serial port is closed.

	
comm_iface

	Returns the hardware interface associated to the XBee device.

	Returns

	the hardware interface associated to the XBee device.

	Return type

	XBeeCommunicationInterface

See also

XBeeSerialPort

	
classmethod create_xbee_device(comm_port_data)

	Creates and returns an XBeeDevice from data of the port to which is connected.

	Parameters

	
	comm_port_data (Dictionary) – dictionary with all comm port data needed.

	dictionary keys are (The) –
“baudRate” –> Baud rate.

”port” –> Port number.

”bitSize” –> Bit size.

”stopBits” –> Stop bits.

”parity” –> Parity.

”flowControl” –> Flow control.

”timeout” for –> Timeout for synchronous operations (in seconds).

	Returns

	the XBee device created.

	Return type

	XBeeDevice

	Raises

	SerialException – if the port you want to open does not exist or is already opened.

See also

XBeeDevice

	
del_bluetooth_data_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.BluetoothDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.BluetoothDataReceived event.

	
del_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
del_expl_data_received_callback(callback)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
del_io_sample_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.IOSampleReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.IOSampleReceived event.

	
del_ip_data_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.IPDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.IPDataReceived event.

	
del_micropython_data_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.MicroPythonDataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.MicroPythonDataReceived event.

	
del_modem_status_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.ModemStatusReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.ModemStatusReceived event.

	
del_packet_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.PacketReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.PacketReceived event.

	
del_socket_data_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketDataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketDataReceived event.

	
del_socket_data_received_from_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketDataReceivedFrom event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketDataReceivedFrom event.

	
del_socket_state_received_callback(callback)

	Deletes a callback for the callback list of
digi.xbee.reader.SocketStateReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketStateReceived event.

	
del_user_data_relay_received_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.RelayDataReceived
event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.RelayDataReceived event.

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee device.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
enable_apply_changes(value)

	Sets the apply_changes flag.

	Parameters

	value (Boolean) – True to enable the apply changes flag, False to disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee device.

To work with this interface, you must also configure the Bluetooth password if not done previously.
You can use the AbstractXBeeDevice.update_bluetooth_password() method for that purpose.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
execute_command(parameter)

	Executes the provided command.

	Parameters

	parameter (String) – The name of the AT command to be executed.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
flush_queues()

	Flushes the packets queue.

	
get_16bit_addr()

	Deprecated.

This protocol does not have an associated 16-bit address.

	
get_64bit_addr()

	Returns the 64-bit address of the XBee device.

	Returns

	the 64-bit address of the XBee device.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – the IO line to get its ADC value.

	Returns

	the analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee device.

The API output mode determines the format that the received data is
output through the serial interface of the XBee device.

	Returns

	the API output mode of the XBee device.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or
 ESCAPED API. This method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee device in a format such as 00112233AABB.

Note that your device must have Bluetooth Low Energy support to use this method.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	the last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Deprecated.

Operation not supported in this protocol. Use IPDevice.get_dest_ip_addr() instead.
This method will raise an AttributeError.

	
get_dest_ip_addr()

	Returns the destination IP address.

	Returns

	The configured destination IP address.

	Return type

	ipaddress.IPv4Address

	Raises

	
	TimeoutException – if there is a timeout getting the destination IP address.

	XBeeException – if there is any other XBee related exception.

See also

ipaddress.IPv4Address

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

IOValue

	
get_firmware_version()

	Returns the firmware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – the io line to configure.

	Returns

	the IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the received data is not an IO mode.

	
get_io_sampling_rate()

	Returns the IO sampling rate of the XBee device.

	Returns

	the IO sampling rate of XBee device.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_ip_addr()

	Returns the IP address of this IP device.

To refresh this value use the method IPDevice.read_device_info().

	Returns

	The IP address of this IP device.

	Return type

	ipaddress.IPv4Address

See also

ipaddress.IPv4Address

	
get_network()

	Deprecated.

This protocol does not support the network functionality.

	
get_next_frame_id()

	Returns the next frame ID of the XBee device.

	Returns

	The next frame ID of the XBee device.

	Return type

	Integer

	
get_node_id()

	Returns the Node Identifier (NI) value of the XBee device.

	Returns

	the Node Identifier (NI) of the XBee device.

	Return type

	String

	
get_pan_id()

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
get_parameter(param, parameter_value=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
get_power_level()

	Returns the power level of the XBee device.

	Returns

	the power level of the XBee device.

	Return type

	PowerLevel

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

PowerLevel

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – the IO line to get its PWM duty cycle.

	Returns

	the PWM duty cycle of the given IO line or None if the response is empty.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the passed IO_LINE has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	digi.xbee.models.protocol.Role

See also

digi.xbee.models.protocol.Role

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	the serial port read timeout in seconds.

	Return type

	Integer

	
get_xbee_device_callbacks()

	Returns this XBee internal callbacks for process received packets.

This method is called by the PacketListener associated with this XBee to get its callbacks. These
callbacks will be executed before user callbacks.

	Returns

	PacketReceived

	
has_explicit_packets()

	Returns whether the XBee device’s queue has explicit packets or not.
This do not include non-explicit packets.

	Returns

	True if this XBee device’s queue has explicit packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_packets()

	
has_packets()

	Returns whether the XBee device’s queue has packets or not.
This do not include explicit packets.

	Returns

	True if this XBee device’s queue has packets, False otherwise.

	Return type

	Boolean

See also

XBeeDevice.has_explicit_packets()

	
is_apply_changes_enabled()

	Returns whether the apply_changes flag is enabled or not.

	Returns

	True if the apply_changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_open()

	Returns whether this XBee device is open or not.

	Returns

	Boolean. True if this XBee device is open, False otherwise.

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
log

	Returns the XBee device log.

	Returns

	the XBee device logger.

	Return type

	Logger

	
operating_mode

	Returns this XBee device’s operating mode.

	Returns

	OperatingMode. This XBee device’s operating mode.

	
read_data(timeout=None, explicit=False)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
read_data_from(remote_xbee_device, timeout=None, explicit=False)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
read_device_info(init=True)

	Override.

See also

AbstractXBeeDevice.read_device_info()

	
read_io_sample()

	Returns an IO sample from the XBee device containing the value of all enabled digital IO and
analog input channels.

	Returns

	the IO sample read from the XBee device.

	Return type

	IOSample

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOSample

	
read_ip_data(timeout=3)

	Reads new IP data received by this XBee device during the
provided timeout.

This method blocks until new IP data is received or the provided
timeout expires.

For non-blocking operations, register a callback and use the method
IPDevice.add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming
IP data at a specific port. Use the method IPDevice.start_listening()
for that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

	Parameters

	timeout (Integer, optional) – The time to wait for new IP data in seconds.

	Returns

	IP message, None if this device did not receive new data.

	Return type

	IPMessage

	Raises

	ValueError – if timeout is less than 0.

	
read_ip_data_from(ip_addr, timeout=3)

	Reads new IP data received from the given IP address during the
provided timeout.

This method blocks until new IP data from the provided IP
address is received or the given timeout expires.

For non-blocking operations, register a callback and use the method
IPDevice.add_ip_data_received_callback().

Before reading IP data you need to start listening for incoming
IP data at a specific port. Use the method IPDevice.start_listening()
for that purpose. When finished, you can use the method
IPDevice.stop_listening() to stop listening for incoming IP data.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to read data from.

	timeout (Integer, optional) – The time to wait for new IP data in seconds.

	Returns

	
	IP message, None if this device did not

	receive new data from the provided IP address.

	Return type

	IPMessage

	Raises

	ValueError – if timeout is less than 0.

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
send_bluetooth_data(data)

	Sends the given data to the Bluetooth interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if there is any problem sending the data.

See also

XBeeDevice.send_micropython_data()

XBeeDevice.send_user_data_relay()

	
send_data(remote_xbee_device, data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
send_data_async(remote_xbee_device, data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
send_data_broadcast(data, transmit_options=0)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
send_ip_data(ip_addr, dest_port, protocol, data, close_socket=False)

	Sends the provided IP data to the given IP address and port using
the specified IP protocol. For TCP and TCP SSL protocols, you can
also indicate if the socket should be closed when data is sent.

This method blocks till a success or error response arrives or the
configured receive timeout expires.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

	dest_port (Integer) – The destination port of the transmission.

	protocol (IPProtocol) – The IP protocol used for the transmission.

	data (String or Bytearray) – The IP data to be sent.

	close_socket (Boolean, optional) – True to close the socket just after the
transmission. False to keep it open. Default to False.

	Raises

	
	ValueError – if ip_addr is None.

	ValueError – if protocol is None.

	ValueError – if data is None.

	ValueError – if dest_port is less than 0 or greater than 65535.

	OperationNotSupportedException – if the device is remote.

	TimeoutException – if there is a timeout sending the data.

	XBeeException – if there is any other XBee related exception.

	
send_ip_data_async(ip_addr, dest_port, protocol, data, close_socket=False)

	Sends the provided IP data to the given IP address and port
asynchronously using the specified IP protocol. For TCP and TCP SSL
protocols, you can also indicate if the socket should be closed when
data is sent.

Asynchronous transmissions do not wait for answer from the remote
device or for transmit status packet.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to send IP data to.

	dest_port (Integer) – The destination port of the transmission.

	protocol (IPProtocol) – The IP protocol used for the transmission.

	data (String or Bytearray) – The IP data to be sent.

	close_socket (Boolean, optional) – True to close the socket just after the
transmission. False to keep it open. Default to False.

	Raises

	
	ValueError – if ip_addr is None.

	ValueError – if protocol is None.

	ValueError – if data is None.

	ValueError – if dest_port is less than 0 or greater than 65535.

	OperationNotSupportedException – if the device is remote.

	XBeeException – if there is any other XBee related exception.

	
send_ip_data_broadcast(dest_port, data)

	Sends the provided IP data to all clients.

This method blocks till a success or error transmit status arrives or
the configured receive timeout expires.

	Parameters

	
	dest_port (Integer) – The destination port of the transmission.

	data (String or Bytearray) – The IP data to be sent.

	Raises

	
	ValueError – if data is None.

	ValueError – if dest_port is less than 0 or greater than 65535.

	TimeoutException – if there is a timeout sending the data.

	XBeeException – if there is any other XBee related exception.

	
send_micropython_data(data)

	Sends the given data to the MicroPython interface using a User Data Relay frame.

	Parameters

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	XBeeException – if there is any problem sending the data.

See also

XBeeDevice.send_bluetooth_data()

XBeeDevice.send_user_data_relay()

	
send_packet(packet, sync=False)

	Override method.

See also

AbstractXBeeDevice._send_packet()

	
send_packet_sync_and_get_response(packet_to_send, timeout=None)

	Override method.

See also

AbstractXBeeDevice._send_packet_sync_and_get_response()

	
send_user_data_relay(local_interface, data)

	Sends the given data to the given XBee local interface.

	Parameters

	
	local_interface (XBeeLocalInterface) – Destination XBee local interface.

	data (Bytearray) – Data to send.

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ValueError – if local_interface is None.

	XBeeException – if there is any problem sending the User Data Relay.

See also

XBeeLocalInterface

	
serial_port

	Returns the serial port associated to the XBee device, if any.

	Returns

	
	the serial port associated to the XBee device. Returns None if the local XBee

	does not use serial communication.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee device.

	Parameters

	value (XBee16BitAddress) – the new 16-bit address of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee device.

	Parameters

	api_output_mode (APIOutputMode) – the new API output mode of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is ZigBee

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – new API output mode options. Calculate this value using
the method
digi.xbee.models.mode.APIOutputModeBit.calculate_api_output_mode_value()
with a set of digi.xbee.models.mode.APIOutputModeBit.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
set_dest_address(addr)

	Deprecated.

Operation not supported in this protocol. Use IPDevice.set_dest_ip_addr() instead.
This method will raise an AttributeError.

	
set_dest_ip_addr(address)

	Sets the destination IP address.

	Parameters

	address (ipaddress.IPv4Address) – Destination IP address.

	Raises

	
	ValueError – if address is None.

	TimeoutException – if there is a timeout setting the destination IP address.

	XBeeException – if there is any other XBee related exception.

See also

ipaddress.IPv4Address

	
set_dio_change_detection(io_lines_set)

	Sets the digital IO lines to be monitored and sampled whenever their status changes.

A None set of lines disables this feature.

	Parameters

	io_lines_set – set of IOLine.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – the digital IO line to sets its value.

	io_value (IOValue) – the IO value to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – the IO line to configure.

	io_mode (IOMode) – the IO mode to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOMode

	
set_io_sampling_rate(rate)

	Sets the IO sampling rate of the XBee device in seconds. A sample rate of 0 means the IO sampling feature is
disabled.

	Parameters

	rate (Integer) – the new IO sampling rate of the XBee device in seconds.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
set_node_id(node_id)

	Sets the Node Identifier (NI) value of the XBee device..

	Parameters

	node_id (String) – the new Node Identifier (NI) of the XBee device.

	Raises

	
	ValueError – if node_id is None or its length is greater than 20.

	TimeoutException – if the response is not received before the read timeout expires.

	
set_pan_id(value)

	Deprecated.

Operation not supported in this protocol.
This method will raise an AttributeError.

	
set_parameter(param, value)

	Override.

	See:

	AbstractXBeeDevice.set_parameter()

	
set_power_level(power_level)

	Sets the power level of the XBee device.

	Parameters

	power_level (PowerLevel) – the new power level of the XBee device.

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

PowerLevel

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – the IO Line to be assigned.

	cycle (Integer) – duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the given IO line does not have PWM capability or cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – the read timeout, expressed in seconds.

	
start_listening(source_port)

	Starts listening for incoming IP transmissions in the provided port.

	Parameters

	source_port (Integer) – Port to listen for incoming transmissions.

	Raises

	
	ValueError – if source_port is less than 0 or greater than 65535.

	TimeoutException – if there is a timeout setting the source port.

	XBeeException – if there is any other XBee related exception.

	
stop_listening()

	Stops listening for incoming IP transmissions.

	Raises

	
	TimeoutException – if there is a timeout processing the operation.

	XBeeException – if there is any other XBee related exception.

	
update_bluetooth_password(new_password)

	Changes the password of this Bluetooth device with the new one provided.

Note that your device must have Bluetooth Low Energy support to use this method.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
update_device_data_from(device)

	Updates the current device reference with the data provided for the given device.

This is only for internal use.

	Parameters

	device (AbstractXBeeDevice) – the XBee device to get the data from.

	Returns

	True if the device data has been updated, False otherwise.

	Return type

	Boolean

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the device.

	Parameters

	
	xml_firmware_file (String) – path of the XML file that describes the firmware to upload.

	xbee_firmware_file (String, optional) – location of the XBee binary firmware file.

	bootloader_firmware_file (String, optional) – location of the bootloader binary firmware file.

	timeout (Integer, optional) – the maximum time to wait for target read operations during the update process.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	OperationNotSupportedException – if the firmware update is not supported in the XBee device.

	FirmwareUpdateException – if there is any error performing the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee device so that parameter modifications persist through subsequent
resets.

Parameters values remain in this device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them to non-volatile memory, the
module reverts back to previously saved parameters the next time the
module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_configuration_changes_enabled() to get its status and
enable_apply_configuration_changes() to enable/disable the
option. If it is disabled, method apply_changes() can be used in
order to manually apply the changes.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
class digi.xbee.devices.RemoteXBeeDevice(local_xbee_device, x64bit_addr=<digi.xbee.models.address.XBee64BitAddress object>, x16bit_addr=<digi.xbee.models.address.XBee16BitAddress object>, node_id=None)

	Bases: digi.xbee.devices.AbstractXBeeDevice

This class represents a remote XBee device.

Class constructor. Instantiates a new RemoteXBeeDevice with the provided parameters.

	Parameters

	
	local_xbee_device (XBeeDevice) – the local XBee device associated with the remote one.

	x64bit_addr (XBee64BitAddress) – the 64-bit address of the remote XBee device.

	x16bit_addr (XBee16BitAddress) – the 16-bit address of the remote XBee device.

	node_id (String, optional) – the node identifier of the remote XBee device. Optional.

See also

XBee16BitAddress

XBee64BitAddress

XBeeDevice

	
get_parameter(parameter, parameter_value=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
set_parameter(parameter, value)

	Override.

See also

AbstractXBeeDevice.set_parameter()

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
get_local_xbee_device()

	Returns the local XBee device associated to the remote one.

	Returns

	XBeeDevice

	
set_local_xbee_device(local_xbee_device)

	This methods associates a XBeeDevice to the remote XBee device.

	Parameters

	local_xbee_device (XBeeDevice) – the new local XBee device associated to the remote one.

See also

XBeeDevice

	
get_serial_port()

	Returns the serial port of the local XBee device associated to the remote one.

	Returns

	the serial port of the local XBee device associated to the remote one.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
get_comm_iface()

	Returns the communication interface of the local XBee device associated to the remote one.

	Returns

	
	the communication interface of the local XBee device associated to

	the remote one.

	Return type

	XBeeCommunicationInterface

See also

XBeeCommunicationInterface

	
apply_changes()

	Applies changes via AC command.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
apply_profile(profile_path, progress_callback=None)

	Applies the given XBee profile to the XBee device.

	Parameters

	
	profile_path (String) – path of the XBee profile file to apply.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	UpdateProfileException – if there is any error applying the XBee profile.

	OperationNotSupportedException – if XBee profiles are not supported in the XBee device.

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee device.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
enable_apply_changes(value)

	Sets the apply_changes flag.

	Parameters

	value (Boolean) – True to enable the apply changes flag, False to disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee device.

To work with this interface, you must also configure the Bluetooth password if not done previously.
You can use the AbstractXBeeDevice.update_bluetooth_password() method for that purpose.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
execute_command(parameter)

	Executes the provided command.

	Parameters

	parameter (String) – The name of the AT command to be executed.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_16bit_addr()

	Returns the 16-bit address of the XBee device.

	Returns

	the 16-bit address of the XBee device.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
get_64bit_addr()

	Returns the 64-bit address of the XBee device.

	Returns

	the 64-bit address of the XBee device.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – the IO line to get its ADC value.

	Returns

	the analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee device.

The API output mode determines the format that the received data is
output through the serial interface of the XBee device.

	Returns

	the API output mode of the XBee device.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or
 ESCAPED API. This method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee device in a format such as 00112233AABB.

Note that your device must have Bluetooth Low Energy support to use this method.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	the last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Returns the 64-bit address of the XBee device that data will be reported to.

	Returns

	the address.

	Return type

	XBee64BitAddress

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

XBee64BitAddress

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

IOValue

	
get_firmware_version()

	Returns the firmware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – the io line to configure.

	Returns

	the IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the received data is not an IO mode.

	
get_io_sampling_rate()

	Returns the IO sampling rate of the XBee device.

	Returns

	the IO sampling rate of XBee device.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_node_id()

	Returns the Node Identifier (NI) value of the XBee device.

	Returns

	the Node Identifier (NI) of the XBee device.

	Return type

	String

	
get_pan_id()

	Returns the operating PAN ID of the XBee device.

	Returns

	operating PAN ID of the XBee device.

	Return type

	Bytearray

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

	
get_power_level()

	Returns the power level of the XBee device.

	Returns

	the power level of the XBee device.

	Return type

	PowerLevel

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

PowerLevel

	
get_protocol()

	Returns the current protocol of the XBee device.

	Returns

	the current protocol of the XBee device.

	Return type

	XBeeProtocol

See also

XBeeProtocol

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – the IO line to get its PWM duty cycle.

	Returns

	the PWM duty cycle of the given IO line or None if the response is empty.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the passed IO_LINE has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	digi.xbee.models.protocol.Role

See also

digi.xbee.models.protocol.Role

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	the serial port read timeout in seconds.

	Return type

	Integer

	
is_apply_changes_enabled()

	Returns whether the apply_changes flag is enabled or not.

	Returns

	True if the apply_changes flag is enabled, False otherwise.

	Return type

	Boolean

	
log

	Returns the XBee device log.

	Returns

	the XBee device logger.

	Return type

	Logger

	
read_device_info(init=True)

	Updates all instance parameters reading them from the XBee device.

	Parameters

	init (Boolean, optional, default=`True`) – If False only not initialized parameters
are read, all if True.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
read_io_sample()

	Returns an IO sample from the XBee device containing the value of all enabled digital IO and
analog input channels.

	Returns

	the IO sample read from the XBee device.

	Return type

	IOSample

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOSample

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee device.

	Parameters

	value (XBee16BitAddress) – the new 16-bit address of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee device.

	Parameters

	api_output_mode (APIOutputMode) – the new API output mode of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is ZigBee

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – new API output mode options. Calculate this value using
the method
digi.xbee.models.mode.APIOutputModeBit.calculate_api_output_mode_value()
with a set of digi.xbee.models.mode.APIOutputModeBit.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
set_dest_address(addr)

	Sets the 64-bit address of the XBee device that data will be reported to.

	Parameters

	addr (XBee64BitAddress or RemoteXBeeDevice) – the address itself or the remote XBee
device that you want to set up its address as destination address.

	Raises

	
	TimeoutException – If the response is not received before the read timeout expires.

	XBeeException – If the XBee device’s serial port is closed.

	InvalidOperatingModeException – If the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – If the response is not as expected.

	ValueError – If addr is None.

	
set_dio_change_detection(io_lines_set)

	Sets the digital IO lines to be monitored and sampled whenever their status changes.

A None set of lines disables this feature.

	Parameters

	io_lines_set – set of IOLine.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – the digital IO line to sets its value.

	io_value (IOValue) – the IO value to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – the IO line to configure.

	io_mode (IOMode) – the IO mode to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOMode

	
set_io_sampling_rate(rate)

	Sets the IO sampling rate of the XBee device in seconds. A sample rate of 0 means the IO sampling feature is
disabled.

	Parameters

	rate (Integer) – the new IO sampling rate of the XBee device in seconds.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
set_node_id(node_id)

	Sets the Node Identifier (NI) value of the XBee device..

	Parameters

	node_id (String) – the new Node Identifier (NI) of the XBee device.

	Raises

	
	ValueError – if node_id is None or its length is greater than 20.

	TimeoutException – if the response is not received before the read timeout expires.

	
set_pan_id(value)

	Sets the operating PAN ID of the XBee device.

	Parameters

	value (Bytearray) – the new operating PAN ID of the XBee device.. Must have only 1 or 2 bytes.

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

	
set_power_level(power_level)

	Sets the power level of the XBee device.

	Parameters

	power_level (PowerLevel) – the new power level of the XBee device.

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

PowerLevel

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – the IO Line to be assigned.

	cycle (Integer) – duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the given IO line does not have PWM capability or cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – the read timeout, expressed in seconds.

	
update_bluetooth_password(new_password)

	Changes the password of this Bluetooth device with the new one provided.

Note that your device must have Bluetooth Low Energy support to use this method.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
update_device_data_from(device)

	Updates the current device reference with the data provided for the given device.

This is only for internal use.

	Parameters

	device (AbstractXBeeDevice) – the XBee device to get the data from.

	Returns

	True if the device data has been updated, False otherwise.

	Return type

	Boolean

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the device.

	Parameters

	
	xml_firmware_file (String) – path of the XML file that describes the firmware to upload.

	xbee_firmware_file (String, optional) – location of the XBee binary firmware file.

	bootloader_firmware_file (String, optional) – location of the bootloader binary firmware file.

	timeout (Integer, optional) – the maximum time to wait for target read operations during the update process.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	OperationNotSupportedException – if the firmware update is not supported in the XBee device.

	FirmwareUpdateException – if there is any error performing the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee device so that parameter modifications persist through subsequent
resets.

Parameters values remain in this device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them to non-volatile memory, the
module reverts back to previously saved parameters the next time the
module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_configuration_changes_enabled() to get its status and
enable_apply_configuration_changes() to enable/disable the
option. If it is disabled, method apply_changes() can be used in
order to manually apply the changes.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
class digi.xbee.devices.RemoteRaw802Device(local_xbee_device, x64bit_addr=None, x16bit_addr=None, node_id=None)

	Bases: digi.xbee.devices.RemoteXBeeDevice

This class represents a remote 802.15.4 XBee device.

Class constructor. Instantiates a new RemoteXBeeDevice with the provided parameters.

	Parameters

	
	local_xbee_device (XBeeDevice) – the local XBee device associated with the remote one.

	x64bit_addr (XBee64BitAddress) – the 64-bit address of the remote XBee device.

	x16bit_addr (XBee16BitAddress) – the 16-bit address of the remote XBee device.

	node_id (String, optional) – the node identifier of the remote XBee device. Optional.

	Raises

	XBeeException – if the protocol of local_xbee_device is invalid.

See also

RemoteXBeeDevice

XBee16BitAddress

XBee64BitAddress

XBeeDevice

	
get_protocol()

	Override.

See also

RemoteXBeeDevice.get_protocol()

	
set_64bit_addr(address)

	Sets the 64-bit address of this remote 802.15.4 device.

	Parameters

	address (XBee64BitAddress) – The 64-bit address to be set to the device.

	Raises

	ValueError – if address is None.

	
get_ai_status()

	Override.

See also

AbstractXBeeDevice._get_ai_status()

	
apply_changes()

	Applies changes via AC command.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
apply_profile(profile_path, progress_callback=None)

	Applies the given XBee profile to the XBee device.

	Parameters

	
	profile_path (String) – path of the XBee profile file to apply.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	UpdateProfileException – if there is any error applying the XBee profile.

	OperationNotSupportedException – if XBee profiles are not supported in the XBee device.

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee device.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
enable_apply_changes(value)

	Sets the apply_changes flag.

	Parameters

	value (Boolean) – True to enable the apply changes flag, False to disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee device.

To work with this interface, you must also configure the Bluetooth password if not done previously.
You can use the AbstractXBeeDevice.update_bluetooth_password() method for that purpose.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
execute_command(parameter)

	Executes the provided command.

	Parameters

	parameter (String) – The name of the AT command to be executed.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_16bit_addr()

	Returns the 16-bit address of the XBee device.

	Returns

	the 16-bit address of the XBee device.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
get_64bit_addr()

	Returns the 64-bit address of the XBee device.

	Returns

	the 64-bit address of the XBee device.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – the IO line to get its ADC value.

	Returns

	the analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee device.

The API output mode determines the format that the received data is
output through the serial interface of the XBee device.

	Returns

	the API output mode of the XBee device.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or
 ESCAPED API. This method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee device in a format such as 00112233AABB.

Note that your device must have Bluetooth Low Energy support to use this method.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
get_comm_iface()

	Returns the communication interface of the local XBee device associated to the remote one.

	Returns

	
	the communication interface of the local XBee device associated to

	the remote one.

	Return type

	XBeeCommunicationInterface

See also

XBeeCommunicationInterface

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	the last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Returns the 64-bit address of the XBee device that data will be reported to.

	Returns

	the address.

	Return type

	XBee64BitAddress

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

XBee64BitAddress

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

IOValue

	
get_firmware_version()

	Returns the firmware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – the io line to configure.

	Returns

	the IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the received data is not an IO mode.

	
get_io_sampling_rate()

	Returns the IO sampling rate of the XBee device.

	Returns

	the IO sampling rate of XBee device.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_local_xbee_device()

	Returns the local XBee device associated to the remote one.

	Returns

	XBeeDevice

	
get_node_id()

	Returns the Node Identifier (NI) value of the XBee device.

	Returns

	the Node Identifier (NI) of the XBee device.

	Return type

	String

	
get_pan_id()

	Returns the operating PAN ID of the XBee device.

	Returns

	operating PAN ID of the XBee device.

	Return type

	Bytearray

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

	
get_parameter(parameter, parameter_value=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
get_power_level()

	Returns the power level of the XBee device.

	Returns

	the power level of the XBee device.

	Return type

	PowerLevel

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

PowerLevel

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – the IO line to get its PWM duty cycle.

	Returns

	the PWM duty cycle of the given IO line or None if the response is empty.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the passed IO_LINE has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	digi.xbee.models.protocol.Role

See also

digi.xbee.models.protocol.Role

	
get_serial_port()

	Returns the serial port of the local XBee device associated to the remote one.

	Returns

	the serial port of the local XBee device associated to the remote one.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	the serial port read timeout in seconds.

	Return type

	Integer

	
is_apply_changes_enabled()

	Returns whether the apply_changes flag is enabled or not.

	Returns

	True if the apply_changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
log

	Returns the XBee device log.

	Returns

	the XBee device logger.

	Return type

	Logger

	
read_device_info(init=True)

	Updates all instance parameters reading them from the XBee device.

	Parameters

	init (Boolean, optional, default=`True`) – If False only not initialized parameters
are read, all if True.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
read_io_sample()

	Returns an IO sample from the XBee device containing the value of all enabled digital IO and
analog input channels.

	Returns

	the IO sample read from the XBee device.

	Return type

	IOSample

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOSample

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee device.

	Parameters

	value (XBee16BitAddress) – the new 16-bit address of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee device.

	Parameters

	api_output_mode (APIOutputMode) – the new API output mode of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is ZigBee

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – new API output mode options. Calculate this value using
the method
digi.xbee.models.mode.APIOutputModeBit.calculate_api_output_mode_value()
with a set of digi.xbee.models.mode.APIOutputModeBit.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
set_dest_address(addr)

	Sets the 64-bit address of the XBee device that data will be reported to.

	Parameters

	addr (XBee64BitAddress or RemoteXBeeDevice) – the address itself or the remote XBee
device that you want to set up its address as destination address.

	Raises

	
	TimeoutException – If the response is not received before the read timeout expires.

	XBeeException – If the XBee device’s serial port is closed.

	InvalidOperatingModeException – If the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – If the response is not as expected.

	ValueError – If addr is None.

	
set_dio_change_detection(io_lines_set)

	Sets the digital IO lines to be monitored and sampled whenever their status changes.

A None set of lines disables this feature.

	Parameters

	io_lines_set – set of IOLine.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – the digital IO line to sets its value.

	io_value (IOValue) – the IO value to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – the IO line to configure.

	io_mode (IOMode) – the IO mode to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOMode

	
set_io_sampling_rate(rate)

	Sets the IO sampling rate of the XBee device in seconds. A sample rate of 0 means the IO sampling feature is
disabled.

	Parameters

	rate (Integer) – the new IO sampling rate of the XBee device in seconds.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
set_local_xbee_device(local_xbee_device)

	This methods associates a XBeeDevice to the remote XBee device.

	Parameters

	local_xbee_device (XBeeDevice) – the new local XBee device associated to the remote one.

See also

XBeeDevice

	
set_node_id(node_id)

	Sets the Node Identifier (NI) value of the XBee device..

	Parameters

	node_id (String) – the new Node Identifier (NI) of the XBee device.

	Raises

	
	ValueError – if node_id is None or its length is greater than 20.

	TimeoutException – if the response is not received before the read timeout expires.

	
set_pan_id(value)

	Sets the operating PAN ID of the XBee device.

	Parameters

	value (Bytearray) – the new operating PAN ID of the XBee device.. Must have only 1 or 2 bytes.

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

	
set_parameter(parameter, value)

	Override.

See also

AbstractXBeeDevice.set_parameter()

	
set_power_level(power_level)

	Sets the power level of the XBee device.

	Parameters

	power_level (PowerLevel) – the new power level of the XBee device.

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

PowerLevel

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – the IO Line to be assigned.

	cycle (Integer) – duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the given IO line does not have PWM capability or cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – the read timeout, expressed in seconds.

	
update_bluetooth_password(new_password)

	Changes the password of this Bluetooth device with the new one provided.

Note that your device must have Bluetooth Low Energy support to use this method.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
update_device_data_from(device)

	Updates the current device reference with the data provided for the given device.

This is only for internal use.

	Parameters

	device (AbstractXBeeDevice) – the XBee device to get the data from.

	Returns

	True if the device data has been updated, False otherwise.

	Return type

	Boolean

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the device.

	Parameters

	
	xml_firmware_file (String) – path of the XML file that describes the firmware to upload.

	xbee_firmware_file (String, optional) – location of the XBee binary firmware file.

	bootloader_firmware_file (String, optional) – location of the bootloader binary firmware file.

	timeout (Integer, optional) – the maximum time to wait for target read operations during the update process.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	OperationNotSupportedException – if the firmware update is not supported in the XBee device.

	FirmwareUpdateException – if there is any error performing the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee device so that parameter modifications persist through subsequent
resets.

Parameters values remain in this device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them to non-volatile memory, the
module reverts back to previously saved parameters the next time the
module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_configuration_changes_enabled() to get its status and
enable_apply_configuration_changes() to enable/disable the
option. If it is disabled, method apply_changes() can be used in
order to manually apply the changes.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
class digi.xbee.devices.RemoteDigiMeshDevice(local_xbee_device, x64bit_addr=None, node_id=None)

	Bases: digi.xbee.devices.RemoteXBeeDevice

This class represents a remote DigiMesh XBee device.

Class constructor. Instantiates a new RemoteDigiMeshDevice with the provided parameters.

	Parameters

	
	local_xbee_device (XBeeDevice) – the local XBee device associated with the remote one.

	x64bit_addr (XBee64BitAddress) – the 64-bit address of the remote XBee device.

	node_id (String, optional) – the node identifier of the remote XBee device. Optional.

	Raises

	XBeeException – if the protocol of local_xbee_device is invalid.

See also

RemoteXBeeDevice

XBee64BitAddress

XBeeDevice

	
get_protocol()

	Override.

See also

RemoteXBeeDevice.get_protocol()

	
apply_changes()

	Applies changes via AC command.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
apply_profile(profile_path, progress_callback=None)

	Applies the given XBee profile to the XBee device.

	Parameters

	
	profile_path (String) – path of the XBee profile file to apply.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	UpdateProfileException – if there is any error applying the XBee profile.

	OperationNotSupportedException – if XBee profiles are not supported in the XBee device.

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee device.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
enable_apply_changes(value)

	Sets the apply_changes flag.

	Parameters

	value (Boolean) – True to enable the apply changes flag, False to disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee device.

To work with this interface, you must also configure the Bluetooth password if not done previously.
You can use the AbstractXBeeDevice.update_bluetooth_password() method for that purpose.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
execute_command(parameter)

	Executes the provided command.

	Parameters

	parameter (String) – The name of the AT command to be executed.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_16bit_addr()

	Returns the 16-bit address of the XBee device.

	Returns

	the 16-bit address of the XBee device.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
get_64bit_addr()

	Returns the 64-bit address of the XBee device.

	Returns

	the 64-bit address of the XBee device.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – the IO line to get its ADC value.

	Returns

	the analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee device.

The API output mode determines the format that the received data is
output through the serial interface of the XBee device.

	Returns

	the API output mode of the XBee device.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or
 ESCAPED API. This method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee device in a format such as 00112233AABB.

Note that your device must have Bluetooth Low Energy support to use this method.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
get_comm_iface()

	Returns the communication interface of the local XBee device associated to the remote one.

	Returns

	
	the communication interface of the local XBee device associated to

	the remote one.

	Return type

	XBeeCommunicationInterface

See also

XBeeCommunicationInterface

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	the last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Returns the 64-bit address of the XBee device that data will be reported to.

	Returns

	the address.

	Return type

	XBee64BitAddress

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

XBee64BitAddress

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

IOValue

	
get_firmware_version()

	Returns the firmware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – the io line to configure.

	Returns

	the IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the received data is not an IO mode.

	
get_io_sampling_rate()

	Returns the IO sampling rate of the XBee device.

	Returns

	the IO sampling rate of XBee device.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_local_xbee_device()

	Returns the local XBee device associated to the remote one.

	Returns

	XBeeDevice

	
get_node_id()

	Returns the Node Identifier (NI) value of the XBee device.

	Returns

	the Node Identifier (NI) of the XBee device.

	Return type

	String

	
get_pan_id()

	Returns the operating PAN ID of the XBee device.

	Returns

	operating PAN ID of the XBee device.

	Return type

	Bytearray

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

	
get_parameter(parameter, parameter_value=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
get_power_level()

	Returns the power level of the XBee device.

	Returns

	the power level of the XBee device.

	Return type

	PowerLevel

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

PowerLevel

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – the IO line to get its PWM duty cycle.

	Returns

	the PWM duty cycle of the given IO line or None if the response is empty.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the passed IO_LINE has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	digi.xbee.models.protocol.Role

See also

digi.xbee.models.protocol.Role

	
get_serial_port()

	Returns the serial port of the local XBee device associated to the remote one.

	Returns

	the serial port of the local XBee device associated to the remote one.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	the serial port read timeout in seconds.

	Return type

	Integer

	
is_apply_changes_enabled()

	Returns whether the apply_changes flag is enabled or not.

	Returns

	True if the apply_changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
log

	Returns the XBee device log.

	Returns

	the XBee device logger.

	Return type

	Logger

	
read_device_info(init=True)

	Updates all instance parameters reading them from the XBee device.

	Parameters

	init (Boolean, optional, default=`True`) – If False only not initialized parameters
are read, all if True.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
read_io_sample()

	Returns an IO sample from the XBee device containing the value of all enabled digital IO and
analog input channels.

	Returns

	the IO sample read from the XBee device.

	Return type

	IOSample

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOSample

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee device.

	Parameters

	value (XBee16BitAddress) – the new 16-bit address of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee device.

	Parameters

	api_output_mode (APIOutputMode) – the new API output mode of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is ZigBee

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – new API output mode options. Calculate this value using
the method
digi.xbee.models.mode.APIOutputModeBit.calculate_api_output_mode_value()
with a set of digi.xbee.models.mode.APIOutputModeBit.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
set_dest_address(addr)

	Sets the 64-bit address of the XBee device that data will be reported to.

	Parameters

	addr (XBee64BitAddress or RemoteXBeeDevice) – the address itself or the remote XBee
device that you want to set up its address as destination address.

	Raises

	
	TimeoutException – If the response is not received before the read timeout expires.

	XBeeException – If the XBee device’s serial port is closed.

	InvalidOperatingModeException – If the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – If the response is not as expected.

	ValueError – If addr is None.

	
set_dio_change_detection(io_lines_set)

	Sets the digital IO lines to be monitored and sampled whenever their status changes.

A None set of lines disables this feature.

	Parameters

	io_lines_set – set of IOLine.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – the digital IO line to sets its value.

	io_value (IOValue) – the IO value to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – the IO line to configure.

	io_mode (IOMode) – the IO mode to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOMode

	
set_io_sampling_rate(rate)

	Sets the IO sampling rate of the XBee device in seconds. A sample rate of 0 means the IO sampling feature is
disabled.

	Parameters

	rate (Integer) – the new IO sampling rate of the XBee device in seconds.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
set_local_xbee_device(local_xbee_device)

	This methods associates a XBeeDevice to the remote XBee device.

	Parameters

	local_xbee_device (XBeeDevice) – the new local XBee device associated to the remote one.

See also

XBeeDevice

	
set_node_id(node_id)

	Sets the Node Identifier (NI) value of the XBee device..

	Parameters

	node_id (String) – the new Node Identifier (NI) of the XBee device.

	Raises

	
	ValueError – if node_id is None or its length is greater than 20.

	TimeoutException – if the response is not received before the read timeout expires.

	
set_pan_id(value)

	Sets the operating PAN ID of the XBee device.

	Parameters

	value (Bytearray) – the new operating PAN ID of the XBee device.. Must have only 1 or 2 bytes.

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

	
set_parameter(parameter, value)

	Override.

See also

AbstractXBeeDevice.set_parameter()

	
set_power_level(power_level)

	Sets the power level of the XBee device.

	Parameters

	power_level (PowerLevel) – the new power level of the XBee device.

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

PowerLevel

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – the IO Line to be assigned.

	cycle (Integer) – duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the given IO line does not have PWM capability or cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – the read timeout, expressed in seconds.

	
update_bluetooth_password(new_password)

	Changes the password of this Bluetooth device with the new one provided.

Note that your device must have Bluetooth Low Energy support to use this method.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
update_device_data_from(device)

	Updates the current device reference with the data provided for the given device.

This is only for internal use.

	Parameters

	device (AbstractXBeeDevice) – the XBee device to get the data from.

	Returns

	True if the device data has been updated, False otherwise.

	Return type

	Boolean

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the device.

	Parameters

	
	xml_firmware_file (String) – path of the XML file that describes the firmware to upload.

	xbee_firmware_file (String, optional) – location of the XBee binary firmware file.

	bootloader_firmware_file (String, optional) – location of the bootloader binary firmware file.

	timeout (Integer, optional) – the maximum time to wait for target read operations during the update process.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	OperationNotSupportedException – if the firmware update is not supported in the XBee device.

	FirmwareUpdateException – if there is any error performing the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee device so that parameter modifications persist through subsequent
resets.

Parameters values remain in this device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them to non-volatile memory, the
module reverts back to previously saved parameters the next time the
module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_configuration_changes_enabled() to get its status and
enable_apply_configuration_changes() to enable/disable the
option. If it is disabled, method apply_changes() can be used in
order to manually apply the changes.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
class digi.xbee.devices.RemoteDigiPointDevice(local_xbee_device, x64bit_addr=None, node_id=None)

	Bases: digi.xbee.devices.RemoteXBeeDevice

This class represents a remote DigiPoint XBee device.

Class constructor. Instantiates a new RemoteDigiMeshDevice with the provided parameters.

	Parameters

	
	local_xbee_device (XBeeDevice) – the local XBee device associated with the remote one.

	x64bit_addr (XBee64BitAddress) – the 64-bit address of the remote XBee device.

	node_id (String, optional) – the node identifier of the remote XBee device. Optional.

	Raises

	XBeeException – if the protocol of local_xbee_device is invalid.

See also

RemoteXBeeDevice

XBee64BitAddress

XBeeDevice

	
get_protocol()

	Override.

See also

RemoteXBeeDevice.get_protocol()

	
apply_changes()

	Applies changes via AC command.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
apply_profile(profile_path, progress_callback=None)

	Applies the given XBee profile to the XBee device.

	Parameters

	
	profile_path (String) – path of the XBee profile file to apply.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	UpdateProfileException – if there is any error applying the XBee profile.

	OperationNotSupportedException – if XBee profiles are not supported in the XBee device.

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee device.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
enable_apply_changes(value)

	Sets the apply_changes flag.

	Parameters

	value (Boolean) – True to enable the apply changes flag, False to disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee device.

To work with this interface, you must also configure the Bluetooth password if not done previously.
You can use the AbstractXBeeDevice.update_bluetooth_password() method for that purpose.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
execute_command(parameter)

	Executes the provided command.

	Parameters

	parameter (String) – The name of the AT command to be executed.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_16bit_addr()

	Returns the 16-bit address of the XBee device.

	Returns

	the 16-bit address of the XBee device.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
get_64bit_addr()

	Returns the 64-bit address of the XBee device.

	Returns

	the 64-bit address of the XBee device.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – the IO line to get its ADC value.

	Returns

	the analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee device.

The API output mode determines the format that the received data is
output through the serial interface of the XBee device.

	Returns

	the API output mode of the XBee device.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or
 ESCAPED API. This method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee device in a format such as 00112233AABB.

Note that your device must have Bluetooth Low Energy support to use this method.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
get_comm_iface()

	Returns the communication interface of the local XBee device associated to the remote one.

	Returns

	
	the communication interface of the local XBee device associated to

	the remote one.

	Return type

	XBeeCommunicationInterface

See also

XBeeCommunicationInterface

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	the last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Returns the 64-bit address of the XBee device that data will be reported to.

	Returns

	the address.

	Return type

	XBee64BitAddress

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

XBee64BitAddress

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

IOValue

	
get_firmware_version()

	Returns the firmware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – the io line to configure.

	Returns

	the IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the received data is not an IO mode.

	
get_io_sampling_rate()

	Returns the IO sampling rate of the XBee device.

	Returns

	the IO sampling rate of XBee device.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_local_xbee_device()

	Returns the local XBee device associated to the remote one.

	Returns

	XBeeDevice

	
get_node_id()

	Returns the Node Identifier (NI) value of the XBee device.

	Returns

	the Node Identifier (NI) of the XBee device.

	Return type

	String

	
get_pan_id()

	Returns the operating PAN ID of the XBee device.

	Returns

	operating PAN ID of the XBee device.

	Return type

	Bytearray

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

	
get_parameter(parameter, parameter_value=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
get_power_level()

	Returns the power level of the XBee device.

	Returns

	the power level of the XBee device.

	Return type

	PowerLevel

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

PowerLevel

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – the IO line to get its PWM duty cycle.

	Returns

	the PWM duty cycle of the given IO line or None if the response is empty.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the passed IO_LINE has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	digi.xbee.models.protocol.Role

See also

digi.xbee.models.protocol.Role

	
get_serial_port()

	Returns the serial port of the local XBee device associated to the remote one.

	Returns

	the serial port of the local XBee device associated to the remote one.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	the serial port read timeout in seconds.

	Return type

	Integer

	
is_apply_changes_enabled()

	Returns whether the apply_changes flag is enabled or not.

	Returns

	True if the apply_changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
log

	Returns the XBee device log.

	Returns

	the XBee device logger.

	Return type

	Logger

	
read_device_info(init=True)

	Updates all instance parameters reading them from the XBee device.

	Parameters

	init (Boolean, optional, default=`True`) – If False only not initialized parameters
are read, all if True.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
read_io_sample()

	Returns an IO sample from the XBee device containing the value of all enabled digital IO and
analog input channels.

	Returns

	the IO sample read from the XBee device.

	Return type

	IOSample

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOSample

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee device.

	Parameters

	value (XBee16BitAddress) – the new 16-bit address of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee device.

	Parameters

	api_output_mode (APIOutputMode) – the new API output mode of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is ZigBee

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – new API output mode options. Calculate this value using
the method
digi.xbee.models.mode.APIOutputModeBit.calculate_api_output_mode_value()
with a set of digi.xbee.models.mode.APIOutputModeBit.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
set_dest_address(addr)

	Sets the 64-bit address of the XBee device that data will be reported to.

	Parameters

	addr (XBee64BitAddress or RemoteXBeeDevice) – the address itself or the remote XBee
device that you want to set up its address as destination address.

	Raises

	
	TimeoutException – If the response is not received before the read timeout expires.

	XBeeException – If the XBee device’s serial port is closed.

	InvalidOperatingModeException – If the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – If the response is not as expected.

	ValueError – If addr is None.

	
set_dio_change_detection(io_lines_set)

	Sets the digital IO lines to be monitored and sampled whenever their status changes.

A None set of lines disables this feature.

	Parameters

	io_lines_set – set of IOLine.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – the digital IO line to sets its value.

	io_value (IOValue) – the IO value to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – the IO line to configure.

	io_mode (IOMode) – the IO mode to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOMode

	
set_io_sampling_rate(rate)

	Sets the IO sampling rate of the XBee device in seconds. A sample rate of 0 means the IO sampling feature is
disabled.

	Parameters

	rate (Integer) – the new IO sampling rate of the XBee device in seconds.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
set_local_xbee_device(local_xbee_device)

	This methods associates a XBeeDevice to the remote XBee device.

	Parameters

	local_xbee_device (XBeeDevice) – the new local XBee device associated to the remote one.

See also

XBeeDevice

	
set_node_id(node_id)

	Sets the Node Identifier (NI) value of the XBee device..

	Parameters

	node_id (String) – the new Node Identifier (NI) of the XBee device.

	Raises

	
	ValueError – if node_id is None or its length is greater than 20.

	TimeoutException – if the response is not received before the read timeout expires.

	
set_pan_id(value)

	Sets the operating PAN ID of the XBee device.

	Parameters

	value (Bytearray) – the new operating PAN ID of the XBee device.. Must have only 1 or 2 bytes.

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

	
set_parameter(parameter, value)

	Override.

See also

AbstractXBeeDevice.set_parameter()

	
set_power_level(power_level)

	Sets the power level of the XBee device.

	Parameters

	power_level (PowerLevel) – the new power level of the XBee device.

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

PowerLevel

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – the IO Line to be assigned.

	cycle (Integer) – duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the given IO line does not have PWM capability or cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – the read timeout, expressed in seconds.

	
update_bluetooth_password(new_password)

	Changes the password of this Bluetooth device with the new one provided.

Note that your device must have Bluetooth Low Energy support to use this method.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
update_device_data_from(device)

	Updates the current device reference with the data provided for the given device.

This is only for internal use.

	Parameters

	device (AbstractXBeeDevice) – the XBee device to get the data from.

	Returns

	True if the device data has been updated, False otherwise.

	Return type

	Boolean

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the device.

	Parameters

	
	xml_firmware_file (String) – path of the XML file that describes the firmware to upload.

	xbee_firmware_file (String, optional) – location of the XBee binary firmware file.

	bootloader_firmware_file (String, optional) – location of the bootloader binary firmware file.

	timeout (Integer, optional) – the maximum time to wait for target read operations during the update process.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	OperationNotSupportedException – if the firmware update is not supported in the XBee device.

	FirmwareUpdateException – if there is any error performing the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee device so that parameter modifications persist through subsequent
resets.

Parameters values remain in this device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them to non-volatile memory, the
module reverts back to previously saved parameters the next time the
module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_configuration_changes_enabled() to get its status and
enable_apply_configuration_changes() to enable/disable the
option. If it is disabled, method apply_changes() can be used in
order to manually apply the changes.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
class digi.xbee.devices.RemoteZigBeeDevice(local_xbee_device, x64bit_addr=None, x16bit_addr=None, node_id=None)

	Bases: digi.xbee.devices.RemoteXBeeDevice

This class represents a remote ZigBee XBee device.

Class constructor. Instantiates a new RemoteDigiMeshDevice with the provided parameters.

	Parameters

	
	local_xbee_device (XBeeDevice) – the local XBee device associated with the remote one.

	x64bit_addr (XBee64BitAddress) – the 64-bit address of the remote XBee device.

	x16bit_addr (XBee16BitAddress) – the 16-bit address of the remote XBee device.

	node_id (String, optional) – the node identifier of the remote XBee device. Optional.

	Raises

	XBeeException – if the protocol of local_xbee_device is invalid.

See also

RemoteXBeeDevice

XBee16BitAddress

XBee64BitAddress

XBeeDevice

	
get_protocol()

	Override.

See also

RemoteXBeeDevice.get_protocol()

	
get_ai_status()

	Override.

See also

AbstractXBeeDevice._get_ai_status()

	
force_disassociate()

	Override.

See also

AbstractXBeeDevice._force_disassociate()

	
apply_changes()

	Applies changes via AC command.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
apply_profile(profile_path, progress_callback=None)

	Applies the given XBee profile to the XBee device.

	Parameters

	
	profile_path (String) – path of the XBee profile file to apply.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current apply profile task as a String

	The current apply profile task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	UpdateProfileException – if there is any error applying the XBee profile.

	OperationNotSupportedException – if XBee profiles are not supported in the XBee device.

	
disable_bluetooth()

	Disables the Bluetooth interface of this XBee device.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
enable_apply_changes(value)

	Sets the apply_changes flag.

	Parameters

	value (Boolean) – True to enable the apply changes flag, False to disable it.

	
enable_bluetooth()

	Enables the Bluetooth interface of this XBee device.

To work with this interface, you must also configure the Bluetooth password if not done previously.
You can use the AbstractXBeeDevice.update_bluetooth_password() method for that purpose.

Note that your device must have Bluetooth Low Energy support to use this method.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
execute_command(parameter)

	Executes the provided command.

	Parameters

	parameter (String) – The name of the AT command to be executed.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_16bit_addr()

	Returns the 16-bit address of the XBee device.

	Returns

	the 16-bit address of the XBee device.

	Return type

	XBee16BitAddress

See also

XBee16BitAddress

	
get_64bit_addr()

	Returns the 64-bit address of the XBee device.

	Returns

	the 64-bit address of the XBee device.

	Return type

	XBee64BitAddress

See also

XBee64BitAddress

	
get_adc_value(io_line)

	Returns the analog value of the provided IO line.

The provided IO line must be previously configured as ADC. To do so,
use AbstractXBeeDevice.set_io_configuration() and IOMode.ADC.

	Parameters

	io_line (IOLine) – the IO line to get its ADC value.

	Returns

	the analog value corresponding to the provided IO line.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

	
get_api_output_mode()

	
Deprecated since version 1.3: Use get_api_output_mode_value()

Returns the API output mode of the XBee device.

The API output mode determines the format that the received data is
output through the serial interface of the XBee device.

	Returns

	the API output mode of the XBee device.

	Return type

	APIOutputMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

APIOutputMode

	
get_api_output_mode_value()

	Returns the API output mode of the XBee.

The API output mode determines the format that the received data is
output through the serial interface of the XBee.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or
 ESCAPED API. This method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
get_bluetooth_mac_addr()

	Reads and returns the EUI-48 Bluetooth MAC address of this XBee device in a format such as 00112233AABB.

Note that your device must have Bluetooth Low Energy support to use this method.

	Returns

	The Bluetooth MAC address.

	Return type

	String

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
get_comm_iface()

	Returns the communication interface of the local XBee device associated to the remote one.

	Returns

	
	the communication interface of the local XBee device associated to

	the remote one.

	Return type

	XBeeCommunicationInterface

See also

XBeeCommunicationInterface

	
get_current_frame_id()

	Returns the last used frame ID.

	Returns

	the last used frame ID.

	Return type

	Integer

	
get_dest_address()

	Returns the 64-bit address of the XBee device that data will be reported to.

	Returns

	the address.

	Return type

	XBee64BitAddress

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

XBee64BitAddress

	
get_dio_value(io_line)

	Returns the digital value of the provided IO line.

The provided IO line must be previously configured as digital I/O.
To do so, use AbstractXBeeDevice.set_io_configuration().

	Parameters

	io_line (IOLine) – the DIO line to gets its digital value.

	Returns

	current value of the provided IO line.

	Return type

	IOValue

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the response does not contain the value for the given IO line.

See also

IOLine

IOValue

	
get_firmware_version()

	Returns the firmware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	Bytearray

	
get_hardware_version()

	Returns the hardware version of the XBee device.

	Returns

	the hardware version of the XBee device.

	Return type

	HardwareVersion

See also

HardwareVersion

	
get_io_configuration(io_line)

	Returns the configuration of the provided IO line.

	Parameters

	io_line (IOLine) – the io line to configure.

	Returns

	the IO mode of the IO line provided.

	Return type

	IOMode

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the received data is not an IO mode.

	
get_io_sampling_rate()

	Returns the IO sampling rate of the XBee device.

	Returns

	the IO sampling rate of XBee device.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_local_xbee_device()

	Returns the local XBee device associated to the remote one.

	Returns

	XBeeDevice

	
get_node_id()

	Returns the Node Identifier (NI) value of the XBee device.

	Returns

	the Node Identifier (NI) of the XBee device.

	Return type

	String

	
get_pan_id()

	Returns the operating PAN ID of the XBee device.

	Returns

	operating PAN ID of the XBee device.

	Return type

	Bytearray

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

	
get_parameter(parameter, parameter_value=None)

	Override.

See also

AbstractXBeeDevice.get_parameter()

	
get_power_level()

	Returns the power level of the XBee device.

	Returns

	the power level of the XBee device.

	Return type

	PowerLevel

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

PowerLevel

	
get_pwm_duty_cycle(io_line)

	Returns the PWM duty cycle in % corresponding to the provided IO line.

	Parameters

	io_line (IOLine) – the IO line to get its PWM duty cycle.

	Returns

	the PWM duty cycle of the given IO line or None if the response is empty.

	Return type

	Integer

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the passed IO_LINE has no PWM capability.

See also

IOLine

	
get_role()

	Gets the XBee role.

	Returns

	the role of the XBee.

	Return type

	digi.xbee.models.protocol.Role

See also

digi.xbee.models.protocol.Role

	
get_serial_port()

	Returns the serial port of the local XBee device associated to the remote one.

	Returns

	the serial port of the local XBee device associated to the remote one.

	Return type

	XBeeSerialPort

See also

XBeeSerialPort

	
get_sync_ops_timeout()

	Returns the serial port read timeout.

	Returns

	the serial port read timeout in seconds.

	Return type

	Integer

	
is_apply_changes_enabled()

	Returns whether the apply_changes flag is enabled or not.

	Returns

	True if the apply_changes flag is enabled, False otherwise.

	Return type

	Boolean

	
is_remote()

	Override method.

See also

AbstractXBeeDevice.is_remote()

	
log

	Returns the XBee device log.

	Returns

	the XBee device logger.

	Return type

	Logger

	
read_device_info(init=True)

	Updates all instance parameters reading them from the XBee device.

	Parameters

	init (Boolean, optional, default=`True`) – If False only not initialized parameters
are read, all if True.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
read_io_sample()

	Returns an IO sample from the XBee device containing the value of all enabled digital IO and
analog input channels.

	Returns

	the IO sample read from the XBee device.

	Return type

	IOSample

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOSample

	
reset()

	Override method.

See also

AbstractXBeeDevice.reset()

	
set_16bit_addr(value)

	Sets the 16-bit address of the XBee device.

	Parameters

	value (XBee16BitAddress) – the new 16-bit address of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is not 802.15.4.

	
set_api_output_mode(api_output_mode)

	
Deprecated since version 1.3: Use set_api_output_mode_value()

Sets the API output mode of the XBee device.

	Parameters

	api_output_mode (APIOutputMode) – the new API output mode of the XBee device.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if the current protocol is ZigBee

See also

APIOutputMode

	
set_api_output_mode_value(api_output_mode)

	Sets the API output mode of the XBee.

	Parameters

	api_output_mode (Integer) – new API output mode options. Calculate this value using
the method
digi.xbee.models.mode.APIOutputModeBit.calculate_api_output_mode_value()
with a set of digi.xbee.models.mode.APIOutputModeBit.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	OperationNotSupportedException – if it is not supported by the current protocol.

See also

digi.xbee.models.mode.APIOutputModeBit

	
set_dest_address(addr)

	Sets the 64-bit address of the XBee device that data will be reported to.

	Parameters

	addr (XBee64BitAddress or RemoteXBeeDevice) – the address itself or the remote XBee
device that you want to set up its address as destination address.

	Raises

	
	TimeoutException – If the response is not received before the read timeout expires.

	XBeeException – If the XBee device’s serial port is closed.

	InvalidOperatingModeException – If the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – If the response is not as expected.

	ValueError – If addr is None.

	
set_dio_change_detection(io_lines_set)

	Sets the digital IO lines to be monitored and sampled whenever their status changes.

A None set of lines disables this feature.

	Parameters

	io_lines_set – set of IOLine.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

	
set_dio_value(io_line, io_value)

	Sets the digital value (high or low) to the provided IO line.

	Parameters

	
	io_line (IOLine) – the digital IO line to sets its value.

	io_value (IOValue) – the IO value to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOValue

	
set_io_configuration(io_line, io_mode)

	Sets the configuration of the provided IO line.

	Parameters

	
	io_line (IOLine) – the IO line to configure.

	io_mode (IOMode) – the IO mode to set to the IO line.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

IOLine

IOMode

	
set_io_sampling_rate(rate)

	Sets the IO sampling rate of the XBee device in seconds. A sample rate of 0 means the IO sampling feature is
disabled.

	Parameters

	rate (Integer) – the new IO sampling rate of the XBee device in seconds.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
set_local_xbee_device(local_xbee_device)

	This methods associates a XBeeDevice to the remote XBee device.

	Parameters

	local_xbee_device (XBeeDevice) – the new local XBee device associated to the remote one.

See also

XBeeDevice

	
set_node_id(node_id)

	Sets the Node Identifier (NI) value of the XBee device..

	Parameters

	node_id (String) – the new Node Identifier (NI) of the XBee device.

	Raises

	
	ValueError – if node_id is None or its length is greater than 20.

	TimeoutException – if the response is not received before the read timeout expires.

	
set_pan_id(value)

	Sets the operating PAN ID of the XBee device.

	Parameters

	value (Bytearray) – the new operating PAN ID of the XBee device.. Must have only 1 or 2 bytes.

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

	
set_parameter(parameter, value)

	Override.

See also

AbstractXBeeDevice.set_parameter()

	
set_power_level(power_level)

	Sets the power level of the XBee device.

	Parameters

	power_level (PowerLevel) – the new power level of the XBee device.

	Raises

	TimeoutException – if the response is not received before the read timeout expires.

See also

PowerLevel

	
set_pwm_duty_cycle(io_line, cycle)

	Sets the duty cycle in % of the provided IO line.

The provided IO line must be PWM-capable, previously configured as PWM output.

	Parameters

	
	io_line (IOLine) – the IO Line to be assigned.

	cycle (Integer) – duty cycle in % to be assigned. Must be between 0 and 100.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if the given IO line does not have PWM capability or cycle is not between 0 and 100.

See also

IOLine

IOMode.PWM

	
set_sync_ops_timeout(sync_ops_timeout)

	Sets the serial port read timeout.

	Parameters

	sync_ops_timeout (Integer) – the read timeout, expressed in seconds.

	
update_bluetooth_password(new_password)

	Changes the password of this Bluetooth device with the new one provided.

Note that your device must have Bluetooth Low Energy support to use this method.

	Parameters

	new_password (String) – New Bluetooth password.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	
update_device_data_from(device)

	Updates the current device reference with the data provided for the given device.

This is only for internal use.

	Parameters

	device (AbstractXBeeDevice) – the XBee device to get the data from.

	Returns

	True if the device data has been updated, False otherwise.

	Return type

	Boolean

	
update_firmware(xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a firmware update operation of the device.

	Parameters

	
	xml_firmware_file (String) – path of the XML file that describes the firmware to upload.

	xbee_firmware_file (String, optional) – location of the XBee binary firmware file.

	bootloader_firmware_file (String, optional) – location of the bootloader binary firmware file.

	timeout (Integer, optional) – the maximum time to wait for target read operations during the update process.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	XBeeException – if the device is not open.

	InvalidOperatingModeException – if the device operating mode is invalid.

	OperationNotSupportedException – if the firmware update is not supported in the XBee device.

	FirmwareUpdateException – if there is any error performing the firmware update.

	
write_changes()

	Writes configurable parameter values to the non-volatile memory of the
XBee device so that parameter modifications persist through subsequent
resets.

Parameters values remain in this device’s memory until overwritten by
subsequent use of this method.

If changes are made without writing them to non-volatile memory, the
module reverts back to previously saved parameters the next time the
module is powered-on.

Writing the parameter modifications does not mean those values are
immediately applied, this depends on the status of the ‘apply
configuration changes’ option. Use method
is_apply_configuration_changes_enabled() to get its status and
enable_apply_configuration_changes() to enable/disable the
option. If it is disabled, method apply_changes() can be used in
order to manually apply the changes.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
class digi.xbee.devices.XBeeNetwork(xbee_device)

	Bases: object

This class represents an XBee Network.

The network allows the discovery of remote devices in the same network
as the local one and stores them.

Class constructor. Instantiates a new XBeeNetwork.

	Parameters

	xbee_device (XBeeDevice) – the local XBee device to get the network from.

	Raises

	ValueError – if xbee_device is None.

	
ND_PACKET_FINISH = 1

	Flag that indicates a “discovery process finish” packet.

	
ND_PACKET_REMOTE = 2

	Flag that indicates a discovery process packet with info about a remote XBee device.

	
start_discovery_process()

	Starts the discovery process. This method is not blocking.

The discovery process will be running until the configured
timeout expires or, in case of 802.15.4, until the ‘end’ packet
is read.

It may be that, after the timeout expires, there are devices
that continue sending discovery packets to this XBee device. In this
case, these devices will not be added to the network.

See also

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.del_discovery_process_finished_callback()

	
stop_discovery_process()

	Stops the discovery process if it is running.

Note that DigiMesh/DigiPoint devices are blocked until the discovery
time configured (NT parameter) has elapsed, so if you try to get/set
any parameter during the discovery process you will receive a timeout
exception.

	
discover_device(node_id)

	Blocking method. Discovers and reports the first remote XBee device that matches the
supplied identifier.

	Parameters

	node_id (String) – the node identifier of the device to be discovered.

	Returns

	
	the discovered remote XBee device with the given identifier,

	None if the timeout expires and the device was not found.

	Return type

	RemoteXBeeDevice

	
discover_devices(device_id_list)

	Blocking method. Attempts to discover a list of devices and add them to the
current network.

This method does not guarantee that all devices of device_id_list
will be found, even if they exist physically. This will depend on the node
discovery operation (ND) and timeout.

	Parameters

	device_id_list (List) – list of device IDs to discover.

	Returns

	a list with the discovered devices. It may not contain all devices specified in device_id_list

	Return type

	List

	
is_discovery_running()

	Returns whether the discovery process is running or not.

	Returns

	True if the discovery process is running, False otherwise.

	Return type

	Boolean

	
get_devices()

	Returns a copy of the XBee devices list of the network.

If another XBee device is added to the list before the execution
of this method, this XBee device will not be added to the list returned
by this method.

	Returns

	a copy of the XBee devices list of the network.

	Return type

	List

	
has_devices()

	Returns whether there is any device in the network or not.

	Returns

	True if there is at least one device in the network, False otherwise.

	Return type

	Boolean

	
get_number_devices()

	Returns the number of devices in the network.

	Returns

	the number of devices in the network.

	Return type

	Integer

	
add_network_modified_callback(callback)

	Adds a callback for the event digi.xbee.reader.NetworkModified.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The event type as a NetworkEventType

	The reason of the event as a NetworkEventReason

	The node added, updated or removed from the network as a XBeeDevice or
RemoteXBeeDevice.

See also

XBeeNetwork.del_network_modified_callback()

	
add_device_discovered_callback(callback)

	Adds a callback for the event DeviceDiscovered.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The discovered remote XBee device as a RemoteXBeeDevice

See also

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

	
add_discovery_process_finished_callback(callback)

	Adds a callback for the event DiscoveryProcessFinished.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The event code as an Integer

See also

XBeeNetwork.del_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

	
del_network_modified_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.NetworkModified.

	Parameters

	callback (Function) – the callback to delete.

See also

XBeeNetwork.add_network_modified_callback()

	
del_device_discovered_callback(callback)

	Deletes a callback for the callback list of DeviceDiscovered event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of DeviceDiscovered event.

See also

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

	
del_discovery_process_finished_callback(callback)

	Deletes a callback for the callback list of DiscoveryProcessFinished event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of DiscoveryProcessFinished event.

See also

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

	
clear()

	Removes all the remote XBee devices from the network.

	
get_discovery_options()

	Returns the network discovery process options.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
set_discovery_options(options)

	Configures the discovery options (NO parameter) with the given value.

	Parameters

	options (Set of DiscoveryOptions) – new discovery options, empty set to clear the options.

	Raises

	
	ValueError – if options is None.

	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

DiscoveryOptions

	
get_discovery_timeout()

	Returns the network discovery timeout.

	Returns

	the network discovery timeout.

	Return type

	Float

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
set_discovery_timeout(discovery_timeout)

	Sets the discovery network timeout.

	Parameters

	discovery_timeout (Float) – timeout in seconds.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if discovery_timeout is not between 0x20 and 0xFF

	
get_device_by_64(x64bit_addr)

	Returns the XBee in the network whose 64-bit address matches the given one.

	Parameters

	x64bit_addr (XBee64BitAddress) – The 64-bit address of the device to be retrieved.

	Returns

	the XBee device in the network or None if it is not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – if x64bit_addr is None or unknown.

	
get_device_by_16(x16bit_addr)

	Returns the XBee in the network whose 16-bit address matches the given one.

	Parameters

	x16bit_addr (XBee16BitAddress) – The 16-bit address of the device to be retrieved.

	Returns

	the XBee device in the network or None if it is not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – if x16bit_addr is None or unknown.

	
get_device_by_node_id(node_id)

	Returns the XBee in the network whose node identifier matches the given one.

	Parameters

	node_id (String) – The node identifier of the device to be retrieved.

	Returns

	the XBee device in the network or None if it is not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – if node_id is None.

	
add_if_not_exist(x64bit_addr=None, x16bit_addr=None, node_id=None)

	Adds an XBee device with the provided parameters if it does not exist in the current network.

If the XBee device already exists, its data will be updated with the provided parameters that are not None.

	Parameters

	
	x64bit_addr (XBee64BitAddress, optional) – XBee device’s 64bit address. Optional.

	x16bit_addr (XBee16BitAddress, optional) – XBee device’s 16bit address. Optional.

	node_id (String, optional) – the node identifier of the XBee device. Optional.

	Returns

	
	the remote XBee device with the updated parameters. If the XBee device

	was not in the list yet, this method returns the given XBee device without changes.

	Return type

	AbstractXBeeDevice

	
add_remote(remote_xbee_device)

	Adds the provided remote XBee device to the network if it is not contained yet.

If the XBee device is already contained in the network, its data will be updated with the parameters of
the XBee device that are not None.

	Parameters

	remote_xbee_device (RemoteXBeeDevice) – the remote XBee device to add to the network.

	Returns

	
	the provided XBee device with the updated parameters. If the XBee device

	was not in the list yet, this method returns it without changes.

	Return type

	RemoteXBeeDevice

	
add_remotes(remote_xbee_devices)

	Adds a list of remote XBee devices to the network.

If any XBee device of the list is already contained in the network, its data will be updated with the
parameters of the XBee device that are not None.

	Parameters

	remote_xbee_devices (List) – the list of RemoteXBeeDevice to add to the network.

	
remove_device(remote_xbee_device)

	Removes the provided remote XBee device from the network.

	Parameters

	remote_xbee_device (RemoteXBeeDevice) – the remote XBee device to be removed from the list.

	Raises

	ValueError – if the provided RemoteXBeeDevice is not in the network.

	
get_discovery_callbacks()

	Returns the API callbacks that are used in the device discovery process.

This callbacks notify the user callbacks for each XBee device discovered.

	Returns

	
	callback for generic devices discovery process,

	callback for discovery specific XBee device ops.

	Return type

	Tuple (Function, Function)

	
class digi.xbee.devices.ZigBeeNetwork(device)

	Bases: digi.xbee.devices.XBeeNetwork

This class represents a ZigBee network.

The network allows the discovery of remote devices in the same network
as the local one and stores them.

Class constructor. Instantiates a new ZigBeeNetwork.

	Parameters

	device (ZigBeeDevice) – the local ZigBee device to get the network from.

	Raises

	ValueError – if device is None.

	
add_device_discovered_callback(callback)

	Adds a callback for the event DeviceDiscovered.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The discovered remote XBee device as a RemoteXBeeDevice

See also

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

	
add_discovery_process_finished_callback(callback)

	Adds a callback for the event DiscoveryProcessFinished.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The event code as an Integer

See also

XBeeNetwork.del_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

	
add_if_not_exist(x64bit_addr=None, x16bit_addr=None, node_id=None)

	Adds an XBee device with the provided parameters if it does not exist in the current network.

If the XBee device already exists, its data will be updated with the provided parameters that are not None.

	Parameters

	
	x64bit_addr (XBee64BitAddress, optional) – XBee device’s 64bit address. Optional.

	x16bit_addr (XBee16BitAddress, optional) – XBee device’s 16bit address. Optional.

	node_id (String, optional) – the node identifier of the XBee device. Optional.

	Returns

	
	the remote XBee device with the updated parameters. If the XBee device

	was not in the list yet, this method returns the given XBee device without changes.

	Return type

	AbstractXBeeDevice

	
add_network_modified_callback(callback)

	Adds a callback for the event digi.xbee.reader.NetworkModified.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The event type as a NetworkEventType

	The reason of the event as a NetworkEventReason

	The node added, updated or removed from the network as a XBeeDevice or
RemoteXBeeDevice.

See also

XBeeNetwork.del_network_modified_callback()

	
add_remote(remote_xbee_device)

	Adds the provided remote XBee device to the network if it is not contained yet.

If the XBee device is already contained in the network, its data will be updated with the parameters of
the XBee device that are not None.

	Parameters

	remote_xbee_device (RemoteXBeeDevice) – the remote XBee device to add to the network.

	Returns

	
	the provided XBee device with the updated parameters. If the XBee device

	was not in the list yet, this method returns it without changes.

	Return type

	RemoteXBeeDevice

	
add_remotes(remote_xbee_devices)

	Adds a list of remote XBee devices to the network.

If any XBee device of the list is already contained in the network, its data will be updated with the
parameters of the XBee device that are not None.

	Parameters

	remote_xbee_devices (List) – the list of RemoteXBeeDevice to add to the network.

	
clear()

	Removes all the remote XBee devices from the network.

	
del_device_discovered_callback(callback)

	Deletes a callback for the callback list of DeviceDiscovered event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of DeviceDiscovered event.

See also

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

	
del_discovery_process_finished_callback(callback)

	Deletes a callback for the callback list of DiscoveryProcessFinished event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of DiscoveryProcessFinished event.

See also

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

	
del_network_modified_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.NetworkModified.

	Parameters

	callback (Function) – the callback to delete.

See also

XBeeNetwork.add_network_modified_callback()

	
discover_device(node_id)

	Blocking method. Discovers and reports the first remote XBee device that matches the
supplied identifier.

	Parameters

	node_id (String) – the node identifier of the device to be discovered.

	Returns

	
	the discovered remote XBee device with the given identifier,

	None if the timeout expires and the device was not found.

	Return type

	RemoteXBeeDevice

	
discover_devices(device_id_list)

	Blocking method. Attempts to discover a list of devices and add them to the
current network.

This method does not guarantee that all devices of device_id_list
will be found, even if they exist physically. This will depend on the node
discovery operation (ND) and timeout.

	Parameters

	device_id_list (List) – list of device IDs to discover.

	Returns

	a list with the discovered devices. It may not contain all devices specified in device_id_list

	Return type

	List

	
get_device_by_16(x16bit_addr)

	Returns the XBee in the network whose 16-bit address matches the given one.

	Parameters

	x16bit_addr (XBee16BitAddress) – The 16-bit address of the device to be retrieved.

	Returns

	the XBee device in the network or None if it is not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – if x16bit_addr is None or unknown.

	
get_device_by_64(x64bit_addr)

	Returns the XBee in the network whose 64-bit address matches the given one.

	Parameters

	x64bit_addr (XBee64BitAddress) – The 64-bit address of the device to be retrieved.

	Returns

	the XBee device in the network or None if it is not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – if x64bit_addr is None or unknown.

	
get_device_by_node_id(node_id)

	Returns the XBee in the network whose node identifier matches the given one.

	Parameters

	node_id (String) – The node identifier of the device to be retrieved.

	Returns

	the XBee device in the network or None if it is not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – if node_id is None.

	
get_devices()

	Returns a copy of the XBee devices list of the network.

If another XBee device is added to the list before the execution
of this method, this XBee device will not be added to the list returned
by this method.

	Returns

	a copy of the XBee devices list of the network.

	Return type

	List

	
get_discovery_callbacks()

	Returns the API callbacks that are used in the device discovery process.

This callbacks notify the user callbacks for each XBee device discovered.

	Returns

	
	callback for generic devices discovery process,

	callback for discovery specific XBee device ops.

	Return type

	Tuple (Function, Function)

	
get_discovery_options()

	Returns the network discovery process options.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_discovery_timeout()

	Returns the network discovery timeout.

	Returns

	the network discovery timeout.

	Return type

	Float

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_number_devices()

	Returns the number of devices in the network.

	Returns

	the number of devices in the network.

	Return type

	Integer

	
has_devices()

	Returns whether there is any device in the network or not.

	Returns

	True if there is at least one device in the network, False otherwise.

	Return type

	Boolean

	
is_discovery_running()

	Returns whether the discovery process is running or not.

	Returns

	True if the discovery process is running, False otherwise.

	Return type

	Boolean

	
remove_device(remote_xbee_device)

	Removes the provided remote XBee device from the network.

	Parameters

	remote_xbee_device (RemoteXBeeDevice) – the remote XBee device to be removed from the list.

	Raises

	ValueError – if the provided RemoteXBeeDevice is not in the network.

	
set_discovery_options(options)

	Configures the discovery options (NO parameter) with the given value.

	Parameters

	options (Set of DiscoveryOptions) – new discovery options, empty set to clear the options.

	Raises

	
	ValueError – if options is None.

	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

DiscoveryOptions

	
set_discovery_timeout(discovery_timeout)

	Sets the discovery network timeout.

	Parameters

	discovery_timeout (Float) – timeout in seconds.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if discovery_timeout is not between 0x20 and 0xFF

	
start_discovery_process()

	Starts the discovery process. This method is not blocking.

The discovery process will be running until the configured
timeout expires or, in case of 802.15.4, until the ‘end’ packet
is read.

It may be that, after the timeout expires, there are devices
that continue sending discovery packets to this XBee device. In this
case, these devices will not be added to the network.

See also

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.del_discovery_process_finished_callback()

	
stop_discovery_process()

	Stops the discovery process if it is running.

Note that DigiMesh/DigiPoint devices are blocked until the discovery
time configured (NT parameter) has elapsed, so if you try to get/set
any parameter during the discovery process you will receive a timeout
exception.

	
class digi.xbee.devices.Raw802Network(device)

	Bases: digi.xbee.devices.XBeeNetwork

This class represents an 802.15.4 network.

The network allows the discovery of remote devices in the same network
as the local one and stores them.

Class constructor. Instantiates a new Raw802Network.

	Parameters

	device (Raw802Device) – the local 802.15.4 device to get the network from.

	Raises

	ValueError – if device is None.

	
add_device_discovered_callback(callback)

	Adds a callback for the event DeviceDiscovered.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The discovered remote XBee device as a RemoteXBeeDevice

See also

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

	
add_discovery_process_finished_callback(callback)

	Adds a callback for the event DiscoveryProcessFinished.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The event code as an Integer

See also

XBeeNetwork.del_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

	
add_if_not_exist(x64bit_addr=None, x16bit_addr=None, node_id=None)

	Adds an XBee device with the provided parameters if it does not exist in the current network.

If the XBee device already exists, its data will be updated with the provided parameters that are not None.

	Parameters

	
	x64bit_addr (XBee64BitAddress, optional) – XBee device’s 64bit address. Optional.

	x16bit_addr (XBee16BitAddress, optional) – XBee device’s 16bit address. Optional.

	node_id (String, optional) – the node identifier of the XBee device. Optional.

	Returns

	
	the remote XBee device with the updated parameters. If the XBee device

	was not in the list yet, this method returns the given XBee device without changes.

	Return type

	AbstractXBeeDevice

	
add_network_modified_callback(callback)

	Adds a callback for the event digi.xbee.reader.NetworkModified.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The event type as a NetworkEventType

	The reason of the event as a NetworkEventReason

	The node added, updated or removed from the network as a XBeeDevice or
RemoteXBeeDevice.

See also

XBeeNetwork.del_network_modified_callback()

	
add_remote(remote_xbee_device)

	Adds the provided remote XBee device to the network if it is not contained yet.

If the XBee device is already contained in the network, its data will be updated with the parameters of
the XBee device that are not None.

	Parameters

	remote_xbee_device (RemoteXBeeDevice) – the remote XBee device to add to the network.

	Returns

	
	the provided XBee device with the updated parameters. If the XBee device

	was not in the list yet, this method returns it without changes.

	Return type

	RemoteXBeeDevice

	
add_remotes(remote_xbee_devices)

	Adds a list of remote XBee devices to the network.

If any XBee device of the list is already contained in the network, its data will be updated with the
parameters of the XBee device that are not None.

	Parameters

	remote_xbee_devices (List) – the list of RemoteXBeeDevice to add to the network.

	
clear()

	Removes all the remote XBee devices from the network.

	
del_device_discovered_callback(callback)

	Deletes a callback for the callback list of DeviceDiscovered event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of DeviceDiscovered event.

See also

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

	
del_discovery_process_finished_callback(callback)

	Deletes a callback for the callback list of DiscoveryProcessFinished event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of DiscoveryProcessFinished event.

See also

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

	
del_network_modified_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.NetworkModified.

	Parameters

	callback (Function) – the callback to delete.

See also

XBeeNetwork.add_network_modified_callback()

	
discover_device(node_id)

	Blocking method. Discovers and reports the first remote XBee device that matches the
supplied identifier.

	Parameters

	node_id (String) – the node identifier of the device to be discovered.

	Returns

	
	the discovered remote XBee device with the given identifier,

	None if the timeout expires and the device was not found.

	Return type

	RemoteXBeeDevice

	
discover_devices(device_id_list)

	Blocking method. Attempts to discover a list of devices and add them to the
current network.

This method does not guarantee that all devices of device_id_list
will be found, even if they exist physically. This will depend on the node
discovery operation (ND) and timeout.

	Parameters

	device_id_list (List) – list of device IDs to discover.

	Returns

	a list with the discovered devices. It may not contain all devices specified in device_id_list

	Return type

	List

	
get_device_by_16(x16bit_addr)

	Returns the XBee in the network whose 16-bit address matches the given one.

	Parameters

	x16bit_addr (XBee16BitAddress) – The 16-bit address of the device to be retrieved.

	Returns

	the XBee device in the network or None if it is not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – if x16bit_addr is None or unknown.

	
get_device_by_64(x64bit_addr)

	Returns the XBee in the network whose 64-bit address matches the given one.

	Parameters

	x64bit_addr (XBee64BitAddress) – The 64-bit address of the device to be retrieved.

	Returns

	the XBee device in the network or None if it is not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – if x64bit_addr is None or unknown.

	
get_device_by_node_id(node_id)

	Returns the XBee in the network whose node identifier matches the given one.

	Parameters

	node_id (String) – The node identifier of the device to be retrieved.

	Returns

	the XBee device in the network or None if it is not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – if node_id is None.

	
get_devices()

	Returns a copy of the XBee devices list of the network.

If another XBee device is added to the list before the execution
of this method, this XBee device will not be added to the list returned
by this method.

	Returns

	a copy of the XBee devices list of the network.

	Return type

	List

	
get_discovery_callbacks()

	Returns the API callbacks that are used in the device discovery process.

This callbacks notify the user callbacks for each XBee device discovered.

	Returns

	
	callback for generic devices discovery process,

	callback for discovery specific XBee device ops.

	Return type

	Tuple (Function, Function)

	
get_discovery_options()

	Returns the network discovery process options.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_discovery_timeout()

	Returns the network discovery timeout.

	Returns

	the network discovery timeout.

	Return type

	Float

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_number_devices()

	Returns the number of devices in the network.

	Returns

	the number of devices in the network.

	Return type

	Integer

	
has_devices()

	Returns whether there is any device in the network or not.

	Returns

	True if there is at least one device in the network, False otherwise.

	Return type

	Boolean

	
is_discovery_running()

	Returns whether the discovery process is running or not.

	Returns

	True if the discovery process is running, False otherwise.

	Return type

	Boolean

	
remove_device(remote_xbee_device)

	Removes the provided remote XBee device from the network.

	Parameters

	remote_xbee_device (RemoteXBeeDevice) – the remote XBee device to be removed from the list.

	Raises

	ValueError – if the provided RemoteXBeeDevice is not in the network.

	
set_discovery_options(options)

	Configures the discovery options (NO parameter) with the given value.

	Parameters

	options (Set of DiscoveryOptions) – new discovery options, empty set to clear the options.

	Raises

	
	ValueError – if options is None.

	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

DiscoveryOptions

	
set_discovery_timeout(discovery_timeout)

	Sets the discovery network timeout.

	Parameters

	discovery_timeout (Float) – timeout in seconds.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if discovery_timeout is not between 0x20 and 0xFF

	
start_discovery_process()

	Starts the discovery process. This method is not blocking.

The discovery process will be running until the configured
timeout expires or, in case of 802.15.4, until the ‘end’ packet
is read.

It may be that, after the timeout expires, there are devices
that continue sending discovery packets to this XBee device. In this
case, these devices will not be added to the network.

See also

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.del_discovery_process_finished_callback()

	
stop_discovery_process()

	Stops the discovery process if it is running.

Note that DigiMesh/DigiPoint devices are blocked until the discovery
time configured (NT parameter) has elapsed, so if you try to get/set
any parameter during the discovery process you will receive a timeout
exception.

	
class digi.xbee.devices.DigiMeshNetwork(device)

	Bases: digi.xbee.devices.XBeeNetwork

This class represents a DigiMesh network.

The network allows the discovery of remote devices in the same network
as the local one and stores them.

Class constructor. Instantiates a new DigiMeshNetwork.

	Parameters

	device (DigiMeshDevice) – the local DigiMesh device to get the network from.

	Raises

	ValueError – if device is None.

	
add_device_discovered_callback(callback)

	Adds a callback for the event DeviceDiscovered.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The discovered remote XBee device as a RemoteXBeeDevice

See also

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

	
add_discovery_process_finished_callback(callback)

	Adds a callback for the event DiscoveryProcessFinished.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The event code as an Integer

See also

XBeeNetwork.del_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

	
add_if_not_exist(x64bit_addr=None, x16bit_addr=None, node_id=None)

	Adds an XBee device with the provided parameters if it does not exist in the current network.

If the XBee device already exists, its data will be updated with the provided parameters that are not None.

	Parameters

	
	x64bit_addr (XBee64BitAddress, optional) – XBee device’s 64bit address. Optional.

	x16bit_addr (XBee16BitAddress, optional) – XBee device’s 16bit address. Optional.

	node_id (String, optional) – the node identifier of the XBee device. Optional.

	Returns

	
	the remote XBee device with the updated parameters. If the XBee device

	was not in the list yet, this method returns the given XBee device without changes.

	Return type

	AbstractXBeeDevice

	
add_network_modified_callback(callback)

	Adds a callback for the event digi.xbee.reader.NetworkModified.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The event type as a NetworkEventType

	The reason of the event as a NetworkEventReason

	The node added, updated or removed from the network as a XBeeDevice or
RemoteXBeeDevice.

See also

XBeeNetwork.del_network_modified_callback()

	
add_remote(remote_xbee_device)

	Adds the provided remote XBee device to the network if it is not contained yet.

If the XBee device is already contained in the network, its data will be updated with the parameters of
the XBee device that are not None.

	Parameters

	remote_xbee_device (RemoteXBeeDevice) – the remote XBee device to add to the network.

	Returns

	
	the provided XBee device with the updated parameters. If the XBee device

	was not in the list yet, this method returns it without changes.

	Return type

	RemoteXBeeDevice

	
add_remotes(remote_xbee_devices)

	Adds a list of remote XBee devices to the network.

If any XBee device of the list is already contained in the network, its data will be updated with the
parameters of the XBee device that are not None.

	Parameters

	remote_xbee_devices (List) – the list of RemoteXBeeDevice to add to the network.

	
clear()

	Removes all the remote XBee devices from the network.

	
del_device_discovered_callback(callback)

	Deletes a callback for the callback list of DeviceDiscovered event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of DeviceDiscovered event.

See also

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

	
del_discovery_process_finished_callback(callback)

	Deletes a callback for the callback list of DiscoveryProcessFinished event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of DiscoveryProcessFinished event.

See also

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

	
del_network_modified_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.NetworkModified.

	Parameters

	callback (Function) – the callback to delete.

See also

XBeeNetwork.add_network_modified_callback()

	
discover_device(node_id)

	Blocking method. Discovers and reports the first remote XBee device that matches the
supplied identifier.

	Parameters

	node_id (String) – the node identifier of the device to be discovered.

	Returns

	
	the discovered remote XBee device with the given identifier,

	None if the timeout expires and the device was not found.

	Return type

	RemoteXBeeDevice

	
discover_devices(device_id_list)

	Blocking method. Attempts to discover a list of devices and add them to the
current network.

This method does not guarantee that all devices of device_id_list
will be found, even if they exist physically. This will depend on the node
discovery operation (ND) and timeout.

	Parameters

	device_id_list (List) – list of device IDs to discover.

	Returns

	a list with the discovered devices. It may not contain all devices specified in device_id_list

	Return type

	List

	
get_device_by_16(x16bit_addr)

	Returns the XBee in the network whose 16-bit address matches the given one.

	Parameters

	x16bit_addr (XBee16BitAddress) – The 16-bit address of the device to be retrieved.

	Returns

	the XBee device in the network or None if it is not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – if x16bit_addr is None or unknown.

	
get_device_by_64(x64bit_addr)

	Returns the XBee in the network whose 64-bit address matches the given one.

	Parameters

	x64bit_addr (XBee64BitAddress) – The 64-bit address of the device to be retrieved.

	Returns

	the XBee device in the network or None if it is not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – if x64bit_addr is None or unknown.

	
get_device_by_node_id(node_id)

	Returns the XBee in the network whose node identifier matches the given one.

	Parameters

	node_id (String) – The node identifier of the device to be retrieved.

	Returns

	the XBee device in the network or None if it is not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – if node_id is None.

	
get_devices()

	Returns a copy of the XBee devices list of the network.

If another XBee device is added to the list before the execution
of this method, this XBee device will not be added to the list returned
by this method.

	Returns

	a copy of the XBee devices list of the network.

	Return type

	List

	
get_discovery_callbacks()

	Returns the API callbacks that are used in the device discovery process.

This callbacks notify the user callbacks for each XBee device discovered.

	Returns

	
	callback for generic devices discovery process,

	callback for discovery specific XBee device ops.

	Return type

	Tuple (Function, Function)

	
get_discovery_options()

	Returns the network discovery process options.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_discovery_timeout()

	Returns the network discovery timeout.

	Returns

	the network discovery timeout.

	Return type

	Float

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_number_devices()

	Returns the number of devices in the network.

	Returns

	the number of devices in the network.

	Return type

	Integer

	
has_devices()

	Returns whether there is any device in the network or not.

	Returns

	True if there is at least one device in the network, False otherwise.

	Return type

	Boolean

	
is_discovery_running()

	Returns whether the discovery process is running or not.

	Returns

	True if the discovery process is running, False otherwise.

	Return type

	Boolean

	
remove_device(remote_xbee_device)

	Removes the provided remote XBee device from the network.

	Parameters

	remote_xbee_device (RemoteXBeeDevice) – the remote XBee device to be removed from the list.

	Raises

	ValueError – if the provided RemoteXBeeDevice is not in the network.

	
set_discovery_options(options)

	Configures the discovery options (NO parameter) with the given value.

	Parameters

	options (Set of DiscoveryOptions) – new discovery options, empty set to clear the options.

	Raises

	
	ValueError – if options is None.

	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

DiscoveryOptions

	
set_discovery_timeout(discovery_timeout)

	Sets the discovery network timeout.

	Parameters

	discovery_timeout (Float) – timeout in seconds.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if discovery_timeout is not between 0x20 and 0xFF

	
start_discovery_process()

	Starts the discovery process. This method is not blocking.

The discovery process will be running until the configured
timeout expires or, in case of 802.15.4, until the ‘end’ packet
is read.

It may be that, after the timeout expires, there are devices
that continue sending discovery packets to this XBee device. In this
case, these devices will not be added to the network.

See also

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.del_discovery_process_finished_callback()

	
stop_discovery_process()

	Stops the discovery process if it is running.

Note that DigiMesh/DigiPoint devices are blocked until the discovery
time configured (NT parameter) has elapsed, so if you try to get/set
any parameter during the discovery process you will receive a timeout
exception.

	
class digi.xbee.devices.DigiPointNetwork(device)

	Bases: digi.xbee.devices.XBeeNetwork

This class represents a DigiPoint network.

The network allows the discovery of remote devices in the same network
as the local one and stores them.

Class constructor. Instantiates a new DigiPointNetwork.

	Parameters

	device (DigiPointDevice) – the local DigiPoint device to get the network from.

	Raises

	ValueError – if device is None.

	
add_device_discovered_callback(callback)

	Adds a callback for the event DeviceDiscovered.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The discovered remote XBee device as a RemoteXBeeDevice

See also

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

	
add_discovery_process_finished_callback(callback)

	Adds a callback for the event DiscoveryProcessFinished.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The event code as an Integer

See also

XBeeNetwork.del_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

	
add_if_not_exist(x64bit_addr=None, x16bit_addr=None, node_id=None)

	Adds an XBee device with the provided parameters if it does not exist in the current network.

If the XBee device already exists, its data will be updated with the provided parameters that are not None.

	Parameters

	
	x64bit_addr (XBee64BitAddress, optional) – XBee device’s 64bit address. Optional.

	x16bit_addr (XBee16BitAddress, optional) – XBee device’s 16bit address. Optional.

	node_id (String, optional) – the node identifier of the XBee device. Optional.

	Returns

	
	the remote XBee device with the updated parameters. If the XBee device

	was not in the list yet, this method returns the given XBee device without changes.

	Return type

	AbstractXBeeDevice

	
add_network_modified_callback(callback)

	Adds a callback for the event digi.xbee.reader.NetworkModified.

	Parameters

	callback (Function) – the callback. Receives one argument.

	The event type as a NetworkEventType

	The reason of the event as a NetworkEventReason

	The node added, updated or removed from the network as a XBeeDevice or
RemoteXBeeDevice.

See also

XBeeNetwork.del_network_modified_callback()

	
add_remote(remote_xbee_device)

	Adds the provided remote XBee device to the network if it is not contained yet.

If the XBee device is already contained in the network, its data will be updated with the parameters of
the XBee device that are not None.

	Parameters

	remote_xbee_device (RemoteXBeeDevice) – the remote XBee device to add to the network.

	Returns

	
	the provided XBee device with the updated parameters. If the XBee device

	was not in the list yet, this method returns it without changes.

	Return type

	RemoteXBeeDevice

	
add_remotes(remote_xbee_devices)

	Adds a list of remote XBee devices to the network.

If any XBee device of the list is already contained in the network, its data will be updated with the
parameters of the XBee device that are not None.

	Parameters

	remote_xbee_devices (List) – the list of RemoteXBeeDevice to add to the network.

	
clear()

	Removes all the remote XBee devices from the network.

	
del_device_discovered_callback(callback)

	Deletes a callback for the callback list of DeviceDiscovered event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of DeviceDiscovered event.

See also

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_discovery_process_finished_callback()

	
del_discovery_process_finished_callback(callback)

	Deletes a callback for the callback list of DiscoveryProcessFinished event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of DiscoveryProcessFinished event.

See also

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.del_device_discovered_callback()

	
del_network_modified_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.NetworkModified.

	Parameters

	callback (Function) – the callback to delete.

See also

XBeeNetwork.add_network_modified_callback()

	
discover_device(node_id)

	Blocking method. Discovers and reports the first remote XBee device that matches the
supplied identifier.

	Parameters

	node_id (String) – the node identifier of the device to be discovered.

	Returns

	
	the discovered remote XBee device with the given identifier,

	None if the timeout expires and the device was not found.

	Return type

	RemoteXBeeDevice

	
discover_devices(device_id_list)

	Blocking method. Attempts to discover a list of devices and add them to the
current network.

This method does not guarantee that all devices of device_id_list
will be found, even if they exist physically. This will depend on the node
discovery operation (ND) and timeout.

	Parameters

	device_id_list (List) – list of device IDs to discover.

	Returns

	a list with the discovered devices. It may not contain all devices specified in device_id_list

	Return type

	List

	
get_device_by_16(x16bit_addr)

	Returns the XBee in the network whose 16-bit address matches the given one.

	Parameters

	x16bit_addr (XBee16BitAddress) – The 16-bit address of the device to be retrieved.

	Returns

	the XBee device in the network or None if it is not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – if x16bit_addr is None or unknown.

	
get_device_by_64(x64bit_addr)

	Returns the XBee in the network whose 64-bit address matches the given one.

	Parameters

	x64bit_addr (XBee64BitAddress) – The 64-bit address of the device to be retrieved.

	Returns

	the XBee device in the network or None if it is not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – if x64bit_addr is None or unknown.

	
get_device_by_node_id(node_id)

	Returns the XBee in the network whose node identifier matches the given one.

	Parameters

	node_id (String) – The node identifier of the device to be retrieved.

	Returns

	the XBee device in the network or None if it is not found.

	Return type

	AbstractXBeeDevice

	Raises

	ValueError – if node_id is None.

	
get_devices()

	Returns a copy of the XBee devices list of the network.

If another XBee device is added to the list before the execution
of this method, this XBee device will not be added to the list returned
by this method.

	Returns

	a copy of the XBee devices list of the network.

	Return type

	List

	
get_discovery_callbacks()

	Returns the API callbacks that are used in the device discovery process.

This callbacks notify the user callbacks for each XBee device discovered.

	Returns

	
	callback for generic devices discovery process,

	callback for discovery specific XBee device ops.

	Return type

	Tuple (Function, Function)

	
get_discovery_options()

	Returns the network discovery process options.

	Returns

	the parameter value.

	Return type

	Bytearray

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_discovery_timeout()

	Returns the network discovery timeout.

	Returns

	the network discovery timeout.

	Return type

	Float

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	
get_number_devices()

	Returns the number of devices in the network.

	Returns

	the number of devices in the network.

	Return type

	Integer

	
has_devices()

	Returns whether there is any device in the network or not.

	Returns

	True if there is at least one device in the network, False otherwise.

	Return type

	Boolean

	
is_discovery_running()

	Returns whether the discovery process is running or not.

	Returns

	True if the discovery process is running, False otherwise.

	Return type

	Boolean

	
remove_device(remote_xbee_device)

	Removes the provided remote XBee device from the network.

	Parameters

	remote_xbee_device (RemoteXBeeDevice) – the remote XBee device to be removed from the list.

	Raises

	ValueError – if the provided RemoteXBeeDevice is not in the network.

	
set_discovery_options(options)

	Configures the discovery options (NO parameter) with the given value.

	Parameters

	options (Set of DiscoveryOptions) – new discovery options, empty set to clear the options.

	Raises

	
	ValueError – if options is None.

	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

See also

DiscoveryOptions

	
set_discovery_timeout(discovery_timeout)

	Sets the discovery network timeout.

	Parameters

	discovery_timeout (Float) – timeout in seconds.

	Raises

	
	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	ATCommandException – if the response is not as expected.

	ValueError – if discovery_timeout is not between 0x20 and 0xFF

	
start_discovery_process()

	Starts the discovery process. This method is not blocking.

The discovery process will be running until the configured
timeout expires or, in case of 802.15.4, until the ‘end’ packet
is read.

It may be that, after the timeout expires, there are devices
that continue sending discovery packets to this XBee device. In this
case, these devices will not be added to the network.

See also

XBeeNetwork.add_device_discovered_callback()

XBeeNetwork.add_discovery_process_finished_callback()

XBeeNetwork.del_device_discovered_callback()

XBeeNetwork.del_discovery_process_finished_callback()

	
stop_discovery_process()

	Stops the discovery process if it is running.

Note that DigiMesh/DigiPoint devices are blocked until the discovery
time configured (NT parameter) has elapsed, so if you try to get/set
any parameter during the discovery process you will receive a timeout
exception.

	
class digi.xbee.devices.NetworkEventType(code, description)

	Bases: enum.Enum

Enumerates the different network event types.

Values:

NetworkEventType.ADD = (0, ‘XBee added to the network’)

NetworkEventType.DEL = (1, ‘XBee removed from the network’)

NetworkEventType.UPDATE = (2, ‘XBee in the network updated’)

NetworkEventType.CLEAR = (3, ‘Network cleared’)

	
code

	Returns the code of the NetworkEventType element.

	Returns

	the code of the NetworkEventType element.

	Return type

	Integer

	
description

	Returns the description of the NetworkEventType element.

	Returns

	the description of the NetworkEventType element.

	Return type

	String

	
class digi.xbee.devices.NetworkEventReason(code, description)

	Bases: enum.Enum

Enumerates the different network event reasons.

Values:

NetworkEventReason.DISCOVERED = (0, ‘Discovered XBee’)

NetworkEventReason.RECEIVED_MSG = (1, ‘Received message from XBee’)

NetworkEventReason.MANUAL = (2, ‘Manual modification’)

	
code

	Returns the code of the NetworkEventReason element.

	Returns

	the code of the NetworkEventReason element.

	Return type

	Integer

	
description

	Returns the description of the NetworkEventReason element.

	Returns

	the description of the NetworkEventReason element.

	Return type

	String

digi.xbee.exception module

	
exception digi.xbee.exception.XBeeException

	Bases: Exception

Generic XBee API exception. This class and its subclasses indicate
conditions that an application might want to catch.

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.exception.CommunicationException

	Bases: digi.xbee.exception.XBeeException

This exception will be thrown when any problem related to the communication
with the XBee device occurs.

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.exception.ATCommandException(message='There was a problem sending the AT command packet.', cmd_status=None)

	Bases: digi.xbee.exception.CommunicationException

This exception will be thrown when a response of a packet is not success or OK.

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.exception.ConnectionException

	Bases: digi.xbee.exception.XBeeException

This exception will be thrown when any problem related to the connection
with the XBee device occurs.

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.exception.XBeeDeviceException

	Bases: digi.xbee.exception.XBeeException

This exception will be thrown when any problem related to the XBee device
occurs.

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.exception.InvalidConfigurationException(message='The configuration used to open the interface is invalid.')

	Bases: digi.xbee.exception.ConnectionException

This exception will be thrown when trying to open an interface with an
invalid configuration.

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.exception.InvalidOperatingModeException(message=None, op_mode=None)

	Bases: digi.xbee.exception.ConnectionException

This exception will be thrown if the operating mode is different than
OperatingMode.API_MODE and OperatingMode.API_MODE

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.exception.InvalidPacketException(message='The XBee API packet is not properly formed.')

	Bases: digi.xbee.exception.CommunicationException

This exception will be thrown when there is an error parsing an API packet
from the input stream.

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.exception.OperationNotSupportedException(message='The requested operation is not supported by either the connection interface or the XBee device.')

	Bases: digi.xbee.exception.XBeeDeviceException

This exception will be thrown when the operation performed is not supported
by the XBee device.

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.exception.TimeoutException(message='There was a timeout while executing the requested operation.')

	Bases: digi.xbee.exception.CommunicationException

This exception will be thrown when performing synchronous operations and
the configured time expires.

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.exception.TransmitException(message='There was a problem with a transmitted packet response (status not ok)', transmit_status=None)

	Bases: digi.xbee.exception.CommunicationException

This exception will be thrown when receiving a transmit status different
than TransmitStatus.SUCCESS after sending an XBee API packet.

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.exception.XBeeSocketException(message='There was a socket error', status=None)

	Bases: digi.xbee.exception.XBeeException

This exception will be thrown when there is an error performing any socket operation.

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.exception.FirmwareUpdateException

	Bases: digi.xbee.exception.XBeeException

This exception will be thrown when any problem related to the firmware update
process of the XBee device occurs.

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.exception.RecoveryException

	Bases: digi.xbee.exception.XBeeException

This exception will be thrown when any problem related to the auto-recovery
process of the XBee device occurs.

All functionality of this class is the inherited of Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

digi.xbee.filesystem module

	
class digi.xbee.filesystem.FileSystemElement(name, path, size=0, is_directory=False)

	Bases: object

Class used to represent XBee file system elements (files and directories).

Class constructor. Instantiates a new FileSystemElement with the given parameters.

	Parameters

	
	name (String) – the name of the file system element.

	path (String) – the absolute path of the file system element.

	size (Integer) – the size of the file system element, only applicable to files.

	is_directory (Boolean) – True if the file system element is a directory, False if it is a file.

	
name

	Returns the file system element name.

	Returns

	the file system element name.

	Return type

	String

	
path

	Returns the file system element absolute path.

	Returns

	the file system element absolute path.

	Return type

	String

	
size

	Returns the file system element size.

	Returns

	the file system element size. If element is a directory, returns ‘0’.

	Return type

	Integer

	
is_directory

	Returns whether the file system element is a directory or not.

	Returns

	True if the file system element is a directory, False otherwise.

	Return type

	Boolean

	
is_secure

	Returns whether the file system element is a secure element or not.

	Returns

	True if the file system element is secure, False otherwise.

	Return type

	Boolean

	
exception digi.xbee.filesystem.FileSystemException

	Bases: digi.xbee.exception.XBeeException

This exception will be thrown when any problem related with the XBee device file system occurs.

All functionality of this class is the inherited from Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.filesystem.FileSystemNotSupportedException

	Bases: digi.xbee.filesystem.FileSystemException

This exception will be thrown when the file system feature is not supported in the device.

All functionality of this class is the inherited from Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class digi.xbee.filesystem.LocalXBeeFileSystemManager(xbee_device)

	Bases: object

Helper class used to manage the local XBee file system.

Class constructor. Instantiates a new LocalXBeeFileSystemManager with the given parameters.

	Parameters

	xbee_device (XBeeDevice) – the local XBee device to manage its file system.

	
is_connected

	Returns whether the file system manager is connected or not.

	Returns

	True if the file system manager is connected, False otherwise.

	Return type

	Boolean

	
connect()

	Connects the file system manager.

	Raises

	
	FileSystemException – if there is any error connecting the file system manager.

	FileSystemNotSupportedException – if the device does not support filesystem feature.

	
disconnect()

	Disconnects the file system manager and restores the device connection.

	Raises

	XBeeException – if there is any error restoring the XBee device connection.

	
get_current_directory()

	Returns the current device directory.

	Returns

	the current device directory.

	Return type

	String

	Raises

	FileSystemException – if there is any error getting the current directory or the function is not supported.

	
change_directory(directory)

	Changes the current device working directory to the given one.

	Parameters

	directory (String) – the new directory to change to.

	Returns

	the current device working directory after the directory change.

	Return type

	String

	Raises

	FileSystemException – if there is any error changing the current directory or the function is not supported.

	
make_directory(directory)

	Creates the provided directory.

	Parameters

	directory (String) – the new directory to create.

	Raises

	FileSystemException – if there is any error creating the directory or the function is not supported.

	
list_directory(directory=None)

	Lists the contents of the given directory.

	Parameters

	directory (String, optional) – the directory to list its contents. Optional. If not provided, the current
directory contents are listed.

	Returns

	list of :class:`.FilesystemElement` objects contained in the given (or current) directory.

	Return type

	List

	Raises

	FileSystemException – if there is any error listing the directory contents or the function is not supported.

	
remove_element(element_path)

	Removes the given file system element path.

	Parameters

	element_path (String) – path of the file system element to remove.

	Raises

	FileSystemException – if there is any error removing the element or the function is not supported.

	
move_element(source_path, dest_path)

	Moves the given source element to the given destination path.

	Parameters

	
	source_path (String) – source path of the element to move.

	dest_path (String) – destination path of the element to move.

	Raises

	FileSystemException – if there is any error moving the element or the function is not supported.

	
put_file(source_path, dest_path, secure=False, progress_callback=None)

	Transfers the given file in the specified destination path of the XBee device.

	Parameters

	
	source_path (String) – the path of the file to transfer.

	dest_path (String) – the destination path to put the file in.

	secure (Boolean, optional) – True if the file should be stored securely, False otherwise. Defaults to
False.

	progress_callback (Function, optional) – function to execute to receive progress information.

Takes the following arguments:

	The progress percentage as integer.

	Raises

	FileSystemException – if there is any error transferring the file or the function is not supported.

	
put_dir(source_dir, dest_dir=None, progress_callback=None)

	Uploads the given source directory contents into the given destination directory in the device.

	Parameters

	
	source_dir (String) – the local directory to upload its contents.

	dest_dir (String, optional) – the remote directory to upload the contents to. Defaults to current directory.

	progress_callback (Function, optional) – function to execute to receive progress information.

Takes the following arguments:

	The file being uploaded as string.

	The progress percentage as integer.

	Raises

	FileSystemException – if there is any error uploading the directory or the function is not supported.

	
get_file(source_path, dest_path, progress_callback=None)

	Downloads the given XBee device file in the specified destination path.

	Parameters

	
	source_path (String) – the path of the XBee device file to download.

	dest_path (String) – the destination path to store the file in.

	progress_callback (Function, optional) – function to execute to receive progress information.

Takes the following arguments:

	The progress percentage as integer.

	Raises

	FileSystemException – if there is any error downloading the file or the function is not supported.

	
format_filesystem()

	Formats the device file system.

	Raises

	FileSystemException – if there is any error formatting the file system.

	
get_usage_information()

	Returns the file system usage information.

	Returns

	collection of pair values describing the usage information.

	Return type

	Dictionary

	Raises

	FileSystemException – if there is any error retrieving the file system usage information.

	
get_file_hash(file_path)

	Returns the SHA256 hash of the given file path.

	Parameters

	file_path (String) – path of the file to get its hash.

	Returns

	the SHA256 hash of the given file path.

	Return type

	String

	Raises

	FileSystemException – if there is any error retrieving the file hash.

digi.xbee.firmware module

	
digi.xbee.firmware.update_local_firmware(target, xml_firmware_file, xbee_firmware_file=None, bootloader_firmware_file=None, timeout=None, progress_callback=None)

	Performs a local firmware update operation in the given target.

	Parameters

	
	target (String or XBeeDevice) – target of the firmware upload operation.
String: serial port identifier.
AbstractXBeeDevice: the XBee device to upload its firmware.

	xml_firmware_file (String) – path of the XML file that describes the firmware to upload.

	xbee_firmware_file (String, optional) – location of the XBee binary firmware file.

	bootloader_firmware_file (String, optional) – location of the bootloader binary firmware file.

	timeout (Integer, optional) – the serial port read data timeout.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	FirmwareUpdateException – if there is any error performing the firmware update.

	
digi.xbee.firmware.update_remote_firmware(remote_device, xml_firmware_file, ota_firmware_file=None, otb_firmware_file=None, timeout=None, progress_callback=None)

	Performs a local firmware update operation in the given target.

	Parameters

	
	remote_device (RemoteXBeeDevice) – remote XBee device to upload its firmware.

	xml_firmware_file (String) – path of the XML file that describes the firmware to upload.

	ota_firmware_file (String, optional) – path of the OTA firmware file to upload.

	otb_firmware_file (String, optional) – path of the OTB firmware file to upload (bootloader bundle).

	timeout (Integer, optional) – the timeout to wait for remote frame requests.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	FirmwareUpdateException – if there is any error performing the remote firmware update.

digi.xbee.io module

	
class digi.xbee.io.IOLine(description, index, at_command, pwm_command=None)

	Bases: enum.Enum

Enumerates the different IO lines that can be found in the XBee devices.

Depending on the hardware and firmware of the device, the number of lines
that can be used as well as their functionality may vary. Refer to the
product manual to learn more about the IO lines of your XBee device.

Values:

IOLine.DIO0_AD0 = (‘DIO0/AD0’, 0, ‘D0’)

IOLine.DIO1_AD1 = (‘DIO1/AD1’, 1, ‘D1’)

IOLine.DIO2_AD2 = (‘DIO2/AD2’, 2, ‘D2’)

IOLine.DIO3_AD3 = (‘DIO3/AD3’, 3, ‘D3’)

IOLine.DIO4_AD4 = (‘DIO4/AD4’, 4, ‘D4’)

IOLine.DIO5_AD5 = (‘DIO5/AD5’, 5, ‘D5’)

IOLine.DIO6 = (‘DIO6’, 6, ‘D6’)

IOLine.DIO7 = (‘DIO7’, 7, ‘D7’)

IOLine.DIO8 = (‘DIO8’, 8, ‘D8’)

IOLine.DIO9 = (‘DIO9’, 9, ‘D9’)

IOLine.DIO10_PWM0 = (‘DIO10/PWM0’, 10, ‘P0’, ‘M0’)

IOLine.DIO11_PWM1 = (‘DIO11/PWM1’, 11, ‘P1’, ‘M1’)

IOLine.DIO12 = (‘DIO12’, 12, ‘P2’)

IOLine.DIO13 = (‘DIO13’, 13, ‘P3’)

IOLine.DIO14 = (‘DIO14’, 14, ‘P4’)

IOLine.DIO15 = (‘DIO15’, 15, ‘P5’)

IOLine.DIO16 = (‘DIO16’, 16, ‘P6’)

IOLine.DIO17 = (‘DIO17’, 17, ‘P7’)

IOLine.DIO18 = (‘DIO18’, 18, ‘P8’)

IOLine.DIO19 = (‘DIO19’, 19, ‘P9’)

	
has_pwm_capability()

	Returns whether the IO line has PWM capability or not.

	Returns

	True if the IO line has PWM capability, False otherwise.

	Return type

	Boolean

	
description

	String. The IO line description.

	
index

	Integer. The IO line index.

	
at_command

	String. The IO line AT command.

	
pwm_at_command

	String. The IO line PWM AT command.

	
class digi.xbee.io.IOValue(code)

	Bases: enum.Enum

Enumerates the possible values of a IOLine configured as digital I/O.

Values:

IOValue.LOW = 4

IOValue.HIGH = 5

	
code

	Integer. The IO value code.

	
class digi.xbee.io.IOSample(io_sample_payload)

	Bases: object

This class represents an IO Data Sample. The sample is built using the
the constructor. The sample contains an analog and digital mask indicating
which IO lines are configured with that functionality.

Depending on the protocol the XBee device is executing, the digital and
analog masks are retrieved in separated bytes (2 bytes for the digital mask
and 1 for the analog mask) or merged contained (digital and analog masks
are contained in 2 bytes).

Digital and analog channels masks
Indicates which digital and ADC IO lines are configured in the module. Each
bit corresponds to one digital or ADC IO line on the module:

bit 0 = DIO01
bit 1 = DIO10
bit 2 = DIO20
bit 3 = DIO31
bit 4 = DIO40
bit 5 = DIO51
bit 6 = DIO60
bit 7 = DIO70
bit 8 = DIO80
bit 9 = AD00
bit 10 = AD11
bit 11 = AD21
bit 12 = AD30
bit 13 = AD40
bit 14 = AD50
bit 15 = NA0

Example: mask of 0x0C29 means DIO0, DIO3, DIO5, AD1 and AD2 enabled.
0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1

Digital Channel Mask
Indicates which digital IO lines are configured in the module. Each bit
corresponds to one digital IO line on the module:

bit 0 = DIO0AD0
bit 1 = DIO1AD1
bit 2 = DIO2AD2
bit 3 = DIO3AD3
bit 4 = DIO4AD4
bit 5 = DIO5AD5ASSOC
bit 6 = DIO6RTS
bit 7 = DIO7CTS
bit 8 = DIO8DTRSLEEP_RQ
bit 9 = DIO9ON_SLEEP
bit 10 = DIO10PWM0RSSI
bit 11 = DIO11PWM1
bit 12 = DIO12CD
bit 13 = DIO13
bit 14 = DIO14
bit 15 = NA

Example: mask of 0x040B means DIO0, DIO1, DIO2, DIO3 and DIO10 enabled.
0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1

Analog Channel Mask
Indicates which lines are configured as ADC. Each bit in the analog
channel mask corresponds to one ADC line on the module.

bit 0 = AD0DIO0
bit 1 = AD1DIO1
bit 2 = AD2DIO2
bit 3 = AD3DIO3
bit 4 = AD4DIO4
bit 5 = AD5DIO5ASSOC
bit 6 = NA
bit 7 = Supply Voltage Value

Example: mask of 0x83 means AD0, and AD1 enabled.
0 0 0 0 0 0 1 1

Class constructor. Instantiates a new IOSample object with the provided parameters.

	Parameters

	io_sample_payload (Bytearray) – The payload corresponding to an IO sample.

	Raises

	ValueError – if io_sample_payload length is less than 5.

	
static min_io_sample_payload()

	Returns the minimum IO sample payload length.

	Returns

	the minimum IO sample payload length.

	Return type

	Integer

	
has_digital_values()

	Checks whether the IOSample has digital values or not.

	Returns

	True if the sample has digital values, False otherwise.

	Return type

	Boolean

	
has_digital_value(io_line)

	Returns whether th IO sample contains a digital value for the provided IO line or not.

	Parameters

	io_line (IOLine) – The IO line to check if it has a digital value.

	Returns

	True if the given IO line has a digital value, False otherwise.

	Return type

	Boolean

	
has_analog_value(io_line)

	Returns whether the given IOLine has an analog value or not.

	Returns

	True if the given IOLine has an analog value, False otherwise.

	Return type

	Boolean

	
has_analog_values()

	Returns whether the {@code IOSample} has analog values or not.

	Returns

	Boolean. True if there are analog values, False otherwise.

	
has_power_supply_value()

	Returns whether the IOSample has power supply value or not.

	Returns

	Boolean. True if the given IOLine has a power supply value, False otherwise.

	
get_digital_value(io_line)

	Returns the digital value of the provided IO line.

To verify if this sample contains a digital value for the given IOLine,
use the method IOSample.has_digital_value().

	Parameters

	io_line (IOLine) – The IO line to get its digital value.

	Returns

	
	The IOValue of the given IO line or None if the

	IO sample does not contain a digital value for the given IO line.

	Return type

	IOValue

See also

IOLine

IOValue

	
get_analog_value(io_line)

	Returns the analog value of the provided IO line.

To verify if this sample contains an analog value for the given IOLine,
use the method IOSample.has_analog_value().

	Parameters

	io_line (IOLine) – The IO line to get its analog value.

	Returns

	
	The analog value of the given IO line or None if the IO sample does not

	contain an analog value for the given IO line.

	Return type

	Integer

See also

IOLine

	
digital_hsb_mask

	Integer. High Significant Byte (HSB) of the digital mask.

	
digital_lsb_mask

	Integer. Low Significant Byte (LSB) of the digital mask.

	
digital_mask

	Integer. Digital mask of the IO sample.

	
analog_mask

	Integer. Analog mask of the IO sample.

	
digital_values

	Dictionary. Digital values map.

	
analog_values

	Dictionary. Analog values map.

	
power_supply_value

	Integer. Power supply value, None if the sample does not contain power supply value.

	
class digi.xbee.io.IOMode

	Bases: enum.Enum

Enumerates the different Input/Output modes that an IO line can be
configured with.

	
DISABLED = 0

	Disabled

	
SPECIAL_FUNCTIONALITY = 1

	Firmware special functionality

	
PWM = 2

	PWM output

	
ADC = 2

	Analog to Digital Converter

	
DIGITAL_IN = 3

	Digital input

	
DIGITAL_OUT_LOW = 4

	Digital output, Low

	
DIGITAL_OUT_HIGH = 5

	Digital output, High

	
I2C_FUNCTIONALITY = 6

	I2C functionality

digi.xbee.profile module

	
class digi.xbee.profile.FirmwareBaudrate(index, baudrate)

	Bases: enum.Enum

This class lists the available firmware baudrate options for XBee Profiles.

Inherited properties:

name (String): The name of this FirmwareBaudrate.

value (Integer): The ID of this FirmwareBaudrate.

Values:

FirmwareBaudrate.BD_1200 = (0, 1200)

FirmwareBaudrate.BD_2400 = (1, 2400)

FirmwareBaudrate.BD_4800 = (2, 4800)

FirmwareBaudrate.BD_9600 = (3, 9600)

FirmwareBaudrate.BD_19200 = (4, 19200)

FirmwareBaudrate.BD_38400 = (5, 38400)

FirmwareBaudrate.BD_57600 = (6, 57600)

FirmwareBaudrate.BD_115200 = (7, 115200)

FirmwareBaudrate.BD_230400 = (8, 230400)

FirmwareBaudrate.BD_460800 = (9, 460800)

FirmwareBaudrate.BD_921600 = (10, 921600)

	
index

	Returns the index of the FirmwareBaudrate element.

	Returns

	the index of the FirmwareBaudrate element.

	Return type

	Integer

	
baudrate

	Returns the baudrate of the FirmwareBaudrate element.

	Returns

	the baudrate of the FirmwareBaudrate element.

	Return type

	Integer

	
class digi.xbee.profile.FirmwareParity(index, parity)

	Bases: enum.Enum

This class lists the available firmware parity options for XBee Profiles.

Inherited properties:

name (String): The name of this FirmwareParity.

value (Integer): The ID of this FirmwareParity.

Values:

FirmwareParity.NONE = (0, <sphinx.ext.autodoc.importer._MockObject object at 0x7f9cb7f17990>)

FirmwareParity.EVEN = (1, <sphinx.ext.autodoc.importer._MockObject object at 0x7f9cb7f17d50>)

FirmwareParity.ODD = (2, <sphinx.ext.autodoc.importer._MockObject object at 0x7f9cb7f17710>)

FirmwareParity.MARK = (3, <sphinx.ext.autodoc.importer._MockObject object at 0x7f9cb7f17510>)

FirmwareParity.SPACE = (4, <sphinx.ext.autodoc.importer._MockObject object at 0x7f9cb8c18c90>)

	
index

	Returns the index of the FirmwareParity element.

	Returns

	the index of the FirmwareParity element.

	Return type

	Integer

	
parity

	Returns the parity of the FirmwareParity element.

	Returns

	the parity of the FirmwareParity element.

	Return type

	String

	
class digi.xbee.profile.FirmwareStopbits(index, stop_bits)

	Bases: enum.Enum

This class lists the available firmware stop bits options for XBee Profiles.

Inherited properties:

name (String): The name of this FirmwareStopbits.

value (Integer): The ID of this FirmwareStopbits.

Values:

FirmwareStopbits.SB_1 = (0, <sphinx.ext.autodoc.importer._MockObject object at 0x7f9cb9122210>)

FirmwareStopbits.SB_2 = (1, <sphinx.ext.autodoc.importer._MockObject object at 0x7f9cb8c18090>)

FirmwareStopbits.SB_1_5 = (2, <sphinx.ext.autodoc.importer._MockObject object at 0x7f9cb8c18390>)

	
index

	Returns the index of the FirmwareStopbits element.

	Returns

	the index of the FirmwareStopbits element.

	Return type

	Integer

	
stop_bits

	Returns the stop bits of the FirmwareStopbits element.

	Returns

	the stop bits of the FirmwareStopbits element.

	Return type

	Float

	
class digi.xbee.profile.FlashFirmwareOption(code, description)

	Bases: enum.Enum

This class lists the available flash firmware options for XBee Profiles.

Inherited properties:

name (String): The name of this FlashFirmwareOption.

value (Integer): The ID of this FlashFirmwareOption.

Values:

FlashFirmwareOption.FLASH_ALWAYS = (0, ‘Flash always’)

FlashFirmwareOption.FLASH_DIFFERENT = (1, ‘Flash firmware if it is different’)

FlashFirmwareOption.DONT_FLASH = (2, ‘Do not flash firmware’)

	
code

	Returns the code of the FlashFirmwareOption element.

	Returns

	the code of the FlashFirmwareOption element.

	Return type

	Integer

	
description

	Returns the description of the FlashFirmwareOption element.

	Returns

	the description of the FlashFirmwareOption element.

	Return type

	String

	
class digi.xbee.profile.XBeeSettingType(tag, description)

	Bases: enum.Enum

This class lists the available firmware setting types.

Inherited properties:

name (String): The name of this XBeeSettingType.

value (Integer): The ID of this XBeeSettingType.

Values:

XBeeSettingType.NUMBER = (‘number’, ‘Number’)

XBeeSettingType.COMBO = (‘combo’, ‘Combo’)

XBeeSettingType.TEXT = (‘text’, ‘Text’)

XBeeSettingType.BUTTON = (‘button’, ‘Button’)

XBeeSettingType.NO_TYPE = (‘none’, ‘No type’)

	
tag

	Returns the tag of the XBeeSettingType element.

	Returns

	the tag of the XBeeSettingType element.

	Return type

	String

	
description

	Returns the description of the XBeeSettingType element.

	Returns

	the description of the XBeeSettingType element.

	Return type

	String

	
class digi.xbee.profile.XBeeSettingFormat(tag, description)

	Bases: enum.Enum

This class lists the available text firmware setting formats.

Inherited properties:

name (String): The name of this XBeeSettingFormat.

value (Integer): The ID of this XBeeSettingFormat.

Values:

XBeeSettingFormat.HEX = (‘HEX’, ‘Hexadecimal’)

XBeeSettingFormat.ASCII = (‘ASCII’, ‘ASCII’)

XBeeSettingFormat.IPV4 = (‘IPV4’, ‘IPv4’)

XBeeSettingFormat.IPV6 = (‘IPV6’, ‘IPv6’)

XBeeSettingFormat.PHONE = (‘PHONE’, ‘phone’)

XBeeSettingFormat.NO_FORMAT = (‘none’, ‘No format’)

	
tag

	Returns the tag of the XBeeSettingFormat element.

	Returns

	the tag of the XBeeSettingFormat element.

	Return type

	String

	
description

	Returns the description of the XBeeSettingFormat element.

	Returns

	the description of the XBeeSettingFormat element.

	Return type

	String

	
class digi.xbee.profile.XBeeProfileSetting(name, setting_type, setting_format, value)

	Bases: object

This class represents an XBee profile setting and provides information like
the setting name, type, format and value.

Class constructor. Instantiates a new XBeeProfileSetting with the given parameters.

	Parameters

	
	name (String) – the setting name

	setting_type (XBeeSettingType) – the setting type

	setting_format (XBeeSettingType) – the setting format

	value (String) – the setting value

	
name

	Returns the XBee setting name.

	Returns

	the XBee setting name.

	Return type

	String

	
type

	Returns the XBee setting type.

	Returns

	the XBee setting type.

	Return type

	XBeeSettingType

	
format

	Returns the XBee setting format.

	Returns

	the XBee setting format.

	Return type

	XBeeSettingFormat

	
value

	Returns the XBee setting value as string.

	Returns

	the XBee setting value as string.

	Return type

	String

	
bytearray_value

	Returns the XBee setting value as bytearray to be set in the device.

	Returns

	the XBee setting value as bytearray to be set in the device.

	Return type

	Bytearray

	
exception digi.xbee.profile.ReadProfileException

	Bases: digi.xbee.exception.XBeeException

This exception will be thrown when any problem reading the XBee profile occurs.

All functionality of this class is the inherited from Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception digi.xbee.profile.UpdateProfileException

	Bases: digi.xbee.exception.XBeeException

This exception will be thrown when any problem updating the XBee profile into a device occurs.

All functionality of this class is the inherited from Exception [https://docs.python.org/2/library/exceptions.html?highlight=exceptions.exception#exceptions.Exception].

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class digi.xbee.profile.XBeeProfile(profile_file)

	Bases: object

Helper class used to manage serial port break line in a parallel thread.

Class constructor. Instantiates a new XBeeProfile with the given parameters.

	Parameters

	profile_file (String) – path of the ‘.xpro’ profile file.

	Raises

	
	ProfileReadException – if there is any error reading the profile file.

	ValueError – if the provided profile file is not valid

	
get_setting_default_value(setting_name)

	Returns the default value of the given firmware setting.

	Parameters

	setting_name (String) – the name of the setting to retrieve its default value.

	Returns

	the default value of the setting, None if the setting is not found or it has no default value.

	Return type

	String

	
profile_file

	Returns the profile file.

	Returns

	the profile file.

	Return type

	String

	
version

	Returns the profile version.

	Returns

	the profile version.

	Return type

	String

	
flash_firmware_option

	Returns the profile flash firmware option.

	Returns

	the profile flash firmware option.

	Return type

	FlashFirmwareOption

See also

FlashFirmwareOption

	
description

	Returns the profile description.

	Returns

	the profile description.

	Return type

	String

	
reset_settings

	Returns whether the settings of the XBee device will be reset before applying the profile ones or not.

	Returns

	
	True if the settings of the XBee device will be reset before applying the profile ones,

	False otherwise.

	Return type

	Boolean

	
has_filesystem

	Returns whether the profile has filesystem information or not.

	Returns

	True if the profile has filesystem information, False otherwise.

	Return type

	Boolean

	
profile_settings

	Returns all the firmware settings that the profile configures.

	Returns

	a list with all the firmware settings that the profile configures (XBeeProfileSetting).

	Return type

	List

	
firmware_version

	Returns the compatible firmware version of the profile.

	Returns

	the compatible firmware version of the profile.

	Return type

	Integer

	
hardware_version

	Returns the compatible hardware version of the profile.

	Returns

	the compatible hardware version of the profile.

	Return type

	Integer

	
firmware_description_file

	Returns the path of the profile firmware description file.

	Returns

	the path of the profile firmware description file.

	Return type

	String

	
file_system_path

	Returns the profile file system path.

	Returns

	the path of the profile file system directory.

	Return type

	String

	
digi.xbee.profile.apply_xbee_profile(xbee_device, profile_path, progress_callback=None)

	Applies the given XBee profile into the given XBee device.

	Parameters

	
	xbee_device (XBeeDevice or RemoteXBeeDevice) – the XBee device to apply profile to.

	profile_path (String) – path of the XBee profile file to apply.

	progress_callback (Function, optional) –
	function to execute to receive progress information. Receives two

	arguments:

	The current update task as a String

	The current update task percentage as an Integer

	Raises

	
	ValueError – if the XBee profile or the XBee device is not valid.

	UpdateProfileException – if there is any error during the update XBee profile operation.

digi.xbee.reader module

	
class digi.xbee.reader.XBeeEvent

	Bases: list

This class represents a generic XBee event.

New event callbacks can be added here following this prototype:

def callback_prototype(*args, **kwargs):
 #do something...

All of them will be executed when the event is fired.

See also

list (Python standard class)

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.PacketReceived

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives any packet, independent of
its frame type.

	The callbacks for handle this events will receive the following arguments:

	
	received_packet (XBeeAPIPacket): the received packet.

See also

XBeeAPIPacket

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.DataReceived

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives data.

	The callbacks for handle this events will receive the following arguments:

	
	message (XBeeMessage): message containing the data received, the sender and the time.

See also

XBeeEvent

XBeeMessage

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.ModemStatusReceived

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when a XBee receives a modem status packet.

	The callbacks for handle this events will receive the following arguments:

	
	modem_status (ModemStatus): the modem status received.

See also

XBeeEvent

ModemStatus

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.IOSampleReceived

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when a XBee receives an IO packet.

This includes:

	IO data sample RX indicator packet.

	RX IO 16 packet.

	RX IO 64 packet.

	The callbacks that handle this event will receive the following arguments:

	
	io_sample (IOSample): the received IO sample.

	sender (RemoteXBeeDevice): the remote XBee device who has sent the packet.

	time (Integer): the time in which the packet was received.

See also

IOSample

RemoteXBeeDevice

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.NetworkModified

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when the network is being modified by the addition of a new node, an
existing node information is updated, a node removal, or when the network items are cleared.

	The callbacks that handle this event will receive the following arguments:

	
	event_type (digi.xbee.devices.NetworkEventType): the network event type.

	reason (digi.xbee.devices.NetworkEventReason): The reason of the event.

	node (digi.xbee.devices.XBeeDevice or
digi.xbee.devices.RemoteXBeeDevice): The node added, updated or removed from
the network.

See also

digi.xbee.devices.NetworkEventReason

digi.xbee.devices.NetworkEventType

digi.xbee.devices.RemoteXBeeDevice

digi.xbee.devices.XBeeDevice

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.DeviceDiscovered

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee discovers another remote XBee
during a discovering operation.

	The callbacks that handle this event will receive the following arguments:

	
	discovered_device (RemoteXBeeDevice): the discovered remote XBee device.

See also

RemoteXBeeDevice

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.DiscoveryProcessFinished

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when the discovery process finishes, either
successfully or due to an error.

	The callbacks that handle this event will receive the following arguments:

	
	status (NetworkDiscoveryStatus): the network discovery status.

See also

NetworkDiscoveryStatus

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.ExplicitDataReceived

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives an explicit data packet.

	The callbacks for handle this events will receive the following arguments:

	
	
	message (ExplicitXBeeMessage): message containing the data received, the sender, the time

	and explicit data message parameters.

See also

XBeeEvent

XBeeMessage

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.IPDataReceived

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives IP data.

	The callbacks for handle this events will receive the following arguments:

	
	
	message (IPMessage): message containing containing the IP address the message

	belongs to, the source and destination ports, the IP protocol, and the content (data) of the message.

See also

XBeeEvent

IPMessage

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.SMSReceived

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives an SMS.

	The callbacks for handle this events will receive the following arguments:

	
	
	message (SMSMessage): message containing the phone number that sent

	the message and the content (data) of the message.

See also

XBeeEvent

SMSMessage

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.RelayDataReceived

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives a user data relay output packet.

	The callbacks to handle these events will receive the following arguments:

	
	
	message (UserDataRelayMessage): message containing the source interface

	and the content (data) of the message.

See also

XBeeEvent

UserDataRelayMessage

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.BluetoothDataReceived

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives data from the Bluetooth interface.

	The callbacks to handle these events will receive the following arguments:

	
	data (Bytearray): received Bluetooth data.

See also

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.MicroPythonDataReceived

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives data from the MicroPython interface.

	The callbacks to handle these events will receive the following arguments:

	
	data (Bytearray): received MicroPython data.

See also

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.SocketStateReceived

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives a socket state packet.

	The callbacks to handle these events will receive the following arguments:

	
	socket_id (Integer): socket ID for state reported.

	state (SocketState): received state.

See also

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.SocketDataReceived

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives a socket receive data packet.

	The callbacks to handle these events will receive the following arguments:

	
	socket_id (Integer): ID of the socket that received the data.

	payload (Bytearray): received data.

See also

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.SocketDataReceivedFrom

	Bases: digi.xbee.reader.XBeeEvent

This event is fired when an XBee receives a socket receive from data packet.

	The callbacks to handle these events will receive the following arguments:

	
	socket_id (Integer): ID of the socket that received the data.

	
	address (Tuple): a pair (host, port) of the source address where

	host is a string representing an IPv4 address like ‘100.50.200.5’,
and port is an integer.

	payload (Bytearray): received data.

See also

XBeeEvent

	
append()

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count()

	Return number of occurrences of value.

	
extend()

	Extend list by appending elements from the iterable.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
insert()

	Insert object before index.

	
pop()

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove()

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort()

	Stable sort IN PLACE.

	
class digi.xbee.reader.PacketListener(comm_iface, xbee_device, queue_max_size=None)

	Bases: threading.Thread

This class represents a packet listener, which is a thread that’s always
listening for incoming packets to the XBee.

When it receives a packet, this class throws an event depending on which
packet it is. You can add your own callbacks for this events via certain
class methods. This callbacks must have a certain header, see each event
documentation.

This class has fields that are events. Its recommended to use only the
append() and remove() method on them, or -= and += operators.
If you do something more with them, it’s for your own risk.

Here are the parameters which will be received by the event callbacks,
depending on which event it is in each case:

The following parameters are passed via **kwargs to event callbacks of:

	
	PacketReceived:

	1.1 received_packet (XBeeAPIPacket): the received packet.

	
	DataReceived

	2.1 message (XBeeMessage): message containing the data received, the sender and the time.

	
	ModemStatusReceived

	3.1 modem_status (ModemStatus): the modem status received.

Class constructor. Instantiates a new PacketListener object with the provided parameters.

	Parameters

	
	comm_iface (XBeeCommunicationInterface) – the hardware interface to listen to.

	xbee_device (XBeeDevice) – the XBee that is the listener owner.

	queue_max_size (Integer) – the maximum size of the XBee queue.

	
daemon

	A boolean value indicating whether this thread is a daemon thread.

This must be set before start() is called, otherwise RuntimeError is
raised. Its initial value is inherited from the creating thread; the
main thread is not a daemon thread and therefore all threads created in
the main thread default to daemon = False.

The entire Python program exits when only daemon threads are left.

	
wait_until_started(timeout=None)

	Blocks until the thread has fully started. If already started, returns
immediately.

	Parameters

	timeout (Float) – timeout for the operation in seconds.

	
run()

	This is the method that will be executing for listening packets.

For each packet, it will execute the proper callbacks.

	
stop()

	Stops listening.

	
is_running()

	Returns whether this instance is running or not.

	Returns

	True if this instance is running, False otherwise.

	Return type

	Boolean

	
get_queue()

	Returns the packets queue.

	Returns

	the packets queue.

	Return type

	XBeeQueue

	
get_data_queue()

	Returns the data packets queue.

	Returns

	the data packets queue.

	Return type

	XBeeQueue

	
get_explicit_queue()

	Returns the explicit packets queue.

	Returns

	the explicit packets queue.

	Return type

	XBeeQueue

	
get_ip_queue()

	Returns the IP packets queue.

	Returns

	the IP packets queue.

	Return type

	XBeeQueue

	
add_packet_received_callback(callback)

	Adds a callback for the event PacketReceived.

	Parameters

	callback (Function or List of functions) – the callback. Receives two arguments.

	The received packet as a XBeeAPIPacket

	
add_data_received_callback(callback)

	Adds a callback for the event DataReceived.

	Parameters

	callback (Function or List of functions) – the callback. Receives one argument.

	The data received as an XBeeMessage

	
add_modem_status_received_callback(callback)

	Adds a callback for the event ModemStatusReceived.

	Parameters

	callback (Function or List of functions) – the callback. Receives one argument.

	The modem status as a ModemStatus

	
add_io_sample_received_callback(callback)

	Adds a callback for the event IOSampleReceived.

	Parameters

	callback (Function or List of functions) – the callback. Receives three arguments.

	The received IO sample as an IOSample

	The remote XBee device who has sent the packet as a RemoteXBeeDevice

	The time in which the packet was received as an Integer

	
add_explicit_data_received_callback(callback)

	Adds a callback for the event ExplicitDataReceived.

	Parameters

	callback (Function or List of functions) – the callback. Receives one argument.

	The explicit data received as an ExplicitXBeeMessage

	
add_ip_data_received_callback(callback)

	Adds a callback for the event IPDataReceived.

	Parameters

	callback (Function or List of functions) – the callback. Receives one argument.

	The data received as an IPMessage

	
add_sms_received_callback(callback)

	Adds a callback for the event SMSReceived.

	Parameters

	callback (Function or List of functions) – the callback. Receives one argument.

	The data received as an SMSMessage

	
add_user_data_relay_received_callback(callback)

	Adds a callback for the event RelayDataReceived.

	Parameters

	callback (Function or List of functions) – the callback. Receives one argument.

	The data received as a UserDataRelayMessage

	
add_bluetooth_data_received_callback(callback)

	Adds a callback for the event BluetoothDataReceived.

	Parameters

	callback (Function or List of functions) – the callback. Receives one argument.

	The data received as a Bytearray

	
add_micropython_data_received_callback(callback)

	Adds a callback for the event MicroPythonDataReceived.

	Parameters

	callback (Function or List of functions) – the callback. Receives one argument.

	The data received as a Bytearray

	
add_socket_state_received_callback(callback)

	Adds a callback for the event SocketStateReceived.

	Parameters

	callback (Function or List of functions) – the callback. Receives two arguments.

	The socket ID as an Integer.

	The state received as a SocketState

	
add_socket_data_received_callback(callback)

	Adds a callback for the event SocketDataReceived.

	Parameters

	callback (Function or List of functions) – the callback. Receives two arguments.

	The socket ID as an Integer.

	The status received as a SocketStatus

	
add_socket_data_received_from_callback(callback)

	Adds a callback for the event SocketDataReceivedFrom.

	Parameters

	callback (Function or List of functions) – the callback. Receives three arguments.

	The socket ID as an Integer.

	
	A pair (host, port) of the source address where host is a string representing an IPv4 address

	like ‘100.50.200.5’, and port is an integer.

	The status received as a SocketStatus

	
del_packet_received_callback(callback)

	Deletes a callback for the callback list of PacketReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 PacketReceived event.

	
del_data_received_callback(callback)

	Deletes a callback for the callback list of DataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of DataReceived event.

	
del_modem_status_received_callback(callback)

	Deletes a callback for the callback list of ModemStatusReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 ModemStatusReceived event.

	
del_io_sample_received_callback(callback)

	Deletes a callback for the callback list of IOSampleReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 IOSampleReceived event.

	
del_explicit_data_received_callback(callback)

	Deletes a callback for the callback list of ExplicitDataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 ExplicitDataReceived event.

	
del_ip_data_received_callback(callback)

	Deletes a callback for the callback list of IPDataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of IPDataReceived
 event.

	
del_sms_received_callback(callback)

	Deletes a callback for the callback list of SMSReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of SMSReceived event.

	
del_user_data_relay_received_callback(callback)

	Deletes a callback for the callback list of RelayDataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 RelayDataReceived event.

	
del_bluetooth_data_received_callback(callback)

	Deletes a callback for the callback list of BluetoothDataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 BluetoothDataReceived event.

	
del_micropython_data_received_callback(callback)

	Deletes a callback for the callback list of MicroPythonDataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 MicroPythonDataReceived event.

	
del_socket_state_received_callback(callback)

	Deletes a callback for the callback list of SocketStateReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 SocketStateReceived event.

	
del_socket_data_received_callback(callback)

	Deletes a callback for the callback list of SocketDataReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 SocketDataReceived event.

	
del_socket_data_received_from_callback(callback)

	Deletes a callback for the callback list of SocketDataReceivedFrom event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 SocketDataReceivedFrom event.

	
get_packet_received_callbacks()

	Returns the list of registered callbacks for received packets.

	Returns

	List of PacketReceived events.

	Return type

	List

	
get_data_received_callbacks()

	Returns the list of registered callbacks for received data.

	Returns

	List of DataReceived events.

	Return type

	List

	
get_modem_status_received_callbacks()

	Returns the list of registered callbacks for received modem status.

	Returns

	List of ModemStatusReceived events.

	Return type

	List

	
get_io_sample_received_callbacks()

	Returns the list of registered callbacks for received IO samples.

	Returns

	List of IOSampleReceived events.

	Return type

	List

	
get_explicit_data_received_callbacks()

	Returns the list of registered callbacks for received explicit data.

	Returns

	List of ExplicitDataReceived events.

	Return type

	List

	
get_ip_data_received_callbacks()

	Returns the list of registered callbacks for received IP data.

	Returns

	List of IPDataReceived events.

	Return type

	List

	
get_sms_received_callbacks()

	Returns the list of registered callbacks for received SMS.

	Returns

	List of SMSReceived events.

	Return type

	List

	
get_user_data_relay_received_callbacks()

	Returns the list of registered callbacks for received user data relay.

	Returns

	List of RelayDataReceived events.

	Return type

	List

	
get_bluetooth_data_received_callbacks()

	Returns the list of registered callbacks for received Bluetooth data.

	Returns

	List of BluetoothDataReceived events.

	Return type

	List

	
get_micropython_data_received_callbacks()

	Returns the list of registered callbacks for received micropython data.

	Returns

	List of MicroPythonDataReceived events.

	Return type

	List

	
ident

	Thread identifier of this thread or None if it has not been started.

This is a nonzero integer. See the get_ident() function. Thread
identifiers may be recycled when a thread exits and another thread is
created. The identifier is available even after the thread has exited.

	
isAlive()

	Return whether the thread is alive.

This method is deprecated, use is_alive() instead.

	
is_alive()

	Return whether the thread is alive.

This method returns True just before the run() method starts until just
after the run() method terminates. The module function enumerate()
returns a list of all alive threads.

	
join(timeout=None)

	Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is
called terminates – either normally or through an unhandled exception
or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof). As join() always returns None, you must call
is_alive() after join() to decide whether a timeout happened – if the
thread is still alive, the join() call timed out.

When the timeout argument is not present or None, the operation will
block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current
thread as that would cause a deadlock. It is also an error to join() a
thread before it has been started and attempts to do so raises the same
exception.

	
name

	A string used for identification purposes only.

It has no semantics. Multiple threads may be given the same name. The
initial name is set by the constructor.

	
start()

	Start the thread’s activity.

It must be called at most once per thread object. It arranges for the
object’s run() method to be invoked in a separate thread of control.

This method will raise a RuntimeError if called more than once on the
same thread object.

	
class digi.xbee.reader.XBeeQueue(maxsize=10)

	Bases: queue.Queue

This class represents an XBee queue.

Class constructor. Instantiates a new XBeeQueue with the provided parameters.

	Parameters

	(Integer, default (maxsize) –
	the maximum size of the queue.

	
get(block=True, timeout=None)

	Returns the first element of the queue if there is some
element ready before timeout expires, in case of the timeout is not
None.

If timeout is None, this method is non-blocking. In this case, if there
isn’t any element available, it returns None, otherwise it returns
an XBeeAPIPacket.

	Parameters

	
	block (Boolean) – True to block during timeout waiting for a packet, False to not block.

	timeout (Integer, optional) – timeout in seconds.

	Returns

	
	a packet if there is any packet available before timeout expires.

	If timeout is None, the returned value may be None.

	Return type

	XBeeAPIPacket

	Raises

	TimeoutException – if timeout is not None and there isn’t any packet available
 before the timeout expires.

	
get_by_remote(remote_xbee_device, timeout=None)

	Returns the first element of the queue that had been sent
by remote_xbee_device, if there is some in the specified timeout.

If timeout is None, this method is non-blocking. In this case, if there isn’t
any packet sent by remote_xbee_device in the queue, it returns None,
otherwise it returns an XBeeAPIPacket.

	Parameters

	
	remote_xbee_device (RemoteXBeeDevice) – the remote XBee device to get its firs element from queue.

	timeout (Integer, optional) – timeout in seconds.

	Returns

	
	if there is any packet available before the timeout expires. If timeout is

	None, the returned value may be None.

	Return type

	XBeeAPIPacket

	Raises

	TimeoutException – if timeout is not None and there isn’t any packet available that has
 been sent by remote_xbee_device before the timeout expires.

	
get_by_ip(ip_addr, timeout=None)

	Returns the first IP data packet from the queue whose IP address
matches the provided address.

If timeout is None, this method is non-blocking. In this case, if there isn’t
any packet sent by remote_xbee_device in the queue, it returns None,
otherwise it returns an XBeeAPIPacket.

	Parameters

	
	ip_addr (ipaddress.IPv4Address) – The IP address to look for in the list of packets.

	timeout (Integer, optional) – Timeout in seconds.

	Returns

	
	if there is any packet available before the timeout expires. If timeout is

	None, the returned value may be None.

	Return type

	XBeeAPIPacket

	Raises

	TimeoutException – if timeout is not None and there isn’t any packet available that has
 been sent by remote_xbee_device before the timeout expires.

	
get_by_id(frame_id, timeout=None)

	Returns the first packet from the queue whose frame ID
matches the provided one.

If timeout is None, this method is non-blocking. In this case, if there isn’t
any received packet with the provided frame ID in the queue, it returns None,
otherwise it returns an XBeeAPIPacket.

	Parameters

	
	frame_id (Integer) – The frame ID to look for in the list of packets.

	timeout (Integer, optional) – Timeout in seconds.

	Returns

	
	if there is any packet available before the timeout expires. If timeout is

	None, the returned value may be None.

	Return type

	XBeeAPIPacket

	Raises

	
	TimeoutException – if timeout is not None and there isn’t any packet available that matches

	the provided frame ID before the timeout expires. –

	
empty()

	Return True if the queue is empty, False otherwise (not reliable!).

This method is likely to be removed at some point. Use qsize() == 0
as a direct substitute, but be aware that either approach risks a race
condition where a queue can grow before the result of empty() or
qsize() can be used.

To create code that needs to wait for all queued tasks to be
completed, the preferred technique is to use the join() method.

	
flush()

	Clears the queue.

	
full()

	Return True if the queue is full, False otherwise (not reliable!).

This method is likely to be removed at some point. Use qsize() >= n
as a direct substitute, but be aware that either approach risks a race
condition where a queue can shrink before the result of full() or
qsize() can be used.

	
get_nowait()

	Remove and return an item from the queue without blocking.

Only get an item if one is immediately available. Otherwise
raise the Empty exception.

	
join()

	Blocks until all items in the Queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the
queue. The count goes down whenever a consumer thread calls task_done()
to indicate the item was retrieved and all work on it is complete.

When the count of unfinished tasks drops to zero, join() unblocks.

	
put(item, block=True, timeout=None)

	Put an item into the queue.

If optional args ‘block’ is true and ‘timeout’ is None (the default),
block if necessary until a free slot is available. If ‘timeout’ is
a non-negative number, it blocks at most ‘timeout’ seconds and raises
the Full exception if no free slot was available within that time.
Otherwise (‘block’ is false), put an item on the queue if a free slot
is immediately available, else raise the Full exception (‘timeout’
is ignored in that case).

	
put_nowait(item)

	Put an item into the queue without blocking.

Only enqueue the item if a free slot is immediately available.
Otherwise raise the Full exception.

	
qsize()

	Return the approximate size of the queue (not reliable!).

	
task_done()

	Indicate that a formerly enqueued task is complete.

Used by Queue consumer threads. For each get() used to fetch a task,
a subsequent call to task_done() tells the queue that the processing
on the task is complete.

If a join() is currently blocking, it will resume when all items
have been processed (meaning that a task_done() call was received
for every item that had been put() into the queue).

Raises a ValueError if called more times than there were items
placed in the queue.

digi.xbee.recovery module

	
digi.xbee.recovery.recover_device(target)

	Recovers the XBee from an unknown state and leaves if configured for normal operations.

	Parameters

	target (String or XBeeDevice) – target of the recovery operation.

	Raises

	RecoveryException – if there is any error performing the recovery action.

digi.xbee.serial module

	
class digi.xbee.serial.FlowControl

	Bases: enum.Enum

This class represents all available flow controls.

	
class digi.xbee.serial.XBeeSerialPort(baud_rate, port, data_bits=<sphinx.ext.autodoc.importer._MockObject object>, stop_bits=<sphinx.ext.autodoc.importer._MockObject object>, parity=<sphinx.ext.autodoc.importer._MockObject object>, flow_control=<FlowControl.NONE: None>, timeout=0.1)

	Bases: sphinx.ext.autodoc.importer._MockObject, digi.xbee.comm_interface.XBeeCommunicationInterface

This class extends the functionality of Serial class (PySerial).

It also introduces a minor change in its behaviour: the serial port is not automatically open when an object is
instantiated, only when calling open().

See also

_PySerial: https://github.com/pyserial/pyserial

Class constructor. Instantiates a new XBeeSerialPort object with the given
port parameters.

	Parameters

	
	baud_rate (Integer) – serial port baud rate.

	port (String) – serial port name to use.

	data_bits (Integer, optional) – serial data bits. Default to 8.

	stop_bits (Float, optional) – serial stop bits. Default to 1.

	parity (Char, optional) – serial parity. Default to ‘N’ (None).

	flow_control (Integer, optional) – serial flow control. Default to None.

	timeout (Integer, optional) – read timeout. Default to 0.1 seconds.

See also

_PySerial: https://github.com/pyserial/pyserial

	
open()

	Opens port with current settings. This may throw a SerialException
if the port cannot be opened.

	
is_interface_open

	Returns whether the underlying hardware communication interface is active or not.

	Returns

	Boolean. True if the interface is active, False otherwise.

	
write_frame(frame)

	Writes an XBee frame to the underlying hardware interface.

Subclasses may throw specific exceptions to signal implementation specific
hardware errors.

	Parameters

	frame (Bytearray) – The XBee API frame packet to write. If the bytearray does not
correctly represent an XBee frame, the behaviour is undefined.

	
read_byte()

	Synchronous. Reads one byte from serial port.

	Returns

	the read byte.

	Return type

	Integer

	Raises

	TimeoutException – if there is no bytes ins serial port buffer.

	
read_bytes(num_bytes)

	Synchronous. Reads the specified number of bytes from the serial port.

	Parameters

	num_bytes (Integer) – the number of bytes to read.

	Returns

	the read bytes.

	Return type

	Bytearray

	Raises

	TimeoutException – if the number of bytes read is less than num_bytes.

	
quit_reading()

	Makes the thread (if any) blocking on wait_for_frame return.

If a thread was blocked on wait_for_frame, this method blocks (for a maximum of ‘timeout’ seconds) until
the blocked thread is resumed.

	
wait_for_frame(operating_mode=<OperatingMode.API_MODE: (1, 'API mode')>)

	Reads the next packet. Starts to read when finds the start delimiter.
The last byte read is the checksum.

If there is something in the COM buffer after the
start delimiter, this method discards it.

If the method can’t read a complete and correct packet,
it will return None.

	Parameters

	operating_mode (OperatingMode) – the operating mode in which the packet should be read.

	Returns

	the read packet as bytearray if a packet is read, None otherwise.

	Return type

	Bytearray

	
read_existing()

	Asynchronous. Reads all bytes in the serial port buffer. May read 0 bytes.

	Returns

	the bytes read.

	Return type

	Bytearray

	
get_read_timeout()

	Returns the serial port read timeout.

	Returns

	read timeout in seconds.

	Return type

	Integer

	
set_read_timeout(read_timeout)

	Sets the serial port read timeout in seconds.

	Parameters

	read_timeout (Integer) – the new serial port read timeout in seconds.

	
set_baudrate(new_baudrate)

	Changes the serial port baudrate.

	Parameters

	new_baudrate (Integer) – the new baudrate to set.

	
purge_port()

	Purges the serial port by cleaning the input and output buffers.

	
close()

	Terminates the underlying hardware communication interface.

Subclasses may throw specific exceptions to signal implementation specific
hardware errors.

	
timeout

	Returns the read timeout.

	Returns

	read timeout in seconds.

	Return type

	Integer

digi.xbee.xsocket module

	
class digi.xbee.xsocket.socket(xbee_device, ip_protocol=<IPProtocol.TCP: (1, 'TCP')>)

	Bases: object

This class represents an XBee socket and provides methods to create,
connect, bind and close a socket, as well as send and receive data with it.

Class constructor. Instantiates a new XBee socket object for the given XBee device.

	Parameters

	
	xbee_device (XBeeDevice) – XBee device of the socket.

	ip_protocol (IPProtocol) – protocol of the socket.

	Raises

	
	ValueError – if xbee_device is None or if xbee_device is not an instance of CellularDevice.

	ValueError – if ip_protocol is None.

	XBeeException – if the connection with the XBee device is not open.

	
connect(address)

	Connects to a remote socket at the given address.

	Parameters

	address (Tuple) – A pair (host, port) where host is the domain name or string representation of an
IPv4 and port is the numeric port value.

	Raises

	
	TimeoutException – if the connect response is not received in the configured timeout.

	ValueError – if address is None or not a pair (host, port).

	ValueError – if port is less than 1 or greater than 65535.

	XBeeException – if the connection with the XBee device is not open.

	XBeeSocketException – if the connect status is not SUCCESS.

	
bind(address)

	Binds the socket to the given address. The socket must not already be bound.

	Parameters

	address (Tuple) – A pair (host, port) where host is the local interface (not used) and port is
the numeric port value.

	Raises

	
	TimeoutException – if the bind response is not received in the configured timeout.

	ValueError – if address is None or not a pair (host, port).

	ValueError – if port is less than 1 or greater than 65535.

	XBeeException – if the connection with the XBee device is not open.

	XBeeSocketException – if the bind status is not SUCCESS.

	XBeeSocketException – if the socket is already bound.

	
listen(backlog=1)

	Enables a server to accept connections.

	Parameters

	backlog (Integer, optional) – The number of unaccepted connections that the system will allow before refusing
new connections. If specified, it must be at least 0 (if it is lower, it is set to 0).

	Raises

	XBeeSocketException – if the socket is not bound.

	
accept()

	Accepts a connection. The socket must be bound to an address and listening for connections.

	Returns

	
	A pair (conn, address) where conn is a new socket object usable to send and receive data on

	the connection, and address is a pair (host, port) with the address bound to the socket on the
other end of the connection.

	Return type

	Tuple

	Raises

	
	XBeeException – if the connection with the XBee device is not open.

	XBeeSocketException – if the socket is not bound or not listening.

	
gettimeout()

	Returns the configured socket timeout in seconds.

	Returns

	the configured timeout in seconds.

	Return type

	Integer

	
settimeout(timeout)

	Sets the socket timeout in seconds.

	Parameters

	timeout (Integer) – the new socket timeout in seconds.

	
getblocking()

	Returns whether the socket is in blocking mode or not.

	Returns

	True if the socket is in blocking mode, False otherwise.

	Return type

	Boolean

	
setblocking(flag)

	Sets the socket in blocking or non-blocking mode.

	Parameters

	flag (Boolean) – True to set the socket in blocking mode, False to set it in no blocking mode and
configure the timeout with the default value (5 seconds).

	
recv(bufsize)

	Receives data from the socket.

	Parameters

	bufsize (Integer) – The maximum amount of data to be received at once.

	Returns

	the data received.

	Return type

	Bytearray

	Raises

	ValueError – if bufsize is less than 1.

	
recvfrom(bufsize)

	Receives data from the socket.

	Parameters

	bufsize (Integer) – the maximum amount of data to be received at once.

	Returns

	
	Pair containing the data received (Bytearray) and the address of the socket

	sending the data. The address is also a pair (host, port) where host is the string
representation of an IPv4 and port is the numeric port value.

	Return type

	Tuple (Bytearray, Tuple)

	Raises

	ValueError – if bufsize is less than 1.

	
send(data)

	Sends data to the socket and returns the number of bytes sent. The socket must be connected to a remote socket.
Applications are responsible for checking that all data has been sent; if only some of the data was
transmitted, the application needs to attempt delivery of the remaining data.

	Parameters

	data (Bytearray) – the data to send.

	Returns

	the number of bytes sent.

	Return type

	Integer

	Raises

	
	ValueError – if the data to send is None.

	ValueError – if the number of bytes to send is 0.

	XBeeException – if the connection with the XBee device is not open.

	XBeeSocketException – if the socket is not valid.

	XBeeSocketException – if the socket is not open.

	
sendall(data)

	Sends data to the socket. The socket must be connected to a remote socket. Unlike send(), this method
continues to send data from bytes until either all data has been sent or an error occurs. None is returned
on success. On error, an exception is raised, and there is no way to determine how much data, if any, was
successfully sent.

	Parameters

	data (Bytearray) – the data to send.

	Raises

	
	TimeoutException – if the send status response is not received in the configured timeout.

	ValueError – if the data to send is None.

	ValueError – if the number of bytes to send is 0.

	XBeeException – if the connection with the XBee device is not open.

	XBeeSocketException – if the socket is not valid.

	XBeeSocketException – if the send status is not SUCCESS.

	XBeeSocketException – if the socket is not open.

	
sendto(data, address)

	Sends data to the socket. The socket should not be connected to a remote socket, since the destination socket
is specified by address.

	Parameters

	
	data (Bytearray) – the data to send.

	address (Tuple) – the address of the destination socket. It must be a pair (host, port) where host
is the domain name or string representation of an IPv4 and port is the numeric port value.

	Returns

	the number of bytes sent.

	Return type

	Integer

	Raises

	
	TimeoutException – if the send status response is not received in the configured timeout.

	ValueError – if the data to send is None.

	ValueError – if the number of bytes to send is 0.

	XBeeException – if the connection with the XBee device is not open.

	XBeeSocketException – if the socket is already open.

	XBeeSocketException – if the send status is not SUCCESS.

	
close()

	Closes the socket.

	Raises

	
	TimeoutException – if the close response is not received in the configured timeout.

	XBeeException – if the connection with the XBee device is not open.

	XBeeSocketException – if the close status is not SUCCESS.

	
setsocketopt(option, value)

	Sets the value of the given socket option.

	Parameters

	
	option (SocketOption) – the socket option to set its value.

	value (Bytearray) – the new value of the socket option.

	Raises

	
	TimeoutException – if the socket option response is not received in the configured timeout.

	ValueError – if the option to set is None.

	ValueError – if the value of the option is None.

	XBeeException – if the connection with the XBee device is not open.

	XBeeSocketException – if the socket option response status is not SUCCESS.

	
getsocketopt(option)

	Returns the value of the given socket option.

	Parameters

	option (SocketOption) – the socket option to get its value.

	Returns

	the value of the socket option.

	Return type

	Bytearray

	Raises

	
	TimeoutException – if the socket option response is not received in the configured timeout.

	ValueError – if the option to set is None.

	XBeeException – if the connection with the XBee device is not open.

	XBeeSocketException – if the socket option response status is not SUCCESS.

	
add_socket_state_callback(callback)

	Adds a callback for the event digi.xbee.reader.SocketStateReceived.

	Parameters

	callback (Function) – the callback. Receives two arguments.

	The socket ID as an Integer.

	The state received as a SocketState

	
del_socket_state_callback(callback)

	Deletes a callback for the callback list of digi.xbee.reader.SocketStateReceived event.

	Parameters

	callback (Function) – the callback to delete.

	Raises

	ValueError – if callback is not in the callback list of
 digi.xbee.reader.SocketStateReceived event.

	
get_sock_info()

	Returns the information of this socket.

	Returns

	The socket information.

	Return type

	SocketInfo

	Raises

	
	InvalidOperatingModeException – if the XBee device’s operating mode is not API or ESCAPED API. This
 method only checks the cached value of the operating mode.

	TimeoutException – if the response is not received before the read timeout expires.

	XBeeException – if the XBee device’s serial port is closed.

See also

SocketInfo

	
is_connected

	Boolean. Indicates whether the socket is connected or not.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 digi	

 	
 	
 digi.xbee	

 	
 	
 digi.xbee.comm_interface	

 	
 	
 digi.xbee.devices	

 	
 	
 digi.xbee.exception	

 	
 	
 digi.xbee.filesystem	

 	
 	
 digi.xbee.firmware	

 	
 	
 digi.xbee.io	

 	
 	
 digi.xbee.models	

 	
 	
 digi.xbee.models.accesspoint	

 	
 	
 digi.xbee.models.address	

 	
 	
 digi.xbee.models.atcomm	

 	
 	
 digi.xbee.models.hw	

 	
 	
 digi.xbee.models.message	

 	
 	
 digi.xbee.models.mode	

 	
 	
 digi.xbee.models.options	

 	
 	
 digi.xbee.models.protocol	

 	
 	
 digi.xbee.models.status	

 	
 	
 digi.xbee.packets	

 	
 	
 digi.xbee.packets.aft	

 	
 	
 digi.xbee.packets.base	

 	
 	
 digi.xbee.packets.cellular	

 	
 	
 digi.xbee.packets.common	

 	
 	
 digi.xbee.packets.devicecloud	

 	
 	
 digi.xbee.packets.factory	

 	
 	
 digi.xbee.packets.network	

 	
 	
 digi.xbee.packets.raw	

 	
 	
 digi.xbee.packets.relay	

 	
 	
 digi.xbee.packets.socket	

 	
 	
 digi.xbee.packets.wifi	

 	
 	
 digi.xbee.packets.zigbee	

 	
 	
 digi.xbee.profile	

 	
 	
 digi.xbee.reader	

 	
 	
 digi.xbee.recovery	

 	
 	
 digi.xbee.serial	

 	
 	
 digi.xbee.util	

 	
 	
 digi.xbee.util.utils	

 	
 	
 digi.xbee.xsocket	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Z

A

 	
 	AbstractXBeeDevice (class in digi.xbee.devices)

 	accept() (digi.xbee.xsocket.socket method)

 	AccessPoint (class in digi.xbee.models.accesspoint)

 	ADC (digi.xbee.io.IOMode attribute)

 	add_bluetooth_data_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	add_data_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	add_device_discovered_callback() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	add_discovery_process_finished_callback() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	add_expl_data_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	add_explicit_data_received_callback() (digi.xbee.reader.PacketListener method)

 	add_if_not_exist() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	add_io_sample_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	add_ip_data_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.reader.PacketListener method)

 	add_micropython_data_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	add_modem_status_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	add_network_modified_callback() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	add_packet_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	add_remote() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	add_remotes() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	add_sms_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	
 	add_sms_received_callback() (digi.xbee.reader.PacketListener method)

 	add_socket_data_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	add_socket_data_received_from_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	add_socket_state_callback() (digi.xbee.xsocket.socket method)

 	add_socket_state_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	add_user_data_relay_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	address (digi.xbee.models.address.XBee16BitAddress attribute)

 	(digi.xbee.models.address.XBee64BitAddress attribute)

 	(digi.xbee.models.address.XBeeIMEIAddress attribute)

 	analog_mask (digi.xbee.io.IOSample attribute)

 	analog_values (digi.xbee.io.IOSample attribute)

 	ApiFrameType (class in digi.xbee.packets.aft)

 	APIOutputMode (class in digi.xbee.models.mode)

 	APIOutputModeBit (class in digi.xbee.models.mode)

 	append() (digi.xbee.reader.BluetoothDataReceived method)

 	(digi.xbee.reader.DataReceived method)

 	(digi.xbee.reader.DeviceDiscovered method)

 	(digi.xbee.reader.DiscoveryProcessFinished method)

 	(digi.xbee.reader.ExplicitDataReceived method)

 	(digi.xbee.reader.IOSampleReceived method)

 	(digi.xbee.reader.IPDataReceived method)

 	(digi.xbee.reader.MicroPythonDataReceived method)

 	(digi.xbee.reader.ModemStatusReceived method)

 	(digi.xbee.reader.NetworkModified method)

 	(digi.xbee.reader.PacketReceived method)

 	(digi.xbee.reader.RelayDataReceived method)

 	(digi.xbee.reader.SMSReceived method)

 	(digi.xbee.reader.SocketDataReceived method)

 	(digi.xbee.reader.SocketDataReceivedFrom method)

 	(digi.xbee.reader.SocketStateReceived method)

 	(digi.xbee.reader.XBeeEvent method)

 	APPEND_DD (digi.xbee.models.options.DiscoveryOptions attribute)

 	APPEND_RSSI (digi.xbee.models.options.DiscoveryOptions attribute)

 	APPLY_CHANGES (digi.xbee.models.options.RemoteATCmdOptions attribute)

 	apply_changes() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	apply_profile() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	apply_xbee_profile() (in module digi.xbee.profile)

 	APS_ENCRYPTED (digi.xbee.models.options.ReceiveOptions attribute)

 	ascii_to_int() (in module digi.xbee.util.utils)

 	AssociationIndicationStatus (class in digi.xbee.models.status)

 	at_command (digi.xbee.io.IOLine attribute)

 	ATCommand (class in digi.xbee.models.atcomm)

 	ATCommandException

 	ATCommandResponse (class in digi.xbee.models.atcomm)

 	ATCommandStatus (class in digi.xbee.models.status)

 	ATCommPacket (class in digi.xbee.packets.common)

 	ATCommQueuePacket (class in digi.xbee.packets.common)

 	ATCommResponsePacket (class in digi.xbee.packets.common)

 	ATStringCommand (class in digi.xbee.models.atcomm)

B

 	
 	baudrate (digi.xbee.profile.FirmwareBaudrate attribute)

 	bind() (digi.xbee.xsocket.socket method)

 	BluetoothDataReceived (class in digi.xbee.reader)

 	BROADCAST_ADDRESS (digi.xbee.models.address.XBee16BitAddress attribute)

 	(digi.xbee.models.address.XBee64BitAddress attribute)

 	
 	BROADCAST_PACKET (digi.xbee.models.options.ReceiveOptions attribute)

 	broadcast_radius (digi.xbee.packets.common.ExplicitAddressingPacket attribute)

 	(digi.xbee.packets.common.TransmitPacket attribute)

 	build_frame() (in module digi.xbee.packets.factory)

 	bytearray_value (digi.xbee.profile.XBeeProfileSetting attribute)

 	bytes_to_int() (in module digi.xbee.util.utils)

C

 	
 	CellularAssociationIndicationStatus (class in digi.xbee.models.status)

 	CellularDevice (class in digi.xbee.devices)

 	change_directory() (digi.xbee.filesystem.LocalXBeeFileSystemManager method)

 	channel (digi.xbee.models.accesspoint.AccessPoint attribute)

 	clear() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	(digi.xbee.reader.BluetoothDataReceived method)

 	(digi.xbee.reader.DataReceived method)

 	(digi.xbee.reader.DeviceDiscovered method)

 	(digi.xbee.reader.DiscoveryProcessFinished method)

 	(digi.xbee.reader.ExplicitDataReceived method)

 	(digi.xbee.reader.IOSampleReceived method)

 	(digi.xbee.reader.IPDataReceived method)

 	(digi.xbee.reader.MicroPythonDataReceived method)

 	(digi.xbee.reader.ModemStatusReceived method)

 	(digi.xbee.reader.NetworkModified method)

 	(digi.xbee.reader.PacketReceived method)

 	(digi.xbee.reader.RelayDataReceived method)

 	(digi.xbee.reader.SMSReceived method)

 	(digi.xbee.reader.SocketDataReceived method)

 	(digi.xbee.reader.SocketDataReceivedFrom method)

 	(digi.xbee.reader.SocketStateReceived method)

 	(digi.xbee.reader.XBeeEvent method)

 	client_socket_id (digi.xbee.packets.socket.SocketNewIPv4ClientPacket attribute)

 	close() (digi.xbee.comm_interface.XBeeCommunicationInterface method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.serial.XBeeSerialPort method)

 	(digi.xbee.xsocket.socket method)

 	cluster_id (digi.xbee.models.message.ExplicitXBeeMessage attribute)

 	(digi.xbee.packets.common.ExplicitAddressingPacket attribute)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket attribute)

 	code (digi.xbee.devices.NetworkEventReason attribute)

 	(digi.xbee.devices.NetworkEventType attribute)

 	(digi.xbee.io.IOValue attribute)

 	(digi.xbee.models.accesspoint.WiFiEncryptionType attribute)

 	(digi.xbee.models.atcomm.SpecialByte attribute)

 	(digi.xbee.models.hw.HardwareVersion attribute)

 	(digi.xbee.models.mode.APIOutputMode attribute)

 	(digi.xbee.models.mode.APIOutputModeBit attribute)

 	(digi.xbee.models.mode.IPAddressingMode attribute)

 	(digi.xbee.models.mode.OperatingMode attribute)

 	(digi.xbee.models.options.DiscoveryOptions attribute)

 	(digi.xbee.models.options.RegisterKeyOptions attribute)

 	(digi.xbee.models.options.SendDataRequestOptions attribute)

 	(digi.xbee.models.options.SocketOption attribute)

 	(digi.xbee.models.options.XBeeLocalInterface attribute)

 	(digi.xbee.models.protocol.IPProtocol attribute)

 	(digi.xbee.models.protocol.XBeeProtocol attribute)

 	(digi.xbee.models.status.ATCommandStatus attribute)

 	(digi.xbee.models.status.AssociationIndicationStatus attribute)

 	(digi.xbee.models.status.CellularAssociationIndicationStatus attribute)

 	(digi.xbee.models.status.DeviceCloudStatus attribute)

 	(digi.xbee.models.status.DiscoveryStatus attribute)

 	(digi.xbee.models.status.FrameError attribute)

 	(digi.xbee.models.status.ModemStatus attribute)

 	(digi.xbee.models.status.NetworkDiscoveryStatus attribute)

 	(digi.xbee.models.status.PowerLevel attribute)

 	(digi.xbee.models.status.SocketInfoState attribute)

 	(digi.xbee.models.status.SocketState attribute)

 	(digi.xbee.models.status.SocketStatus attribute)

 	(digi.xbee.models.status.TransmitStatus attribute)

 	(digi.xbee.models.status.WiFiAssociationIndicationStatus attribute)

 	(digi.xbee.models.status.ZigbeeRegisterStatus attribute)

 	(digi.xbee.packets.aft.ApiFrameType attribute)

 	(digi.xbee.profile.FlashFirmwareOption attribute)

 	comm_iface (digi.xbee.devices.CellularDevice attribute)

 	(digi.xbee.devices.DigiMeshDevice attribute)

 	(digi.xbee.devices.DigiPointDevice attribute)

 	(digi.xbee.devices.IPDevice attribute)

 	(digi.xbee.devices.LPWANDevice attribute)

 	(digi.xbee.devices.NBIoTDevice attribute)

 	(digi.xbee.devices.Raw802Device attribute)

 	(digi.xbee.devices.WiFiDevice attribute)

 	(digi.xbee.devices.XBeeDevice attribute)

 	(digi.xbee.devices.ZigBeeDevice attribute)

 	command (digi.xbee.models.atcomm.ATCommand attribute)

 	(digi.xbee.models.atcomm.ATCommandResponse attribute)

 	(digi.xbee.models.atcomm.ATStringCommand attribute)

 	(digi.xbee.packets.common.ATCommPacket attribute)

 	(digi.xbee.packets.common.ATCommQueuePacket attribute)

 	(digi.xbee.packets.common.ATCommResponsePacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandPacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket attribute)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket attribute)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket attribute)

 	command_value (digi.xbee.packets.common.ATCommResponsePacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket attribute)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket attribute)

 	CommunicationException

 	connect() (digi.xbee.filesystem.LocalXBeeFileSystemManager method)

 	(digi.xbee.xsocket.socket method)

 	connect_by_ap() (digi.xbee.devices.WiFiDevice method)

 	
 	connect_by_ssid() (digi.xbee.devices.WiFiDevice method)

 	ConnectionException

 	content_type (digi.xbee.packets.devicecloud.SendDataRequestPacket attribute)

 	COORDINATOR_ADDRESS (digi.xbee.models.address.XBee16BitAddress attribute)

 	(digi.xbee.models.address.XBee64BitAddress attribute)

 	copy() (digi.xbee.reader.BluetoothDataReceived method)

 	(digi.xbee.reader.DataReceived method)

 	(digi.xbee.reader.DeviceDiscovered method)

 	(digi.xbee.reader.DiscoveryProcessFinished method)

 	(digi.xbee.reader.ExplicitDataReceived method)

 	(digi.xbee.reader.IOSampleReceived method)

 	(digi.xbee.reader.IPDataReceived method)

 	(digi.xbee.reader.MicroPythonDataReceived method)

 	(digi.xbee.reader.ModemStatusReceived method)

 	(digi.xbee.reader.NetworkModified method)

 	(digi.xbee.reader.PacketReceived method)

 	(digi.xbee.reader.RelayDataReceived method)

 	(digi.xbee.reader.SMSReceived method)

 	(digi.xbee.reader.SocketDataReceived method)

 	(digi.xbee.reader.SocketDataReceivedFrom method)

 	(digi.xbee.reader.SocketStateReceived method)

 	(digi.xbee.reader.XBeeEvent method)

 	count() (digi.xbee.reader.BluetoothDataReceived method)

 	(digi.xbee.reader.DataReceived method)

 	(digi.xbee.reader.DeviceDiscovered method)

 	(digi.xbee.reader.DiscoveryProcessFinished method)

 	(digi.xbee.reader.ExplicitDataReceived method)

 	(digi.xbee.reader.IOSampleReceived method)

 	(digi.xbee.reader.IPDataReceived method)

 	(digi.xbee.reader.MicroPythonDataReceived method)

 	(digi.xbee.reader.ModemStatusReceived method)

 	(digi.xbee.reader.NetworkModified method)

 	(digi.xbee.reader.PacketReceived method)

 	(digi.xbee.reader.RelayDataReceived method)

 	(digi.xbee.reader.SMSReceived method)

 	(digi.xbee.reader.SocketDataReceived method)

 	(digi.xbee.reader.SocketDataReceivedFrom method)

 	(digi.xbee.reader.SocketStateReceived method)

 	(digi.xbee.reader.XBeeEvent method)

 	create_packet() (digi.xbee.packets.base.GenericXBeePacket static method)

 	(digi.xbee.packets.base.UnknownXBeePacket static method)

 	(digi.xbee.packets.base.XBeeAPIPacket static method)

 	(digi.xbee.packets.base.XBeePacket static method)

 	(digi.xbee.packets.cellular.RXSMSPacket static method)

 	(digi.xbee.packets.cellular.TXSMSPacket static method)

 	(digi.xbee.packets.common.ATCommPacket static method)

 	(digi.xbee.packets.common.ATCommQueuePacket static method)

 	(digi.xbee.packets.common.ATCommResponsePacket static method)

 	(digi.xbee.packets.common.ExplicitAddressingPacket static method)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket static method)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket static method)

 	(digi.xbee.packets.common.ModemStatusPacket static method)

 	(digi.xbee.packets.common.ReceivePacket static method)

 	(digi.xbee.packets.common.RemoteATCommandPacket static method)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket static method)

 	(digi.xbee.packets.common.TransmitPacket static method)

 	(digi.xbee.packets.common.TransmitStatusPacket static method)

 	(digi.xbee.packets.devicecloud.DeviceRequestPacket static method)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket static method)

 	(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket static method)

 	(digi.xbee.packets.devicecloud.FrameErrorPacket static method)

 	(digi.xbee.packets.devicecloud.SendDataRequestPacket static method)

 	(digi.xbee.packets.devicecloud.SendDataResponsePacket static method)

 	(digi.xbee.packets.network.RXIPv4Packet static method)

 	(digi.xbee.packets.network.TXIPv4Packet static method)

 	(digi.xbee.packets.raw.RX16IOPacket static method)

 	(digi.xbee.packets.raw.RX16Packet static method)

 	(digi.xbee.packets.raw.RX64IOPacket static method)

 	(digi.xbee.packets.raw.RX64Packet static method)

 	(digi.xbee.packets.raw.TX16Packet static method)

 	(digi.xbee.packets.raw.TX64Packet static method)

 	(digi.xbee.packets.raw.TXStatusPacket static method)

 	(digi.xbee.packets.relay.UserDataRelayOutputPacket static method)

 	(digi.xbee.packets.relay.UserDataRelayPacket static method)

 	(digi.xbee.packets.socket.SocketBindListenPacket static method)

 	(digi.xbee.packets.socket.SocketClosePacket static method)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket static method)

 	(digi.xbee.packets.socket.SocketConnectPacket static method)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket static method)

 	(digi.xbee.packets.socket.SocketCreatePacket static method)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket static method)

 	(digi.xbee.packets.socket.SocketListenResponsePacket static method)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket static method)

 	(digi.xbee.packets.socket.SocketOptionRequestPacket static method)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket static method)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket static method)

 	(digi.xbee.packets.socket.SocketReceivePacket static method)

 	(digi.xbee.packets.socket.SocketSendPacket static method)

 	(digi.xbee.packets.socket.SocketSendToPacket static method)

 	(digi.xbee.packets.socket.SocketStatePacket static method)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket static method)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket static method)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket static method)

 	(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket static method)

 	(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket static method)

 	create_xbee_device() (digi.xbee.devices.CellularDevice class method)

 	(digi.xbee.devices.DigiMeshDevice class method)

 	(digi.xbee.devices.DigiPointDevice class method)

 	(digi.xbee.devices.IPDevice class method)

 	(digi.xbee.devices.LPWANDevice class method)

 	(digi.xbee.devices.NBIoTDevice class method)

 	(digi.xbee.devices.Raw802Device class method)

 	(digi.xbee.devices.WiFiDevice class method)

 	(digi.xbee.devices.XBeeDevice class method)

 	(digi.xbee.devices.ZigBeeDevice class method)

D

 	
 	daemon (digi.xbee.reader.PacketListener attribute)

 	data (digi.xbee.models.message.ExplicitXBeeMessage attribute)

 	(digi.xbee.models.message.IPMessage attribute)

 	(digi.xbee.models.message.SMSMessage attribute)

 	(digi.xbee.models.message.UserDataRelayMessage attribute)

 	(digi.xbee.models.message.XBeeMessage attribute)

 	(digi.xbee.packets.cellular.RXSMSPacket attribute)

 	(digi.xbee.packets.cellular.TXSMSPacket attribute)

 	(digi.xbee.packets.network.RXIPv4Packet attribute)

 	(digi.xbee.packets.network.TXIPv4Packet attribute)

 	(digi.xbee.packets.relay.UserDataRelayOutputPacket attribute)

 	(digi.xbee.packets.relay.UserDataRelayPacket attribute)

 	DataReceived (class in digi.xbee.reader)

 	del_bluetooth_data_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	del_data_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	del_device_discovered_callback() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	del_discovery_process_finished_callback() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	del_expl_data_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	del_explicit_data_received_callback() (digi.xbee.reader.PacketListener method)

 	del_io_sample_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	del_ip_data_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.reader.PacketListener method)

 	del_micropython_data_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	del_modem_status_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	del_network_modified_callback() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	del_packet_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	del_sms_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	del_sms_received_callback() (digi.xbee.reader.PacketListener method)

 	del_socket_data_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	del_socket_data_received_from_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	del_socket_state_callback() (digi.xbee.xsocket.socket method)

 	del_socket_state_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	del_user_data_relay_received_callback() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.reader.PacketListener method)

 	
 	deprecated() (in module digi.xbee.util.utils)

 	description (digi.xbee.devices.NetworkEventReason attribute)

 	(digi.xbee.devices.NetworkEventType attribute)

 	(digi.xbee.io.IOLine attribute)

 	(digi.xbee.models.accesspoint.WiFiEncryptionType attribute)

 	(digi.xbee.models.atcomm.ATStringCommand attribute)

 	(digi.xbee.models.hw.HardwareVersion attribute)

 	(digi.xbee.models.mode.APIOutputMode attribute)

 	(digi.xbee.models.mode.APIOutputModeBit attribute)

 	(digi.xbee.models.mode.IPAddressingMode attribute)

 	(digi.xbee.models.mode.OperatingMode attribute)

 	(digi.xbee.models.options.DiscoveryOptions attribute)

 	(digi.xbee.models.options.RegisterKeyOptions attribute)

 	(digi.xbee.models.options.SendDataRequestOptions attribute)

 	(digi.xbee.models.options.SocketOption attribute)

 	(digi.xbee.models.options.XBeeLocalInterface attribute)

 	(digi.xbee.models.protocol.IPProtocol attribute)

 	(digi.xbee.models.protocol.Role attribute)

 	(digi.xbee.models.protocol.XBeeProtocol attribute)

 	(digi.xbee.models.status.ATCommandStatus attribute)

 	(digi.xbee.models.status.AssociationIndicationStatus attribute)

 	(digi.xbee.models.status.CellularAssociationIndicationStatus attribute)

 	(digi.xbee.models.status.DeviceCloudStatus attribute)

 	(digi.xbee.models.status.DiscoveryStatus attribute)

 	(digi.xbee.models.status.FrameError attribute)

 	(digi.xbee.models.status.ModemStatus attribute)

 	(digi.xbee.models.status.NetworkDiscoveryStatus attribute)

 	(digi.xbee.models.status.PowerLevel attribute)

 	(digi.xbee.models.status.SocketInfoState attribute)

 	(digi.xbee.models.status.SocketState attribute)

 	(digi.xbee.models.status.SocketStatus attribute)

 	(digi.xbee.models.status.TransmitStatus attribute)

 	(digi.xbee.models.status.WiFiAssociationIndicationStatus attribute)

 	(digi.xbee.models.status.ZigbeeRegisterStatus attribute)

 	(digi.xbee.packets.aft.ApiFrameType attribute)

 	(digi.xbee.profile.FlashFirmwareOption attribute)

 	(digi.xbee.profile.XBeeProfile attribute)

 	(digi.xbee.profile.XBeeSettingFormat attribute)

 	(digi.xbee.profile.XBeeSettingType attribute)

 	dest_address (digi.xbee.packets.network.TXIPv4Packet attribute)

 	(digi.xbee.packets.socket.SocketConnectPacket attribute)

 	(digi.xbee.packets.socket.SocketSendToPacket attribute)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket attribute)

 	DEST_ADDRESS_BINARY (digi.xbee.packets.socket.SocketConnectPacket attribute)

 	DEST_ADDRESS_STRING (digi.xbee.packets.socket.SocketConnectPacket attribute)

 	dest_address_type (digi.xbee.packets.socket.SocketConnectPacket attribute)

 	dest_endpoint (digi.xbee.models.message.ExplicitXBeeMessage attribute)

 	(digi.xbee.packets.common.ExplicitAddressingPacket attribute)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket attribute)

 	dest_interface (digi.xbee.packets.relay.UserDataRelayPacket attribute)

 	dest_port (digi.xbee.models.message.IPMessage attribute)

 	(digi.xbee.packets.network.RXIPv4Packet attribute)

 	(digi.xbee.packets.network.TXIPv4Packet attribute)

 	(digi.xbee.packets.socket.SocketConnectPacket attribute)

 	(digi.xbee.packets.socket.SocketSendToPacket attribute)

 	DeviceCloudStatus (class in digi.xbee.models.status)

 	DeviceDiscovered (class in digi.xbee.reader)

 	DeviceRequestPacket (class in digi.xbee.packets.devicecloud)

 	DeviceResponsePacket (class in digi.xbee.packets.devicecloud)

 	DeviceResponseStatusPacket (class in digi.xbee.packets.devicecloud)

 	DictKeys (class in digi.xbee.packets.base)

 	digi (module)

 	digi.xbee (module)

 	digi.xbee.comm_interface (module)

 	digi.xbee.devices (module)

 	digi.xbee.exception (module)

 	digi.xbee.filesystem (module)

 	digi.xbee.firmware (module)

 	digi.xbee.io (module)

 	digi.xbee.models (module)

 	digi.xbee.models.accesspoint (module)

 	digi.xbee.models.address (module)

 	digi.xbee.models.atcomm (module)

 	digi.xbee.models.hw (module)

 	digi.xbee.models.message (module)

 	digi.xbee.models.mode (module)

 	digi.xbee.models.options (module)

 	digi.xbee.models.protocol (module)

 	digi.xbee.models.status (module)

 	digi.xbee.packets (module)

 	digi.xbee.packets.aft (module)

 	digi.xbee.packets.base (module)

 	digi.xbee.packets.cellular (module)

 	digi.xbee.packets.common (module)

 	digi.xbee.packets.devicecloud (module)

 	digi.xbee.packets.factory (module)

 	digi.xbee.packets.network (module)

 	digi.xbee.packets.raw (module)

 	digi.xbee.packets.relay (module)

 	digi.xbee.packets.socket (module)

 	digi.xbee.packets.wifi (module)

 	digi.xbee.packets.zigbee (module)

 	digi.xbee.profile (module)

 	digi.xbee.reader (module)

 	digi.xbee.recovery (module)

 	digi.xbee.serial (module)

 	digi.xbee.util (module)

 	digi.xbee.util.utils (module)

 	digi.xbee.xsocket (module)

 	DIGIMESH_MODE (digi.xbee.models.options.TransmitOptions attribute)

 	DigiMeshDevice (class in digi.xbee.devices)

 	DigiMeshNetwork (class in digi.xbee.devices)

 	DigiPointDevice (class in digi.xbee.devices)

 	DigiPointNetwork (class in digi.xbee.devices)

 	digital_hsb_mask (digi.xbee.io.IOSample attribute)

 	DIGITAL_IN (digi.xbee.io.IOMode attribute)

 	digital_lsb_mask (digi.xbee.io.IOSample attribute)

 	digital_mask (digi.xbee.io.IOSample attribute)

 	DIGITAL_OUT_HIGH (digi.xbee.io.IOMode attribute)

 	DIGITAL_OUT_LOW (digi.xbee.io.IOMode attribute)

 	digital_values (digi.xbee.io.IOSample attribute)

 	DISABLE_ACK (digi.xbee.models.options.RemoteATCmdOptions attribute)

 	(digi.xbee.models.options.TransmitOptions attribute)

 	disable_bluetooth() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	disable_logger() (in module digi.xbee.util.utils)

 	DISABLE_RETRIES_AND_REPAIR (digi.xbee.models.options.TransmitOptions attribute)

 	DISABLED (digi.xbee.io.IOMode attribute)

 	disconnect() (digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.filesystem.LocalXBeeFileSystemManager method)

 	discover_device() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	discover_devices() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	DISCOVER_MYSELF (digi.xbee.models.options.DiscoveryOptions attribute)

 	discovery_status (digi.xbee.packets.common.TransmitStatusPacket attribute)

 	DiscoveryOptions (class in digi.xbee.models.options)

 	DiscoveryProcessFinished (class in digi.xbee.reader)

 	DiscoveryStatus (class in digi.xbee.models.status)

 	doc_enum() (in module digi.xbee.util.utils)

 	DONT_ATTEMPT_RD (digi.xbee.models.options.TransmitOptions attribute)

E

 	
 	empty() (digi.xbee.reader.XBeeQueue method)

 	enable_apply_changes() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	ENABLE_APS_ENCRYPTION (digi.xbee.models.options.TransmitOptions attribute)

 	enable_bluetooth() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	enable_logger() (in module digi.xbee.util.utils)

 	ENABLE_MULTICAST (digi.xbee.models.options.TransmitOptions attribute)

 	ENABLE_UNICAST_NACK (digi.xbee.models.options.TransmitOptions attribute)

 	ENABLE_UNICAST_TRACE_ROUTE (digi.xbee.models.options.TransmitOptions attribute)

 	encryption_type (digi.xbee.models.accesspoint.AccessPoint attribute)

 	
 	error (digi.xbee.packets.devicecloud.FrameErrorPacket attribute)

 	execute_command() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	ExplicitAddressingPacket (class in digi.xbee.packets.common)

 	ExplicitDataReceived (class in digi.xbee.reader)

 	ExplicitRXIndicatorPacket (class in digi.xbee.packets.common)

 	ExplicitXBeeMessage (class in digi.xbee.models.message)

 	extend() (digi.xbee.reader.BluetoothDataReceived method)

 	(digi.xbee.reader.DataReceived method)

 	(digi.xbee.reader.DeviceDiscovered method)

 	(digi.xbee.reader.DiscoveryProcessFinished method)

 	(digi.xbee.reader.ExplicitDataReceived method)

 	(digi.xbee.reader.IOSampleReceived method)

 	(digi.xbee.reader.IPDataReceived method)

 	(digi.xbee.reader.MicroPythonDataReceived method)

 	(digi.xbee.reader.ModemStatusReceived method)

 	(digi.xbee.reader.NetworkModified method)

 	(digi.xbee.reader.PacketReceived method)

 	(digi.xbee.reader.RelayDataReceived method)

 	(digi.xbee.reader.SMSReceived method)

 	(digi.xbee.reader.SocketDataReceived method)

 	(digi.xbee.reader.SocketDataReceivedFrom method)

 	(digi.xbee.reader.SocketStateReceived method)

 	(digi.xbee.reader.XBeeEvent method)

 	EXTENDED_TIMEOUT (digi.xbee.models.options.RemoteATCmdOptions attribute)

F

 	
 	file_data (digi.xbee.packets.devicecloud.SendDataRequestPacket attribute)

 	file_system_path (digi.xbee.profile.XBeeProfile attribute)

 	FileSystemElement (class in digi.xbee.filesystem)

 	FileSystemException

 	FileSystemNotSupportedException

 	firmware_description_file (digi.xbee.profile.XBeeProfile attribute)

 	firmware_version (digi.xbee.profile.XBeeProfile attribute)

 	FirmwareBaudrate (class in digi.xbee.profile)

 	FirmwareParity (class in digi.xbee.profile)

 	FirmwareStopbits (class in digi.xbee.profile)

 	FirmwareUpdateException

 	flags (digi.xbee.packets.devicecloud.DeviceRequestPacket attribute)

 	flash_firmware_option (digi.xbee.profile.XBeeProfile attribute)

 	FlashFirmwareOption (class in digi.xbee.profile)

 	FlowControl (class in digi.xbee.serial)

 	flush() (digi.xbee.reader.XBeeQueue method)

 	flush_queues() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	force_disassociate() (digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	format (digi.xbee.profile.XBeeProfileSetting attribute)

 	format_filesystem() (digi.xbee.filesystem.LocalXBeeFileSystemManager method)

 	frame_id (digi.xbee.packets.base.GenericXBeePacket attribute)

 	(digi.xbee.packets.base.UnknownXBeePacket attribute)

 	(digi.xbee.packets.base.XBeeAPIPacket attribute)

 	(digi.xbee.packets.cellular.RXSMSPacket attribute)

 	(digi.xbee.packets.cellular.TXSMSPacket attribute)

 	(digi.xbee.packets.common.ATCommPacket attribute)

 	(digi.xbee.packets.common.ATCommQueuePacket attribute)

 	(digi.xbee.packets.common.ATCommResponsePacket attribute)

 	(digi.xbee.packets.common.ExplicitAddressingPacket attribute)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket attribute)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket attribute)

 	(digi.xbee.packets.common.ModemStatusPacket attribute)

 	(digi.xbee.packets.common.ReceivePacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandPacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket attribute)

 	(digi.xbee.packets.common.TransmitPacket attribute)

 	(digi.xbee.packets.common.TransmitStatusPacket attribute)

 	(digi.xbee.packets.devicecloud.DeviceRequestPacket attribute)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket attribute)

 	(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket attribute)

 	(digi.xbee.packets.devicecloud.FrameErrorPacket attribute)

 	(digi.xbee.packets.devicecloud.SendDataRequestPacket attribute)

 	(digi.xbee.packets.devicecloud.SendDataResponsePacket attribute)

 	(digi.xbee.packets.network.RXIPv4Packet attribute)

 	(digi.xbee.packets.network.TXIPv4Packet attribute)

 	(digi.xbee.packets.raw.RX16IOPacket attribute)

 	(digi.xbee.packets.raw.RX16Packet attribute)

 	(digi.xbee.packets.raw.RX64IOPacket attribute)

 	(digi.xbee.packets.raw.RX64Packet attribute)

 	(digi.xbee.packets.raw.TX16Packet attribute)

 	(digi.xbee.packets.raw.TX64Packet attribute)

 	(digi.xbee.packets.raw.TXStatusPacket attribute)

 	(digi.xbee.packets.relay.UserDataRelayOutputPacket attribute)

 	(digi.xbee.packets.relay.UserDataRelayPacket attribute)

 	(digi.xbee.packets.socket.SocketBindListenPacket attribute)

 	(digi.xbee.packets.socket.SocketClosePacket attribute)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketConnectPacket attribute)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketCreatePacket attribute)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketListenResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket attribute)

 	(digi.xbee.packets.socket.SocketOptionRequestPacket attribute)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket attribute)

 	(digi.xbee.packets.socket.SocketReceivePacket attribute)

 	(digi.xbee.packets.socket.SocketSendPacket attribute)

 	(digi.xbee.packets.socket.SocketSendToPacket attribute)

 	(digi.xbee.packets.socket.SocketStatePacket attribute)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket attribute)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket attribute)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket attribute)

 	(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket attribute)

 	(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket attribute)

 	
 	FrameError (class in digi.xbee.models.status)

 	FrameErrorPacket (class in digi.xbee.packets.devicecloud)

 	from_bytes() (digi.xbee.models.address.XBee16BitAddress class method)

 	(digi.xbee.models.address.XBee64BitAddress class method)

 	from_hex_string() (digi.xbee.models.address.XBee16BitAddress class method)

 	(digi.xbee.models.address.XBee64BitAddress class method)

 	from_string() (digi.xbee.models.address.XBeeIMEIAddress class method)

 	full() (digi.xbee.reader.XBeeQueue method)

G

 	
 	GenericXBeePacket (class in digi.xbee.packets.base)

 	get() (digi.xbee.reader.XBeeQueue method)

 	get_16bit_addr() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_64bit_addr() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_access_point() (digi.xbee.devices.WiFiDevice method)

 	get_access_point_timeout() (digi.xbee.devices.WiFiDevice method)

 	get_adc_value() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_ai_status() (digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_analog_value() (digi.xbee.io.IOSample method)

 	get_api_output_mode() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_api_output_mode_value() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_bluetooth_data_received_callbacks() (digi.xbee.reader.PacketListener method)

 	get_bluetooth_mac_addr() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_by_id() (digi.xbee.reader.XBeeQueue method)

 	get_by_ip() (digi.xbee.reader.XBeeQueue method)

 	get_by_remote() (digi.xbee.reader.XBeeQueue method)

 	get_cellular_ai_status() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	get_checksum() (digi.xbee.packets.base.GenericXBeePacket method)

 	(digi.xbee.packets.base.UnknownXBeePacket method)

 	(digi.xbee.packets.base.XBeeAPIPacket method)

 	(digi.xbee.packets.base.XBeePacket method)

 	(digi.xbee.packets.cellular.RXSMSPacket method)

 	(digi.xbee.packets.cellular.TXSMSPacket method)

 	(digi.xbee.packets.common.ATCommPacket method)

 	(digi.xbee.packets.common.ATCommQueuePacket method)

 	(digi.xbee.packets.common.ATCommResponsePacket method)

 	(digi.xbee.packets.common.ExplicitAddressingPacket method)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket method)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket method)

 	(digi.xbee.packets.common.ModemStatusPacket method)

 	(digi.xbee.packets.common.ReceivePacket method)

 	(digi.xbee.packets.common.RemoteATCommandPacket method)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket method)

 	(digi.xbee.packets.common.TransmitPacket method)

 	(digi.xbee.packets.common.TransmitStatusPacket method)

 	(digi.xbee.packets.devicecloud.DeviceRequestPacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket method)

 	(digi.xbee.packets.devicecloud.FrameErrorPacket method)

 	(digi.xbee.packets.devicecloud.SendDataRequestPacket method)

 	(digi.xbee.packets.devicecloud.SendDataResponsePacket method)

 	(digi.xbee.packets.network.RXIPv4Packet method)

 	(digi.xbee.packets.network.TXIPv4Packet method)

 	(digi.xbee.packets.raw.RX16IOPacket method)

 	(digi.xbee.packets.raw.RX16Packet method)

 	(digi.xbee.packets.raw.RX64IOPacket method)

 	(digi.xbee.packets.raw.RX64Packet method)

 	(digi.xbee.packets.raw.TX16Packet method)

 	(digi.xbee.packets.raw.TX64Packet method)

 	(digi.xbee.packets.raw.TXStatusPacket method)

 	(digi.xbee.packets.relay.UserDataRelayOutputPacket method)

 	(digi.xbee.packets.relay.UserDataRelayPacket method)

 	(digi.xbee.packets.socket.SocketBindListenPacket method)

 	(digi.xbee.packets.socket.SocketClosePacket method)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket method)

 	(digi.xbee.packets.socket.SocketConnectPacket method)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket method)

 	(digi.xbee.packets.socket.SocketCreatePacket method)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket method)

 	(digi.xbee.packets.socket.SocketListenResponsePacket method)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket method)

 	(digi.xbee.packets.socket.SocketOptionRequestPacket method)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket method)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket method)

 	(digi.xbee.packets.socket.SocketReceivePacket method)

 	(digi.xbee.packets.socket.SocketSendPacket method)

 	(digi.xbee.packets.socket.SocketSendToPacket method)

 	(digi.xbee.packets.socket.SocketStatePacket method)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket method)

 	(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket method)

 	(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket method)

 	get_comm_iface() (digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	get_current_directory() (digi.xbee.filesystem.LocalXBeeFileSystemManager method)

 	get_current_frame_id() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_data_queue() (digi.xbee.reader.PacketListener method)

 	get_data_received_callbacks() (digi.xbee.reader.PacketListener method)

 	get_dest_address() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_dest_ip_addr() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	get_device_by_16() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	get_device_by_64() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	get_device_by_node_id() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	get_devices() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	get_digital_value() (digi.xbee.io.IOSample method)

 	get_dio_value() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_discovery_callbacks() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	get_discovery_options() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	get_discovery_timeout() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	get_dns_address() (digi.xbee.devices.WiFiDevice method)

 	get_explicit_data_received_callbacks() (digi.xbee.reader.PacketListener method)

 	get_explicit_queue() (digi.xbee.reader.PacketListener method)

 	get_file() (digi.xbee.filesystem.LocalXBeeFileSystemManager method)

 	get_file_hash() (digi.xbee.filesystem.LocalXBeeFileSystemManager method)

 	get_firmware_version() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_frame_spec_data() (digi.xbee.packets.base.GenericXBeePacket method)

 	(digi.xbee.packets.base.UnknownXBeePacket method)

 	(digi.xbee.packets.base.XBeeAPIPacket method)

 	(digi.xbee.packets.base.XBeePacket method)

 	(digi.xbee.packets.cellular.RXSMSPacket method)

 	(digi.xbee.packets.cellular.TXSMSPacket method)

 	(digi.xbee.packets.common.ATCommPacket method)

 	(digi.xbee.packets.common.ATCommQueuePacket method)

 	(digi.xbee.packets.common.ATCommResponsePacket method)

 	(digi.xbee.packets.common.ExplicitAddressingPacket method)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket method)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket method)

 	(digi.xbee.packets.common.ModemStatusPacket method)

 	(digi.xbee.packets.common.ReceivePacket method)

 	(digi.xbee.packets.common.RemoteATCommandPacket method)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket method)

 	(digi.xbee.packets.common.TransmitPacket method)

 	(digi.xbee.packets.common.TransmitStatusPacket method)

 	(digi.xbee.packets.devicecloud.DeviceRequestPacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket method)

 	(digi.xbee.packets.devicecloud.FrameErrorPacket method)

 	(digi.xbee.packets.devicecloud.SendDataRequestPacket method)

 	(digi.xbee.packets.devicecloud.SendDataResponsePacket method)

 	(digi.xbee.packets.network.RXIPv4Packet method)

 	(digi.xbee.packets.network.TXIPv4Packet method)

 	(digi.xbee.packets.raw.RX16IOPacket method)

 	(digi.xbee.packets.raw.RX16Packet method)

 	(digi.xbee.packets.raw.RX64IOPacket method)

 	(digi.xbee.packets.raw.RX64Packet method)

 	(digi.xbee.packets.raw.TX16Packet method)

 	(digi.xbee.packets.raw.TX64Packet method)

 	(digi.xbee.packets.raw.TXStatusPacket method)

 	(digi.xbee.packets.relay.UserDataRelayOutputPacket method)

 	(digi.xbee.packets.relay.UserDataRelayPacket method)

 	(digi.xbee.packets.socket.SocketBindListenPacket method)

 	(digi.xbee.packets.socket.SocketClosePacket method)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket method)

 	(digi.xbee.packets.socket.SocketConnectPacket method)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket method)

 	(digi.xbee.packets.socket.SocketCreatePacket method)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket method)

 	(digi.xbee.packets.socket.SocketListenResponsePacket method)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket method)

 	(digi.xbee.packets.socket.SocketOptionRequestPacket method)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket method)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket method)

 	(digi.xbee.packets.socket.SocketReceivePacket method)

 	(digi.xbee.packets.socket.SocketSendPacket method)

 	(digi.xbee.packets.socket.SocketSendToPacket method)

 	(digi.xbee.packets.socket.SocketStatePacket method)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket method)

 	(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket method)

 	(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket method)

 	get_frame_type() (digi.xbee.packets.base.GenericXBeePacket method)

 	(digi.xbee.packets.base.UnknownXBeePacket method)

 	(digi.xbee.packets.base.XBeeAPIPacket method)

 	(digi.xbee.packets.cellular.RXSMSPacket method)

 	(digi.xbee.packets.cellular.TXSMSPacket method)

 	(digi.xbee.packets.common.ATCommPacket method)

 	(digi.xbee.packets.common.ATCommQueuePacket method)

 	(digi.xbee.packets.common.ATCommResponsePacket method)

 	(digi.xbee.packets.common.ExplicitAddressingPacket method)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket method)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket method)

 	(digi.xbee.packets.common.ModemStatusPacket method)

 	(digi.xbee.packets.common.ReceivePacket method)

 	(digi.xbee.packets.common.RemoteATCommandPacket method)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket method)

 	(digi.xbee.packets.common.TransmitPacket method)

 	(digi.xbee.packets.common.TransmitStatusPacket method)

 	(digi.xbee.packets.devicecloud.DeviceRequestPacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket method)

 	(digi.xbee.packets.devicecloud.FrameErrorPacket method)

 	(digi.xbee.packets.devicecloud.SendDataRequestPacket method)

 	(digi.xbee.packets.devicecloud.SendDataResponsePacket method)

 	(digi.xbee.packets.network.RXIPv4Packet method)

 	(digi.xbee.packets.network.TXIPv4Packet method)

 	(digi.xbee.packets.raw.RX16IOPacket method)

 	(digi.xbee.packets.raw.RX16Packet method)

 	(digi.xbee.packets.raw.RX64IOPacket method)

 	(digi.xbee.packets.raw.RX64Packet method)

 	(digi.xbee.packets.raw.TX16Packet method)

 	(digi.xbee.packets.raw.TX64Packet method)

 	(digi.xbee.packets.raw.TXStatusPacket method)

 	(digi.xbee.packets.relay.UserDataRelayOutputPacket method)

 	(digi.xbee.packets.relay.UserDataRelayPacket method)

 	(digi.xbee.packets.socket.SocketBindListenPacket method)

 	(digi.xbee.packets.socket.SocketClosePacket method)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket method)

 	(digi.xbee.packets.socket.SocketConnectPacket method)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket method)

 	(digi.xbee.packets.socket.SocketCreatePacket method)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket method)

 	(digi.xbee.packets.socket.SocketListenResponsePacket method)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket method)

 	(digi.xbee.packets.socket.SocketOptionRequestPacket method)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket method)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket method)

 	(digi.xbee.packets.socket.SocketReceivePacket method)

 	(digi.xbee.packets.socket.SocketSendPacket method)

 	(digi.xbee.packets.socket.SocketSendToPacket method)

 	(digi.xbee.packets.socket.SocketStatePacket method)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket method)

 	(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket method)

 	(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket method)

 	
 	get_frame_type_value() (digi.xbee.packets.base.GenericXBeePacket method)

 	(digi.xbee.packets.base.UnknownXBeePacket method)

 	(digi.xbee.packets.base.XBeeAPIPacket method)

 	(digi.xbee.packets.cellular.RXSMSPacket method)

 	(digi.xbee.packets.cellular.TXSMSPacket method)

 	(digi.xbee.packets.common.ATCommPacket method)

 	(digi.xbee.packets.common.ATCommQueuePacket method)

 	(digi.xbee.packets.common.ATCommResponsePacket method)

 	(digi.xbee.packets.common.ExplicitAddressingPacket method)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket method)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket method)

 	(digi.xbee.packets.common.ModemStatusPacket method)

 	(digi.xbee.packets.common.ReceivePacket method)

 	(digi.xbee.packets.common.RemoteATCommandPacket method)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket method)

 	(digi.xbee.packets.common.TransmitPacket method)

 	(digi.xbee.packets.common.TransmitStatusPacket method)

 	(digi.xbee.packets.devicecloud.DeviceRequestPacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket method)

 	(digi.xbee.packets.devicecloud.FrameErrorPacket method)

 	(digi.xbee.packets.devicecloud.SendDataRequestPacket method)

 	(digi.xbee.packets.devicecloud.SendDataResponsePacket method)

 	(digi.xbee.packets.network.RXIPv4Packet method)

 	(digi.xbee.packets.network.TXIPv4Packet method)

 	(digi.xbee.packets.raw.RX16IOPacket method)

 	(digi.xbee.packets.raw.RX16Packet method)

 	(digi.xbee.packets.raw.RX64IOPacket method)

 	(digi.xbee.packets.raw.RX64Packet method)

 	(digi.xbee.packets.raw.TX16Packet method)

 	(digi.xbee.packets.raw.TX64Packet method)

 	(digi.xbee.packets.raw.TXStatusPacket method)

 	(digi.xbee.packets.relay.UserDataRelayOutputPacket method)

 	(digi.xbee.packets.relay.UserDataRelayPacket method)

 	(digi.xbee.packets.socket.SocketBindListenPacket method)

 	(digi.xbee.packets.socket.SocketClosePacket method)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket method)

 	(digi.xbee.packets.socket.SocketConnectPacket method)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket method)

 	(digi.xbee.packets.socket.SocketCreatePacket method)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket method)

 	(digi.xbee.packets.socket.SocketListenResponsePacket method)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket method)

 	(digi.xbee.packets.socket.SocketOptionRequestPacket method)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket method)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket method)

 	(digi.xbee.packets.socket.SocketReceivePacket method)

 	(digi.xbee.packets.socket.SocketSendPacket method)

 	(digi.xbee.packets.socket.SocketSendToPacket method)

 	(digi.xbee.packets.socket.SocketStatePacket method)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket method)

 	(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket method)

 	(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket method)

 	get_gateway_address() (digi.xbee.devices.WiFiDevice method)

 	get_hardware_version() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_hsb() (digi.xbee.models.address.XBee16BitAddress method)

 	get_imei_addr() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	get_int_from_byte() (in module digi.xbee.util.utils)

 	get_io_configuration() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_io_sample_received_callbacks() (digi.xbee.reader.PacketListener method)

 	get_io_sampling_rate() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_ip_addr() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	get_ip_addressing_mode() (digi.xbee.devices.WiFiDevice method)

 	get_ip_data_received_callbacks() (digi.xbee.reader.PacketListener method)

 	get_ip_queue() (digi.xbee.reader.PacketListener method)

 	get_local_xbee_device() (digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	get_lsb() (digi.xbee.models.address.XBee16BitAddress method)

 	get_mask_address() (digi.xbee.devices.WiFiDevice method)

 	get_micropython_data_received_callbacks() (digi.xbee.reader.PacketListener method)

 	get_modem_status_received_callbacks() (digi.xbee.reader.PacketListener method)

 	get_network() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_next_frame_id() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_node_id() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_nowait() (digi.xbee.reader.XBeeQueue method)

 	get_number_devices() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	get_packet_received_callbacks() (digi.xbee.reader.PacketListener method)

 	get_pan_id() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_parameter() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_parameter_string() (digi.xbee.models.atcomm.ATCommand method)

 	get_phone_number_byte_array() (digi.xbee.packets.cellular.RXSMSPacket method)

 	(digi.xbee.packets.cellular.TXSMSPacket method)

 	get_power_level() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_protocol() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_pwm_duty_cycle() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_queue() (digi.xbee.reader.PacketListener method)

 	get_read_timeout() (digi.xbee.serial.XBeeSerialPort method)

 	get_role() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_serial_port() (digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	get_setting_default_value() (digi.xbee.profile.XBeeProfile method)

 	get_sms_received_callbacks() (digi.xbee.reader.PacketListener method)

 	get_sock_info() (digi.xbee.xsocket.socket method)

 	get_socket_info() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	get_sockets_list() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	get_sync_ops_timeout() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	get_usage_information() (digi.xbee.filesystem.LocalXBeeFileSystemManager method)

 	get_user_data_relay_received_callbacks() (digi.xbee.reader.PacketListener method)

 	get_wifi_ai_status() (digi.xbee.devices.WiFiDevice method)

 	get_xbee_device_callbacks() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	getblocking() (digi.xbee.xsocket.socket method)

 	getsocketopt() (digi.xbee.xsocket.socket method)

 	gettimeout() (digi.xbee.xsocket.socket method)

H

 	
 	hardware_version (digi.xbee.profile.XBeeProfile attribute)

 	HardwareVersion (class in digi.xbee.models.hw)

 	has_analog_value() (digi.xbee.io.IOSample method)

 	has_analog_values() (digi.xbee.io.IOSample method)

 	has_devices() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	has_digital_value() (digi.xbee.io.IOSample method)

 	has_digital_values() (digi.xbee.io.IOSample method)

 	has_explicit_packets() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	
 	has_filesystem (digi.xbee.profile.XBeeProfile attribute)

 	has_packets() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	has_power_supply_value() (digi.xbee.io.IOSample method)

 	has_pwm_capability() (digi.xbee.io.IOLine method)

 	hex_string_to_bytes() (in module digi.xbee.util.utils)

 	hex_to_string() (in module digi.xbee.util.utils)

I

 	
 	I2C_FUNCTIONALITY (digi.xbee.io.IOMode attribute)

 	id (digi.xbee.models.protocol.Role attribute)

 	ident (digi.xbee.reader.PacketListener attribute)

 	index (digi.xbee.io.IOLine attribute)

 	(digi.xbee.profile.FirmwareBaudrate attribute)

 	(digi.xbee.profile.FirmwareParity attribute)

 	(digi.xbee.profile.FirmwareStopbits attribute)

 	index() (digi.xbee.reader.BluetoothDataReceived method)

 	(digi.xbee.reader.DataReceived method)

 	(digi.xbee.reader.DeviceDiscovered method)

 	(digi.xbee.reader.DiscoveryProcessFinished method)

 	(digi.xbee.reader.ExplicitDataReceived method)

 	(digi.xbee.reader.IOSampleReceived method)

 	(digi.xbee.reader.IPDataReceived method)

 	(digi.xbee.reader.MicroPythonDataReceived method)

 	(digi.xbee.reader.ModemStatusReceived method)

 	(digi.xbee.reader.NetworkModified method)

 	(digi.xbee.reader.PacketReceived method)

 	(digi.xbee.reader.RelayDataReceived method)

 	(digi.xbee.reader.SMSReceived method)

 	(digi.xbee.reader.SocketDataReceived method)

 	(digi.xbee.reader.SocketDataReceivedFrom method)

 	(digi.xbee.reader.SocketStateReceived method)

 	(digi.xbee.reader.XBeeEvent method)

 	insert() (digi.xbee.reader.BluetoothDataReceived method)

 	(digi.xbee.reader.DataReceived method)

 	(digi.xbee.reader.DeviceDiscovered method)

 	(digi.xbee.reader.DiscoveryProcessFinished method)

 	(digi.xbee.reader.ExplicitDataReceived method)

 	(digi.xbee.reader.IOSampleReceived method)

 	(digi.xbee.reader.IPDataReceived method)

 	(digi.xbee.reader.MicroPythonDataReceived method)

 	(digi.xbee.reader.ModemStatusReceived method)

 	(digi.xbee.reader.NetworkModified method)

 	(digi.xbee.reader.PacketReceived method)

 	(digi.xbee.reader.RelayDataReceived method)

 	(digi.xbee.reader.SMSReceived method)

 	(digi.xbee.reader.SocketDataReceived method)

 	(digi.xbee.reader.SocketDataReceivedFrom method)

 	(digi.xbee.reader.SocketStateReceived method)

 	(digi.xbee.reader.XBeeEvent method)

 	int_to_ascii() (in module digi.xbee.util.utils)

 	int_to_bytes() (in module digi.xbee.util.utils)

 	int_to_length() (in module digi.xbee.util.utils)

 	InvalidConfigurationException

 	InvalidOperatingModeException

 	InvalidPacketException

 	io_sample (digi.xbee.packets.common.IODataSampleRxIndicatorPacket attribute)

 	(digi.xbee.packets.raw.RX16IOPacket attribute)

 	(digi.xbee.packets.raw.RX64IOPacket attribute)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket attribute)

 	IODataSampleRxIndicatorPacket (class in digi.xbee.packets.common)

 	IODataSampleRxIndicatorWifiPacket (class in digi.xbee.packets.wifi)

 	IOLine (class in digi.xbee.io)

 	IOMode (class in digi.xbee.io)

 	IOSample (class in digi.xbee.io)

 	IOSampleReceived (class in digi.xbee.reader)

 	IOValue (class in digi.xbee.io)

 	ip_addr (digi.xbee.models.message.IPMessage attribute)

 	ip_protocol (digi.xbee.packets.network.RXIPv4Packet attribute)

 	(digi.xbee.packets.network.TXIPv4Packet attribute)

 	IPAddressingMode (class in digi.xbee.models.mode)

 	IPDataReceived (class in digi.xbee.reader)

 	IPDevice (class in digi.xbee.devices)

 	IPMessage (class in digi.xbee.models.message)

 	IPProtocol (class in digi.xbee.models.protocol)

 	is_alive() (digi.xbee.reader.PacketListener method)

 	is_apply_changes_enabled() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	is_bit_enabled() (in module digi.xbee.util.utils)

 	is_broadcast (digi.xbee.models.message.ExplicitXBeeMessage attribute)

 	(digi.xbee.models.message.XBeeMessage attribute)

 	is_broadcast() (digi.xbee.packets.base.GenericXBeePacket method)

 	(digi.xbee.packets.base.UnknownXBeePacket method)

 	(digi.xbee.packets.base.XBeeAPIPacket method)

 	(digi.xbee.packets.cellular.RXSMSPacket method)

 	(digi.xbee.packets.cellular.TXSMSPacket method)

 	(digi.xbee.packets.common.ATCommPacket method)

 	(digi.xbee.packets.common.ATCommQueuePacket method)

 	(digi.xbee.packets.common.ATCommResponsePacket method)

 	(digi.xbee.packets.common.ExplicitAddressingPacket method)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket method)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket method)

 	(digi.xbee.packets.common.ModemStatusPacket method)

 	(digi.xbee.packets.common.ReceivePacket method)

 	(digi.xbee.packets.common.RemoteATCommandPacket method)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket method)

 	(digi.xbee.packets.common.TransmitPacket method)

 	(digi.xbee.packets.common.TransmitStatusPacket method)

 	(digi.xbee.packets.devicecloud.DeviceRequestPacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket method)

 	(digi.xbee.packets.devicecloud.FrameErrorPacket method)

 	(digi.xbee.packets.devicecloud.SendDataRequestPacket method)

 	(digi.xbee.packets.devicecloud.SendDataResponsePacket method)

 	(digi.xbee.packets.network.RXIPv4Packet method)

 	(digi.xbee.packets.network.TXIPv4Packet method)

 	(digi.xbee.packets.raw.RX16IOPacket method)

 	(digi.xbee.packets.raw.RX16Packet method)

 	(digi.xbee.packets.raw.RX64IOPacket method)

 	(digi.xbee.packets.raw.RX64Packet method)

 	(digi.xbee.packets.raw.TX16Packet method)

 	(digi.xbee.packets.raw.TX64Packet method)

 	(digi.xbee.packets.raw.TXStatusPacket method)

 	(digi.xbee.packets.relay.UserDataRelayOutputPacket method)

 	(digi.xbee.packets.relay.UserDataRelayPacket method)

 	(digi.xbee.packets.socket.SocketBindListenPacket method)

 	(digi.xbee.packets.socket.SocketClosePacket method)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket method)

 	(digi.xbee.packets.socket.SocketConnectPacket method)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket method)

 	(digi.xbee.packets.socket.SocketCreatePacket method)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket method)

 	(digi.xbee.packets.socket.SocketListenResponsePacket method)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket method)

 	(digi.xbee.packets.socket.SocketOptionRequestPacket method)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket method)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket method)

 	(digi.xbee.packets.socket.SocketReceivePacket method)

 	(digi.xbee.packets.socket.SocketSendPacket method)

 	(digi.xbee.packets.socket.SocketSendToPacket method)

 	(digi.xbee.packets.socket.SocketStatePacket method)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket method)

 	(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket method)

 	(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket method)

 	
 	is_connected (digi.xbee.filesystem.LocalXBeeFileSystemManager attribute)

 	(digi.xbee.xsocket.socket attribute)

 	is_connected() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	is_directory (digi.xbee.filesystem.FileSystemElement attribute)

 	is_discovery_running() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	is_interface_open (digi.xbee.comm_interface.XBeeCommunicationInterface attribute)

 	(digi.xbee.serial.XBeeSerialPort attribute)

 	is_open() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	is_remote() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	is_running() (digi.xbee.reader.PacketListener method)

 	is_secure (digi.xbee.filesystem.FileSystemElement attribute)

 	is_valid() (digi.xbee.models.address.XBee16BitAddress class method)

 	(digi.xbee.models.address.XBee64BitAddress class method)

 	(digi.xbee.models.address.XBeeIMEIAddress class method)

 	isAlive() (digi.xbee.reader.PacketListener method)

J

 	
 	join() (digi.xbee.reader.PacketListener method)

 	(digi.xbee.reader.XBeeQueue method)

K

 	
 	key (digi.xbee.packets.zigbee.RegisterJoiningDevicePacket attribute)

L

 	
 	length_to_int() (in module digi.xbee.util.utils)

 	list_directory() (digi.xbee.filesystem.LocalXBeeFileSystemManager method)

 	listen() (digi.xbee.xsocket.socket method)

 	local_interface (digi.xbee.models.message.UserDataRelayMessage attribute)

 	LocalXBeeFileSystemManager (class in digi.xbee.filesystem)

 	log (digi.xbee.devices.AbstractXBeeDevice attribute)

 	(digi.xbee.devices.CellularDevice attribute)

 	(digi.xbee.devices.DigiMeshDevice attribute)

 	(digi.xbee.devices.DigiPointDevice attribute)

 	(digi.xbee.devices.IPDevice attribute)

 	(digi.xbee.devices.LPWANDevice attribute)

 	(digi.xbee.devices.NBIoTDevice attribute)

 	(digi.xbee.devices.Raw802Device attribute)

 	(digi.xbee.devices.RemoteDigiMeshDevice attribute)

 	(digi.xbee.devices.RemoteDigiPointDevice attribute)

 	(digi.xbee.devices.RemoteRaw802Device attribute)

 	(digi.xbee.devices.RemoteXBeeDevice attribute)

 	(digi.xbee.devices.RemoteZigBeeDevice attribute)

 	(digi.xbee.devices.WiFiDevice attribute)

 	(digi.xbee.devices.XBeeDevice attribute)

 	(digi.xbee.devices.ZigBeeDevice attribute)

 	
 	LOG_PATTERN (digi.xbee.devices.AbstractXBeeDevice attribute)

 	LPWANDevice (class in digi.xbee.devices)

M

 	
 	make_directory() (digi.xbee.filesystem.LocalXBeeFileSystemManager method)

 	MicroPythonDataReceived (class in digi.xbee.reader)

 	min_io_sample_payload() (digi.xbee.io.IOSample static method)

 	modem_status (digi.xbee.packets.common.ModemStatusPacket attribute)

 	
 	ModemStatus (class in digi.xbee.models.status)

 	ModemStatusPacket (class in digi.xbee.packets.common)

 	ModemStatusReceived (class in digi.xbee.reader)

 	move_element() (digi.xbee.filesystem.LocalXBeeFileSystemManager method)

N

 	
 	name (digi.xbee.filesystem.FileSystemElement attribute)

 	(digi.xbee.profile.XBeeProfileSetting attribute)

 	(digi.xbee.reader.PacketListener attribute)

 	NBIoTDevice (class in digi.xbee.devices)

 	ND_PACKET_FINISH (digi.xbee.devices.XBeeNetwork attribute)

 	ND_PACKET_REMOTE (digi.xbee.devices.XBeeNetwork attribute)

 	needs_id() (digi.xbee.packets.base.GenericXBeePacket method)

 	(digi.xbee.packets.base.UnknownXBeePacket method)

 	(digi.xbee.packets.base.XBeeAPIPacket method)

 	(digi.xbee.packets.cellular.RXSMSPacket method)

 	(digi.xbee.packets.cellular.TXSMSPacket method)

 	(digi.xbee.packets.common.ATCommPacket method)

 	(digi.xbee.packets.common.ATCommQueuePacket method)

 	(digi.xbee.packets.common.ATCommResponsePacket method)

 	(digi.xbee.packets.common.ExplicitAddressingPacket method)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket method)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket method)

 	(digi.xbee.packets.common.ModemStatusPacket method)

 	(digi.xbee.packets.common.ReceivePacket method)

 	(digi.xbee.packets.common.RemoteATCommandPacket method)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket method)

 	(digi.xbee.packets.common.TransmitPacket method)

 	(digi.xbee.packets.common.TransmitStatusPacket method)

 	(digi.xbee.packets.devicecloud.DeviceRequestPacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket method)

 	(digi.xbee.packets.devicecloud.FrameErrorPacket method)

 	(digi.xbee.packets.devicecloud.SendDataRequestPacket method)

 	(digi.xbee.packets.devicecloud.SendDataResponsePacket method)

 	(digi.xbee.packets.network.RXIPv4Packet method)

 	(digi.xbee.packets.network.TXIPv4Packet method)

 	(digi.xbee.packets.raw.RX16IOPacket method)

 	(digi.xbee.packets.raw.RX16Packet method)

 	(digi.xbee.packets.raw.RX64IOPacket method)

 	(digi.xbee.packets.raw.RX64Packet method)

 	(digi.xbee.packets.raw.TX16Packet method)

 	(digi.xbee.packets.raw.TX64Packet method)

 	(digi.xbee.packets.raw.TXStatusPacket method)

 	(digi.xbee.packets.relay.UserDataRelayOutputPacket method)

 	(digi.xbee.packets.relay.UserDataRelayPacket method)

 	(digi.xbee.packets.socket.SocketBindListenPacket method)

 	(digi.xbee.packets.socket.SocketClosePacket method)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket method)

 	(digi.xbee.packets.socket.SocketConnectPacket method)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket method)

 	(digi.xbee.packets.socket.SocketCreatePacket method)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket method)

 	(digi.xbee.packets.socket.SocketListenResponsePacket method)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket method)

 	(digi.xbee.packets.socket.SocketOptionRequestPacket method)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket method)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket method)

 	(digi.xbee.packets.socket.SocketReceivePacket method)

 	(digi.xbee.packets.socket.SocketSendPacket method)

 	(digi.xbee.packets.socket.SocketSendToPacket method)

 	(digi.xbee.packets.socket.SocketStatePacket method)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket method)

 	(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket method)

 	(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket method)

 	
 	NetworkDiscoveryStatus (class in digi.xbee.models.status)

 	NetworkEventReason (class in digi.xbee.devices)

 	NetworkEventType (class in digi.xbee.devices)

 	NetworkModified (class in digi.xbee.reader)

 	NONE (digi.xbee.models.options.ReceiveOptions attribute)

 	(digi.xbee.models.options.RemoteATCmdOptions attribute)

 	(digi.xbee.models.options.TransmitOptions attribute)

O

 	
 	open() (digi.xbee.comm_interface.XBeeCommunicationInterface method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	(digi.xbee.serial.XBeeSerialPort method)

 	operating_mode (digi.xbee.devices.CellularDevice attribute)

 	(digi.xbee.devices.DigiMeshDevice attribute)

 	(digi.xbee.devices.DigiPointDevice attribute)

 	(digi.xbee.devices.IPDevice attribute)

 	(digi.xbee.devices.LPWANDevice attribute)

 	(digi.xbee.devices.NBIoTDevice attribute)

 	(digi.xbee.devices.Raw802Device attribute)

 	(digi.xbee.devices.WiFiDevice attribute)

 	(digi.xbee.devices.XBeeDevice attribute)

 	(digi.xbee.devices.ZigBeeDevice attribute)

 	OperatingMode (class in digi.xbee.models.mode)

 	OperationNotSupportedException

 	option (digi.xbee.packets.socket.SocketOptionRequestPacket attribute)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket attribute)

 	option_data (digi.xbee.packets.socket.SocketOptionRequestPacket attribute)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket attribute)

 	options (digi.xbee.packets.devicecloud.SendDataRequestPacket attribute)

 	(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket attribute)

 	OPTIONS_CLOSE_SOCKET (digi.xbee.packets.network.TXIPv4Packet attribute)

 	OPTIONS_LEAVE_SOCKET_OPEN (digi.xbee.packets.network.TXIPv4Packet attribute)

 	output() (digi.xbee.packets.base.GenericXBeePacket method)

 	(digi.xbee.packets.base.UnknownXBeePacket method)

 	(digi.xbee.packets.base.XBeeAPIPacket method)

 	(digi.xbee.packets.base.XBeePacket method)

 	(digi.xbee.packets.cellular.RXSMSPacket method)

 	(digi.xbee.packets.cellular.TXSMSPacket method)

 	(digi.xbee.packets.common.ATCommPacket method)

 	(digi.xbee.packets.common.ATCommQueuePacket method)

 	(digi.xbee.packets.common.ATCommResponsePacket method)

 	(digi.xbee.packets.common.ExplicitAddressingPacket method)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket method)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket method)

 	(digi.xbee.packets.common.ModemStatusPacket method)

 	(digi.xbee.packets.common.ReceivePacket method)

 	(digi.xbee.packets.common.RemoteATCommandPacket method)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket method)

 	(digi.xbee.packets.common.TransmitPacket method)

 	(digi.xbee.packets.common.TransmitStatusPacket method)

 	(digi.xbee.packets.devicecloud.DeviceRequestPacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket method)

 	(digi.xbee.packets.devicecloud.FrameErrorPacket method)

 	(digi.xbee.packets.devicecloud.SendDataRequestPacket method)

 	(digi.xbee.packets.devicecloud.SendDataResponsePacket method)

 	(digi.xbee.packets.network.RXIPv4Packet method)

 	(digi.xbee.packets.network.TXIPv4Packet method)

 	(digi.xbee.packets.raw.RX16IOPacket method)

 	(digi.xbee.packets.raw.RX16Packet method)

 	(digi.xbee.packets.raw.RX64IOPacket method)

 	(digi.xbee.packets.raw.RX64Packet method)

 	(digi.xbee.packets.raw.TX16Packet method)

 	(digi.xbee.packets.raw.TX64Packet method)

 	(digi.xbee.packets.raw.TXStatusPacket method)

 	(digi.xbee.packets.relay.UserDataRelayOutputPacket method)

 	(digi.xbee.packets.relay.UserDataRelayPacket method)

 	(digi.xbee.packets.socket.SocketBindListenPacket method)

 	(digi.xbee.packets.socket.SocketClosePacket method)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket method)

 	(digi.xbee.packets.socket.SocketConnectPacket method)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket method)

 	(digi.xbee.packets.socket.SocketCreatePacket method)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket method)

 	(digi.xbee.packets.socket.SocketListenResponsePacket method)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket method)

 	(digi.xbee.packets.socket.SocketOptionRequestPacket method)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket method)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket method)

 	(digi.xbee.packets.socket.SocketReceivePacket method)

 	(digi.xbee.packets.socket.SocketSendPacket method)

 	(digi.xbee.packets.socket.SocketSendToPacket method)

 	(digi.xbee.packets.socket.SocketStatePacket method)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket method)

 	(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket method)

 	(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket method)

P

 	
 	PACKET_ACKNOWLEDGED (digi.xbee.models.options.ReceiveOptions attribute)

 	PacketListener (class in digi.xbee.reader)

 	PacketReceived (class in digi.xbee.reader)

 	parameter (digi.xbee.models.atcomm.ATCommand attribute)

 	(digi.xbee.packets.common.ATCommPacket attribute)

 	(digi.xbee.packets.common.ATCommQueuePacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandPacket attribute)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket attribute)

 	parity (digi.xbee.profile.FirmwareParity attribute)

 	path (digi.xbee.filesystem.FileSystemElement attribute)

 	(digi.xbee.packets.devicecloud.SendDataRequestPacket attribute)

 	PATTERN (digi.xbee.models.address.XBee16BitAddress attribute)

 	(digi.xbee.models.address.XBee64BitAddress attribute)

 	(digi.xbee.models.address.XBeeIMEIAddress attribute)

 	PATTERN_PHONE_NUMBER (in module digi.xbee.packets.cellular)

 	payload (digi.xbee.packets.socket.SocketReceiveFromPacket attribute)

 	(digi.xbee.packets.socket.SocketReceivePacket attribute)

 	(digi.xbee.packets.socket.SocketSendPacket attribute)

 	(digi.xbee.packets.socket.SocketSendToPacket attribute)

 	phone_number (digi.xbee.models.message.SMSMessage attribute)

 	(digi.xbee.packets.cellular.RXSMSPacket attribute)

 	(digi.xbee.packets.cellular.TXSMSPacket attribute)

 	POINT_MULTIPOINT_MODE (digi.xbee.models.options.TransmitOptions attribute)

 	pop() (digi.xbee.reader.BluetoothDataReceived method)

 	(digi.xbee.reader.DataReceived method)

 	(digi.xbee.reader.DeviceDiscovered method)

 	(digi.xbee.reader.DiscoveryProcessFinished method)

 	(digi.xbee.reader.ExplicitDataReceived method)

 	(digi.xbee.reader.IOSampleReceived method)

 	(digi.xbee.reader.IPDataReceived method)

 	(digi.xbee.reader.MicroPythonDataReceived method)

 	(digi.xbee.reader.ModemStatusReceived method)

 	(digi.xbee.reader.NetworkModified method)

 	(digi.xbee.reader.PacketReceived method)

 	(digi.xbee.reader.RelayDataReceived method)

 	(digi.xbee.reader.SMSReceived method)

 	(digi.xbee.reader.SocketDataReceived method)

 	(digi.xbee.reader.SocketDataReceivedFrom method)

 	(digi.xbee.reader.SocketStateReceived method)

 	(digi.xbee.reader.XBeeEvent method)

 	
 	power_supply_value (digi.xbee.io.IOSample attribute)

 	PowerLevel (class in digi.xbee.models.status)

 	profile_file (digi.xbee.profile.XBeeProfile attribute)

 	profile_id (digi.xbee.models.message.ExplicitXBeeMessage attribute)

 	(digi.xbee.packets.common.ExplicitAddressingPacket attribute)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket attribute)

 	profile_settings (digi.xbee.profile.XBeeProfile attribute)

 	protocol (digi.xbee.models.message.IPMessage attribute)

 	(digi.xbee.packets.socket.SocketCreatePacket attribute)

 	purge_port() (digi.xbee.serial.XBeeSerialPort method)

 	put() (digi.xbee.reader.XBeeQueue method)

 	put_dir() (digi.xbee.filesystem.LocalXBeeFileSystemManager method)

 	put_file() (digi.xbee.filesystem.LocalXBeeFileSystemManager method)

 	put_nowait() (digi.xbee.reader.XBeeQueue method)

 	PWM (digi.xbee.io.IOMode attribute)

 	pwm_at_command (digi.xbee.io.IOLine attribute)

Q

 	
 	qsize() (digi.xbee.reader.XBeeQueue method)

 	
 	quit_reading() (digi.xbee.comm_interface.XBeeCommunicationInterface method)

 	(digi.xbee.serial.XBeeSerialPort method)

R

 	
 	Raw802Device (class in digi.xbee.devices)

 	Raw802Network (class in digi.xbee.devices)

 	read_byte() (digi.xbee.serial.XBeeSerialPort method)

 	read_bytes() (digi.xbee.serial.XBeeSerialPort method)

 	read_data() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	read_data_from() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	read_device_info() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	read_existing() (digi.xbee.serial.XBeeSerialPort method)

 	read_expl_data() (digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	read_expl_data_from() (digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	read_io_sample() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	read_ip_data() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	read_ip_data_from() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	ReadProfileException

 	receive_options (digi.xbee.packets.common.ExplicitRXIndicatorPacket attribute)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket attribute)

 	(digi.xbee.packets.common.ReceivePacket attribute)

 	(digi.xbee.packets.raw.RX16IOPacket attribute)

 	(digi.xbee.packets.raw.RX16Packet attribute)

 	(digi.xbee.packets.raw.RX64IOPacket attribute)

 	(digi.xbee.packets.raw.RX64Packet attribute)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket attribute)

 	ReceiveOptions (class in digi.xbee.models.options)

 	ReceivePacket (class in digi.xbee.packets.common)

 	recover_device() (in module digi.xbee.recovery)

 	RecoveryException

 	recv() (digi.xbee.xsocket.socket method)

 	recvfrom() (digi.xbee.xsocket.socket method)

 	register_joining_device() (digi.xbee.devices.ZigBeeDevice method)

 	register_joining_device_async() (digi.xbee.devices.ZigBeeDevice method)

 	RegisterDeviceStatusPacket (class in digi.xbee.packets.zigbee)

 	RegisterJoiningDevicePacket (class in digi.xbee.packets.zigbee)

 	RegisterKeyOptions (class in digi.xbee.models.options)

 	registrant_address (digi.xbee.packets.zigbee.RegisterJoiningDevicePacket attribute)

 	RelayDataReceived (class in digi.xbee.reader)

 	remote_address (digi.xbee.packets.socket.SocketNewIPv4ClientPacket attribute)

 	remote_device (digi.xbee.models.message.ExplicitXBeeMessage attribute)

 	(digi.xbee.models.message.XBeeMessage attribute)

 	
 	remote_port (digi.xbee.packets.socket.SocketNewIPv4ClientPacket attribute)

 	RemoteATCmdOptions (class in digi.xbee.models.options)

 	RemoteATCommandPacket (class in digi.xbee.packets.common)

 	RemoteATCommandResponsePacket (class in digi.xbee.packets.common)

 	RemoteATCommandResponseWifiPacket (class in digi.xbee.packets.wifi)

 	RemoteATCommandWifiPacket (class in digi.xbee.packets.wifi)

 	RemoteDigiMeshDevice (class in digi.xbee.devices)

 	RemoteDigiPointDevice (class in digi.xbee.devices)

 	RemoteRaw802Device (class in digi.xbee.devices)

 	RemoteXBeeDevice (class in digi.xbee.devices)

 	RemoteZigBeeDevice (class in digi.xbee.devices)

 	remove() (digi.xbee.reader.BluetoothDataReceived method)

 	(digi.xbee.reader.DataReceived method)

 	(digi.xbee.reader.DeviceDiscovered method)

 	(digi.xbee.reader.DiscoveryProcessFinished method)

 	(digi.xbee.reader.ExplicitDataReceived method)

 	(digi.xbee.reader.IOSampleReceived method)

 	(digi.xbee.reader.IPDataReceived method)

 	(digi.xbee.reader.MicroPythonDataReceived method)

 	(digi.xbee.reader.ModemStatusReceived method)

 	(digi.xbee.reader.NetworkModified method)

 	(digi.xbee.reader.PacketReceived method)

 	(digi.xbee.reader.RelayDataReceived method)

 	(digi.xbee.reader.SMSReceived method)

 	(digi.xbee.reader.SocketDataReceived method)

 	(digi.xbee.reader.SocketDataReceivedFrom method)

 	(digi.xbee.reader.SocketStateReceived method)

 	(digi.xbee.reader.XBeeEvent method)

 	remove_device() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	remove_element() (digi.xbee.filesystem.LocalXBeeFileSystemManager method)

 	REPEATER_MODE (digi.xbee.models.options.TransmitOptions attribute)

 	request_data (digi.xbee.packets.devicecloud.DeviceRequestPacket attribute)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket attribute)

 	request_id (digi.xbee.packets.devicecloud.DeviceRequestPacket attribute)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket attribute)

 	reset() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	reset_settings (digi.xbee.profile.XBeeProfile attribute)

 	response (digi.xbee.models.atcomm.ATCommandResponse attribute)

 	reverse() (digi.xbee.reader.BluetoothDataReceived method)

 	(digi.xbee.reader.DataReceived method)

 	(digi.xbee.reader.DeviceDiscovered method)

 	(digi.xbee.reader.DiscoveryProcessFinished method)

 	(digi.xbee.reader.ExplicitDataReceived method)

 	(digi.xbee.reader.IOSampleReceived method)

 	(digi.xbee.reader.IPDataReceived method)

 	(digi.xbee.reader.MicroPythonDataReceived method)

 	(digi.xbee.reader.ModemStatusReceived method)

 	(digi.xbee.reader.NetworkModified method)

 	(digi.xbee.reader.PacketReceived method)

 	(digi.xbee.reader.RelayDataReceived method)

 	(digi.xbee.reader.SMSReceived method)

 	(digi.xbee.reader.SocketDataReceived method)

 	(digi.xbee.reader.SocketDataReceivedFrom method)

 	(digi.xbee.reader.SocketStateReceived method)

 	(digi.xbee.reader.XBeeEvent method)

 	rf_data (digi.xbee.packets.common.ExplicitAddressingPacket attribute)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket attribute)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket attribute)

 	(digi.xbee.packets.common.ReceivePacket attribute)

 	(digi.xbee.packets.common.TransmitPacket attribute)

 	(digi.xbee.packets.raw.RX16IOPacket attribute)

 	(digi.xbee.packets.raw.RX16Packet attribute)

 	(digi.xbee.packets.raw.RX64IOPacket attribute)

 	(digi.xbee.packets.raw.RX64Packet attribute)

 	(digi.xbee.packets.raw.TX16Packet attribute)

 	(digi.xbee.packets.raw.TX64Packet attribute)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket attribute)

 	Role (class in digi.xbee.models.protocol)

 	rssi (digi.xbee.packets.raw.RX16IOPacket attribute)

 	(digi.xbee.packets.raw.RX16Packet attribute)

 	(digi.xbee.packets.raw.RX64IOPacket attribute)

 	(digi.xbee.packets.raw.RX64Packet attribute)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket attribute)

 	run() (digi.xbee.reader.PacketListener method)

 	RX16IOPacket (class in digi.xbee.packets.raw)

 	RX16Packet (class in digi.xbee.packets.raw)

 	RX64IOPacket (class in digi.xbee.packets.raw)

 	RX64Packet (class in digi.xbee.packets.raw)

 	RXIPv4Packet (class in digi.xbee.packets.network)

 	RXSMSPacket (class in digi.xbee.packets.cellular)

S

 	
 	scan_access_points() (digi.xbee.devices.WiFiDevice method)

 	send() (digi.xbee.xsocket.socket method)

 	send_bluetooth_data() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	send_data() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	send_data_16() (digi.xbee.devices.Raw802Device method)

 	send_data_64() (digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	send_data_64_16() (digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	send_data_async() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	send_data_async_16() (digi.xbee.devices.Raw802Device method)

 	send_data_async_64() (digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	send_data_async_64_16() (digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	send_data_broadcast() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	send_expl_data() (digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	send_expl_data_async() (digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	send_expl_data_broadcast() (digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	send_ip_data() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	send_ip_data_async() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	send_ip_data_broadcast() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	send_micropython_data() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	send_multicast_data() (digi.xbee.devices.ZigBeeDevice method)

 	send_multicast_data_async() (digi.xbee.devices.ZigBeeDevice method)

 	send_packet() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	send_packet_sync_and_get_response() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	send_sms() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	send_sms_async() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	send_user_data_relay() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	sendall() (digi.xbee.xsocket.socket method)

 	SendDataRequestOptions (class in digi.xbee.models.options)

 	SendDataRequestPacket (class in digi.xbee.packets.devicecloud)

 	SendDataResponsePacket (class in digi.xbee.packets.devicecloud)

 	sendto() (digi.xbee.xsocket.socket method)

 	SENT_FROM_END_DEVICE (digi.xbee.models.options.ReceiveOptions attribute)

 	serial_port (digi.xbee.devices.CellularDevice attribute)

 	(digi.xbee.devices.DigiMeshDevice attribute)

 	(digi.xbee.devices.DigiPointDevice attribute)

 	(digi.xbee.devices.IPDevice attribute)

 	(digi.xbee.devices.LPWANDevice attribute)

 	(digi.xbee.devices.NBIoTDevice attribute)

 	(digi.xbee.devices.Raw802Device attribute)

 	(digi.xbee.devices.WiFiDevice attribute)

 	(digi.xbee.devices.XBeeDevice attribute)

 	(digi.xbee.devices.ZigBeeDevice attribute)

 	set_16bit_addr() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	set_64bit_addr() (digi.xbee.devices.RemoteRaw802Device method)

 	set_access_point_timeout() (digi.xbee.devices.WiFiDevice method)

 	set_api_output_mode() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	set_api_output_mode_value() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	set_baudrate() (digi.xbee.serial.XBeeSerialPort method)

 	set_dest_address() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	set_dest_ip_addr() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	set_dio_change_detection() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	set_dio_value() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	set_discovery_options() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	set_discovery_timeout() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	
 	set_dns_address() (digi.xbee.devices.WiFiDevice method)

 	set_gateway_address() (digi.xbee.devices.WiFiDevice method)

 	set_io_configuration() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	set_io_sampling_rate() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	set_ip_address() (digi.xbee.devices.WiFiDevice method)

 	set_ip_addressing_mode() (digi.xbee.devices.WiFiDevice method)

 	set_local_xbee_device() (digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	set_mask_address() (digi.xbee.devices.WiFiDevice method)

 	set_node_id() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	set_pan_id() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	set_parameter() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	set_power_level() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	set_pwm_duty_cycle() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	set_read_timeout() (digi.xbee.serial.XBeeSerialPort method)

 	set_sync_ops_timeout() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	setblocking() (digi.xbee.xsocket.socket method)

 	setsocketopt() (digi.xbee.xsocket.socket method)

 	settimeout() (digi.xbee.xsocket.socket method)

 	signal_quality (digi.xbee.models.accesspoint.AccessPoint attribute)

 	size (digi.xbee.filesystem.FileSystemElement attribute)

 	SMSMessage (class in digi.xbee.models.message)

 	SMSReceived (class in digi.xbee.reader)

 	socket (class in digi.xbee.xsocket)

 	socket_id (digi.xbee.packets.socket.SocketBindListenPacket attribute)

 	(digi.xbee.packets.socket.SocketClosePacket attribute)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketConnectPacket attribute)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketListenResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket attribute)

 	(digi.xbee.packets.socket.SocketOptionRequestPacket attribute)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket attribute)

 	(digi.xbee.packets.socket.SocketReceivePacket attribute)

 	(digi.xbee.packets.socket.SocketSendPacket attribute)

 	(digi.xbee.packets.socket.SocketSendToPacket attribute)

 	(digi.xbee.packets.socket.SocketStatePacket attribute)

 	SocketBindListenPacket (class in digi.xbee.packets.socket)

 	SocketClosePacket (class in digi.xbee.packets.socket)

 	SocketCloseResponsePacket (class in digi.xbee.packets.socket)

 	SocketConnectPacket (class in digi.xbee.packets.socket)

 	SocketConnectResponsePacket (class in digi.xbee.packets.socket)

 	SocketCreatePacket (class in digi.xbee.packets.socket)

 	SocketCreateResponsePacket (class in digi.xbee.packets.socket)

 	SocketDataReceived (class in digi.xbee.reader)

 	SocketDataReceivedFrom (class in digi.xbee.reader)

 	SocketInfoState (class in digi.xbee.models.status)

 	SocketListenResponsePacket (class in digi.xbee.packets.socket)

 	SocketNewIPv4ClientPacket (class in digi.xbee.packets.socket)

 	SocketOption (class in digi.xbee.models.options)

 	SocketOptionRequestPacket (class in digi.xbee.packets.socket)

 	SocketOptionResponsePacket (class in digi.xbee.packets.socket)

 	SocketReceiveFromPacket (class in digi.xbee.packets.socket)

 	SocketReceivePacket (class in digi.xbee.packets.socket)

 	SocketSendPacket (class in digi.xbee.packets.socket)

 	SocketSendToPacket (class in digi.xbee.packets.socket)

 	SocketState (class in digi.xbee.models.status)

 	SocketStatePacket (class in digi.xbee.packets.socket)

 	SocketStateReceived (class in digi.xbee.reader)

 	SocketStatus (class in digi.xbee.models.status)

 	sort() (digi.xbee.reader.BluetoothDataReceived method)

 	(digi.xbee.reader.DataReceived method)

 	(digi.xbee.reader.DeviceDiscovered method)

 	(digi.xbee.reader.DiscoveryProcessFinished method)

 	(digi.xbee.reader.ExplicitDataReceived method)

 	(digi.xbee.reader.IOSampleReceived method)

 	(digi.xbee.reader.IPDataReceived method)

 	(digi.xbee.reader.MicroPythonDataReceived method)

 	(digi.xbee.reader.ModemStatusReceived method)

 	(digi.xbee.reader.NetworkModified method)

 	(digi.xbee.reader.PacketReceived method)

 	(digi.xbee.reader.RelayDataReceived method)

 	(digi.xbee.reader.SMSReceived method)

 	(digi.xbee.reader.SocketDataReceived method)

 	(digi.xbee.reader.SocketDataReceivedFrom method)

 	(digi.xbee.reader.SocketStateReceived method)

 	(digi.xbee.reader.XBeeEvent method)

 	source_address (digi.xbee.packets.network.RXIPv4Packet attribute)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket attribute)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket attribute)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket attribute)

 	source_endpoint (digi.xbee.models.message.ExplicitXBeeMessage attribute)

 	(digi.xbee.packets.common.ExplicitAddressingPacket attribute)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket attribute)

 	source_port (digi.xbee.models.message.IPMessage attribute)

 	(digi.xbee.packets.network.RXIPv4Packet attribute)

 	(digi.xbee.packets.network.TXIPv4Packet attribute)

 	(digi.xbee.packets.socket.SocketBindListenPacket attribute)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket attribute)

 	SPECIAL_FUNCTIONALITY (digi.xbee.io.IOMode attribute)

 	SpecialByte (class in digi.xbee.models.atcomm)

 	src_interface (digi.xbee.packets.relay.UserDataRelayOutputPacket attribute)

 	ssid (digi.xbee.models.accesspoint.AccessPoint attribute)

 	start() (digi.xbee.reader.PacketListener method)

 	start_discovery_process() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	start_listening() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	state (digi.xbee.packets.socket.SocketStatePacket attribute)

 	status (digi.xbee.models.atcomm.ATCommandResponse attribute)

 	(digi.xbee.packets.common.ATCommResponsePacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket attribute)

 	(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket attribute)

 	(digi.xbee.packets.devicecloud.SendDataResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketListenResponsePacket attribute)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket attribute)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket attribute)

 	(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket attribute)

 	stop() (digi.xbee.reader.PacketListener method)

 	stop_bits (digi.xbee.profile.FirmwareStopbits attribute)

 	stop_discovery_process() (digi.xbee.devices.DigiMeshNetwork method)

 	(digi.xbee.devices.DigiPointNetwork method)

 	(digi.xbee.devices.Raw802Network method)

 	(digi.xbee.devices.XBeeNetwork method)

 	(digi.xbee.devices.ZigBeeNetwork method)

 	stop_listening() (digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.WiFiDevice method)

T

 	
 	tag (digi.xbee.profile.XBeeSettingFormat attribute)

 	(digi.xbee.profile.XBeeSettingType attribute)

 	target (digi.xbee.packets.devicecloud.DeviceRequestPacket attribute)

 	task_done() (digi.xbee.reader.XBeeQueue method)

 	timeout (digi.xbee.comm_interface.XBeeCommunicationInterface attribute)

 	(digi.xbee.serial.XBeeSerialPort attribute)

 	TIMEOUT_READ_PACKET (digi.xbee.devices.XBeeDevice attribute)

 	TimeoutException

 	timestamp (digi.xbee.models.message.ExplicitXBeeMessage attribute)

 	(digi.xbee.models.message.XBeeMessage attribute)

 	to_dict() (digi.xbee.models.message.ExplicitXBeeMessage method)

 	(digi.xbee.models.message.IPMessage method)

 	(digi.xbee.models.message.SMSMessage method)

 	(digi.xbee.models.message.UserDataRelayMessage method)

 	(digi.xbee.models.message.XBeeMessage method)

 	(digi.xbee.packets.base.GenericXBeePacket method)

 	(digi.xbee.packets.base.UnknownXBeePacket method)

 	(digi.xbee.packets.base.XBeeAPIPacket method)

 	(digi.xbee.packets.base.XBeePacket method)

 	(digi.xbee.packets.cellular.RXSMSPacket method)

 	(digi.xbee.packets.cellular.TXSMSPacket method)

 	(digi.xbee.packets.common.ATCommPacket method)

 	(digi.xbee.packets.common.ATCommQueuePacket method)

 	(digi.xbee.packets.common.ATCommResponsePacket method)

 	(digi.xbee.packets.common.ExplicitAddressingPacket method)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket method)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket method)

 	(digi.xbee.packets.common.ModemStatusPacket method)

 	(digi.xbee.packets.common.ReceivePacket method)

 	(digi.xbee.packets.common.RemoteATCommandPacket method)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket method)

 	(digi.xbee.packets.common.TransmitPacket method)

 	(digi.xbee.packets.common.TransmitStatusPacket method)

 	(digi.xbee.packets.devicecloud.DeviceRequestPacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket method)

 	(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket method)

 	(digi.xbee.packets.devicecloud.FrameErrorPacket method)

 	(digi.xbee.packets.devicecloud.SendDataRequestPacket method)

 	(digi.xbee.packets.devicecloud.SendDataResponsePacket method)

 	(digi.xbee.packets.network.RXIPv4Packet method)

 	(digi.xbee.packets.network.TXIPv4Packet method)

 	(digi.xbee.packets.raw.RX16IOPacket method)

 	(digi.xbee.packets.raw.RX16Packet method)

 	(digi.xbee.packets.raw.RX64IOPacket method)

 	(digi.xbee.packets.raw.RX64Packet method)

 	(digi.xbee.packets.raw.TX16Packet method)

 	(digi.xbee.packets.raw.TX64Packet method)

 	(digi.xbee.packets.raw.TXStatusPacket method)

 	(digi.xbee.packets.relay.UserDataRelayOutputPacket method)

 	(digi.xbee.packets.relay.UserDataRelayPacket method)

 	(digi.xbee.packets.socket.SocketBindListenPacket method)

 	(digi.xbee.packets.socket.SocketClosePacket method)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket method)

 	(digi.xbee.packets.socket.SocketConnectPacket method)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket method)

 	(digi.xbee.packets.socket.SocketCreatePacket method)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket method)

 	(digi.xbee.packets.socket.SocketListenResponsePacket method)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket method)

 	(digi.xbee.packets.socket.SocketOptionRequestPacket method)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket method)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket method)

 	(digi.xbee.packets.socket.SocketReceivePacket method)

 	(digi.xbee.packets.socket.SocketSendPacket method)

 	(digi.xbee.packets.socket.SocketSendToPacket method)

 	(digi.xbee.packets.socket.SocketStatePacket method)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket method)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket method)

 	(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket method)

 	(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket method)

 	
 	transmit_options (digi.xbee.packets.common.ExplicitAddressingPacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandPacket attribute)

 	(digi.xbee.packets.common.TransmitPacket attribute)

 	(digi.xbee.packets.network.TXIPv4Packet attribute)

 	(digi.xbee.packets.raw.TX16Packet attribute)

 	(digi.xbee.packets.raw.TX64Packet attribute)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket attribute)

 	transmit_retry_count (digi.xbee.packets.common.TransmitStatusPacket attribute)

 	transmit_status (digi.xbee.packets.common.TransmitStatusPacket attribute)

 	(digi.xbee.packets.raw.TXStatusPacket attribute)

 	TransmitException

 	TransmitOptions (class in digi.xbee.models.options)

 	TransmitPacket (class in digi.xbee.packets.common)

 	TransmitStatus (class in digi.xbee.models.status)

 	TransmitStatusPacket (class in digi.xbee.packets.common)

 	transport (digi.xbee.packets.devicecloud.DeviceRequestPacket attribute)

 	TX16Packet (class in digi.xbee.packets.raw)

 	TX64Packet (class in digi.xbee.packets.raw)

 	TXIPv4Packet (class in digi.xbee.packets.network)

 	TXSMSPacket (class in digi.xbee.packets.cellular)

 	TXStatusPacket (class in digi.xbee.packets.raw)

 	type (digi.xbee.profile.XBeeProfileSetting attribute)

U

 	
 	unescape_data() (digi.xbee.packets.base.GenericXBeePacket static method)

 	(digi.xbee.packets.base.UnknownXBeePacket static method)

 	(digi.xbee.packets.base.XBeeAPIPacket static method)

 	(digi.xbee.packets.base.XBeePacket static method)

 	(digi.xbee.packets.cellular.RXSMSPacket static method)

 	(digi.xbee.packets.cellular.TXSMSPacket static method)

 	(digi.xbee.packets.common.ATCommPacket static method)

 	(digi.xbee.packets.common.ATCommQueuePacket static method)

 	(digi.xbee.packets.common.ATCommResponsePacket static method)

 	(digi.xbee.packets.common.ExplicitAddressingPacket static method)

 	(digi.xbee.packets.common.ExplicitRXIndicatorPacket static method)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket static method)

 	(digi.xbee.packets.common.ModemStatusPacket static method)

 	(digi.xbee.packets.common.ReceivePacket static method)

 	(digi.xbee.packets.common.RemoteATCommandPacket static method)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket static method)

 	(digi.xbee.packets.common.TransmitPacket static method)

 	(digi.xbee.packets.common.TransmitStatusPacket static method)

 	(digi.xbee.packets.devicecloud.DeviceRequestPacket static method)

 	(digi.xbee.packets.devicecloud.DeviceResponsePacket static method)

 	(digi.xbee.packets.devicecloud.DeviceResponseStatusPacket static method)

 	(digi.xbee.packets.devicecloud.FrameErrorPacket static method)

 	(digi.xbee.packets.devicecloud.SendDataRequestPacket static method)

 	(digi.xbee.packets.devicecloud.SendDataResponsePacket static method)

 	(digi.xbee.packets.network.RXIPv4Packet static method)

 	(digi.xbee.packets.network.TXIPv4Packet static method)

 	(digi.xbee.packets.raw.RX16IOPacket static method)

 	(digi.xbee.packets.raw.RX16Packet static method)

 	(digi.xbee.packets.raw.RX64IOPacket static method)

 	(digi.xbee.packets.raw.RX64Packet static method)

 	(digi.xbee.packets.raw.TX16Packet static method)

 	(digi.xbee.packets.raw.TX64Packet static method)

 	(digi.xbee.packets.raw.TXStatusPacket static method)

 	(digi.xbee.packets.relay.UserDataRelayOutputPacket static method)

 	(digi.xbee.packets.relay.UserDataRelayPacket static method)

 	(digi.xbee.packets.socket.SocketBindListenPacket static method)

 	(digi.xbee.packets.socket.SocketClosePacket static method)

 	(digi.xbee.packets.socket.SocketCloseResponsePacket static method)

 	(digi.xbee.packets.socket.SocketConnectPacket static method)

 	(digi.xbee.packets.socket.SocketConnectResponsePacket static method)

 	(digi.xbee.packets.socket.SocketCreatePacket static method)

 	(digi.xbee.packets.socket.SocketCreateResponsePacket static method)

 	(digi.xbee.packets.socket.SocketListenResponsePacket static method)

 	(digi.xbee.packets.socket.SocketNewIPv4ClientPacket static method)

 	(digi.xbee.packets.socket.SocketOptionRequestPacket static method)

 	(digi.xbee.packets.socket.SocketOptionResponsePacket static method)

 	(digi.xbee.packets.socket.SocketReceiveFromPacket static method)

 	(digi.xbee.packets.socket.SocketReceivePacket static method)

 	(digi.xbee.packets.socket.SocketSendPacket static method)

 	(digi.xbee.packets.socket.SocketSendToPacket static method)

 	(digi.xbee.packets.socket.SocketStatePacket static method)

 	(digi.xbee.packets.wifi.IODataSampleRxIndicatorWifiPacket static method)

 	(digi.xbee.packets.wifi.RemoteATCommandResponseWifiPacket static method)

 	(digi.xbee.packets.wifi.RemoteATCommandWifiPacket static method)

 	(digi.xbee.packets.zigbee.RegisterDeviceStatusPacket static method)

 	(digi.xbee.packets.zigbee.RegisterJoiningDevicePacket static method)

 	UNKNOWN_ADDRESS (digi.xbee.models.address.XBee16BitAddress attribute)

 	(digi.xbee.models.address.XBee64BitAddress attribute)

 	
 	UnknownXBeePacket (class in digi.xbee.packets.base)

 	unregister_joining_device() (digi.xbee.devices.ZigBeeDevice method)

 	unregister_joining_device_async() (digi.xbee.devices.ZigBeeDevice method)

 	update_bluetooth_password() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	update_device_data_from() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	update_firmware() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	update_local_firmware() (in module digi.xbee.firmware)

 	update_remote_firmware() (in module digi.xbee.firmware)

 	UpdateProfileException

 	USE_BROADCAST_PAN_ID (digi.xbee.models.options.TransmitOptions attribute)

 	USE_EXTENDED_TIMEOUT (digi.xbee.models.options.TransmitOptions attribute)

 	UserDataRelayMessage (class in digi.xbee.models.message)

 	UserDataRelayOutputPacket (class in digi.xbee.packets.relay)

 	UserDataRelayPacket (class in digi.xbee.packets.relay)

V

 	
 	value (digi.xbee.profile.XBeeProfileSetting attribute)

 	
 	version (digi.xbee.profile.XBeeProfile attribute)

W

 	
 	wait_for_frame() (digi.xbee.comm_interface.XBeeCommunicationInterface method)

 	(digi.xbee.serial.XBeeSerialPort method)

 	wait_until_started() (digi.xbee.reader.PacketListener method)

 	WiFiAssociationIndicationStatus (class in digi.xbee.models.status)

 	WiFiDevice (class in digi.xbee.devices)

 	WiFiEncryptionType (class in digi.xbee.models.accesspoint)

 	with_traceback() (digi.xbee.exception.ATCommandException method)

 	(digi.xbee.exception.CommunicationException method)

 	(digi.xbee.exception.ConnectionException method)

 	(digi.xbee.exception.FirmwareUpdateException method)

 	(digi.xbee.exception.InvalidConfigurationException method)

 	(digi.xbee.exception.InvalidOperatingModeException method)

 	(digi.xbee.exception.InvalidPacketException method)

 	(digi.xbee.exception.OperationNotSupportedException method)

 	(digi.xbee.exception.RecoveryException method)

 	(digi.xbee.exception.TimeoutException method)

 	(digi.xbee.exception.TransmitException method)

 	(digi.xbee.exception.XBeeDeviceException method)

 	(digi.xbee.exception.XBeeException method)

 	(digi.xbee.exception.XBeeSocketException method)

 	(digi.xbee.filesystem.FileSystemException method)

 	(digi.xbee.filesystem.FileSystemNotSupportedException method)

 	(digi.xbee.profile.ReadProfileException method)

 	(digi.xbee.profile.UpdateProfileException method)

 	
 	write_changes() (digi.xbee.devices.AbstractXBeeDevice method)

 	(digi.xbee.devices.CellularDevice method)

 	(digi.xbee.devices.DigiMeshDevice method)

 	(digi.xbee.devices.DigiPointDevice method)

 	(digi.xbee.devices.IPDevice method)

 	(digi.xbee.devices.LPWANDevice method)

 	(digi.xbee.devices.NBIoTDevice method)

 	(digi.xbee.devices.Raw802Device method)

 	(digi.xbee.devices.RemoteDigiMeshDevice method)

 	(digi.xbee.devices.RemoteDigiPointDevice method)

 	(digi.xbee.devices.RemoteRaw802Device method)

 	(digi.xbee.devices.RemoteXBeeDevice method)

 	(digi.xbee.devices.RemoteZigBeeDevice method)

 	(digi.xbee.devices.WiFiDevice method)

 	(digi.xbee.devices.XBeeDevice method)

 	(digi.xbee.devices.ZigBeeDevice method)

 	write_frame() (digi.xbee.comm_interface.XBeeCommunicationInterface method)

 	(digi.xbee.serial.XBeeSerialPort method)

X

 	
 	x16bit_dest_addr (digi.xbee.packets.common.ExplicitAddressingPacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandPacket attribute)

 	(digi.xbee.packets.common.TransmitPacket attribute)

 	(digi.xbee.packets.common.TransmitStatusPacket attribute)

 	(digi.xbee.packets.raw.TX16Packet attribute)

 	x16bit_source_addr (digi.xbee.packets.common.ExplicitRXIndicatorPacket attribute)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket attribute)

 	(digi.xbee.packets.common.ReceivePacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket attribute)

 	(digi.xbee.packets.raw.RX16IOPacket attribute)

 	(digi.xbee.packets.raw.RX16Packet attribute)

 	x64bit_dest_addr (digi.xbee.packets.common.ExplicitAddressingPacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandPacket attribute)

 	(digi.xbee.packets.common.TransmitPacket attribute)

 	(digi.xbee.packets.raw.TX64Packet attribute)

 	x64bit_source_addr (digi.xbee.packets.common.ExplicitRXIndicatorPacket attribute)

 	(digi.xbee.packets.common.IODataSampleRxIndicatorPacket attribute)

 	(digi.xbee.packets.common.ReceivePacket attribute)

 	(digi.xbee.packets.common.RemoteATCommandResponsePacket attribute)

 	(digi.xbee.packets.raw.RX64IOPacket attribute)

 	(digi.xbee.packets.raw.RX64Packet attribute)

 	
 	XBee16BitAddress (class in digi.xbee.models.address)

 	XBee64BitAddress (class in digi.xbee.models.address)

 	XBeeAPIPacket (class in digi.xbee.packets.base)

 	XBeeCommunicationInterface (class in digi.xbee.comm_interface)

 	XBeeDevice (class in digi.xbee.devices)

 	XBeeDeviceException

 	XBeeEvent (class in digi.xbee.reader)

 	XBeeException

 	XBeeIMEIAddress (class in digi.xbee.models.address)

 	XBeeLocalInterface (class in digi.xbee.models.options)

 	XBeeMessage (class in digi.xbee.models.message)

 	XBeeNetwork (class in digi.xbee.devices)

 	XBeePacket (class in digi.xbee.packets.base)

 	XBeeProfile (class in digi.xbee.profile)

 	XBeeProfileSetting (class in digi.xbee.profile)

 	XBeeProtocol (class in digi.xbee.models.protocol)

 	XBeeQueue (class in digi.xbee.reader)

 	XBeeSerialPort (class in digi.xbee.serial)

 	XBeeSettingFormat (class in digi.xbee.profile)

 	XBeeSettingType (class in digi.xbee.profile)

 	XBeeSocketException

Z

 	
 	ZigBeeDevice (class in digi.xbee.devices)

 	
 	ZigBeeNetwork (class in digi.xbee.devices)

 	ZigbeeRegisterStatus (class in digi.xbee.models.status)

 _images/xbplib_diagram_network.png
Device
running
an XBee
Python

XBee network
application

_static/ajax-loader.gif

_images/faq_port_bd.png
Search finished. 1 device(s) found

1 device(s) found Stop

Your device was not found? Click here

s

_images/xbplib_class_hierarchy.png
XBeeDevice

ZigBeeDevice Raws02Device

CellularDevice

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_images/concepts_api_frame_explained.jpg
Start Delimiter Length Frame Data Checksum
(Byte 1) (Bytes 2-3) (Bytes 4-n) (Byten +1)
OX7E MsB LsSB API-specific Structure 1 Byte

I
Characters Escaped If Needed

_images/concepts_form_factor.jpg
XBee Through-Hole (THT) XBee Surface Mount (SMT)

_images/concepts_api_frame.jpg
Start Delimiter Length Frame Data Checksum
(Byte 1) (Bytes 2-3) (Bytes 4-n) (Byten +1)
Ox7E MsB LsB API-specific Structure 1 Byte

_images/concepts_protocol.png
o, °
'\..\

PO Tond

A

0*‘»%. /. ZigBee

DigiMesh

o

Multipoint

nav.xhtml

 Table of Contents

 		
 XBee Python Library

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

_static/up-pressed.png

